
GEOMETRY                                                                                           MAT 611 

 

MAT 611 

GEOMETRY 
 

 
 

DEPARTMENT OF MATHEMATICS 

SCHOOL OF SCIENCES 

UTTARAKHAND OPEN UNIVERSITY 

HALDWANI, UTTARAKHAND 

263139 

Master of Science 
MATHEMATICS 

Fourth Semester 
 



COURSE NAME: GEOMETRY 
 

COURSE CODE: MAT 611 

 

 

 

 
 

 

 
 

 

Department of Mathematics 

School of Science 

Uttarakhand Open University 

Haldwani, Uttarakhand, India, 

263139 



GEOMETRY MAT 611 

 
BOARD OF STUDIES - 2023 

 
 Chairman 

Prof. O.P.S. Negi 
Honorable Vice Chancellor 
Uttarakhand Open University 

 

Prof. P. D. Pant 
Director 
School of Sciences 

Uttarakhand Open University 
Haldwani, Uttarakhand 

Prof. Harish Chandra 
Senior Professor 
Department of Mathematics 
Institute of Science 

Banaras Hindu University 
Varanasi 

Prof. Manoj Kumar 
Professor and Head 
Department of Mathematics, Statistics 
and Computer Science 

G.B. Pant University of Agriculture 
& Technology, Pantnagar 

Prof. Sanjay Kumar 
Professor 
Department of Mathematics 
DeenDayalUpadhyaya College 

University of Delhi 
New Delhi 

Dr. Arvind Bhatt 
Programme Cordinator 
Associate Professor 
Department of Mathematics 

Uttarakhand Open University 
Haldwani, Uttarakhand 

Dr. Jyoti Rani 
Assistant Professor 
Department of Mathematics 

Uttarakhand Open University 
Haldwani, Uttarakhand 

Dr. Kamlesh Bisht 
Assistant Professor(AC) 
Department of Mathematics 

Uttarakhand Open University 
Haldwani, Uttarakhand 

Dr. Shivangi Upadhyay 
Assistant Professor (AC) 
Department of Mathematics 
Uttarakhand Open University 
Haldwani, Uttarakhand 

 

                               Editor   

 

Dr. Joyti Rani 

Assistant Professor 

Department of Mathematics 

Uttarakhand Open University 

Haldwani, Uttarakhand 

 

Unit Writer Blocks Units 

Dr. Deepak Kumar Sharma 
Assistant Professor (AC) 
Department of Mathematics 
Uttarakhand Open University 

I, II & III 1 to 6 & 9, 10 

Dr. Roshan Lal 
Assistant Professor 
Department of Mathematics 

V.S.K.C.Govt. P.G. College, Dehradun 

II 7 & 8 

Dr. U.S. Rana 

Assistant Professor 
Department of Mathematics 

D.A.V. P.G. College, 

Dehradun 

IV 12, 13 & 14 

Dr. Deepak Tiwari 
Assistant Professor 
Department of Mathematics 
G.P.G.C. Pithoragarh 

IV 11 

 



Course Title and Code   : GEOMETRY (MAT 611) 

ISBN                                :   

Copyright                        : Uttarakhand Open University 

Edition                             : 2025 

*NOTE: The design and any associated copyright concerns for each unit in this book 

are the sole responsibility of the unit writers. 

 



CONTENTS 

MAT - 611 

 
BLOCK-I: SPACE CURVES AND ITS PROPERTIES 

 

 

Page Number 01- 52 

Unit – 1 

 

Space Curves 02 - 12 

Unit – 2 

 

Curvature and Torsion 13 - 26 

Unit – 3 

 

Intrinsic Properties of a Surface 27 - 41 

Unit – 4 

 

Involute and Evolute 42 - 52 

 

BLOCK- II: FUNDAMENTAL FORMS  

 

 

Page Number 53 -108 

Unit – 5 Fundamental Forms I 54 - 62 

 

Unit – 6 Fundamental Forms II 63 - 74 

 

Unit – 7 Angle between Parametric Curves 

 
75 - 91 

Unit – 8 

 

Orthogonal Trajectories 92 - 108 

BLOCK III: LOCAL NON- INTRINSIC PROPERTIES OF A  

                         SURFACE 

 

 

Page Number 109 - 138 

Unit – 9 

 

Normal and Principal Curvatures 110 - 121 

Unit - 10 Rodrigue’s Formula and Euler’s 

theorem 

122 - 138 

 

 

 

BLOCK IV: TENSOR ANALYSIS  Page Number 139 - 209 

Unit –11 

 

         n – Dimensional space 140 - 155 

Unit - 12 Christoffel Symbols or Christoffel 

Brackets 

 

156 - 171 

Unit - 13 Tensor law of Transformation of 
Christoffel Symbols 

172 - 199 

Unit - 14 Divergence and Curl of a vector 

 

200 - 209 

 



GEOMETRY  MAT 611 

COURSE INFORMATION 

The present self-learning material “GEOMETRY” has been designed for M.Sc. (Fourth 

Semester) learners of Uttarakhand Open University, Haldwani. This course is divided into 14 

units of study.  This Self Learning Material is a Mixture of Four Block.  

First block is Space Curves and Its Properties, in this block Normal and Binormal. 

Curvature and Torsion.  Fundamental Existence Theorem for space curves. Intrinsic 

Properties of a Surface, Osculating circle. Osculating sphere defined Clearly. 

Second block is Fundamental Forms, in this block Fundamental form of first and second 

kind. Angle between Parametric Curves, Orthogonal Trajectories defined clearly.  

Third block is Local Non- Intrinsic Properties Of A Surface, in this block Normal 

Curvature, Principal Curvature, Meusnier’s theorem, Minimal Surface, Rodrigue Formula, 

Euler’s Theorem are defined. 

Fourth block is Tensor Analysis, in this Dummy Suffix Real Suffix, Transformation of 

Coordinate and Contravariant, Covariant, Addition, Subtraction & Multiplication of Tensor. 

Inner Product. Metric and angle between two vector & Coordinate Curve. Gradient of a Scalar 

Function, Christoffel Symbols or Christoffel Brackets. Tensor Laws of Transformation of 

Christoffel Symbols. Divergence and Curl of a Vector are defined. 

Adequate number of illustrative examples and exercises have also been included to enable the 

leaners to grasp the subject easily. 
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1.1 INTRODUCTION 

In differential geometry, the study of smooth spaces and shapes, the 

fundamental theorem of space curves states that the shape, size, and scale of a 

regular curve in three-dimensional space is completely determined by its curvature 

and torsion. different space curves are only distinguished by how they bend and 

twist. Quantitatively, this is measured by the differential-geometric invariants 

called the curvature and the torsion of a curve. The fundamental theorem of curves 

asserts that the knowledge of these invariants completely determines the curve. 

 

1.2 OBJECTIVES 

 After completion of this unit learners will be able to: 

(i) Space curve 

(ii) Class or function of a curve 

(iii) Order of contact between curves and surfaces. 

(iv) Normal and Binormal 

 

1.3 SPACE CURVE 

 

 A curve in Euclidean space of three dimension is the locus of a point whose 

position vector 𝑟 with respect to origin say 𝑂 is function of single parameter 𝑡. The 

cartesian coordinates (𝑥, 𝑦, 𝑧) of point 𝑃 are called components of 𝑟 and are the 

functions of parameter 𝑡. Therefore, we can express the equation of curve in terms 

of a single parameter t.  

Thus              𝑟(𝑡) = 𝑥(𝑡) 𝒊 + 𝑦(𝑡) 𝒋 + 𝑧(𝑡) 𝒌 represents a curve in space. 

The curve is known as a plane curve if it lies on a plane, otherwise it is said to be 

a skew twisted or tortuous. 

The parametric equation of the curve are  

                                 𝑥 = 𝑥(𝑡),   𝑦 = 𝑦(𝑡),   𝑧 = 𝑧(𝑡) 
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Where, 𝑥, 𝑦, 𝑧 are real valued functions of a single real parameter 𝑡 ranging over a 

set of values 𝑎 ≤ 𝑡 ≤ 𝑏. 

1.4 CLASS OR A FUNCTION OF A CURVE 

Let 𝐼 denote a real interval and let 𝑚 be a positive integer. Then we say that a real 

valued function 𝑓 defined on I is of class 𝑚 if 𝑓 has a continuous derivative of 𝑚𝑡ℎ 

order at every point I.  

In case f is differential an infinitely many number of times, it is said to be of 

class ∞ or a 𝐶∞ function. 

Note: A regular vector valued function of class m is known as a path of class m. 

 

1.5 ORDER OF CONTACT BETWEEN CURVES AND   

      SURFACES 

Consider a curve C and surface S given by the following equations 

x = f(t),    y = g(t)     , z = h(t)               ……… (1) 

F(x, y, z) = 0                                          ……… (2)  

The value of t corresponding to the points which are common to C and S are given by 

the solution of equation obtained from (1) and (2) on eliminating x, y, z i.e. by  

F[f(t), g(t), h(t)] = 0     or F(t) = 0           …….. (3)  

Let 𝑡0 be one solution of (3), then     F(𝑡0) = 0 

Now expanding F(t) about 𝑡0 by Taylor’s theorem in power of (t - 𝑡0), we get  

F(t) = F(𝑡0) + (t - 𝑡0)𝐹
′(𝑡0) + 

(𝑡−𝑡0)2

2!
𝐹′′(𝑡0) + ….. + 

(𝑡−𝑡0)𝑛

𝑛!
𝐹𝑛(𝑡0) + ⋯ 

Since F(𝑡0) = 0 

Therefore, F(t) = (t - 𝑡0)𝐹
′(𝑡0) + 

(𝑡−𝑡0)2

2!
𝐹′′(𝑡0) + ….. + 

(𝑡−𝑡0)𝑛

𝑛!
𝐹𝑛(𝑡0) + ⋯ 

Now the following cases are arise  

1. If 𝐹′(𝑡0) ≠ 0, then 𝑡0 is simple zero of F(t) and in this case C and S said to have 

simple intersection. 

2. If 𝐹′(𝑡0) = 0 and 𝐹′′(𝑡0) ≠ 0 then 𝑡0 is double zero of F(t) and the curve C and 

surface S have two-point contact or contact of first order. 

3. If 𝐹′(𝑡0) = 𝐹′′(𝑡0) = 0 and 𝐹′′′(𝑡0) ≠ 0 then 𝑡0 is Triple zero of F(t) and the curve 

C and surface S have three-point contact or contact of second order. 
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In general if  

If 𝐹′(𝑡0) = 𝐹′′(𝑡0) = ⋯ = 𝐹𝑟(𝑡0) = 0 and 𝐹𝑟+1(𝑡0) ≠ 0 then the curve C and 

surface S have (r + 1) point contact or contact of 𝒓𝒕𝒉 order. 

 

1.6 OSCULATING PLANE  

         If P, Q, R are three consecutive points on the curve then the limiting position of 

the plane PQR as the point Q and R tend to P, is called the oscillating plane at the 

point P. 

                                                                Or  

The oscillating plane at a point P of a curve of class ≥ 2 is the limiting position of 

the plane which contains the tangent line at P and a neighboring point Q on the curve 

as Q⟶ 𝑃. 

Equation of oscillating plane. 

 

                                 

                                                 Fig.1.6.1 

Let r = r(s) be the given curve C of class ≥ 2  with respect to parameter s, the arc 

length. Let the arc length be measured from some point say S such that arc AP = s, arc 

AQ = 𝑠 + 𝛿𝑠 so that arc PQ = 𝛿𝑠. The position vector of P can be taken as r(s). the 

position vector of the point Q can be taken as r(𝑠 + 𝛿𝑠). Let R be the position vector of 

current point T on the plane containing the tangent line at P and the point Q. 

The unit tangent vector at P is 𝑡̂ = 𝑟′(𝑠). 

𝑃𝑇⃗⃗⃗⃗  ⃗ = 𝑅 − 𝑟(𝑠), 𝑡̂ = 𝑟′(𝑠) and 𝑃𝑄⃗⃗⃗⃗  ⃗ = 𝑟(𝑠 + 𝛿𝑠) − 𝑟(𝑠) line in the plane TPQ. 

Hence their scalar triple product must be zero. 

i.e. [𝑅 − 𝑟(𝑠)]. 𝑟′(𝑠) × [𝑟(𝑠 + 𝛿𝑠) − 𝑟(𝑠)] = 0            …….. (1) 

equation (1) is equation of the plane TQR. Now expanding r(𝑠 + 𝛿𝑠) in power of (𝛿𝑠) 

by Taylor’s theorem, we have. 

  𝑟(𝑠 + 𝛿𝑠) =  𝑟(𝑠) + 𝛿𝑠 𝑟′(𝑠) +
(𝛿𝑠)2

2!
 𝑟′′(𝑠) + 𝑂(𝛿𝑠)3        ……. (2) 
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Putting the value of 𝑟(𝑠 + 𝛿𝑠) from (2) in (1), we get  

[𝑅 − 𝑟(𝑠)]. 𝑟′(𝑠) × [𝑟(𝑠) + 𝛿𝑠 𝑟′(𝑠) +
(𝛿𝑠)2

2!
 𝑟′′(𝑠) + 𝑂(𝛿𝑠)3 − 𝑟(𝑠)] = 0 

Therefore, [𝑅 − 𝑟(𝑠)]. 𝑟′(𝑠) × [ 𝑟′′(𝑠) + 𝑂(𝛿𝑠)3] = 0 

Hence the limiting position of the plane as Q⟶ 𝑃 i.e. as 𝛿𝑠 ⟶ 0 

[𝑅 − 𝑟(𝑠)]. 𝑟′(𝑠) ×  𝑟′′(𝑠) = 0                ……. (3) 

Provided the vector 𝑟′(𝑠) and  𝑟′′(𝑠) are linearly independent. Equation (3) can be put 

as     [𝑅 − 𝑟(𝑠), 𝑟′(𝑠),  𝑟′′(𝑠)] = 0          …….. (4) 

which is the equation of osculating plane at P. 

Note: (1) Osculation plane at a point of inflexion. 

A point P where  𝑟′′ = 0 is called a point of inflexion, and tangent line at P is called 

inflexional tangent.   

For finding the equation of oscillating plane at a point of inflexion, it will be shown that 

when a curve is analytic, there exists a definite osculating plane at a point of inflexion P 

provided that the curve is not a straight line. 

Since  𝑟′ is a vector of constant magnitude unity, it is perpendicular to its derivative 

  𝑟′′so that  𝑟′.  𝑟′′ = 0. 

Differentiating this we get,  

 𝑟′.  𝑟′′′ +  𝑟′′ .  𝑟′′ = 0            …….. (5) 

Again, P is a point of inflexion,  𝑟′′ = 0. Hence (5) reduced to  

 𝑟′.  𝑟′′′ = 0 

This shows that  𝑟′ is linearly independent of  𝑟′′′ except when  𝑟′′′ = 0. 

Continuing this argument, we shall arrive at the result 

 𝑟′.  𝑟(𝑘) = 0 

Where,  𝑟(𝑘) (𝑘 ≥ 2) is the first non-zero derivative of r at P. we that have  

𝑟(𝑠 + 𝛿𝑠) − 𝑟(𝑠) =
(𝛿𝑠)𝑘

𝑘!
 𝑟(𝑘)(𝑠) + 𝑂(𝛿𝑠)(𝑘+1) 

Hence the equation of osculating plane at P is [𝑹 − 𝒓(𝒔), 𝒓′(𝒔),  𝒓(𝒌)(𝒔)] = 𝟎. 

Note: (2) Equation of Osculation plane in term of general parameter t. 

                 [𝑹 − 𝒓, 𝒓̇, 𝒓̈] = 𝟎. 

Note: (3) Equation of Osculation plane in Cartesion form. 
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Let (X, Y, Z) be the coordinate of the current point T on the osculating plane at P, the 

coordinates of point P are (x, y, z). 

Then    𝑅 = 𝑋𝑖 + 𝑌𝑗 + 𝑍𝑘 and 𝑟 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 

Therefore, 𝑅 − 𝑟 = (𝑋 − 𝑥)𝑖 + (𝑌 − 𝑦)𝑗 + (𝑍 − 𝑧)𝑘. 

Again   𝑟̇ = 𝑥̇𝑖 + 𝑦̇𝑗 + 𝑧𝑘    and 𝑟̈ = 𝑥̈𝑖 + 𝑦̈𝑗 + 𝑧̈𝑘 

Hence, the equation (5) is equivalent to  

                                  |
𝑋 − 𝑥 𝑌 − 𝑦 𝑍 − 𝑧

𝑥̇ 𝑦̇ 𝑧̇
𝑥̈ 𝑦̈ 𝑧̈

| = 0. 

Example 1. Find the equation of oscillating plane at the point ‘t’ on helix  

                    𝑟 = (𝑎 𝑐𝑜𝑠𝑡, 𝑎 𝑠𝑖𝑛𝑡, 𝑐𝑡) 

Solution. Equation of the helix are  

𝑥 = 𝑎 𝑐𝑜𝑠𝑡,      𝑦 = 𝑎 𝑠𝑖𝑛𝑡,       𝑧 = 𝑐𝑡 

Therefore,  𝑥̇  = −𝑎 𝑠𝑖𝑛𝑡 ,   𝑦̇ =  𝑎 𝑐𝑜𝑠𝑡,       𝑧̇ = 𝑐 

And             𝑥̈ =  −𝑎 𝑐𝑜𝑠𝑡,      𝑦̈ = −𝑎 𝑠𝑖𝑛𝑡,     𝑧̈ = 0 

Therefore, equation of the osculating plane at point t is 

                                  |
𝑋 − 𝑎 𝑐𝑜𝑠𝑡 𝑌 − 𝑎 𝑠𝑖𝑛𝑡 𝑍 − 𝑐𝑡
−𝑎 𝑠𝑖𝑛𝑡 𝑎 𝑐𝑜𝑠𝑡 𝑐
−𝑎 𝑐𝑜𝑠𝑡 −𝑎 𝑠𝑖𝑛𝑡 0

| = 0. 

Expanding the determinant, we get  

(𝑍 − 𝑐𝑡)[(−𝑎𝑠𝑖𝑛𝑡)(−𝑎𝑠𝑖𝑛𝑡) − (𝑎𝑐𝑜𝑠𝑡)(−𝑐𝑜𝑠𝑡)]

− 𝑐[(𝑋 − 𝑎𝑐𝑜𝑠𝑡)(−𝑎𝑠𝑖𝑛𝑡) − (𝑌 − 𝑎𝑠𝑖𝑛𝑡)(−𝑐𝑜𝑠𝑡)] = 0 

Or             𝑐[(𝑋𝑠𝑖𝑛𝑡 − 𝑦𝑐𝑜𝑠𝑡 − 𝑎𝑡] + 𝑎𝑧 = − 0. 

 

1.7 NORMAL LINES AND NORMAL PLANE,  

      PRINCIPAL NORMAL 

(a) Normal line. The normal line at point P to the given curve is a line perpendicular to 

the tangent at point to the curve.  

For a three-dimensional space curve there will be an infinite number of such normal 

lines. 

(b) Normal plane. The normal plane at point P to the given curve is the plane passing 

through the point P and perpendicular to the tangent at P. 
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Thus, we can say that the normal plane at point P on the space curve and R be the 

position vector of any current point on the normal plane at P, thus the vector  

( R - r ) lies in the plane. Since the vector 𝐫̇ is perpendicular to this plane,  

So we have           ( R - r ). 𝐫̇ = 𝟎                    ……. (1) 

Which is the equation of the normal plane at point P. 

Again the equation (1) can be put in the form 

                                   ( R - r ). 𝒕 = 𝟎                   ……. (2) 

Note: Cartesian form:  

           Let R = Xi + Yi + Zk;     r = xi + yj + zk 

Therefore, ṙ = ẋ𝑖 + ẏ𝑗 + ż𝑘 

Putting these values in (1), we get 

[(𝑋 − 𝑥)𝑖 + (𝑌 − 𝑦)𝑗 + (𝑍 − 𝑧)𝑘]. [ẋ𝑖 + ẏ𝑗 + ż𝑘] = 0 

Or                         (𝑋 − 𝑥)ẋ + (𝑌 − 𝑦)ẏ + (𝑍 − 𝑧)ż = 0 

 

(c) Principal Normal. The normal lying in the osculating plane at a point P on the 

space curve is called the principal normal at point P. 

 

1.8 BINORMAL  

The normal perpendicular to the principal normal at point P is called binormal at point 

P. 

Thus, we can say that the binormal at any point P is the line perpendicular to the 

osculating plane at P. The unit vector along the binormal is denoted by 𝒃 and we 

choose the sense of 𝒃 is such manner that the triad 𝒕, 𝒏, 𝒃 from a right-handed system, 

i.e. 𝒃 = 𝒕 × 𝒏. 

 

                         
                                                Fig. 1.8.1 

 

Note: Since the binormal is perpendicular to the osculating plane, therefore it must 

be parallel to the vector 𝐫̇ × 𝐫̈. 

 

1.9 RECTIFYING PLANE  

The plane containing the tangent and binormal at P is called rectifying plane at P. i.e. it 

is the plane passing through P and perpendicular to principal normal at P. and equation 

of this plane is  
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                              (𝐑 − 𝐫). 𝐧 = 𝟎 

 

                               
                                                        Fig. 1.9.1 

              

Note: Orthonormal triad of Fundamental unit Vectors 𝒕, 𝒏, 𝒃. 

We have defined a set of three mutually perpendicular unit vectors associated with each 

point of a curve. This set of unit orthonormal triad forms a moving trihedral at point 

P(say) such that  

                            𝒕. 𝒏 = 𝟎, 𝒏. 𝒃 = 𝟎, 𝒃. 𝒕 = 𝟎 

And                    𝒏 × 𝒃 = 𝒕, 𝒃 × 𝒕 = 𝒏, 𝒕 × 𝒏 = 𝒃. 

The vectors 𝒕, 𝒏, 𝒃 are called fundamental unit vectors. 

 

 

1.10 FUNDAMENTAL PLANES 

 

         The three planes, osculating plane, normal plane and rectifying plane 

associated with each point of a curve are called as fundamental planes. These planes 

are mutually perpendicular and are determined by moving trihedral 𝒕, 𝒏, 𝒃 at the 

point. 

The equations of fundamental planes are: 

           Osculating plane:  it contains 𝒕 and 𝒏 is normal to 𝒃, its equation is     

                                              (𝐑 − 𝐫). 𝐛 = 𝟎.        

           Normal plane:  it contains 𝒏 and 𝒃 is normal to 𝒕, its equation is 

                                         (𝐑 − 𝐫). 𝐭 = 𝟎.  

           Rectifying plane:  it contains 𝒃 and 𝒕 is normal to 𝒏, its equation is    

                                             (𝐑 − 𝐫). 𝐧 = 𝟎.   

 

1.11 EQUATION OF THE PRINCIPAL NORMAL AND   

        BINORMAL 

                                                            



GEOMETRY                                                                                                                                       MAT 611 

 

  

UTTARAKAHND OPEN UNIVERSITY 
DEPARTMENT OF MATHEMATICS 

10 

 

Let 𝐫 be the position vector of any point P on the given curve C at which the equation 

of the principal normal and binormal are to be found. Let 𝑹 be the position vector of a 

current point 𝑹 on the principal, then we have 

𝑂𝑃⃗⃗⃗⃗  ⃗ = 𝑟, 𝑂𝑅⃗⃗ ⃗⃗  ⃗ = 𝑅      and 𝑃𝑅⃗⃗⃗⃗  ⃗ = 𝜆𝑛, since 𝑛 is the unit along the principal normal and 𝜆 

is some scalar.  

                                  

                                                            Fig.1.11.1 

By triangle law of vectors, we have  

𝑂𝑅⃗⃗ ⃗⃗  ⃗ = 𝑂𝑃⃗⃗⃗⃗  ⃗ + 𝑃𝑅⃗⃗⃗⃗  ⃗ or  𝑹 = 𝒓 + 𝝀𝒏, which is required equation of the principal normal. 

Similarly, if 𝑹 is the position vector of a current point Q on the binormal, then the 

equation of binormal is given by  

                                                    𝑹 = 𝒓 + 𝝁𝒃, where 𝜇 is a scalar.  

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. Equation of osculating plane is (R − r). b = 0. 

Problem 2. Equation of Normal plane is (R − r). t = 0. 

Problem 3. Equation of Rectifying plane is (R − r). t = 0. 

Problem 4. 𝑏 = 𝑡 × 𝑛.  

Problem 5. Equation of Osculation plane in term of general parameter t is 

                 [𝑅 − 𝑟, 𝑟̇, 𝑟̈] = 0. 
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1.12 SUMMARY 

(i) Osculating Plane: If P, Q, R are three consecutive points on the curve then the  

      limiting position of the plane PQR as the point Q and R tend to P, is called the  

       oscillating plane at the point P.  

(ii) Osculating plane:  it contains 𝒕 and 𝒏 is normal to 𝒃, its equation is     

                                              (𝐑 − 𝐫). 𝐛 = 𝟎.        

(iii) Normal plane:  it contains 𝒏 and 𝒃 is normal to 𝒕, its equation is 

                                              (𝐑 − 𝐫). 𝐭 = 𝟎.  

(iv) Rectifying plane:  it contains 𝒃 and 𝒕 is normal to 𝒏, its equation is    

                                               (𝐑 − 𝐫). 𝐧 = 𝟎.   

 

1.13 GLOSSARY 

 (i) Derivatives  

 (ii) Determinant 

 (iii) Vector   

 

1.14 REFERENCES AND SUGGESTED READINGS 

1. An introduction to Riemannian Geometry and the Tensor calculus by C.E.  

                Weatherburn “Cambridge University Press.” 

2. Matrices and Tensors in physics by A.W. Joshi “Wiley Eastern Limited”. 

3. Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”. 

4.             Differential Geometry by Gupta, Malik and Pundir “Pragati Edition’’. 

 

1.15 TEWRMINAL QUESTIONS 

 

1. Prove that the necessary and sufficient condition for the curve to be plane is 

 [𝑟̇, 𝑟,̈ 𝑟] = 0. 
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2. Define rectifying plane, write its equation. 

3. Define osculating plane, write its equation. 

4. Define normal plane, write its equation. 

5. Define equation of principal normal and binormal. 

 

 

1.16  ANSWERS 

 

CYQ 1. True  

CYQ 2. True 

CYQ 3. False 

CYQ 4. True 

CYQ 5. True 
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UNIT 2:  CURVATURE AND TORSION 

AND FUNDAMENTAL EXISTENCE 

THEOREM FOR SPACE CURVES 

 

CONTENTS: 

 

2.1 Introduction 

2.2 Objectives 

2.3 Curvature 

2.4      Torsion 

2.5      Screw-Curvature 

2.6     Curvature and torsion of any curve r = r(t) given by 

2.7  Summary 

2.8  Glossary 

2.9  References and Suggested Readings 

2.10  Terminal questions 

2.11     Answers 
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2.1 INTRODUCTION 

In differential geometry, the study of smooth spaces and shapes, the 

fundamental theorem of space curves states that the shape, size, and scale of a 

regular curve in three-dimensional space is completely determined by its curvature 

and torsion. The notion of curvature first began with the discovery and refinement 

of the principles of geometry by the ancient Greecks circa 800-600 BCE. Curvature 

was originally defined as a property of the two classical Greek curves, the line and 

the circle. 

