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GEOMETRY MAT 611

COURSE INFORMATION

The present self-learning material “GEOMETRY™ has been designed for M.Sc. (Fourth
Semester) learners of Uttarakhand Open University, Haldwani. This course is divided into 14
units of study. This Self Learning Material is a Mixture of Four Block.

First block is Space Curves and Its Properties, in this block Normal and Binormal.
Curvature and Torsion. Fundamental Existence Theorem for space curves. Intrinsic
Properties of a Surface, Osculating circle. Osculating sphere defined Clearly.

Second block is Fundamental Forms, in this block Fundamental form of first and second
kind. Angle between Parametric Curves, Orthogonal Trajectories defined clearly.

Third block is Local Non- Intrinsic Properties Of A Surface, in this block Normal
Curvature, Principal Curvature, Meusnier’s theorem, Minimal Surface, Rodrigue Formula,
Euler’s Theorem are defined.

Fourth block is Tensor Analysis, in this Dummy Suffix Real Suffix, Transformation of
Coordinate and Contravariant, Covariant, Addition, Subtraction & Multiplication of Tensor.
Inner Product. Metric and angle between two vector & Coordinate Curve. Gradient of a Scalar
Function, Christoffel Symbols or Christoffel Brackets. Tensor Laws of Transformation of

Christoftel Symbols. Divergence and Curl of a Vector are defined.

Adequate number of illustrative examples and exercises have also been included to enable the
leaners to grasp the subject easily.
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UNIT 1: SPACE CURVES

CONTENTS:
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1.1 INTRODUCTION

In differential geometry, the study of smooth spaces and shapes, the
fundamental theorem of space curves states that the shape, size, and scale of a
regular curve in three-dimensional space is completely determined by its curvature
and torsion. different space curves are only distinguished by how they bend and
twist. Quantitatively, this is measured by the differential-geometric invariants
called the curvature and the torsion of a curve. The fundamental theorem of curves

asserts that the knowledge of these invariants completely determines the curve.

1.2 OBJECTIVES

After completion of this unit learners will be able to:
Q) Space curve
(i) Class or function of a curve
(1ii) Order of contact between curves and surfaces.

(iv) Normal and Binormal

1.3 SPACE CURVE

A curve in Euclidean space of three dimension is the locus of a point whose
position vector r with respect to origin say O is function of single parameter t. The
cartesian coordinates (x, y, z) of point P are called components of r and are the
functions of parameter t. Therefore, we can express the equation of curve in terms

of a single parameter t.

Thus r(t) = x(t) i +y(t) j + z(t) k represents a curve in space.

The curve is known as a plane curve if it lies on a plane, otherwise it is said to be
a skew twisted or tortuous.

The parametric equation of the curve are

x=x(t), y=y(t), z=2z(t)

UTTARAKAHND OPEN UNIVERSITY
DEPARTMENT OF MATHEMATICS
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Where, x, y, z are real valued functions of a single real parameter ¢t ranging over a

set of valuesa <t < b.

1.4 CLASS OR A FUNCTION OF A CURVE

Let I denote a real interval and let m be a positive integer. Then we say that a real
valued function f defined on I is of class m if f has a continuous derivative of m"
order at every point I.

In case fis differential an infinitely many number of times, it is said to be of
class oo or a C* function.

Note: A regular vector valued function of class m is known as a path of class m.

1.5 ORDER OF CONTACT BETWEEN CURVES AND
SURFACES

Consider a curve C and surface S given by the following equations
x=1(t), y=g® ,z=h()
F(x,y,2)=0

The value of t corresponding to the points which are common to C and S are given by
the solution of equation obtained from (1) and (2) on eliminating X, y, z i.e. by

F[f(t), g(t), h(t)] =0 orF(t)=0 N )

Let t, be one solution of (3), then  F(t,) =0

Now expanding F(t) about t, by Taylor’s theorem in power of (t - t,), we get
F() = F(to) + (- t)F' (o) + 2 F7/(tg) + oo + 2D FR (1) 4 -

Since F(ty) =0

— 2 _ n
Therefore, F(t) = (t- to)F'(ty) + %F”(to) + ot %F”(to) + -

Now the following cases are arise

1. IfF'(ty) # 0, then t, is simple zero of F(t) and in this case C and S said to have
simple intersection.
If F'(t,) = 0and F"(t,) # 0 then t, is double zero of F(t) and the curve C and
surface S have two-point contact or contact of first order.
If F'(t,) = F"(ty) = 0and F"'(t,) # 0then t, is Triple zero of F(t) and the curve
C and surface S have three-point contact or contact of second order.

UTTARAKAHND OPEN UNIVERSITY
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In general if
If F'(ty) = F"(ty) =+ = F"(t,) = 0 and F"*1(¢t,) # 0 then the curve C and
surface S have (r + 1) point contact or contact of " order.

1.6 OSCULATING PLANE

If P, Q, R are three consecutive points on the curve then the limiting position of
the plane PQR as the point Q and R tend to P, is called the oscillating plane at the
point P.

Or

The oscillating plane at a point P of a curve of class > 2 is the limiting position of
the plane which contains the tangent line at P and a neighboring point Q on the curve
as Q— P.

Equation of oscillating plane.

Osculating
plane

A
Fig.1.6.1

Let r = r(s) be the given curve C of class > 2 with respect to parameter s, the arc
length. Let the arc length be measured from some point say S such that arc AP =s, arc
AQ = s + s so that arc PQ = Js. The position vector of P can be taken as r(s). the
position vector of the point Q can be taken as r(s + §s). Let R be the position vector of
current point T on the plane containing the tangent line at P and the point Q.

The unit tangent vector at P is £ = r'(s).

PT =R —r(s),t =r'(s) and PQ = r(s + 6s) — r(s) line in the plane TPQ.
Hence their scalar triple product must be zero.

ie. [R—r(s)].r'(s) x[r(s+8s)—r(s)] =0

equation (1) is equation of the plane TQR. Now expanding r(s + s) in power of (§s)
by Taylor’s theorem, we have.

r(s+68s) = r(s) +8sr'(s) + % r"(s) + 0(8s)3

UTTARAKAHND OPEN UNIVERSITY
DEPARTMENT OF MATHEMATICS
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Putting the value of r(s + &s) from (2) in (1), we get

(85)*
2!

[R —r(s)].7"(s) X [r(s) +6s7'(s) +

r""(s) + 0(6s)3 — r(s)] =0
Therefore, [R —r(s)].7'(s) X [r"(s) + 0(6s)3] =0

Hence the limiting position of the plane as Q— P i.e.asds — 0
[R—71()].r"(s)x r"(s) =0

Provided the vector r'(s) and r"(s) are linearly independent. Equation (3) can be put
as [R—r1(s),r"(s), r"(s)] =0

which is the equation of osculating plane at P.
Note: (1) Osculation plane at a point of inflexion.

A point P where r” = 0 is called a point of inflexion, and tangent line at P is called
inflexional tangent.

For finding the equation of oscillating plane at a point of inflexion, it will be shown that
when a curve is analytic, there exists a definite osculating plane at a point of inflexion P
provided that the curve is not a straight line.

Since r' is a vector of constant magnitude unity, it is perpendicular to its derivative
r"sothat r'. r" = 0.
Differentiating this we get,
r'.r" +r".r"=0 R ()
Again, P is a point of inflexion, " = 0. Hence (5) reduced to
r'.r'" =0

nr

This shows that r’ is linearly independent of """ except when r""" = 0.
Continuing this argument, we shall arrive at the result

r.r® =0
Where, 7® (k > 2) is the first non-zero derivative of r at P. we that have

k
r(s+68s) —r(s) = % r®(s) + 0(8s)*K+D

Hence the equation of osculating plane at P is [R — r(s),7'(s), r®(s)] = 0.
Note: (2) Equation of Osculation plane in term of general parameter t.
[R—r1,7] =0.

Note: (3) Equation of Osculation plane in Cartesion form.

UTTARAKAHND OPEN UNIVERSITY
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Let (X, Y, Z) be the coordinate of the current point T on the osculating plane at P, the
coordinates of point P are (X, y, ).

Then R=Xi+Yj+Zkandr =xi+ yj+ zk
Therefore, R—r =X —x)i+ (Y —y)j + (Z — z)k.
Again 7 =xi+yj+zk and# =Xi+yj+Zk
Hence, the equation (5) is equivalent to

X—x Y-y Z—-z
x y z |=0.

Example 1. Find the equation of oscillating plane at the point ‘t” on helix
r = (a cost, a sint, ct)

Solution. Equation of the helix are

x =acost, y=asint, z=ct

Therefore, x = —a sint, y = a cost, Z=cC

And X = —acost, y=-—asint, Z=0

Therefore, equation of the osculating plane at point t is

X—acost Y—asint Z—ct
—a sint a cost c =0.
—a cost —a sint 0

Expanding the determinant, we get

(Z — ct)[(—asint)(—asint) — (acost)(—cost)]
— c[(X — acost)(—asint) — (Y — asint)(—cost)] =0

c[(Xsint — ycost — at] + az = — 0.

1.7 NORMAL LINES AND NORMAL PLANE,
PRINCIPAL NORMAL

(a) Normal line. The normal line at point P to the given curve is a line perpendicular to
the tangent at point to the curve.

For a three-dimensional space curve there will be an infinite number of such normal
lines.

(b) Normal plane. The normal plane at point P to the given curve is the plane passing

through the point P and perpendicular to the tangent at P.
I ———

UTTARAKAHND OPEN UNIVERSITY
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Thus, we can say that the normal plane at point P on the space curve and R be the
position vector of any current point on the normal plane at P, thus the vector
(R -r) lies in the plane. Since the vector r is perpendicular to this plane,
So we have (R-r).r=0
Which is the equation of the normal plane at point P.
Again the equation (1) can be put in the form
(R-r).t=0

Note: Cartesian form:

LetR=Xi+Yi+Zk; r=xi+yj+zk
Therefore, t = xi + yj + zk
Putting these values in (1), we get

[(X=x)i+ (Y —=y)j+(Z —-2)k].[xi+yj+zk] =0

Or X—-x)3xx+Y-y)y+(Z—-2)2=0

(¢) Principal Normal. The normal lying in the osculating plane at a point P on the
space curve is called the principal normal at point P.

1.8 BINORMAL

The normal perpendicular to the principal normal at point P is called binormal at point
P.

Thus, we can say that the binormal at any point P is the line perpendicular to the
osculating plane at P. The unit vector along the binormal is denoted by b and we
choose the sense of b is such manner that the triad t, n, b from a right-handed system,
ie.b=txn.

Fig. 1.8.1

Note: Since the binormal is perpendicular to the osculating plane, therefore it must
be parallel to the vector r X F.

1.9 RECTIFYING PLANE

The plane containing the tangent and binormal at P is called rectifying plane at P. i.e. it
is the plane passing through P and perpendicular to principal normal at P. and equation
of this plane is

I ———

UTTARAKAHND OPEN UNIVERSITY
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Note: Orthonormal triad of Fundamental unit Vectors t,n, b.
We have defined a set of three mutually perpendicular unit vectors associated with each
point of a curve. This set of unit orthonormal triad forms a moving trihedral at point
P(say) such that

tn=0,nb=0,b.t=0
And nxXxb=tbxt=ntxn=>.
The vectors t, n, b are called fundamental unit vectors.

1.10 FUNDAMENTAL PLANES

The three planes, osculating plane, normal plane and rectifying plane
associated with each point of a curve are called as fundamental planes. These planes
are mutually perpendicular and are determined by moving trihedral t,n, b at the
point.

The equations of fundamental planes are:
Osculating plane: it contains ¢ and n is normal to b, its equation is
(R=r).b=0.
Normal plane: it contains n and b is normal to ¢, its equation is
(R-r).t=0.
Rectifying plane: it contains b and t is normal to n, its equation is
(R-r).n=0.

1.11 EQUATION OF THE PRINCIPAL NORMAL AND
BINORMAL

UTTARAKAHND OPEN UNIVERSITY
DEPARTMENT OF MATHEMATICS
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Let r be the position vector of any point P on the given curve C at which the equation
of the principal normal and binormal are to be found. Let R be the position vector of a
current point R on the principal, then we have

OP=r,0R=R and PR = An, since n is the unit along the principal normal and 2
is some scalar.

Fig.1.11.1

By triangle law of vectors, we have

OR = 0P + PRor R = r + An, which is required equation of the principal normal.

Similarly, if R is the position vector of a current point Q on the binormal, then the
equation of binormal is given by

R =r + ub, where u is a scalar.

CHECK YOUR PROGRESS

True or false Questions

Problem 1. Equation of osculating plane is (R —r).b = 0.
Problem 2. Equation of Normal plane is (R —r).t = 0.

Problem 3. Equation of Rectifying plane is (R —r).t = 0.
Problem4. b =t X n.

Problem 5. Equation of Osculation plane in term of general parameter t is
[R—r,7#] =0.

UTTARAKAHND OPEN UNIVERSITY
DEPARTMENT OF MATHEMATICS




GEOMETRY MAT 611

1.12 SUMMARY

(i) Osculating Plane: If P, Q, R are three consecutive points on the curve then the
limiting position of the plane PQR as the point Q and R tend to P, is called the
oscillating plane at the point P.

(i) Osculating plane: it contains t and n is normal to b, its equation is
(R=r).b=0.

(iii) Normal plane: it contains n and b is normal to ¢, its equation is
(R=r).t=0.

(iv) Rectifying plane: it contains b and t is normal to n, its equation is
(R=r).n=0.

1.13 GLOSSARY

(i) Derivatives
(i) Determinant
(iii) Vector

1.14 REFERENCES AND SUGGESTED READINGS

1. An introduction to Riemannian Geometry and the Tensor calculus by C.E.
Weatherburn “Cambridge University Press.”
Matrices and Tensors in physics by A.W. Joshi “Wiley Eastern Limited”.
Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”.

Differential Geometry by Gupta, Malik and Pundir “Pragati Edition”’.

1.15 TEWRMINAL QUESTIONS

1. Prove that the necessary and sufficient condition for the curve to be plane is

[, 7, ¥] = 0.

UTTARAKAHND OPEN UNIVERSITY
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2. Define rectifying plane, write its equation.
3. Define osculating plane, write its equation.
4. Define normal plane, write its equation.

5. Define equation of principal normal and binormal.

1.16 ANSWERS

CYQ 1. True
CYQ 2. True
CYQ 3. False
CYQ4. True

CYQS5. True

UTTARAKAHND OPEN UNIVERSITY
DEPARTMENT OF MATHEMATICS




GEOMETRY MAT 611

UNIT 2: CURVATURE AND TORSION
AND FUNDAMENTAL EXISTENCE

THEOREM FOR SPACE CURVES

CONTENTS:

Introduction
Objectives

Curvature
Torsion

Screw-Curvature

Curvature and torsion of any curve r = r(t) given by
Summary

Glossary

References and Suggested Readings

Terminal questions

Answers

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY




GEOMETRY MAT 611

2.1 INTRODUCTION

In differential geometry, the study of smooth spaces and shapes, the
fundamental theorem of space curves states that the shape, size, and scale of a
regular curve in three-dimensional space is completely determined by its curvature
and torsion. The notion of curvature first began with the discovery and refinement
of the principles of geometry by the ancient Greecks circa 800-600 BCE. Curvature
was originally defined as a property of the two classical Greek curves, the line and
the circle.

In mathematics, curvature is any of several strongly related concepts
in geometry that intuitively measure the amount by which a curve deviates from
being a straight line or by which a surface deviates from being a plane. If a curve
or surface is contained in a larger space, curvature can be
defined extrinsically relative to the ambient space. Curvature of Riemannian
manifolds of dimension at least two can be defined intrinsically without reference
to a larger space. First, we show how the notion of torsion emerges in differential
geometry. In the context of a Cartan circuit, torsion is related to translations similar
as curvature to rotations. Cartan's investigations started by analyzing Einsteins

general relativity theory and by taking recourse to the theory of Cosserat continua.

2.2 OBJECTIVES

After completion of this unit learners will be able to:
Q) Curvature
(i) Torsion

(iii) Screw-Curvature

2.3 CURVATURE

Definition: The curvature at a point P of a given curve is the arc rate of rotation of
tangent at P. its magnitude is denoted by k (Kappa).

To find an expression for the curvature (k) at a given point P to a given curve.

DEPARTMENT OF MATHEMATICS
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Let Q be a point very near to point P on the curve. Arc PQ is §s and let the direction of
the tangent at Q makes an angle §6 with the direction of tangent at P.

N

56'
o X
A

Fig.2.3.1

Again, the unit tangent vector is not unit vector, since its direction changes from point
to point. Let t and t + &t be its value at P and Q respectively.

If QM = t and QN = & + &t then we have

MN = 8t, LMQN = 66 and [QM| = |QN| = 1.
From isosceles triangle QMN, we have

MN = 2QM sin~86 = 2sin> 66

1
|_ _ sm566

Therefore, |6t| = 2 sin = 86 T
2 256

taking limits, |3—;| =

therefore, curvature at P = k = lelm ‘;—Z —3—6 along the direction of the tangent.

= |r""| [using (1)]

_ a6 |at| | dt at| _ dr'
|dt| ds ds ds

Which implies that the curvature is the scalar measure of the arc rate of turning of the
unit vector t. The reciprocal of k, i.e. % is called radius of curvature and is denoted by

p.
Deduction: |r'|=1 =7r"=1
Differentiating, we get 2r'.r"” =0
i.e. "’ is perpendicularto ', i.e. to t.

but " at P lies in the osculating plane at P or "' is a vector in osculating plane
perpendicular to t, implying that " is collinear with n.

Also |r"| = Kk, sowe have "’ = + kn.

we choose the direction of n such that curvature k is always positive.

DEPARTMENT OF MATHEMATICS
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. dt
i.e.wetaker” = kn or =

Theorem 1.12.1 A necessary and sufficient condition for the curve to be a straight line
is that curvature k = 0 at all points of the curve.

Proof. Vector equation of the straight line can be put as r = sa + b where a and b are
constant vectors.

Hence,t =r'=aandt'=71r" =0
Therefore, k = [r""| =0

i.e., if a curve is a straight line, then ¥ = 0 i.e. x is a necessary condition for a curve to
be straight line.

Converse. In case k = 0 for all points on the curve, then
r'" =0

Integrating (1), we get r'=a

Integrating (2), we get r=as+b

Where a and b are arbitrary constant vectors. The equation (3) represents a straight line
for all values of a and b.

2.4 TORSION

Definition: Torsion at point P of a given curve is the arc rate of the change in the direction
of the bonormal at P its magnitude is denoted by t(Tau).

Let Q be a point contiguous to P on the curve. ArcPQ = §s, b and b + b are the unit
binormal vector at P and Q respectively and §6 is the angle between b and b + §b.

If QR = b, QS = b then RS = &b.

—

Fig. 2.4.1

Now from then isosceles triangle QRS, we have RS = 2QR sin%

DEPARTMENT OF MATHEMATICS
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=2 —— .86
=>|RS|=2|QR|sm7

= |6b| = 2.1.sin%

T §6—0 —69 -

Thus, by definition, torsion at P

86 _ ae
7= lim
s—>0 65 ds

| db
ds

= 7 is the scalar measure of the arc rate of the unit vector b.

The reciprocal of the torsion is called the radius of the torsion and is denoted by o . thus

1
g =
T

Deduction: We have t. b = 0 whence differentiating

th'+t'.b=0 =tb +xnb=0 [=t' = kn]

=t.b' =0 [ n.b = 0]

i.e. b'is perpendicularto t.

Further b.b=1 = 2b.b' =0

i.e. b’ is perpendicular to b.

~ b’ is normal to the plane containing t and b. i. e. to rectifying plane.
Thus b’ is collinear with n.

Thusb' =+ 1tn

Since b has the opposite direction to n, so negative sign is taken

, , db
i,e. b =—1tn or = —n

Theorem. A necessary and sufficient condition that a given curve is plane curve is that
T = 0 at all points.

Proof. Let the curve be a plane curve then the tangent and normal at all points of the
curve lie in the plane of the curve, i.e. the plane of the curve is the osculating plane at all
points of the curve. This implies that the unit vector b along the binormal is constant.

db

== 0 or T = 0. Hence the condition is necessary.

DEPARTMENT OF MATHEMATICS
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Converse. Let 7 = 0 at all points of the curve. This implies that% =01ie.b.
This implies that % = 0 I.e. b is a constant vector.
. d dr db ,
Again ;(r.b) = .b+r.E =tb+r.b
As t and b are orthogonal, we have t.b = 0. Also b’ = 0.
Therefore % (r.b) =0, i.e. r.b = constant.

Again b is constant vector of magnitude unity, r. b is the projection of the position vector
r on b and is same at all points of the curve by the condition r. b = constant. This implies
that the curve must lie in a plane.

2.5 SCREW-CURVATURE

The arc rate at which principal normal changes direction (i.e.,d—") is called the screw

ds
curvature vector and its magnitude is given by /{k2 + 72}.
Note. Serret-Frenet Formulae.

The following set of three relations involving space derivatives of fundamental unit
vectors t, n, b are known as Serret-Frenet Formulae.

dt
ds

kn (2 =1b—kt (3) = =-m

Proof: (1) Since [r'|=1 = r =1
Differentiating, we get 2r'.r"” =0
i.e. "’ is perpendicularto ', i.e. to t.

but " at P lies in the osculating plane at P or "' is a vector in osculating plane
perpendicular to t, implying that "’ is collinear with n.

Also |r"| = k,sowe have r"” = + k n.

we choose the direction of n such that curvature k is always positive.

. dt
i.,e.wetaker” = xkn or = kn.

(3) We have t.b = 0 whence differentiating
th'+t'.b=0 =tb +xknb=0 [-t' = kn]

=tb=0 [+nb=0]
|
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i.e. b'isperpendiculartot.

Further b.b=1 = 2b.b' =0

i.e. b’ is perpendicular to b.

~ b’ is normal to the plane containing t and b. 1. e. to rectifying plane.
Thus b’ is collinear with n.

Thusb' =+ tn

Since b has the opposite direction to n, so negative sign is taken

b _
ds

(2) Weknowthat mn=bxt

iie. b =—1tn or —Tn

Differentiating w.r.t. ‘s’, we get

dn—bxdt+dbxt—bxk + X t
ds ds ds N n+(-tn)

= k(bxn)—t(nxt) =k(-t)—1t(—b)
=1tb—kt.

e Remark. Serret-Frenet Formulae can be represented in the form of matrix
equation as below:

t 0 k 0 t
n|l=(-k 0 —t||n
b’ 0 -t O0llb

2.6 CURVATURE AND TORSION OF ANY CURVE
r = r(t) GIVEN BY

o N
k="M and ¢ =
73 7

We know that 7 = &£ = 225 _

slr |l =ts|=s
Now differentiating (1), we get

. d’r

F=—z= t's?2+ ts  or¥ = (kn)s®+1ts

Now taking the cross-product of (1) and (3), we get
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FxiF=83kb = |r x ¥#|=ks3
Differentiating (4), we get
FXFARXF=Sk+D5+b(P k) [v b =
Again, taking the scalar product of (3) and (4), we get

[r, 7] = —s®k?t
Also, from (2) and (4), we have
$3 klb| = |7 x #| or|7|3k|b| = |7 x #]
or k=" [Ibl=1]

[

From (6) and (4), we have T = =~

An important Result.

— |4’ " _ [
k = |T Xr | and 7= Ir'x |2

Proof: We know that ' = t and r"’ = kn
sr'x r’" =txkn=kb or |r'xr"|=k|bl=k
Again r"=t=1.t+0.n+0.b

r" =kn=0.t+kn+0.b

mo_ o dn  dk _ /
And 7 —kds+dsn—k(1'b kt) + k'n

=—k?t+k'n+ kb
From (2), (3) and (4), we have
1 0 O
[r', ', v"'1=1 0 k 0|=k%*
—k? k' kt

T,”]

Or

|r! xr'"|2
Theorem. The necessary and sufficient condition for the curve to be a plane curve is
[/, ", r'""] =0.
Proof. From equation (4) above we have
[v', 7", "] =k?*t

Incase [r', ", r'"'] = 0then either k =0 ort = 0.
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Let T # 0 at some point of the curve then in the neighborhood of this point 7 # 0,
therefore k = 0 in the neighborhood of this point.

Hence the arc is a straight line and therefore ¢ = 0 on this line which contradicts our
hypothesis. Hence 7 = 0 at all points and the curve is a plane.

Conversely. If T = 0 i.e. the curve is a plane curve then from equation (4), we have
[,rl' T”, ,r.lll] — 0
Therefore, the condition is necessary as well as sufficient.

Remark: This theorem may also be put as, show that the necessary and sufficient
condition for the curve to be plane curve is [r, #, #]=0.

Question 1. For the curve x = a(3t — t3),y = 3at?,z = a(3t + t3), show that

_ 1
T 3a(1+t2)2

k=1
Solution: In this case r in terms of parameter ¢t is given by
r = (3at — at?, 3at?, 3at + at3)
7 = (3a — 3at?, 6at, 3a + 3at?)
# = (—6at, 6a, 6at) and

¥ = (—6a,0,6a)

I7] = 3a\/{(1 — t2)2 + 4t2 + (1 + t2)2} = 3\/2a(1 + t?)

Again 7 X # = (18a?t? — 18a?,—36a?t, 18a? + 18a?t?)

o P X Fl = 18a%/(t2 — 1)2 4+ 4t2 + (1 + t2)2 = 18y/2a2(1 + t2)

|7 % #| 184/2a2(1 + t2) 1
Therefore, k = = =
[7]3 54./2a3(1 +t2)3  3a(1+t?)?

_ 3a — 3at? 6at 3a+ 3at?
Again [7,#] =| —6at 6a 6at
—6a 0 6a

6a 6at 3a+ 3at?
-0 6a 6at by c; + c5
-0 0 6a

= 6a(36a?) = 216a3

[7FF] 216a3 _ 1
| x#2 )’ 3a(1+t2)2
{18 2a2(1+t )}

Therefore, T =

1
Hence,k—’[—m.
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Question 2. For the curve r = (t, t?,t3), show that

o 409t*+9t2 +1) and T = 3
(9t + 42 + 1)2 T ott+at2 41

Solution: here r = (¢, t?,t3)
g 7 = (1, 2t,3t?)
7 = (0,2, 6t) and
K 7 =1(0,0,6)
Therefore, 7 x # = (6t2,—6¢,0)
|7 X #| = V36t* +36t2 + 4 = 2Vot* +9t2 + 1
1 2t 3t
Again, [7,#, 7] =0 2a e6t|=12
0 O 6
Also, [7]?> = (9t* + 4t%2 + 1)

Now. k2 = [7x#2 _ 4(9t*+9t%+1) o F] ~ ,
) Ll (9t*+4t241)3 o TOT 1o AD) — or ettt D)

Question 3. Find the curvature and torsion for the curve x = a cost,y = a sint,z =
at cota.
Solution: Here position vector r in term of parameter t is given by
r = (a cost, a sint, at cota)

7 = (—asint, acost,acota)

# = (—acost, —sint, 0) and

7 = (asint, —acost, 0)
Therefore, 7 x # = (a?sint cota, a?cost cota, a?)

|7 X #| = a®coseca
And |7| = (a?sin?t + a?cos?t + a?cot?a)'/? = acoseca
—asint acost acota

Again, [7,#,7] = |—acost —asint 0 a’cota

asint —acost 0

|#x¥| _ a?coseca

1 .
Therefore, k =*— = = =sina
|73 a3cosec3a a
¥, #, ¥] _  a3cota

And1'=[

1 .
= = —-Slna cosa .
|7 x #|2 a*cosec’a a

Question 4. If x = acost,y = asint, z = ct a plane curve? Calculate the curvature and
torsion

of the above curvature.
Solution: This is exactly above question 3 put a cot @ = c in question 3 the we get

1 . 5 1 a? a 1, 1 ac c
k = =sin“a = ~. = and‘r=—smacosa=—.—=—
a a a%+c? aZ+c? a a a?+c? aZ+c?

Since in this case T # 0, hence curve is not a plane curve.

Question 5. Show that the Serret-Frenet formulae can be written in the form % =w Xt,

d db .
2= wxn = =wx b and determine w.
das ds

___________________________________________________________________________________________________________|
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Solution: Since we knowthatgz kn=ttxt+kbxt [~txt=0andb Xt =n]|
=(tt+kb) x t
And St =1b—kt =T(t X n) + k(b X n)

- =
= (tt + bk) Xn
db
—=—m=1(tXb)+kbXxb
ds
= (tt + kb) X b
From equation (1), (2), (3), we have

dt d db
—=w Xt —n=w><n,—=a)><b Where, w = tt + kb
ds ds ds

Question 6. Show that "’ = k'n — k?t + ktb and show that
" = (k" — k3 —kt®)n—3k’kt + k't + t'k)b.
Solution: We have " = kn
sr' =kn'+k'n=k(tb —kt) + k'n
=k'n — k%t + ktb.

Hence, """ =k'"'n+k'n' — 2kk't — k*t' + (kv + k't)b + ktb’
=k'"n+k'(zth — kt) — 2kk't — k3n + (kt' + k't)b — k1?n
=" —k3®—kt®)n—-3kk't+ k't +1'k)b

Question 7. Prove that [/, ", r""'] = k?r.
Solution: We have r' =t sothatr” =t' = kn
And """ = k'n — k?t + ktb (by. Question 6)
s, " = e xr]
=t.[kn X (—k?t + k'n + ktb)]
=t.[ k?b + k?tt] = k?zt [sincet.b=0andt.t=1]

Question 8. If the tangent and binormal at a point of a curve make an angle 8 and ¢
sinf df k

respectively with a fixed direction, show that sne do -
Solution: Let the tangent t and bonormal b at a point of a curve make angles 8 and ¢
with the fixed direction, say a in space, then

t.a =acos8 where|a| =a

b.a =ccos¢

Differentiating w.r.to ‘s’ we get

. dae . .- . . .
t'.a=—asin@ -~ (Differentiating of a is zero, since, a is a constant vector)

. do
Or kn.a=—asm9;

. d . . d
Alsob'.a = —a sm<pd—(: e, —n.a = —a sm<p£

Dividing (1) by (2), we get
sin 8 Q _ _E
sing "dp T

CHECK YOUR PROGRESS
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True or false Questions

Problem 1. If T = 0 then the curve is a plane curve.
Problem 2. The curvature at a point P of a given curve is the arc rate of
rotation of tangent at P.

Problem 3. If for a curve [r’, r", r'"'] = 1 then curve is a plane curve.

Problem 4 A necessary and sufficient condition for the curve to be a
straight line is that curvature x = 1 at all points of the curve.

Problem 5. A necessary and sufficient condition for the curve to be a
straight line is that curvature x = 0 at all points of the curve.

2.1 SUMMARY

(1) Curvature: The curvature at a point P of a given curve is the arc rate of rotation
of tangent at P. its magnitude is denoted by x (Kappa).
(2) Serret-Frenet Formulae.

The following set of three relations involving space derivatives of fundamental unit
vectors t, n, b are known as Serret-Frenet Formulae.

. dn_ _ @__
(||)£—rb kt (iii) =~

(3) The necessary and sufficient condition for the curve to be a plane curve is
[T,I’ T,II’ T,III] — 0.

(4) Serret-Frenet Formulae can be represented in the form of matrix equation as

below:
t 0 k 0 t
n|l=|-k 0 -—-t||n
b’ 0 —t ollb

2.8 GLOSSARY

(i) Derivatives

(i1) Determinant

(iii) Vector
________________________________________________________________________________________________________________________|
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2.9 REFERENCES AND SUGGESTED READINGS

1. An introduction to Riemannian Geometry and the Tensor calculus by C.E.
Weatherburn “Cambridge University Press.”
Matrices and Tensors in physics by AW. Joshi “Wiley Eastern Limited”.
Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”.

Differential Geometry by Gupta, Malik and Pundir “Pragati Edition”.

2.10 TEWRMINAL QUESTIONS

Prove that the necessary and sufficient condition for the curve to be plane is

[rl’ T'”, rlll] =0.
Find the osculating plane, curvature and torsion at any point of the curve

X = acos2u,y = a sin2u,z = 2a sinu.

. dt
Define curvature, also prove that — = kn.

Find the curvature and torsion of the curve given by

r = (at — asint, a — acost, bt).

1
a(l+3t2)2°’

For the curve r = (Vat3, a(1 + 3t?),V6at ), showthatt = k =

2.11 ANSWERS

3

TQ 2. The equation of osculating plane is 3u sinu, torsion asecn + 30000

a(b? + 4azsin4%)1/2 —b
—F andt=——=.
b? + 4a25m25 b2 + 4azsm45

TQ4. k =
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CYQ 1. True
CYQ 2. True
CYQ 3. False

CYQ 4. False

CYQ 5. True

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY




GEOMETRY MAT 611
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3.1 INTRODUCTION

In geometry, an intrinsic equation is an equation that defines a curve using
its intrinsic properties. These properties do not depend on the curve's location or
orientation and in differential geometry, the fundamental theorem of space curves
states that every regular curve in three-dimensional space, with non-zero curvature,

has its shape (and size or scale) completely determined by its curvature and torsion.

3.2 OBJECTIVES

After completion of this unit learners will be able to:
(0 Intrinsic Equations
(i) Osculating Circle
(iii) The Osculating Sphere

3.3 INTRINSIC EQUATIONS

We have defined the curve with respect to a set of three mutually orthogonal
axis but in case the same curve be referred to a different set of cartesian axes, then its
defining equations are altogether different and its is not at all clear that they refer to the
same curve. Thus, it is required to describe a curve without reference to a particular set
of cartesian axes, this can be done by expressing the curvature and torsion at any of its
points as function of arc length s, say k = f(s); T = g(s). These are called intrinsic
equation of the curve.

3.4 FUNDAMENTAL THEOREMS FOR SPACE
CURVES

Theorem 1. (Existence Theorem). If k(s) and t(s) are continuous functions of a real
variable s (s = 0) then there exists a space curve for which k is the curvature, t is the
torsion, and s is the arc length measured from some suitable base point.

Proof. From existence theorem on linear differential equation, we know that the
differential equations

da
ds

= kB, L Tty — ka, ﬂ=—‘EB

ds ds
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Admit a unique set of solutions for a given set of values «, 8,y at s = 0.
Therefore, we have unique set «, , ; , ¥4 for which the valuesat s=0are 1, 0.

Similarly, there exist a unique set a, , B, , ¥, with values 0, 1, 0ats=0and a3 , S5 ,
¥5 Is a unique set with values 0, 0, 1 at s = 0.

d 2 da ap ay
NOW;((Xlz"‘ﬁl +Y12)=2(a1d1+ﬁ1 Sl+ ld_Sl)

= [a;(kBy) + B1(ty1 — kay) + y1(—=1B;)] = 0 [From (1)]
Integrating, we get a;2 + B,% + y,2 = ¢, (constant)
Inltla"y ats= 0, a, = 1, ﬁl = 0, Y1 = 0, S Cp = 1

a12 +ﬁ12 +Y12 =1
Hence a2+ B+ =1
as? + B+t =1

. d
Again s (aya; + B1B2 +v1V2)

da, d,B dy, day ,3 dy,
(“1 as TP T >+(“2 ds TPgs e ds)

= ai (k) + B1(ty; — kay) +v1(—=162) + kBray + o (ty1 — kay) + v (—1By)
=0
Thus, on integrating, we have a;a, + 18> + y1Y2 = ¢ (constant)
Initiallyats=0,a;, = 1,8, =0,7,=0,a, =0,8,=1,7, =0
c2=0

a1, + 1By +v1v. =1
Hence, «aiaz+p[i03+y1735=1 I €))

azay + P3P +v3y1 =1

Thus, we have six equations given by (2) and (3) in elements of three sets namely
(ay, B, 71 ), (ay, B2, v2 ) and (as, B3, y3 ). Hence it follows that there are three
mutually orthogonal unit vectors t = (a4, 81,71 ), n = (a3, B, v, ) and b =

(as, B3, 3 ) defined for each curve of s.

Now let the be defined by

r=r(s) = [t(s)ds

Thus k is curvature of the curve given by (4).
Againb =t XxXn =b =t'xXn+txn
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= k(n xn) +t X (—kt + tn) putting for t" and n’
=(nxn)—k(txt)+t(t xn)
= tb Where, |b| = 1

Thus T is a torsion of the curve, so there exists a curve given by (4) where t,n, b are
unit vectors along the tangent, principal normal and bonormal respectively and k and t
are its curvature and torsion respectively.

Example 1. Show that the intrinsic equations of the curve given by
x =ae%cosu,y = ae“sinu,z = be" are

Kk = av2 = av2
Csya?+p% ' sf2a?4p?}

Solution: Here r = (ae% cosu,ae%sinu,be%)

Therefore 7 = [ae¥(cosu — sinu), ae*(sinu + cosu), be*]

7] = § = e*y/[a?(cosu — sinu)? + a?(cosu + sinu)? + b?]

=e%\/(2a%2 +b?) =3

r = 7 _ [a(cosu — sinu), a(sinu + cosu), b]
N J@aZ+v7)

_ [-a(sinu + cosu), a(cosu —sinu), 0] 1

J(2a? + b?) s

Taking module of both sides, we get

" =kn

N 72 av2 W11
k=|r"|= Vo) [ s = S] from (1)

Also, from (2)

[—a(sinu + cosu), a(cosu — sinu), 0]

J@2az + b?)

Differentiating w.r.t. ‘s’, we get

" i _ [-a(cosu —sinu), a(cosu+ sinu), 0] 1
st +r" = JGatios = From (1)

[—a(cosu — sinu),—a(cosu + sinu), 0]

Or s*r'" +sr"” =
J(2a? + b?)

Now, [r',sr",s?r"" + sr" ] =

a(cosu — sinu) a(sinu +cosu) b
—a(sinu + cosu) a(cosu—sinu) 0
—a(cosu — sinu) —a(sinu + cosu) 0

1
(2a2 + b2)3/2
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or s?[r',r",r'" ]= mazbz[(sinu + cosu)? + (cosu — sinu)?]
2a’b 3 2a? 1 2a’b

31,2 — &P - - ==
Or S k T= (2(12 + b2)3/2 ors (2(12 + bZ)Z " SZ T (2(12 + b2)3/2

b 1
Or T=Garms:
Hence, the intrinsic equations of the given curve are

Kk = V2a 1 _ b 1

T @zt 2s’ U @az+p?)ifs

3.5 OSCULATING CIRCLE (OR THE CIRCLE OF
CURVATURE)

Definition: Let P, Q, R be three points on any curve then the circle of curvature at point
P is the limiting position of the circle through P, Q, R when the points Q, R tend to P.

Alternatively: The osculating circle at point P on any curve is the circle which has
three-point contact with the curve at P.

Obviously, the osculating circle at any point of a curve lies in the osculating plane at
the point since the osculating plane at P has three-point contact at P with the curve.

The radius and the Centre of circle of curvature:

Let a circle in the osculating plane be given as intersection of the plane and the sphere
lr—cl=a ie (r—c)?=a? whereristhe position vector of the generic point and
c is the position vector of Centre C and a is radius of the sphere.

n

Fig.3.5.1

Let the equation of the curve be r = r(s) (i.e. parametric in s). now the positions of
intersection of the curve and sphere are given by

F(s)=[r(s)—c]?—a%?=0

For three-point contact, we have
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FS)=F'(s)=F"(s)=0

These conditions give
r—c)=a?,r—=c0).r"=00-c)r"+r'.r"=0
Sincer' =t,r" =t' =knr'.r'=t*=1

These equations may be put as

(r —c)? = a?

(r—c).t=0

And (r—c).n=—p

Equation (2) shows that (r — c) lies in the normal plane at P. but definition it also lies in
the osculating plane at P, hence (r — ¢) must be along the line of intersection of
osculating plane and normal plane, thus it must lie in the direction of principal normal
at P. thus

(r — ¢) = An where A is any scalar, substitutions in (1) and (3) give a = pand A = —p
Therefore, position vector c of the centre of osculating circle is given by
c=r—An=r+pn

It is evident that centre lies on the principal normal and is at a distance p from P.

e Properties of the locus of the centre of curvature:
Let C be the original curve and C; be the locus of the centre of curvature, then it
has following two important properties.
Q) The tangent to C; lies in the normal plane of the original curve C.
(i) In case the original curve C has constant curvature k then the curvature
of C, is also constant and torsion of C; varies inversely as that of C.

Proof: Let the suffix unit be used for quantities belonging to the locus of the
centre of curvature i.e. for C;.

0] The position vector ¢ of the curvature of C; is given by
c=r+pn
Differentiating this w.r.t. ‘s’, we have
’ ; ds ’ ’ ’ ds
C'=t;=(@+pn) oo, orty =(r'+ pn +,0n)d—s1

t, = [t + pn' + p(tb — kt)] ;Tsl [by Fernet's formulal]

, d
ty = (pn’ + ptb) o
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Xy

a
%—o\

Fig.3.5.2
The relation (1) shows that the tangent to C; lies in the plane containing n and b i.e. in
normal plane of C if it is inclined at an angle « to the principal normal n.

Then cos @ = n.t; =n.(pn’ + ptb) <= [from (1)]

, das . ds
cosa=p ;and also sina = pT—
1 1

Again squaring (1) we get 1 = /(p’2 + p212 ;TS
1

Using (2) and (3), we have

In case k is constant i.e. p is constant, we have p’ = 0

Thus from)1), we have t; = pr;TS
1

Squaring both sides of this equation, we get

S=x [at2=1-b7

ds; E
From (5) and (6), we have t; = b

Now differentiating this relation w.r.t. ‘s’, we get

ds ds
tll = b_ or t1’ = klnl = —1mTn—
dSl dSl

Or kin, = —rni = —kn

This implies that n, is parallel to n and choosing the direction of n, opposite to that of
n such that n, = —n. Therefore k, = k.

Again b, =t; Xn;, =bx(—n) =t

Differentiating this relation, we get
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db, , ds

—-Tn, =—=t =kn (g)

dSl dSl

2

Butn, = —b  therefore t; = k? =

constant

T

i.e. torsion of C; varies inversely as that of C.

Example: Show that the principal normal to a curve is normal to the locus of the centre
at points where curvature K is stationary.

Solution: The position vector of the centre of curvature is given by
C=r+pn [r=1(s)] ........(1)
let the suffix unity be used for quantities belonging to the locus of ¢( = r;), then

dr ds

ds_tld—Sl=t+p(Tb—kt)+pn

Or t; = (ptb + ,o’n):—:'1 (-~ pk=1)

Now taking scalar product of (2) with n, we get

d
t,.n=p —

ds,
In case k is constant, then p’ = 0
Hence from (3), we have

t;., n=0

i.e. principal normal is normal to the locus of centre of curvature.

3.6 THE OSCULATING SPHERE (OR THE SPHERE OF
CURVATURE)

Definition: Let P, Q, R, S are four points on a curve then the sphere of curvature at
point P is the limiting position of the sphere PQRS when the points Q, R, S tend to
coincide with P. its radius and centre are called radius and centre of spherical curvature.

Alternatively: The sphere which has a four-point contact with the curve at a point P is
called osculating sphere at P.

The radius and the centre of the sphere of curvature.

Let c be the position vector of the centre and R be the radius of the sphere.
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Then its equation is (r — ¢)? = R?

Where r is the position vector of the generic point.

The point of intersection of the curve r = r(s) with the sphere are given by
FS)= (r(s) —c)?—R?2=0

Again, for a four-point contact, we have
F(s)=0,F'(s)=0,F"(s)=0,F"(s) =0

Now these conditions give rise to following equations
r—c)?=R?;r=c¢).r=0,r—=¢).r" +r'.r =0
And (r—c).r'"" +r'.r" +2r'.r" =0

Again, we know that

rr=tr.r=t*=1

r'"=t'=kn; r'.r" =r'.t'=r.kn=t.kn=0

r'" =" =(kn) =kn'+k'n =k(tb—kt) + k'n
Using these relations, above equations reduce to

(r —¢)? = R?

(r—c).t=0

(r—c).n=-p

(r—c).{k(tb—=kt) + k'n} =0

Again equation (4) by making use of (2) and (3) reduces to

(r—c).b =52 =p2gk' = —pza% = —0op

!
kt

From (2), we observe that (r — c¢) is perpendicular to t i.e. it lies in the normal plane at
P. Thus, we can express (r — ¢) as linear combination of n and b

i.e. there exists scalar A and u such that
(r—c)=2An+ub

Substitution in (3) and (5) we get

A=—-pandu =—ap’

Whencer —c=—pn—agp’'b or c=r+pn+agp'b

Again, substitution in (1), gives
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Remark: if k = % is constant, then p’ = 0, then p is constant, so (7) gives R = p and

(6) gives ¢ = r + pn, i.e. centre of osculating sphere coincides with centre of
osculating circle.

Example 1. Find the equation of the osculating sphere and osculating circle at (1, 2, 3)
onthe curve x = 2t + 1,y = 3t% + 2,z = 4t3 + 3.

Solution: the equation of the curve can be put as
r = (2t +1,3t? + 2,4t3 + 3)
Evidently t = 0 at point (1, 2, 3) on the curve
Differentiating equation (1) w.r.t. ‘t’ we get

7 = (2,6t,12t%),# = (0,6,24t),7 = (0,0, 24)
Att =0, we have

7 =(2,0,0),#=(0,6,0), ¥=(0,0,24)

Let the equation of osculating sphere be (r — ¢)? = R?
Where c is the position vector of the centre of osculating sphere, let
c=ai+pj+yk

Now, for a four-point contact at r, we have on differentiating equation (2), three times
w.r.t. ‘t’

r—o).7r=0,r=c¢).# +72=0and (@ —c).¥ +3r.¥=0
Att =0, these reduce to

[i+2j+3k)—(ai+Bj+yk)].2i=0
ieel—a=00r a=1

Similarly, from other two equations, we have

2-B)6+4=0 i.e.ﬁzg

B3—-y)24+0=0iey=3
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also, osculating sphere (2) passes through (1, 2, 3)
2
therefore, [(i +2j+3k) - (i + Sj + 3k)] — R2
or ==R? or 2=R
9 3

Hence, the equation of the osculating sphere is

2

[(i+2j+3k)—(i+§j+3k)] =§

124 (v=8) 4 (z—3)2 =2
Or (= 1)% + (y 3) +t(z-3)° = 9
Or 3x2+3y2+ 3z —6x—16y—182z+50=0

The osculating circle is the intersection of the osculating plane and osculating sphere
and the equation of this plane is

[R—T, T, #1=10
i.e.,att=0,itreducesto {(x — )i+ (y—2)j+ (z—3)k}.12k =0
ie. z—3=0
Hence, the equation of osculating circle is

3x2+3y2+3z2—6x—16y—182z+50=0,z—3 =0.

Example 2. Show that the radius R of the sphere of curvature is given by

m2 _ 2

R? = p*o?r a?.

Solution: we know that

1
r'" =kn=-—n
p

! !
Therefore, 7" == (tb—kt) —2n= -2t —Ln+ 1 p
p p p p ap
2
- mz L4 P~
Squaring, we get r'"'* = o + o + o

p40'21"”’2 = g2 +p/20.2 +p2 = g2 + R2

Example 3. Show that x”/% + y""? + z/"% = ——
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Solution: we have

r=xi+yj+zk
Therefore, r"" =x"i+y"j+z"k
Squaring we get, "% = x""* + y"'? 4 z'""?

4 !
Therefore, ¥ == (tb—kt) —&Zn=—-2t-LZn+=p
p p p2"  p2 op

p’2 1 1+p’2
+ F + = +

o2p2? a2p2 p*

. 1
Squaring, we get "'’ = o

From (2) and (3), we get

12
12 12 m2 _ 1 1+p
xT+y Ttz = 2,2 p
Since R% = p? + o2p’?, equation (4) can be put as

R2

)2
1, 14p" 1
v otp?

m2 m2 "2
x4+ +z = =
Y a?p? p* p

Example 4. Show that the radius of spherical curvature of a circular helix is equal to
the radius of circular curvature.

Solution: the radius R of a spherical curvature is given by

R? = p? 4+ g2p'?
Again, for a circular helix, we know that p = constant (p’ = 0)
Therefore, (1) reduces to R? = p? or R = p.

Example 5. Show that the radius of spherical curvature of a circular helix x =
acosf,y = asinf,z = af cota is equal to the radius of circular curvature.

Solution: Here r = a(cos8,sin 8, cota)

Differentiating w.r.t. ‘s’, we get

!

r =t=a(—sin9,cos@,cota)$

Squaring above, we get

2

do
1 = a%(sin® @ + cos? 6 + cot? a) (E)

<d9>2 1
ds/) = a?cosec? a
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dae sin a
Or —=

ds a

Therefore, t =sina (—sinf,cosf,cota)

Differentiating w.r.t. ‘s’, we get

. . ae
t’ =51na(—c050,—51n0,0)g

2
or kn=¥(—c050, —sinf,0)

Squaring, we get

.4 . 4
sin” @ . s @

k? = ——[cos? 0 + sin* 0] = ——
a a

2
Therefore, k = =2 which is constant.

a

Therefore, in this case p = constant, therefore p’ = 0
Again, radius R of spherical curvature is given by
R? =p2 +02p'> = p2  (since p’ = 0)
Hence, R =p.
Example 6. If a curve lie on a sphere, show that p and o are connected by
g + :—S (op’) = 0.
Or show that the necessary and sufficient condition that a curve lies on a sphere is

p, d(p" _ .
that St (?) = 0 at every point on the curve.

Solution: Necessary condition. in case curve lies on a sphere then that sphere is the
osculating sphere for every point, then the radius R of the osculating sphere is constant.
The radius R is given by
R2 :pZ _l_O.Zp/Z — pZ + (O.p/)z
Differentiating w.r.t. ‘s’, we get
_ ’ 1 i 1 P i "N _
0=2p'p+20p ds(ap) or U+ds(ap)—0
Sufficient condition. If g + % (op") = 0, then to show that the curve lies on a sphere.

By reversing the order of steps, we see that the radius of osculating sphere is
independent of the point on the curve.

Again, the centre of spherical curvature is given by

C=r+pn+op'b
- - ---
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Therefore, 2—5 =t+p'n+pltb—kt) +0'p'b+0p"’b—op’'tn

= (§ +o'p + ap”) b=20 (5 +o'p' +0op"” =0by hypothesis)

Or C is a constant vector.

I.e. the centre of osculating sphere is independent of the point on the curve. Hence the
curve lies on the sphere.

CHECK YOUR PROGRESS

True or false Questions

Problem 1. Ifg + % (ap") = 0, then the curve lies on a sphere.
Problem 2. The radius R of the sphere of curvature is given by

2
R? = p*o?r''" — o2

Problem 3. The radius of spherical curvature of a circular helix is equal to
the radius of circular curvature.
Problem 4 For three-point contact, we have
F(s)=F'(s)=F"(s) =1
Problem 5. The radius of spherical curvature of a circular helix is not equal
to the radius of circular curvature.

3.7 SUMMARY

(1) (Existence Theorem). If k(s) and 7(s) are continuous functions of a real variable
s (s = 0) then there exists a space curve for which k is the curvature, 7 is the
torsion, and s is the arc length measured from some suitable base point.

(2) The sphere which has a four-point contact with the curve at a point P is called
osculating sphere at P.

(3) The principal normal to a curve is normal to the locus of the centre at points where

curvature K is stationary.

(4) The circle which has a three-point contact with the curve at a point P is called
osculating circle at P.
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3.8 GLOSSARY

(1) Derivatives
(i) Determinant
(i) Vector

3.9 REFERENCES AND SUGGESTED READINGS

1. An introduction to Riemannian Geometry and the Tensor calculus by C.E.
Weatherburn “Cambridge University Press.”
Matrices and Tensors in physics by AW. Joshi “Wiley Eastern Limited”.
Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”.

Differential Geometry by Gupta, Malik and Pundir “Pragati Edition”.

3.10 TEWRMINAL QUESTIONS

Prove that the curve given by r = (asin?u, a sinu cosu,a cosu) lie on a sphere.

2
For spherical curve, prove that p + Z—(p’; = 0, where, ¢ is such that de = tds.

Define osculating sphere, find its equation.

Define osculating sphere, find its equation.

3.11 ANSWERS
CYQ 1. True

CYQ 2. True
CYQ 3. True
CYQ 4. False

CYQ 5. False
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4.1 INTRODUCTION

In differential geometry, an "involute" is a curve created by tracing the path
of a taut string as it unwinds from another curve, while the "evolute” is the original
curve from which the string is unwinding; essentially, the evolute is the curve of
which the involute is derived by "unwinding a string™ from it, making the original

curve the "evolute" of its "involute" curve.

4.2 OBJECTIVES

After completion of this unit learners will be able to:
Q) Involute and Evolute
(i) Spherical Indicatrices

(iii) Bertrand Curves

4.3 INVOLUTE AND EVOLUTE

Definition: If there be one-one correspondence between points of two curve C and C;
such that the tangent at any point of C is a normal to the corresponding point of C;, then
C, is called involute of C and C is called an evolute of C;.

0] Involute of a given space:

Let r = r(s) be the given curve C and let C; be involute of C. the quantities belonging
to the C; will be distinguished by using the suffix unity. Then the position vector r of
any point P, on C; is given by

Where A is to be determined.

Differentiating (1) w.r.t. ‘s," we get

t; = (t+ X't +Akn) =
1

By definition t is perpendicular to t; so taking dot product of both sides of (2) with t
and using t. t; = 0, we get

1+A)==0 or 1+X =
d51

Which on integration gives s + A = ¢ or A = c — s, where c is constant of integration.
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Therefore, r; =r+ (c—s)t

Which is the required equation of involute C; of C.

Again putting the value of A in (2), the unit tangent vector t, is given by
t, = (c— s)k;—ssln (AN =-1)

From (4), we observe that t; is parallel to n. taking the positive direction along the
involute such that

t; = n thus from (4) ;TS =k(c—s).

(i) Curvature k4 and Torsion T, of the Involute:
Differentiating t; = n w.r.t. ‘s;” we get

, ds ™™ — kt
t;’ =kn; = (Tb—kt)d—Sl=m

Therefore, on squaring both sides, we get

2 T2 +k? (T2+k2)1/2
1T =—>5—— or ki=——"—
k2(c—s)2 k(c-s)

Obviously, the unit principal normal to involute is

n. = tb-kt _ tb-kt
17 kki(c-s) ~ (12+k2)1/2

kb+tt _ kb+tt
kkq(c—s)  (t2+k?2)1/2

b1=t1><n1=n><n1=

Now differentiating (6) w.r.t. ‘s’ we get

ds _ (k*+7%)(k'b+tt+kb’+1t’)— (kb+1t) (kk'+11')

—hily ds; (12+k?2)3/2

Squaring both sides and putting % = k(c — s), we get

T, = (kt'—k't)
17 k(c-s)(x2+k2)

(ili)  To find the equation of a given Curve C.
In this case we will find a curve C, such that C is involute of C; and
consequently C,; will be evolute of C.
Let r = r(s) be equation of curve C. we shall use the suffix unit for quantities
belonging to curve C;. Let r; be the position vector of an evolute C; and that of
corresponding point P on C be r. since the tangents to the curve C; are normal to
curve C, the vector PQ must lie in the plane to the curve C at P.
=rn—-r=An4+ub =r;=r+An+ub
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Where the values of A and u are to be determined.
Now differentiating (1) w.r.t. ‘s;” we get

I~ [+ An+An' + @b +ub’];Ts
1

dsq

t; = [t + n + At — kt) + @'b + u(—n)] ==
1
= [ — kDt + (' = po)n + (' + A1)b] =
1
Since t, lies in the normal plane at P to the curve C, so it must be parallel to An + ub
and t; = (An + ub) at P.
Therefore, on comparing the coefficients of this with that of relation (2), we get
1-k1l=0 or /1=%=p and ' — ut = PA, i’ + At = Py
M-yt p'+2r . N A S )
= — = —# l.e. = —/124_#2 =5 tan ( )

Or 7=—tan™! (i)

ds u

Integrating (3), we get

a+ [tds =tan™! (%) where a is an arbitrary constant.

or A=utan ([ 1ds+a)

Or u= Acot(ftds + a)

Or u= pcot(ftds+a)

Therefore, on putting the value of A2 and u in (1), we get
. =7+ pn+ pcot([tds + a)b

Which gives the required equation of evolute C; of C. in case we give different values
of a, we shall an in case we assume [ 7ds = ¢(s) and ¢ — g =a

Equation (4) may be put as

r, =71+ pn — ptan(¢p(s) + c)b

Example 1. Find the involute of circular helix is
Solution: The equation of circular of helix is

r = [acosu, asinu, bu]

. 7 = [—asinu,acosu, bl ; $ = |r| = Va? + b?
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T 1 .
= T = [—asinu, acosu,b] =t

VaZ +b?
Therefore s = ['|#|du = [ Va? + b?du

Again equation of an involute is r; = r + (¢ — s)t

= [—asinu, acosu, b] + (¢ — s) ———=[—asinu, acosu, b]

N

a(c—s) . . (c—s) b
ﬁ sinu, asinu + ———cosu, acosu,

N

r, = |acosu —

Where s = Va? + b2u.

Example 2. Prove that the involute of a circular helix are plane curves.

. . . k
Solution. For a circular helix, -=a (constant)

k' =at’
Again, torsion of an involute of a given curve r = r(s) is given by

T = kt'-k't
17 k(c-5)(12+k?)

On putting the value of k and k' in terms of T and ' in (1), we have
7,=0
i.e. torsion for the involute is zero and hence the involute is a plane curve.

Example 3. The locus of the centre of curvature is an evolute only when the curve is a
plane curve.

Solution. The position vector of a current point on the evolute is given by
r, =71+ pn — ptan(¢p(s) + c)b

Where c is an arbitrary constant and for its various values we get an infinite system of
evolutes.

Also, the locus of the centre of curvature is given by
c=r+pn

We observe that equation (1) and (2) will coincide, i.e. the locus of the centre c is an
evolute r; then we must have

tan(p+c¢) =0
le.p+c=mn
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d .
or—®=0 Le.t=0
das

hence curve must be a plane curve.

4.4 SPHERICAL INDICATRICES

When we move all unit tangent vectors t of a curve C to a point, their extremities
describe a curve C;on the unit sphere; this curve C,is called the Spherical image
(Spherical Indicatrix) of C. we can similarly obtain the spherical image of C when its
bonormal or principal normal are moved to a point.

Fig.4.4.1

To construct the spherical indicatrix of the tangent, draw lines parallel to the positive
directions of the tangents at the points of the given curve from the centre O of the unit
sphere. Let t;, t,, t3, t4, .... be the points where these lines meets the surface of the
sphere, the curve joining these points is spherical indicatrix of the tangent. Similarly,
the spherical indicatrices of the principal normal and binormal can be constructed.
Below we give the precise definition of various indicatrices.

(i) The spherical indicatrix of the tangent.

The locus of a point whose position vector is equal to the unit tangent t at any point of
a given curve is called spherical indicatrix of the tangent.

(ii) The spherical indicatrix of the principal normal.

The locus of a point whose position vector is equal to the unit principal normal n at any
point of a given curve is called spherical indicatrix of the principal normal.

(iii) The spherical indicatrix of the binormal.

The locus of a point whose position vector is equal to the unit binormal b at any point
of a given curve is called the spherical indicatrix of the binormal.
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4.5 BERTRAND CURVES

If a pair of curves C and C; are such that the principal normal to the C are also
principal normal to C; , then the curves C and C; are conjugate or associate Bertrand
curves.
Properties of Bertrand Curves.
Properties (i). The distance between corresponding points of two Bertrand curves is
constant. (we shall use the suffix unity for quantities belonging to C,).
Proof: Consider the principal normal to C and C; in the same sense, so that
n,=n

Let r be the position vector of a point P on the curve C and r; be the position vector of
the corresponding point P; on the associate Bertrand curve C; and C with respect to the
some fixed origin O, then

rn=r+1in U )
Where A is a suitable function of s and represents the distance between corresponding
points of the two curves.
Now taking the dot product of (1) and (3), we get
0 = A" = A = constant.
i.e. distance PP; is constant.

Fig.4.5.1

Properties (ii). The tangents at the corresponding point of the two curves are inclined
at a constant angle.
Proof: We have

d(tt)—dtt+tdt1dsl—k L
ds VY T as T s dy, T e T R

d .
=k.n.ty + klft.n {since n; = n}

=0
Integrating, we get t.t; = constant.
Now if a be the angle between t and t,, then we have
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= t;.t = |t,||t] cosa
Therefore cos a = t,.t = constant.

Since the principal normal coincide and tangents are inclined at a constant angle « and
therefore the binormals of the two curves are also inclined at the same constant angle .

Properties (iii). Curvature and torsion of either curve are connected by a linear
relation.
Proof: We have shown above in properties (i) that A’ = 0

= equation (3) reduces to

tl% = (1 — Ak)t + Ath

Now taking the dot product both sides of (4) with b;, we have
0 =(1—- Ak)t.by + Atb. by

Again t.b; = cos(90 — a) = sina

And  b.b; =cosa

Therefore from (5), we have

0=(1-2Ak)sina + At cosa

The above relation (6) shows that there exists a linear relation with constant coefficients
between curvature and torsion of curve C.

We may put relation (6) in the form

T= (k — %) tan a

Again, the relation between the curves C and C; is a reciprocal one, thus the point P(r)
is a distance —A along the normal at P, (r;) and t is inclined at an angle —a with t;.

Thus, for curvature C;, we have a relation corresponding to (7) as
Tl = - (kl + %) tan .

Properties (iv). The torsion of the two associate Bertrand curves have the same sign,
and their product is constant.

Proof: We have thatt; = tcosa — bsina

Comparing (4) of properties (iii) and (8) of properties (iv) we have

ds; 1—-2k At
ds cosa —sina

= cosar = (1—Ak) =
1
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. ds
= sina = —A1—
dSl

Now, for the curve C,  the relations corresponding to (9) and (10) are obtained by
putting —A for A and —a for a and interchanging s and s;, we get

na = —1t. &1
(11) and sina = —At14 =

dsq

cosa = (1 + Ak, =
On multiplying (9) by (11) and (100 by (12), we get

(1 —-2k)(1 + Aky) = cos’ a

And 77, = )lizsin2 a

Relation (14) shows that the torsion of the two curve have same sign and their product
IS constant.

CHECK YOUR PROGRESS

True or false Questions

Problem 1. The distance between corresponding points of two Bertrand
curves is constant.

Problem 2. The tangent at the corresponding points of the curves are
inclined at a constant angle.

Problem 3. The distance between corresponding points of two Bertrand
curves is not constant.

Problem 4 The tangent at the corresponding points of the curves are

inclined at a variable angle.

4.6 SUMMARY

(1) If there be one-one correspondence between points of two curve C and €, such that
the tangent at any point of C is a normal to the corresponding point of C;, then C; is
called involute of C and C is called an evolute of C;.

(2) If a pair of curves C and C; are such that the principal normal to the C are also

principal normal to C; , then the curves C and C; are conjugate or associate Bertrand

curves.

(3) (i) The spherical indicatrix of the tangent.

The locus of a point whose position vector is equal to the unit tangent t at any point of

a given curve is called spherical indicatrix of the tangent.

(ii) The spherical indicatrix of the principal normal.

The locus of a point whose position vector is equal to the unit principal normal n at any

point of a given curve is called spherical indicatrix of the principal normal.
I ———
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(iii) The spherical indicatrix of the binormal.
The locus of a point whose position vector is equal to the unit binormal b at any point
of a given curve is called the spherical indicatrix of the binormal.

4.7 GLOSSARY

(i) Derivatives
(i) Torsion

(iii) Curvature

4.8 REFERENCES AND SUGGESTED READINGS

1. An introduction to Riemannian Geometry and the Tensor calculus by C.E.
Weatherburn “Cambridge University Press.”
Matrices and Tensors in physics by A.W. Joshi “Wiley Eastern Limited”.
Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”.

Differential Geometry by Gupta, Malik and Pundir “Pragati Edition”.

4.9 TEWRMINAL QUESTIONS

Prove that corresponding points on the spherical indicatrix of the tangent to a curve C

and on the indicatrix of the binormal to C have parallel tangent lines.
Find the involutes and evolutes of the circular helix
x=acosf,y=asinf,z = aftana.

Define Bertrand curves.

Define Spherical Indicatrices.

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY




GEOMETRY MAT 611

4.10 ANSWERS

CYQ 1. True
CYQ 2. True
CYQ 3. False

CYQ 4. False
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5.1 INTRODUCTION

In differential geometry, the study of smooth spaces and shapes, the
fundamental theorem of space curves states that the shape, size, and scale of a
regular curve in three-dimensional space is completely determined by its curvature
and torsion. different space curves are only distinguished by how they bend and
twist. Quantitatively, this is measured by the differential-geometric invariants
called the curvature and the torsion of a curve. The fundamental theorem of curves
asserts that the knowledge of these invariants completely determines the curve.

5.2 OBJECTIVES

After completion of this unit learners will be able to:
(i) First Fundamental form or Metric

(i) Second fundamental coefficient

5.3 FIRST FUNDAMENTAL FORM OR METRIC

Let r = r(u, v) be the equation of a surface and let E = 2 = ry.1y ,F = .7, and
G = r,%2 = 1,.71,. the quadratic differential form Edu? + 2Fdudv + Gdv? in du, dv
is called metric or first fundamental form of the surface and the quantities E, F, G are
called first fundamental coefficients or first order fundamental magnitudes. Since E,
F and G are functions of u, v the quantities will generally vary from point to point on
the surface. These quantities are of much importance and will hence forth occur very
frequently throughout the remainder part of the book.

Geometrically Interpretation on Metric:
Let = r(u, v) be the surface and u = u(t), v = v(t) be a curve on the surface. Let P
and Q be two neighboring point on the curve with position vectors r and r + dr,

corresponding to the parameter values u, v and u + du, v + dv respectively.
r + dr - ]
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Then we have dr = Z—;du + %dv = nrdu + r,dv
Let the arc PQ be ds. Since the points P and Q are adjacent points, therefore
ds = |dr| or ds? = dr? = (rydu + rydv)?dr?
=12 du? + 2r,. rydudv + 1,% dv?
= E du® + 2Fdudv + G dv? ... (1)
Thus, we have following interpretation of the first fundamental form.
If ds is the “infinitesimal distance” from the point (u, v) to the point
(u + du,v + dv) on the surface, then
ds? = E du? + 2Fdudv + G dv?
The name metric is assigned to the first fundamental form as it is chiefly used for the
calculation of arc lengths on the surface. The arc length s of the curve is related to

the parameter t by
(ds>2 _ (du)2 +2F dudv +e (dv)2
dt/) — \dt dt dt dt
Special cases: on the parametric curve u = constant, we have du = 0 and hence

metric (1) reduces to ds? = G dv?. Similarly on the parametric curve v = constant,
we have dv = 0, thus the metric (1) reduces to ds? = E du?.