In mathematics, curvature is any of several strongly related concepts 

in geometry that intuitively measure the amount by which a curve deviates from 

being a straight line or by which a surface deviates from being a plane. If a curve 

or surface is contained in a larger space, curvature can be 

defined extrinsically relative to the ambient space. Curvature of Riemannian 

manifolds of dimension at least two can be defined intrinsically without reference 

to a larger space. First, we show how the notion of torsion emerges in differential 

geometry. In the context of a Cartan circuit, torsion is related to translations similar 

as curvature to rotations. Cartan's investigations started by analyzing Einsteins 

general relativity theory and by taking recourse to the theory of Cosserat continua. 

 

2.2 OBJECTIVES 

 After completion of this unit learners will be able to: 

(i) Curvature 

(ii) Torsion 

(iii) Screw-Curvature 

 

2.3 CURVATURE 

Definition: The curvature at a point P of a given curve is the arc rate of rotation of 

tangent at P. its magnitude is denoted by 𝜿 (Kappa). 

To find an expression for the curvature (𝜿) at a given point P to a given curve. 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Geometry
https://en.wikipedia.org/wiki/Curve
https://en.wikipedia.org/wiki/Straight_line
https://en.wikipedia.org/wiki/Surface_(mathematics)
https://en.wikipedia.org/wiki/Plane_(geometry)
https://en.wikipedia.org/wiki/Curvature_of_Riemannian_manifolds
https://en.wikipedia.org/wiki/Curvature_of_Riemannian_manifolds


GEOMETRY                                                                                                                          MAT 611 

 

  

DEPARTMENT OF MATHEMATICS  
UTTARAKHAND OPEN UNIVERSITY 

15 

 

Let Q be a point very near to point P on the curve. Arc PQ is 𝛿𝑠 and let the direction of 

the tangent at Q makes an angle 𝛿𝜃 with the direction of tangent at P. 

                              

                                                  Fig.2.3.1 

Again, the unit tangent vector is not unit vector, since its direction changes from point 

to point. Let 𝒕 and 𝒕 + 𝜹𝒕 be its value at P and Q respectively. 

If 𝑄𝑀⃗⃗⃗⃗ ⃗⃗ = 𝒕 and 𝑄𝑁⃗⃗⃗⃗⃗⃗ =  𝒕 + 𝜹𝒕 then we have 

 𝑀𝑁⃗⃗⃗⃗⃗⃗  ⃗ = 𝜹𝒕, ∠𝑀𝑄𝑁 = 𝛿𝜃 and |𝑄𝑀⃗⃗ ⃗⃗ ⃗⃗ | = |𝑄𝑁⃗⃗⃗⃗⃗⃗ | = 1. 

From isosceles triangle QMN, we have 

MN = 2QM sin
1

2
𝛿𝜃 = 2 sin

1

2
𝛿𝜃 

Therefore,  |𝛿𝑡| = 2 sin
1

2
𝛿𝜃      ⇒ |

𝛿𝑡

𝛿𝜃
| =

sin
1

2
𝛿𝜃

1

2
𝛿𝜃

 .  

taking limits, |
𝑑𝑡

𝑑𝜃
| = 1       ……… (1) 

therefore, curvature at P = 𝜿 = 𝐥𝐢𝐦
𝛿𝜃⟶0

𝛿𝜃

𝛿𝑠
=

𝑑𝜃

𝑑𝑠
, along the direction of the tangent. 

                                        =
𝑑𝜃

|𝑑𝑡|

|𝑑𝑡|

𝑑𝑠
= |

𝑑𝜃

𝑑𝑡
| |

𝑑𝑡

𝑑𝑠
| = |

𝑑𝑡

𝑑𝑠
| = |

𝑑𝑟′

𝑑𝑠
| = |𝑟′′|    [using (1)] 

Which implies that the curvature is the scalar measure of the arc rate of turning of the 

unit vector 𝒕. The reciprocal of 𝜿, i.e. 
𝟏

𝜿
 is called radius of curvature and is denoted by 

𝜌. 

Deduction:      |𝑟′| = 1    ⇒ 𝑟′2 = 1 

Differentiating, we get    2𝒓′. 𝒓′′  = 0 

i.e. 𝒓′′ is perpendicular to 𝒓′, i.e. to t. 

but 𝒓′′ at P lies in the osculating plane at P or 𝒓′′ is a vector in osculating plane 

perpendicular to t, implying that 𝒓′′ is collinear with n. 

Also |𝑟′′| =  𝜿, so we have 𝒓′′ = ± 𝜿 𝒏.  

we choose the direction of 𝒏 such that curvature 𝜿 is always positive. 
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i.e. we take 𝒓′′ = 𝜿 𝒏    or    
𝑑𝒕

𝑑𝑠
=  𝜿 𝒏 . 

Theorem 1.12.1 A necessary and sufficient condition for the curve to be a straight line 

is that curvature 𝜅 = 0 at all points of the curve.  

Proof. Vector equation of the straight line can be put as 𝑟 = 𝑠𝑎 + 𝑏 where 𝑎 and 𝑏 are 

constant vectors. 

Hence, 𝑡 = 𝑟′ = 𝑎 and 𝑡′ = 𝑟′′ = 0 

Therefore,  𝜅 = |𝑟′′| = 0  

i.e., if a curve is a straight line, then 𝜅 = 0 i.e. 𝜅 is a necessary condition for a curve to 

be straight line. 

Converse. In case 𝜅 = 0 for all points on the curve, then 

                                            𝑟′′ = 0                ……. (1) 

Integrating (1), we get        𝑟′ = 𝑎                  ……. (2) 

Integrating (2), we get        𝑟 = 𝑎𝑠 + 𝑏           ……. (3) 

Where 𝑎 and 𝑏 are arbitrary constant vectors. The equation (3) represents a straight line 

for all values of 𝑎 and 𝑏. 

2.4 TORSION 

Definition: Torsion at point P of a given curve is the arc rate of the change in the direction 

of the bonormal at P its magnitude is denoted by 𝜏(Tau).  

Let Q be a point contiguous to P on the curve. ArcPQ = 𝛿𝑠, b and b + 𝛿𝑏 are the unit 

binormal vector at P and Q respectively and 𝛿𝜃 is the angle between b and b + 𝛿𝑏. 

If 𝑄𝑅⃗⃗ ⃗⃗  ⃗ = 𝑏, 𝑄𝑆⃗⃗⃗⃗  ⃗ = 𝑏 then 𝑅𝑆⃗⃗⃗⃗  ⃗ = 𝛿𝑏. 

                       

                                            Fig. 2.4.1 

Now from then isosceles triangle QRS, we have RS = 2QR sin
𝛿𝜃 

2
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⟹ |𝑅𝑆⃗⃗⃗⃗  ⃗| = 2|𝑄𝑅⃗⃗ ⃗⃗  ⃗| sin
𝛿𝜃 

2
  

⟹ |𝛿𝑏| = 2.1. sin
𝛿𝜃 

2
 

⟹ |
𝛿𝑏

𝛿𝜃
| = 2

sin
𝛿𝜃 

2

𝛿𝜃
    ⟹ 

𝑑𝑏

𝑑𝜃
= lim

𝛿𝜃⟶0

sin
𝛿𝜃 

2
1

2
𝛿𝜃

= 1. 

Thus, by definition, torsion at P 

𝜏 = lim
𝛿𝑠⟶0

𝛿𝜃

𝛿𝑠
=

𝑑𝜃

𝑑𝑠
 

   = |
𝑑𝜃

𝑑𝑏
| |

𝑑𝑏

𝑑𝑠
| = |

𝑑𝑏

𝑑𝑠
| = |𝑏′| 

 ⟹ 𝜏 is the scalar measure of the arc rate of the unit vector b.  

The reciprocal of the torsion is called the radius of the torsion and is denoted by 𝜎 . thus 

𝜎 =
1

𝜏
.  

Deduction: We have 𝑡. 𝑏 = 0 whence differentiating  

𝑡. 𝑏′ + 𝑡′. 𝑏 = 0     ⟹ 𝑡. 𝑏′ + 𝜅𝑛. 𝑏 = 0     [∵ 𝑡′ =  𝜅𝑛] 

⟹ 𝑡. 𝑏′ = 0         [∵ 𝑛. 𝑏 = 0]  

𝑖. 𝑒.   𝑏′ is perpendicular to 𝑡. 

Further    𝑏. 𝑏 = 1  ⟹ 2𝑏. 𝑏′ = 0 

i.e. 𝑏′ is perpendicular to b. 

∴  𝑏′ is normal to the plane containing 𝑡 and 𝑏.   𝑖. 𝑒. to rectifying plane. 

Thus 𝑏′ is collinear with 𝑛. 

Thus 𝑏′ = ± 𝜏 𝑛 

Since 𝑏 has the opposite direction to 𝑛, so negative sign is taken  

𝒊. 𝒆.   𝑏′ = − 𝜏 𝑛      or     
𝑑𝒃

𝑑𝑠
= − 𝜏 𝑛       

Theorem. A necessary and sufficient condition that a given curve is plane curve is that 

𝜏 = 0 at all points. 

Proof. Let the curve be a plane curve then the tangent and normal at all points of the 

curve lie in the plane of the curve, i.e. the plane of the curve is the osculating plane at all 

points of the curve. This implies that the unit vector b along the binormal is constant. 

𝑑𝒃

𝑑𝑠
= 0 or 𝜏 = 0. Hence the condition is necessary. 
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Converse. Let 𝜏 = 0 at all points of the curve. This implies that 
𝑑𝒃

𝑑𝑠
= 0 i.e. b. 

This implies that 
𝑑𝑏

𝑑𝑠
= 0 i.e. b is a constant vector. 

Again 
𝒅

𝒅𝒔
(𝒓. 𝒃) =

𝒅𝒓

𝒅𝒔
 . 𝒃 + 𝒓.

𝒅𝒃

𝑑𝑠
= 𝒕. 𝒃 + 𝒓. 𝒃′ 

As 𝑡 and 𝑏 are orthogonal, we have 𝑡. 𝑏 = 0. Also 𝑏′ = 0. 

Therefore  
𝒅

𝒅𝒔
(𝒓. 𝒃) = 0, i.e. 𝒓. 𝒃 = constant. 

Again 𝒃 is constant vector of magnitude unity, 𝒓. 𝒃 is the projection of the position vector 

𝒓 on 𝒃 and is same at all points of the curve by the condition 𝒓. 𝒃 = constant. This implies 

that the curve must lie in a plane. 

 

2.5 SCREW-CURVATURE 

The arc rate at which principal normal changes direction (𝑖. 𝑒. ,
𝑑𝒏

𝑑𝑠
) is called the screw 

curvature vector and its magnitude is given by √{𝑘2 + 𝜏2}. 

Note. Serret-Frenet Formulae. 

The following set of three relations involving space derivatives of fundamental unit 

vectors 𝒕, 𝒏, 𝒃 are known as Serret-Frenet Formulae. 

1. 
𝑑𝒕

𝑑𝑠
= 𝑘𝒏              (2) 

𝑑𝒏

𝑑𝑠
= 𝜏𝒃 − 𝑘𝒕          (3)  

𝑑𝒃

𝑑𝑠
= −𝜏𝒏 

Proof: (1)   Since    |𝑟′| = 1    ⇒ 𝑟′2 = 1 

Differentiating, we get    2𝒓′. 𝒓′′  = 0 

i.e. 𝒓′′ is perpendicular to 𝒓′, i.e. to t. 

but 𝒓′′ at P lies in the osculating plane at P or 𝒓′′ is a vector in osculating plane 

perpendicular to t, implying that 𝒓′′ is collinear with n. 

Also |𝑟′′| =  𝜿, so we have 𝒓′′ = ± 𝜿 𝒏.  

we choose the direction of 𝒏 such that curvature 𝜿 is always positive. 

i.e. we take 𝒓′′ = 𝜿 𝒏    or    
𝑑𝒕

𝑑𝑠
=  𝜿 𝒏 . 

(3) We have 𝑡. 𝑏 = 0 whence differentiating  

𝑡. 𝑏′ + 𝑡′. 𝑏 = 0     ⟹ 𝑡. 𝑏′ + 𝜅𝑛. 𝑏 = 0     [∵ 𝑡′ =  𝜅𝑛] 

⟹ 𝑡. 𝑏′ = 0         [∵ 𝑛. 𝑏 = 0]  
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𝑖. 𝑒.   𝑏′ is perpendicular to 𝑡. 

Further    𝑏. 𝑏 = 1  ⟹ 2𝑏. 𝑏′ = 0 

i.e. 𝑏′ is perpendicular to b. 

∴  𝑏′ is normal to the plane containing 𝑡 and 𝑏.   𝑖. 𝑒. to rectifying plane. 

Thus 𝑏′ is collinear with 𝑛. 

Thus 𝑏′ = ± 𝜏 𝑛 

Since 𝑏 has the opposite direction to 𝑛, so negative sign is taken  

𝒊. 𝒆.   𝑏′ = − 𝜏 𝑛      or     
𝑑𝒃

𝑑𝑠
= − 𝜏 𝑛     

(𝟐) We know that       𝒏 = 𝒃 × 𝒕 

        Differentiating w.r.t. ‘s’, we get  

𝑑𝒏

𝑑𝑠
= 𝑏 ×

𝑑𝒕

𝑑𝑠
+

𝑑𝒃

𝑑𝑠
× 𝒕 = 𝒃 × 𝒌𝒏 + (−𝜏 𝑛) × 𝒕 

                                      =  𝒌(𝒃 × 𝒏) − 𝝉(𝒏 × 𝒕) = 𝒌(−𝒕) − 𝝉(−𝒃) 

                                      = 𝜏 𝒃 − 𝑘𝒕 . 

 Remark. Serret-Frenet Formulae can be represented in the form of matrix 

equation as below: 

                               [
𝒕′

𝒏′

𝒃′

] = [
𝟎 𝒌 𝟎

−𝒌 𝟎 −𝝉
𝟎 −𝝉 𝟎

] [
𝒕
𝒏
𝒃
] 

 

2.6 CURVATURE AND TORSION OF ANY CURVE 

        r = r(t) GIVEN BY 

𝑘 = 
|𝑟̇ × 𝑟̈|

|𝑟̇|3
 and 𝜏 =

[ 𝑟̇,   𝑟̈ ,   𝑟 ⃛]

|𝑟̇ × 𝑟̈|3
  

We know that 𝑟̇ =
𝑑𝑟

𝑑𝑡
=  

𝑑𝑟

𝑑𝑠

𝑑𝑠

𝑑𝑡
= 𝑟′𝑠̇ = 𝑡𝑠̇              ……. (1) 

∴ |𝑟̇ | = |𝑡𝑠̇| = 𝑠̇                                                      ……. (2) 

Now differentiating (1), we get  

𝑟̈ = 
𝑑2𝑟

𝑑𝑡2 = 𝒕′𝑠̇2 +  𝒕𝑠̈      or 𝑟̈ = (𝑘𝑛)𝑠̇2 + 𝒕𝑠̈     [∵ 𝒕′ = 𝑘𝑛]   ……. (3) 

Now taking the cross-product of (1) and (3), we get  
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             𝑟̇ × 𝑟̈ = 𝑠̇3 𝑘𝑏      ⟹  |𝑟̇  ×  𝑟̈| = 𝑘𝑠̇3        ……. (4) 

Differentiating (4), we get 

𝑟̇ × 𝑟 ⃛ + 𝑟̈ × 𝑟̈ = 𝑠̇3 𝑘 + 𝒃′𝑠̇ + 𝒃 
𝑑

𝑑𝑡
(𝑠̇3 𝑘)      [∵ 𝑏′ = −𝜏 𝑛]       ……. (5) 

Again, taking the scalar product of (3) and (4), we get  

                  [𝑟̇, 𝑟̈, 𝑟 ⃛] = −𝑠̇6𝑘2𝜏                          …….. (6) 

Also, from (2) and (4), we have 

𝑠̇3 𝑘|𝑏| = |𝑟̇ × 𝑟̈|   or |𝑟̇|3𝑘|𝑏| = |𝑟̇ × 𝑟̈| 

Or       𝑘 =
|𝑟̇× 𝑟̈|

|𝑟̇|3
        [ |𝑏| = 1]   

From (6) and (4), we have 𝜏 =
[𝑟̇,   𝑟̈,   𝑟 ⃛]

|𝑟̇× 𝑟̈|3
 . 

An important Result. 

𝑘 = |𝑟′ × 𝑟′′|      and    𝜏 =
[𝑟′,   𝑟′′,   𝑟′′′]

|𝑟′× 𝑟′′|2
     

Proof: We know that 𝑟′ = 𝑡 and 𝑟′′ = 𝑘𝑛 

∴ 𝑟′ × 𝑟′′ = 𝑡 × 𝑘𝑛 = 𝑘𝑏       or     |𝑟′ × 𝑟′′| = 𝑘|𝑏| = 𝑘 

Again    𝒓′ = 𝒕 = 1. 𝒕 + 0. 𝒏 + 0. 𝒃        ……. (1) 

              𝒓′′ = 𝑘𝑛 = 0. 𝒕 + 𝑘𝒏 + 0. 𝒃      ….… (2) 

And       𝒓′′′ = 𝑘
𝑑𝑛

𝑑𝑠
+

𝑑𝑘

𝑑𝑠
𝑛 = 𝑘(𝜏𝒃 − 𝑘𝒕) + 𝑘′𝒏 

                     = −𝑘2𝒕 + 𝑘′𝒏 + 𝑘 𝜏𝒃          ….… (3) 

From (2), (3) and (4), we have  

[𝑟′,   𝑟′′,   𝑟′′′] = |
1 0 0
0 𝑘 0

−𝑘2 𝑘′ 𝑘𝜏
| = 𝑘2𝜏       ……… (4) 

Or                𝜏 =
[𝑟′,   𝑟′′,   𝑟′′′]

𝑘2 =
[𝑟′,   𝑟′′,   𝑟′′′]

|𝑟′ × 𝑟′′|2
 . 

Theorem. The necessary and sufficient condition for the curve to be a plane curve is  

                  [𝑟′,   𝑟′′,   𝑟′′′] = 0. 

Proof. From equation (4) above we have  

              [𝑟′,   𝑟′′,   𝑟′′′] = 𝑘2𝜏        

In case [𝑟′,   𝑟′′,   𝑟′′′] = 0 then either 𝑘 = 0 or 𝜏 = 0. 
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Let 𝜏 ≠ 0 at some point of the curve then in the neighborhood of this point 𝜏 ≠ 0, 

therefore 𝑘 = 0 in the neighborhood of this point. 

Hence the arc is a straight line and therefore 𝜏 = 0 on this line which contradicts our 

hypothesis. Hence 𝜏 = 0 at all points and the curve is a plane. 

Conversely. If 𝜏 = 0 i.e. the curve is a plane curve then from equation (4), we have  

                      [𝑟′,   𝑟′′,   𝑟′′′] = 0. 

Therefore, the condition is necessary as well as sufficient. 

Remark: This theorem may also be put as, show that the necessary and sufficient 

condition for the curve to be plane curve is [𝑟̇,   𝑟̈,   𝑟 ⃛] = 0. 

Question 1. For the curve 𝑥 = 𝑎(3𝑡 − 𝑡3), 𝑦 = 3𝑎𝑡2, 𝑧 = 𝑎(3𝑡 + 𝑡3), show that  

                      𝑘 = 𝜏 =
1

3𝑎(1+𝑡2)2
 . 

Solution: In this case 𝒓 in terms of parameter 𝒕 is given by 

𝒓 = (3𝑎𝑡 − 𝑎𝑡3, 3𝑎𝑡2, 3𝑎𝑡 + 𝑎𝑡3) 

∴                                         𝑟̇ = (3𝑎 − 3𝑎𝑡2, 6𝑎𝑡, 3𝑎 + 3𝑎𝑡2) 

         ∴                                         𝑟̈ = (−6𝑎𝑡, 6𝑎, 6𝑎𝑡)        and  

         ∴                                         𝑟 ⃛ = (−6𝑎, 0, 6𝑎) 

         ∴            |𝑟̇| = 3𝑎√{(1 − 𝑡2)2 + 4𝑡2 + (1 + 𝑡2)2} = 3√2𝑎(1 + 𝑡2) 

Again      𝑟̇ × 𝑟̈ = (18𝑎2𝑡2 − 18𝑎2, −36𝑎2𝑡, 18𝑎2 + 18𝑎2𝑡2) 

∴  |𝑟̇ × 𝑟̈| = 18𝑎2√(𝑡2 − 1)2 + 4𝑡2 + (1 + 𝑡2)2 = 18√2𝑎2(1 + 𝑡2) 

Therefore,    𝑘 =
|𝑟̇×𝑟̈|

|𝑟̇|3
=

18√2𝑎2(1 + 𝑡2)

54√2𝑎3(1 + 𝑡2)3
= 

1

3𝑎(1+𝑡2)2
 

Again [𝑟̇, 𝑟̈, 𝑟 ⃛] = |
3𝑎 − 3𝑎𝑡2 6𝑎𝑡 3𝑎 + 3𝑎𝑡2

−6𝑎𝑡 6𝑎 6𝑎𝑡
−6𝑎 0 6𝑎

| 

                         = |
6𝑎 6𝑎𝑡 3𝑎 + 3𝑎𝑡2

−0 6𝑎 6𝑎𝑡
−0 0 6𝑎

| by 𝑐1 + 𝑐3 

                        = 6𝑎(36𝑎2) = 216𝑎3 

Therefore, 𝜏 =
[𝑟̇,𝑟̈,𝑟 ⃛]

|𝑟̇×𝑟̈|2
=

216𝑎3

{18√2𝑎2(1+𝑡2)}
2 =

1

3𝑎(1+𝑡2)2
 

Hence, 𝑘 = 𝜏 =
1

3𝑎(1+𝑡2)2
 . 
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Question 2. For the curve 𝑟 = (𝑡, 𝑡2, 𝑡3), show that  

                      𝑘2 =
4(9𝑡4 + 9𝑡2 + 1)

(9𝑡4  + 4𝑡2 + 1)2
  and 𝜏 =

3

9𝑡4  + 4𝑡2 + 1
 

Solution: here  𝑟 = (𝑡, 𝑡2, 𝑡3)  

         ∴              𝑟̇ = (1, 2𝑡, 3𝑡2) 

         ∴              𝑟̈ = (0, 2, 6𝑡)        and  

         ∴              𝑟 ⃛ = (0, 0, 6) 

Therefore, 𝑟̇ × 𝑟̈ = (6𝑡2, −6𝑡, 0) 

∴              |𝑟̇ × 𝑟̈| = √36𝑡4 + 36𝑡2 + 4 = 2√9𝑡4 + 9𝑡2 + 1 

Again, [𝑟̇, 𝑟̈, 𝑟 ⃛] = |
1 2𝑡 3𝑡2

0 2𝑎 6𝑡
0 0 6

| = 12 

Also, |𝑟̇|2 = (9𝑡4 + 4𝑡2 + 1) 

Now, 𝑘2 =
 |𝑟̇×𝑟̈|2

|𝑟̇|6
=

4(9𝑡4+9𝑡2+1)

(9𝑡4+4𝑡2+1)3
     and 𝜏 =  

[𝑟̇,   𝑟̈,   𝑟 ⃛]

|𝑟 ̇ × 𝑟̈|2
=

12

4(9𝑡4+9𝑡2+1)
=

3

(9𝑡4+9𝑡2+1)
. 

 

Question 3. Find the curvature and torsion for the curve 𝑥 = 𝑎 𝑐𝑜𝑠𝑡, 𝑦 = 𝑎 𝑠𝑖𝑛𝑡, 𝑧 =

𝑎𝑡 𝑐𝑜𝑡𝛼. 

Solution: Here position vector r in term of parameter t is given by 

                   𝑟 = (𝑎 𝑐𝑜𝑠𝑡, 𝑎 𝑠𝑖𝑛𝑡, 𝑎𝑡 𝑐𝑜𝑡𝛼)  

         ∴              𝑟̇ = (−𝑎𝑠𝑖𝑛𝑡, 𝑎𝑐𝑜𝑠𝑡, 𝑎𝑐𝑜𝑡𝛼) 

         ∴              𝑟̈ = (−𝑎𝑐𝑜𝑠𝑡, −𝑠𝑖𝑛𝑡, 0)        and  

         ∴              𝑟 ⃛ = (𝑎𝑠𝑖𝑛𝑡, −𝑎𝑐𝑜𝑠𝑡, 0) 

Therefore, 𝑟̇ × 𝑟̈ = (𝑎2𝑠𝑖𝑛𝑡 𝑐𝑜𝑡𝛼, 𝑎2𝑐𝑜𝑠𝑡 𝑐𝑜𝑡𝛼, 𝑎2) 

∴              |𝑟̇ × 𝑟̈| = 𝑎2𝑐𝑜𝑠𝑒𝑐𝛼 

And |𝑟̇| = (𝑎2𝑠𝑖𝑛2𝑡 + 𝑎2𝑐𝑜𝑠2𝑡 + 𝑎2𝑐𝑜𝑡2𝛼)1/2 = 𝑎𝑐𝑜𝑠𝑒𝑐𝛼 

Again, [𝑟̇, 𝑟̈, 𝑟 ⃛] = |
−𝑎𝑠𝑖𝑛𝑡 𝑎𝑐𝑜𝑠𝑡 𝑎𝑐𝑜𝑡𝛼
−𝑎𝑐𝑜𝑠𝑡 −𝑎𝑠𝑖𝑛𝑡 0
𝑎𝑠𝑖𝑛𝑡 −𝑎𝑐𝑜𝑠𝑡 0

| = 𝑎2𝑐𝑜𝑡𝛼 

Therefore, 𝑘 =
|𝑟̇×𝑟̈|

|𝑟̇|3
=

𝑎2𝑐𝑜𝑠𝑒𝑐𝛼

𝑎3𝑐𝑜𝑠𝑒𝑐3𝛼
=

1

𝑎
𝑠𝑖𝑛2𝛼  

And 𝜏 = 
[𝑟̇,   𝑟̈,   𝑟 ⃛]

|𝑟 ̇ × 𝑟̈|2
=

𝑎3𝑐𝑜𝑡𝛼

𝑎4𝑐𝑜𝑠𝑒𝑐2𝛼
=

1

𝑎
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 . 