An important relation between the coefficients E, F, G, and H:
From vector identity

(1 X 1)? =1°1p% = (11.13)°
We have H?2 = EG — F? where H = |1y X 1]
Since H is positive quantity so EG — F? is also a positive quantity and H is equal to a
positive square root of EG — F?2. Again at the ordinary point r; # 0,7, # 0 thus
E=72>0andE =1,2 > 0.Hencewehave E > 0,G > 0,EG — F? > 0.

5.4 IMPORTANT PROPERTIES OF THE METRIC

Property 1. The metric of first fundamental form is a positive definite quadratic form
in du, dv.

Proof. We have from first fundamental form that

E du? + 2Fdu dv + G dv?

:%(Ezdu2 +2EFdudv + EG dv2)

:%((Edu+de)2 +(EG—F2)dv2) >0,

for all real values of du and dv
AsE >0and EG - F>> 0.
Also, we have

(Edu+Fav)? +(EG-F2jwn2)=0

= (Edu+Fdv)=0and (EG-F?) dv’=0

= Edu+Fdv=0anddv=0. (As EG-F2#0.)
|
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= Edu=0anddv=0

= du=0and dv=0. As E #0.

Hence E du? + 2Fdu dv + G dv? i.e. metric or first fundamental form is a positive definite
quadratic form in du and dv.

Property 2. Invariance property: the metric is invariant under a transformation of
parameter.

Proof. Let in the equation of the surface r = r(u,v), the parameters u,v are the
transformed to the parameters u’, v’ by the relation u’ = @(u, v), v’ = ¥Y(u, v).

or ar du ar dv du v
Thusr,’ = =—— =r—+nr—
1 150 T 25,

v

ov'

ou' ~ ouou' | avou
.. or u
[ — j—
Similarly, nr,' = o =Tt

H du 1 0_u 1
Again, du = ﬁdu to dv

And  dv =2 du + 2 dv’
ou ov

Now, E'du’? + 2F'du'dv’ + G'dv'?

=7,"2du’? + 2r, .1’ du'dv’ + r,"?dv"?

= (ry'du’ +r,’'dv")?

2
= [(r1 % + 1, %) du’ + (r1 % + 7, %) dv’] [from (1)and (2)]
2
= [rl (% du’ + %dv’) + 1, (%du’ + %dv’)] [from (3)and (4)]
= (rdu + r,dv)? = r2du? + 2ry.rdudv + 1,2 dv?
= E du® + 2Fdudv + G dv?

Hence the metric is invariant.

Example 1. Calculate first fundamental magnitudes for the surface
r = [ucosv, usinv, f (u)].
Solution. The given surface is r = [ucos, vsinv, f (u)],
r, = [cosv, sinv, f(w)'], r, = [—usinv, ucosv, 0]
E=nr2= cos*v+sinfv+f*=1+f"

F =1,.15, = —ucosvsinv + usinvcosv + 0 = 0
G = 1,2 = u®sin®v + u?cos*v+ 0 = u?

Example 2. Calculate E, F, G, H for the paraboloid
xX=uy=v2z=u®—1v

Solution. The given surface is v = (u, v,u? — v?)
We have r; = (1,0,2u),r, = (0,1,—2v)
ZcE=r?=1+4u%F=r.1,=0+0—4uv = —4uv
G=r2=1+4u?
Also H = \/(EG — F%) = /(1 + 4u®) (1 + 4v2) — 16u?v? = /1 + 4u? + 4v2).
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Example 3. Show that for the surface of revolution x = ucosv,y = usinv,z = f(u) the
parameter curves form an orthogonal system and ds? = (1 + f'?)du? + u?dv? where
dash denotes differentiation with respect to u.

Solution. Here surface of revolution is same as in example 1, we have shows in

example 1 that for this surface E = 1 + f'*,F = 0 and G = u?
since F = 0, therefore the parametric curves are orthogonal.

Again ds? = Edu? + 2Fdudv + Gdv? = (1 + f'?)du? + u?dv?.

Example 4. Calculate the first fundamental coefficients and show that parametric curves
are orthogonal, and find the area corresponding to the domain0<u <2x, 0<v <27 for
the anchor ring [x = (b + acosu)cosv,y = (b + acosu)sinv, z = asinul.
Solution 3. The equation of the surface is
r =[x = (b + acosu)cosv,y = (b + acosu)sinv, z = asinu]
We have
r1 = {(-a sinu cosv, -asinusinv, acosu }.
r. ={-(b +acosu) sinv, (b+acosu)cosv, 0}
Then as we know that
E=r.rn=r®F=r.rz=ra.rand G= ra.r; = rs?
Therefore, we have for this problem, by taking scalar products suitably
E=r.n=n?=a’
F=ri.rz=0
G = r2.r2 = r2?= (b + a cosu)?
H="(EG - F?) = a (b + a cosu)
Now F = 0 implies that parametric curves are orthogonal on the given surface.
Now the area bounded by the limits0 <u <2m, 0<v<2r is given by
A= [[Hdudv

2n2n
=1 Jja(b+acosu)dudv

00

=T [V3™ (b +acosu)du
0

= 2an[bu +asinul3"

= 4abn?.
This is required area.

5.5 SECOND FUMDAMENTAL FORM AND SECOND
ORDER MAGNITUDES

Let r = r(u,v) be the equation of the surface and N be the unit normal vector to this

surface at the point r(u, v) then
_ T1 X7 _ T1 X7

" lmxrl  H
1 —
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9%r d%r d%r d%r
W kn W h 11 ===,V =7T7T]/T"=——7=T7T Toy = —5
e know that 11 u2’ 12 ouov ovou 272z ov?

IfL=7r,.N,M =r1,.N =1,,.N,N = ry,. N, then the quadratic differential form is

L du? + 2Mdudv + Ndv? in du,dv is called the second fundamental form of the
surface. The quantities L, M, N are called second fundamental coefficient or second order
fundamentals magnitudes.

Geometrical interpretation of the second fundamental form:
To show that the length of the perpendicular, as far as terms of the second order, on the
tangent plane to a surface at the point (u, v) from a neighboring point (v + du, v + dv)

is > (L du? + 2Mdudv + Ndv?)
Proof: let p(r) be the point of contact of the tangent plane with the square with

parametric values (u, v) and let Q (r + dr) be a neighboring point with parametric values
(u + du, v + dv) on the surface.

Fig.5.5.1
By Taylor’s series we have

r+dr=r+ (r;du +r,dv) + %(rllduz + 2r;,dudv + ry,dv?) + -
[neglecting quantities of order higher than two]
dr = (rydu + rydv) + % (r;1du? + 2r;,dudv + ry,dv?)
let QM be the length of the perpendicular from Q on the tangent plane at P.
therefore QM = projection of the vector PQ on the normal at P

=N.dr = N.(r;du + r,dv) + %N. (r;1du? + 2r;,dudv + ry,dv?)

upto terms of second order
~ (L du? + 2Mdudv + Ndv?).

Note: Some important products.
1. The scalar triple product of N, r;and r, has the value H;

[N,r;,r;] =N.ry Xr, =N?H=H [since N? = 1]
2. Cross product of N with r; and r,

(1 ry X N=r; X 2 %[(1‘1- ry)ry — (ry.rry] = = [Fry — Er,]

12 %[(rz-rz)f& — (ry.rry] = =[Gry — Fry]

(i) ryxN=r,X
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CHECK YOUR PROGRESS

True or false Questions

Problem 1. E du? + 2Fdu dv + G dv? is called metric.

Problem 2. L. du? + 2Mdudv + Ndv? is called Second fundamental form.
Problem 3. The metric is not invariant under a transformation of parameter.
Problem 4 The metric of first fundamental form is a positive definite quadratic

form in du, dv.

5.6 SUMMARY

(1) E du? + 2Fdu dv + G dv? i.e. metric or first fundamental form is a positive definite
quadratic form in du and dv.
(2) The scalar triple product of N, r;and r, has the value H;
[N,r,r,] =N.ry Xr, =N?H =H [since N2 = 1]
Cross product of N with r; and r,

r{ Xr 1
(idry XxN=r1; x —2 =

1
H [(ry.12)ry — (r1.1)12] = — [Fry — ET5]

i X N = 1 X _
(iii)ry ry 7

[(rz.12)11 — (r2.1)12] = = [Gry — F1y]

H
rg Xr, 1
H

5.7 GLOSSARY

0] Derivatives

(i) Torsion

5.8 REFERENCES AND SUGGESTED READINGS

1. An introduction to Riemannian Geometry and the Tensor calculus by C.E.
Weatherburn “Cambridge University Press.”
2. Matrices and Tensors in physics by A.W. Joshi “Wiley Eastern Limited”.

3. Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”.
|
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4. Differential Geometry by Gupta, Malik and Pundir “Pragati Edition”.

5.9 TEWRMINAL QUESTIONS

. Prove that E du? + 2Fdu dv + G dv? is positive definite.
. Define Second fundamental form.

. Define First fundamental form.

S.10 ANSWERS

CYQ 1. True
CYQ 2. True
CYQ 3. False

CYQ4. True
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UNIT 6: FUNDAMENTAL FORMS I

CONTENTS:
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6.1 INTRODUCTION

In differential geometry, the study of smooth spaces and shapes, the
fundamental theorem of space curves states that the shape, size, and scale of a
regular curve in three-dimensional space is completely determined by its curvature
and torsion. different space curves are only distinguished by how they bend and
twist. Quantitatively, this is measured by the differential-geometric invariants
called the curvature and the torsion of a curve. The fundamental theorem of curves
asserts that the knowledge of these invariants completely determines the curve.

6.2 OBJECTIVES

After completion of this unit learners will be able to:
() First Fundamental form or Metric
(i) Second fundamental coefficient

6.3 SURFACE OF REVOLUTION

Definition: A surface generated by the revolution of a plane curve about and axis in its
plane is called a surface of revolution.

Let us take z — axis as the axis of revolution and let the generating curve in z x-plane

(y =0) begivenby x = f(u),y =0,z = g(u).

Let this plane curve be rotated through an angle ¢, then the co-ordinates of a point

P = (x,y,z)aregivenby x = CQ cos¢@,y = CPsing,z=72Q = g(u)
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=x=f(Wcosp,y=fWwsingp,z=g(u)

For convenience, we often take f(u) = u

= x=ucos@,y=using,z=g(u)

Or in vector notation, position vector of P isr = (ucos @, using, g(u))
This is the equation of the surface of revolution.

(a) Sphere:

Sphere can be regarded as a surface of revolution formed by rotating the circle x? +

z? = a%,y = 0 [in zx — plane] about z — axis.
Coordinates of any point, say Q on any point of the circle can be taken as
x = asinu, y = 0,z = acosu whence the equation of the sphere can be written as
X = asinu cos ¢,y = asinu sing, Zz = acosu
X = asinu cosv,y = asinu sinv, Z = acosu
Where @ is replaced by v.

Or in vector form r = (asinu cosv, asinu sinv, acosu).

Note: The Co-latitude u of the point P may be defined as the inclination of the radius
OP to the z-axis and longitude v as inclination of the plane containing P and the z-axis
to y = 0 plane. The parametric curve u = constant are the small circles called the
parallels of latitude; the parametric curve u = constant are the great circles called the
meridians of longitude. The poles u = 0 and u = & are called artificial singularities.
The domain of u is 0 < u < m and that of v as

0<v<2m.

Fig.6.3.2

Here r = (asinu cosv, asinu sinv, acosu)
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r; = (acosu cosv, acosu sinv, —asinu)
r, = (—asin usinsyv, asinu cosv, 0)

r;.r, = —a?sinu sinv cosu cosv + a?sinu sinv cosu cosv = 0

F=0

Parametric curves are orthogonal

[ A '

Latitudes and longitudes intersect orthogonally.

(b) Right circular cone of semi-vertical angles a.

Let the line OZ be taken as axis of the cone and let P = (x, y, z) be any point on the
surface of the cone. Further let u be the distance of P from z —axis and let v be the

inclination of the plane containing P and the z — axis to zx —plane. Then as shown in
the above figure, we have

-

R

aE—uott—>

Fig.6.3.3
X =ucosv,y = usinv,z = OK = ucot «.
position vector of P = (ucosv, usinv, ucot )

r = (ucosv, usinv, ucot «)

r, = (cosv, sinv, cot x),r, = (—usinv, ucosv,0)

11.7, = 0 = F = 0,= parametric curve are orthogonal.

i Ji k
P X1, =] cosv sinv  cot «
—usinv ucosv 0

= (—ucosv cota)i — (usinvcota)j + k(w)

= (17 X 13)yu=p 1.€. vertex is only singularity.
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(c¢) Anchor Ring

A surface obtained by rotating a circle (radius a) about a line in its plane at a distance
b( > a) from the centre, is called anchor ring.

Fig.6.3.4

Let the generating circle lie in y = 0 plane and let it rotate about z — axis. Further let
C be the centre of the circle such that CO = b( > a) if P’ is any point on the
circumference of this circle, then co-ordinates of P’ are

x = b + acosu,y = 0,z = asinv, where u is the angle which the radius CP' makes
with positive direction of x —axis. When the generating circle has been rotated through
an angle v, let P’ take the position P and as such its co-ordinates are

x = (b + acosu)cosv,y = (b + acosu)sinv, z = asinu these are the equations of
the anchor ring and domain of u,vis 0 < u < 2m; 0 < v < 2m.

(d) Helicoids

General Helicoid. A surface generated by a curve which is simultaneously rotated
about a fixed axis and translate in the direction of the axis with a velocity proportional
to the velocity of rotation, is called helicoids.

this kind of the motion of the curve called a screw motion or a helicoidal motion.
Different positions of the generating curve can be obtained by first translating it
through a distance A parallel to the axis and then rotating it through an angle v

about the axis. The ration (1/v) is always constant. Let it be ¢ i.e. (1/v) =c. the

constant 2mc is called the pitch of the helicoids (distance translated in one complete
[~ e e e e
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revolution). As a matter of face, pitch is positive or negative according as the helicoids
is right of or left -handed (right or left screw) and is zero when the surface is of
revolution.

Equations of General Helicoids.

For a general helicoid, the meridians i.e. the sections of the surface by planes
containing the axis are congruent plane curves. There is no loss of generality if we
assume the generating curve to be a plane curve. The surface be thought as being
generating be given by equation x = f(u),y = 0,z = g(u); whence the positive vector
of any current point on the helicoids is given by

r = (f(wWcosv, f(u)sinv, g(u) + cv) where ¢ be any constant.
= 1 = (f'(Wcosy, f'Wsinv, g’'(w))

r, = (—f (Wsinv, f(u)cosv, ¢)

1.1, = cg’' (u).

If .., =0,wehavecg’'(u) =0=c=0o0rg'(u) =0=c¢c=0
Or  g(u) = constant.

Parametric curves v = constant are the various positions of the generating curves
whereas parametric curves u = constant are circular helices. When, ¢ = 0, we have

r= ( f@wcosv, f(w)sinv, g(u)). This represents the equation of the surface of

revolution.
Further if g(u) = constant = k, say we have

r = (f(wcosv, f(w)sinv, k + cv), which represents a right helicoid.
Right Helicoid

Definition. The surface generated by the helicoids motion of a straight line meeting the
axis in perpendicular direction is called right-helicoid.

Let us take the axis as z-axis, then the position vector of any current point on the right
helicoids is given by

r = (ucosv, usinv, cv) where u = distance of a point from z —axis, v = angle of
rotation; and the generator is assumed to be x —axis when v = 0.

Now r; = (cosv, sinv, cv) and r, = (—usinv, ucosv, c)
= 1.7, = —usinvcosv + ucosvsinv =0, = F =0

= Parametric curve are orthogonal.
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It is to be noted that the curves v = 0 constant are the generators whereas u = 0 are the
circular helices.

(e) Surface generated by tangents to a twisted curve.

Let r = r(s) be the equation of the curve in space. Consider a point P = r on the space
curve and let Q be any point (having position vector R) on it,

then R — 7 = uf where scalar u is the distance of Q from P. this can be further
re-written as R=#+uf

and represents the surface by the tangents to the curve r = r(s). As #* and t are both

functions of the arc lengths s of the given curve, therefore in equation (1), R is the
function of two parameters u and s.

The parametric curves s = constant give the generators of the surface and are the
tangents to the given curve, Also the parametric curves u = constant are the curves
which cut the tangents at a constant distance from the given curve.

Fig.6.3.5

We know proceed to calculate the fundamental magnitudes for surface R = # + ut,

Where R = R (u,s), u is first parameters and s is second parameter

E=R*=t*=1,F=R,.R, =t.(t +ukn) = 1,
G = R,* = (t + utn). (t + ukn) = 1 + u?k?,
H? = EG — F? = u?k?

Now, R; X R, =t X (t X ukn) = ukb.

. R1XR ukb =
= N = unit normal vector to the surface = % =——-=Db, where H = |N |

Further, Rll = O, R12 = % = le,

dt d(k ,
Rpz = = +u™™ = kn + ulk'n + k(b — kt)]
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= kn + uk'n + uktb — uk?t.

= L=R11.N =O,M =R12.N= (kn)b = 0andN=R22.N=ukT.

Example 1. Find the fundamental magnitudes for some important surfaces.

(a) The general surface of the revolution

In the case surface of revolution, the position, the position vector r of a current point is
given by

r = [ucosv, usinv, f(u)]

r; = (cosv,sinv, f'); r, = (—usinv,u cosv,0),
ri1 = (0,0,f"); ryy = (—sinv, cosv,0),

ry; = (—ucosv,—usinv,0)
E=r?=cos?v+sin?v+f2=1+f"?

F =71 -1, =—usinvcosv + usinvcosv+ 0 =0,

G =r? = u?sin? v+ u?cos?v + 0 = u?

r; Xr, = (—uf’cosv,—uf’sin v, ucos? v + usin? v)
=u(—f'cosv,—f'sinv, 1)
“H2=EG—-F?>=uw*(1+f?)—0=u?(1+f'?)

H=u/TFF7

r, Xxr, u(—f'cosv,—f'sinv,1) (—f'cosv,—f'sinv,1)

H uy/1+ f? J1+f2?

(—fcosv,—f'sinv,1) - (0,0, ")
L == N . 1'11 =
1+
f’l

Ja+£?)’

M=N'I'12=

(—f'cosv,—f'sinv, 1) - (—sinv, cosv,0)
1+f2)
_ f'sinvcosv — f'sinvcosv +0
/(1 _I_fIZ)
(—f'cosv,—f'sinv, 1) - (—ucosv, —usinv, 0)
N = N . 1'22 =

{a+/2)}

_ S
- Jary

(b) The Conoidal Surface.

The position vector of a current point on the conoidal surface is given by
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r = [ucosv,u sinv, f (v)]

.~ 1, = (cosv,sinv,0);r, = (—usin v, ucos v, f');
r;; = (0,0,0); r;, = (—sinv, cosv,0);
ry, = (—ucosv,—usinv, f")

e E=r -1, =cos?v+sinfv=1
F=r;-r, =—ucosvsinv + ucosvsinv + 0 =0
G=r, 1, =u?sin?v+u?cos?v+f?=u?+f'%

Again H?2=EG-F*=W?+f?)-0=u?+f'?%

H= 577

r, Xr, (cosv,sinv,0) X (—usinv,ucosv, f’)
H {w? +f2)}
(sinvf’,—cosvf’',ucos? v+ usin?v) (sinvf’,—cosvf’, u)

{(w? + )} {(w? +f2)}

Therefore

L=N-r; =N-(0,0,0) =0,
(sinvf’,—cosvf’,u) _ —f'
-(=sinv,cosv,0) =

=N = e NGk

(sinvf’,—cosvf’,u) - (—ucosv,—usinv, f")
7+ )

—usinvcos vf' + usinvcos vf' + uf" uf”

N:N'I'ZZ:

(c) Monge's Form of the Surface.

The equation of a surface given in the form z = f(X, y) is called Monge’s form. Again
from the knowledge differential equation, we know that

0z 0z 0%z 0%z t_(')zz
p‘ax'q_ay'r_ax?s_axay’ ~ dy?

Taking x, y as parameters, we have

r=[xy f(xy)]
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r, =[1,0,pl; , =(0,1,9); r;; =(0,0,r); 5, =(0,0,t); 1, =(0,0,8)=mn;,
Therefore
E=xyern :]+pz; F=rnen=pq;, G=n -1, =1+(]2

Again H2=EG-F2=(1+p’>)(1+q?)-p?q’ =1+p”°+q°

H=l(1+p’ +q°)
:l'1><r2_(1,0,p)><(0,1,q): (-p,—q. 1D

H H Jia+p*+q*)
_(-p,—q,1)+(0,0,r) _ r
B ﬁ1+p2+q2)} —\/{71+p2+q2)}
_(-p,—q,1+(0,0,s) _ s
-~ Jlaspregd  Jla+pt+gd)

N

L=Ne.r,

M=N01'12

_(p,—q,D-(0,0,t) _ t
Ja+p*+¢»  Jla+p*+q?)

N:Norzz_

y

(d) Right Helicoid
To find the fundamental magnitudes for the right helicoid given by

x =ucosd,y = usin,z = c

Let the suffix 1 and 2 represent partial differentiation w.r.t. 'u’, and '¢".
Now

r = (ucos ¢, usin ¢, cd)

~ 1; = (cos,sind,0);r, = (—usin ¢, ucos ¢, ¢)
r;; = (0,0,0); r;, = (—sin ¢, cos ¢, 0);
ry; = (—ucos ¢, —usin ¢, 0)

ThereforeE=r; -1, = cos?d +sin¢p=1,F=r,'r, =0;G=r, -1, =u? +c?
Again H? = EG — F?2 = u? + c? orH = {/{(u? + c2)}
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riXr, __ (csin ¢,—cos ¢,u)
H o J{(w+ed)

Now N =

—C
-'-L=N'I'11=0;M=N'l‘12=—,N=N'l‘22=0
{(u? +c?)}

Example 2. Calculate the fundamental magnitudes and the normal to the surface 2z =
ax? + 2hxy + b? taking x,y as parameters.

Solution. The position vector of any current point on the surface is given by

r—( 2 +h +E 2)
=%y 37X Xy + 5y
~1r; = (1,0,ax + hy);r, = (0,1, hx + by)

r;; = (0,0,a); 1, = (0,0,h); 1y, = (0,0,b)

r,Xr, (—(ax+ hy),—(hx + by),1)
N = =
H H
E=r 1 =1+ (ax+hy)%F =1 -1, = (ax + hy)(hx + by);

G=I‘2-I‘2=1+(hx+by)2
H? =EG — F? =1+ (ax + hy)? + (hx + by)?

a h b
“L=Nery =5 M=Nrp =N =Ny = 7.

CHECK YOUR PROGRESS

True or false Questions

Problem 1. Parametric curves are orthogonal
Problem 2. Latitudes and longitudes intersect orthogonally.

Problem 3. r = (f(w)cosv, f(w)sinv, k + cv), represents a right helicoid.
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6.4 SUMMARY

(1) Definition. The surface generated by the helicoids motion of a straight-line meeting
the axis in perpendicular direction is called right-helicoid.
(2) Definition: A surface generated by the revolution of a plane curve about and axis

in its plane is called a surface of revolution.

6.5 GLOSSARY

0] Derivatives
(i) Torsion

6.6 REFERENCES AND SUGGESTED READINGS

1. An introduction to Riemannian Geometry and the Tensor calculus by C.E.
Weatherburn “Cambridge University Press.”
Matrices and Tensors in physics by A.W. Joshi “Wiley Eastern Limited”.
Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”.

Differential Geometry by Gupta, Malik and Pundir “Pragati Edition”.

6.7 TEWRMINAL QUESTIONS

. Define Right Helicoid, find its equation.

. Define Monge's Form of the Surface, find its equation.
. Right circular cone of semi-vertical angles «, find its equation.

Sphere, find its equation.

6.8 ANSWERS

CYQ 1. True CYQ 2. True CYQ 3. True
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UNIT 7: ANGLE BETWEEN PARAMETRIC CURVES
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7.1 INTRODUCTION

Dear learners, in the previous units, you might have studied and learnt by now that
1. Acurve in space is defined as the locus of a point whose Cartesian co-ordinates
(X, y, z) can be expressed the function of a single variable parameter t (for example
time), s (for example arc-length) or u (any other notion), say.
Example: of a space curve is circular helix, whose equation is r(t) =acosti+
asint j + ct k, where t lies in (— 0,0).
Equation of a space curve can also be expressed as intersection of two surfaces in space.
Various properties of apace curves have been discussed in previous units in detail.
2. Asurface is defined as the locus of a point whose Cartesian co-ordinates
(X, y, z) can be expressed the function of two independent variable parameters, u and
v (any other notion), say.
Thus x =x (u, v), y = y(u, v), = z(u, v) are called parametric equations of a surface. The
parameters u and v take real values and vary in some region D. This type of representation
is an explicit form of surface.
Example of a surface is conicoid whose equation isX = u cos v, y = usinv, z = f(v).
Equation of a surface can also be written as z = f(x, y). This representation is called
Monge’s form of the surface. For example, z= x? - y? represents a hyperboloid. It’s
parametric equation is x= u cosh v, y= u sinh v, z= u?. It is obvious that we can write the
equation of surface in any form as desired.
We have the following notations for partial differentiation of position vector r with
respect to the parameter u and v.

or or o%r o%r 82

=—, D =—, I = I =r == r
ou 2T M2 YT ey v

That is to say, suffixes 1 and 2 denote the partial differentiation with respect to parameter
u and v respectively.

n

7.2 OBJECTIVES

Dear learners, after studying this unit, you should be able to -

Understand the concept of parametric curves.
Understand the concept of tangential vector.

To find angle between the parametric curves

To find angle between any two-space curve.
Understand direction ratios and direction coefficients.

7.3 CURVES ON A SURFACE
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Dear learners, you might have studied the equation of curves length of curves,
radius of curvature, angle between two intersecting curves in a plane, viz. xy plane, in
geometry and differential calculus in undergraduate course. Now, we shall have
knowledge of curves on surface in three dimensional spaces. Suppose r = r (u, V) is the
parametric equation of a surface. Any relation between the parameters, say g (u, v) =
constant, gives the equation of a curve lying on this surface. For then anyone parameter,
say u, can be written in terms of the other parameter v and hence the position vector r
becomes a function of only one parameter v, and thus its locus is, by definition, a curve.
In a similar way if the parameters u and v are expressed as function of a single parameter
t, then again, the position vector r becomes a function of only one independent parameter
t, hence its locus is a curve lying on the given surface. Hence u = u(t) and v = v(t), then
r =r (u(t), v(t)) is the equation of a curve on the surface r = r(u, v). Then the we call the
equations u = u(t) and v = v(t) as curvilinear equations of the curve.

7.4 CURVES ON A SURFACE

We shall now go for the basic knowledge of parametric curves on a given surface.
Suppose

r = r(u, v) is the equation of a surface. Now if we keep either u or v constant, then we
obtain curves lying on this surface and these curves are of independent interest and
importance. These curves obtained by keeping one of the parameters as constant are
called parametric curves.

If we take v = ¢ (constant) and u is allowed to vary, then position vector r becomes a
function of single parameter u and hence its locus is a curve by definition. Thus r = r(u,
c) is a curve lying on the surface r = r(u, v). This curve is called parametric curve v =c¢
or the u-curve. There is one such curve for every value of ¢ and if ¢ is an arbitrary
constant, then v = ¢ forms a family of parametric curves v = constant.

In a similar way, if we take u = ¢ (a constant) and allow v to vary, then we obtain the
family of parametric curves u = constant.

We should know that through each point on the surface r = r(u, v), one and only curve
of each system passes. From this we can conclude that no two parametric curves of same
family intersect.

Y EAMILIES OF PARAMETRIC TOKVES ™

FZMJ?JX@?WW
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7.5 VECTORS TANGENTIAL TO PARMETRIC CURVES
ON A SURFACE

Dear learners, we are aware of finding tangent and normal in case of plane curves at
different points of it using ordinary differential in calculus. Here, we shall find the similar
things in parametric versions.

Suppose r = r(u, v) be the equation of a given surface. We are now clear that the equation
of the parametric curve u = a (constant) can be written as r = r(a, v). For this parametric
curve v takes the variable values. Therefore we can differentiate this equation r = r(a, v)
partially with respect to v. Differentiating r = r(u, v), partially with respect to v, we get

d . . . . .
avectorr, = é , tangential to curve r = r(a, v) along the direction of increasing v.

In the same way, equation of the parametric curve v = b (constant) can be written as
r = r(u, b). For this parametric curve u takes the variable values. Therefore we can
differentiate this equation r = r(u, v) partially with respect to u. Differentiating

r =r(u, v), partially with respect to u we get a vectorr, = Z—;, tangential to curve

r = r(u, b) along the direction of increasing u.

In this unit, we only consider the surfaces which have no singularities at all of any kind;
therefore, we always have rix r2# 0. Hence parametric curves of different systems never
touch each other, as for condition of touching is rixr.=0.

>

s —T;vv\,?/e\f\—b,"\ﬁ, e ctoeve Yy ool ?;_

Fig. 6.2

7.6 NORMAL TO THE SURFACE

Dear learners, you might have learnt how to find unit normal vector on a
given surface in Monge’ form. You can recall the process learnt in vector
calculus by finding the gradient of surfaces f(X, y, z) = constant or z = z(x,
y). But those methods are useful only if surface is not given in parametric
forms (Gaussian form) but given in Monge’s form. Here shall learn to find
normal on surface if equation of surface is given in parametric form i.e.
containing two parameters.
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Let r = r(u, v) be the equation of a surface. Then the normal to the surface
at any point on it is a line passing through that point and perpendicular to
the tangent plane at the concerning point.

If r = r(u, v) is the given surface then we have learnt that the vectors r1 and
I are tangential to the surface. Therefore, normal to the surface at any point
Is perpendicular to both the vectors r1 and r.and hence parallel to the vector
rix rz as the vector rix ro itself is perpendicular in direction to both
individual vectors ri and r2.

The direction of the normal is taken in such a way that if N is the unit normal
vector at any point P, then vectors ri, rand N always constitute a right-
handed system. Thus the vectors rix r> and N are in the same direction.

Therefore
_ T1X1r2

lryxry |

We, by convention, denote 1y X 1, by H. since rixrz# 0, therefore H# 0
and H > 0 i.e. H is always positive definite quantity. So we can write

N="E o HN=rnxr
7.1 FUNDAMENTAL COEFFICIENTS AND RELATION
AMONG THEM

Dear learners, in previous units you have learnt about first and second
fundamental coefficients. Let r = r(u, v) be the equation of a surface, then
for brevity, we introduce first fundamental coefficients as-

E=r.rn=r? F=rurz=rariand G=rar2 = ra.
Similarly, the second fundamental coefficients are defined as-
L=r11.N, M=r12.N = r2:..N and N= r22.N.
Here as we know the symbols
1 :a_zry r21:r21=a—2r=i, r
au2 ouov  ovou
The second fundamental coefficients can also be suitably written as-
L= -r1i.Ng, M=-r..N2 = -r2.Nz and N= -r2.No.
If g is angle between the vectors r1 and r,, then from the definition of cross
product or vector product of two vectors, we have
rix rz=|ra|rz|sing N, veeneeee (1)
where N is the unit normal vector to the surface at the that point under
consideration.

DEPARTMENT OF MATHEMATICS

UTTARAKHAND OPEN UNIVERSITY 9




GEOMETRY MAT 611

Squaring or making self-scalar product of both the sides of equation (1), we
have
(rix r2)? =| rif |rz2 ] sin’ @ [since N?=1]
Or (HN)?>=|ri|r2? (1-cos? g)
H2 = | ri? [r2]? - | raf? [r2* cos? @
=] rf 2P = (ri. rz)?
=EG - F
Or H? = EG - F°,
Since H is positive quantity, therefore EG - F?is also a positive quantity
always. H is positive square root of EG - F2,

7.8 ANGLE BETWEEN PARAMETRIC CURVES

Let r = r(u, v) be the equation of a surface. Also let at any point P on this
surface, two parametric curves u-constant and v = constant intersect each
other. Let r is position vector of the point P. Then vectors r1 and r> are
tangential to surface along the directions of tangents of parametric curves v
= constant and u = constant respectively. If g (0 < o <) is angle between
the vectors r1 and r2 or say between the parametric curves , then

" Angle “p’ betureon panamctrii Crves”
~> A= Cémfﬂnt

hES
T
4

: / V= Cm%y{t'

!f (t)
[

Fig. 6.3

_ Tr1Xrp _ F
COos g= =
|T1lIm2 | VEG

and
riXry _ H _ V(EG-F2)
|ryXry| VEG  VEG

sing =

and combining these results
sin g H
tan g = =—.
cosg F

In general, the angle between the parametric curves varies from point to
point. The parametric curves are said to form an orthogonal system if they
cut at right angles at all points of the surface.
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From the formula of cos @ or tan g, it is obvious that if g is right angle then
F=0 and vice-versa. i.e. r..r.= 0,

Thus, the necessary and sufficient condition for parametric or coordinate
curves to be orthogonal system is that F = ri.r> = 0, at each point of the
surface.

Now, we shall discuss in detail the orthogonality, angle between any two
curves and orthogonal trajectory in coming unit.

7.9 SOLVED EXERCISES

Questionl: Find the equation of tangent plane and normal to the surface
given by xyz = 4 at the point (i) (1, 2, 2) and (ii) (-1, -1, 4).

Solution: Equation of the surface can be written as

F(X,y,2)=xyz-4=0.

We now have

oF

X _yz =4 at (122
& =V at (12.2)

F _xz=2a (1,2,2)
oy

oF
o s2a (L22)
Therefore, the equation of the tangent plane at (1, 2, 2) by the formula
oF oF oF
(x0T )T +(z-2) 7 =0,
IS (x-1).4 + (y-2).2 + (z-2).2=0
Or
4x + 2y + 2z = 12.
I.e. equation of tangent plane is
2X+Yy+2z=0.
Now the equation of the normal is given by

(X-x)_(V-y) _(z-2)

F F OF
OX oy oz
So, equation of the normal at the point (1, 2, 2) on the surface is

(x-1)_(y-2) _(z-2)

4 2 2

(-1)_(y-2)_(z-2)

2 1 1

Or
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Similarly, following the same lines, the learners can find the required
equation of tangent plane and normal at the point (-1, -1, 4).