 

Question 4. If 𝑥 = 𝑎𝑐𝑜𝑠𝑡, 𝑦 = 𝑎𝑠𝑖𝑛𝑡, 𝑧 = 𝑐𝑡 a plane curve? Calculate the curvature and 

torsion  

                    of the above curvature.  

Solution: This is exactly above question 3 put a cot 𝛼 = c in question 3 the we get  

 

𝑘 =  
1

𝑎
𝑠𝑖𝑛2𝛼 =

1

𝑎
.

𝑎2

𝑎2+𝑐2 =
𝑎

𝑎2+𝑐2  and 𝜏 =
1

𝑎
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 = 

1

𝑎
.

𝑎𝑐

𝑎2+𝑐2 =
𝑐

𝑎2+𝑐2 

Since in this case 𝜏 ≠ 0, hence curve is not a plane curve. 

Question 5. Show that the Serret-Frenet formulae can be written in the form 
𝑑𝒕

𝑑𝑠
= 𝜔 × 𝒕,  

                     
𝑑𝒏

𝑑𝑠
= 𝜔 × 𝒏, 

𝑑𝒃

𝑑𝑠
= 𝜔 × 𝒃 and determine 𝜔. 
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Solution: Since we know that 
𝑑𝒕

𝑑𝑠
= 𝑘𝑛 = 𝜏𝑡 × 𝑡 + 𝑘𝑏 × 𝑡    [∴ 𝑡 × 𝑡 = 0 and 𝑏 × 𝑡 = 𝑛] 

                                                     = (𝜏𝑡 + 𝑘𝑏) × 𝑡        …… (1) 

And     
𝑑𝒏

𝑑𝑠
= 𝜏𝑏 − 𝑘𝑡 = 𝜏(𝑡 × 𝑛) + 𝑘(𝑏 × 𝑛) 

                                   = (𝜏𝑡 + 𝑏𝑘) × 𝑛                  ……. (2) 

𝑑𝒃

𝑑𝑠
= −𝜏𝑛 = 𝜏(𝑡 × 𝑏) + 𝑘𝑏 × 𝑏 

                                                       = (𝜏𝑡 + 𝑘𝑏) × 𝑏        ……… (3) 

From equation (1), (2), (3), we have 
𝑑𝒕

𝑑𝑠
= 𝜔 × 𝒕,  

𝑑𝒏

𝑑𝑠
= 𝜔 × 𝒏, 

𝑑𝒃

𝑑𝑠
= 𝜔 × 𝒃      Where, 𝜔 =  𝜏𝑡 + 𝑘𝑏 

 

Question 6. Show that 𝑟′′′ = 𝑘′𝑛 − 𝑘2𝑡 + 𝑘𝜏𝑏 and show that  

                     𝑟′′′′ = (𝑘′′ − 𝑘3 − 𝑘𝜏2)𝑛 − 3𝑘′𝑘𝑡 + (2𝑘′𝜏 + 𝜏′𝑘)𝑏. 

Solution: We have 𝑟′′ = 𝑘𝑛  

∴ 𝑟′′′ = 𝑘𝑛′ + 𝑘′𝑛 = 𝑘(𝜏𝑏 − 𝑘𝑡) + 𝑘′𝑛 

          = 𝑘′𝑛 − 𝑘2𝑡 + 𝑘𝜏𝑏. 

Hence,                     𝑟′′′′ = 𝑘′′𝑛 + 𝑘′𝑛′ − 2𝑘𝑘′𝑡 − 𝑘2𝑡′ + (𝑘𝜏′ + 𝑘′𝜏)𝑏 + 𝑘𝜏𝑏′ 

                                        = 𝑘′′𝑛 + 𝑘′(𝜏𝑏 − 𝑘𝑡) − 2𝑘𝑘′𝑡 − 𝑘3𝑛 + (𝑘𝜏′ + 𝑘′𝜏)𝑏 − 𝑘𝜏2𝑛 

                                        = (𝑘′′ − 𝑘3 − 𝑘𝜏2)𝑛 − 3𝑘𝑘′𝑡 + (2𝑘′𝜏 + 𝜏′𝑘)𝑏  

 

Question 7. Prove that [𝑟′,  𝑟′′ , 𝑟′′′] = 𝑘2𝜏. 

Solution: We have 𝑟′ = 𝑡 so that 𝑟′′ = 𝑡′ = 𝑘𝑛 

And 𝑟′′′ = 𝑘′𝑛 − 𝑘2𝑡 +  𝑘𝜏𝑏 (by. Question 6) 

∴  [𝑟′,  𝑟′′ , 𝑟′′′] = 𝑟′. [ 𝑟′′ × 𝑟′′′] 

                          = 𝑡. [𝑘𝑛 × (−𝑘2𝑡 + 𝑘′𝑛 +  𝑘𝜏𝑏)] 

                          = 𝑡. [ 𝑘2𝑏 + 𝑘2𝜏𝑡] = 𝑘2𝜏𝑡         [since t.b = 0 and t.t = 1] 

Question 8. If the tangent and binormal at a point of a curve make an angle 𝜃 and 𝜑 

respectively with a fixed direction, show that 
sin 𝜃

sin 𝜑
 .

𝑑𝜃

𝑑𝜑
= −

𝑘

𝜏
 . 

Solution: Let the tangent t and bonormal b at a point of a curve make angles 𝜃 and 𝜑 

with the fixed direction, say a in space, then  

𝑡. 𝑎 = 𝑎 cos 𝜃  where |𝑎| = 𝑎 

𝑏. 𝑎 = 𝑐 cos𝜑   

Differentiating w.r.to ‘s’ we get  

𝑡′. 𝑎 = −𝑎 sin 𝜃
𝑑𝜃

𝑑𝑠
  (Differentiating of 𝒂 is zero, since, 𝒂 is a constant vector)  

Or          kn. 𝑎 = −𝑎 sin 𝜃
𝑑𝜃

𝑑𝑠
           ……. (1) 

Also 𝑏′. 𝑎 = −𝑎 sin𝜑
𝑑𝜑

𝑑𝑠
      i.e., −𝜏𝑛. 𝑎 = −𝑎 sin 𝜑

𝑑𝜑

𝑑𝑠
        …… (2) 

Dividing (1) by (2), we get 
sin 𝜃

sin 𝜑
 .

𝑑𝜃

𝑑𝜑
= −

𝑘

𝜏
 . 

CHECK YOUR PROGRESS  
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True or false Questions 

Problem 1. If 𝜏 = 0 then the curve is a plane curve. 

Problem 2. The curvature at a point P of a given curve is the arc rate of  

                     rotation of tangent at P. 

Problem 3. If for a curve [𝑟′,   𝑟′′ ,   𝑟′′′] = 1 then curve is a plane curve. 

Problem 4 A necessary and sufficient condition for the curve to be a  

                   straight line is that curvature 𝜅 = 1 at all points of the curve.  

Problem 5. A necessary and sufficient condition for the curve to be a  

                    straight line is that curvature 𝜅 = 0 at all points of the curve.  

 

 

 

2.7 SUMMARY 

(1) Curvature: The curvature at a point P of a given curve is the arc rate of rotation  

                          of tangent at P. its magnitude is denoted by 𝜿 (Kappa). 

(2) Serret-Frenet Formulae. 

The following set of three relations involving space derivatives of fundamental unit 

vectors 𝒕, 𝒏, 𝒃 are known as Serret-Frenet Formulae. 

(𝒊)  
𝑑𝒕

𝑑𝑠
= 𝑘𝒏              (ii) 

𝑑𝒏

𝑑𝑠
= 𝜏𝒃 − 𝑘𝒕          (iii)  

𝑑𝒃

𝑑𝑠
= −𝜏𝒏 

(3) The necessary and sufficient condition for the curve to be a plane curve is  

                  [𝑟′,   𝑟′′,   𝑟′′′] = 0. 

          (4) Serret-Frenet Formulae can be represented in the form of matrix equation as 

below: 

                               [
𝒕′

𝒏′

𝒃′

] = [
𝟎 𝒌 𝟎

−𝒌 𝟎 −𝝉
𝟎 −𝝉 𝟎

] [
𝒕
𝒏
𝒃
] 

 

2.8 GLOSSARY 

 (i) Derivatives  

 (ii) Determinant 

 (iii) Vector   
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2.9 REFERENCES AND SUGGESTED READINGS 

1. An introduction to Riemannian Geometry and the Tensor calculus by C.E.    

               Weatherburn “Cambridge University Press.” 

2. Matrices and Tensors in physics by A.W. Joshi “Wiley Eastern Limited”. 

3. Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”. 

4.            Differential Geometry by Gupta, Malik and Pundir “Pragati Edition’’. 

 

2.10 TEWRMINAL QUESTIONS 

 

1. Prove that the necessary and sufficient condition for the curve to be plane is 

[𝑟′,   𝑟′′,   𝑟′′′] = 0. 

2. Find the osculating plane, curvature and torsion at any point of the curve 

 𝑥 = 𝑎 𝑐𝑜𝑠2𝑢, 𝑦 = 𝑎 𝑠𝑖𝑛2𝑢, 𝑧 = 2𝑎 𝑠𝑖𝑛𝑢. 

3. Define curvature, also prove that 
𝑑𝒕

𝑑𝑠
=  𝜿 𝒏 . 

4. Find the curvature and torsion of the curve given by  

𝑟 = (𝑎𝑡 − 𝑎𝑠𝑖𝑛𝑡, 𝑎 − 𝑎𝑐𝑜𝑠𝑡, 𝑏𝑡). 

5. For the curve 𝑟 = (√𝑎𝑡3, 𝑎(1 + 3𝑡2), √6𝑎𝑡 ), show that 𝜏 = 𝑘 =
1

𝑎(1 + 3𝑡2)2  . 

 

2.11 ANSWERS 

 

TQ 2. The equation of osculating plane is 3𝑢 𝑠𝑖𝑛𝑢,    torsion  
3

𝑎(5𝑠𝑒𝑐𝑢 + 3𝑐𝑜𝑠𝑢)
 . 

TQ 4. 𝑘 =
𝑎( 𝑏2 + 4𝑎2𝑠𝑖𝑛4𝑡

2
 )1/2

𝑏2 + 4𝑎2𝑠𝑖𝑛2𝑡

2

      and 𝜏 =
−𝑏

𝑏2 + 4𝑎2𝑠𝑖𝑛4𝑡

2

 . 
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CYQ 1. True  

CYQ 2. True 

CYQ 3. False 

CYQ 4. False 

CYQ 5. True 
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UNIT 3:  INTRINSIC PROPERTIES OF A   

                SURFACE 

 

CONTENTS: 

 

3.1 Introduction 

3.2 Objectives 

3.3 Intrinsic Equations 

3.4      Fundamental Theorems for space curves 

3.5      Osculating Circle (or the circle of curvature) 

3.6     The Osculating Sphere (or the Sphere of curvature)  

3.7  Summary 

3.8  Glossary 

3.9  References and Suggested Readings 

3.10  Terminal questions 

3.11     Answers 
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3.1 INTRODUCTION 

In geometry, an intrinsic equation is an equation that defines a curve using 

its intrinsic properties. These properties do not depend on the curve's location or 

orientation and in differential geometry, the fundamental theorem of space curves 

states that every regular curve in three-dimensional space, with non-zero curvature, 

has its shape (and size or scale) completely determined by its curvature and torsion. 

 

3.2 OBJECTIVES 

 After completion of this unit learners will be able to: 

(i) Intrinsic Equations 

(ii) Osculating Circle 

(iii) The Osculating Sphere 

 

3.3 INTRINSIC EQUATIONS 

   We have defined the curve with respect to a set of three mutually orthogonal 

axis but in case the same curve be referred to a different set of cartesian axes, then its 

defining equations are altogether different and its is not at all clear that they refer to the 

same curve. Thus, it is required to describe a curve without reference to a particular set 

of cartesian axes, this can be done by expressing the curvature and torsion at any of its 

points as function of arc length s, say 𝑘 = 𝑓(𝑠);  𝜏 = 𝑔(𝑠). These are called intrinsic 

equation of the curve. 

 

3.4 FUNDAMENTAL THEOREMS FOR SPACE  

      CURVES 

Theorem 1. (Existence Theorem). If 𝑘(𝑠) and 𝜏(𝑠) are continuous functions of a real 

variable 𝑠 (𝑠 ≥ 0) then there exists a space curve for which 𝑘 is the curvature, 𝜏 is the 

torsion, and s is the arc length measured from some suitable base point. 

Proof. From existence theorem on linear differential equation, we know that the 

differential equations 

dα

ds
= kβ,           

dβ

ds
=  τγ − kα,          

dγ

ds
= −τβ      ……… (1) 
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Admit a unique set of solutions for a given set of values 𝛼, 𝛽, 𝛾 at s = 0. 

Therefore, we have unique set 𝛼1 , 𝛽1 , 𝛾1 for which the values at s = 0 are 1, 0. 

Similarly, there exist a unique set 𝛼2 , 𝛽2 , 𝛾2 with values 0, 1, 0 at s = 0 and 𝛼3 , 𝛽3 , 

𝛾3 is a unique set with values 0, 0, 1 at s = 0. 

Now 
𝑑

𝑑𝑠
(𝛼1

2 + 𝛽1
2 + 𝛾1

2) = 2 (𝛼1
𝑑𝛼1

𝑑𝑠
+ 𝛽1

𝑑𝛽1

𝑑𝑠
+ 𝛾1

𝑑𝛾1

𝑑𝑠
)  

                                            = [𝛼1(𝑘𝛽1) + 𝛽1(τ𝛾1 − k𝛼1) + 𝛾1(−τ𝛽1)] = 0 [From (1)] 

Integrating, we get 𝛼1
2 + 𝛽1

2 + 𝛾1
2 = 𝑐1 (constant) 

Initially at s = 0, 𝛼1 = 1, 𝛽1 = 0, 𝛾1 = 0,     ∴ 𝑐1 = 1 

Hence             

𝛼1
2 + 𝛽1

2 + 𝛾1
2 = 1

𝛼2
2 + 𝛽2

2 + 𝛾2
2 = 1

𝛼3
2 + 𝛽3

2 + 𝛾3
2 = 1

}            … … . . (2) 

Again    
𝑑

𝑑𝑠
(𝛼1𝛼2 + 𝛽1𝛽2 + 𝛾1𝛾2) 

 = (𝛼1

𝑑𝛼2

𝑑𝑠
+ 𝛽1

𝑑𝛽2

𝑑𝑠
+ 𝛾1

𝑑𝛾2

𝑑𝑠
) + (𝛼2

𝑑𝛼1

𝑑𝑠
+ 𝛽2

𝑑𝛽1

𝑑𝑠
+ 𝛾2

𝑑𝛾1

𝑑𝑠
) 

    = 𝛼1(𝑘𝛽2) + 𝛽1(τ𝛾2 − k𝛼2) + 𝛾1(−τ𝛽2) + 𝑘𝛽1𝛼2 + 𝛽2(τ𝛾1 − k𝛼1) + 𝛾2(−τ𝛽1) 

   = 0 

Thus, on integrating, we have 𝛼1𝛼2 + 𝛽1𝛽2 + 𝛾1𝛾2 = 𝑐2 (constant) 

Initially at s = 0, 𝛼1 = 1, 𝛽1 = 0, 𝛾1 = 0, 𝛼2 = 0, 𝛽2 = 1, 𝛾2 = 0 

∴      𝑐2 = 0 

Hence,      

𝛼1𝛼2 + 𝛽1𝛽2 + 𝛾1𝛾2 = 1 
𝛼1𝛼3 + 𝛽1𝛽3 + 𝛾1𝛾3 = 1
𝛼3𝛼1 + 𝛽3𝛽1 + 𝛾3𝛾1 = 1

 }            … … . . (3) 

Thus, we have six equations given by (2) and (3) in elements of three sets namely 

(𝛼1, 𝛽1, 𝛾1 ), (𝛼2, 𝛽2, 𝛾2 ) and (𝛼3, 𝛽3, 𝛾3  ). Hence it follows that there are three 

mutually orthogonal unit vectors 𝑡 = (𝛼1, 𝛽1, 𝛾1 ), 𝑛 = (𝛼2, 𝛽2, 𝛾2 ) and 𝑏 =

(𝛼3, 𝛽3, 𝛾3 ) defined for each curve of s. 

Now let the be defined by  

𝑟 = 𝑟(𝑠) = ∫ 𝑡(𝑠)𝑑𝑠          …….. (4) 

 Thus 𝑘 is curvature of the curve given by (4). 

Again 𝑏 = 𝑡 × 𝑛          ⟹ 𝑏′ = 𝑡′ × 𝑛 + 𝑡 × 𝑛′ 
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                                               = 𝑘(𝑛 × 𝑛) + 𝑡 × (−𝑘𝑡 + τn) putting for 𝑡′ and 𝑛′ 

                                               = (𝑛 × 𝑛) − 𝑘(𝑡 × 𝑡) + τ(𝑡 × 𝑛) 

                                               = τb Where, |𝑏| = 1  

Thus τ is a torsion of the curve, so there exists a curve given by (4) where 𝑡, 𝑛, 𝑏 are 

unit vectors along the tangent, principal normal and bonormal respectively and 𝑘 and τ 

are its curvature and torsion respectively. 

Example 1. Show that the intrinsic equations of the curve given by  

                      𝑥 = 𝑎𝑒𝑢 cos 𝑢 , 𝑦 = 𝑎𝑒𝑢 sin 𝑢 , 𝑧 = 𝑏𝑒𝑢 are  

                      𝑘 =
𝑎√2

𝑠√{2𝑎2+𝑏2}
 , τ =

𝑎√2

𝑠√{2𝑎2+𝑏2}
 . 

Solution: Here 𝑟 = (𝑎𝑒𝑢 cos 𝑢 , 𝑎𝑒𝑢 sin 𝑢 , 𝑏𝑒𝑢 ) 

Therefore 𝑟̇ = [𝑎𝑒𝑢(𝑐𝑜𝑠𝑢 − 𝑠𝑖𝑛𝑢), 𝑎𝑒𝑢(𝑠𝑖𝑛𝑢 + 𝑐𝑜𝑠𝑢), 𝑏𝑒𝑢] 

|𝑟̇| = 𝑠̇ = 𝑒𝑢√[𝑎2(𝑐𝑜𝑠𝑢 − 𝑠𝑖𝑛𝑢)2 + 𝑎2(𝑐𝑜𝑠𝑢 + 𝑠𝑖𝑛𝑢)2 + 𝑏2]  

     = 𝑒𝑢√(2𝑎2 + 𝑏2) = 𝑠̇       ………. (1) 

     𝑟′ =
𝑟̇

𝑠̇
 = 

[𝑎(𝑐𝑜𝑠𝑢 − 𝑠𝑖𝑛𝑢),   𝑎(𝑠𝑖𝑛𝑢 + 𝑐𝑜𝑠𝑢),   𝑏]

√(2𝑎2 + 𝑏2)
  

𝑟′′ = 𝑘𝑛 =
[−𝑎(𝑠𝑖𝑛𝑢 + 𝑐𝑜𝑠𝑢),   𝑎(𝑐𝑜𝑠𝑢 − 𝑠𝑖𝑛𝑢),   0]

√(2𝑎2 + 𝑏2)
.

1

𝑠
         ………… (2) 

Taking module of both sides, we get 

𝑘 = |𝑟′′| =
𝑎√2

√(2𝑎2+𝑏2)
        [∵

1

𝑠̇
=

1

𝑠
] from (1) 

Also, from (2)  

𝑠𝑟′′ =
[−𝑎(𝑠𝑖𝑛𝑢 +  𝑐𝑜𝑠𝑢),   𝑎(𝑐𝑜𝑠𝑢 −  𝑠𝑖𝑛𝑢),   0]

√(2𝑎2  +  𝑏2)
 

Differentiating w.r.t. ‘s’, we get 

𝑠𝑟′′′ + 𝑟′′ =
[−𝑎(𝑐𝑜𝑠𝑢 − 𝑠𝑖𝑛𝑢),   𝑎(𝑐𝑜𝑠𝑢+ 𝑠𝑖𝑛𝑢),   0]

√(2𝑎2 + 𝑏2)
. 

1

𝑠
     From (1) 

Or       𝑠2𝑟′′′ + 𝑠𝑟′′ =
[−𝑎(𝑐𝑜𝑠𝑢 − 𝑠𝑖𝑛𝑢),−𝑎(𝑐𝑜𝑠𝑢 + 𝑠𝑖𝑛𝑢),   0]

√(2𝑎2 + 𝑏2)
  

Now, [𝑟′, 𝑠𝑟′′ , 𝑠2𝑟′′′ + 𝑠𝑟′′   ] =

1

(2𝑎2 + 𝑏2)3/2 |

𝑎(𝑐𝑜𝑠𝑢 − sinu) 𝑎(𝑠𝑖𝑛𝑢 + 𝑐𝑜𝑠𝑢) 𝑏
−𝑎(𝑠𝑖𝑛𝑢 + 𝑐𝑜𝑠𝑢) 𝑎(𝑐𝑜𝑠𝑢 − 𝑠𝑖𝑛𝑢) 0
−𝑎(𝑐𝑜𝑠𝑢 − 𝑠𝑖𝑛𝑢) −𝑎(𝑠𝑖𝑛𝑢 + 𝑐𝑜𝑠𝑢) 0

| 
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Or     𝑠2[𝑟′, 𝑟′′ , 𝑟′′′   ] = 
1

(2𝑎2 + 𝑏2)3/2 𝑎2𝑏2[(𝑠𝑖𝑛𝑢 + 𝑐𝑜𝑠𝑢)2 + (𝑐𝑜𝑠𝑢 − 𝑠𝑖𝑛𝑢)2] 

Or    𝑠3𝑘2τ =
2𝑎2𝑏

(2𝑎2 + 𝑏2)3/2       or  𝑠3 2𝑎2

(2𝑎2 + 𝑏2)2 .
1

𝑠2 τ =
2𝑎2𝑏

(2𝑎2 + 𝑏2)3/2        

Or    τ =
𝑏

(2𝑎2 + 𝑏2)1/2 
1

𝑠
 . 

Hence, the intrinsic equations of the given curve are  

𝑘 =
√2𝑎

(2𝑎2 + 𝑏2)1/2

1

𝑠
 ,    τ =

𝑏

(2𝑎2 + 𝑏2)1/2

1

𝑠
 . 

3.5 OSCULATING CIRCLE (OR THE CIRCLE OF    

      CURVATURE) 

Definition: Let P, Q, R be three points on any curve then the circle of curvature at point 

P is the limiting position of the circle through P, Q, R when the points Q, R tend to P. 

Alternatively: The osculating circle at point P on any curve is the circle which has 

three-point contact with the curve at P. 

Obviously, the osculating circle at any point of a curve lies in the osculating plane at 

the point since the osculating plane at P has three-point contact at P with the curve. 

The radius and the Centre of circle of curvature: 

Let a circle in the osculating plane be given as intersection of the plane and the sphere 

|𝑟 − 𝑐| = 𝑎     i.e. (𝑟 − 𝑐)2 = 𝑎2  where r is the position vector of the generic point and 

c is the position vector of Centre C and a is radius of the sphere. 

                        

                                                          Fig.3.5.1 

Let the equation of the curve be 𝑟 = 𝑟(𝑠) (i.e. parametric in s). now the positions of 

intersection of the curve and sphere are given by 

𝐹(𝑠) = [𝑟(𝑠) − 𝑐]2 − 𝑎2 = 0 

For three-point contact, we have 
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F(s) = 𝐹′(𝑠) = 𝐹′′(𝑠) = 0 

These conditions give 

(𝑟 − 𝑐)2 = 𝑎2 , (𝑟 − 𝑐). 𝑟′ = 0, (𝑟 − 𝑐). 𝑟′′ + 𝑟′. 𝑟′ = 0 

Since 𝑟′ = 𝑡, 𝑟′′ = 𝑡′ = 𝑘𝑛, 𝑟′. 𝑟′ = 𝑡2 = 1 

These equations may be put as  

(𝑟 − 𝑐)2 = 𝑎2                      ……… (1) 

(𝑟 − 𝑐). 𝑡 = 0                       ……... (2) 

And  (𝑟 − 𝑐). 𝑛 = −𝜌           .…….. (3) 

Equation (2) shows that (r – c) lies in the normal plane at P. but definition it also lies in 

the osculating plane at P, hence (r – c) must be along the line of intersection of 

osculating plane and normal plane, thus it must lie in the direction of principal normal 

at P. thus  

(𝑟 − 𝑐) = 𝜆𝑛 where 𝜆 is any scalar, substitutions in (1) and (3) give 𝑎 = 𝜌 and 𝜆 = −𝜌  

Therefore, position vector c of the centre of osculating circle is given by  

𝑐 = 𝑟 − 𝜆𝑛 = 𝑟 + 𝜌𝑛  

It is evident that centre lies on the principal normal and is at a distance 𝜌 from P. 

 Properties of the locus of the centre of curvature: 

Let 𝐶 be the original curve and 𝐶1 be the locus of the centre of curvature, then it 

has following two important properties. 

(i) The tangent to 𝐶1 lies in the normal plane of the original curve C. 

(ii) In case the original curve C has constant curvature 𝑘 then the curvature 

of 𝐶1 is also constant and torsion of 𝐶1 varies inversely as that of C. 

Proof: Let the suffix unit be used for quantities belonging to the locus of the 

centre of curvature i.e. for 𝐶1. 

(i) The position vector c of the curvature of 𝐶1 is given by  

𝑐 = 𝑟 + 𝜌𝑛  

Differentiating this w.r.t. ‘s’, we have  

𝐶′ = 𝑡1 = (𝑟 + 𝜌𝑛)′ 𝑑𝑠

𝑑𝑠1
      or 𝑡1 = (𝑟′ + 𝜌𝑛′ + 𝜌′𝑛)

𝑑𝑠

𝑑𝑠1
 

𝑡1 = [𝑡 + 𝜌𝑛′ + 𝜌(τb − kt)]
𝑑𝑠

𝑑𝑠1
    [𝑏𝑦 𝐹𝑒𝑟𝑛𝑒𝑡′𝑠 𝑓𝑜𝑟𝑚𝑢𝑙𝑎] 

𝑡1 = (𝜌𝑛′ + 𝜌τb)
𝑑𝑠

𝑑𝑠1
       [∵ 𝜌𝑘 = 1]      ……… (1) 
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                                       Fig.3.5.2 

The relation (1) shows that the tangent to 𝐶1 lies in the plane containing 𝒏 and 𝒃 i.e. in 

normal plane of C if it is inclined at an angle 𝛼 to the principal normal 𝒏. 

Then cos 𝛼 = 𝑛. 𝑡1 = 𝑛. (𝜌𝑛′ + 𝜌τb)
𝑑𝑠

𝑑𝑠1
     [from (1)] 

cos 𝛼 = 𝜌′ 𝑑𝑠

𝑑𝑠1
 and also  sin 𝛼 = 𝜌τ

𝑑𝑠

𝑑𝑠1
        …….. (2) 

Again squaring (1) we get 1 = √(𝜌′2 + 𝜌2τ2)
𝑑𝑠

𝑑𝑠1
        …….. (3) 

Using (2) and (3), we have  

cos 𝛼 =
𝜌′

√𝜌′2
+

𝜌2

𝜎2

=
𝜌′𝜎

√𝜌2 + 𝜌′2
𝜎2

      or       tan 𝛼 =
𝜌

𝜌′𝜎
 

Or    𝛼 = 𝑡𝑎𝑛−1 (
𝜌

𝜌′𝜎
)       ……… (4) 

(ii) In case 𝑘 is constant i.e. 𝜌 is constant, we have 𝜌′ = 0 

Thus from )1), we have 𝑡1 = 𝜌τb
𝑑𝑠

𝑑𝑠1
       …….. (5) 

Squaring both sides of this equation, we get  

𝑑𝑠

𝑑𝑠1
= 

1

𝜌τ
        [∴ 𝑡1

2 = 1 − 𝑏2]          ………. (6) 

From (5) and (6), we have 𝑡1 = 𝑏 

Now differentiating this relation w.r.t. ‘s’, we get 

        𝑡1
′ = 𝑏

𝑑𝑠

𝑑𝑠1
    or     𝑡1

′ = 𝑘1𝑛1 = −τn
𝑑𝑠

𝑑𝑠1
 

Or    𝑘1𝑛1 = −τn
1

𝜌τ
= −𝑘𝑛 

This implies that 𝑛1 is parallel to n and choosing the direction of 𝑛1 opposite to that of 

𝑛 such that 𝑛1 = −𝑛. Therefore 𝑘1 = 𝑘. 

Again   𝑏1 = 𝑡1 × 𝑛1 = 𝑏 × (−𝑛) = 𝑡 

Differentiating this relation, we get  
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−τ1𝑛1 =
𝑑𝑏2

𝑑𝑠1
= 𝑡′ 𝑑𝑠

𝑑𝑠1
    = 𝑘𝑛 (

𝑘

τ
)  

But 𝑛1 = −𝑏      therefore τ1 =
𝑘2

τ
=

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

τ
 

i.e. torsion of 𝐶1 varies inversely as that of 𝐶. 

 

Example:  Show that the principal normal to a curve is normal to the locus of the centre 

at points where curvature k is stationary. 

Solution: The position vector of the centre of curvature is given by  

c = 𝑟 + 𝜌𝑛       [r = r(s) ]    …….. (1) 

let the suffix unity be used for quantities belonging to the locus of c( = 𝑟1), then 

𝑑𝑟

𝑑𝑠
= 𝑡1

𝑑𝑠

𝑑𝑠1
= 𝑡 + 𝜌(τb − kt) + 𝜌′𝑛 

Or  𝑡1 = (𝜌τb + 𝜌′𝑛)
𝑑𝑠

𝑑𝑠1
      (∴ 𝜌𝑘 = 1)      ………. (2) 

Now taking scalar product of (2) with n, we get 

𝑡1. 𝑛 = 𝜌′ 𝑑𝑠

𝑑𝑠1
       ……… (3) 

In case k is constant, then 𝜌′ = 0 

Hence from (3), we have  

𝑡1. 𝑛 = 0  

i.e. principal normal is normal to the locus of centre of curvature. 

 

3.6 THE OSCULATING SPHERE (OR THE SPHERE OF    

      CURVATURE) 

Definition: Let P, Q, R, S are four points on a curve then the sphere of curvature at 

point P is the limiting position of the sphere PQRS when the points Q, R, S tend to 

coincide with P. its radius and centre are called radius and centre of spherical curvature.  

Alternatively: The sphere which has a four-point contact with the curve at a point P is 

called osculating sphere at P. 

The radius and the centre of the sphere of curvature. 

Let c be the position vector of the centre and R be the radius of the sphere.  
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Then its equation is (𝒓 − 𝑐)2 = 𝑅2          ………. (1) 

Where 𝒓 is the position vector of the generic point. 

The point of intersection of the curve r = r(s) with the sphere are given by 

F(s) ≡ (𝒓(𝒔) − 𝑐)2 − 𝑅2 = 0 

Again, for a four-point contact, we have  

F(s) = 0, 𝐹′(𝑠) = 0, 𝐹′′(𝑠) = 0, 𝐹′′′(𝑠) = 0 

Now these conditions give rise to following equations 

(𝒓 − 𝑐)2 = 𝑅2 ; (𝑟 − 𝑐). 𝑟′ = 0; (𝑟 − 𝑐). 𝑟′′ + 𝑟′. 𝑟′ = 0 

And (𝑟 − 𝑐). 𝑟′′′ + 𝑟′. 𝑟′′ + 2𝑟′. 𝑟′′ = 0 

Again, we know that  

𝑟′ = 𝑡, 𝑟′. 𝑟′ = 𝑡2 = 1  

𝑟′′ = 𝑡′ = 𝑘𝑛;  𝑟′. 𝑟′′ = 𝑟′. 𝑡′ = 𝑟′. 𝑘𝑛 = 𝑡. 𝑘𝑛 = 0 

𝑟′′′ = (𝑡′)′ = (𝑘𝑛)′ = 𝑘𝑛′ + 𝑘′𝑛 = 𝑘(τb − kt) + 𝑘′𝑛 

Using these relations, above equations reduce to 

(𝒓 − 𝑐)2 = 𝑅2                                   …….. (1) 

(𝑟 − 𝑐). 𝑡 = 0                                    ……... (2) 

(𝑟 − 𝑐). 𝑛 = −𝜌                                ……… (3) 

(𝑟 − 𝑐). {𝑘(τb − kt) + 𝑘′𝑛} = 0     ………. (4) 

Again equation (4) by making use of (2) and (3) reduces to 

(𝑟 − 𝑐). 𝑏 =
𝑘′𝜌

𝑘𝜏
= 𝜌2𝜎𝑘′ = −𝜌2𝜎

𝜌′

𝜌2 = −𝜎𝜌′       ……… (5) 

From (2), we observe that  (𝑟 − 𝑐) is perpendicular to 𝑡 i.e. it lies in the normal plane at 

𝑃. Thus, we can express (𝑟 − 𝑐) as linear combination of 𝑛 and 𝑏  

i.e. there exists scalar 𝜆 and 𝜇 such that  

(𝑟 − 𝑐) = 𝜆𝑛 + 𝜇𝑏 

Substitution in (3) and (5) we get  

 𝜆 = −𝜌 and 𝜇 = −𝜎𝜌′ 

Whence 𝑟 − 𝑐 = −𝜌𝑛 − 𝜎𝜌′𝑏     or     𝑐 = 𝑟 + 𝜌𝑛 + 𝜎𝜌′𝑏     ………. (6) 

Again, substitution in (1), gives  
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𝑅2 = 𝜆2 + 𝜇2 = 𝜌2 + 𝜎2𝜌′2
       ………. (7) 

𝑅2 =
(𝑘2𝜏2 + 𝑘′2

)

𝑘𝜏2             ………. (8) 

 

Remark: if  𝑘 =
1

𝜌
 is constant, then 𝜌′ = 0, then 𝜌 is constant, so (7) gives R = 𝜌 and 

(6) gives 𝑐 = 𝑟 + 𝜌𝑛, i.e. centre of osculating sphere coincides with centre of 

osculating circle. 

Example 1. Find the equation of the osculating sphere and osculating circle at (1, 2, 3) 

on the curve 𝑥 = 2𝑡 + 1, 𝑦 = 3𝑡2 + 2, 𝑧 = 4𝑡3 + 3. 

Solution: the equation of the curve can be put as 

𝑟 = (2𝑡 + 1, 3𝑡2 + 2, 4𝑡3 + 3)         ……… (1) 

Evidently t = 0 at point (1, 2, 3) on the curve 

Differentiating equation (1) w.r.t. ‘t’ we get 

𝑟̇ = (2, 6𝑡, 12𝑡2), 𝑟̈ = (0, 6, 24𝑡), 𝑟 = (0, 0, 24) 

At t = 0, we have 

𝑟̇ = (2, 0, 0), 𝑟̈ = (0, 6, 0),   𝑟 = (0, 0, 24) 

Let the equation of osculating sphere be (𝑟 − 𝑐)2 = 𝑅2         …….. (2) 

Where c is the position vector of the centre of osculating sphere, let  

 𝑐 = 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘  

Now, for a four-point contact at r, we have on differentiating equation (2), three times 

w.r.t. ‘t’ 

(𝑟 − 𝑐). 𝑟̇ = 0, (𝑟 − 𝑐). 𝑟̈  +  𝑟̇2 = 0 and      (𝑟 − 𝑐). 𝑟  + 3𝑟̇. 𝑟̈ = 0              

At t = 0, these reduce to 

[(𝑖 + 2𝑗 + 3𝑘 ) − (𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘 )]. 2𝑖 = 0 

i.e. 1 − 𝛼 = 0 or    𝛼 = 1 

Similarly, from other two equations, we have 

(2 − 𝛽)6 + 4 = 0  𝑖. 𝑒. 𝛽 =
8

3
 

And   

(3 − 𝛾)24 + 0 = 0  𝑖. 𝑒. 𝛾 = 3 
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also, osculating sphere (2) passes through (1, 2, 3) 

therefore, [(𝑖 + 2𝑗 + 3𝑘 ) − (𝑖 +
8

3
𝑗 + 3𝑘)]

2

= 𝑅2  

or   
4

9
= 𝑅2     or     

2

3
= 𝑅 

Hence, the equation of the osculating sphere is 

[(𝑖 + 2𝑗 + 3𝑘 ) − (𝑖 +
8

3
𝑗 + 3𝑘)]

2

=
4

9
 

Or         (𝑥 − 1)2 + (𝑦 −
8

3
)

2

+ (𝑧 − 3)2 =
4

9
  

Or          3𝑥2 + 3𝑦2 + 3𝑧2 − 6𝑥 − 16𝑦 − 18𝑧 + 50 = 0 

The osculating circle is the intersection of the osculating plane and osculating sphere 

and the equation of this plane is  

[𝑅 − 𝑟, 𝑟̇, 𝑟̈] = 0 

i.e., at t = 0, it reduces to {(𝑥 − 1)𝑖 + (𝑦 − 2)𝑗 + (𝑧 − 3)𝑘}. 12𝑘 = 0  

i.e.   𝑧 − 3 = 0 

Hence, the equation of osculating circle is  

3𝑥2 + 3𝑦2 + 3𝑧2 − 6𝑥 − 16𝑦 − 18𝑧 + 50 = 0, 𝑧 − 3 = 0. 

 

Example 2. Show that the radius R of the sphere of curvature is given by 

                     𝑅2 = 𝜌4𝜎2𝑟′′′2 − 𝜎2. 

Solution: we know that  

𝑟′′ = 𝑘𝑛 =
1

𝜌
𝑛 

Therefore, 𝑟′′′ =
1

𝜌
(τb − kt) −

𝜌′

𝜌2 𝑛 = −
1

𝜌2 𝑡 −
𝜌′

𝜌2 𝑛 +
1

𝜎𝜌
𝑏 

Squaring, we get 𝑟′′′2
=

1

𝜌4 +
𝜌′2

𝜌4 +
1

𝜎2𝜌2  

Or              𝜌4𝜎2𝑟′′′2 = 𝜎2 + 𝜌′2𝜎2 + 𝜌2 = 𝜎2 + 𝑅2 

𝑅2 = 𝜌4𝜎2𝑟′′′2 − 𝜎2. 

Example 3. Show that 𝑥′′′2 + 𝑦′′′2 + 𝑧′′′2 =
1

𝜎2𝜌2 +
1+𝜌′2

𝜌4 =
1

𝜌4 +
𝑅2

𝜎4𝜌2. 
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Solution: we have  

                       𝑟 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘        

Therefore,       𝑟′′′ = 𝑥′′′𝑖 + 𝑦′′′𝑗 + 𝑧′′′𝑘      ……… (1) 

Squaring we get,  𝑟′′′2 = 𝑥′′′2 + 𝑦′′′2 + 𝑧′′′2
      ……. (2) 

Therefore,  𝑟′′′ =
1

𝜌
(τb − kt) −

𝜌′

𝜌2 𝑛 = −
1

𝜌2 𝑡 −
𝜌′

𝜌2 𝑛 +
1

𝜎𝜌
𝑏 

Squaring, we get 𝑟′′′2 =
1

𝜌4 +
𝜌′2

𝜌4 +
1

𝜎2𝜌2 =
1

𝜎2𝜌2 +
1+𝜌′2

𝜌4     …….. (3) 

From (2) and (3), we get  

𝑥′′′2 + 𝑦′′′2 + 𝑧′′′2 =
1

𝜎2𝜌2 +
1+𝜌′2

𝜌4         ……… (4) 

Since 𝑅2 = 𝜌2 + 𝜎2𝜌′2
, equation (4) can be put as 

𝑥′′′2 + 𝑦′′′2 + 𝑧′′′2 =
1

𝜎2𝜌2 +
1+𝜌′2

𝜌4 =
1

𝜌4 +
𝑅2

𝜎4𝜌2 . 

Example 4. Show that the radius of spherical curvature of a circular helix is equal to 

the radius of circular curvature. 

Solution: the radius R of a spherical curvature is given by  

                 𝑅2 = 𝜌2 + 𝜎2𝜌′2
               ……… (1) 

Again, for a circular helix, we know that  𝜌 = constant     (𝜌′ = 0) 

Therefore, (1) reduces to 𝑅2 = 𝜌2 or 𝑅 = 𝜌. 

Example 5. Show that the radius of spherical curvature of a circular helix 𝑥 =

𝑎 cos 𝜃 , 𝑦 = 𝑎 sin 𝜃 , 𝑧 = 𝑎𝜃 cot 𝛼 is equal to the radius of circular curvature. 

Solution: Here 𝑟 = 𝑎(cos 𝜃 , sin 𝜃 , cot 𝛼)  

Differentiating w.r.t. ‘s’, we get  

𝑟′ = 𝑡 = 𝑎(− sin 𝜃 , cos 𝜃 , cot 𝛼)
𝑑𝜃

𝑑𝑠
  

Squaring above, we get  

1 = 𝑎2(sin2 𝜃 + cos2 𝜃 + cot2 𝛼) (
𝑑𝜃

𝑑𝑠
)

2

 

(
𝑑𝜃

𝑑𝑠
)

2

=
1

𝑎2 cosec2 𝛼
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Or         
𝑑𝜃

𝑑𝑠
=

sin 𝛼

𝑎
      

Therefore,    𝑡 = sin 𝛼 (− sin 𝜃 , cos 𝜃 , cot 𝛼) 

Differentiating w.r.t. ‘s’, we get   

𝑡′ = sin 𝛼 (− cos 𝜃 , −sin 𝜃 , 0)
𝑑𝜃

𝑑𝑠
  

𝑜𝑟   𝑘𝑛 =
sin2 𝛼

𝑎
(− cos 𝜃, −sin 𝜃 , 0 ) 

Squaring, we get  

𝑘2 = 
sin4 𝛼

𝑎2
[cos2 𝜃 + sin2 𝜃] =

sin4 𝛼

𝑎2  

Therefore, 𝑘 =
sin2 𝛼

𝑎
 which is constant. 

Therefore, in this case 𝜌 = constant, therefore 𝜌′ = 0 

Again, radius R of spherical curvature is given by 

𝑅2 = 𝜌2 + 𝜎2𝜌′2 = 𝜌2      (since 𝜌′ = 0) 

Hence,     𝑅 = 𝜌. 

Example 6. If a curve lie on a sphere, show that 𝜌 and 𝜎 are connected by 

                     
𝜌

𝜎
+

𝑑

𝑑𝑠
(𝜎𝜌′) = 0. 

Or    show that the necessary and sufficient condition that a curve lies on a sphere is 

that 
𝜌

𝜎
+

𝑑

𝑑𝑠
(

𝜌′

τ
) = 0 at every point on the curve. 

Solution: Necessary condition. in case curve lies on a sphere then that sphere is the 

osculating sphere for every point, then the radius R of the osculating sphere is constant. 

The radius R is given by 

𝑅2 = 𝜌2 + 𝜎2𝜌′2 = 𝜌2 + (𝜎𝜌′)2        ………. (1) 

Differentiating w.r.t. ‘s’, we get 

0 = 2𝜌′𝜌 + 2𝜎𝜌′ 𝑑

𝑑𝑠
(𝜎𝜌′)    or    

𝜌

𝜎
+

𝑑

𝑑𝑠
(𝜎𝜌′) = 0   

Sufficient condition. If   
𝜌

𝜎
+

𝑑

𝑑𝑠
(𝜎𝜌′) = 0, then to show that the curve lies on a sphere. 

By reversing the order of steps, we see that the radius of osculating sphere is 

independent of the point on the curve.   

Again, the centre of spherical curvature is given by 

𝐶 = 𝑟 + 𝜌𝑛 + 𝜎𝜌′𝑏  
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Therefore, 
𝑑𝐶

𝑑𝑠
= 𝑡 + 𝜌′𝑛 + 𝜌(τb − kt) + 𝜎′𝜌′𝑏 + 𝜎𝜌′′𝑏 − 𝜎𝜌′τn 

                       = (
𝜌

𝜎
+ 𝜎′𝜌′ + 𝜎𝜌′′) 𝑏 = 0       (

𝜌

𝜎
+ 𝜎′𝜌′ + 𝜎𝜌′′ = 0 𝑏𝑦 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠) 

Or C is a constant vector. 

i.e. the centre of osculating sphere is independent of the point on the curve. Hence the 

curve lies on the sphere. 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. If 
𝜌

𝜎
+

𝑑

𝑑𝑠
(𝜎𝜌′) = 0, then the curve lies on a sphere. 

Problem 2. The radius R of the sphere of curvature is given by 

                     𝑅2 = 𝜌4𝜎2𝑟′′′2 − 𝜎2. 

Problem 3. The radius of spherical curvature of a circular helix is equal to   

                     the radius of circular curvature. 

Problem 4 For three-point contact, we have 

                   F(s) = 𝐹′(𝑠) = 𝐹′′(𝑠) = 1 

Problem 5. The radius of spherical curvature of a circular helix is not equal   

                    to the radius of circular curvature. 

 

 

 

3.7 SUMMARY 

(1) (Existence Theorem). If 𝑘(𝑠) and 𝜏(𝑠) are continuous functions of a real variable  

       𝑠 (𝑠 ≥ 0) then there exists a space curve for which 𝑘 is the curvature, 𝜏 is the  

        torsion, and s is the arc length measured from some suitable base point. 

(2) The sphere which has a four-point contact with the curve at a point P is called   

       osculating sphere at P. 

(3) The principal normal to a curve is normal to the locus of the centre at points where     

      curvature k is stationary. 

(4) The circle which has a three-point contact with the curve at a point P is called    

         osculating circle at P. 



GEOMETRY  MAT 611 

  

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY 

41 

 

3.8 GLOSSARY 

 (i) Derivatives  

 (ii) Determinant 

 (iii) Vector   

 

3.9 REFERENCES AND SUGGESTED READINGS 

1. An introduction to Riemannian Geometry and the Tensor calculus by C.E.  

               Weatherburn “Cambridge University Press.” 

2. Matrices and Tensors in physics by A.W. Joshi “Wiley Eastern Limited”. 

3. Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”. 

4.           Differential Geometry by Gupta, Malik and Pundir “Pragati Edition’’. 

 

3.10 TEWRMINAL QUESTIONS 

 

1. Prove that the curve given by 𝑟 = (𝑎 sin2 𝑢,   𝑎 𝑠𝑖𝑛𝑢 𝑐𝑜𝑠𝑢 , 𝑎 𝑐𝑜𝑠𝑢) lie on a sphere. 

2. For spherical curve, prove that 𝜌 +
𝑑2𝜌

𝑑𝜑2 = 0, where, 𝜑 is such that 𝑑𝜑 = 𝜏𝑑𝑠.  

3. Define osculating sphere, find its equation. 

4. Define osculating sphere, find its equation. 

3.11 ANSWERS 

         CYQ 1. True  

CYQ 2. True 

CYQ 3. True 

CYQ 4. False 

CYQ 5. False 
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UNIT 4:  INVOLUTE AND EVOLUTE 

 

CONTENTS: 

 

4.1 Introduction 

4.2 Objectives 

4.3 Involute and Evolute 

4.4      Spherical Indicatrices 

4.5      Bertrand Curves 

4.6  Summary 

4.7  Glossary 

4.8  References and Suggested Readings 

4.9  Terminal questions 

4.10     Answers 
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4.1 INTRODUCTION 

In differential geometry, an "involute" is a curve created by tracing the path 

of a taut string as it unwinds from another curve, while the "evolute" is the original 

curve from which the string is unwinding; essentially, the evolute is the curve of 

which the involute is derived by "unwinding a string" from it, making the original 

curve the "evolute" of its "involute" curve.  

 

4.2 OBJECTIVES 

 After completion of this unit learners will be able to: 

(i) Involute and Evolute 

(ii) Spherical Indicatrices  

(iii) Bertrand Curves 

 

4.3 INVOLUTE AND EVOLUTE 

  Definition: If there be one-one correspondence between points of two curve C and 𝐶1 

such that the tangent at any point of C is a normal to the corresponding point of 𝐶1, then 

𝐶1 is called involute of C and C is called an evolute of 𝐶1. 

(i) Involute of a given space: 

Let r = r(s) be the given curve C and let C1 be involute of C. the quantities belonging 

to the C1 will be distinguished by using the suffix unity. Then the position vector r of 

any point P1 on C1 is given by 

r1 = r + λt       ……. (1) 

Where λ is to be determined. 

Differentiating (1) w.r.t. ‘s1′ we get  

t1 = (t + λ′t + λkn)
ds

ds1
        ……… (2) 

By definition t is perpendicular to  t1 so taking dot product of both sides of (2) with t 

and using t. t1 = 0, we get 

(1 + λ′)
ds

ds1
= 0    or    1 + λ′ = 0 

Which on integration gives 𝑠 + λ = c   or λ = c − s, where c is constant of integration. 
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Therefore,     r1 = 𝑟 + (𝑐 − 𝑠)𝑡        ……… (3) 

Which is the required equation of involute C1 of C. 

Again putting the value of λ in (2), the unit tangent vector t1 is given by 

t1 = (𝑐 − 𝑠)𝑘
ds

ds1
𝑛     (∵ λ′ = −1)        …… (4) 

From (4), we observe that t1 is parallel to n. taking the positive direction along the 

involute such that  

t1 = 𝑛 thus from (4) 
ds

ds1
= 𝑘(𝑐 − 𝑠). 

(ii) Curvature 𝐤𝟏 and Torsion 𝛕𝟏 of the Involute: 

Differentiating t1 = 𝑛 w.r.t. ‘s1’ we get  

t1
′ = k1n1 = (τb − kt)

𝑑𝑠

𝑑s1
=

τb − kt

𝑘(𝑐 − 𝑠)
 

Therefore, on squaring both sides, we get 

k1
2 =

τ2+𝑘2

𝑘2(𝑐−𝑠)2      or    k1 =
(τ2+𝑘2)

1/2

𝑘(𝑐−𝑠)
 

Obviously, the unit principal normal to involute is  

n1 =
τb−kt

𝑘k1(𝑐−𝑠)
=

τb−kt

(τ2+𝑘2)1/2       ………. (5) 

b1 = t1 × n1 = 𝑛 × n1 =
kb+τt

𝑘k1(𝑐−𝑠)
=

kb+τt

(τ2+𝑘2)1/2       …….. (6) 

Now differentiating (6) w.r.t. ‘s’ we get  

−τ1n1
𝑑𝑠

𝑑s1
=

(𝑘2+τ2)(𝑘′𝑏+τ′𝑡+𝑘b′+τt′)−(kb+τt)(𝑘𝑘′+ττ′)

(τ2+𝑘2)3/2         [∵ b′ = −τn, t′ = 𝑘n ] 

Squaring both sides and putting 
𝑑s1

𝑑𝑠
= 𝑘(𝑐 − 𝑠), we get  

τ1 =
(𝑘τ′−k′τ)

𝑘(𝑐−𝑠)(τ2+𝑘2)
. 

(iii) To find the equation of a given Curve C. 

In this case we will find a curve C1 such that C is involute of C1 and 

consequently C1 will be evolute of C. 

Let 𝑟 = 𝑟(𝑠) be equation of curve C. we shall use the suffix unit for quantities 

belonging to curve C1. Let r1 be the position vector of an evolute C1 and that of 

corresponding point P on C be r. since the tangents to the curve C1 are normal to 

curve C, the vector PQ must lie in the plane to the curve C at P. 

⟹ r1 − 𝑟 = 𝜆𝑛 + 𝜇𝑏    ⟹ r1 = 𝑟 + 𝜆𝑛 + 𝜇𝑏     ………. (1) 
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Where the values of 𝜆 and 𝜇 are to be determined. 

Now differentiating (1) w.r.t. ‘𝑠1’ we get  
𝑑𝑟1

𝑑𝑠1
= [𝑟′ + 𝜆′𝑛 + 𝜆𝑛′ + 𝜇′𝑏 + 𝜇𝑏′]

𝑑𝑠

𝑑𝑠1
             ………. (1) 

t1 = [𝑡 + 𝜆′𝑛 + 𝜆(τb − kt) + 𝜇′𝑏 + 𝜇(−𝜏𝑛)]
𝑑𝑠

𝑑𝑠1
 

                         = [(1 − 𝑘𝜆)𝑡 + (𝜏′ − 𝜇𝜏)𝑛 + (𝜇′ + 𝜆𝜏)𝑏]
𝑑𝑠

𝑑𝑠1
  

Since t1 lies in the normal plane at P to the curve C, so it must be parallel to 𝜆𝑛 + 𝜇𝑏 

and 𝑡1 = (𝜆𝑛 + 𝜇𝑏) at P. 

Therefore, on comparing the coefficients of this with that of relation (2), we get 

1 − 𝑘𝜆 = 0        or    𝜆 =
1

𝑘
= 𝜌     and 𝜆′ − 𝜇𝜏 = 𝑃𝜆, 𝜇′ + 𝜆𝜏 = 𝑃𝜇 

⟹ 
𝜆′−𝜇𝜏

𝜏
=

𝜇′+𝜆𝜏

𝜇
      i.e.    𝜏 =

𝜆′𝜇−𝜆𝜇′

𝜆2+𝜇2 =
𝑑

𝑑𝑠
tan−1 (

𝜆

𝜇
) 

Or     𝜏 =
𝑑

𝑑𝑠
tan−1 (

𝜆

𝜇
)      ………. (3) 

Integrating (3), we get  

𝑎 + ∫ 𝜏 𝑑𝑠 = tan−1 (
𝜆

𝜇
), where 𝑎 is an arbitrary constant. 