Question 2: Prove that the metric or the first fundamental form is a positive
definite quadratic form in du and dv.

Solution. We have from first fundamental form that

E du? + 2Fdu dv + G dv?

=%(E2du2 +2EFdudv + EG dv2)

=é((Edu+de)2 +(EG—F2)dv2)

» 0, for all real values of du and dv

As E>0and EG - F? > 0.

Also, we have

((Edu+de)2 +(EG—F2)dv2)=o

= (Edu+Fdv)=0and (EG-F?) dv>=0

= Edu+ Fdv=0anddv=0. (As EG-F? #0.)

= Edu=0anddv=0

= du=0anddv=0. As E #0.

Hence E du? + 2Fdu dv + G dv? i.e. metric or first fundamental form is a
positive definite quadratic form in du and dv.

Question 3: Find the expression for the elementary area at a point (u, v) of
an arbitrary surface r = (u, v)

Solution: Let a very small portion PQRS near the point P(u, v) of an
arbitrary surface r =(u, v). Let the coordinates of the vertices P, Q, Rand S
are (u, v), (u+du, v), (u+du, v+dv)and (u, v + dv) respectively. We join
P, Q, R, S so that PQRS becomes a parallelogram when du and dv are very
small.
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Now vector PQ = position vector of Q - position vector of P
=r (u+du,vVv)-r(u,v)

=[r(u, v) - S—Ldu] -r(u, v)

= rydu.

Similarly vector PS = QR = r2 dv. Therefore, if ds is the area of this
elementary parallelogram PQRS, then

ds= |rdux rydy]

= | x1rp| dudv

=H du dv.

Thus H du dv is expression for the elementary area on a surface r = r(u, v).

If complete area is required between specified limits, then
Area = [fHdudv, such bounded area is covered within given limits.

Question 4: Calculate the first fundamental coefficients and show that
parametric curves are orthogonal, and find the area corresponding to the
domain0<u<2r, 0<v<2r for the anchor ring
x = (b +acosu) cosv, y=(b+acosu)sinv, z=asinu.
Solution. The equation of the surface is
r = {(b +acosu) cosv, (b+acosu)sinv, asinu}.
We have
r. = {(-a sinu cosv, -asinusinv, acosu }.
r. = {-(b + acosu) sinv, (b+acosu)cosv, 0}.
Then as we know that
E=rirn=r?F=rur2=rariand G= ra.r; = ry?
Therefore, we have for this problem, by taking scalar products suitably
E=ri.rn= r12 = a?
I ———
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F=r.rn=0

G = ra.r2 = r2?= (b + a cosu)?

H=(EG - F?) = a (b + a cosu)

Now F = 0 implies that parametric curves are orthogonal on the given
surface.

Now the area bounded by the limits0<u <2r, 0<v<2r is given by

A= jjHdudv

2n2n
=7 fa(b+acosu)dudv
00

=2 [V]3™ (b +acosu)du
0

= 2anfbu +asinul3"

= 4abn?,
This is required area.

Question 5: Show that on the surface givenby x=a (u+vVv),y=b (u-v)
and z = uv, the parametric curves are straight lines. Also calculate the
fundamental coefficients for this surface and find the condition for the
orthogonality of parametric curves on this surface.
Solution. The surface is given as
r=((u+v),b(u-v),z=uv).
On this surface, the parametric curves u = constant = c, are given by
X=a(c+v),y=Db(c-v)and z = cv. In these equations now Vv is the
parameter. Eliminating v, we get
X=a(c+z/c),y=b(c—z/c). These are equations of two planes, whose
intersection is a straight line. Therefore, the parametric equation u = ¢ are
straight lines on the surface.
Again, taking the parametric curves v= c (constant), we get
X=a(u+c),y=Db(u-c)andz=uc. Inthese equations, now u has become
the parameter. Eliminating u in these equations, we get
X=a((z/c)+c),y=b((z/c)-c).
These are again the equations two planes, whose intersection is a straight
line. Thus the parametric curves v = ¢ are also straight lines.
Now the equation of the surface is given as
r=@(u+v),bu-v),z=uv).
So that, we get on differentiating the above equation w.r.t. u and v
respectively
r.=(a, b, v).

I ———
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r = (a, -b, u).
ru = (0, 0, 0).
r.1=(0, 0, 1).
r» = (0, 0, 0).
Now as we know that
E=riri=ri F=rurz=rariand G = ra.r; = rs?
Therefore, we have for this problem, by taking scalar products suitably
E=ri.ri=ri?=a%+b%+ V2
F=rir2=a%-b?+uv
G=rar2=r?=a%+b>+ u?
H? = EG - F> =4a%b?+ a2 (u - v)?+ b?(u + v)2.
Also, we know that
rixrz = (bu + bv, av-au, -2ab). So that
(bu + bv, av —au, —2ab).
N= (rixr2) /H = ”
So that the second fundamental coefficients are given as
L=ru.N=0

(—2ab)

M=r12.N =
12 H

N=r2.N=0

Finally, condition of orthogonality of parametric curves is given by
F =0, which means
a2-b*+uv =0

or
uv = b?- a2

Question 6: Find the metric and elementary area for the paraboloids
r=(u, v, u> -2,

Solution: For the given paraboloids r = (u, v, u? —v?).

r.= (1,0, 2u).

r.=(0, 1, -2v).

Now as we know,

E=rirn=r F=ri.rz=rariand G =ra.r; = r

Therefore, we have for this problem, by taking scalar products suitably

E=rirn=r?=1+4u2

F=rw.r.=-4uv

G=rarz=r?=1+ 4V

Therefore, the metric is given by

E du? + 2Fdu dv + G dv?

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY




GEOMETRY MAT 611

= (1 + 4u?) du? - 8dudv + (1 + 4v?) dv?

Now H = V(EG - F?) = V{(1 + 4u?) (1+ 4v?) -16u? v? }
= V(1 + 4u?+ 4v?)

Therefore, elementary area is given by

H. dudv =~(1 + 4u?+ 4v?) du dv

Question 7: Show that if L, M, N vanish everywhere on a surface, then the

surface is part of a plane.
Solution: We know that

L=-r1.N1, M =-r1.N2 = -r.N1 and N = -r2.Na.

Since L = M = N = 0 everywhere on the surface, therefore
ri.N1= 0, r.N1=0
And
ri.N2 = 0, r N2=0
Since r1#£ 0, r2# 0, therefore from (1), either N1 =0, or N1 is perpendicular
to both rrand r».
This means N1 is parallel to r1 x ro. Which clearly implies that N1 is parallel
to N. (roxr2=H N). But Nz is perpendicular to N, being a vector of constant
modulus. Therefore, N1 cannot be parallel to N.
Hence from (1), we see that Ny = 0, implying that N is independent of
parameter u.
In the same way, we can show that N is independent of parameter v, by
taking equation (2).
Therefore, N is independent of both the parameters’ u and v, thereby a
constant vector at every point on the surface. Thus, at every point of the
surface the normal to the surface are parallel. Hence the surface is part of a
plane.
Thus, the result is proved.

Question 8: State and Weingarten equations. Or
Show that interms of E, F, G, L, M, N and H, the Weingarten equations are

H? Ni= (FM-GL) r1 + (FL-EM) 2

H? N2= (FN-GM) r1+ (FM-EN) r>
And deduce the formula

H N1x N2 = (LN-M?) N.

Solution: Since N is a vector of constant modulus, therefore both the vectors
N1 and N2 are perpendicular to N. Thus, both the vectors N1 and N are
tangential to the surface. So, both the vectors Niand Nz lie in the plane of the

vectors rpand r2 and so we can write
]
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For some scalars a, b, ¢ and d.
Taking scalar product of both sides of (1) with ryand then with r2, we have
r.. Ni=arw.ri+bron
and r. Ni=ara.ri+ b rar
These equations become
-L= aE+bF
-M= aF+dG
Solving (3) and (4) for a and b, we get

Putting these values of a and b in equation (1), we get
H?>N:i=(FM - GL) ri+ (FL - EM) r2
Now taking scalar product of both sides of (2) with riand then with r2, we
have
r. N2=cruri+drar;
and r. N2=crari+drar.

These equations reduce to
-M=cE+dF
-N=cF+dG

Solving (6) and (7) for c and d, we get

FN - GM
c= FN-GM

Putting these values of ¢c and d in equation (2), we get

H2N2=(FN - GM) r1+ (FM - EN) r>
Now taking vector product i.e. cross product of equations (5) and (8), we
have
H2 N1 xH? N2= {(FM-GL) r1 + (FL-EM) r2} x {(FN - GM) r1 + (FM - EN)
r}
H* N1 xN2 = {(FM - GL) x (FM - EN)} r1x ro+ {(FL - EM) x (FN - GM)}
X ri

= [{(FM - GL) x (FM - EN)} - {(FL - EM) x (FN - GM)}] r1x

As we know that rix r1 =0, ra2x ri=-rix ra, ra2x r, =0.
]
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Or on solving and little manipulation, we get
H* N1 xN2 = (LN - M?) (EG-F?) HN

H* N1 xN2 = (LN - M?) HH N

H N1 xN2 = (LN - M?) N.

Which is the desired result.

CHECK YOUR PROGRESS

True or false Questions

Problem 1. The angle @ between the vectors r1 and r2 is given by

riXry _ F
Tl lr2| VEG '

COS @ =

Problem 2. The necessary and sufficient condition for parametric
or coordinate curves to be orthogonal system is that F = r1.r.=0
at each point of the surface.

r1Xrp
H

Problem 4. H? = EG - F2.

Problem 3. N =

7.10 SUMMARY

1. A curve in space is defined as the locus of a point whose Cartesian co-
ordinates (X, y, z) can be expressed as the function of a single variable
parameter.

2. A surface is defined as the locus of a point whose Cartesian co-ordinates
(X, Yy, z) can be expressed as the function of two independent variable
parameters.

3. Some standard notations are
2 o%r 82

_ r - r —ﬂ |"21:r =— = —a_zr
Tt 2T T2 21" quav — aveu 2272

_or _or

n
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_ riX7m1ry _ r1X1rp

_|T1XT2|_ H '’

5. First fundamental coefficients are as-

E=riri=r? F=rur2=rariand G= ra.r; = ra?.
6. H= (EG- P}
7. Second fundamental coefficients are as-

L= r11.N, M= r12.N = r2:..N and N= r22.N.
8. The second fundamental coefficients can also be written as-

L= -r1.N1, M= -r1.N2 = -r2.N1 and N= -r2.No.

9. The angle @ between the vectors r1 and r2 is given by

riXrp _ F
71|72 | VEG

COS @ =

and
riXry _ H _ V(EG-F2)

[riX 19| a VEG B VvVEG

sing =

and combining these results

_ H
r

10. The necessary and sufficient condition for parametric or coordinate
curves
to be orthogonal system is that F = r1.r.= 0. At each point of the
surface.
11. The equation of the tangent plane at the point (X, y, z) on the surface
F(x, y, z) is given by the formula
oF oF oF

(X _X)aJr(Y - y)EWL(Z —2)5— 0.

12. The equation of the normal at the point (X, y, z) on the surface F(X, y, z)
IS
given by the formula

(X-x)_(V-y) _(z-2)

oF oF  oF
OX oy 0z

711

GLOSSARY
(i)  Orthogonal — mutually perpendicular.
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(ii)
(iii)

Curve — Path traversed by point or locus of point in space if point depends
on one parameter only.
Surface- Path traversed by point or locus of point in space if point depends
on two parameters only
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7.13 TEWRMINAL QUESTIONS

(TQ - 1) Find the equation of tangent plane and normal to the surface given
by z =x? + y? at the point (i) (1, -1, 2) and (ii) (2, 2, 4).

(TQ - 2) Find the equation of tangent plane and normal to the surface given
by z = xy at the point (i) (2, 3, 6) and (ii) (1, 3, 3).

(TQ - 3) Prove that the metric is invariant under a transformation of
parameters.

(TQ - 4) Find expressions for the second fundamental coefficients in terms
of differentials of unit normal vector N or prove the results
L=-r1.N1, M= -r1.N2 = -r2.Nz and N= -r2.N>.

(TQ - 5) Taking x and y as parameters, calculate the fundamental
coefficients and the unit normal vector to surface 2z=
ax?+2hxy+by?.

(TQ - 6) Calculate the fundamental coefficients and the unit normal vector
to surface (conoid) (u cosv, u sinv, f(v)).

(TQ - 7) Calculate the fundamental coefficients and the unit normal vector
to surface (helicoids) (u cosv, u sinv, f(u)+cv).

(TQ - 8) Prove that on the surface of revolution (u cosv, u sinv, f(u)),

the parametric curves u= constant reduces into circles lying in the
plane parallel to the xy-plane.

(TQ - 9) Prove that if for a surface the condition (E/L) = (F/M) = (G/N) holds at
all points, then the surface is either a plane or spherical one.
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(TQ - 10) Obtain Weingarten equations and deduce the following results
H [N, N1, ri] = EM-FL
H [N, N1, r;] = FM-GL
H [N, N2, ri] = EN-FM
H [N, N2, r2] = FN-GN.

7.14 ANSWERS

(TQ-1) () 2x-2y-z=2,(x-1)/2 =(y+1)/(-2) =(z-2)(-1)
(il) 4x + 4y -2=12, (x-2) [ 4= (y—2)14=(z-4) [ (-1)
(TQ-2) (i) 3x+2y-2=6,(x-2)/(-3) =(y-3)/(-2)=(z-6)/1
(i) 3x+y—-2=3,(x—1)/3=(y-3)/1=(2-3)/(-1)
(TQ-5) E =1+ (ax + hy)?, f= (ax + hy) (hx + by), G = 1+ (hx + by)?
L=a/H,M=h/H, N=b/H, Where H = 1+ (ax + hy) + (hx + by)?.
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8.1 INTRODUCTION

Dear learners, in the previous units, you should have studied and learnt by now that
1. Acurve in space is defined as the locus of a point whose Cartesian co-ordinates
(X, y, z) can be expressed the function of a single variable parameter t (for example
time), s (for example arc-length) or u (any other notion), say.
A surface is defined as the locus of a point whose Cartesian co-ordinates (X, Y, z) can
be expressed the function of two independent variable parameters, u, v (any other
notion), say.
Thus x = f(u, v), y = (u, v), z = (u, v) are called parametric equations of a surface. The
parameters u and v take real values and vary in some region D. This type of representation
is an explicit form of surface.
Example of a surface is conicoid whose equation is x= u cos v, y=u sin v, z= f(v).
We have the following notations for partial differentiation of position vector r with
respect to the parameter u and v.
=ﬂ r:g I :a_zl’ 1 =r =a_2r=ir
ou' 2T MU 2 AT ey T aveu
That is to say, suffixes 1 and 2 denote the partial differentiation with respect to parameter
u and v respectively.
3. Angle between two intersecting curves is defined as angle between their tangents at
that point of intersection.
. Two curves are said to intersect orthogonally iff angle between their tangents is right
angle at the point of intersection or in other words tangents are mutually
perpendicular.
Curves of same parameter of family do not ever intersect.
expression H= v (EG- F?) is a positive definite quantity.
The unit normal vector N is always perpendicular to surface as well as vector
r.and ra.

n

8.2 OBJECTIVES

(i) After completion of this unit learners will be able to:

(ii) Understand the concept of direction coefficients and direction ratios.

(iii)Understand the concept of family of curves and their differential equations.

(iv) To find angle between the different directions
(v) To understand concept of orthogonal trajectories

(vi) To obtain condition of orthogonality.
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8.3 DIRECTION COEFFICIENTS

Suppose r = r (u, V) is the parametric equation of a surface. Let P be any point on this
surface and also let u = constant and v = constant are any two parametric curves passing
through this point P. Then we have learnt that vectors r. and ry are the direction vectors
of the tangents at P to these curves respectively. Since rax r1  # 0, therefore the vectors
r, and riare independent and the unit normal vector N is perpendicular to these vectors.
Thus, these three vectors ri1, r. and the unit normal vector N, can treated as linearly
independent vectors on the surface and coordinates of an arbitrary point P can be
represented in terms of these three vectors on the surface. Hence, we can conclude that
every vector passing through a point on the surface can be uniquely expressed as the
linear combination of the vectors r1, rand N. If a is any vector passing through P then
there exist unique scalars an, A and p such that

a=anN+Ar+pur,

The scalar anis called the normal component of the vector a. If vector a lie on the surface,
then a, =0 and vice-versa.

The part Ary+ urz is called the tangential part and the scalars A, p are called the tangential
components of the vector a.

For a tangential vector i.e. vector lying on the given surface, the normal component is
zero and so we have for any tangential vector T the expression is

T=Ar1+pur;
Here A and p are called direction ratios or direction components of the vector T.

Now taking self-dot product of equation (2), we have

T2=212r2+2phri.r+p? 2

=EN+2Fpu i+ Gp? Or

IT| = (E A2 + 2Fp A + G p?)*2,

If we wish to know the direction in the tangent plane then we can take unit vector e in
place of arbitrary vector T. Hence if there is a unit vector e on the tangent plane of the
given surface then we can write

e=Ilri+ mnr;
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then here in this case | and m are called direction coefficients of e we write

(I, m) as direction coefficients.

Now taking self-dot product of equation (3), we have

e=Prn2+2Imnrn+min2
1 =ER + 2FIm + Gm?
This is the condition for the scalars | and m to the direction coefficients on the surface.

Here it is understood that direction coefficients opposite to (I, m) are given by (-I, -m).

8.4 ANGLE BETWEEN ANY TWO ARBITRARY
DIRECTIONS OR CURVES

Dear learners, we have the idea of angle between two lines or directions with given
direction cosines (I, m, n) or direction ratios (a, b, c) in three -dimensional geometry or
plane geometry in undergraduate courses. Let we are given two different curves, whose
direction coefficients are given by (li, m1) and (I2, m2) through a given point P of
intersection of the curves on the surface. We wish to find the angle between these two
directions. We proceed as-

If (I, mg) and (2, m2) are given directions then unit vectors along these directions can be
taken as

er=lhrn+mrn and ©=lbri+mn

Taking dot product of these unit vectors, by definition

e1.€2= (|1 r+ma I’z) . (|2 r+msy rz)
where o is the angle between the given directions. Hence
lerller 1ICose=lilari2+ (It m+lomy)ri.rz+mimary2
or
Cos e = Ely o+ F(l1 ma+l2 m1)+ Gmy my
This relation gives the angle between the directions (l1, m1) and (I2, my).

Further, we also know that
]
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Sin e = |e1 xey|

I(ltre+mir)x(lari+mar)|

Sinelly xmy —lomy(r x1y ) =

Sine = H(lx mz-lomy)
As H is always positive definite and |N| =1, being unit normal vector.
Hence, we have, from (5) and (6)

H(Iymy —1omy)
E|1|2 + F(llmz + I2m1)+ Gmlmz

Or

Equation (7) can also be written as, in terms of direction ratios (A1,u4 ) and (7»2,“2) as

tang =

H(hqpp —Aopy)
Exghp + F(hqup +Aopy )+ Guypy

Corollary 1: If 8 =90° then Cos e= 0 then the directions with directions coefficients
given by (l1, m1) and (I2, m2) are orthogonal and the condition for the same is given by

Ely I+ F(l1 ma+12 m1)+ Gmg mz =0.

If, however we are given direction ratios (A,u1) and (7‘2,“2) in place of direction

coefficients, then above condition of orthogonality becomes

Ed1 2+ F(A1 o+ pn)+ Gua 2 =0.
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Direction Ratios of a direction: Let us suppose that (I, m) are the direction coefficients
of a direction at a point on a given surface r = r(u, v), then scalars A and ¢ which are
proportional to | and m respectively are called direction ratios of the that given direction
(1, m). Very often we find it convenient to use direction ratios (4, x) in place of
direction coefficients (I, m), while solving the problems and finding other relations in
our discussions, as proved in previous article for orthogonal condition (8) of directions
in terms of direction ratio (9).

8.5 RELATIION BETWEEN GIVEN DIRECTION
COEFFICIENTS AND CORRESPONDING DIRCTION
RATIOS

Let us suppose that we are given the direction with direction coefficients I and m, and the
direction ratios x« and 4 proportional to these coefficients respectively. Then therefore we
can write

/2 = m/u = ¢ (constant)

or

[=cl and m= cu

so that on applying the condition (4) for direction coefficients, we get

EI°+2FIm+Gm? =1

ie.

Ec?A? + 2Fc? Au + Gc%u? =1
Or

1

c’=
EA% + 2FAp + Gp?

or
1

c=
VEAZ + 2Fhp + G2

A

so that I=
JEAZ + 2Fhp + G2

and
il

m=
VEAZ + 2Fh + G2

Henceforth,we can write the direction coefficients (I, m) as

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY




GEOMETRY MAT 611

(1, m)= ) . (10)
JEAZ + 2Fhu + G2

We can see that these relations have close similarity with the relations we have studied
in three dimensional geometry in undergraduate classes, for direction cosines and
direction ratios. (Learners have a look on those relations to learn here the relations).

Corollary 2: As we already know that the vector ry at an arbitrary point P is tangential
to the parametric curve v = constant, and therefore we can write the vector r1 =1 ri+ 0
Iz, SO that the vector rq has the components (1, 0). So the direction ratios of the direction
of parametric curve v= constant are (1, 0) and therefore the direction coefficients are, by
equation (10), as

L0

VE12 + 2F1.0 + GO2

Or

e

In the same way, we know that the vector rz at any arbitrary point P is tangential to the
parametric curve u= constant, and therefore we can write the vector r, =0 ri+ 1 r2, so
that the vector r2 has the components (0, 1). So the direction ratios of the direction of
parametric curve u= constant are (0, 1) and therefore the direction coefficients are, by
equation (10), as

(0.1)

JEO? +2F0.1+ G12

o )
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8.6 FAMILY OF CURVES AND ITS DIFFERENTIAL
EQUATION

Let us suppose that r = r (u, v) be a surface. Also let y (u, v) is a single valued function
ofu and v. y has continuous derivatives y1 and 2 , with respect to u, v respectively. y1
and > do not vanish together. Then the equation

v (u, v) =k

where c is a real parameter, gives a family of curves lying on the given surface

r =r (u, v). For different values of parameter k, we have different members of the family
(11). In case k is a fixed constant, equation (11) gives one particular member of the family
(12).

Suppose for a point (uo, Vo) on the surface r = r (u, v), we have vy (uo, Vo) =Ko Is @ member
of the family of curves (11) passing through the point (uo, Vo). Thus we have the following
proposition.

“i passes one and only member of the family (11) of curves, through every point of on the
surfacer=r (u, v) ™.

Dear learners, we now try to find differential equation and direction ratio of family of
curves.

Let us suppose y (u, v) =k 1i.e. equation (11) be a family of curves on a given surface r
=r(u, V).
Differentiating equation (11), we have

a—\Vdu + a—\Vdv:O
ou ov

Or

Yidu+ yodv=0
Or

du:ﬂ:> du_ﬂ

dv. yy -vy W1

i.e. (-y2, W1) are direction ratios of the tangent at the point (u, v) to the member of family
of curves (11) which passes through (u, v).

If we suppose that integral of equation (12) is (11), then the curves of family  (u, v)
=constant are the solutions of the differential equation

Y1 du+ y2dv=0. Conversely we can say that every first order differential equation of
the form
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P(u, v) du + Q(u, v) dv=0 (13)

Where P and Q are functions of class 1 and do not vanish together, always defines a
family of curves.

It follows from (13) that at any point (u, v) the tangent to the curve through this point has
direction ratios (-Q, P), since these are proportional to (du, dv).

8.7 ORTHOGONAL TRAJECTORY AND ITS
DIFFERENTIAL EQUATION

Suppose we have a family of curves v (u, v) =k
lying on the given surface r = r (u, v) .

Again if we have another family of curves as @ (u, v) =ki (15) lying on the
same surface.

If families (14) and (15) are such that at every point of the surface the two curves, one
from each family cut each other orthogonally, then the family of curves (15) is called the
orthogonal trajectory of the family of curves (14) and vice-versa.

Dear learners, we now move to find differential equation of orthogonal trajectories of
any given family of curves.

Let us suppose that the given surface is r = r (u, v) and v (u, v) =k is a family of curves
lying on this surface. Again let y has continuous first order derivatives y1 and y2that do
not vanish together. Let us suppose that y1 =Pand vy, =Q.

Now from v (u, v) =k , we have

a—\VSU + a—WSV =0
ou ov

Or
Yidu+ y20v=0

Or
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Thus (- Q, P) are direction ratios of the tangent at (u, v) of a member of the family vy (u,
V) =k .

Let (du, dv) be the direction ratios of tangent at the point (u, v) of a member of family
the orthogonal trajectories of y (u, v) =k . Thus the direction (du, dv) and (- Q, P) are
mutually orthogonal to each other. So from the condition (9) of orthogonally or
perpendicularly, viz.

EA1 Ao+ F(AL po+72 p1)+ Gua 112 =0, we get

E(-Q)du+ F(-Qdv + P du)+ GPdv=0

Or

(FP-EQ)du+(GP-FQ)dv=0

Fyi+Ey)du+(Gyi+Fy2)dv=0

Equation (16) or (17) is the required differential equation of the orthogonal trajectories
of the family of the curves v (u, v) =k.

Corollary 3: For a given surface, parameters can always be chosen so that the curves of
a family and their orthogonal trajectories become parametric curves.

As we can see that coefficients of du and dv in equation (17) are continuous functions of
u and v, coefficients do not vanish together because EG-F2# 0 and P and Q also do not
vanish together. Hence we can conclude that equation (17) is completely integrable. Let
solution or integration of equation (17) is

@ (u, v) =k; (18)
]
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On differentiating equation (18), we get

@ du +@dv= 0
ou ov

Or
@1 du+ @2dv=0 (19)

Now equation (17) and (19) must be equivalent, as (18) is obtained by integrating (17)
whereas (19) is obtained by differentiating (18).

Therefore comparing equation (17) and (19), we get

FP-EQ _ GP-FQ _
b1 b2

Or

A=0

FP-EQ = L 01 and GP-FQ = A g2, A£0.

Again , the jacobian of y and ¢ with respect to u and v is

op o
o
a9 0
ou ov

Q
(FP-EQ) X(GP— FQ

(EQ2 - 2FPQ+GP2)

1
»

40

Since the quadratic expression inside the bracket is positive definite and P and Q do not
vanish together.

Hence we conclude that y is indefinite integral of @, so the transformation

U= vy (u, v) and V= ¢ (u, v) is a proper parametric transformation. In the new system of
parameters U and V, the given family of curves y (u, v) = constant and their orthogonal
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trajectories given by @ (u, v) = constant become parametric curves U = constant and V=
constant. Hence the result.

8.8 REPRESENTTION OF DOUBLE FAMILY OF CURVES
AND ITS DIFFERENTIAL EQUATION

The quadratic differential equation of the standard for

Pdu?+2Qdudv+Rdv? =0.

Always represents two families of curves on the surface provided Q% — PR > 0, and here
P, Q, R are continuous functions of parameters u and v, as well as functions P, Q, R do
not vanish simultaneously.

Equation (20) can also be expressed as in more compact way

2
P(d—uj +2Q(d—uj+R:0 .
dv dv
Equation (21) being quadratic in (du/dv), always gives, on solving the equation, two

separate differential equations of first order are obtained and thus we get two families of
curves can be obtained.

8.9 CONDITION FOR ORTHOGONALITY OF DOUBLE
FAMILY OF CURVES

Dear learners, we now wish to obtain the condition that the two families of curves given
by a quadratic differential of the form

P du? + 2Q du dv + R dv? =0. (22)

represents orthogonal families of curves or two orthogonal directions on the given
surface.

The given differential equation (22) can be rewritten as

du 2 du
P(Ej +2Q(EJ+R_O (23)

Let the direction ratios of the curves of the two families obtained by (22)
through a point (u, v) on the given surface be (11, x1) and (12, w2).
Then obviously the corresponding roots of differential equation (23) will be as

(A1/u1) and (A2/u2) respectively.
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Hence by standard relations on sum and products of roots of quadratic equation and its
coefficients, we have

(A/u1) + (A2/2) = -2 Q/IP e (24)

(A1) - (A/u2) = RIP
Now applying the condition of orthogonality

El1 Ao+ F(A1 potA2 pa)+ Gua 2 =0.

E(/).(2/u2) + F{(Av/ua) +(A2/p2) }+ G =0.
Of two directions (A1, x1) and (A2, w2).

Hence two directions (11/41) and (A2/u2) obtained from equation (23) will be orthogonal
if E(Avun). (A2/uz) + F{(Avuy)+(A2/u2)}+ G = 0.

Or, applying the relations (24) and (25) we have
E(R/P)-2(QIP)F+G=0 Or
ER-2FQ+GP=0

Thus (27) is the necessary and sufficient condition for the families of curves obtained by
solving equation (22) to be orthogonal.

Corollary 4: The necessary and sufficient condition for parametric curves to be
orthogonal is that F is zero.

The proof of this result is obvious as we know that combined quadratic equation of
parametric curves is

du.dv=0 e (28)

Therefore, general quadratic equation of families of curves given by

Pdu?+2Qdudv+Rdv? =0.

will express parametric curves if and only if P=0,Q# 0, R=0.
Substituting P =0, Q # 0, R = 0, in equation (27), of orthogonality, we have
F=0.

Hence F = 0 is the necessary and sufficient condition for parametric curves to be
orthogonal.

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY




GEOMETRY MAT 611

Example 1: The parametric equation of a surface in terms of parameters u and v is given
by (x,y,2) = (u Cosv, u Sinv, a log V(u?-a?)).
Prove that the parametric curves on the sphere always form an orthogonal system.
Determine the families of curves (i)v = constant, (ii) u = constant, at angle /4 and 3n/4.
Solution. Equation of sphere is given as

r = (x,y,z) = (u Cosv, u Sinv, a log V(u?-a?)).
Differenciting w.r.t. paramaeters u and v, and using standard notations, we have
r. = (Cosv, Sinv, au/(u®-a?)).
r. = (-u Sinv, u Cosv, 0).
Therefore, taking dot (scalar) product, we have
E =12 =r1 .1 = au? /(u-a?)?
F=rlr2=0
G= r22: n.r=u
Since F= 0, the parametric curves are orthogonal.
H? = EG- F? = a%u? /(u®-a?)%. u?,
Which implies that H= au? /(u®-a?).
As in previous case, we solve the remaining part of the problem.
Example 2: If the parametric curves are orthogonal, show that the differential equation
of the curves cutting the curves u = constant, at a constant angle o is
du/dv = tan & V(G/E)
Solution: Since parametric curves are given orthogonal, therefore F = 0, and
H= (EG-F?), gives H=V (EG). Now for the curves u = constant, the direction ratios
are (0, 1). If (du, dv) be the direction ratios of the curve which cuts u = constant at an
angle 9, then
Using the relation, for the angle between two directions

Tane H(qup —2om) _

Ehiho + F(Aapo +Aopg )+ Guapsy
We have,

2

H(du-0)

tand =———~%
E.0+0+Gdv

Or

H (du -0)
EO+0+Gdv

tand =

_ VEGdu
Gdv

E du
G dv

(du/dv) =tan & V(G/E), as desired.
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Example 3: Prove that, if e is the angle at the point (u, v) between the two directions

2 )}/2
givenby P du? + 2Q dudv + Rdv2 = 0. Thentand = 21 (?-Pr
ER—2FQ+GP

Solution: The given quadratic equation is P du? + 2Q dudv + Rdv? =0. (1) Or
P (du/dv)? + 2Q (du/ dv) + R =0.
Let the direction ratios of the curves of the two families obtained by the above equation
(1) through a point (u, v) on the given surface be (11, 11) and (A2, w2).
Then obviously the corresponding roots of differential equation (2) will be as
(A1/p1) and (A2/u2) respectively.
Hence by standard relations on sum and products of roots of quadratic equation and its
coefficients, we have

(M) + (A2/u2) = -2 QIP 3)
and
(A1) . (A2/2) = RIP
As we know that angle e between two directions is given by

tan e H(qup —2om) _

Ehiho + F(Aapo +Aopg )+ Guapsy

Hi U2

Elez + F(M+MJ+G

Hik2

) A
H [szj _4(%1_%2}
M1 U2 K1 U2

E My + F(M + M] +G
Hik2 H1 M2
Using relations (3) and (4) we have

LRt

R, F(_ZQJJFG
P P

_ 2H {Q2 - PR}%

ER-2FQ+GP

Hi M2

Thus the desired result.

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY




GEOMETRY MAT 611

3.

8.10 SUMMARY

1. The necessary and sufficient condition for parametric curves to be orthogonal is that F
IS zero.

2. Angle between two direction ratios (Aq,u; ) and (}Lzlpz) is given by

Tan o) H(qup —2om) _

Ehiho + F(Aapo +Aopg )+ Guapso

5. If there is a unit vector e on the tangent plane of the given surface then we can write
=lri+ mra.

5. The condition for the scalars | and m to the direction coefficients on the surface.
El%2 + 2Flm + Gm? =1.

6. The directions coefficients given by (I, mz1) and (l2, m2) are orthogonal and the
condition for the same is given by El: l2+ F(I1 m2+1l2 mg)+ Gmz m2 =0.