𝑜𝑟    𝜆 = 𝜇 tan−1(∫ 𝜏 𝑑𝑠 + 𝑎)     

Or   𝜇 =  𝜆𝑐𝑜𝑡(∫ 𝜏 𝑑𝑠 + 𝑎) 

Or   𝜇 =  𝜌𝑐𝑜𝑡(∫ 𝜏 𝑑𝑠 + 𝑎) 

Therefore, on putting the value of 𝜆 and 𝜇 in (1), we get  

𝑟1 = 𝑟 + 𝜌𝑛 + 𝜌𝑐𝑜𝑡(∫ 𝜏 𝑑𝑠 + 𝑎)𝑏            ………. (4) 

Which gives the required equation of evolute 𝐶1 of C. in case we give different values 

of 𝑎, we shall an in case we assume ∫ 𝜏𝑑𝑠 = 𝜙(𝑠) and 𝑐 −
𝜋

2
= 𝑎 

Equation (4) may be put as  

𝑟1 = 𝑟 + 𝜌𝑛 − 𝜌𝑡𝑎𝑛(𝜙(𝑠) + 𝑐)𝑏          …….. (5) 

Example 1. Find the involute of circular helix is  

Solution: The equation of circular of helix is   

𝑟 = [𝑎𝑐𝑜𝑠𝑢, 𝑎𝑠𝑖𝑛𝑢, 𝑏𝑢]  

∴ 𝑟̇ = [−𝑎𝑠𝑖𝑛𝑢, 𝑎𝑐𝑜𝑠𝑢, 𝑏] ; 𝑠̇ = |𝑟̇| = √𝑎2 + 𝑏2 
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𝑟′ =
𝑟̇

𝑠̇
=

1

√𝑎2 + 𝑏2
= [−𝑎𝑠𝑖𝑛𝑢, 𝑎𝑐𝑜𝑠𝑢, 𝑏] = 𝑡 

Therefore 𝑠 = ∫ |𝑟̇|𝑑𝑢 =
𝑢

0
∫ √𝑎2 + 𝑏2𝑑𝑢

𝑢

0
 

Again equation of an involute is 𝑟1 = 𝑟 + (𝑐 − 𝑠)𝑡 

= [−𝑎𝑠𝑖𝑛𝑢, 𝑎𝑐𝑜𝑠𝑢, 𝑏] + (𝑐 − 𝑠)
1

√𝑎2 + 𝑏2
[−𝑎𝑠𝑖𝑛𝑢, 𝑎𝑐𝑜𝑠𝑢, 𝑏] 

𝑟1 = [𝑎𝑐𝑜𝑠𝑢 −
𝑎(𝑐 − 𝑠)

√𝑎2 + 𝑏2
𝑠𝑖𝑛𝑢, 𝑎𝑠𝑖𝑛𝑢 +

(𝑐 − 𝑠)

√𝑎2 + 𝑏2
𝑐𝑜𝑠𝑢, 𝑎𝑐𝑜𝑠𝑢, 𝑏] 

Where 𝑠 = √𝑎2 + 𝑏2u. 

Example 2. Prove that the involute of a circular helix are plane curves. 

Solution. For a circular helix, 
𝑘

𝜏
= 𝑎 (constant) 

𝑘′ = 𝑎𝜏′ 

Again, torsion of an involute of a given curve 𝑟 = 𝑟(𝑠) is given by 

𝜏1 =
𝑘𝜏′−𝑘′𝜏

𝑘(𝑐−𝑠)(𝜏2+𝑘2)
         …….. (1) 

On putting the value of k and 𝑘′ in terms of 𝜏 and 𝜏′ in (1), we have 

𝜏1 = 0  

i.e. torsion for the involute is zero and hence the involute is a plane curve. 

Example 3. The locus of the centre of curvature is an evolute only when the curve is a 

plane curve. 

Solution. The position vector of a current point on the evolute is given by  

𝑟1 = 𝑟 + 𝜌𝑛 − 𝜌𝑡𝑎𝑛(𝜙(𝑠) + 𝑐)𝑏              ……… (1) 

Where c is an arbitrary constant and for its various values we get an infinite system of 

evolutes. 

Also, the locus of the centre of curvature is given by 

𝑐 = 𝑟 + 𝜌𝑛              ……… (2) 

We observe that equation (1) and (2) will coincide, i.e. the locus of the centre c is an 

evolute 𝑟1 then we must have 

𝑡𝑎𝑛(𝜙 + 𝑐) = 0  

i.e. 𝜙 + 𝑐 = 𝑚𝜋 



GEOMETRY  MAT 611 

  

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY 

47 

 

or 
𝑑∅

𝑑𝑠
= 0    i.e. 𝜏 = 0 

hence curve must be a plane curve. 

 

4.4 SPHERICAL INDICATRICES 

When we move all unit tangent vectors 𝒕 of a curve C to a point, their extremities 

describe a curve 𝐶1on the unit sphere; this curve 𝐶1is called the Spherical image 

(Spherical Indicatrix) of C. we can similarly obtain the spherical image of C when its 

bonormal or principal normal are moved to a point.  

                          

                                                    Fig.4.4.1 

To construct the spherical indicatrix of the tangent, draw lines parallel to the positive 

directions of the tangents at the points of the given curve from the centre O of the unit 

sphere. Let 𝑡1, 𝑡2, 𝑡3, 𝑡4, …. be the points where these lines meets the surface of the 

sphere, the curve joining these points is spherical indicatrix of the tangent. Similarly, 

the spherical indicatrices of the principal normal and binormal can be constructed. 

Below we give the precise definition of various indicatrices. 

(𝒊) The spherical indicatrix of the tangent. 

The locus of a point whose position vector is equal to the unit tangent 𝒕 at any point of 

a given curve is called spherical indicatrix of the tangent. 

(𝒊𝒊) The spherical indicatrix of the principal normal. 

The locus of a point whose position vector is equal to the unit principal normal 𝒏 at any 

point of a given curve is called spherical indicatrix of the principal normal. 

(𝒊𝒊𝒊) The spherical indicatrix of the binormal. 

The locus of a point whose position vector is equal to the unit binormal 𝑏 at any point 

of a given curve is called the spherical indicatrix of the binormal. 
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4.5 BERTRAND CURVES 

If a pair of curves 𝐶 and 𝐶1 are such that the principal normal to the  𝐶 are also 

principal normal to 𝐶1 , then the curves 𝐶 and 𝐶1 are conjugate or associate Bertrand 

curves. 

Properties of Bertrand Curves. 

Properties (i). The distance between corresponding points of two Bertrand curves is 

constant. (we shall use the suffix unity for quantities belonging to 𝐶1). 

Proof: Consider the principal normal to 𝐶 and 𝐶1 in the same sense, so that  

             𝑛1 = 𝑛             ……. (1) 

Let 𝑟 be the position vector of a point P on the curve 𝐶 and 𝑟1 be the position vector of 

the corresponding point 𝑃1 on the associate Bertrand curve 𝐶1 and 𝐶 with respect to the 

some fixed origin 𝑂, then 

           𝑟1 = 𝑟 + 𝜆𝑛       …….. (2) 

Where 𝜆 is a suitable function of 𝑠 and represents the distance between corresponding 

points of the two curves. 

Now taking the dot product of (1) and (3), we get  

0 = 𝜆′ ⟹ 𝜆 = constant. 

𝑖. 𝑒.  distance 𝑃𝑃1 is constant. 

                      
                                                   Fig.4.5.1 

 

 

 Properties (ii). The tangents at the corresponding point of the two curves are inclined  

                           at a constant angle. 

Proof: We have 

𝑑

𝑑𝑠
(𝑡. 𝑡1) =

𝑑𝑡

𝑑𝑠
. 𝑡1 + 𝑡.

𝑑𝑡1

𝑑𝑠1

𝑑𝑠1

𝑑𝑡1
= 𝑘. 𝑛. 𝑡1 + 𝑡. 𝑘1𝑛1

𝑑𝑠1

𝑑𝑠
 

                                          = 𝑘. 𝑛1. 𝑡1 + 𝑘1
𝑑𝑠1

𝑑𝑠
𝑡. 𝑛      {𝑠𝑖𝑛𝑐𝑒 𝑛1 = 𝑛} 

                                          = 0 

Integrating, we get  𝑡. 𝑡1 = constant. 

Now if 𝛼 be the angle between 𝑡 and 𝑡1, then we have 
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⟹ 𝑡1. 𝑡 = |𝑡1||𝑡| cos 𝛼 

Therefore cos 𝛼 = 𝑡1. 𝑡 = constant. 

Since the principal normal coincide and tangents are inclined at a constant angle 𝛼 and 

therefore the binormals of the two curves are also inclined at the same constant angle 𝛼. 

Properties (iii). Curvature and torsion of either curve are connected by a linear    

                           relation. 

Proof: We have shown above in properties (i) that 𝜆′ = 0 

∴ equation (3) reduces to  

𝑡1
𝑑𝑠1

𝑑𝑠
= (1 − 𝜆𝑘)𝑡 + 𝜆𝜏𝑏            ……….. (4) 

Now taking the dot product both sides of (4) with 𝑏1, we have 

0 = (1 − 𝜆𝑘)𝑡. 𝑏1 + 𝜆𝜏𝑏. 𝑏1        .……… (5) 

Again    𝑡. 𝑏1 = cos(90 − 𝛼) = sin 𝛼 

And     𝑏. 𝑏1 = cos 𝛼 

Therefore from (5), we have  

0 = (1 − 𝜆𝑘) sin 𝛼 + 𝜆𝜏 cos 𝛼        ………. (6) 

The above relation (6) shows that there exists a linear relation with constant coefficients 

between curvature and torsion of curve 𝐶. 

We may put relation (6) in the form 

𝜏 = (𝑘 −
1

𝜆
) tan 𝛼                           ………. (7) 

Again, the relation between the curves 𝐶 and 𝐶1 is a reciprocal one, thus the point 𝑃(𝑟) 

is a distance −𝜆 along the normal at 𝑃1(𝑟1) and 𝑡 is inclined at an angle −𝛼 with 𝑡1. 

Thus, for curvature 𝐶1, we have a relation corresponding to (7) as 

𝜏1 = − (𝑘1 +
1

𝜆
) tan 𝛼. 

Properties (iv). The torsion of the two associate Bertrand curves have the same sign, 

and their product is constant. 

Proof: We have that 𝑡1 = 𝑡 cos 𝛼 − 𝑏 sin 𝛼      …….. (8) 

Comparing (4) of properties (iii) and (8) of properties (iv) we have 

𝑑𝑠1

𝑑𝑠
=

1 − 𝜆𝑘

cos 𝛼
=

𝜆𝜏

−sin 𝛼
 

⟹ cos 𝛼 = (1 − 𝜆𝑘)
𝑑𝑠

𝑑𝑠1
         ……… (9) 
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         ⟹ sin 𝛼 = −𝜆𝜏
𝑑𝑠

𝑑𝑠1
                 ……… (10) 

Now, for the curve 𝐶1 , the relations corresponding to (9) and (10) are obtained by 

putting −𝜆 for 𝜆 and −𝛼 for 𝛼 and interchanging 𝑠 and 𝑠1, we get  

cos 𝛼 = (1 + 𝜆𝑘1)
𝑑𝑠1

𝑑𝑠
    ……… (11)    and     sin 𝛼 = −𝜆𝜏1

𝑑𝑠1

𝑑𝑠
     …… (12) 

On multiplying (9) by (11) and (100 by (12), we get 

(1 − 𝜆𝑘)(1 + 𝜆𝑘1) = cos2 𝛼        ………. (13) 

And 𝜏𝜏1 =
1

𝜆2 sin2 𝛼           ……… (14) 

Relation (14) shows that the torsion of the two curve have same sign and their product 

is constant. 

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. The distance between corresponding points of two Bertrand  

                     curves is constant. 

Problem 2. The tangent at the corresponding points of the curves are  

                     inclined at a constant angle.  

Problem 3. The distance between corresponding points of two Bertrand  

                     curves is not constant. 

Problem 4 The tangent at the corresponding points of the curves are  

                   inclined at a variable angle.  

 

 

 

4.6 SUMMARY 

(1) If there be one-one correspondence between points of two curve C and 𝐶1 such that 

the tangent at any point of C is a normal to the corresponding point of 𝐶1, then 𝐶1 is 

called involute of C and C is called an evolute of 𝐶1. 

(2) If a pair of curves 𝐶 and 𝐶1 are such that the principal normal to the  𝐶 are also 

principal normal to 𝐶1 , then the curves 𝐶 and 𝐶1 are conjugate or associate Bertrand 

curves. 

(3) (𝒊) The spherical indicatrix of the tangent. 

The locus of a point whose position vector is equal to the unit tangent 𝒕 at any point of 

a given curve is called spherical indicatrix of the tangent. 

(𝒊𝒊) The spherical indicatrix of the principal normal. 

The locus of a point whose position vector is equal to the unit principal normal 𝒏 at any 

point of a given curve is called spherical indicatrix of the principal normal. 
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(𝒊𝒊𝒊) The spherical indicatrix of the binormal. 

The locus of a point whose position vector is equal to the unit binormal 𝑏 at any point 

of a given curve is called the spherical indicatrix of the binormal. 

 

 

4.7 GLOSSARY 

 (i) Derivatives  

 (ii) Torsion 

 (iii) Curvature   

 

4.8 REFERENCES AND SUGGESTED READINGS 

1. An introduction to Riemannian Geometry and the Tensor calculus by C.E.  

              Weatherburn “Cambridge University Press.” 

2. Matrices and Tensors in physics by A.W. Joshi “Wiley Eastern Limited”. 

3. Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”. 

4.            Differential Geometry by Gupta, Malik and Pundir “Pragati Edition’’. 

 

4.9 TEWRMINAL QUESTIONS 

 

1. Prove that corresponding points on the spherical indicatrix of the tangent to a curve C 

and on the indicatrix of the binormal to C have parallel tangent lines. 

2. Find the involutes and evolutes of the circular helix 

 𝑥 = 𝑎 cos 𝜃, 𝑦 = 𝑎 sin 𝜃, 𝑧 = 𝑎𝜃 tan 𝛼. 

3. Define Bertrand curves. 

4. Define Spherical Indicatrices. 
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4.10 ANSWERS 

 

CYQ 1. True  

CYQ 2. True 

CYQ 3. False 

CYQ 4. False 
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UNIT 5:  FUNDAMENTAL FORMS I 
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5.4      Important properties of Metric 
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5.6 Summary 
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5.1 INTRODUCTION 

In differential geometry, the study of smooth spaces and shapes, the 

fundamental theorem of space curves states that the shape, size, and scale of a 

regular curve in three-dimensional space is completely determined by its curvature 

and torsion. different space curves are only distinguished by how they bend and 

twist. Quantitatively, this is measured by the differential-geometric invariants 

called the curvature and the torsion of a curve. The fundamental theorem of curves 

asserts that the knowledge of these invariants completely determines the curve. 

 

5.2 OBJECTIVES 

 After completion of this unit learners will be able to: 

(i) First Fundamental form or Metric 

(ii) Second fundamental coefficient 

 

5.3 FIRST FUNDAMENTAL FORM OR METRIC  

 

 Let 𝑟 = 𝑟(𝑢, 𝑣) be the equation of a surface and let 𝐸 = 𝑟1
2 = 𝑟1. 𝑟1 , 𝐹 = 𝑟1. 𝑟2 and 

𝐺 = 𝑟2
2 = 𝑟2. 𝑟2. the quadratic differential form 𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2 in 𝑑𝑢, 𝑑𝑣 

is called metric or first fundamental form of the surface and the quantities 𝐸, 𝐹, 𝐺 are 

called first fundamental coefficients or first order fundamental magnitudes. Since E, 

F and G are functions of 𝑢, 𝑣 the quantities will generally vary from point to point on 

the surface. These quantities are of much importance and will hence forth occur very 

frequently throughout the remainder part of the book. 

 

Geometrically Interpretation on Metric: 

Let = 𝑟(𝑢, 𝑣) be the surface and 𝑢 = 𝑢(𝑡), 𝑣 = 𝑣(𝑡) be a curve on the surface. Let P 

and Q be two neighboring point on the curve with position vectors  𝑟 and 𝑟 + 𝑑𝑟, 

corresponding to the parameter values 𝑢, 𝑣 and 𝑢 + 𝑑𝑢, 𝑣 + 𝑑𝑣 respectively.  

                                     
                                                       Fig.5.3.1 
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Then we have  𝑑𝑟 =
𝜕𝑟

𝜕𝑢
𝑑𝑢 +

𝜕𝑟

𝜕𝑣
𝑑𝑣 = 𝑟1𝑑𝑢 + 𝑟2𝑑𝑣 

Let the arc PQ be ds. Since the points P and Q are adjacent points, therefore 

𝑑𝑠 = |𝑑𝑟| or 𝑑𝑠2 = 𝑑𝑟2 = (𝑟1𝑑𝑢 + 𝑟2𝑑𝑣)2𝑑𝑟2 

      = 𝑟1
2 𝑑𝑢2 + 2𝑟1. 𝑟2𝑑𝑢𝑑𝑣 + 𝑟2

2 𝑑𝑣2   

= 𝐸 𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺 𝑑𝑣2        …….. (1) 

Thus, we have following interpretation of the first fundamental form. 

If 𝑑𝑠 is the “infinitesimal distance” from the point (𝑢, 𝑣) to the point 

 (𝑢 + 𝑑𝑢, 𝑣 + 𝑑𝑣)  on the surface, then 

𝑑𝑠2 = 𝐸 𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺 𝑑𝑣2   

The name metric is assigned to the first fundamental form as it is chiefly used for the 

calculation of arc lengths on the surface. The arc length 𝑠 of the curve is related to 

the parameter 𝑡 by  

(
𝑑𝑠

𝑑𝑡
)

2

= 𝐸 (
𝑑𝑢

𝑑𝑡
)

2

+ 2𝐹
𝑑𝑢

𝑑𝑡

𝑑𝑣

𝑑𝑡
+ 𝐺 (

𝑑𝑣

𝑑𝑡
)

2

 

Special cases: on the parametric curve 𝑢 = constant, we have 𝑑𝑢 = 0 and hence 

metric (1) reduces to 𝑑𝑠2 = 𝐺 𝑑𝑣2. Similarly on the parametric curve 𝑣 = constant, 

we have 𝑑𝑣 = 0, thus the metric (1) reduces to 𝑑𝑠2 = 𝐸 𝑑𝑢2. 

 

An important relation between the coefficients E, F, G, and H: 

From vector identity 
(𝑟1 × 𝑟2)2 = 𝑟1

2𝑟2
2 − (𝑟1. 𝑟2)2 

We have 𝐻2 = 𝐸𝐺 − 𝐹2      where 𝐻 = |𝑟1 × 𝑟2| 

Since 𝐻 is positive quantity so 𝐸𝐺 − 𝐹2 is also a positive quantity and 𝐻 is equal to a 

positive square root of 𝐸𝐺 − 𝐹2. Again at the ordinary point 𝑟1 ≠ 0, 𝑟2 ≠ 0 thus 

 𝐸 = 𝑟1
2 > 0 and 𝐸 = 𝑟2

2 > 0. Hence we have 𝐸 > 0, 𝐺 > 0, 𝐸𝐺 − 𝐹2 > 0. 

 

5.4 IMPORTANT PROPERTIES OF THE METRIC  

Property 1. The metric of first fundamental form is a positive definite quadratic form 

in 𝑑𝑢, 𝑑𝑣. 

Proof. We have from first fundamental form that 

E du2 + 2Fdu dv + G dv2   

=  222 2
1

dvEGdvEFduduE
E

  

=     2221
dvFEGdvFduE

E
  ≥ 0, 

 for all real values of du and dv 

As E > 0 and EG - F2 > 0. 

Also, we have  

     0222
 dvFEGdvFduE  

  (E du + F dv) =0 and (EG - F2) dv2 = 0 

  E du + Fdv = 0 and dv = 0.                                   (As EG-F2 ≠ 0.) 
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   E du = 0 and dv = 0 

  du = 0 and dv = 0. As E ≠ 0. 

Hence E du2 + 2Fdu dv + G dv2 i.e. metric or first fundamental form is a positive definite 

quadratic form in du and dv.  

 

Property 2. Invariance property: the metric is invariant under a transformation of 

parameter. 

Proof. Let in the equation of the surface 𝑟 = 𝑟(𝑢, 𝑣), the parameters 𝑢, 𝑣 are the 

transformed to the parameters 𝑢′, 𝑣′ by the relation 𝑢′ = ∅(𝑢, 𝑣), 𝑣′ = Ψ(𝑢, 𝑣). 

Thus 𝑟1
′ =

𝜕𝑟

𝜕𝑢′ =
𝜕𝑟

𝜕𝑢

𝜕𝑢

𝜕𝑢′ +
𝜕𝑟

𝜕𝑣

𝜕𝑣

𝜕𝑢′ = 𝑟1
𝜕𝑢

𝜕𝑢′ + 𝑟2
𝜕𝑣

𝜕𝑢′      …….. (1) 

Similarly,    𝑟2
′ =

𝜕𝑟

𝜕𝑣′ = 𝑟1
𝜕𝑢

𝜕𝑣′ + 𝑟2
𝜕𝑣

𝜕𝑣′         ……… (2) 

Again, 𝑑𝑢 =
𝜕𝑢

𝜕𝑢′ 𝑑𝑢′ +
𝜕𝑢

𝜕𝑣′ 𝑑𝑣′       …….. (3) 

And    𝑑𝑣 =
𝜕𝑣

𝜕𝑢′ 𝑑𝑢′ +
𝜕𝑣

𝜕𝑣′ 𝑑𝑣′        ……. (4) 

Now, 𝐸′𝑑𝑢′2 + 2𝐹′𝑑𝑢′𝑑𝑣′ + 𝐺′𝑑𝑣′2 

          = 𝑟1
′2𝑑𝑢′2 + 2𝑟1

′. 𝑟2
′𝑑𝑢′𝑑𝑣′ + 𝑟2

′2𝑑𝑣′2 

          = (𝑟1
′𝑑𝑢′ + 𝑟2

′𝑑𝑣′)2 

          = [(𝑟1
𝜕𝑢

𝜕𝑢′ + 𝑟2
𝜕𝑣

𝜕𝑢′) 𝑑𝑢′ + (𝑟1
𝜕𝑢

𝜕𝑣′ + 𝑟2
𝜕𝑣

𝜕𝑣′) 𝑑𝑣′]
2

     [𝑓𝑟𝑜𝑚 (1)𝑎𝑛𝑑 (2)] 

          = [𝑟1 (
𝜕𝑢

𝜕𝑢′ 𝑑𝑢′ +
𝜕𝑢

𝜕𝑣′ 𝑑𝑣′) + 𝑟2 (
𝜕𝑣

𝜕𝑢′ 𝑑𝑢′ +
𝜕𝑣

𝜕𝑣′ 𝑑𝑣′)]
2

 [𝑓𝑟𝑜𝑚 (3)𝑎𝑛𝑑 (4)] 

= (𝑟1𝑑𝑢 + 𝑟2𝑑𝑣)2 = 𝑟1
2𝑑𝑢2 + 2𝑟1. 𝑟2𝑑𝑢𝑑𝑣 + 𝑟2

2𝑑𝑣2 

                          = 𝐸 𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺 𝑑𝑣2 

Hence the metric is invariant. 

 

Example 1. Calculate first fundamental magnitudes for the surface 

                     𝑟 = [𝑢𝑐𝑜𝑠𝑣, 𝑢𝑠𝑖𝑛𝑣, 𝑓(𝑢)]. 

Solution. The given surface is 𝑟 = [𝑢𝑐𝑜𝑠, 𝑣𝑠𝑖𝑛𝑣, 𝑓(𝑢)], 

∴              𝑟1 = [𝑐𝑜𝑠𝑣, 𝑠𝑖𝑛𝑣, 𝑓(𝑢)′], 𝑟2 = [−𝑢𝑠𝑖𝑛𝑣, 𝑢𝑐𝑜𝑠𝑣, 0] 

𝐸 = 𝑟1
2 =  𝑐𝑜𝑠2𝑣 + 𝑠𝑖𝑛2𝑣 + 𝑓′2 = 1 + 𝑓′2

 

 

                                   𝐹 = 𝑟1. 𝑟2 = −𝑢𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣 + 𝑢𝑠𝑖𝑛𝑣𝑐𝑜𝑠𝑣 + 0 = 0 

                                  𝐺 = 𝑟2
2 =  𝑢2𝑠𝑖𝑛2𝑣 + 𝑢2𝑐𝑜𝑠2𝑣 + 0 = 𝑢2. 

 

Example 2. Calculate 𝐸, 𝐹, 𝐺, 𝐻 for the paraboloid 

                      𝑥 = 𝑢, 𝑦 = 𝑣, 𝑧 = 𝑢2 − 𝑣2. 
 

Solution. The given surface is 𝑟 = (𝑢, 𝑣, 𝑢2 − 𝑣2) 

We have 𝑟1 = (1, 0, 2𝑢), 𝑟1 = (0, 1, −2𝑣) 

∴ 𝐸 = 𝑟1
2 = 1 + 4𝑢2, 𝐹 = 𝑟1. 𝑟2 = 0 + 0 − 4𝑢𝑣 = −4𝑢𝑣 

𝐺 = 𝑟2
2 = 1 + 4𝑢2 

Also 𝐻 = √(𝐸𝐺 − 𝐹2) = √(1 + 4𝑢2)(1 + 4𝑣2) − 16𝑢2𝑣2 = √1 + 4𝑢2 + 4𝑣2). 
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Example 3. Show that for the surface of revolution 𝑥 = 𝑢𝑐𝑜𝑠𝑣, 𝑦 = 𝑢𝑠𝑖𝑛𝑣, 𝑧 = 𝑓(𝑢) the 

parameter curves form an orthogonal system and  𝑑𝑠2 = (1 + 𝑓′2)𝑑𝑢2 + 𝑢2𝑑𝑣2 where 

dash denotes differentiation with respect to 𝑢. 

 

Solution. Here surface of revolution is same as in example 1, we have shows in  

example 1 that for this surface 𝐸 = 1 + 𝑓′2, 𝐹 = 0 and 𝐺 = 𝑢2 

since 𝐹 = 0, therefore the parametric curves are orthogonal. 

Again 𝑑𝑠2 = 𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2 = (1 + 𝑓′2)𝑑𝑢2 + 𝑢2𝑑𝑣2. 