7. The direction coefficients (I, m) can be written as

(1, m)= (}" H) '
VEAZ + 2Fhu + G2

Where (A, p) are direction ratios of the same direction.

8.11 GLOSSARY

Orthogonal- mutually perpendicular.
Quadratic — of degree two.
. Transformation — mapping or function.
. Vanish-to become zero.
. Trajectory- path.

8.12 REFERENCES

An introduction to Riemannian Geometry and the Tensor calculus by C.E.
Weatherburn “Cambridge University Press.”
Matrices and Tensors in physics by A.W. Joshi “Wiley Eastern Limited”.

Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”.
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4. Differential Geometry by Gupta, Malik and Pundir “Pragati Edition”.

8.13 TERMINAL QUESTIONS

(TQ -1) Find the direction which makes an angle /2 with the whose direction

coefficient are (I, m).
(TQ-2) Find the the equation of the curves bisecting the angles between the parametric
curves.
(TQ-3) Show that on a right helicoids, the family of curves orthogonal to the curves
u.cosv = constant is the family (u? + a?) Sin? v = constant.
(TQ-4) Show that parametric curves are orthogonal on the surface x= u.cosv, y=u.sinv,
Z =alog {utV(u®-a?)}.
(TQ-5) Find the differential equation of the orthogonal trajectories of the family of the
curves given by P du + Q dv = 0.
(TQ-6) Find the orthogonal trajectories of the curves obtained by the section of the planes

2

z = constant on the surface, paraboloids x? — y? = z.

8.14 ANSWERS TO SELECTD TERMINAL QUESTIONS
(TQ-1) (', m’) = (-(FHFm)/H , (El+Fm)/H)

(TQ-2) Edu?-G dv? =0.

(TQ-5) (EQ-FP) du + (FQ-GP) dv = 0.

(TQ-6) xy = constant.
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9.1 INTRODUCTION

In differential geometry, the two principal curvatures at a given point of
a surface are the maximum and minimum values of the curvature as expressed by
the eigenvalues of the shape operator at that point. They measure how the surface
bends by different amounts in different directions at that point. The concepts of

normal and principal curvatures, fundamental in differential geometry, emerged

from the study of curves and surfaces, with key contributions from figures like

Euler, Monge, and Gauss, culminating in a systematic analysis by Darboux.

9.2 OBJECTIVES

After completion of this unit learners will be able to:
(1) Principal curvatures

(i1) Normal Curvature

9.3 NORMAL CURVATURE

Before defining normal curvature firstly, we shall define normal section. A plane

P’ drawn through a point P on the surface, cuts the surface in a curve

which is called a section of the surface. In case the plane P’ is so drawn that it contains
the normal to the surface, then the curve is called Normal section, otherwise the curve
is called an Oblique section. We observe that in fig. 2, the principal normal n to the
normal section is parallel to the surface normal N. We shall adopt the convention that
vector n has the same direction as that of vector N, with this convention, we have n =
N.
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Formula for normal curvature in terms of fundamental magnitudes.

Let r = r(u, v) be the equation of surface and P is any point (u, v) on the surface. Let
K, represents the curvature of the normal section, it will be positive
when the curve is concave on the side towards which N points out. Then, we

dt

ds = = Kk,n = k,N
=N-r"
[« r" = KnN]
Again, we know that
_dr 6r6u+ or dv
~ds oduds 0dvds
=ru + v
14 + drl ! + 14 + drz !
nu' +—u + v +—v
1 ds 2 ds
- - (6r1 ou L0 ory dv) , (ar2 du Lo dr, dv) ,
ru” 4 rpv’ du ds dv ds du ds Ov ds
riu” + v’ +ru'? +rpu' v+ u'v 4 v’

n

o KTL =r - N = (l‘lu" + 1‘217" + 1'11u'2 + Zrlzulvl + 1'2217'2) . N

Agaln, I‘l'N = 0,1‘2 N = 0,1‘11'N = L,rlz N == M,I‘22 N: N
Therefore
kKn=N-7"=Lu?+2Mu'v' + Nv'?

dun? dudv dv\?
L( ) DY Rt N(—)

ds ds ds
B Ldu? + 2Mdudv + Ndv?

ds?

ds

Ldu? + 2Mdudv + Ndv?

~ Edu? + 2Fdudv + Gdv?
Equation (3) gives the curvature of the normal section usually called normal curvature
parallel to the direction (du, dv). Its reciprocal is called the radius of normal curvature
and is denoted by p,,.
We define the normal curvature as follows:
Definition. If P be a point with a position vector r(u, v) on the surface r = r(u, v), the
normal curvature at P in the direction (du, dv) is equal to the curvature at P of the
normal section at P parallel to the direction ( du, dv ).
Alternative definition. Suppose r = r(u, v) is a surface and P is any point with a
position vector r(u, v) on it. If r = r(s) is a curve through P on this surface, then the
component of the curvature vector r "along the normal to the surface is defined to be
the normal curvature of the curve at P and is generally denoted by k. Therefore, k, =
N . I,Il
Equivalence of two definitions. Let N be the unit normal vector to the surface at P,
then by alternative definition the normal curvature k,, is given by k,, = N-r", where r
" is curvature vector at P

[ Using first fundamental form |
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Let x be the curvature at P of the normal section at P containing the direction (du,dv).
Then

r" =k, = kN [ N]

n=
N-r" = N-(&N) =« [“N-N=1]

i.e.,
Kn =K
Thus, we see that curvature at P of normal section at P containing the direction (du, dv)
is equal to the normal curvature at P in the same direction.
Remarks

We know that r" is the curvature vector at P of a curve lying on the surface r(u, v) then
we have shown that

3 Ldu? + 2Mdudv + Ndv?
B ds?

—1 (du)z + oM (du) (dv) N (dv)z
-~ “\ds ds/ \ds ds
We know that all curves having the same direction at P have the same values of their

direction coefficients (Z—Z,%) at P. Also, the values of second-order fundamental
magnitudes; L, M, N are fixed at P. Therefore, for all curves having the same direction at
P, the value of N - r " is fixed which is equal to the normal curvature at P of any one of
these curves. Therefore, normal curvature is a property of the surface and a direction at

a point on the surface.

N._rll

9.4 MEUSNIER’S THEOREM

STATEMENT. If k and k,, are the curvatures of oblique and normal sections through
the same tangent line and 6 be the angle between these sections, then
K, = Kcos 6

Proof. Let P be a point (u, v) on the surface r = r(u, v) and r" be the curvature vector
at P of the oblique section through P, containing the direction (du, dv). Then

r'’ = kn (D
where n is the unit principal no‘r_njilvggtor to the oblique section at P.

g i P "'2!&

Again, the unit normal vector N to the surface at P is the unit principal normal vector of
the normal section at P parallel to the direction ( du, dv ). Since 6 is the angle between
I ———
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oblique and normal sections at P through the same tangent line so 6 is the angle
between oblique and normal sections at P through the same tangent line, so 8 is the
angle between the vectors n and N
ie.

n-N=cosf [+ |n] =1,|N| = 1]
Now taking dot product of both sides of (1) by N, we have

r"-N=kxn-N=kcosf

Again r" - N = normal curvature at P in the direction ( du, dv ) = curvature of the
normal section at P parallel to be direction (du, dv) = k,
Therefore, K, = KCcos @ .

9.5 PRINCIPAL DIRECTIONS

The normal sections of a surface through a given point having maximum or
minimum curvatures at the point are called principal sections of the surface at that point
and the tangents to these sections are called principal directions at the point. In general
there are two principal directions at every point on a surface and it will be shown that
they are mutually orthogonal.

Principal curvature. The curvatures of the principal sections of a surface through a
given point, i.e., the maximum and minimum curvatures at that point are called
principal curvatures at that point, and their corresponding radius of curvatures are
called principal radius of curvatures.

EQUATION GIVING PRINCIPAL CURVATURES

We know that the normal curvature k,, at point P(u, v) in the direction (du, dv) is given
by

_ Ldu 2 4 2Mdudv + Ndv 2

"~ Edu? + 2Fdudv + Gdv?
If ([, m) be actual direction coefficients of the direction (du, dv), then

B LI%Z + 2MIl m + Nm?

Ky

Kn = E2 ¥ 2Fmi + Gm?

Where,
El242Flm+Gm?=1 e (D)

“ K = LI + 2MIm + Nm? ... (2)

Since L, M, N are fixed at P, so the value of k,, at P depends upon the values 1, m, at
P, i.e., K, is a function of two variables [, m and are connected by relation (2). We
shall find the maximum value of k,, by Lagrange's method of undetermined multipliers.
For a maximum or minimum value of k,,, we have

dk, =0
i.e., 2Lldl+ 2Mldm 4+ 2Mmdl + 2Nmdm = 0
or

(LI + Mm)dl + (Ml + Nm)dm = 0 e
= - - - -
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Differentiating (1), we get
2Eldl + 2Fldm + 2Fmdl + 2Gmdm = 0
or
(El+ Fm)dl + (F1+ Gm)dm =0 - (4)
Now multiplying (4) by A and adding to (3) and then equatlng to zero the coefficients
of dl and dm, we get
(LL4+ Mm) + A(E1+ Fm) =0 S (5)
(Ml + Nm) + A(FI+ Gm) =0 (6)
and
Now multiplying (5) by [ and (6) by m and adding, we get
or
(L12 + 2MIm + Nm?) + A(El? + 2FIlm + Gm?) = 0
Kn+A=0 or A=-—-k,
Putting A = —k, in (5) and (6), we get
(LI+Mm) — k,(El+Fm) =0
(Ml 4+ Nm) — k,(FI+ Gm) =0
and
Now we shall eliminate [, m between (7) and (8). From (7), we have
(L—k,E)l+ (M —k,F m =0 9

From (8),
M-k, F)Il+ (N —k,G)m =0 (10)

From (9) and (10), we have

(L —Kk,E)(N — k,G) = (M — k,F)(M — k,,F)
Or

k2(EG — F?) — k,(En+ LG — 2FM + (LN — M?)
This is the required quadratic equation giving the maximum or minimum values of
normal curvature at P . Its roots are principal curvatures of the surface at P and are
usually denoted by k, and x;,. Thus we have
EN + LG — 2FM LN —M? T?

ka+kb=

and kakb =m =m

EG — F?
> General Definition.

1. First curvature. The sum of the principal curvature x, and k,, is called the
first curvature at the point and it is denoted by symbol J,
ie.,
EN + LG — 2FM
EG — F?
2. Mean curvature or Mean normal curvature.

]:Ka+Kb:

The arithmetic mean of the principal curvature k, and k;, at a point is called the mean
curvature at the point and is denoted by symbol u
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EN + LG — 2FM
2(EG — F?)

) 1
ie., h=s5 (kg + Kp) =

Some authors denote the mean normal curvature by B

1
= B = E(Ka + Kp).
Also, amplitude of normal curvature is defined by

1
A=E(Kb+Ka)

3. Gaussian curvature. The product of the principal curvatures k, and k,, at
point is called Gaussian curvature at the point and is denoted by symbol K.
i.e.,
LN — M? _ T?
EG—F2 H?
It is also called, specific curvature, second curvature or total curvature.

K=kK, Kk, =

»TO FIND EQUATION GIVING THE PRINCIPAL DIRECTION AT

A POINT ON THE GIVEN SURFACE
We know that directions having the maximum and minimum normal curvatures are
given by equations (5) and (6), which are
(LI + Mm) + A(E1+ Fm) =0 (D
(MI+ Nm) + A(FI+ Gm) =0 (2)
Eliminating A form (1) and (2) we get
(LI + Mm)(F1 + Gm) = (MI + Nm)(El + Fm)
Or
(EM — F1)I? + (EN — GL){ m + (FN — GM)m? = 0 3)

Equation (3) gives principal directions at the given point. Now replacing the actual
direction coefficients (1, m) by direction ratios (du, dv), the equation (3) reduces to
(EM — FL)du? + (EN — GL)dudv + (FN — GM)dv? = 0 (4)

Now (4) is a quadratic equation in j—:, therefore there are in general two principal

directions at each point of the surface.
Again, we know that the two directions given by
Pdu? + 2Qdudv + Rdv? =0
Are orthogonal if
ER—-2FQ+GP =0 (5)
On comparing (4) and (5), we have
EN — GL
P=EM—FL,Q=T,R=FN—GM
Hence in this case
ER — 2FQ + GP = E(FN — GM) — F(EN — GL) + G(EM — FL) = 0
Therefore, the two directions given by (4) are orthogonal hence the principal direction
are orthogonal.
The discriminant of equation (4) is
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(EN — GL)? — 4(EM — FL)(FN — GM)
4(EG — F?) , 2F
z——?f——(EM—dm)+{EN—GL—7;U%4—FD}
But EG — F2 > 0, if follows that the roots of equation (4) are real and distinct, provided
that the coefficients E,F,G and L,M,N are not proportional. Thus, if at a point P the

coefficients E, F, G are not proportional to L, M, N then we have two real and distinct

principal direction at P which are orthogonal. When % = % = % the equation (4) fails to

determine principal directions i.e., the principal directions are indeterminate.

Umbilic Definition. A point on a surface is called an umbilic if at that point we have
L M N
E F G
The normal curvature k at a point (u, v) in the direction (du, dv) is given by
_ Ldu® + 2Mdudv + Ndv?

K' =
Edu? + 2Fdudv + Gdv?
Therefore, at an umbilic, the normal curvature is the same in all direction.

9.6 MINIMAL SURFACE

Definition. If mean curvature of a surface is zero at all points, then the surface is called
a minimal surface.

Hence the surface will be minimal if, p= 0= K, + K, =0 EN+ GL—-2FM =0

at every point of the surface.

Theorem. If there is a surface of minimum passing through a closed space curve, it is
necessarily a minimal surface.

Proof. Let r = r(u, v) be the equation of a surface S bounded by a closed curve C.
Given to S, a small displacement ¢ in the direction of normal to derive a surface S.

. . 3 d
Here ¢ is a function of u and v. Let é = ¢, and a—i =

&, be both small quantities. More exactly we take
& =0(g),e=0(g)ase =0
Let R be the position vector of any point on the
surface S*, then
R=r+¢N

where r, g, N are all functions of u and v.

~ Ry=r1r;+¢&N+eNy,

R, =1, + &,N + €N,

Let E*, F*, G* be first order fundamental
coefficients of S*.
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~E*=R% = (r; + &N+ ¢N;)2.

=rf + 2er; - N+ 2¢er; - Ny + 0(€?)

=E—2eL+0(£?)

F*=R; R, =(r; + N+ ¢eNy) - (r; + &N+ ¢Ny)

=r, T, +&r N+er, N, + &N 1y +eNg -1y +0 (£2)

=F —2eM + 0(?)

G* =R3=(r, + &N+ &N,)? =G — 2eN + 0(&)?

H*Z — E*G* _ F*Z

={E —2eL+0(£)*} | G —2eN + 0(e?)} — {F — 2eM + 0(£?)}?

= EG — F?2 — 2¢(EN — 2FM + GL) + 0(€?)

EN — 2FM + GL

= H? — 4¢H? ( TTE ) + 0(£?)
= H? — 4eH?u + 0(£?), where u is mean curvature of S
= H?[1 — 4eu + 0(£?)].
Example 1. Show that the equation for the principal curvature through a point of the
surface z = f(x,y) is

H*, 2 — H[(1 + pH)t+ (1 + g®)r — 2spqlk, + (rt —s2) =0

Solution: The given surface is z = f(x,y), thus we have

r=xyfxy))
I = (1707 p)' r, = (O'L q)' I = (0,0, I'); I, = (0,0, S);
r,, = (0,0,1)
Therefore, E=r,-r; =1+p%F=r-1,=pq;G=1r, -1, =1+ g2

Therefore, H? = EG — F? = (1+p*)(1+q*) - p?q* = 1+ p* + ¢*
Nz Xr, _(=p,—91)
H H
t

r S
L=N‘r11=ﬁ;M=N-r12=ﬁ;N=N.r22=H;

2
T?=LN-M?= rtst
Equation of principal curvature is given by
H%k,? — (EN + GL — 2FM)x, + T2 = 0
Putting the values of E, F, G, L, M, N in this equation, we get
H*Z —H[(1 + p)t+ (1 + g®)r — 2spqlk, + (rt —s2) =0
which is the equation of principal curvatures.

Example 2. Show that the principal radii of curvature of the surface ycos - = xsin - are

x2+y?+a?

equal to + . Find the lines of curvature.

Solution. Surface is ycos = = xsin= i.e. z = atan™*
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The parametric equations of the surface are
X=u cos v, y=u sin v, z=av
~ 1 = (ucosv,usinv,av)
r; = (cosv,sinv, 0);r, = (—usinv,ucosv,a)
r;; = (0,0,0);ry, = (—sinv, cosv,0)
ry; = (—ucosv, —usinv, 0);
~E=r!=1F=r,-1,=0,G=r3=u?+a?%
H? = EG—F? = u® +a°
N = rqXr; _ (asinv,—acosv,u)
H H
L=N-r11=0,M=N-r12=—%,N=N-r22=O.
The principal curvatures of the surface are given by
H%k,? — (EN — 2FM + GL)x, + T2 = 0

or
(EG — F®)k,2 — (EN — 2FM + GL)x, + (LN —M?) =0
Putting the values of E, F, G, L, M, N in the equation, we get
a? u? +a?)H?  (u? +a?)?
(u2+a2)K2+<0——>=00rp2=( az) =( " )

HZ
p:_l_(x2+y2+az)

or
a

which are the principal radii of curvatures.
Again the lines of curvature are given by the equation
(EM — FL)du? + (EN — GL)dudv + (FN — GM)dv? = 0
On putting the values of E, F, G, L, M and N in this equation we get
—idu2+(u2+a2)idvz=00r du =dv
H H +/[(@ + )]
Integrating, v = +sinh™? g + C, where C is constant.

2 2
tan‘1§ = +sinh™! [+y?)] :y I,

CHECK YOUR PROGRESS

True or false Questions

Problem 1. Equation of First curvature is

EN+LG-2FM
J=Katwo =50

Problem 2. The amplitude of normal curvature is defined by
A= %(Kb + Kg).

Problem 3. If mean curvature of a surface is one at all points, then the
surface is called a minimal surface.
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Problem 4. If mean curvature of a surface is zero at all points,

then the surface is called a minimal surface.

9.7 SUMMARY

Meusnier’s theorem: If k and k,, are the curvatures of oblique and normal
sections through the same tangent line and 6 be the angle between these sections,
then k, = kcos 6.
Minimal surface: If mean curvature of a surface is zero at all points,

then the surface is called a minimal surface.

Principal curvature: The curvatures of the principal sections of a surface through
a given point, i.e., the maximum and minimum curvatures at that point are called
principal curvatures at that point, and their corresponding radius of curvatures are
called principal radius of curvatures.

9.8 GLOSSARY

(i) Derivatives

(i) Determinant

9.9 REFERENCES AND SUGGESTED READINGS

An introduction to Riemannian Geometry and the Tensor calculus by C.E.
Weatherburn “Cambridge University Press.”
Matrices and Tensors in physics by A.W. Joshi “Wiley Eastern Limited”.
Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”.
Differential Geometry by Gupta, Malik and Pundir “Pragati Edition”’.

9.10 TEWRMINAL QUESTIONS

1. Define Normal Curvature, write its equation.
2. Define Principal Curvature, write its equation.

3. Define Mean Curvature, find its equation.
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Define Gaussian Curvature, find its equation.

9.11 ANSWERS

CYQ1. True
CYQ 2. True
CYQ 3. False
CYQ 4. True
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10.1 INTRODUCTION

In geometry, Rodrigues' formula is used to define orthogonal polynomials,
like Legendre polynomials, providing a way to derive them from a differential
operator. It's a general formula that expresses a polynomial as a derivative of a
product of a polynomial and a weight function. Local non-intrinsic properties in
surface differential geometry are those that depend on how a surface is embedded
in space, like the normal vector at a point, whereas intrinsic properties depend only

on the surface itself, like the Gaussian curvature.

10.2 OBJECTIVES

After completion of this unit learners will be able to:
() Rodrigue’s Formula
(i) Euler’s theorem

(111) Monge’s Theorem

10.3 RODRIGUE’S FORMULA

Statement. A necessary and sufficient condition that a curve on a surface be the line
of curvature is that

N o Ar AN + dr = 0
dS dS or Kdr =

at each of its points, where k denotes the normal curvature.

Proof. Let (du,dv) be a line of curvature on the surface, then it is a principal direction
at the point (u, v) to the surface, so we have from equations

(L—kE)du+ (M — kF)dv=0 (D

(M —kF)du+ (N —kG)dv =0 (2)

where k is one of the principal curvatures.
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Putting the values of L,M,N,E,F,G in (1) and (2) by their expressions in terms of
derivatives of r and N, viz.

L=—N1'l‘1,M=—N1'l‘2=—N2'I'1,N=—N2'l‘2
E=r?F=r 1,G=rs

We have
or

(=N;'r; —kr?)du+ (=N, 1, — kr; - 1,)dv =0
or (N;du+N,dv) -r +k(rjdu+r,dv) -r, =0

(dN)-r; + (kdr) -r; =0 o0r (AN + kdr) -r; =0

Similarly form (2), we have
(AN +kdr) -r, =0 (4)
Again
N-N=1

On differentiating it, we get 2N - dN = 0 i.e., dN is normal to N or dN is a tangent
vector. Also dr is a tangential vector, so the vector kdr + dN is tangential vector to the
surface. Also r; and r, are tangential vectors, therefore in order that equations (3) and
(4) are satisfied, we must have

dN 4+ kdr =20

dN dr . h dition i
— &« —, 1.e., the condition is necessary.
ds ds y

Sufficient condition. Let there be curve on the surface at each point of which

dN dr

s « I ie., kdr+ dN = 0.

where k is any function, now reversing the order of steps, we get the equations
(3) and (4) which are
and
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(L—kE)du+ (M — kF)dv =0
(M —kF)du+ (N —kG)dv =20

Thus the curve is line of curvature in case K is normal curvature to the surface. Given,
kdr + dN = 0 = kdr = —dN

= k(r;du + r,dv) = —(N,du + N,dv)

Taking dot product of ( r;du + r,dv) both sides,

= k(r;du + r,dv) - (r;du + r,dv) = —(N;du + N,dv) - (r;du + r,dv)

= k(Edu? + 2Fdudv + Gdv?) = Ldu? + 2Mdudv + Ndv ?

B Ldu? + 2Mdudv + Ndv?
"~ Edu? + 2Fdudv + Gdv?

= K

= K is a normal curvature at the point (u, v) in the direction ( du, dv ).

Hence, the direction at each point of the curve is a principal direction and thus the curve
is a line of curvature on the surface.

Remark.

o In Rodrigue's formula, it is not necessary that k is the curvature of the curve under
consideration. It is simply a scalar function. In fact, at any point of the curve, k is the
normal curvature of the surface at that point in the direction of the curve.

10.4 MONGE’S THEOREM

A necessary and sufficient condition that a curve on a surface be a line of curvature is
that the surface normals along the curve form a developable.

Proof. Let r = r(u,v) be a surface and r = r(s) be a curve on it. Let N denote a unit
vector along normal to the surface r = r(u, v) at any point P, r(s) on the curve r =
r(s); N can be taken as a function of s alone. Let R denote the position vector of any
point on this normal, then

R =r(s) + vN(s)
This equation can be taken as the function of the surface generated by the normals to
the given surface at points on the curve r = r(s). In equation (1) the two parameters are
sandv.
=

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY




GEOMETRY MAT 611

aR_R _dr+ dN—t+ N’
os  rTas Vas Y
oR ,
EszzN,RlzzN,Rzzzo

Then HM = [R4,,R{,R,] = [N/, t + vN’,N]
= [N’,t,N] + v[N’,N’,N]
= [N’,t,N] [+ [N’,N’,N] = O,R,, = 0]
and
HN = [Rzz; R;, Rz] =0,
Now HN=0= N=0,sinceH=#0
Further

1 1
M=—[N,t,N]==[t, NN’
=[N’ N] = [EN,N]

Now the surface (1) is developable if and only if its Gaussian curvature is zero

LN-M?
HZ

i.e., ifand only if
o [+ N=0for(1)]
Hence, the normals to the surface r = r(u,v) along the curve r = r(s) forma
developable if and only if [t, N, N'] = 0. Therefore in order to prove the theorem we are
now to prove that
[t,N, N']=0
is a necessary and sufficient condition for r = r(s) to be a line of curvature on the
surface r = r(u,v).
Now
[t,N,N']=0,[t,N,N]=0,(txN)-N=0
But N # 0.
Also N’ is perpendicular to N. So N’ lies in the tangent plane to the surface r = r(u, v).
Now t X N’ is perpendicular to both t and N'. Therefore t x N’ is normal to the surface
r = r(u,v). Thus t X N’ is parallel to N. Therefore if t x N’ # 0, then (t Xx N’).N
cannot be zero.
= txXN)-N=0,=2txN' =0
= N’ = —«t for some scalar function k .
dr dN

1 =0
= de+ds

= The given curve is a line of curvature by Rodrigue's formula.
Conversely. If the given curve is a line of curvature, then by Rodrigue's formula, we
have

dr dN

— 4+ =0
de+ds

—kt=N’
s~ [t N,N'] = [t,N,—xt] =0
Hence the proof of the theorem is complete.
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10.5 LINE OF CURVATURE AS PARAMETRIC
CURVE

The necessary and sufficient condition that parametric curves be lines of curvature
F=0M=0.

Proof. The parametric curves are u = constant and v = constant therefore combined
differential equation of parametric curves is given by
dudv =0 (D
Again the differential equation of lines of curvatures is
[EM — FL]du? + [EN — GL]dudv + [FN — GM]dv? = 0 (2)
If the lines of curvature are taken as parametric curves, then F = 0, since the principal
directions are orthogonal.
Comparing (1) and (2), we have
EM—-FL=0,FN—GM =0and EN—-GL # 0
Since F = 0, so we have
EM = 0,GM = 0 which gives M = 0
Hence F = 0, M = 0 are necessary conditions for the parametric curves to be lines of
curvature.
Sufficient condition. If F = 0,M = 0 the equation (2) of lines of curvature becomes
(EN — GL)dudv =0
But EN—-GL#0; ~ dudv=20

Which is the differential equation of the parametric curves.

10.6 EULER’S THEOREM

Statement. The normal curvature x, at a point on a surface is given in terms of
principal curvatures k, and k;, by the formula

Kn = K,€082 Y + Kpsin?
(known as Euler's formula) where x, and k;, are the principal curvatures and { is the
angle at which the direction (du, dv) of the normal section made with the principal
directiondv =0

Proof. Let the lines of curvature be taken as parametric curves, then F =0, M = 0 and
the normal curvature
Ldu? + 2Mdudv + Ndv?

“n T Equz + 2Fdudv + Gdv?

reduce to

B Ldu? + Ndv?
T Equz + Gdv?
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Since the direction v = constant [ having direction coefficients (\/LE 0)] and

- )] are principal directions, so the

u = constant [ having direction coefficient (O’E
curvatures for these directions are principal curvatures and are given by

Ky = % [Putdv =01in (1)] (2)
And
Kp == [Putdu=0in (1)] (3)

As the direction du = (du, dv) makes angle (o. W)
with the parametric curve v = constant, so we t (dudv)

have

Fig.(10.5.1)

v=const

_ _ Hdv (EG—FZ)dV_ dv
S ES T i V9%

Again, ds? = Edu? + 2Fdudv + Gdv?
= Edu? + Gdv?

Again from (1)

Ldu? 4+ Ndv? du\? dv
_ —L( ) +N(

= ds2 N

_L 2 +N 3
—Ecos Y GSlnL|J

ds ds

Kn = K, C0S% | + Ky, sin? (4)

»  Deduction. The sum of the normal curvature in two orthogonal directions is equal to
the sum of the principal curvatures at that point.

Proof. Let x,, and x,, denote normal curvature in two orthogonal directions on the
surface and s be the angle between the first direction and the principal direction dv =
0; thus, the angle between the second direction and the principal direction du = 0 will

be g + . Thus, from Euler's formula (4), we have
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Kn, = K, COS? Y + Ky, sin® s (1)

Kp, = K,C0S? (g + L|J) + Kysin? (; + L|J)
= K,sin? Y + kpcos? P
Now on adding (1) and (2), we get
Kp, + Kn, = Ky + Ky
This is known as Dupin’s theorem.

> Elliptic points. The points on the surface at which the principal curvatures k,
and k;, have the same sign i.e., the Gaussian curvature K is positive are called elliptic
points.

. LN—M? LN—-M?
Again K = K, K}, = o = e

Thus, we conclude that a point is an elliptic point if

LN — M2 > 0.

Note: If x, and k;, have different signs then the indicatrix is one of two conjugate
hyperbolas depending on the sign of h. In this case surface in the neighbourhood of
Olies on both sides of the tangent plane. Such portions of the surface are called
Anticlastic at that point.

> Hyperbolic points. The points on the surface at which the Gaussian curvature
K is negative i.e., LN — M? < 0 are called hypervolic points. In this case principal
curvatures at the points are of opposite signs.

Note: If one of the principal curvatures is zero, i.e., either k, = 0 or x;, = 0, then the
indicatrix is a pair of parallel straight lines.

> Parabolic points. The points on the surface at which the Gaussian curvature
K = 0 are called parabolic points. In this case LN — M? = 0.

Example 1. Show that the equation for the principal curvature through a point of the
surface z = f(x,y) is

H*x, 2 — H[(1 + p?)t+ (1 + g®)r — 2spqlk, + (rt —s2) =0
Solution: The given surface is z = f(x,y), thus we have

r=xyfxy))
~ 1 =(1,0,p);r; = (0,1,9); 1y, = (0,0,r); 14, = (0,0,59);
r,, = (0,0,t)
Therefore, E=r, 1, =1+p%F=r'1,=pq;G=r,'1, =1+ g2
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Therefore, H2 = EG—F?2 = (1 + p?)(1 + ¢?) — p?q® =1+ p? + ¢*
N = N Xr, — (—p,—q, 1)
H H

t

r S
L=N-l‘11=ﬁ;M=N-I‘12=ﬁ;N=N-r22=ﬁ;

rt — s?
T = LN - M? = —
Equation of principal curvature is given by
H?k,? — (EN + GL — 2FM)k, + T? = 0
Putting the values of E, F, G, L, M, N in this equation, we get
H*2 — H[(1 + p?)t+ (1 + g®)r — 2spqlk, + (rt —s2) =0
which is the equation of principal curvatures.

Example 2. Show that the principal radii of curvature of the surface ycos = = xsin - are

x?+y?+a?

equal to + . Find the lines of curvature.

a

Solution. Surface is ycosg = XSil’lg ie.z = atan‘li

The parametric equations of the surface are
X=ucosv,y=usinv,z=av
~r = (ucosv,usinv,av)
r; = (cosv,sinv,0);r, = (—usinv,ucosv,a)
r;; = (0,0,0);r;, = (—sinv,cosv,0)
ry; = (—ucosv, —usinv, 0);
~E=r?=1F=r;-1,=0,G=r3=u?+a?
H? = EG — F? = u? + a2
N = rqXr; — (asinv,—acos v,u)
H H
L=N-r11=0,M=N-r12=—%,N=N-r22=0.
The principal curvatures of the surface are given by
H?%k,2 — (EN —2FM + GL)x, + T> =0

or
(EG — F?)k,% — (EN — 2FM + GL)k, + (LN — M?) =0

Putting the values of E, F, G, L, M, N in the equation, we get

a2> B (W +a®)H?  (u?+a?)?

(u* +a®)x* + (0 T

a2

or

which are the principal radii of curvatures.
Again the lines of curvature are given by the equation
(EM — FL)du? + (EN — GL)dudv + (FN — GM)dv? = 0
On putting the values of E, F, G, L, M and N in this equation we get
I ———
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a a d
——du®+ (u*+a?)=dv®=0or : =dv
H H +/[(u? +a?)]

Integrating, v = +sinh~! g + C, where C is constant.

2 2
or tan‘“—; = +sinh~1 2] :y I

Example 3. For the hyperboloid 2z = 7x? + 6xy — y?, prove that the principal radii at
1 1 .. .
the are 375 and the principal sections are x = 3y, 3x = —y.

Solution. The given surface
IS
z= %(7X2 + 6x — y?)
which is of the form z = f(x,y)
In Example 1, we have calculated the fundamental magnitudes of such surface which
are given by

In this case

[at origin]

[at origin]

"= 2 S 0x 0y dy?

Therefore, we have
E=1,F=0G6G=1H=1,L=1,M=3,N=-1
Equations giving the principal curvatures is
(EG — F)x2 — (EN — 2FM + LG)x, + (LN — M2) =0
Putting the values of E, F, G, L, M, N and H in this equation, we get k2 — 6x, — 16 = 0,
i.e., k, = 8, —2. Hence the principal radii are g —%.
Again, the equation of line curvature is
(EM — FL)dx? + (EN — GL)dxdy + (FN — GM)dy? = 0

Or 3dx? — 8dxdy —3dy? =0 or (3dx+dy)(dx—3dy) =0
or 3X+y=c¢,x—3y=¢,
At origin, c;=0=c,
Therefore, principal sections at origin are

x=3y,3x = —y
Example 4. Find the principal radii of the surface a®x? = z?(x? + y?) at the points
where x =y = z.
Solution. Parametric equations of the surface are given by

X = ucos 0,y = usin 0,z = acos 0

where u and 6 are parameters.
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~ 1 = (ucos 6,usin 6,acos 0)
r; = (cos0,sin0,0), r, = (—usin®,ucos0,— asin0)
r;; = (0,0,0);r;, = (—sin®,cos06,0)
ry, = (—ucos 6, —usin 6, —acos 0)
NH =r; Xr, = (—asin? 0, asin 0 cos 0, u);
~E=1,F=0,G=u?+ a%sin? 6, H? = u? + a®sin? 0
a sin@ au sin® a%sin?0

~L=0M= N=-— T2 =
0, H ’ H '’ H?

The principal curvatures are given by the equation

H2k2 — (EN + GL — 2FM)k,, + T2 = 0
or Principal radii are given by the equation

T2p% — (EN + GL — 2FM)p + H2 = 0
Substituting values of E, F, G, L, M, N, T and H , we have

—a’sin®® —aucos 0
(u2 +a2sin28) " J(Z + aZsin? )

or p%(a®sin?@) — p[(u2 + a?sin? 9)1/2]aucos 0 — (u? +a%sin0)? =0
Againatx =y =zu=a,0 = /4,

lp+(u2+azsin9) =0

2,2 2

P 244
72 p<a+2

2p2a? — 2a%pV3—9a* =0
2p? — 2apV3—9a% =0
2aV/3 + V12a? + 72a2

p= 4

_ 2aV3 + Z- 2,/(21) _ a\2/§(1 £V

p

Example 5. At a point of the curve of intersection of the paraboloid xy = cz and

2
the hyperboloid x? — y? + z2 + ¢? = 0 the principal radii of curvatures are Z? (1+

V2).

Solution. The position vector rof any point on the curve is given by
uv
r= (u, v, T) (D
As this is the point of intersection of the two given surfaces, so we have from x? +

y? —z% + ¢ = 0, the equation

21,2

u
u?+vZi4c?=
c

Now r; = (1.0.v) 289
\% u
Now 1y = (1,0,2),r2 = (0,1,2),r11 = (0,0,0),

\'%
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1
K, = (o,o,z)m22 — (0,0,0)
_ 1‘1 X 1‘2 —V _u

N= H _(c’c'l)/H
N v? uv 5 u?
.°.E=r1=1+C—2,F=r1-r2=c—2,G=r2=1+C—2
u? v?
H2=EG—F2=1+—2+—2
c2 ¢

1
C—H,N=N'I‘22=0

L=N'r;;=0M=N-rj;, =
. -1
~ c2H?
The principal radii of curvature are given by the equation
T2p% — (EN + GL — 2FM)p + H2 = 0
1 2uv 1

2 2
TomP t e .C_Hp-l_H =0

2uv
p c P

2uvp 1 uv

i 2 2 ZZ
p=—— = (1 VD)

27° [424 424]

Example 6. Show that the points of intersection of the surface x™ + y™ + z™ = a™

and the line x = y = z are umbilics and that the curvature at an umbilic is given by p =
m-—2

(3) 2.

a
m-—1

Solution. We have x™ 4+ y™ 4 z™ = a™
0z 0

» mx™ 1+ mz™ 1
0x

( P = ox

y
zm-1

Similarly, g = —
Now, logp = —I m — 1)logx — (m — 1)logz |
.
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And

Now for an umbilical,
1+p?> pq_ z

r s m-1
g
~ (1+p?) -1 p(m—1) =

-z xm-1
P=—=""ma (Using A)
Similarly, ym=2 = zMm~2

[Using(2)]

S X=y =%
For an umbilic, x =y =z

Again if
m-—1

x=y=z,p=1,q=1,s=W

H={/A+p?+q)=/1+1+1)=V3
m-—2

pgqH V3a a(3)zm

S (m-1)3Y/m  m-1
Example 7. Find the principal directions and the principal curvature on the surface x =
a(u+v),y=b(u—v),z=uv.

oo p:

Solution. The position vector r of any point on the surface is given by
r =[a(u+v),b(u—v),uv]
~ 1, =(ab,v)r, =(a,—b,u)
r, Xr, = [b(u+v),a(v—u),—2ab].
Also, 1y, = (0,0,0), 15, = (0,0,1),15, = (0,0,0).
E=r? =2 +b? +v?
F=r; -r, =a?—b?%+uv,
G=ri=a%+b?+u?
r, Xr, [b(u+v),a(v—u),—2ab]
~ H H
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.'.L=N-F11=O,M=N-l‘2=_i[ab;N=N'r22=0-

The differential equation of lines of curvature (or principal directions) is given by
(EM — FL)du? + (EN — GL)dudv + (FN — GM)dv? = 0
Or

2ab 2ab
—(a? + b? +V2)?du2 + (a% + b? +u2)?dv2 =0

(@2 +b%2 +v¥)du? — (@2 +b%? +u?)dv? =0

du _ . dv
J@ +b2+u?) /(@ +b?+v2)

Integrating we get
sinh™! ——— = 4+sinh™! ——— + ¢
V(@% +b?) Va? + b?

where c is a constant.

The equation giving principal curvatures is
H?%k? — x(EN — 2FM + GL) + (LN—M2?) =0
Or

=0

2ab)} 432 b?
H H?2

H?Kk? — K{—Z(a2 —b% +uv) (—

or
H*k? — 4abH(@%> — b? + uv)k — 4a® b2 =0
Where,

H? = EG— F% = (a% + b? + v?)(a® + b? + u?) — (a? — b? + uv)?
Example 8. Find the Gaussian curvature at the point (u, v) of the anchor ring x =
(b+acosu)cosv,y = (b+acosu) sinv,z = asin u, where the domain of u, v is
0 <u<2m0 < v < 2m Verify that the total curvature of the whole surface is zero.
Solution. Position vector r of any point on the surface is given by

r =[(b+acosu)cosv,(b+acosu)sinv,asinu]
r, = (—asinucosv,—asinusinv,acosu
r, =[—(b+acosu)sinv, (b +acosu)cosv,0],

r; Xr, = [—a(b+ acosu) cosucosv
—a(b+acosu)cosusinv ,—a(b +acosu)sinu |
=(b+acosu)(—acosucosv ,—acosusinv,—asinu)

r;; = (—acosvcos u, —acos usin v, —asin u),
r;, = (asin - usinv, —asin ucosv, 0),
ry; = [—(b + acosu)cosv,—(b + acosu)sinv, 0]
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Now,
E=r?=a%F=r,'1,=0,
G=r5=(b+acosu)?
2 = EG — F? = a?(b + acosu)?,

r; Xr

-~ H

_ (b +acosu)(—acosucosv, —acos usinv, asin u)

B H

a’(b +acosu) a?(b+acosu)
H ~ a(b+acosu)

M =N-r;, =u;N=N"-r,, = (b+ acosu)cosu.

Now Gaussian curvature

LN —M? a(b+acosu)cosu cosu

EG—F2  a?(b+acosu)?  a(b+acosu)

Total curvature of the whole surface

=N-r11=

K=

= f KdS, integrated over the whole surface S

2T 2T
f J KHdudyv, since dS = Hdudv

21'[ 21'[ cosu
= f f L a(b T acos W) ———— —a(b + acos u)dudv

21'[ 21'[
=f f cosududv = 0.

Example 9. Prove that the cone kxy = z | 4/[(x? + z2)] + /[(y? + z?)] passes through
a line curvature of the paraboloid xy = az.

Solution. From the paraboloid z = % we have
0z _y Jz X 1
P=ox 2797 ay_é'rzo'sza
The lines of curvature are given by
dy? —dxdy dx?
1+p?> pgq 1+g*|=0.
r S t

,t=0

CHECK YOUR PROGRESS

True or false Questions

Problem 1. Equation of Euler’s equation k, = k,c0s? | + K}, sin® {s .
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Problem 2. The sum of the normal curvature in two orthogonal directions is equal
to the sum of the principal curvatures at that point.

Problem 3. A necessary and sufficient condition that a curve on a surface be a
line of curvature is that the surface normals along the curve form a
developable.

10.7 SUMMARY

i.MONGE’S THEOREM: A necessary and sufficient condition that a curve on a
surface be a line of curvature is that the surface normals along the curve form a
developable.

Euler’s Theorem: The normal curvature k, at a point on a surface is given in terms of
principal curvatures k, and k;, by the formula

Kn = KaC082 Y + Kpsin?
(known as Euler's formula) where x, and k;, are the principal curvatures and { is the

angle at which the direction (du, dv) of the normal section made with the principal

directiondv =0

10.8 GLOSSARY

M Derivatives
(i) Determinant
(iii)  Vector

10.9 REFERENCES AND SUGGESTED READINGS

An introduction to Riemannian Geometry and the Tensor calculus by C.E.
Weatherburn “Cambridge University Press.”
2. Matrices and Tensors in physics by A.W. Joshi “Wiley Eastern Limited”.
3. Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”.
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Differential Geometry by Gupta, Malik and Pundir “Pragati Edition”’.

10.10 TERMINAL QUESTIONS

States and prove Euler’s theorem.
States and Drive Rodrigue’s formula.

States and prove Monge’s theorem.

10.11 ANSWERS

CYQ 1. True
CYQ 2. True
CYQ 3. True
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11.1 INTRODUCTION

In geometry, Two Dimensional Space: In two dimensional space the coordinates of a

point are given by the doublets of the form (X, y), where X, y are two numbers.

Three Dimensional Space: In three dimensional space the coordinates of a point are

given by the triplets of the form (X, y, z), where X, y, z are three numbers.

Four Dimensional Space: In four dimensional space the coordinates of a point are given

by the four touples of the form (X, y, z, u), where X, y, z, u are four numbers.

11.2 OBJECTIVES

After studying this unit Learner will be able to

Understand the concept of n- dimensional space.
Define a subspace.
Write superscript and subscript.

Understand the Einstein Summation Convention.

11.3 n — DIMENSIONAL SPACE

Consider an ordered set of n real variables

These variables x1,x?, ..., x%, ...x™ are called coordinates. The space generated by all
points corresponding to different values of the coordinates is called n- dimensional space
and is denoted by V},. Here 1, 2, ... n are not the powers of x but are the labels only. The

suffix i in the coordinate x! does not have the character of power indices. Usually powers

will be denoted by brackets e.g., (x!)” means the cube of x'.

1
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Note:

A subspace V,,,(m < n) of V,, is defined as the collection of points which satisfy the n-
equations x' = x‘(ul,u?, .., u™), (i=12,..,n).

The variables ul,u?, ...,u™ are the coordinates of V,, . The suffixes 1,2,...,n serve
as labels only and do not possess any significance as power indices.

A curve in V,, is defined as the collection of points which satisfy the n-equations

xt = x'(u), (i=1,2,..,n) ubeing a parameter and x*(u) denotes a function of u.

Superscript and Subscript: The suffixes i and j in B} are called superscript and

subscript respectively. The upper position always denotes the superscript and the lower

position denotes subscript.

11.4 EINSTEIN SUMMATION CONVENTION

We know that the expression
axt + ax? + -+ ax™

is represented by ¥, a;x’.
Dropping the sigma sign and writing the sum Y, a;x* as a;x* is called the summation
convention.
Thus summation convention means if a suffix occurs twice in a term, once in the lower
position and once in the upper position, then that suffix implies sum over defined range.
If the range is not given, then we assume that the range is from 1 to n.
Example 1: Write the following by using summation convention

AXBY + AKB? + ... + AkB"
Solution: By using summation convention we can write

AYB* + A5B® + -+ 4+ AXB™ = A[B'
Example 2: Write the following by using summation convention

9% 911+ 9%%G21 + 972931 + 9% 9a1 + 9%°gs1 + 9%°9e1 + 977 971
Solution: By using summation convention, we can write
991+ 97921 + 9931 + 97941 + 9%°951 + 9%°Fe1 + 977971 =
9% ga.m =7
Example 3: Write the terms in the following indicated sums
A¥Bi, n=5

1
DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY




GEOMETRY MAT 611

Solution: Here the index i is repeated and n=5 therefore i takes the values 1 to 5
AfB' =Y?_ | AfB" = AYB' + A5B? + AKB® + AB* + AEB®
EXAMPLE 4: Write the terms in the following indicated sums
a;x‘x3
SOLUTION: Here the index i is repeated therefore the sum is over the index i. Hence
aix'x3 =Y aixtx® = apxtx® + apx®x3 4+ -+ apx™x® .

11.5 DUMMY SUFFIX

A suffix which occurs twice in a term, once in the upper position and once in the lower

position, is called dummy suffix. For example g is a dummy suffix in A, A9". Umbral
suffix and dextral index are the other names for dummy suffix.

Theorem: To show that a dummy suffix can be replaced by another dummy suffix not
used in that term.

Proof: Let us take al'x' in which i is a dummy suffix. Evidently

Poi — oMol o gBe2 o4 JBen
;X = a;X tayX® + -t apx

Boj — oMl 4 gBe2 4 oy JBen
ajx) = a;x’ +a;x% + -+ apX

As R.H.S. of both the equations are same, we can say that a}'x' = a;'x) which proves that

a dummy suffix can be replaced by another dummy suffix not used in that term.
Similarly, it can be proved that two or more than two dummy suffixes can also be

. h di ax* 9xPB _ axP ax*
Interchanged I.e., Aqg o ABa %'l 0% °

11.6 REAL SUFFIX

A suffix which is not repeated is called a real or free suffix. It may be in superscript or in
subscript also. For example a is a real suffix in a%x' . A real suffix can not be replaced
by another real suffix. Since afx' # aPx' .

Kronecker delta:- It is denoted by 8} and is defined as

5}:{1

Some Properties of Kronecker delta
8l =
Here i is a dummy suffix. So by summation convention,
8 =61 + 82 + -+ 80
=1+1+-+1=n
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Remark: Due to this property we use the statement 8} =1,ifi =j
instead of saying &! = 1.

Dok ik
§jAK = Al
Here j is a dummy suffix. So by summation convention,
SiAK = 8L AMK 4 8 AZK 4 .. 4 SIAK 4 ... 5] ATK

=0+0+-+1AK+...0
— Aik
(i)  Ifx%,x2,...,xN be N independent variables, Then

axl i
WY
Clearly, x' and x’ are independent variables when i # j and dependent when i =j.

S
Hence, g—j = 5.
Example 1: Prove that 8! &} = 8.
Solution: Here j is a dummy suffix. So

5 8, =8 8 +8, 8 + -+ 8 5.+ 5 &

8§ 8, =0+0+ -8 +-+0=35;

=5
Example 2: Prove that 5] Al = Al
Solution: Here j is a dummy suffix. So
8\ A = 8] Al +8h AZ+ 48 Al L.+ 8 Al

8 AL =040+ +AL ..+0
:Ail
m

11.7 EINSTEIN’S SUMMATION CONVENTION

Let n quantities be denoted by x!, x?, X3, ... x* where the upper indices (subscripts) are
in dentification labels and do not indicate powers. Consider the expression

n .
I ax = ax +a,x’ +ax+...+ax"

i
These expressions will be written by introducing the summation convention of
Einstein; where a index/suffice occurs twice in a term, once in the lower position and
once in the upper position; a summation implied, the range of the summation being
known from the context.
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Example 1. Write the following using the summation convention.
ds® = g, (dx")* + gy, (AX%)? + gag (AX®)? +...+ g, (dX")?
Solution: Given expression can be expressed as
ds® = gy, dx" dx' + g,,dx%dx? + gadx3dx® +...+ g, dx"dx"
Here a index occurs twice in each term, once in the lower position and once in the upper
position, therefore summation convention in applicable as

ds® = g;dx'dx’ (-~ Riemannian metric)

Example 2. Write value of a determinant using summation convention.
Solution : Let A be a matrix of order n and let aij be its j" element of i™ row i.e.,

symbols | and j denoted the row and column to which the element belongs. Let Aj is
the cofactor of the element aij in the determinant a = det (A).

It is well-know that the sum of the products of the elements of the i™ row (or column)

by the cofactors of the corresponding elements of the j™ row (column) is equal to
determinantif i= j andtozeroifi=j i.e,

_ _ _ : . det (A) ifi=j

1 2 3 k

alej+a'2aj+a§Aj+...+a;]Aj”=a|'(Aj={ 0 iFix |

Example 3. Write matrix multiplication of two matrices using summation convention.
Solution: Let A and B are two matrices, compatible for matrix multiplication. Let aij

and bkj are (i, j)™ and (j, k)™ element of A and B respectively where i, j, k take
integral value from I to m, n, p respectively. Then

n S L .
AB :{Zla'jbkj} ,ajb/ =c, ie,AB=C
J:

mxp

11.8 KRONECKER DELTA

The symbol 5} introduced by German Mathematician L. Kronecker, is called

Kronecker delta, which is defined
1; i=]
0; i#]

Sl = :5} :{

Properties: (i) If x ,x? ...x" are independent co-ordinates then by differential
calculus, we have
XK _0izjand Xtz
ox’ ox’
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Thus

By Chain rule, we have
ox _ox ox
o Xk oxd
k

5'j =5 J;

S =6+ +..+6"
=1+1+...+1

'\i_

= Jo; o

a1j5k 2 a115k
1 2 Kk
=a, O +a,0 +...8,0 ...+ a5
Therefore, 3,6, = a
Similarly, &@=%&$=w$+¥$+w$
—a'.0+a'%0+...+a%.1+a...+a".0
ij ok _ ik
a'o; =a
(iv) If a; are constant and a; =a;; then

0%(a; X
X;)=2a,% and o (3%%;) ‘)

0 (a

=a; (X6 +X,5)

—(a”cS’)x +(ay 5)x
=&y, % + 84X
=X + 25X

9 (&% X;) = 28 % “+ j =dummy index
Xy

and again differentiation gives
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axz(aijxixj) _ 0 2 (axx)
xox X ak %%

2
=—(2aI X;) = 28,
8I ‘ [
% (3% %)

ox,0% —Zaik5|i =2a,
K

11.9 TRANSFORMATION OF CO-ORDINATES

In a 2-dimensional Euclidean space E,, let (x', x*) and (y', y*) are coordinate of two

points P and Q respectively. Then coordinates of vector PQare given by

(yl _ Xl, y2 _ XZ) .
/xw. )

P(xL, x?)

XZ

Fig. 1

Consider a simple transformation i.e., shifting origin O to O’ whose coordinates are

(b', b?) with reference to old coordinate system. Let 0'X.0'x" are axes parallel to

ox}, ox® respectively. Then transformation is given by

0
o0 P(b. )

Fig. 2

Pi=12
.. (D)
and coordinates of points P and Q with reference to new coordinate system are
P(xY, x7 %), Q(y™t, y ?) where
N —bl, X2 _b—z; y—1 _bl’ y—z _ yz _p?
.. (2)
|
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Therefore coordinate of vector PQ with reference to new coordinate system are given

by (y " —xHy = xT?) = (v =X, y* - X7)
Consider other form of transformation i.e., rotation of coordinate axes through an angle

a ; Which transform the coordinates by the rule
X2

Fig. 3

2

xt=x'cosa+x?sina, x > =—xtsina+ x* cos a

. (3)
Thus  P(x7%, x 2) =(x* cos a + x? sin a, — x* sin & + x? cos «)

Q(y ty 3 =(y*cosa+y*sina, -y sina + y? cos a)
And coordinates of PQ are given

PQ=(y* = x}) cos a + (y? = x?) sin a, — (Y — x*) sin & + (y? = x?) cos )

(&)

In view of above discussion we observe the following facts :

(i) Magnitude of PQ or distance between P and Qin invariant in both the case i.c.,

|PQ|= \/(yfl —x 1+ (y 2 = x %)? = Euclidean distance.
(i1) Both the transformation are reversible i.e.,
Shifting of origin: X' =x*+b' vi=12

Rotation of axes : x' =x'cosa —x ?sina, x> =x"*sina + x % cos &

(Solving Eqgs. (1) and (3) results can easily be verified).

The existence of reversible transformation is not a coincidence instead it is based on
well-known theory i.e., transformation is orthogonal and it can easily be verified from

Egs. (3) as
-1 i ! cosa Sina
o CO_S @ shay) X with det (A)=| . =1
X2 —sina cosa || x? —-sina Ccosa

; | cosa sinal|jcosa -sina| |1 0
or AA = . ; = = I
—Sing Ccosa||sSina COS« 0
Transformation given by (3) can be expressed
xt=a+ x"+ xPx%
X—2 — a21)(1 + X22X2
where a™ = cos a, a'? =sin a, a** =—sin a, a? =cos a
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Both the above transformation can be combined as
11,1

x~ 1t =ax + a?x? + bt
x 2 =a”x' +a”x® + b’ X? A0
a11 12 p

with =1+0
01 (b, b?)

We can writes it as

2 .
x'=3 alx) +b"i=12 Fig .5
=1

or x'=a’x) +b'"  (by summation convention) ... (6)
The new co-ordinate or PQ will be (y > —x7%, y 2 —x )
and we write

. . 2 L . 2 . .
=y t-x'= I @y +b)- = (@'x’ +b)
i= j=

z7'=Xa' (y'-x)=Z a'Z
1 j=1
a'lz] (By summation convention)
—i _ 8X7" Zj
ox!
According to Klein, it is law of change of transformation which the coordinates obey.

Thus a vector in E? can be regarded as an object which is determined by a set of
components of obeying the law given by (7).

Let us consider two different n-dimensional frames of reference and let (x!, x?,... x™)

and (x™*, x"2, x3,...x™™) be coordinate of a point with reference to these frames. These

two systems have the following n-independent relations.

or z (From (6)) .. (7

xt=gt (¢ X2, %3, . x")

x2=g% (x4 %%, 3, ., x™)

x"=g" (¢ X% x3, . x")

.. (8)
where g, g?,...g" are the single-value continuous function of x*, x?, x* ... x" and have
continuous partial derivatives upto desire order. The necessary and sufficient condition

for reversables transformation is automatically fulfilled by choice of n-independent
relations given by (8). This condition is also expressed in terms of “functional

determinant”, J formed by the partial derivatives (Z(—J as
X
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oxt ooxt oxt
oxt T ox? T ox?
ox 2 ox 2 ox?
=loxt " ox? ' ox"

ot x A LLx"
(< X2, ... x"M

ox " ox " ox "
ot oax? T ox”
Under this condition, equation (8) can be solved for x' as
x'=h"(x1,x2,...x");i=123...n . (9)
The class of coordinate transformation satisfying these properties as “admissible
transformations”.
¢ Spherical Polar-Coordinates
Let P be point in space and let OP =r. The lines
OP, 0Z, OX are regarded as radial, polar and
equatorial axes respectively, where plane XOY is
called equatorial plane.
Let OQ is projection of OP an equatorial plane.
Suppose 6 is angle between OP and polar axis and
¢ is angle between OQ and equatorial angle. This

three variable r, 0, ¢ are related to point P and are

called radial, polar and azimuthual coordinates
of point P.

Let, L, M, N are points on OX, OY, OZ axes
respectively such that they are foot of
perpendicular drawn from Qand Prespectively.If
(X, y, z) are coordinates of P in rectangular
coordinates system then

x=0L,y=0M,z=0N ... (D)

If p=0Q be projections of OP, then

0Q =p=0P cos (£POQ) i.e., p=rcos (%—e] =rsin 0

ie., p=rsind
The geometrical correspondence between coordinate system with common origin is
x=0Qcosp=rsindcosd

y=OQcos(g—¢]:rsinesin¢ - (2)

z=0PcosO=rcos0
]
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In vector notation, r=r|r

ie., r =sin  cos i +sin Osin ¢ j + cos Ok

Similarly, O=r [e + g ¢j = cos 0 cOs i + cos 0 sin ¢ j — sin Ok

) ?[O:E,¢+E):—sin¢f+cos¢j
2 2
Therangeof r,0,¢ iIs0<r<06,0<0<7w,0<$p<2n

Remarks: 1) ris along OP i.e. as r increases.
2 0 is perpendicular to OP i.e., as @ increases.
(3) ¢ is in a plane parallel to the equatorial plane.
(4) r = Constant, represents the surface of sphere.
(5) 6 = Constant, represents the surface of cone with vertex at the origin and
polar axis as its axis.
(6) ¢ = Constant, represents a half-plane bounded on one side by the entire polar
axis.
¢ Cylindrical Coordinate
In cylindrical coordinate system, z-axis and X- Z(Polar axis) 5
axis i.e., polar and equatorial axes are kept same as
in spherical coordinate system. The third axis is
take along equatorial projection OP i.e., along OQ
and is called cylindrical radial coordinate axis such
that OQ =p. Then cylindrical polar coordinates
are (p, ¢, z) with 3 !
X=pCoSdh,y=psing,z=z e (W) A S ®)
In vector notation, @)X (Cylinderical

R N . N ~ (equitorial axis)
f=pcosodi+psingj+ zk axis)

p=pp ie, p=cosdi+singj

b= —sin of + cos dj as &;:@(mg] Q)

2=k
Therange of p>0,0<$<27; —0<Z<®©
Remarks:
(1) p isalong OQ i.e., as p increases
(2) ¢is along perpendicular to 0Q as ¢ increases and lies in plane parallel to

equitorial plane.
(3) zisalong z-axis.
(4) p= constant, represents the surface of infinite cylinder.
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(5) ¢ = constant, represents vertical plane.
(6) z=constant, represents horizontal plane.

Note : (1) The distinction between the terms spherical polar and cylindrical polar is due to
the fact that r = constant represents the surface of sphere but p = constant

represents the surface of cylinder infinite.
(2) Both are polar due to symmetry about the axes of z .
(3) The plane polar coordinate system is a special case of both the spherical and
cylindrical polar coordinates, i.e., (p, ¢)

Example 1. Find the cylindrical coordinate system in terms of the rectangular Cartesian
coordinate system.

Solution: Let(x*, x?, x*)and (y*, y?, y®) be coordinates of a point in certesian and

cylindrical coordinates. Then
x'=y'cos y?, x* =ytsin y? x* = y®
(1)

oxt oxt oxt
o o oy
ox? ox?
oyt oy®
ox® ox®
ot o

cosy -—ysiny?> 0

=|siny? vy'cosy? 0|=y'#0
0 0 1

If y*#0 then

12 212 _ (12 2 —1)(_2
()" +(x)"=(y)" y" =tan [le

2
and Y =[(x")? + (x*)°]’?, y? =tan* [%} y =X .2

Example 2. Find the spherical coordinate system in terms of the rectangular cartesian
coordinate system.

Solution : Let (x}, x%, x%) and (y*, y?, y®) be coordinates of a point in rectangular
cartesian and spherical coordinates respectively. Then

x'=ytsiny?cos y®, x? =ytsiny?siny?, x* =yt cos y? ... (1)

siny?cosy® y'cosy®cosy® —ytsiny?siny?
and J=lsiny?siny® y'cosy?siny® y'siny?cosy?
cos y? -y 0
= (y) sin (y?)#0as y,>0,0<y’ <7
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Therefore (x})? + (x?)% + (x3)2 = (y)?,

2 -1 x°
y* =C0s
{\/(XI)Z +(X2)2 +(X3)2]

2
L x
y =tan 1(—1j
X
6

Example 3. If [— ilj are rectangular coordinates then find the spherical and

V22

cylindrical coordinates.

Solution: Here x* = ﬁ, X% = i, x3 =1. Therefore

2 2
) ylz\/(xl)Z + ()2 + ()2 = /3_26+3_26+1=\/3—7

2

1
=cos? (—j

1\ ~»
Thus, (V*, y?, y®) = \/37,cos‘1(—),—
us, (Y, Y5, Y) ( 37)' 7

3 =tan _Z
4

(1) y' =00 + 02)? =/3—26 +3_26 _6

W2
yZ:tan‘1 — |= ,y3+X3=l
X

T

Thus (v, y?, y?) =[6, = 1)

Example 4. If (4, %1) is cylindrical coordinates then find cartesian coordinates and

spherical coordinates.

Solution: Here, y' =4, y? =%, y® =1. Therefore,

() Let (x*, x2, x*) be Cartesian coordinates. Then
X' =y' cos y%, x> = y'sin y*, x* = y°
x' =4 cos (%j =2, x* =4sin (ZJ: 243, x% =1
¢, X2, x%) = (2, 243,
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(I1) Let (2%, 22, z3) be spherical polar coordinates of (x*, X2, x*) = (2, 24/3,1). Then

7= JOM? + (032 + ()% = JA+12+1=17

22 =cos™! X =cos ! [Lj
JOO2 + (03)? + (C)? V17
X =tan! & .
X 2 3

Thus (2, 22, ) =| V17, cos™* (i} z
17 ) 3

11.10 SUMMARY

1. The symbol & ; introduced by German Mathematician L. Kronecker, is called
Kronecker delta, which is defined

1; i=]

0; i1#]

ol =5 :5} {

. Superscript and Subscript: The suffixes i and j in B} are called superscript

and subscript respectively. The upper position always denotes the superscript

and the lower position denotes subscript.

11.11 GLOSSARY

(i) Derivatives
(i) Determinant
(1)  Vector
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11.13 TERMINAL QUESTIONS

(TQ-1) Write each of the following by using summation convention
a; x1x3 + a,x?x3 + - + apx™x3

axk axk
dx1 + ﬁdxz + ﬁdx3

dxk _ axk
dt ~ 9x1!

do = 2% axt + 2% a2, 428 gxn
axn

T oxt 0x?
(TQ-2) write the terms in each of the following indicated sums
aijxj

a(Vga)
oxt

11.14 ANSWERS
(TQ-1()) aux'x®

. K K
(TQ-1(ii)) ddit = %dxp,p =1230rn=3

(TQ-1(iii)) d = 2% dx!

(TQ-2(1)) aj1x® + apx? + -+ ajpx™

dx

(TQ-2(ii)) a(\/gfl)+a(;/i‘:2)+“.a(\/gA”)

axn
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12.1 INTRODUCTION

In mathematics and physics, the Christoffel symbols are an array of
numbers describing a metric connection. The metric connection is a specialization
of the affine connection to surfaces or other manifolds endowed with a metric,
allowing distances to be measured on that surface. The Christoffel symbols can be
derived from the vanishing of the covariant derivative of the metric tensor gix: As
a shorthand notation, the nabla symbol and the partial derivative symbols are
frequently dropped, and instead a semicolon and a comma are used to set off the
index that is being used for the derivative.

12.2 OBJECTIVES

After studying this unit Learner will be able to

i.  Understand the relationship between first and second kind Christoffel symbols.
ii.  Understand the covariant derivatives of vector are tensor.
iii.  Understand the Christoffel symbol are not tensors.
iv.  Understand the tensor form of differential operators.
v.  Understand the Ricci Tensor and Ricci theorem.

12.3 CONSTANT VECTOR FIELD

Let a vector field A is constant in cartesian coordinates as A. Transforming the
curvilinear system x~' to cartesian x', we get
. ax_i .
Al=—co A !
P (1
The C =C(t) be curve in the space and observe the change in A~', when we move on
the curve by an infinitesimally small step dt as
dA”t 8% ox* . ox ' oAl
=— Al + —
dt  oxlox® dt ox! ot

Q)

Since A™' is constant in Cartesian coordinates therefore d? =0 and Eq. (2) becomes
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o%x~" oxk )\
: Al + — ...(3
oxJoxk dt )

Which shows that a vector field is expressed in curvilinear coordinates.

12.4 CHRISTOFFEL SYMBOLS

Multiplying equation (3) by g™ X— we get
oxP

ox' ot oox* . poxox! dA
. A+ . =
oxP oxlox* dt oxP ox)  dt
o' o oxt dAl
oxP axloxk ot +9% 95 g dt
—i A2 i i
p OX a_xkaxA ESI;dA 0
oxP oxlox* ot dt
ol oxt ) axk ai g 9A
— + =0
oxP ox! ox J ot dt
x* i dAT
P i i J+
9" [i j, IO] at
Where [jk, p] is called Chrisloffel symbol of first kind.
ﬁx‘i 62 =i
and
Lik. pI= oxP ox) ox*
Find partial derivatives of the metric tensor g; w.r.t. to all three coordinates as
o
N o0 a0
agi_ axt ale ale ax|
therefore, — et —
ox«  ox' ox'oxt  ox' ox* ox!
gy ox X N *x' ox'
ox' oxd oxkox'  oxd ox' ox*
ag; ox' %X o*x' o
axloax* oxoxd axkox! ax!
Adding (6) and (7) then subtracting (5) we get
Wy , 00w 09 |_, X O
x| Tk o ox)

g

g

g

=0

Since

Thus, [ij, k] = .. (8)

ox* oxiox! 2| ox oxl ax¥
It is event that in rectangular Cartesian coordinates

ox O’ _E{ngk . i _ag“}
2
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00
X
Therefore [ij, k] is always zero and equation (4) reduces to
dA 0
dt
It is expected result i.e., A" is constant Cartesian coordiantes.

=0

I
Introduing {_}zg”‘ [ij, k], know as the Christoffel symbol of second kind, the
1)

equation (4) can be simplified to

r k
dA” )T L X pilg ... (9)
dt jk| dt

owatfr
oxk dt | jk
r r ) k
CANBEER N LS . (10)
OX jk dt
k

Since ddit # 0 along a general curve c(t) therefore equation (10) can be written as
r r )
dAk +{ . +A'=0 .. (11)
dx jk
This is the differential equation of constant vector field in any Riemannian space. In

case of covariant vector
dA | ]
_ A =0 (12

X {rk} ) (12)

Finally, the Christoffel symbols are defined as

i k]=1Fgjk + B _ 69"}
i) 2 H

ox oxd o oxk

{5}4& - g [ij, 1]
ij

and equations for parallel transmission are

G_A + F!‘kAk =0
oxl !

i

k
Theorem: The Christoffel is symbol [ij, k] and {} are symmetric with respect to the
J

indices i and j.
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Proof: The christoffel symbol of first kind is

firstdnd
. k= | By D _
2| ox! ox

Interchanging i and j we get
09 j N i agjij|

y 1
ij, k]== .