 

Example 4. Calculate the first fundamental coefficients and show that parametric curves 

are orthogonal, and find the area corresponding to the domain  20 u ,  20 v  for 

the anchor ring [𝑥 = (𝑏 + 𝑎𝑐𝑜𝑠𝑢)𝑐𝑜𝑠𝑣, 𝑦 = (𝑏 + 𝑎𝑐𝑜𝑠𝑢)𝑠𝑖𝑛𝑣, 𝑧 = 𝑎𝑠𝑖𝑛𝑢]. 

Solution 3.   The equation of the surface is 

𝑟 = [𝑥 = (𝑏 + 𝑎𝑐𝑜𝑠𝑢)𝑐𝑜𝑠𝑣, 𝑦 = (𝑏 + 𝑎𝑐𝑜𝑠𝑢)𝑠𝑖𝑛𝑣, 𝑧 = 𝑎𝑠𝑖𝑛𝑢] 
We have 

r1 = {(-a sinu cosv,   -a sinu sinv,   a cosu }. 

r2 = {-(b + a cosu) sinv,   ( b + a cosu) cosv,   0 }. 

Then as we know that 

E = r1.r1 = r1
2, F= r1.r2 = r2.r1 and G= r2.r2 = r2

2 

Therefore, we have for this problem, by taking scalar products suitably 

E = r1.r1 = r1
2 = a2 

F = r1.r2 = 0 

G = r2.r2 = r2
2= (b + a cosu)2 

H = √(EG - F2) = a (b + a cosu) 

Now F = 0 implies that parametric curves are orthogonal on the given surface. 

Now the area bounded by the limits  20 u ,  20 v  is given by 

  A=  Hdudv  

=   

 


2

0

2

0
dudvucosaba  

=    

 


2

0

2
0 duucosabva  

=   
2
02 usinabua  

= 4abπ2. 

This is required area. 

 

5.5 SECOND FUMDAMENTAL FORM AND SECOND 

ORDER MAGNITUDES  

Let 𝑟 = 𝑟(𝑢, 𝑣) be the equation of the surface and 𝑁 be the unit normal vector to this 

surface at the point 𝑟(𝑢, 𝑣) then  

 𝑁 =
𝑟1×𝑟2

|𝑟1×𝑟2|
=

𝑟1×𝑟2

𝐻
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We know that 𝑟11 =
𝜕2𝑟

𝜕𝑢2 , 𝑟12 =
𝜕2𝑟

𝜕𝑢𝜕𝑣
=

𝜕2𝑟

𝜕𝑣𝜕𝑢
= 𝑟21, 𝑟22 =

𝜕2𝑟

𝜕𝑣2  

If 𝐿 = 𝑟11. 𝑁, 𝑀 = 𝑟12. 𝑁 = 𝑟21. 𝑁, 𝑵 = 𝑟22. 𝑁, then the quadratic differential form is  

𝑳 𝒅𝒖𝟐 + 𝟐𝑴𝒅𝒖𝒅𝒗 + 𝑵𝒅𝒗𝟐 in 𝑑𝑢, 𝑑𝑣 is called the second fundamental form of the 

surface. The quantities 𝐿, 𝑀, 𝑁 are called second fundamental coefficient or second order 

fundamentals magnitudes. 

 

 

Geometrical interpretation of the second fundamental form: 

To show that the length of the perpendicular, as far as terms of the second order, on the 

tangent plane to a surface at the point (𝑢, 𝑣) from a neighboring point (𝑢 + 𝑑𝑢, 𝑣 + 𝑑𝑣) 

is 
𝟏

𝟐
(𝑳 𝒅𝒖𝟐 + 𝟐𝑴𝒅𝒖𝒅𝒗 + 𝑵𝒅𝒗𝟐) 

Proof: let 𝑝(𝑟) be the point of contact of the tangent plane with the square with 

parametric values (𝑢, 𝑣) and let 𝑄(𝑟 + 𝑑𝑟) be a neighboring point with parametric values 

(𝑢 + 𝑑𝑢, 𝑣 + 𝑑𝑣) on the surface.  

                            
                                                      Fig.5.5.1 

By Taylor’s series we have  

r + dr = r + (r1du + r2dv) +
1

2
(r11du2 + 2r12dudv + r22dv2) + ⋯ 

[neglecting quantities of order higher than two] 

          dr = (r1du + r2dv) +
1

2
(r11du2 + 2r12dudv + r22dv2)  

let QM be the length of the perpendicular from Q on the tangent plane at P.  

therefore QM = projection of the vector PQ on the normal at P 

                       = 𝑁. 𝑑𝑟 = 𝑁. (r1du + r2dv) +
1

2
𝑁. (r11du2 + 2r12dudv + r22dv2)  

upto terms of second order 
1

2
(L du2 + 2Mdudv + Ndv2). 

 

Note: Some important products. 

1. The scalar triple product of N, r1and r2 has the value H; 

[𝑵, r1, r2] = 𝑵. r1 × r2 = 𝑁2𝐻 = 𝐻               [𝑠𝑖𝑛𝑐𝑒 𝑁2 = 1] 

          𝟐.  Cross product of N with r1 and r2 

(i) r1 × N = r1 ×
r1×r2

𝐻
=

1

𝐻
[(r1. r2)r1 − (r1. r1)r2] =

1

𝐻
[𝐹r1 − 𝐸r2] 

(ii) r2 × N = r2 ×
r1×r2

𝐻
=

1

𝐻
[(r2. r2)r1 − (r2. r1)r2] =

1

𝐻
[𝐺r1 − 𝐹r2] 
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CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. E du2 + 2Fdu dv + G dv2 is called metric. 

Problem 2. L du2 + 2Mdudv + Ndv2 is called Second fundamental form. 

Problem 3. The metric is not invariant under a transformation of parameter. 

Problem 4 The metric of first fundamental form is a positive definite quadratic  

                    form in 𝑑𝑢, 𝑑𝑣. 

  

 

 

 

5.6 SUMMARY 

(1) E du2 + 2Fdu dv + G dv2 i.e. metric or first fundamental form is a positive definite 

quadratic form in du and dv.  

         (2) The scalar triple product of N, r1and r2 has the value H; 

[𝑵, r1, r2] = 𝑵. r1 × r2 = 𝑁2𝐻 = 𝐻               [𝑠𝑖𝑛𝑐𝑒 𝑁2 = 1] 

           Cross product of N with r1 and r2 

(𝑖𝑖)r1 × N = r1 ×
r1 × r2

𝐻
=

1

𝐻
[(r1. r2)r1 − (r1. r1)r2] =

1

𝐻
[𝐹r1 − 𝐸r2] 

(𝑖𝑖𝑖)r2 × N = r2 ×
r1 × r2

𝐻
=

1

𝐻
[(r2. r2)r1 − (r2. r1)r2] =

1

𝐻
[𝐺r1 − 𝐹r2] 

 

5.7 GLOSSARY 

 (i)  Derivatives  

 (ii)  Torsion 

 

5.8 REFERENCES AND SUGGESTED READINGS 

1. An introduction to Riemannian Geometry and the Tensor calculus by C.E.  

              Weatherburn “Cambridge University Press.” 

2. Matrices and Tensors in physics by A.W. Joshi “Wiley Eastern Limited”. 

3. Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”. 
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4. Differential Geometry by Gupta, Malik and Pundir “Pragati Edition’’. 

 

5.9 TEWRMINAL QUESTIONS 

 

1. Prove that E du2 + 2Fdu dv + G dv2 is positive definite. 

2. Define Second fundamental form. 

3. Define First fundamental form. 

 

5.10 ANSWERS 

 

CYQ 1. True  

CYQ 2. True 

CYQ 3. False 

CYQ 4. True 
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UNIT 6:  FUNDAMENTAL FORMS II 

 

CONTENTS: 

 

6.1 Introduction 

6.2 Objectives 

6.3 Surface of Revolution 

6.4  Summary 

6.5  Glossary 

6.6  References and Suggested Readings 

6.7  Terminal questions 

6.8        Answers 
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6.1 INTRODUCTION 

In differential geometry, the study of smooth spaces and shapes, the 

fundamental theorem of space curves states that the shape, size, and scale of a 

regular curve in three-dimensional space is completely determined by its curvature 

and torsion. different space curves are only distinguished by how they bend and 

twist. Quantitatively, this is measured by the differential-geometric invariants 

called the curvature and the torsion of a curve. The fundamental theorem of curves 

asserts that the knowledge of these invariants completely determines the curve. 

 

6.2 OBJECTIVES 

 After completion of this unit learners will be able to: 

(i) First Fundamental form or Metric 

(ii) Second fundamental coefficient 

 

6.3 SURFACE OF REVOLUTION   

 

 Definition: A surface generated by the revolution of a plane curve about and axis in its 

plane is called a surface of revolution. 

Let us take 𝑧 − axis as the axis of revolution and let the generating curve in 𝑧 x-plane 

 (𝑦 = 0) be given by 𝑥 = 𝑓(𝑢), 𝑦 = 0, 𝑧 = 𝑔(𝑢). 

                                            

                                                Fig.6.3.1 

Let this plane curve be rotated through an angle 𝜑, then the co-ordinates of a point 

𝑃 = (𝑥, 𝑦, 𝑧) are given by 𝑥 = 𝐶𝑄 cos𝜑 , 𝑦 = 𝐶𝑃 sin𝜑 , 𝑧 = 𝑍𝑄 = 𝑔(𝑢) 
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⟹ 𝑥 = 𝑓(𝑢) cos𝜑 , 𝑦 = 𝑓(𝑢) sin𝜑 , 𝑧 = 𝑔(𝑢)  

For convenience, we often take 𝑓(𝑢) = 𝑢 

⟹ 𝑥 = 𝑢 cos𝜑 , 𝑦 = 𝑢 sin𝜑 , 𝑧 = 𝑔(𝑢)  

Or in vector notation, position vector of 𝑃 is 𝑟 = (𝑢 cos𝜑 , 𝑢 sin𝜑 ,𝑔(𝑢) ) 

This is the equation of the surface of revolution. 

(a) Sphere:  

Sphere can be regarded as a surface of revolution formed by rotating the circle x2 +

z2 = a2, y = 0 [in zx − plane] about z − axis. 

Coordinates of any point, say Q on any point of the circle can be taken as 

 x = asinu, y = 0, z = acosu whence the equation of the sphere can be written as  

x = asinu cosφ , y = asinu sinφ, z = acosu 

Or                               x = asinu cos v , y = asinu sinv, z = acosu 

                                    Where φ is replaced by v.  

Or         in vector form  r = (asinu cosv, asinu sinv, acosu). 

 

Note: The Co-latitude u of the point P may be defined as the inclination of the radius 

OP to the z-axis and longitude 𝑣 as inclination of the plane containing P and the z-axis 

to 𝑦 = 0 plane. The parametric curve 𝑢 = constant are the small circles called the 

parallels of latitude; the parametric curve 𝑢 = constant are the great circles called the 

meridians of longitude. The poles 𝑢 = 0 and 𝑢 = 𝜋 are called artificial singularities. 

The domain of 𝑢 is 0 < 𝑢 < 𝜋 and that of 𝑣 as 

 0 ≤ 𝑣 < 2𝜋. 

                                      

                                                           Fig.6.3.2 

Here      r = (asinu cosv, asinu sinv, acosu) 



GEOMETRY  MAT 611 

  

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY  

66 

 

⟹         r1 = (acosu cosv, acosu sinv,−asinu) 

⟹         r2 = (−asin u sinsv, asinu cosv, 0) 

⟹         r1. r2 = −a2sinu sinv cosu cosv + a2sinu sinv cosu cosv = 0 

⟹          F = 0  

⟹          Parametric curves are orthogonal  

⟹          Latitudes and longitudes intersect orthogonally. 

 

(𝒃) Right circular cone of semi-vertical angles 𝜶. 

Let the line 𝑂𝑍 be taken as axis of the cone and let 𝑃 = (𝑥, 𝑦, 𝑧) be any point on the 

surface of the cone. Further let 𝑢 be the distance of 𝑃 from 𝑧 −axis and let 𝑣 be the 

inclination of the plane containing 𝑃 and the 𝑧 − axis to 𝑧𝑥 −plane. Then as shown in 

the above figure, we have  

 

                    

                                            Fig.6.3.3 

                𝑥 = 𝑢𝑐𝑜𝑠𝑣, 𝑦 = 𝑢𝑠𝑖𝑛𝑣, 𝑧 = 𝑂𝐾 = 𝑢𝑐𝑜𝑡 ∝. 

⟹           position vector of 𝑃 = (𝑢𝑐𝑜𝑠𝑣, 𝑢𝑠𝑖𝑛𝑣, 𝑢𝑐𝑜𝑡 ∝)  

⟹           𝑟 = (𝑢𝑐𝑜𝑠𝑣, 𝑢𝑠𝑖𝑛𝑣, 𝑢𝑐𝑜𝑡 ∝)  

⟹           𝑟1 = (𝑐𝑜𝑠𝑣, 𝑠𝑖𝑛𝑣, 𝑐𝑜𝑡 ∝), 𝑟2 = (−𝑢𝑠𝑖𝑛𝑣, 𝑢𝑐𝑜𝑠𝑣, 0) 

⟹           𝑟1. 𝑟2 = 0 ⟹ 𝐹 = 0,⟹ parametric curve are orthogonal. 

Here        𝑟1 × 𝑟2 = |
𝑖̂ 𝑗̂ 𝑘̂

𝑐𝑜𝑠𝑣 𝑠𝑖𝑛𝑣 𝑐𝑜𝑡 ∝
−𝑢𝑠𝑖𝑛𝑣 𝑢𝑐𝑜𝑠𝑣 0

| 

= (−𝑢𝑐𝑜𝑠𝑣 𝑐𝑜𝑡𝛼)𝑖̂ − (𝑢𝑠𝑖𝑛𝑣𝑐𝑜𝑡𝛼)𝑗̂ + 𝑘̂(𝑢)  

⟹ (𝑟1 × 𝑟2)𝑢=0 i.e. vertex is only singularity. 
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(𝒄) Anchor Ring 

A surface obtained by rotating a circle (radius 𝑎) about a line in its plane at a distance 

𝑏( > 𝑎) from the centre, is called anchor ring. 

      

                           

                                           Fig.6.3.4 

Let the generating circle lie in 𝑦 = 0 plane and let it rotate about 𝑧 − 𝑎𝑥𝑖𝑠. Further let 

𝐶 be the centre of the circle such that 𝐶𝑂 = 𝑏( > 𝑎) if 𝑃′ is any point on the 

circumference of this circle, then co-ordinates of 𝑃′ are 

 𝑥 = 𝑏 + 𝑎𝑐𝑜𝑠𝑢, 𝑦 = 0, 𝑧 = 𝑎𝑠𝑖𝑛𝑣, where 𝑢 is the angle which the radius 𝐶𝑃′ makes 

with positive direction of 𝑥 −axis. When the generating circle has been rotated through 

an angle 𝑣, let 𝑃′ take the position 𝑃 and as such its co-ordinates are 

 𝑥 = (𝑏 + 𝑎𝑐𝑜𝑠𝑢)𝑐𝑜𝑠𝑣, 𝑦 = (𝑏 + 𝑎𝑐𝑜𝑠𝑢)𝑠𝑖𝑛𝑣, 𝑧 = 𝑎𝑠𝑖𝑛𝑢 these are the equations of 

the anchor ring and domain of 𝑢, 𝑣 is 0 < 𝑢 < 2𝜋; 0 < 𝑣 < 2𝜋. 

 

(𝒅) Helicoids 

General Helicoid. A surface generated by a curve which is simultaneously rotated 

about a fixed axis and translate in the direction of the axis with a velocity proportional 

to the velocity of rotation, is called helicoids. 

this kind of the motion of the curve called a screw motion or a helicoidal motion. 

Different positions of the generating curve can be obtained by first translating it 

through a distance 𝜆 parallel to the axis and then rotating it through an angle 𝒗  

 about the axis. The ration (𝜆/𝑣) is always constant. Let it be 𝑐 i.e. (𝜆/𝑣) = c. the 

constant 2𝜋𝑐 is called the pitch of the helicoids (distance translated in one complete 
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revolution). As a matter of face, pitch is positive or negative according as the helicoids 

is right of or left -handed (right or left screw) and is zero when the surface is of 

revolution. 

Equations of General Helicoids. 

For a general helicoid, the meridians i.e. the sections of the surface by planes 

containing the axis are congruent plane curves. There is no loss of generality if we 

assume the generating curve to be a plane curve. The surface be thought as being 

generating be given by equation 𝑥 = 𝑓(𝑢), 𝑦 = 0, 𝑧 = 𝑔(𝑢); whence the positive vector 

of any current point on the helicoids is given by  

𝑟 = (𝑓(𝑢)𝑐𝑜𝑠𝑣, 𝑓(𝑢)𝑠𝑖𝑛𝑣, 𝑔(𝑢) + 𝑐𝑣) where 𝑐 be any constant. 

⟹        𝑟1 = (𝑓′(𝑢)𝑐𝑜𝑠𝑣, 𝑓′(𝑢)𝑠𝑖𝑛𝑣, 𝑔′(𝑢)) 

            𝑟2 = (−𝑓(𝑢)𝑠𝑖𝑛𝑣, 𝑓(𝑢)𝑐𝑜𝑠𝑣, 𝑐)  

⟹       𝑟1. 𝑟2 = 𝑐𝑔′(𝑢). 

           If  𝑟1. 𝑟2 = 0, we have 𝑐𝑔′(𝑢) = 0 ⟹ 𝑐 = 0 or 𝑔′(𝑢) = 0 ⟹ 𝑐 = 0 

Or       𝑔(𝑢) = constant. 

Parametric curves 𝑣 = constant are the various positions of the generating curves 

whereas parametric curves 𝑢 = constant are circular helices. When, 𝑐 = 0, we have 

𝑟 = (𝑓(𝑢)𝑐𝑜𝑠𝑣, 𝑓(𝑢)𝑠𝑖𝑛𝑣, 𝑔(𝑢)). This represents the equation of the surface of 

revolution.  

Further if   𝑔(𝑢) = constant = 𝑘, say we have  

                    𝑟 = (𝑓(𝑢)𝑐𝑜𝑠𝑣, 𝑓(𝑢)𝑠𝑖𝑛𝑣, 𝑘 + 𝑐𝑣), which represents a right helicoid. 

Right Helicoid 

Definition. The surface generated by the helicoids motion of a straight line meeting the 

axis in perpendicular direction is called right-helicoid. 

Let us take the axis as z-axis, then the position vector of any current point on the right 

helicoids is given by 

𝑟 = (𝑢𝑐𝑜𝑠𝑣, 𝑢𝑠𝑖𝑛𝑣, 𝑐𝑣) where 𝑢 = distance of a point from 𝑧 −axis, 𝑣 = angle of 

rotation; and the generator is assumed to be 𝑥 −axis when 𝑣 = 0. 

Now 𝑟1 = (𝑐𝑜𝑠𝑣, 𝑠𝑖𝑛𝑣, 𝑐𝑣)  and 𝑟2 = (−𝑢𝑠𝑖𝑛𝑣, 𝑢𝑐𝑜𝑠𝑣, 𝑐) 

⟹     𝑟1. 𝑟2 = −𝑢𝑠𝑖𝑛𝑣𝑐𝑜𝑠𝑣 + 𝑢𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣 = 0, ⟹ 𝐹 = 0 

⟹ Parametric curve are orthogonal. 
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It is to be noted that the curves 𝑣 = 0 constant are the generators whereas 𝑢 = 0 are the 

circular helices. 

(𝒆) Surface generated by tangents to a twisted curve. 

Let 𝑟 = 𝑟(𝑠) be the equation of the curve in space. Consider a point 𝑃 = 𝑟 on the space 

curve and let Q be any point (having position vector R) on it,  

then 𝑅⃗ − 𝑟 = 𝑢𝑡    where scalar u is the distance of Q from P. this can be further 

 re-written as                  𝑅⃗ = 𝑟 + 𝑢𝑡    ……. (1)  

and represents the surface by the tangents to the curve 𝑟 = 𝑟(𝑠). As 𝑟  and 𝑡  are both 

functions of the arc lengths s of the given curve, therefore in equation (1), 𝑅⃗  is the 

function of two parameters u and s.                     

The parametric curves 𝑠 = constant give the generators of the surface and are the 

tangents to the given curve, Also the parametric curves u = constant are the curves 

which cut the tangents at a constant distance from the given curve. 

                              

                                         Fig.6.3.5 

We know proceed to calculate the fundamental magnitudes for surface 𝑅⃗ = 𝑟 + 𝑢𝑡 , 

Where 𝑅⃗ = 𝑅⃗ (𝑢, 𝑠),  𝑢 is first parameters and 𝑠 is second parameter 

𝑅⃗ 1 =
𝜕𝑹

𝜕𝑢
 = t, 𝑅⃗ 2 =

𝜕𝑹

𝜕𝑠
 = 

𝑑𝑹

𝑑𝑠
+ 𝑢

𝑑𝒕

𝑑𝑠
= 𝑡 + 𝑢𝑘𝑛 

𝐸 = 𝑅1
2 = 𝑡2 = 1, 𝐹 = 𝑅1. 𝑅2 = 𝑡. (𝑡 + 𝑢𝑘𝑛) = 1, 

𝐺 = 𝑅2
2 = (𝑡 + 𝑢𝑡𝑛). (𝑡 + 𝑢𝑘𝑛) = 1 + 𝑢2𝑘2, 

𝐻2 = 𝐸𝐺 − 𝐹2 = 𝑢2𝑘2 

Now, 𝑅1 × 𝑅2 = 𝑡 × (𝑡 × 𝑢𝑘𝑛) = 𝑢𝑘𝑏. 

⟹ 𝑁 = unit normal vector to the surface =
𝑅1×𝑅2

𝐻
=

𝑢𝑘𝑏

𝑢𝑘
= 𝑏, where 𝐻 = |𝑁⃗⃗ | 

Further, 𝑅11 = 0, 𝑅12 =
𝑑𝑡

𝑑𝑠
= 𝑘𝑛,  

          𝑅22 =
𝑑𝑡

𝑑𝑠
+ 𝑢

𝑑(𝑘𝑛)

𝑑𝑠
= 𝑘𝑛 + 𝑢[𝑘′𝑛 + 𝑘(𝜏𝑏 − 𝑘𝑡)]      
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                  = 𝑘𝑛 + 𝑢𝑘′𝑛 + 𝑢𝑘𝜏𝑏 − 𝑢𝑘2𝑡. 

⟹   𝐿 = 𝑅11. 𝑁 = 0 , 𝑀 = 𝑅12. 𝑁 = (𝑘𝑛). 𝑏 = 0 and 𝑁 = 𝑅22. 𝑁 = 𝑢𝑘𝜏. 

 

Example 1. Find the fundamental magnitudes for some important surfaces. 

 

   (a) The general surface of the revolution 

In the case surface of revolution, the position, the position vector r of a current point is 

given by 

𝐫 = [𝑢cos v, usin v, 𝑓(u)]

𝐫1 = (cos v, sin v, 𝑓′); 𝐫2 = (−𝑢 sin v , u cos v, 0), 

r11 = (0,0, 𝑓′′); r21 = (−sin v, cos v, 0), 

r22 = (−u cos v,−u sin v, 0)

E = r1
2 = cos2 v + sin2 v + 𝑓′2 = 1 + 𝑓′2

𝐹 = 𝑟1 ⋅ 𝑟2 = −𝑢sin 𝑣cos 𝑣 + 𝑢sin 𝑣cos 𝑣 + 0 = 0, 

G = 𝐫2
2 = u2sin2 v + u2cos2 v + 0 = u2

𝐫1 × 𝐫2 = (−𝑢𝑓′cos 𝑣,−𝑢𝑓′sin 𝑣, 𝑢cos2 𝑣 + 𝑢sin2 𝑣)

 = 𝑢(−𝑓′cos 𝑣, −𝑓′sin 𝑣, 1)

 ∴ 𝐻2 = 𝐸𝐺 − 𝐹2 = 𝑢2(1 + 𝑓′2) − 0 = 𝑢2(1 + 𝑓′2)

H = u√1 + 𝑓′2

𝐍 =
𝐫1 × 𝐫2

H
=

u(−𝑓′cos v,−𝑓′sin v, 1)

u√1 + 𝑓2
=

(−𝑓′cos v,−𝑓′sin v, 1)

√1 + 𝑓2

 L = N ⋅ 𝐫11 =
(−𝑓cos v, −𝑓′sin v, 1) ⋅ (0,0, 𝑓′′)

√1 + 𝑓′2

 =
𝑓′′

√(1 + 𝑓′2)
, 

𝑀 = 𝑁 ⋅ 𝐫12 =
(−𝑓′cos v, −𝑓′sin v, 1) ⋅ (−sin v, cos v, 0)

√(1 + 𝑓′2)

 =
𝑓′sin 𝑣cos 𝑣 − 𝑓′sin 𝑣cos 𝑣 + 0

√(1 + 𝑓′2)
= 0

𝐍 = 𝐍 ⋅ 𝐫22 =
(−𝑓′cos v, −𝑓′sin v, 1) ⋅ (−𝑢cos v, −usin v, 0)

√{(1 + 𝑓′2)}

 

                            =
𝑢𝑓′

√{(1+𝑓′2)}
 . 

(b) The Conoidal Surface. 

The position vector of a current point on the conoidal surface is given by 
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     𝐫 = [𝑢 𝑐𝑜𝑠𝑣, 𝑢 𝑠𝑖𝑛𝑣, 𝑓(𝑣)] 

∴  𝐫1 = (cos𝑣 , sin 𝑣 , 0); 𝑟2 = (−𝑢sin 𝑣, 𝑢cos 𝑣, 𝑓′); 

    𝐫11 = (0,0,0); 𝐫12 = (−sin v, cos v, 0); 

    𝐫22 = (−𝑢cos 𝑣, −𝑢sin 𝑣, 𝑓′′) 

∵  𝐸 = 𝐫1 ⋅ 𝐫1 = cos2 𝑣 + sin2 𝑣 = 1 

    𝐹 = 𝐫1 ⋅ 𝐫2 = −𝑢 cos𝑣 sin 𝑣 + 𝑢 cos𝑣sin𝑣 + 0 = 0 

    𝐺 = 𝐫2 ⋅ 𝐫2 = 𝑢2sin2 𝑣 + 𝑢2cos2 𝑣 + 𝑓′2 = 𝑢2 + 𝑓′2; 

 

Again      𝐻2 = 𝐸𝐺 − 𝐹2 = (𝑢2 + 𝑓′2) − 0 = 𝑢2 + 𝑓′2; 

∵                 H = √u2 + 𝑓′2 

Now 

𝐍 =
𝐫1 × 𝐫2

H
=

(cos 𝑣, sin 𝑣, 0) × (−𝑢sin 𝑣, 𝑢cos 𝑣, 𝑓′)

√{(𝑢2 + 𝑓′2)}

 =
(sin 𝑣𝑓′, −cos 𝑣𝑓′, 𝑢cos2 𝑣 + 𝑢sin2 𝑣)

√{(𝑢2 + 𝑓′2)}
=

(sin 𝑣𝑓′ , −cos 𝑣𝑓′, 𝑢)

√{(𝑢2 + 𝑓′2)}
.