L1, k] 2 X' oxd oK
:l{ﬁgik N Qe agij}

2| ox) ox' oxK

[ij, kI=LJi, k]
The Christoffel symbol of second kind is

{5}= g [ij, ]
ij

{k} ="' [ji, h]=g"" [ij, h] (From (2))

J
{k
i

Interchanging i and j

Theorem: Prove that

k
() [§, ml= gy, {ij}

o0
(i) [ik, i]+[jk,i]=%

k

L m |
(i YR R 1T G
Proof: (i) Multiplying Christoffel symbol of second by g, we get
k _ K |
gmk Ij _gkmg [”1]
=8, [ii, 1]

k| .
Jkm {..}=[IJ. m]
ij

(i) By def. of Chrestoffel symbol of second kind, we directly obtain

.. . 1(09; 49; 09
ij, k]+[jk, 1]==| =L+ =L |= 2
. kl+ Lok 11=3 (6x" x ) o

05 =i
(iiii) Differentiation of g"g; =8| w.r.t. x* gives
|
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ot "9 oF P

g

Multiplying by g'™ we get
ij
o,

OX

ag"
+8" —=-=0
oxk ) axk

. X, : a im
Im IJ_|J+ g
g9 6gk —ng

m i OXi

g"g" — + g™y,
glmgij%
=0
0 " mr ~ ij . .
S~ "9 ([, 1+ [k, 1]
:_glm i :gij m
Ik i
a ij . | N m ; ;
ag?:_glj {lk}_gl {mk} as gJ =gJ

i }:a(log J9)

(From (ii))

ij ox

Proof : As we have already prove that

%z cofactor of g;;

Theorem : Prove that {

a9;

EY
1 og _ Cofactor of g; og;
g g A

=g [[ik, j1+[k.i]]

:{h}+{é}

=2 {I} as k is dummy suffices.
1)

Example 1. If g; =0 for i= j then

(N {:}}:Oforiijik

.l _ 1 log g;
(i) {ii} T2 o

MAT 611

(From previous theorem)
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Solution :We have

[ij, k1=

1 6gj.k + ag”( _ agij
2] ox'  oxd oxk

Kk )
{ij}zgkh [ij, h] ... (2
and gy =0 when i=jand g =—:gi=0 ifi%j .03
it

Then (i) For i= j#k; g; =9 =9y =0 and by (1) [ij, k]=0=[ij,h]  (From (3))

Using in (2) we have
k
{}=g“o=o
1)

0% . 09 _ 0 } (From (1))

From (2))

ox'

gl :iasgij =0ifi=#]

g {agji + G _ agi;}

ox'  ox! ox

1
2
1
2

G -3 L doa )
g

oxl | 2 ox

(i) {:J} - 9" {ii. }
1
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Teéa. - 00
" {aii“ +Z?<'j' - aijij}asg” BN

Pl__11 995
ji 2 g; Ox

Example 2. If ds® =dr? + r?d@ + r? sin 6 d¢?, find

1 3
[22,1],[13, 3], {22}, {13}

ds? = (dr)? + (r d0)? + (r sin 0)* do

ie., 011 =1 Oy =17, gy =r*sin?0, g; =0, when i = |

_lg
2

Solution : We have

Then by result, g" =L and gl=0Vi=j,weget
1 1
L_1g®== gB= :
J ST T einZe
(i) By definition of Christoffel symbol first kind
. O
[Ij, k] :l gJik n agl;( _ I|i
2| ox ox'  oX

1|09y , 09y 8922}
22,1]== B
[22.1] 2 { ox?  oxt oxt

1 or?

2 or

:—[OJFO——}:—r (From (1))

1|09 | 093 a913}
13,3]== S
[13,3] 2 [ ot o

2 ain?
_1|o(r"sin 9)+O_0
2 or

=rsin’0
(i) By definition of Christoffel symbol of second kind

{5}= 6" [, h]
1)

O TS
{22}_9 [22, h]

=g 22,11+ g [22, 2]+ g [22, 3]

=1[22,1]+0+0 (From (2))
1
{22} =—r (From (1))
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3 _ .3h
{13} =g°"[13, h]
= g% 13,11+ g** [13, 2] + g** [13, 3]

=0+0+— _12 [13,3] (From (2))
resin“ o

o
13) r (From (1))

12.5 LAW OF TRANSFORMATION OF CHRISTOFFEL
SYMBOL OF FIRST KIND

From the law of transformation of covariant tensor of type (0, 2) we have
o' ox!
Yoxox ™

§|m:g

Different w.r.t. x " we get

Mg 095 X ox' oax ‘g *xt o +ax‘ o°x!
ox " oox Toax " oax ! Tax ™ TUloax"ex ! ax™  ox ox "ox ™
. (2

Similarly,

. Q)

a9, 0% ox* o oxd . o*x ox . ' ox*x!
ox ™ axkoax ™ ox ' ax' TV oax Max! ox" ox! ax Mox "

O 0% X X' ox] ( i G U S j
i

-n k —1 -m —n+ —lAy,—m —n+ -m —lAy—n
OX oX" OX~ ' OX " oX OX 'OX " OX OX™ " OX '0OX

... (4
Using (2) and (4) in

fim, ] =1{ By Bm_ D }
2lox ™ ox ox "
We obtain
X' oxd o oxk o*xt ox!
-m -n -1 +gij P -n - 3)
oxX " OX " oOX OX ' OX " OX
The exitance of 2nd term in R.H.S. of (5) shows that the Chirisloffel symbol of first
kind is not a tensor.

[Im, n] =[ik, j]
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12.6 LAW OF TRANSFORMATION OF CHRISTOFFEL
SYMBOL FOR SECOND KIND

ox~ " ox°®
oxP  oxd

Taking inner product of (5) with g~ = g™

we get

ox' ox) ox* g ox " ox

o o' ) P o
o’xt oxd ox " ox S

ox'lox ™ ox " oxP oxd

g™ [Im, n]=[ik, j]

+0;9™

S i Ak Ay-S 2, .
{Im} 0™ [ik, J] X o Ox* ox - g,0" 6x_ N

% ox~' oxd oxlox—™ P o

axi axk is azxi aX—S
—m ——1 T 9;9 T~ a

ox~ ™ ox OX™'OX OX

s | _[a] ox ox* ox® L0 o )
Im| |ik) ox ™ ox™' ox®  ox'oxT™ oxd
The existance of 2nd term in R.H.S. of above equation shows that the Christoffel

symbol of second kind is not a tensor.
This result can be expressed as

=[gjq [ik, j]

0°x4
oxox ™ Im

o%x"
ox'ax ™ [Im ax—s -
Note :Similarly result can easily be obtained

02X
axlox ™

12.7 COVARIANT DIFFERENTIATION OF VECTORS

We have already studied the algebraic operations on tensors and a natural question
arises, whether differentiation of tensors, can produces a tensor or not. But it has been
shown that partial differentiation of an invariant is a tensor and partial differentiation of
a covariant vector of order > 1 is not a tensor in general. Thus there is an urgent need to
introduce a new kind of differentiation when applied to tensors will produce again
tensors.
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12.7.1 Covariant Differentiation of a Covariant Vector
From the transformation of a covariant vector

Kk:Ai OX

ox X
Differentiation w.r.t. x~J we get
OA, _ oA " & . &x!
ox b ox™ox ) oxk ox lox*

X [s]a fi | " &
ox ox® |ki| ox* |pg) ox ) oxK

In above equation we get

oA oA X" A [s] o [i | o &
ax b oax™oaxd ox X kij ox* |pg) ox ! ax K

A X" +s_A1 o _fi ], 00 of
ox™ox lox* |kij "ox® |pg| 'ox ! oxk
m i () — i P q
_ OA ax_' 6>fk+ LA A 8x_. ax_k
ox™ ox~ ! ox Kj pgq) ox ! ox

Changing the dummy index i — ¢ in first term and p— m in the third term on the right
hand side of the above equation we get

Using result

ox~)

ﬂ_gs {S_}_a'% ox™ o _Ai{i }axm X

ki ox™ ax 1 ox m,q) ox ) ox X

_ %—A‘{i } X" o
Claxm mq| Jox ) ox7¥

- A - [s
A j= aAk. — As 1 .+ toobtain
ox ! Kj
— X' oxd
Acj=A  ———
1= Ay P
— X' oxm
Akyj:Ai'max—fkaxfj (2)
Which shows that A  is a covariant tensor of type (0, 2) and A , is covariant

derivative of covariant vectors A, w.r.t. x/.

12.7.2 Covariant Differentiation of a Contravariant VVectors
From the law of transformation for a contravariant vector,
p_m X
ox™'
]
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Different w.r.t. x!

oA oA ox " ox" e oxx<  ox"
oxl ox " ox! ox oxTox " ox!

X [s] ax* [k ] exP ax°
ox'ox " linf ax® | pal ax T ax "
oAY AT ox" +A—i(s_ ¢ [k | axP axt ) ox "
ox) ox " ox ! L inj ox™* | pa) ox”' ax’”J ox
_oATax " x| X ax " axp o san
Cox " oax! ax" =S ox! pq P

oA ox " xk ox< ax " [k | oxP A
x" o ox ox~ S ox! pn| ox '

Interchanging i— s in first term of R.H.S.

Using result

We get

k —i s ) Y ax-" avk k _ —i
24 N 0 NN L O S S L PN B SR
ox! |lox" in| | ox! ox® pn oxP

ok ) _[oat i fs]]acn o
ox pn ox " in| | oxJ ox®

k k
Define Ak o L AP . Then
o pn

pox " X
Kk _
A i~ A nl i -5
oX’ 0OX
Which shows that Akj is a tensor of type (0, 2) and is called covariant derivative of a
contravariant vector.

12.7.3 Covariant Differentiation of Tensors
From the transformation of tensors of type (0, 2),

axl

Differentiation w.r.t. x~" we get
OApg  OA ox' ox' ox .\ o’ ox! ‘A o' %!
ax "o axTaxPaxd VaxPaxToaxd Vax P ox dox
Using result

1
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ox*  oxP
ox P ox ¢

.. (3)
We get

OApg  OA X' X' oxd ox) ({ } ox _{i } ox' ox' )
pr

ax " ax ax T ax P ax e A ox” QL X uv) oxP ax’rJ

ox' [[s ] ox! j ox™  ox"
+AJ 7p *S_ 7q. _r
OX gr| ox m,nj ox " ox

(o o a3, {;r}—% {:J } o of o

ox' ox " ox P oxd V| ox P ox " ox 9

— i ] ox™ ox" ox
+Aps{ } A“{ }axqax-faxp

Changing the dummy indices u— i, v—> |, i>uin 3rdtermand j — u, m— j, n—> 1 in
51 term, we get

aqu_ — s (oA ful o, ful) X ax] o
OX~ qu{ } {qr}_ ox' A‘j{il} A”{jlb ox P ox 9 ox'

ox' ox) ox
ox P ox Pox '

Apar =4, .. (4)

Where A = A‘J AJ,{}—AN{J_I} .. (5)

This shows that the covariant derlvatlve of a tensors of type (0, 2) is a covariant of type
(0, 3).
Note: Similarly, the covariant derivative of Aij wrt, X<

i.e. IOV LR SNRY
’ KT oxk Ik

To covariant derivative of A} w.r.t. x

IS
A O] il
o A T ik

12.8 RICCI'S THEOREM

Theorem: The covariant derivative of the Kronecker delta and the fundamental tensor,
gy, 9" is zero.
Proof: The covariant derivative Sij w.r.t. x
]
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Looas, i ol
i i R R
=0+4¢ +—< ‘asd = ~ " i.e., constant
jk jk YL0; i# ]

The covariant derivative of g; w.rt. x* is

m m
gmj |k gim jk
=[ik, j]1+[ik, i]1-[ik, j]—[Jk,i]
. k
Oiix =0 - [ij, m]= gy, {IJ}
We know g'™g,; =3, Differentiation w.r.t. x*
g,irl?gm,- + gimgmj,k = 8ij,k
9" gy +9™0=0 (From (1) and (2))
ie., gk =0 .. (3)

Example. If at a specified point, the derivatives of g; w.r.t. x* are all zero, prove the

components of covariant derivatives at that point are the same as ordinary
derivatives.
Solution: Given that

)
ox
Let A} be tensor. Then covariant derivative w.r.t. x* is.

Ai-k:a—A}JrA'( ! - A '_ .. (2
Mo Ik jk

. [ . 1 sl069: 99 og o i
S =g" [k, j]==¢g" 4 L _ Ik theref f(1), d
ince {Ik} g’ [Ik, j] 2g [8x' + o) } erefore in view of (1) {Ik} an

=0Vi, J, kat point B, .. (1)

I
{ 'k} are zero. Thus from (2), we observe that
J

o
Aj,k :y at PO'
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12.9 SUMMARY

1. The covariant derivative of the Kronecker delta and the fundamental tensor,
gy, 9" is zero.

2. Superscript and Subscript: The suffixes i and j in B} are called superscript and

subscript respectively. The upper position always denotes the superscript and the lower

position denotes subscript.

12.10 GLOSSARY

0] Derivatives

(i) Determinant
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12.12 TERMINAL QUESTIONS

o’x " (i Jox " [r]ex s ox!
Prove that —=7 = _ -
OX“OX klI| ox' st| ox* ox'
A; =B, ; — B, prove that A"-‘k + Ajk,i + Aki,j =0
09; 09 - ..
Prove that —~ — =% =Tjk, i]1=Tij, k
o Lik, i]=Tij, k]

Prove that % (9;A'B))=A ,B' + A'B; ,
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UNIT 13: TENSOR LAW OF
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13.1 INTRODUCTION

The subject matter of this block is presented to explain the origin of the concept of
tensor and in what sense tensor is the extension of the vector. Beside it, a mathematically
and geometrically systematic approach is developed to explain the distinction between
Contravariant and Covariant vectors. For the purpose of further use and application,
various operations in tensors are also discussed.

13.2 OBJECTIVES

After studying this block, you should be able to
Understand the distinction between Contravariant and Covariant vectors (Tensors).
Understand the relationship between scalars, vectors and tensors.
Understand whether the given mathematical entities are tensors or not.
Understand the transformation of operators from one co-ordinate system to other
coordinate system.

13.3 DEFINITIONS

Tensor Calculus is a generalization of Differential Geometry of Gauss and
Riemann. Its systematic exposition was elaborated by mathematician Ricci and Levi-
Civita. Later on Einstein observed that it to be a most suitable tool for General Relativity.
The reason is that a physicist wants a formulation of the Laws of physics which remains
invariant with respect to observers and view of Mathematician, the main preoccupation
of Tensor Calculus is the study of the behavior of an expression under Co-ordinates
transformation.

Elementary physical laws such as that the acceleration of a body is proportional to the
force acting on it, which can be stated mathematically as

F=ma

where a, F, m are the acceleration, force and mass of the body respectively. It should be
kept in mind that, however that the law is a special case and apply strictly only to isotopic
media or to media of high symmetry. In real life, many media are anisotropic and as a
result, the acceleration “a” is not necessarily parallel to the applied force. In such
situation, this equation can be generalized as

F +
“m
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SN S

z
m,, mzy m

Z
7z

where a,,a,,a, and F,, F,, F, are Cartesian components of “a” and “F” respectively

1 ...
and —;i, j =X, Yy, z are components of the mass tensor.
ij
13.3.1 Invariants
A function or equation in invariant if it preserves its value or form in a transformation
of co-ordinates.

For example if ¢ = AX? +2ABXY + B2Y?2, then it will be invariant if it is transformed

d0=AX’ +2ABXY +BY . But contrary to it, the temperature T of a fluid is not same

in terms of Cartesian and spherical co-ordinates as the function T. Thus T is “physical
invariant” is not “tensorial invariant”.

13.3.2 Notation and Conventions
Let V, be and N -dimensional space and let x',x*, x3,...X" be any set of co-

ordinates in V,, . It is important to note that x' does not denote the i"™ power of x and
(x')" denotes that r™ power of x'.
let X%, a=12,3,... N is another set of co-ordinate in the space V. Then it is clear

that each co-ordinates X' will be function of the N-co-ordinates X * and conversely.
X =x (xx 2. xV)l<i<N

In symbol, .. (1)
x “=0¢ %% xN ) l<a <N }

Differentiating, we find that
) N i
dx'= X X dx *;1<i<N
a=10x" “

and

N —-a .
dx %=X 8x_ dx';1<a <N
i=1 ox'

Due to Einstein, summations appear in RHS of (2) are expressed as
) i
=% g 1<i<N )
ox ¢
and dc =X gk 1< <N @
OX'
In equation (3), o appears twice in RHS however i appears twice in RHS of equation
(4). The index appears only once in any term and let has a definite value between 1 and
N is called “free index”. In equations (3) and (4); i and « are free indices respectively.

These equations can be expressed as

1
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dxt =
ox
and dc = X gy ... (6)
axl

(5

These are set of N equations for each value of i and o respectively.

On the other hand, an index which is repeated and over which summation is implied, is
called a “dummy index” and it is important to note that this “dummy index” can be
replaced by an other index other than free and dummy indices.

The equation (5) and (6) can be expressed as

dx* = X dx P
ox P
. (7

and dx ¢ = X x1

oo
13.3.3 Kroneker Delta

Since the co-ordinates x' are independent of each other, therefore by differential
calculus it is clear that

dx' [1; i=]
dx! {0; 1%

and we can define it as

1; i=]j
0; 1#]

dx'

axi
Where Sij is called Kronecker Delta
dx™*
dx P

=8 where 8ij ={

Similarly, =3y

13.4 CONTRAVARIANT AND COVARIANT VECTORS

Let x' =(x}, x%,...x") be co-ordinates of a point in a co-ordinate system and let

X “=(x"1 x2, ..., xV) beco-ordinates of the same point in another co-ordinate system.
Let A'=i=123,...N be N -functions of co-ordinate x'. If A" are transformed to

A~ in another co-ordinate system as

P ox!

Al A or Ae-AX

x* X’
Then A is called components of contravariant vector of order 1 or of type (1, 0).
Similarly, let A;i=12,3,...N be N -functions of the co-ordinates x' in a co-

ordinates system. If the quantities A are transformed to Ai in another co-ordinate system
as
I ———
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X ox!
= _ or Aa=
ox~! A T e

Then A is called components of covariant vector of order 1 or of type (0, 1).

A

Note: A superscript /subscript is always used to indicate contravariant/covariant
component or character.

13.4.1 Geometrical Interpretation
Let r=xi+ yj+3R be the positions vector of a point P inE;. In curvilinear co-
ordinates position vector of point P is r=r (u, u,, u;). Define unit tangent and unit
normal vector as u3 = constant
or
or
ou,
vu,
VU, |
Thus at each point P of a curvilinear system there
exists two sets of unit vectors (t;,t,,t;) tangential

-;1=1,2,3 to the curve u, at point P.

b

and N, = ;1=1,2,3 to the surface u, = Constant at P.

. Fig. 1
to the co-ordinate curves and (N, N,, N;) normal

to the co-ordinate
surface. Therefore any vector A can be represented in-terms of unit vector t, or N; as

A=at, +at, +agt, =a'N, +a’N, +a’N,

oo
ou, ‘a, OU,
or or

| o

a'l
o
ou,

gt VU 2 VU +a23&;Ai= a

Vu | [V, VU | Vi, |
A= A'vuy, + A*Vu, + A’Vu,

where A, A,, A, and A', A%, A® are contravariant and covariant components of vector
A.

or or or
A=A —+A —+A — A=
Aiaul Azau2 A38u3 A

t
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or A=A aa_r and A=AV,
u.

13.4.2 Transformation law for Contravariant and Covariant Vectors

Let a given vector A is define in two general curvilinear co-ordinate system (x*, x2, x°)

1

and (x, x %, x%) as

¢ Or or g Or

A=A'"— and A=A —=A - (D
ox' ox™! ox~*

By ordinary partial differentiation,

dr=a—r.dxi and dr =
ox'

or

-

dx™ ¢ .2
OX @)

Hence A i = O oo
dx' ox @
Since x' and x! are two co-ordinate system therefore
X =x (xLx 3 x? ie, xX=x(x%
and by differentiation, we have
. i
dx' = X dx ¢
ox ¢
Using in (3) we get
or ox or

X ox ¢ - ox *
and by (1) we have
) i
AT g X
Ox' ox' ox~*
aXi
ox *

i.e., A= A
ox'

A=A

ox!

ox“

Similarly, A=A (VX) and A=A, (VX% .. (7)
0 0 0

where V=i—+j—+k—
OX oy oz

or A = A

By ordinary partial differential, we have
X ox* ax —o (gl
=——— a X *=x"(x)
OX ox'  OXx
o) SR> G ox™

VX~ * =i + +k
OX oy oz

1
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Using in (7), we have

ox“
ox”!
Remarks: . vartant-v invoty tvatives of the new co-ordinates
w.r.t. the

... (10)

old co-ordinates.
2. Covariant vector involve derivative of the old co-ordinates w.r.t. the new
co-ordinates.
3. Inrectangular (orthogonal) system, both curvilinear co-ordinates are identical.
Hence contravariant and covariant vector are identical.

Example 1. If x' be the co-ordinate of a point in N-dimensional space Vy , then show
that dx' is component of a contravariant vector. Also show that velocity and acceleration
are contravariant vectors.

Solution : Let x' and x™;i,=1,2,3,... N be two co-ordinates in V,, Then each co-

ordinates X * is function of the N-co-ordinates x' and conversely i.e.,
X *=x* (x4 %3 o xM ) l<a <N
Differentiating x' we have
dx * = X .
ox'
Which show that dx' component of a contravariant vector. If x' = x'(t) where t is time
Vi=123,...N then by differential calculus, we have
dx~®  dx ¢ dx’
= .. (2)
dt dx' dt
If we define the component of the velocity in both co-ordinate system by

dx ¢ . dx'
vV i=—" V=" ..(3
dt dt )

dx’ (D

Equation (2) becomes

v o ox i

dx'

1
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which shows that the velocity V' is a contravariant vector. Taking time-derivatives of (4),

we obtain
—a —-a t
d‘é )
t dx' dt
If we define the components of acceleration in both co-ordinate system by
o IV . (6)
dt

dt '
Equation (5) becomes
ox * i
=——a
ox'
which shows that the acceleration a' is a contravariant vector.

a—(X

It should be noted that the coefficient a;( — are independent of time for fixed co-
X

ordinate systems because the co-ordinates x' in % are co-ordinate of a particles in

motion while a; — Is a relation between two co-ordinate system, which is independent
X

of time.

If each x' = x' (s) where s is arc-length parameter, then by Eq. (2) we have
X ox “ dx
= .. (8)
ds ox' ds

-

Which shown that d); (tangent) is a contravariant vector.
s

Example 2. Show that the gradient of sealar function is a covariant vector. OR show
that % is a covariant vector where ¢ is a scalar function.
X
Solution : Let ¢ =d(x') be a field. Being a scalar field, its functional form remains
unchanged under coordinate transformations, so that
OO = (X ) =0 (x %) ... (1)
On using partial derivatives, it is clear that
oo 9 ox*®
X' oax* o

ox * - ox ¢

ie., Vo), = (Vo), — o A=A P~ e

Which shws that the gradient of a scalar function/field is a covariant vector.
Example 3. Show that the co-ordinates x' do not form a contravariant vector A'.
Solution : Let A' is a contravariant vector. Then by law of transformation from co-

ordinates X' to X%, we have
]
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If we put A' = x' then
_ ox ¢ Xi
ox'
In general, it does not reduce to A~* = x~“. Hence X' is not a contravariant vector.
2
o9 are

ox'ox!

A— o

Example 4. Show that the second derivatives of a scalar field ¢ i.e., A; =

not the components of a second rank tensor.
Solution : Let ¢=¢ (x') be a scalar function of X' and let x~" be another co-ordinate
system such that
X ¢ =x"%(x)
o op ox
Xt X ox
Differentiating (1) partially w.r.t. x "
o _op X % o
oxPox*  ox' ox Pox*  oxPox' ax ¢
_op o 9% ox o
ox' ox Pox *  ox'ox' ox P ox ¢
°x! ’p ox' ox' ap X
=—" : +—— ...(2)
ox Pox *  ox'ox' ox P ox*  ox' ax Pex @
which shows that Eq. (2) does not represent tensor law of transformation due to presence

of second term in RHS of Eq. (2).

Example 5. There is no distinction between contravariant and covariant vector under
rectangular cartesian co-ordinates transformations.

Solution : Let P(X, y) be a point w.r.t. the rectangular Cartesian co-ordinates axes X

()

Then,

and Y and let P(x, y) be the same point w.r.t. the rectangular coordinates axes X and
Y, which is obtained by rotating X —Y systems about OZ axis. Let (l,, m) and (l,, m,)

be the direction cosines of the axes X and Y respectively. Then the transformation

relations are given by.
Y

Y (b, mp) P y)=P(XY)

/Y(IL ™
X

(0]
Fig. 2
y=hkx+my

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY




GEOMETRY MAT 611
y=lLx+m,y (2
x=lx+1,y ..03)
y=mX+m,y .. (4
oxX . OX oy y
—=l,—=m, ===, =
OX oy OX oy
2 —y. Then by contravariant transformation for A

Also =m, ...(5

Suppose X' =x, X2 =y; X 1 =x, X~
with components A!, A> we have

i
Aioar X o122 and =12 ... (6)

o )

ox~!
- +

Using (2) we have
A=A+ APm All, + A’m, ..(7
Consider covariant transformation for A with components A, A, we have

Z1=Ah§;_i;a=1,2 and i=1,2

— oxt ox>
A=A ox ! A ox !

— oxt ox?
Ao =A ox 2 A ox 2

Using (3) we have

A=AlLFrAM ; A=Al H{Am, .. (8)

Result (7) and (8) show that
A= Al Az = A2
Hence contravariant and covariant vectors are identically same in rectangular co-
ordinate system.
Example 6. If a vector has components x. y in rectangular Cartesian co-ordinates, then

they are f.9, in polar co-ordinates and if vector has components X, y in rectangular
Cartesian co-ordinates then they are ¥ —r6?, 0 + T o in polar co-ordinates.

Solution: Let (x, y) and (r, 0) be position of a point in rectangular Cartesian and polar

co-ordinates respectively. Then relations between these two co-ordinates system are
X=rcoso,y=rsin0 ... (D

with r’=x>+y% 0= tan‘l(lj .. (2
X

1
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By simple application of differential calculs,
o _x or _y
Xy
X=rcosO—r0Osin®, y=rsin®+rbcosO ...(4)
and X2 +y?=r+r?0* (squaring and adding (4)) ... (5)
Also from (2), we have
Xyr_zxyézxyr_zyx—%(xy—Xy) ... (6)
PPrrf=X2+y2+xK+yy ie, xk+yW=r2+r—(x*+y?) ... (7
Let X'=x,x*=y and x'=r,x?=0. Then by contravariant
transformation we have

F=XX+ Yy, 0=

) —i
A':A“z)(—a;oczl,Z and i=12 ...(8)
X

4 oa Xt ot
A=A A2
OX OX
X ,ox?
o A ox*
Casel:Let  A'=x, A%’=y. Then by (9) and (10), we have

.. (9)

A=A ... (10

Aoy Xy Y XY (From (3))
Using (6), we have

and X /|2 (From (3))
r r

Using (4) we have

_xy—Xy _rcos(¢sin®+rcos60)—rsin6 (f cos - rosin 0)

r.2

) I’:G :
A :—rz—:e
Al =%, A% =y . Then by (9) and (10) we have
At=xZiyd
ror
XX+ Yy
.
Pt = (X% + y°)
r

22 s 22 242
:r +rr rr r<o (From (5))

At =1-r6?
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o)

Xy - Xy

r2

=[é+%(xy— Xy)}

A=+ Zr—r ©) (From (6))

Note : 1. In case (1) and (11); A" represent radial velocity and radial acceleration
respectively.

2. In both cases, A %r s transverse velocity and transverse accelerations
respectively.
d?x d?y d?z
Example 7. If a, =—,a,=—,a, =—
P ot dt> "t dt?
acceleration vector then find the component of the acceleration vector in the spherical
polar co-ordinates.

be Cartesian components of the

Solution : Since acceleration is a contravariant vector therefore
-
O (1)
OX
1 2 3 . 1_ 2 _ 3 _
let X=X X =y, X’=27; a=3a,a =3, a =3,

a“=a

and  x'=r,x?=0,x°’=¢at=aa’=a,a’= a,
The relationship connecting and spherical polar co-ordinates is given by

X=rsincos¢, y=rsinoOsin¢,z=r cos 0O ... (2

2 2
and r=(x*+y>+z°)"2,0=tan! [u] b=tan* {—
z

By partial differentiation, we have

qzsinecosd),g:sin $sin ¢,q:cose
OX oy 0z

00 _cosBcos¢ or cosBsin® o0 _ sinb

X r "oy r oz r
o sin6  dp _ cos¢d @—O

oX  rsin® oy rsin®’ oz
For o =1; Eq. (1) gives

. ox ! oxt o gox !
t=d +a’ +a’
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2
Loyt
dt oy
Using (2) and first Eq. of (4) we get
2 2
a, =sin cos ¢% (r sin cos ¢) +sin 6 sin ¢% (rsin ©sin ¢)

d2
+c0S— (rcos©
O|t2( )

a =t —rd* —rsin®0¢’ .. (5
Similarly a, =0 —sin@cos ¢ ¢ ... (6)
8, =b-+2rh+2cot 0 62 ()

r

These are required components of acceleration in spherical co-ordiantes.
Remarks : 1. The only component a, has the dimensions of acceleration.

2. The components a,, a, have the dimensions (times) -2

3. If 6:% then spherical polar co-ordiantes reduce to polar co-

ordinates and
components of acceleration become

a, ='r'rd>2,a¢=i15+zr‘q'>
r
Which is exactly same as in example (5).
Example 8. Find the components of acceleration in cylindrical co-ordinates r, 0, z
which are related to the Cartesian co-ordinates x=r cos0,y=rsin0,z=z2
Solution : Since the acceleration is a contravariant vector therefore,
—a i OX~
a “=a i
OX
let xX'=xx =y, x'=z,a"=a,a’°=a,,a =3,

and x't=r,x?=0,x%=z;at=a,a *=a,a *=a,

The relationship connecting carteisan and cylindrical coordinates is given by
X=rcosO,y=rsin6,z=z ... (2)

and r:,/x2+y2,6:tan‘1ﬁlj .03

X
By partial differentiation, we have
g:cose,g—sin e;g=o
OX oy 0z
@:_sme,@zcose’ﬁzo )
OX r oy r oz
0z 0 @_0 oz

~ — Y =Y, _1
OX oy 0z
1
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For o =1; Eq. (1) gives
+a’ ox +a’ ox
oxt ox? ox®
OX or or dxar dyar dzar

=a, —+a, —+a, —=
x T g T A x A oy AP a

Using Eq. (2) and first equation of (4) we have

2

a, —cosejT(rcose)+sme d (rsin0)

=cosei(rcose—rsin66)+sinea(r'sineJrrcoseé))

=¢0s 0 (i cos 0 — 2f 6 sin 6 — 6 —r sin 6 )
+sin O (¥ sin O+ 2r 6 cos 0 — r % sin 0+ r cos 6 )
a =f—re’ .. (5)
For o = 2; Eq. (1) gives
dxae+dy89 dzae
dt? oy ra
sme —rezcose—resme)

+Cose(‘r‘sine+2r'écose—ré)zsin6+rézsine+récose)

2r9 -
a, = +0 ... (6)
From o =3; Eq. (1) gives
d zdz d?y oz d?z a
a, = —t— —t+—
di2 dx  dt? oy  dt? oz

—O+O+E 1
dt?

. d?z
az =/ :F (7)
Example 9. Find div A', div A and V¢ in cylindrical co-ordinates where A’ and A

are vectors and ¢ is a scalar.
Solution : In Cartesian co-ordinates, we have

) X y z
KL
Z

The cylindrical co-ordinates r, 0, z are related to the Cartesian co-ordinates given by
X=rcoso,y=rsin0,z=z ...

If the components of A' in cylindrical co-ordiantes, are A", A, A? then
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A= X ar Koo X op
or 00 0z

=cosO A" —rsin9 A°
A=Y A Y opo N
or 00 0z
=sin® A" +rcos 6 A°
:QAr+gA9+§AZ:AZ
or 00 0z
ON* _OR“or oA 00 oA &
oX or ox 00 ox o0z OX
OA*  sin 6 oA*

=C0S 0 -
or r 09

r’=x?>+y% 0=tan* [Xj
X

AZ

o_xad___ Y
X rox  xX*+y?
oA’ oA or OAY 00 N oA’ 0z

= + R
oy or oy 00 oy 0z oy
y y
OA +cose OA ()
or r o0
OA*  OA’
= ... (8)
0z 0z

=sin 0

Using (3) in (6) we get

X y 0
oA =c0s 0 coseai—sineAe—rsineai
OX or or

r

OA"  sinBcos O A" . oA, oA°
- —rsin®cos® —+sin“ 0 —
or r 00 or 09
2 r
sin“ 6A
.. (9)

r

- r e
_sin® —sin® A’ +coseaA —rcos 0 A’ —rsin eai
00 00

=c0s’ 0

+

Using (4) in (7) we get
oA’ ., OA" sinOcos0 oA
——=sin"0 +
oy or r
0 2
oA, Cosr O ar ... (10)

oA oA
—=— .1
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Using (9) to (10) in (1) we get
div Al = A

(I1) For a covariant vlector A

AT
divA = ay P~ ... (13)

If the components of A in cyllndrlcal coordinates are A, Ay, A, then
or 00 0z
=A —+A — + —
A=At A Ao

sin 9

A = Ayco e——A6

A=AS AR

cos e

A =Asin6+ A
oz
AZ:Ar§+A65+AZ§

A=A

oA _OA T OA OO OA &2
OoX or ox 09 oXx 07 OX
OA, sin0B oA,
or r 00
oA, OA or 8Ay a0 aAy oz
oy or oy o0 oy 00 oy
OA, cos 0 OA,

+
or r oo

0
ﬁ:% ... (19)
oz 0z
Using (14) in (17) we get
%zcose[coseap* sme sin® _sin@ aAe]
OX r or
cose _sin® aAej

=C0s 0

=sin 0

—-sin 0
r

r A r o0
0 sin®0 2sin0cos O sin@®cos 0 o
A IO A- o

ar r r or
-2
N sm2 0 oA,
r oo
Using (15) in (18) we get

. oA
—SinO A +cos0 —
( A 00

=c0s’ 0

.. (20)
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e

or r r or

0 15
izsine(sine A, cosO cos 0 5A9j
oy
cose(smeiJrcoseAr_smeAeJrcose%j
r 00 r r 00

aAr 00326Ar_zsinecoseAeJrsinecose oA,

r r or

.2

=sin?Q —-

cos® 0 oA,
+
r 00
oA, _ A
oz oz
Using (20) — (22) in (13) we get
aA 1 0A, OA
d = —2+—= ...(23
WA= r'Aer2 0 o 23)
(1) Since ¢ is a scalar fleld therefore
o? <I> o? ¢ %0
V2h=
b= ay2 oz?