 

Therefore 

𝐋 = 𝐍 ⋅ 𝐫11 = 𝐍 ⋅ (0,0,0) = 0,

𝐌 = 𝐍 ⋅ 𝐫12 =
(sin 𝑣𝑓′ , − cos 𝑣𝑓′ , 𝑢)

√(𝑓′2 + 𝑢2)
⋅ (− sin 𝑣 , cos 𝑣 , 0) =

−𝑓′

√(𝑓′ + 𝑢2)
,

𝐍 = 𝐍 ⋅ 𝐫22 =
(sin 𝑣𝑓′ , − cos 𝑣𝑓′ , 𝑢) ⋅ (−ucos𝑣 , −usin 𝑣 , 𝑓′′)

√(𝑓′2 + 𝑢2)

 =
−usin vcos 𝑣𝑓′ + usin vcos 𝑣𝑓′ + 𝑢𝑓′′

√(𝑓′2 + 𝑢2)
=

𝑢𝑓′′

√(𝑓′2 + 𝑢2)
.

 

(c) Monge's Form of the Surface. 

The equation of a surface given in the form z = f(x, y) is called Monge’s form. Again 

from the knowledge differential equation, we know that 

𝑝 =
𝜕𝑧

𝜕𝑥
, 𝑞 =

𝜕𝑧

𝜕𝑦
, 𝑟 =

𝜕2𝑧

𝜕𝑥2
, 𝑠 =

𝜕2𝑧

𝜕𝑥𝜕𝑦
, 𝑡 =

𝜕2𝑧

𝜕𝑦2
 

Taking 𝑥, 𝑦 as parameters, we have 

𝐫 = [𝑥, 𝑦, 𝑓(𝑥, 𝑦)] 
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(d) Right Helicoid 

To find the fundamental magnitudes for the right helicoid given by  

x = ucos ϕ, y = usin ϕ, z = cϕ 

Let the suffix 1 and 2 represent partial differentiation w.r.t. ′u′ , and 'ϕ'. 

Now 

𝐫 = (ucos ϕ, usin ϕ, cϕ) 

∴  𝐫1 = (cosϕ , sin ϕ , 0); 𝐫2 = (−usin ϕ, ucos ϕ, c) 

    𝐫11 = (0,0,0); 𝐫12 = (−sin ϕ, cos ϕ, 0); 

    𝐫22 = (−ucos ϕ,−usin ϕ, 0) 

Therefore E = 𝐫1 ⋅ 𝐫1 = cos2 ϕ + sin2 ϕ = 1, F = 𝐫1 ⋅ 𝐫2 = 0;G = 𝐫2 ⋅ 𝐫2 = u2 + c2 

Again H2 = EG − F2 = u2 + c2 or H = √{(u2 + c2)} 
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Now              𝐍 =
𝐫1×𝐫2

H
=

(csin ϕ,−cos ϕ,u)

√{(u2+c2)}
 

∴ L = 𝐍 ⋅ 𝐫11 = 0;M = 𝐍 ⋅ 𝐫12 =
−c

√{(u2 + c2)}
, 𝐍 = 𝐍 ⋅ 𝐫22 = 0 

 

Example 2. Calculate the fundamental magnitudes and the normal to the surface 2𝑧 =

𝑎𝑥2 + 2ℎ𝑥𝑦 + 𝑏2 taking 𝑥, 𝑦 as parameters. 

Solution. The position vector of any current point on the surface is given by 

𝐫 = (x, y,
a

2
x2 + hxy +

b

2
y2) 

∴ 𝐫1 = (1,0, 𝑎𝑥 + ℎ𝑦); 𝐫2 = (0,1, ℎ𝑥 + 𝑏𝑦) 

𝐫11 = (0,0, 𝑎); 𝐫12 = (0,0, ℎ); 𝐫22 = (0,0, 𝑏) 

 

𝐍 =
𝐫1 × 𝐫2

H
=

(−(𝑎𝑥 + ℎ𝑦), −(ℎ𝑥 + 𝑏𝑦),1)

H
𝐸 = 𝐫1 ⋅ 𝐫1 = 1 + (𝑎𝑥 + ℎ𝑦)2; 𝐹 = 𝑟1 ⋅ 𝐫2 = (𝑎𝑥 + ℎ𝑦)(ℎ𝑥 + 𝑏𝑦);

𝐺 = 𝐫2 ⋅ 𝐫2 = 1 + (ℎ𝑥 + 𝑏𝑦)2

𝐻2 = 𝐸𝐺 − 𝐹2 = 1 + (𝑎𝑥 + ℎ𝑦)2 + (ℎ𝑥 + 𝑏𝑦)2

∴ 𝐿 = 𝐍 ⋅ 𝐫11 =
𝑎

𝐻
;𝑀 = 𝐍 ⋅ 𝐫12 =

ℎ

𝐻
;𝑁 = 𝐍 ⋅ 𝐫22 =

𝑏

𝐻
 .

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. Parametric curves are orthogonal  

Problem 2. Latitudes and longitudes intersect orthogonally. 

Problem 3.  𝑟 = (𝑓(𝑢)𝑐𝑜𝑠𝑣, 𝑓(𝑢)𝑠𝑖𝑛𝑣, 𝑘 + 𝑐𝑣), represents a right helicoid. 
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6.4 SUMMARY 

(1) Definition. The surface generated by the helicoids motion of a straight-line meeting  

                        the axis in perpendicular direction is called right-helicoid. 

 (2) Definition: A surface generated by the revolution of a plane curve about and axis  

                           in its plane is called a surface of revolution. 

          

6.5 GLOSSARY 

 (i)  Derivatives  

 (ii)  Torsion 

 

6.6 REFERENCES AND SUGGESTED READINGS 

1. An introduction to Riemannian Geometry and the Tensor calculus by C.E.  

              Weatherburn “Cambridge University Press.” 

2. Matrices and Tensors in physics by A.W. Joshi “Wiley Eastern Limited”. 

3. Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”. 

4             Differential Geometry by Gupta, Malik and Pundir “Pragati Edition’’. 

6.7 TEWRMINAL QUESTIONS 

 

1. Define Right Helicoid, find its equation. 

2. Define Monge's Form of the Surface, find its equation. 

3. Right circular cone of semi-vertical angles 𝛼, find its equation. 

4. Sphere, find its equation. 

 

6.8 ANSWERS 

 

CYQ 1. True            CYQ 2. True                      CYQ 3. True 
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UNIT 7:  ANGLE BETWEEN PARAMETRIC CURVES 

 

CONTENTS: 

 

7.1  Introduction  

7.2  Objectives  

7.3  Curves on a surface 

7.4  Parametric curves on a surface 

7.5  Vectors tangential to parametric curves on a surface 

7.6  Normal to surface 

7.7  Fundamental coefficients and relation among them 

7.8  Angle between parametric curves  

7.9  Solved exercises 

7.10  Summary  

7.11  Glossary  

7.12  References and Suggested readings  

7.13  Terminal questions  

7.14  Answers  
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7.1 INTRODUCTION 

Dear learners, in the previous units, you might have studied and learnt by now that  

1. A curve in space is defined as the locus of a point whose Cartesian co-ordinates  

(x, y, z) can be expressed the function of a single variable parameter t (for example 

time), s (for example arc-length) or u (any other notion), say. 

Example: of a space curve is circular helix, whose equation is 𝑟(𝑡) = 𝑎 𝑐𝑜𝑠 𝑡 𝑖̂ +

𝑎 sin 𝑡 𝑗̂ + 𝑐𝑡 𝑘̂, where t lies in (  , ).  

Equation of a space curve can also be expressed as intersection of two surfaces in space. 

Various properties of apace curves have been discussed in previous units in detail. 

2. A surface is defined as the locus of a point whose Cartesian co-ordinates  

      (x, y, z) can be expressed the function of two independent variable parameters, u and 

v (any other notion), say. 

Thus x = x (u, v), y = y(u, v), z = z(u, v) are called parametric equations of a surface. The 

parameters u and v take real values and vary in some region D. This type of representation 

is an explicit form of surface. 

Example of a surface is conicoid whose equation is x = u cos v, y = u sin v, z = f(v). 

Equation of a surface can also be written as z = f(x, y). This representation is called 

Monge’s form of the surface. For example, z= x2 - y2 represents a hyperboloid. It’s 

parametric equation is x= u cosh v, y= u sinh v, z= u2. It is obvious that we can write the 

equation of surface in any form as desired. 

 We have the following notations for partial differentiation of position vector r with 

respect to the parameter u and v. 

                  u

r
r




1  ,   

v

r
r




2 ,   

2

2

11
u

r
r




 ,   

uvvu

r
rr











22

2121 ,  
2

2

22
v

r
r




 .  

That is to say, suffixes 1 and 2 denote the partial differentiation with respect to parameter 

u and v respectively. 

 

7.2 OBJECTIVES 

 Dear learners, after studying this unit, you should be able to - 

(i) Understand the concept of parametric curves. 

(ii) Understand the concept of tangential vector. 

(iii) To find angle between the parametric curves 

(iv) To find angle between any two-space curve. 

(v) Understand direction ratios and direction coefficients.   

 

7.3 CURVES ON A SURFACE 
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            Dear learners, you might have studied the equation of curves length of curves, 

radius of curvature, angle between two intersecting curves in a plane, viz. xy plane, in 

geometry and differential calculus in undergraduate course. Now, we shall have 

knowledge of curves on surface in three dimensional spaces. Suppose r = r (u, v) is the 

parametric equation of a surface. Any relation between the parameters, say g (u, v) = 

constant, gives the equation of a curve lying on this surface. For then anyone parameter, 

say u, can be written in terms of the other parameter v and hence the position vector r 

becomes a function of only one parameter v, and thus its locus is, by definition, a curve. 

In a similar way if the parameters u and v are expressed as function of a single parameter 

t, then again, the position vector r becomes a function of only one independent parameter 

t, hence its locus is a curve lying on the given surface. Hence u = u(t) and v = v(t), then 

r = r (u(t), v(t)) is the equation of a curve on the surface r = r(u, v). Then the we call the 

equations u = u(t) and v = v(t) as curvilinear equations of the curve. 

 

7.4 CURVES ON A SURFACE 

We shall now go for the basic knowledge of parametric curves on a given surface. 

Suppose  

r = r(u, v) is the equation of a surface. Now if we keep either u or v constant, then we 

obtain curves lying on this surface and these curves are of independent interest and 

importance. These curves obtained by keeping one of the parameters as constant are 

called parametric curves. 

If we take v = c (constant) and u is allowed to vary, then position vector r becomes a 

function of single parameter u and hence its locus is a curve by definition. Thus r = r(u, 

c) is a curve lying on the surface r = r(u, v). This curve is called parametric curve v = c 

or the u-curve. There is one such curve for every value of c and if c is an arbitrary 

constant, then v = c forms a family of parametric curves v = constant. 

In a similar way, if we take u = c (a constant) and allow v to vary, then we obtain the 

family of parametric curves u = constant. 

We should know that through each point on the surface r = r(u, v), one and only curve 

of each system passes. From this we can conclude that no two parametric curves of same 

family intersect. 

 
Fig. 7.4.1 
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7.5 VECTORS TANGENTIAL TO PARMETRIC CURVES 

ON A SURFACE 

Dear learners, we are aware of finding tangent and normal in case of plane curves at 

different points of it using ordinary differential in calculus. Here, we shall find the similar 

things in parametric versions.  

Suppose r = r(u, v) be the equation of a given surface. We are now clear that the equation 

of the parametric curve u = a (constant) can be written as r = r(a, v). For this parametric 

curve v takes the variable values. Therefore we can differentiate this equation r = r(a, v) 

partially with respect to v. Differentiating r = r(u, v),  partially with respect to v, we get 

a vector 𝑟2 =
𝜕𝑟

𝜕𝑣
 ,  tangential to curve r = r(a, v) along  the direction of increasing v. 

In the same way, equation of the parametric curve v = b (constant) can be written as  

r = r(u, b). For this parametric curve u takes the variable values. Therefore we can 

differentiate this equation r = r(u, v) partially with respect to u. Differentiating 

 r = r(u, v),  partially with respect to u we get a vector𝑟1 =
𝜕𝑟

𝜕𝑣
,  tangential to curve  

r = r(u, b) along  the direction of increasing u. 

In this unit, we only consider the surfaces which have no singularities at all of any kind; 

therefore, we always have r1× r2 ≠ 0. Hence parametric curves of different systems never 

touch each other, as for condition of touching is r1× r2 = 0. 

 

                        
                                                                    Fig. 6.2 

 

7.6 NORMAL TO THE SURFACE 

 Dear learners, you might have learnt how to find unit normal vector on a 

given surface in Monge’ form. You can recall the process learnt in vector 

calculus by finding the gradient of surfaces f(x, y, z) = constant or z = z(x, 

y). But those methods are useful only if surface is not given in parametric 

forms (Gaussian form) but given in Monge’s form. Here shall learn to find 

normal on surface if equation of surface is given in parametric form i.e. 

containing two parameters. 
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  Let r = r(u, v) be the equation of a surface. Then the normal to the surface 

at any point on it is a line passing through that point and perpendicular to 

the tangent plane at the concerning point. 

If r = r(u, v) is the given surface then we have learnt that the vectors r1 and 

r2 are tangential to the surface. Therefore, normal to the surface at any point 

is perpendicular to both the vectors r1 and r2 and hence parallel to the vector 

r1× r2 as the vector r1× r2 itself is perpendicular in direction to both 

individual vectors r1 and r2.  

The direction of the normal is taken in such a way that if N is the unit normal 

vector at any point P, then vectors r1, r2 and N always constitute a right-

handed system. Thus the vectors r1× r2   and N are in the same direction. 

Therefore 

                                               N = 
𝒓𝟏×𝒓𝟐 

|𝒓𝟏×𝒓𝟐 |
 . 

We, by convention, denote 𝒓𝟏 × 𝒓𝟐 by H. since r1 × r2 ≠ 0, therefore H ≠ 0 

and H > 0 i.e. H is always positive definite quantity. So we can write 

                                N = 
𝒓𝟏×𝒓𝟐  

𝑯
,    or        H N = r1× r2 

7.7 FUNDAMENTAL COEFFICIENTS AND RELATION   

      AMONG THEM 

 
 Dear learners, in previous units you have learnt about first and second 

fundamental coefficients. Let r = r(u, v) be the equation of a surface, then 

for  brevity, we introduce first fundamental coefficients as- 

E = r1.r1 = r1
2,    F= r1.r2 = r2.r1 and G= r2.r2 = r2

2 . 

Similarly, the second fundamental coefficients are defined as- 

L= r11.N, M= r12.N = r21.N and N= r22.N.  

Here as we know the symbols 

2

2

11
u

r
r




 ,   

uvvu

r
rr











22

2121 ,  
2

2

22
v

r
r




 . 

The second fundamental coefficients can also be suitably written as- 

L= -r1.N1, M= -r1.N2 = -r2.N1 and N= -r2.N2.  

If ø is angle between the vectors r1 and r2, then from the definition of cross 

product or vector product of two vectors, we have 

r1× r2 = | r1| |r2 | sin ø N,                     ……..    (1) 

where N is the unit normal vector to the surface at the that point under 

consideration. 
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Squaring or making self-scalar product of both the sides of equation (1), we 

have 

(r1× r2)2 = | r1|2 |r2 |2 sin2 ø              [since N2=1]  

Or   (H N)2 = | r1|2 |r2 |2 (1-cos2 ø)      

H2 = | r1|2 |r2 |2 - | r1|2 |r2 |2 cos2 ø 

     = | r1|2 |r2 |2 – ( r1 . r2)2 

     = EG - F2. 

Or        H2 = EG - F2. 

Since H is positive quantity, therefore EG - F2 is also a positive quantity 

always. H is positive square root of EG - F2.  

 

7.8 ANGLE BETWEEN PARAMETRIC CURVES 

Let r = r(u, v) be the equation of a surface. Also let at any point P on this 

surface, two parametric curves u-constant and v = constant intersect each 

other. Let r is position vector of the point P. Then vectors r1 and r2  are 

tangential to surface along the directions of tangents of  parametric curves v 

= constant and u = constant respectively. If ø (0 <  ø  < π ) is angle between 

the vectors r1 and r2 or say between the parametric curves , then 

                 
                                                 Fig. 6.3 

cos ø= 
𝒓𝟏×𝒓𝟐 

 | 𝒓𝟏| |𝒓𝟐 |
 =

𝐹

√𝐸𝐺
 

and 

sin ø =   
𝒓𝟏×𝒓𝟐 

 | 𝒓𝟏×𝒓𝟐 |
 =

𝐻

√𝐸𝐺
  = 

√(𝐸𝐺−𝐹2)

√𝐸𝐺
 

and combining these results 

                                            tan ø = 
sin ø  

cos ø
 = 

𝐻

𝐹
 . 

In general, the angle between the parametric curves varies from point to 

point. The parametric curves are said to form an orthogonal system if they 

cut at right angles at all points of the surface. 
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From the formula of cos ø or tan ø, it is obvious that if ø is right angle then 

F=0 and vice-versa. i.e. r1.r2 = 0. 

Thus, the necessary and sufficient condition for parametric or coordinate 

curves to be orthogonal system is that F = r1.r2 = 0, at each point of the 

surface.  

Now, we shall discuss in detail the orthogonality, angle between any two 

curves and orthogonal trajectory in coming unit. 

7.9 SOLVED EXERCISES 

 

Question1: Find the equation of tangent plane and normal to the surface  

                    given by xyz = 4 at the point (i) (1, 2, 2) and (ii) (-1, -1, 4). 

Solution:  Equation of the surface can be written as  

F(x, y, z) = xyz - 4 = 0. 

We now have 

 

 

 2212

2212

2214

,,atxy
x

F

,,atxz
y

F

,,atyz
x

F
















 

Therefore, the equation of the tangent plane at (1, 2, 2) by the formula  

      0















z

F
zZ

y

F
yY

x

F
xX ,  

is (x-1).4 + (y-2).2 + (z-2).2 = 0 

Or 

4x + 2y + 2z = 12. 

i.e. equation of tangent plane is 

2x + y + z = 6. 

Now the equation of the normal is given by 

     

z

F

zZ

y

F

yY

x

F

xX




















 

So, equation of the normal at the point (1, 2, 2) on the surface is  

 
     

2

2

2

2

4

1 





 zyx
 

Or 

     
1

2

1

2

2

1 





 zyx
. 
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Similarly, following the same lines, the learners can find the required 

equation of tangent plane and normal at the point (-1, -1, 4). 

 

Question 2: Prove that the metric or the first fundamental form is a positive 

definite quadratic form in du and dv.    

Solution. We have from first fundamental form that 

E du2 + 2Fdu dv + G dv2   

=  222 2
1

dvEGdvEFduduE
E

  

=     2221
dvFEGdvFduE

E
  

» 0, for all real values of du and dv 

As E > 0 and EG - F2  > 0. 

Also, we have  

     0222
 dvFEGdvFduE  

  (E du + F dv) =0 and (EG - F2) dv2 = 0 

  E du + Fdv = 0 and dv = 0.                                   (As EG-F2 ≠ 0.) 

   E du = 0 and dv = 0 

  du = 0 and dv = 0. As E ≠ 0. 

Hence E du2 + 2Fdu dv + G dv2 i.e. metric or first fundamental form is a 

positive definite quadratic form in du and dv.  

 

Question 3: Find the expression for the elementary area at a point (u, v) of 

an arbitrary surface r = (u, v) 

Solution: Let a very small portion PQRS near the point P(u, v) of an 

arbitrary surface r =(u, v). Let the coordinates of the vertices P, Q, R and S 

are (u, v), (u + du, v), (u + du, v + dv) and (u, v + dv) respectively. We join 

P, Q, R, S so that PQRS becomes a parallelogram when du and dv are very 

small. 
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Now vector PQ  = position vector of Q - position vector of P 

= r (u + du, v) - r(u, v) 

= [r(u, v) - 
u

r




du ] - r(u, v) 

= r1 du. 

Similarly vector PS  = QR  = r2 dv. Therefore, if ds is the area of this 

elementary parallelogram PQRS, then 

ds= dvrdur 21   

= dvdurr 21  

=H du dv. 

Thus H du dv is expression for the elementary area on a surface r = r(u, v). 

If complete area is required between specified limits, then  

Area =  Hdudv , such bounded area is covered within given limits. 

 

Question 4: Calculate the first fundamental coefficients and show that 

parametric curves are orthogonal, and find the area corresponding to the 

domain  20 u ,  20 v  for the anchor ring  

x = (b + a cosu) cosv,    y = ( b + a cosu) sinv,  z = a sinu.  

Solution.  The equation of the surface is 

r = {(b + a cosu) cosv,   ( b + a cosu) sinv,   a sinu }. 

We have 

r1 = {(-a sinu cosv,   -a sinu sinv,   a cosu }. 

r2 = {-(b + a cosu) sinv,   ( b + a cosu) cosv,   0 }. 

Then as we know that 

E = r1.r1 = r1
2, F= r1.r2 = r2.r1 and G= r2.r2 = r2

2 

Therefore, we have for this problem, by taking scalar products suitably 

E = r1.r1 = r1
2 = a2 
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F = r1.r2 = 0 

G = r2.r2 = r2
2= (b + a cosu)2 

H = √(EG - F2) = a (b + a cosu) 

Now F = 0 implies that parametric curves are orthogonal on the given 

surface. 

Now the area bounded by the limits  20 u ,  20 v  is given by 

  A=  Hdudv  

=   

 


2

0

2

0
dudvucosaba  

=    

 


2

0

2
0 duucosabva  

=   
2
02 usinabua  

= 4abπ2. 

This is required area. 

 

Question 5: Show that on the surface given by x = a (u + v), y = b (u - v) 

and z = uv, the parametric curves are straight lines. Also calculate the 

fundamental coefficients for this surface and find the condition for the 

orthogonality of parametric curves on this surface. 

Solution. The surface is given as 

r = (a (u + v), b (u-v), z = uv). 

On this surface, the parametric curves u = constant = c, are given by 

 X = a (c + v), y = b (c - v) and z = cv. In these equations now v is the 

parameter. Eliminating v, we get  

X = a (c + z / c), y = b (c – z / c). These are equations of two planes, whose 

intersection is a straight line. Therefore, the parametric equation u = c are 

straight lines on the surface. 

Again, taking the parametric curves v= c (constant), we get 

X = a (u + c), y = b (u - c) and z = uc. In these equations, now u has become 

the parameter. Eliminating u in these equations, we get 

X = a (( z / c ) + c), y = b ((z / c ) – c ).  

These are again the equations two planes, whose intersection is a straight 

line. Thus the parametric curves v = c are also straight lines. 

Now the equation of the surface is given as 

r = (a (u + v), b (u - v), z = uv). 

So that, we get on differentiating the above equation w.r.t. u and v 

respectively 

r1 = (a, b, v). 
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r2 = (a, -b, u). 

r11 = (0, 0, 0). 

r21 = (0, 0, 1). 

r22 = (0, 0, 0). 

Now as we know that 

E = r1.r1 = r1
2, F = r1.r2 = r2.r1 and G = r2.r2 = r2

2 

Therefore, we have for this problem, by taking scalar products suitably 

E = r1.r1 = r1
2 = a2 + b2 + v2 

F = r1.r2 = a2 - b2 + uv 

G = r2.r2 = r2
2 = a2 + b2 + u2 

H2 = EG - F2  = 4a2b2 + a2 (u - v)2 + b2(u + v)2. 

Also, we know that 

r1×r2 = (bu + bv, av-au, -2ab). So that 

N= (r1×r2) / H =  
(bu + bv,   av − au,   −2ab).

H
 

So that the second fundamental coefficients are given as 

L= r11.N = 0 

M= r12.N =  
( −2ab) 

H
 

N= r22.N = 0 

Finally, condition of orthogonality of parametric curves is given by 

F = 0, which means 

a2-b2+uv = 0 

or 

uv = b2- a2. 

 

Question 6: Find the metric and elementary area for the paraboloids 

                     r = (u, v, u2 –v2). 

Solution: For the given paraboloids r = (u, v, u2 –v2). 

r1 = (1, 0, 2u). 

r2 = (0, 1, –2v). 

Now as we know, 

E = r1.r1 = r1
2, F = r1.r2 = r2.r1 and G = r2.r2 = r2

2 

Therefore, we have for this problem, by taking scalar products suitably 

E = r1.r1 = r1
2 = 1 + 4u2 

F = r1.r2 = -4uv 

G = r2.r2 = r2
2 = 1 + 4v2 

Therefore, the metric is given by 

E du2 + 2Fdu dv + G dv2   



GEOMETRY  MAT 611 

  

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY 
86 

 

= (1 + 4u2) du2 - 8dudv + (1 + 4v2) dv2 

Now H = √(EG - F2) = √{(1 + 4u2) (1+ 4v2) -16u2 v2 } 

                             = √(1 + 4u2 + 4v2) 

Therefore, elementary area is given by 

H. du dv  = √(1 + 4u2 + 4v2) du dv 

  

Question 7: Show that if L, M, N vanish everywhere on a surface, then the   

                      surface is part of a plane. 

Solution: We know that 

                          L= -r1.N1, M = -r1.N2 = -r2.N1 and N = -r2.N2.  

Since L = M = N = 0 everywhere on the surface, therefore 

r1.N1 = 0, r2.N1 = 0                            ………(1) 

And 

r1.N2 = 0, r2 N2 = 0                          ……… (2) 

Since r1 ≠ 0, r2 ≠ 0, therefore from (1), either N1 = 0, or N1 is perpendicular 

to both r1 and r2.  

This means N1 is parallel to r1 × r2. Which clearly implies that N1 is parallel 

to N. (r1 × r2 = H N). But N1 is perpendicular to N, being a vector of constant 

modulus. Therefore, N1 cannot be parallel to N. 

Hence from (1), we see that N1 = 0, implying that N is independent of 

parameter u. 

In the same way, we can show that N is independent of parameter v, by 

taking equation (2). 

Therefore, N is independent of both the parameters’ u and v, thereby a 

constant vector at every point on the surface. Thus, at every point of the 

surface the normal to the surface are parallel. Hence the surface is part of a 

plane. 

Thus, the result is proved. 

 

Question 8: State and Weingarten equations. Or 

Show that in terms of E, F, G, L, M, N and H, the Weingarten equations are 

                                H2 N1= (FM-GL) r1 + (FL-EM) r2 

                                H2 N2= (FN-GM) r1 + (FM-EN) r2 

And deduce the formula 

                                  H N1× N2 = (LN-M2) N. 