By Calculus
@_@& 8¢89+8¢az
OX Or oX 00 ox 0z ox
— @ cos 6 — ﬂ @
r r oo

Rt EHEHE
ox? ox\ox) orlox)ox o0\ ox)ox oz ox) ox
(ad)jc 050 — (aq)J sin
6 OX o0\ox) r

_cose— op sinBop) sind 0O Cose@_sme@
or or 00 00 00 r oo

: 2
_ cos 0 coseai) smﬁ@_sme o)
or r< o0 r oroo

.. (25)

r or o00r r 60 r o0

i 2 . 2
S'”e[—sine@mose 0% _cosO@_smeaq)J

0°p 2sinBcos® 0% | 2sin0cos® 09 sin” 0 o¢
or? r oroo r 0 r or
sm 0 & ¢

2 0%

=c0s% 0

.. (26)

1
DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY




GEOMETRY MAT 611

aq) 2sin6cos® 0% _ 2sin B cos O 9
o r ar o0 r? o0
2 2 2
+cos G@Jrcos 9@
r o r? o0°
% _o%
oz ozt
Using (26) and (28) in (24) we get
0% 1op 1 o?
Vip=—t (I) % —2—4) o9 ...(29)

ar2 ror o

—~ =sin%0

. @27)

.. (28)

0*  or?

13.5 TENSOR

Mathematically, physical quantities are represented by as either scalar or vectors
depending on their transformation properties under rotation of the coordinate axes. A
physical quantity which requires magnitude only for its complete specification is called
“scalar”. For instance, mass, length, temperature are scalar quantities. In similar way, a
physical quantity which requires a direction beside magnitude for its complete
specification is called “vector”. For instance, displacement, velocity, acceleration are
vector quantities.

In fact, there are many physical quantities which requires multi-directions along with
magnitude for their complete specification are called “tensors”. For example, Stress,
Strain, Conductivity, moment of inertia, dielectric susceptibility etc are tensors.
Particularly, in case of stress, magnitude, direction of force and direction of normal on
which the component acts are required i.e., two directions, one for direction of force and
other is direction of normal to plane. In symbol, o, is a stress tensor at a point in

j
Euclidean space E; having nine components.

In view of above facts, “Tensors” are a natural and logical generalization of vectors,
which are of great use in general relativity theory, differential geometry, mechaincs,
elasticity, electromegatic theory etc. According to German mathematician F. Klein, how

term tensor is generalization of the vector, can easily be understood with the help of
theory of group of transformations.

13.5.1 Contravariant Tensor of Rank Two or Order (2, 0)
A set of n? functions A; of the n coordinates x' i=1, ... nare said to be the component
of a contravariant tensor of rank 2 or order (2, 0) if they transform according to the law
pop _ OX° ox"
ox' ox!
On changing coordinates X' to x';i=1,2,3,...n.
13.5.2 Covariant Tensor of Rank Two or Order (0, 2)
A set of n? functions A; of the n coordinates x';i=1,2, ..nare said to be the

components of a covariant tensor of rank 2 or order (0, 2) if they transform according to
the law

— 5'X' aJ Aij

A(x =
P ox P

1
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On changing coordinates X' to x™';i=1,2,3,...n.
13.5.3 Mixed Tensor of Rank Two Or Order (1, 1)
A set of n? functions A} of the n coordinates x'; 1, 2, ... n are said to be the components
of a mixed tensor of rank 2 or order (1, 1) if they transform according to the law
_a ox ¢ an i
AB axi axfﬁ AJ

On changing coordinates x' tox™';i=1,2,...n.
13.5.4 Rank or Order of Tensor

The number of indices (excluding the dummy indices) of a tensor is called the rank of
the tensor i.e., total number of indices per component.

Physically, the rank of tensor means, number of directions besides magnitude are
required for its complete specification and it is not an indicator of the nature of tensor
I.e., it does not characterise that whether a tensor is contravariant or covariant or mixed.
Therefore it is better to use form “order” instead of “rank” because order (r, s) of a tensor
shows that r is contravariant order and s is covariant order of given tensor.

Note : 1. Scalars and vectors are tensors of zero and one rank respectively.

2. The number of components of a tensor is n" where n is the dimension of the space
and r is the rank of tensor.
13.5.5 Tensors Field :

In aregion of a space, if a tensor is defined for each point of the region, there is a tensor
field defined in the region.

13.6 TENSORS OF HIGHER ORDER

13.6.1 Contravariant Tensor of Rank r or Order (r, 0)

A set of n"functions A2 of the coordinates X' ;i =1, 2, ..n is said to be the
components of a contravariant tensor of order (r, 0) if they are transform according to
law
_oXTM oox2 ox

oxt T ooxz T oxT

A changing of coordinates x' to x'.

13.6.2 Covariant Tensor of Rank ‘s’ or Order (0, S)

A set of n® funtions A, i,,..i, of the n coordinates i=1,2,...n is said to be the

A 02, O

Ail, Jo, .0y

|
components of a covariant tensor of order (0, s) if they transform according to law

— Xt ox™2 OXx
Aotl,(lz,...ax = — o —oo """ —o A‘iz,iz,...is
ox " ox "2 ox ™
On changing coordinates x; to X '.

13.6.3 Mixed Tensor of Rank (r + s) or order (r, S)

A set of n"** functinons A%%% - of the n coordinates x';i=1,2,3,...n is said be

the components of a mixed tensor of order (r, s) if they transform according to law

1
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—0y,0p,...0p _ ox ¢ ox~ % oxh ox'r i ip, i

1,82, -1 ox ' Xt ox P T o Bs e daeds
i

on changing of coordinates X to x.

13.7 ALGEBRA OF TENSORS

13.7.1 Summation of Tensors

The sum of two tensors that have the same number of covariant and contravariant
indices and the same dimension in all indices is again a tensor of the same number of
covariant and contravariant indices :

Cl = Al +B) (summation convention is not applied)
where elements are all sums of the corresponding elements of the two summed
tensors.
Theorem : The sum (and difference) of two tensors which have same number of

covariant and the same contravariant indices is again a tensor of the same rank and type
as the given tensors.

Proof : Let A% and B be two tensors of type (r, s). Then by law of
transformation
— 0O, 0,... 0y ax_a ax_ar ale 6X1r

i, i,
1,B2....P1 - ax—i e 8Xif aX—Bl aX_BS Ajl’ Jo.--- s (1)
B*(X]_,Otz,...ﬂ.r axf(x ax_ar axll 8X15

Bl izl )

B1. B2, ... Bs = axil e 6Xir aX7B1 .”aX7B1 i do s

— 0y, 0y, O ox ¢ ox ™ or anl ans i, i, .0y
Then CBlréZv-?<ﬁ5 - oxt T oax ax P T axPs lel- 122~---js C)

—0Oq,0,...0p __ — 0,0, ... Oy — 0O, 0, ... 0y
where Couto b = Aobope T Cppy e

Wi AR g gL
and CJ1|sz--~Js Allylzmes_BleJ2|-~~Js

This is law of transformation of a mixed tensor of rank (r + s). Therefore C;11 ij?z'“'if. is

oo s

a tensor of type (r, s).
Note:  The summation is commutative and associative i.e., A} + Bj =B} + A]
A; +(B; +C;)=(A; +B; +C;)
13.7.2 Multiplication of a Tensor by a Constant
The product of a constant scalar and a tensor is again a tensor of the same rank or order

whose elements are equal to the corresponding elements (of the multiplicand tensor)
multiplied by the constant

If 0 CJbe a scalar and Al ' be a tensor, then

2,0 )
BiL iz = Al iz,

Id2eeds T B d2 e ds
Note that the multiplication is associative and commutative

e, ¢(AY)=AT¢ and ¢ (y AT)=(oy) A)
13.7.3 Opposite Tensor

1
DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY




GEOMETRY MAT 611

Opposite tensor BY to a tensor A" is again a tensor of the same rank whose elements/
components are equal to the negatively taken corresponding elements/components of Al
. It is denoted by (] A" and we have

A" +BY=0 or BU=(-1) A"

Its tensorial properties follows immediately from multipication by a constant if
O00oool.

13.7.4 Multiplication of Tensors

The product of two tensors is a tensor of a rank that is a sum of the ranks of the two
constituent tensors and its components are products of the corresponding components of
the constituent tensors. This product is called outer product of tensors.

Theorem: The outer product of two tensors is a tensor whose rank is the sum of the
rank of two tensors.

Proofs : Let A2 ' and B
JJ20 s hlp,...1

'nkm be two tensors of type (r, s) and (m, n)
respectively.
Then by law of transformation.
—ay,ap,..aty _ ﬁx_.‘” 8x__°‘r oxt ox’s i i, e
1. B2, Bs ok et ox B ox B T hdzs
— —am |
B—al,az,‘..am :ax “ ax * axl aXln klvk21'“km
by, by, ...by axe T axm ax B gyt 1o, 1,
C—al,(xz...dr,al,az,am _ ax_al ax—otr ax_ A aX_ &m
P1.B2. . Bs. b by .. by o oxr oxf T ox™
j j |
oxh ox!s 5Xbl ox™" bk kg ki
ox P oxPs ox BT oy hiz--Jshilz. g

Where Cl-l,_lz...ir kl kz...km — All’lzlr Bklka---km
hiz-dshilz I d2ds Thlzedm

This is law of transformation of a mixed tensor of rank (r + m, s + n)
Note : 1. In general outer product is not commutative i.e.,
AJE], B Al AVB, - Bl

m
2. Outer product is associative and distributive i.e.,

AI(Bl +Cly=AlIB +AlC!
is tensor of type (1, 1).

Theorem : If A" and B; are two vectors then A'B.

J
Proof : Same as previous theorem.

Note: The outer product of two contravariant (covariant) vectors is a contrvariant
(covariant) tensor rank 2. But a contravariant (covariant) tensor of rank 2 is not
necessarily the outer product of two vectors.

13.7.5 Contraction
Contraction is an operation by which we reduce the rank of the tensor by two. If we set
one contravarriant and one covariant indices to be equal to each other i.e., this index
becomes dummy index.
or
I ———
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Contraction is an operation by which the rank of a mixed tensor is reduced by 2 when
one contravariant and one covariant indices are kept same and performing the summation
process. For instance

il _ pl jl _ I ki _ k ji i
j =B A =Cj Ay =D Al =
In order to visualize, let [a'j] is matrix of order n i.e.,
a a ..a
i 2 2
[aj]=|a7 a; ...a
a3 a, ...a

n . .
Then x:_zl a = trace (A)= scalar. In that case A=[a]] is a tensor of rank 2, then
1=

contraction of aij is aii = trace (A) = scalar.
In case of tensor of type (r, s), tensor by applying contraction is of type (r (1011, s [1[11)

13.7.6 Inner Product of Two Tensors
The inner product of two tensor is outer product of the tensors followed by a
contraction.

Example: Then inner product of tensors A} and Br‘;j is tensor of type (2, 1).

Solution: Let A} and Br';' be two tensors of type (1, 1) and (2, 1) respectively. Then
o X
o _ = AI-
AT o
X oax® ax™
Tk [ — Bn
ox" oOx oX
cema X Oxrox® oax) oax™
(XB ab — _ AIBk|
A B x'ooax o oax axPoax e T
i=k
oo X Oxrox? oax) oax™
(XB ab — _ AIBk|
B x'ooaxk o oax axPoax e T
_x [8xa X Jaxb X" i

87 ab

C

ox | ox® oxP)ooaxt ex e T

X ¢ ox? ax™ ox ¢
= a0 o A B (forazﬁand P :1J
X ax® ox™
7anab _ _ |Bkl
(Aa C ) aXI aX| aX,C (A{ m
This is the law of transformation of a mixed tensor of rank three i.e., of order (2, 1).

Note: 1. Inner and outer product of vectors (tensors) are same as scalar and vector
I ———
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product of vectors in vector calculus.
Inner product is also called contracted product. For instance

A} Bilk = S:n (A;n Bilk)
13.8 TENSOR CHARACTER AND QUOTIENT LAW

It is noticed that the three basic tensorial operations i.e. summation, multiplication and
contraction, produce always again a tensor. They are said to preserve the tensor character.
This property serves as another means of distinguishing a tensor and called tensor algebra
on
Riemannian space.

This property is known as “Quotient law” which is stated as “if the inner product of
set of function with an arbitrary tensor is a tensor then these set of functions are
component of a tensor”.

Example: Show that the expression A (I, j, k) is a convariant tensor of rank three if A
(1,j, k) B* is a covariant tensor of rank 2 and B* is a cotravariant vector.
Solution: Since A(i, j, k) B® is a covariant tensor of rank 2 therefore by tensor law of
transformation, we have
_ a b
Al j k) B =2 X
ox ' ox !
Using tensor law of transformation for vector B i.e.,
-k c
_X B® or B®= 8xk
oX~
a b c c
ax,' a)i ax,k A(al b’ C) ax,k
ox ' ox ! ox OX
Xt ox® ox°
ox ' ox ! axk

A(a, b, c) B®

BX BK

c

A, j,k)B = Bk

A(a, b, c)] B =0

[Z\a, i k) -

Since B™* is arbitrary vector therefore
a b c
ax,- ax,- ax,k A(a, b, c)
ox ' ox ! ox
This is law of transformation of a tensor of type (0, 3) i.e., A (i, j, k) are component of
a covariant tensor of rank 3.

A, j,k)B =

13.9 SYMMETRIC AND SKEW-SYMMETRIC TENSORS

The order of the index in a tensor is important. The tensor Al (or Ay; ) is not necessarily
the same as that of the tensor A" (or A;). In case of matrices, A" is the transpose of
A

If two contravariant or covariant indices of a tensor can be interchanged without altering
the tensor, then it is called “symmetric” in every pair of such indices.

1
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In symbols, A; is symmetric iff Af = Af and A; is skew-symmetric iff A =— Af .
Following facts should be noted:

* In general, symmetry and skew-symmetry of a tensor can not be defined for a tensor with
respect to two indices of which one is contravariant and the other is covariant.

 The kronecker delta S‘j issymmetric iniand j i.e., symmetry is reversed under coordinate
transformation i.e., 8} =8 and &; =85; /.

* Inskew symmetric tensor A; =0Vi=123,...n

 No of independent distinct component of symmetric and skew-symmetric tensor of rank
2is n(n+1) and n(n-1)
2 2

respectively.

Theorem: A covariant or contravariant tensor of rank two can always be expressed as
the sum of a symmetric and skew-symmetric tensors.
Proof: Let Aijbe a covariant tensor. Then

Aj Z%(Aij +A;) +%(Aﬁj - A;)
A =S +Tj

1
where Sij = E (Aij A]|)1 ij = (AJ - A]I)
1 1
Now "ZE(Aji“LAﬁj):E(AJ+Aji):Sij
i.e., Sijis symmetric tensor.

and Tij:%(AiJ AJI)__l - Ay =-T;

i.e., T; is skew-symmetric tensor.
Thus A is sum of a symmetric and a skew - symmetric tensors.
(oT, aT;)
Theorem: If T; be the component of a covariant vector than L T J are
OX

components of a skew-symmetric covariant tensor of rank two.

Proof: Since Tiis a covariant vector therefore by law of transformation,
- ox*
pomill? . (D
Differentiating w.r.t. X~ partially
T  ox* oT 0%x?
- = . <+ —T
ox 1 ooxtox !t ooxlox'
o _ o arfor, &t
ox 1 oaxt oaxtoaxP ooxlox ¢
ar P ox» otk N X" T
ox ' ox Il oox'ox* ox'ox ! ¢
Subtracting (3) from (2) we get

ie.,

Similarly,
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(T ;) _axe od (a1, )
ox 1 oox') oxtoxd kax‘3 ox*)
This law of transformation of a covariant tensor of rank 2.
 OT,

(4

—4__J
ox) ox
oT. . - OT,
Then A = ] _ GT'_ —— aT'_ ]
ox'  ox! ox!  ox'

]

T. O,
Which shows that A; = % - a— are components of a skew-symmetric tensor of rank
X X

2. Note: Due to presence of 2" form in Eq. (2), Sl'l are not components of a Tensor.
X

Theorem: Show that kronecker delta is a mixed tensor of order (1, 1) and it is invariant.
Proof: Let x™' DJi D01, 2,00n be coordinates of a point inV, .Then
x' ooxoox®
ox 1 oxd ox !
_ac ot o
T @ X ox

) —i —i b a —i b
8},:axi_:&x .6x7_.6‘xb:6x 8)6.63 (D
ox ! ox* ox ! ox®  ox* ox!

Which shows that Sij i.e., Kronecker delta is a mixed tensor of rank 2.

Now from (1)
8,i_ax*i ox° 53 o ax®
i T A -j b |7 Aa -
ox* | Ox ox* | Ox

5 i OX~ i

T

i.e., 8} is invariant.

Theorem: Prove that the transformation of a contravariant (covariant) tensor is
transitive. Prove that the transformation of a contravariant (covariant) tensor
form a group.

Proof: Let A be a contravariant vector in a coordinate system x' =(i=12,...n

Then by law of transformation we have
A,ij _ ox~' ox!
ox* oxP

Applying law of transformation from x™' to x™' we have

=a =b B
pad Z XX i ()
ox ' ox !

A“BP (From x' to x™') ... (1)

Using (1) in (2) we get
I ———
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A:ab_ax=a ox=P
ox ' ox)
Laxa ax—i

L axe
A= — E ax_zb AY
x* oxP
This is law of transformation of a contravariant from x' to x™' . This property is called
that transformation of contravariant is transitive or form a group.

Note: 1. Proceeding on the same lines as above, theorem for covariant
tensor/vector can easily be proved.
This theorem can easily be proved for mixed tensor.

Theorem: If all components of tensor in one coordinate system are zero at a point, then
they are all zero at this point in every coordinate system.

Proof: Let A =0 in x* Vo, p=12,...n. Then on using in (1) and (2) of previous
theorem we get A =0= A% Hence proved.

Example: If a; and g; are symmetric and u',v' are components of contravariant
vector such that
(a; —kgy)u' =0;(a; —k'gy) V' =0i, j=1,2,3...n and k =k’
then gyu'v! =0=au'v’
Solution : We have
(a; —kg;)u' =0;(a; —k'g;)v'=0 ... (1)and (2)
Multiplying (1) and (2) v’ and u’ and subtracting we get
a;u'v! —kgyu'vl —ayviul +kigyviul =0 ... (3)
Interchanging i and j we get

a;ulv' —kgyu'v' —au'vl + kg u'vi =0

Using g; =a; and g; = g;; we have
a;ulv' —kgulv' —ayulv! +kgyuvi =0 L (4)

Adding (3) and (4) we have

(k" =Kk) gzu'v' + (k" = k) gu'v! =0

gu'v! +ggv'ul =0 -+ k=K
2g,u'v! =0 ie., gyu'v! =0
Multiplying u’ in (1) and using (5) we get
a;u'v! =0
________________________________________________________________________________________________________________|
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13.10 IMPORTANT FACTS

There are same simple rules for checking the correctness of the indices in a tensor

equation:

. A free index should match in all terms throughout the equation at the same level.

. A dummy index should match in each term of the equation separately i.e., twice at
opposite levels.
No index should occur more than twice in any term.
If a tensor equation is true in one coordinate system then it is true in all other co-ordinate
system i.e., they are in one to one correspondence.

. The rank/order of each term of tensor equation is same.

13.11 SUMMARY

In this block, we have learned about the various type of tensors and their addition,
substation multiplication (inner and outer product) along with symmetric property,
contraction of a tensor and quotient law.

13.12 REFERENCE

. An introduction to Riemannian Geometry and the Tensor calculus by C.E.
Weatherburn “Cambridge University Press.”

. Matrices and Tensors in physics by A.W. Joshi “Wiley Eastern Limited”.

. Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”.

13.13 TERMINAL QUESTIONS

1. The components of a contravariant vector A' in x-co-ordinate system are
A'=f;A=0; j=2,34,...n. Find its components in X -coordiante system.
2. Let A, A? are the contravariant component of a vector in (x*, x?) coordinate

system. Find the contravariant and covariant components of A in (x™*, x ?) if

xt=xt—x%cota, x 2

(!, x%)
3. The components of a contravariant vector in the x-coordinate system are 2 and 3.
Find its components in the X coordinate system if

Xt =3(x")? x 2 =5(x")? +3(x*)?

Xl 2

4. If —, — be covariant components of a vector in rectangular coordinates Xt x2,
X X

find its components in polar coordinates r, 6 .
I ———
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5. Show that the tensor equation a;'0,, =6, where B is an invariant and 6, are

arbitrary vector, demands that a;' =8,

6. If the components of a contravariant tensor of type (2, 0) in
V2= x| x2eRy  are TH=1T2=0,T#=0,T#2=1 find T7 in
V2 ={(x"*, x~ %) e R} where functional relation between the two coordinate systems are
X—l — (Xl)Z’ X—Z — (X2)2

Show that the contracted tensor A" is scalar.

7
8. Applying contraction on Sij find is value.
9

If u;; =0 are components of a tensor of type (0, 2) and if the equation
fuij +9u;; =0
holds, then prove that either f =g and u; is skew-symmetric or f =—g and u; is

symmetric.
10. If A; is a skew-symmetric tensor, prove that

(3,8} +8155) A =0
11. If Ay is a skew-symmetric tensor and B' is a contravariant vector then show that
A;B'B’ =0. Is the converse true?

12. If X(i, j) B’ =C,, B’ is an arbitrary contravariant vector and C; is a covariant
vector, show that X (i, j) is a tensor. What is its type?

13.14 ANSWERS
Xk
o
A=Al - A?cota, A2=a’coseco, Au=A, Az = A, cos o+ A, sina
12x}, 20x* +18x?

cos®0+sin®0
sin@cosO
T gy L T2 0T A T2 _gy?

n
0, 2).

1. Ak f

, I (sin 6 —cos 0)

1
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14.1 INTRODUCTION

In tensor geometry, the divergence of a vector field is a scalar field representing the
"outward flow" from a point, while the curl is a vector field measuring the rotational
tendency or "swirling™ at a point. Divergence and curl are two measurements of vector
fields that are very useful in a variety of applications. Both are most easily understood
by thinking of the vector field as representing a flow of a liquid or gas; that is, each vector
in the vector field should be interpreted as a velocity vector. Roughly speaking,
divergence measures the tendency of the fluid to collect or disperse at a point, and curl
measures the tendency of the fluid to swirl around the point. Divergence is a scalar, that
is, a single number, while curl is itself a vector. The magnitude of the curl measures how
much the fluid is swirling, the direction indicates the axis around which it tends to swirl.

14.2 OBJECTIVES

After studying this block, you should be able to
1. Gradient
2. Divergence
3. Curl

14.3 GRADIENT

Gradient

Let f(x') be a scalar function. As in Euclidean space, the gradient of f(x') in
Riemannian space V,, is defined as

grade(f)za—fizaifzvif .. (D
OX
It is earlier verified that gradient of a scalar function is a covariant vector and is normal
to the surface represented by f(x') = constant.

In view of the definition of magnitude of a covariant vector, the square of the magnitude
of the gradient vector is defined as

vif=g"(V,f)(V;f) . (2
It is also known as Beltrami first order differential order operator.
Another Belitrami first order different operator A,(f, ¢) is defined as

A(F,0)=0" (Vi) (V;0)
In view of above A(F)=A, (f, )
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14.4 DIVERGENCE

Divergence
Let A’ be a contravariant vector, function of coordinates x';i=1,2,3,...n
Euclidean space, the divergence of A" Riemannian space V,, is defined as
divA = V,A" = A|
But covariant differentiation of contrvariant vector is defined as

: i i
A=A )
! Kj
Therefore (1) can be expressed as

divA' = VAl =

. i i
or div A' =a—A.+AJ .
oxX' ij
The divergence of a covariant vector A' is defined as
divA =V;A'=g"V A

k
Theorem: Prove that div A =div A" and div A :i _8(\/§kA )

Jo

Proof: We have
divA = g% A
div A =(g%A) , =(A“) , = A =div A’

div A' = A, = A 1]
ox' ik

=6_ (Iog\/_)Ak { } a%(Iog\@)and

1 a\/_Ak
RO

Gt

Theorem: The div A' is a scalar function.
Proof: By law transformation
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Different w.r.t. x* is
oA OA® ox ™ ox' LA %X’
oxk  ox P oxk ox? ox Pox~2 " oxk

. °x! clox [i ] ax! o
Usmg “bAy-a c ) -a -b
OX™ "OX ab| ox jl) ox™® ox

We get

oN _omto® o alfelad fi]ad | ox?
ox< ox® axk ox? ab| oxt | jl] ox® oxP | oxk

_(ax—a+za a|lox® ox
L@x’b ch ox* ox®

Then

Therefore
) . _ -b i
div A =V,A =V,A® aaxk a‘ixa-.-izk
X
S a-axh
=VpA a8a
divA' =V. A =V,A?
Which shows that div A' is a scalar function.

Note: div (A7) = (J_ Ay 4+ AY
J_ ol {J}
div (A}) =V, A] \/_ p (\/_ { }

14.5 CURL

Curl of a Covariant Vector

Let A be covariant vector. The skew-symmetric part of the covariant derivative of A
w.r.t. the indices i and j is a covariant tensor of order (0, 2) :
________________________________________________________________________________________________________________|
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is called the curl (or rotation) of A i.e.,
OA. oA
Curl =1 -1
(A) ox  ox!
It should be noted that Curl (A) is skew-symmetric tensor and can have at most

n(n-1) linearly independent components ina V,,.

Theorem: Show that if the covariant derivative of a covariant vector is symmetric then
vector is gradient.
Proof: If the covariant derivative of a covariant vector is symmetric then

Ai,j :Aj,i

where A =%— An {IT}

Thus m aA m
' ij} E3 A‘“{ji}

oA _OA  Ja | .
=—Jas is symmetric w.r.t. band ¢
ol ox bc
- OA .
a—A‘.. dx) =— . dx!
ox? ox'
:—( Adx') - —1|ff| =]

Integration gives

A = j—( axl)——ijAjde

Hence A =% =¢ ; =grad ¢, because J' Aj.dxi is scalar quantity.
” :

Theorem: A necessary and sufficient condition that the curl of a vector vanishes is that
the
vector field be gradient.

Proof: Let the curl of a vector A vanishes i.e.,

curl(A)=A ;—A;; =0
In view of above theorem it can easily be prove that A =grad ¢,
Let A =V¢. Then
A=Vh=t
oA __ % .aAj _ %
ox!axlox! T ox' ox'ox!
oN _OA 0% _ %
oxl o ax' T axdex' ox' oxd

and

Therefore

i.e., curl (A)=0
|

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY




GEOMETRY MAT 611

Theorem: If ¢ is a scalar function of x' then

1 0 0
VZ - kr )
¢ Jg ok (\/Eg X'
Proof: Since V2= div (grad ¢) therefore

and grad (A = \/_ — (\/_

Also, grad ¢_ ¢ and g* 9 _ px
X"
0 kr 64))
Thus v?
b= \/_ oxk (\/Eg ox"

Example 4. Divergence and Laplacian operators in cylindrical coordinates.
Solution: In cylindrical coordinates,

ds? = (dx')? + (x'dx?)? + (dx®)%; x' =0
where X'=r,x2=0,x3=z
Thus, 0n=L0,= (x")?, 0:3=101,=0,3=013=0,g= (x")?

And g'=19%= & 1) Lg%

- L a(gA)
We know that div (A') = \/_ ok
Therefore div (A" T[— (JoA )+ - (Jg A )+£3(\/§ A3)}

_1 1 2 3
= {Gl(xA)WLa (XA)+6 (xA)}

oxt OX? oxe
oA® Al
+ +—

JOAY oA aﬂ
+ X + X + X

or

Since div (A") =div(A) therefore
5”& L0k O A
div =
()= N x1
Since A =g;A’ therefore
A =gy A +gpA% + gAY = A
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A, =0, A = () A? = Ar?
A =ggAl= A’
Using in div (A") =div(A) we get (From (1))

diV(Ai)=§(A1)+i(%J+§(A3)+%

o OA 1om oA A
WA =5 "% " Ty

kr 6¢
V d) \/_an (\/Eg er

Therefore, Vi = 10 (xlgkr @j
xt oxk ox"

a_ i 1.2r 6(1) v 1 3r_¢
)+8x2(xg 8”) XS( 8xrﬂ

1336¢}
1

0 (0 L), 2 (%
x % (X (x")? ax2]+8x3 &P

g22: 1

We know that

0 o 1 & o°
{a;bl X 6(xﬁ;2 e a(x%2 T a(xj))z}
a¢ 1 a¢+az¢+1a¢

(dxh)? (x) a(x?)?  o(x*)? X oxt

Fp 100 1] %

or ror  r®o0*| oz?

V2=

Example 5. Find div and V? in spherical polar coordinates.
Solution: In spherical polar coordinates,

ds? = (dx')? + (xdx?)? + (x* sin x?)? (dx*)?
Therefore, Oy =1 05 = (X')?, Ggg = (X sin X*)?; Gy, = G153 =0, =0
1 1 .
539 =(x")"sin? (x*)

o0 oi=to” <>2’9 ~ s

we know div (A" = \/_ P~ (\/_
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1

Zm{axl ((x")? sin X*A") + — v ((xl)2 sin x2A?)

+ is ((x1)? sin XZAZ}

1
2xt sin x2At + (x')? sin x? —- oA
1 oxt

(M2 sin X 2

+ (x})? sin x? Ziz + (x})? cos x2A?
X

. OA3
+ (x1? sin x? —
(x7) e

.. OAY oA oA 2 -

div (A') = + + +— A" +cot xX°A ... (1
(A) ot ox? ooxd X M
oAl oA? oA 2Al

+ + +
o 80 ow r
We also know that div (Ai)=div(A&) and Al =g"A ie,
=A,A = —A3
’ (x )2 (x")? (sin x%)°

+cot?0 A?

div (A) =

Therefore by (i) we have

oA, 1 0A cosec’ x* 0 2A cot x?
le(A)—@ 1 (Xl)z x> + (Xl)z oxe (AS) Xl ( )2
% 1 aA2 1 0A; 2A cot ()
WA= T ene o T 2

We know that
1 0 ob
VZ - kr j

B 1 0 , 0 o [ (x")?sinx* a9
~ (M2 sin X {6x [(X) sin . oxt j+ax2{ (4)? 'axzj

0 [ ()% sin X @\}

(x)?sin x* ox®

o0 %0

2xtsin x2 = + (x})? sin x? ——
|: 8X1 ( ) a(xl)Z

80 . o 0% 824»}

2
+00S X* —% +5in X +
x> o(x?)?  a(x%)?

2. 200 0% cotOodp 1 9% 1 8%
=——t—t——+— + ...(3
¢ ror or r? 90 r?00% r?sin?0 ow? )

B 1
(x*)? sin x?
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14.6 SUMMARY

In this block, we have learned how tensor calculus is distinct from classical
calculus and in which sense both are identically same. The conversion of differential
operators from Cartesian coordinates to cylindrical polar coordinates and spherical polar
coordinates is studied in easiest way with the help of tensor Calculus.

14.7 REFERENCES

1. Differential Geometry by Majumdar and Bhattacharya Books and Allied (P)
Ltd.
2. Tensors by R.B. Mishra “Hardwari Publication Allahabad.”

14.8 TERMINAL QUESTIONS

1
1. For the metric ds? = (dx")? +[(x*)? — (x")?] (dx?)?, find {22}
2. Prove that the necessary and sufficient condition that all the Christoffel symbols
Vanish at a point is that g;; are constant.

o’x " (i Jox " [r]ex® ox!
Prove that — =7 = - -
OX"OX k| ox' st| ox* ox'

A; =B ; — B provethat A; , + Ay i +Aq ;=0
If A; is the curl of a covariant vector, prove that A;  + Ay i + Aq ;=0

09 0g;
Prove that i:('—g—'ik:[jk, i]=Tij, K]
OX
0 iRi [ [

Show that only non-zero Christoffel symbols, of the second kind for a space
Where ds? = (dx")? + sin? x*(dx?)®are

1 . L {2 2 1
=—sin X cos X, = =cot x".
22 12 21

N i
If A is a skew-symmetric tensor, show that A { 'k} =0
J

Find the Christoffel symbols corresponding to the metric

ds? = (dx')? + G (x*, x?) (dx?)? where G is function of x*, x

14.9 ANSWERS

1. xt
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} = % log G(x*, x?).
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