Solution: Since N is a vector of constant modulus, therefore both the vectors 

N1 and N2 are perpendicular to N. Thus, both the vectors N1 and N2 are 

tangential to the surface. So, both the vectors N1and N2 lie in the plane of the 

vectors r1 and r2 and so we can write 
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                                      N1= a r1 + b r2                   ……   (1) 

                                      N2= c r1 + d r2                   ……   (2) 

For some scalars a, b, c and d. 

Taking scalar product of both sides of (1) with r1 and then with r2, we have 

                                      r1. N1= a r1.r1+ b r2.r1  

and                                r2. N1= a r2.r1+ b r2.r2  

These equations become 

                                          - L =   a E + b F                     ……  (3)                                   

                                          - M =   a F + d G                    …….. (4) 

Solving (3) and (4) for a and b, we get 

                                        a = 
2H

GLFM 
 

                                        b = 
2H

EMFL 
. 

Putting these values of a and b in equation (1), we get 

                                  H2 N1 = (FM - GL) r1 + (FL - EM) r2   …….   (5) 

Now taking scalar product of both sides of (2) with r1 and then with r2, we 

have 

                                      r1. N2 = c r1.r1 + d r2.r1  

and                                r2. N2 = c r2.r1 + d r2.r2. 

 

These equations reduce to 

                             - M = c E + d F                         ……….. (6)  

                             - N = c F + d G                         ……….. (7) 

Solving (6) and (7) for c and d, we get 

                                        c =  
2H

GMFN 
 

                                        d =  
2H

ENFM 
. 

Putting these values of c and d in equation (2), we get 

                                  H2 N2 = (FN - GM) r1 + (FM - EN) r2   …….. (8) 

Now taking vector product i.e. cross product of equations (5) and (8), we 

have 

H2 N1 ×H2 N2= {(FM-GL) r1 + (FL-EM) r2} × {(FN - GM) r1 + (FM - EN) 

r2} 

H4 N1 ×N2 = {(FM - GL) × (FM - EN)} r1 × r2 + {(FL - EM) × (FN - GM)} 

r2× r1 

                 = [{(FM - GL) × (FM - EN)} - {(FL - EM) × (FN - GM)}] r1× r2 

As we know that r1× r1 = 0, r2× r1 = - r1× r2, r2× r2 = 0. 
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Or on solving and little manipulation, we get 

H4 N1 ×N2 = (LN - M2) (EG - F2) H N 

H4 N1 ×N2 = (LN - M2) H2 H N 

H N1 ×N2 = (LN - M2) N. 

Which is the desired result. 

 

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. The angle ø between the vectors r1 and r2 is given by 

 

cos ø = 
𝒓𝟏× 𝒓𝟐

 | 𝒓𝟏| |𝒓𝟐 |
 = 

𝐹

√𝐸𝐺
 . 

. 

Problem 2. The necessary and sufficient condition for parametric 

or coordinate curves to be orthogonal system is that F = r1.r2 = 0 

at each point of the surface. 
 

Problem 3. N = 
𝒓𝟏×𝒓𝟐  

𝑯
.  

Problem 4. H2 = EG - F2. 

. 

 

 

7.10 SUMMARY 

 

1. A curve in space is defined as the locus of a point whose Cartesian co-

ordinates (x, y, z) can be expressed as the function of a single variable 

parameter. 

 

2. A surface is defined as the locus of a point whose Cartesian co-ordinates 

(x, y, z) can be expressed as the function of two independent variable 

parameters. 

 

3. Some standard notations are  

     u

r
r




1  ,   

v

r
r




2 ,   

2

2

11
u

r
r




 ,   

uvvu

r
rr










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2121 ,  
2

2
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v

r
r




  



GEOMETRY  MAT 611 

  

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY 
89 

 

 

4.         N = 
𝒓𝟏× 𝒓𝟐 

|𝒓𝟏× 𝒓𝟐 |
 = 

𝒓𝟏× 𝒓𝟐 

H
,     

 

5. First fundamental coefficients are as- 

                       E= r1.r1 = r1
2, F= r1.r2 = r2.r1 and G= r2.r2 = r2

2. 

6. H= √ (EG- F2) 

7. Second fundamental coefficients are as- 

                        L= r11.N, M= r12.N = r21.N and N= r22.N.  

8. The second fundamental coefficients can also be written as- 

                          L= -r1.N1, M= -r1.N2 = -r2.N1 and N= -r2.N2.  

9. The angle ø between the vectors r1 and r2 is given by 

 

cos ø = 
𝒓𝟏× 𝒓𝟐

 | 𝒓𝟏| |𝒓𝟐 |
 =

𝐹

√𝐸𝐺
 

and 

sin ø =   
𝒓𝟏× 𝒓𝟐 

 |𝒓𝟏× 𝒓𝟐 |
 = 

𝐻

√𝐸𝐺
  = 

√(𝐸𝐺−𝐹2)

√𝐸𝐺
 

and combining these results 

tan ø = 
sin ø  

cos ø
 =  

𝐻

𝐹
. 

10. The necessary and sufficient condition for parametric or coordinate 

curves      

       to be orthogonal system is that F = r1.r2 = 0. At each point of the 

surface. 

11. The equation of the tangent plane at the point (x, y, z) on the surface  

       F(x, y, z) is given by the formula  

      0















z

F
zZ

y

F
yY

x

F
xX . 

12. The equation of the normal at the point (x, y, z) on the surface F(x, y, z) 

is    

        given by the formula 

     

z

F

zZ

y

F

yY

x

F

xX




















 

 

7.11 GLOSSARY 

      (i)        Orthogonal – mutually perpendicular. 
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(ii) Curve – Path traversed by point or locus of point in space if point depends 

on one parameter only. 

(iii) Surface- Path traversed by point or locus of point in space if point depends 

on two parameters only 
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7.13 TEWRMINAL QUESTIONS 

  

(TQ - 1) Find the equation of tangent plane and normal to the surface given  

               by z =x2 + y2 at the point (i) (1, -1, 2) and (ii) (2, 2, 4). 

(TQ - 2) Find the equation of tangent plane and normal to the surface given  

               by z = xy at the point (i) (2, 3, 6) and (ii) (1, 3, 3). 

(TQ - 3) Prove that the metric is invariant under a transformation of  

               parameters.  

(TQ - 4) Find expressions for the second fundamental coefficients in terms  

               of differentials of unit normal vector N or prove the results 

               L= -r1.N1, M= -r1.N2 = -r2.N1 and N= -r2.N2.  

(TQ - 5) Taking x and y as parameters, calculate the fundamental  

               coefficients and the unit normal vector to surface 2z=  

               ax2+2hxy+by2. 

(TQ - 6) Calculate the fundamental coefficients and the unit normal vector  

               to surface (conoid) (u cosv, u sinv, f(v)). 

(TQ - 7) Calculate the fundamental coefficients and the unit normal vector  

               to surface (helicoids) (u cosv, u sinv, f(u)+cv). 

(TQ - 8) Prove that on the surface of revolution (u cosv, u sinv, f(u)),  

              the parametric curves u= constant reduces into circles lying in the  

              plane parallel to the xy-plane. 

 (TQ - 9) Prove that if for a surface the condition (E/L) = (F/M) = (G/N) holds at  

                all points, then the surface is either a plane or spherical one. 
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(TQ - 10) Obtain Weingarten equations and deduce the following results 

          H [N, N1, r1] = EM-FL 

          H [N, N1, r2] = FM-GL 

          H [N, N2, r1] = EN-FM 

          H [N, N2, r2] = FN-GN. 

 

7.14 ANSWERS 

 

(TQ -1) (i) 2x - 2y - z = 2, (x - 1) / 2  = (y + 1) / ( - 2)   = ( z – 2 )( -1) 

            (ii) 4x + 4y - z = 12, (x - 2) / 4 = ( y – 2 ) / 4 = (z - 4) / ( - 1) 

(TQ -2) (i) 3x + 2y - z = 6, (x - 2) / ( - 3)  = (y - 3) / ( - 2) = (z – 6 ) / 1 

             (ii)  3x + y – z = 3, (x – 1 ) / 3 = (y – 3 ) / 1 = (z – 3 ) / ( - 1) 

 (TQ -5) E = 1 + (ax + hy)2, f = (ax + hy) ( hx + by), G = 1+ (hx + by)2 

               L = a / H, M = h / H, N = b / H, Where H2 = 1+ (ax + hy)2 + (hx + by)2. 
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UNIT 8:  ORTHOGONAL TRAJECTORIES 

 

CONTENTS: 

 

8.1  Introduction  

8.2 Objectives  

8.3  Direction coefficients 

8.4  Angle between any two arbitrary directions or curves 

8.5  Relation between given direction coefficients and corresponding         

       direction ratios 

8.6  Family of curves and its differential equation 

8.7  Orthogonal trajectory and its differential equation 

8.8  Representation of double family of curves and its differential equation   

8.9  Condition of orthogonality of double family of curves 

8.10  Summary  

8.11  Glossary  

8.12  References and Suggested readings  

8.13  Terminal questions  

8.14  Answers to selected questions    
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8.1 INTRODUCTION 

Dear learners, in the previous units, you should have studied and learnt by now that  

1. A curve in space is defined as the locus of a point whose Cartesian co-ordinates 

 (x, y, z) can be expressed the function of a single variable parameter t (for example 

time), s (for example arc-length) or u (any other notion), say. 

2.  A surface is defined as the locus of a point whose Cartesian co-ordinates (x, y, z) can 

be expressed the function of two independent variable parameters, u, v (any other 

notion), say. 

Thus x = f(u, v), y = (u, v), z = (u, v) are called parametric equations of a surface. The 

parameters u and v take real values and vary in some region D. This type of representation 

is an explicit form of surface. 

Example of a surface is conicoid whose equation is x= u cos v, y= u sin v, z= f(v). 

We have the following notations for partial differentiation of position vector r with 

respect to the parameter u and v. 

                  u

r
r




1  ,   

v

r
r




2 ,   

2

2

11
u

r
r




 ,   

uvvu

r
rr











22

2121 ,  
2

2

22
v

r
r




 .  

That is to say, suffixes 1 and 2 denote the partial differentiation with respect to parameter 

u and v respectively. 

3. Angle between two intersecting curves is defined as angle between their tangents at    

 that point of intersection. 

4. Two curves are said to intersect orthogonally iff angle between their tangents is right  

 angle at the point of intersection or in other words tangents are mutually 

perpendicular. 

5.   Curves of same parameter of family do not ever intersect. 

6.   expression H= √ (EG- F2) is a positive definite quantity. 

7.   The unit normal vector N is always perpendicular to surface as well as vector 

       r1 and r2. 

 

8.2 OBJECTIVES 

(i) After completion of this unit learners will be able to: 

(ii) Understand the concept of direction coefficients and direction ratios. 

(iii)Understand the concept of family of curves and their differential equations. 

(iv) To find angle between the different directions 

(v) To understand concept of orthogonal trajectories 

(vi) To obtain condition of orthogonality.   
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8.3 DIRECTION COEFFICIENTS 

 

Suppose r = r (u, v) is the parametric equation of a surface. Let P be any point on this 

surface and also let u = constant and v = constant are any two parametric curves passing 

through this point P. Then we have learnt that vectors r2 and r1 are the direction vectors 

of the tangents at P to these curves respectively. Since r2 × r1   ≠ 0, therefore the vectors 

r2 and r1 are independent and the unit normal vector N is perpendicular to these vectors. 

Thus, these three vectors r1, r2 and the unit normal vector N, can treated as linearly 

independent vectors on the surface and coordinates of an arbitrary point P can be 

represented in terms of these three vectors on the surface. Hence, we can conclude that 

every vector passing through a point on the surface can be uniquely expressed as the 

linear combination of the vectors r1, r2 and N. If a is any vector passing through P then 

there exist unique scalars an, λ and μ such that  

                          a = an N + λr1 + μr2              ……… (1) 

The scalar an is called the normal component of the vector a. If vector a lie on the surface, 

then an =0 and vice-versa. 

The part λr1 + μr2 is called the tangential part and the scalars λ , μ are called the tangential 

components of the vector a. 

For a tangential vector i.e. vector lying on the given surface, the normal component is 

zero and so we have for any tangential vector T the expression is  

             T = λr1 + μr2         ………… (2) 

Here λ and μ are called direction ratios or direction components of the vector T.  

Now taking self-dot product of equation (2), we have  

     

T2 = λ2 r12  + 2μ λ r1 . r2 + μ2 r22   

    = E λ2
  + 2F μ λ+ G μ2  Or  

 |T| = (E λ2
  + 2Fμ λ + G μ2)1/2. 

If we wish to know the direction in the tangent plane then we can take unit vector e in 

place of arbitrary vector T. Hence if there is a unit vector e on the tangent plane of the 

given surface then we can write 

 

                     e = lr1 + mr2                  ……….. (3) 
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then here in this case l and m are called direction coefficients of e we write 

 (l, m) as direction coefficients. 

    

Now taking self-dot product of equation (3), we have 

 

e2 = l2 r1 2 + 2lm r1 r2 + m2 r2 2 

   1 = El2 + 2Flm + Gm2            ………(4) 

This is the condition for the scalars l and m to the direction coefficients on the surface. 

Here it is understood that direction coefficients opposite to (l, m) are given by  (-l, -m). 

 

8.4 ANGLE BETWEEN ANY TWO ARBITRARY  

      DIRECTIONS OR CURVES 
Dear learners, we have the idea of angle between two lines or directions with given 

direction cosines (l, m, n) or direction ratios (a, b, c) in three -dimensional geometry or 

plane geometry in undergraduate courses. Let we are given two different curves, whose 

direction coefficients are given by (l1, m1) and (l2, m2) through a given point P of 

intersection of the curves on the surface. We wish to find the angle between these two 

directions. We proceed as- 

If (l1, m1) and (l2, m2) are given directions then unit vectors along these directions can be 

taken as 

e1 = l1 r1 + m1 r2                  and         é́́́́́́́́2 = l2 r1 + m2 r2     

Taking dot product of these unit vectors, by definition 

e1 . é́́́́́́́́2 = (l1 r1 + m1 r2 ) . (l2 r1 + m2 r2)    

where ө is the angle between the given directions. Hence  

 Cos ө = l1 l2 r1 2 + (l1 m2+l2 m1)r1.r2 + m1 m2 r2 2׀  e1׀ ׀ e1׀ 

                                            or 

                Cos ө = El1 l2+ F(l1 m2+l2 m1)+ Gm1 m2                 ……….  (5) 

This relation gives the angle between the directions (l1, m1) and (l2, m2).  

Further, we also know that 
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Sin ө = ׀e1  ×é́́́́́́́́2׀  

 ׀ ( l2 r1 + m2 r2 ) × ( l1 r1 + m1 r2)׀         

Or 

Sin ө  211221 rrmlml   = 

                                              
 NmlmlH 1221 

 

 Sin ө   = H(l1 m2-l2m1)                  …………..   (6) 

As H is always positive definite and 1N , being unit normal vector. 

Hence, we have, from (5) and (6) 

Tan𝜃 =   

 
  21122121

1221

mGmmlmlFlEl

mlmlH





             

                                   

Or 

Equation (7) can also be written as, in terms of direction ratios  11  ,  and  
22  ,  as  

tan𝜃 = 

                    

 
  21122121

1221





GFE

H

        

             

 

Corollary 1:  If 𝜃 =900 then Cos ө= 0 then the directions with directions coefficients 

given by (l1, m1) and (l2, m2) are orthogonal and the condition for the same is given by  

 

El1 l2+ F(l1 m2+l2 m1)+ Gm1 m2 =0.                   …………      (8) 

  

If, however we are given direction ratios  11  ,  and  
22  ,  in place of direction 

coefficients, then above condition of orthogonality becomes 

 

Eλ1 λ2+ F(λ1 μ2+λ2 μ1)+ Gμ1 μ2 =0.                  …………..        (9) 
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Direction Ratios of a direction: Let us suppose that (l, m) are the direction coefficients 

of a direction at a point on a given surface r = r(u, v), then scalars λ and μ which are 

proportional to l and m respectively are called direction ratios of the that given direction 

(l, m ). Very often we find it convenient to use direction ratios (λ, μ) in place of 

direction coefficients (l, m), while solving the problems and finding other relations in 

our discussions, as proved in previous article for orthogonal condition (8) of directions 

in terms of direction ratio (9). 

  

8.5 RELATIION BETWEEN GIVEN DIRECTION    

     COEFFICIENTS AND CORRESPONDING DIRCTION  

    RATIOS  
Let us suppose that we are given the direction with direction coefficients l and m, and the 

direction ratios μ and λ proportional to these coefficients respectively. Then therefore we 

can write 

l/λ = m/μ = c (constant) 

or 

l=cλ and m= cμ 

so that on applying the condition (4) for direction coefficients, we get 

 

El2 + 2Flm + Gm2   = 1 

i.e. 

Ec2λ2 + 2Fc2 λμ + Gc2μ2    = 1 

Or 

c2 =  
22 2

1

 GFE
 

or 

c= 
22 2

1

 GFE

 

 

so that                       l= 
22 2 



GFE

 

and 

                                m=   
22 2 



GFE

 

Henceforth,we can write the direction coefficients (l, m) as 
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                                (l, m)= 
 

22 2 



GFE

,
.                                     (10) 

 

We can see that these relations have close similarity with the relations we have studied 

in three dimensional geometry in undergraduate classes, for direction cosines and 

direction ratios. (Learners have a look on those relations to learn here the relations). 

 

 

Corollary 2: As we already know that the vector r1 at an arbitrary point P is tangential 

to the parametric curve v = constant, and therefore we can write the vector r1 =1 r1+ 0 

r2, so that the vector r1 has the components (1, 0). So the direction ratios of the direction 

of parametric curve v= constant are (1, 0) and therefore the direction coefficients are, by 

equation (10), as 

 

 

 
22 00121

01

G.FE

,



 

 

Or 

 









0

1
,

E
. 

 

In the same way, we know that the vector r2 at any arbitrary point P is tangential to the 

parametric curve u= constant, and therefore we can write the vector r2 =0 r1+ 1 r2, so 

that the vector r2 has the components (0, 1). So the direction ratios of the direction of 

parametric curve u= constant are (0, 1) and therefore the direction coefficients are, by 

equation (10), as 

 

 

 
22 11020

10

G.FE

,



 

 

           









G
,

1
0

. 
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8.6 FAMILY OF CURVES AND ITS DIFFERENTIAL  

     EQUATION  

 

Let us suppose that r = r (u, v) be a surface. Also let ψ (u, v) is a single valued function 

of u and v. ψ has continuous derivatives ψ1 and ψ2 , with respect to u, v respectively. ψ1  

and ψ2 do not vanish together. Then the equation 

                         ψ (u, v) =k                               ……….. (11) 

 

where c is a real parameter, gives a family of curves lying on the given surface 

r = r (u, v). For different values of parameter k, we have different members of the family 

(11). In case k is a fixed constant, equation (11) gives one particular member of the family 

(11). 

Suppose for a point (u0, v0) on the surface r = r (u, v), we have ψ (u0, v0) =k0 is a member 

of the family of curves (11) passing through the point (u0, v0). Thus we have the following 

proposition. 

 

“i passes one and only member of the family (11) of curves, through every point of on the 

surface r = r (u, v)  ”. 

 

Dear learners, we now try to find differential equation and direction ratio of family of 

curves. 

 

Let us suppose ψ (u, v) =k  i.e. equation (11) be a family of curves on a given surface r 

= r (u, v). 

Differentiating equation (11), we have 

0








dv

v
du

u
 

Or 

Ψ1 du +  ψ2 dv = 0                                                                                 (12) 

Or 

121

2












dvdu

dv

du

 

i.e. (-ψ2, Ψ1) are direction ratios of the tangent at the point (u, v) to the member of family 

of curves (11) which passes through (u, v).  

 

 

If we suppose that integral of equation (12) is (11), then the curves of family   ψ (u, v) 

=constant are the solutions of the differential equation   

Ψ1 du +  ψ2 dv = 0 . Conversely we can say that every first order differential equation of 

the form 
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P(u, v) du + Q(u, v) dv= 0                                                              (13) 

Where P and Q are functions of class 1 and do not vanish together, always defines a 

family of curves. 

It follows from (13) that at any point (u, v) the tangent to the curve through this point has 

direction ratios (-Q, P), since these are proportional to (du, dv). 

 

                                                                      

8.7 ORTHOGONAL TRAJECTORY AND ITS    

      DIFFERENTIAL EQUATION  

 

Suppose we have a family of curves  ψ (u, v) =k              …………..  (14)  

lying on the given surface r = r (u, v) .  

Again if we have another family of curves as   ø (u, v) =k1     ……… (15) lying on the 

same surface. 

 If families (14) and (15) are such that at every point of the surface the two curves, one 

from each family cut each other orthogonally, then the family of curves (15) is called the 

orthogonal trajectory of the family of curves (14) and vice-versa.     

 Dear learners, we now move to find differential equation of orthogonal trajectories of 

any given family of curves. 

 

Let us suppose that the given surface is r = r (u, v) and  ψ (u, v) =k  is a family of curves 

lying on this surface. Again let ψ has continuous first order derivatives ψ1  and ψ2 that do 

not vanish together. Let us suppose that ψ1  = P and ψ2     = Q. 

Now from       ψ (u, v) =k  , we have 

          0








v

v
u

u
 

Or 

Ψ1 δu +  ψ2 δv = 0                                                                              

Or 

P

Q

v

u

v

u 
















1

2
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Thus (- Q, P) are direction ratios of the tangent at (u, v) of a member of the family ψ (u, 

v) =k .  

  

Let (du, dv) be the direction ratios of tangent at the point (u, v) of a member of family 

the orthogonal trajectories of ψ (u, v) =k . Thus the direction (du, dv) and (- Q, P) are 

mutually orthogonal to each other. So from the condition (9) of orthogonally or 

perpendicularly, viz. 

 

Eλ1 λ2+ F(λ1 μ2+λ2 μ1)+ Gμ1 μ2 =0, we get 

 

E(-Q)du+ F(-Q dv + P du)+ G P dv = 0 

Or 

 

(F P – E Q) du + (G P –F Q) dv = 0                                    (16) 

 

i.e. 

 

(F ψ1 + E ψ2) du + (G ψ1 + F ψ2) dv = 0                                 (17)                        

 

 

Equation (16) or (17) is the required differential equation of the orthogonal trajectories 

of the family of the curves ψ (u, v) =k. 

 

Corollary 3: For a given surface, parameters can always be chosen so that the curves of 

a family and their orthogonal trajectories become parametric curves. 

As we can see that coefficients of du and dv in equation (17) are continuous functions of  

u and v, coefficients do not vanish together because  EG-F2 ≠ 0 and P and Q also do not 

vanish together. Hence we can conclude that equation (17) is completely integrable. Let 

solution or integration of equation (17) is  

       Ø (u, v) =k1                                                              (18) 
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On differentiating equation (18), we get 

0








dv

v
du

u
 

Or  

                     Ø1 du +  ø2 dv =0                                           (19) 

Now equation (17) and (19) must be equivalent, as (18) is obtained by integrating (17) 

whereas (19) is obtained by differentiating (18). 

Therefore comparing equation (17) and (19), we get 

0
21









 FQGPEQFP
 

Or  

FP-EQ = λ ø1  and  GP-FQ = λ ø2 , λ≠0. 

Again , the jacobian of ψ and ø with respect to u and v is 

 
 

vu

vu

v,u

,





















 

         

 

   FQGPEQFP

QP







 11  

=  22 2
1

GPFPQEQ 


 

≠ 0 

Since the quadratic expression inside the bracket is positive definite and P and Q do not 

vanish together. 

Hence we conclude that ψ is indefinite integral of ø , so the transformation 

U= ψ (u, v) and V= ø (u, v) is a proper parametric transformation. In the new system of 

parameters U and V, the given family of curves ψ (u, v) = constant and their orthogonal 
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trajectories given by ø (u, v) = constant become parametric curves U = constant and V= 

constant. Hence the result. 

8.8 REPRESENTTION OF DOUBLE FAMILY OF CURVES 

AND ITS DIFFERENTIAL EQUATION  
The quadratic differential equation of the standard for 

                    P du2 + 2Q du dv + R dv2  = 0.                           ………. (20) 

Always represents two families of curves on the surface provided Q2 – PR > 0, and here 

P, Q, R are continuous functions of parameters u and v, as well as functions P, Q, R do 

not vanish simultaneously. 

Equation (20) can also be expressed as in more compact way 

                         02

2


















R

dv

du
Q

dv

du
P   .                        ………… (21) 

Equation (21) being quadratic in (du/dv), always gives, on solving the equation, two 

separate differential equations of first order are obtained and thus we get two families of 

curves can be obtained. 

8.9 CONDITION FOR ORTHOGONALITY OF DOUBLE   

      FAMILY OF CURVES  

Dear learners, we now wish to obtain the condition that the two families of curves given 

by a quadratic differential of the form  

                                  P du2 + 2Q du dv + R dv2  =0.            (22) 

represents orthogonal families of curves or two orthogonal directions on the given 

surface. 

          The given differential equation (22) can be rewritten as 

                          02

2


















R

dv

du
Q

dv

du
P                                (23) 

Let the direction ratios of the curves of the two families obtained by (22) 

through a point (u, v) on the given surface be (λ1 , μ1) and (λ2 , μ2). 

Then obviously the corresponding roots of differential equation (23) will be as  

(λ1/μ1) and (λ2/μ2) respectively. 
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Hence by standard relations on sum and products of roots of quadratic equation and its 

coefficients, we have 

                                 (λ1/μ1) + (λ2/μ2) =  -2 Q/P                                …….. (24) 

and 

                                   (λ1/μ1) . (λ2/μ2) = R/P                                       …… (25) 

Now applying the condition of orthogonality  

                  Eλ1 λ2+ F(λ1 μ2+λ2 μ1)+ Gμ1 μ2 =0.                                   …….. (26) 

Or  

                  E(λ1/μ1).(λ2/μ2) + F{(λ1/μ1)+(λ2/μ2)}+ G  =0.                                          

Of two directions (λ1 , μ1) and (λ2 , μ2). 

Hence two directions (λ1/μ1) and (λ2/μ2) obtained from equation (23) will be orthogonal 

if E(λ1/μ1).(λ2/μ2) + F{(λ1/μ1)+(λ2/μ2)}+ G  = 0.    

Or, applying the relations (24) and (25) we have 

E (R/P) -2(Q/P) F + G = 0      Or   

                                         ER – 2FQ + GP = 0                   ……….. (27)      

Thus (27) is the necessary and sufficient condition for the families of curves obtained by 

solving equation (22) to be orthogonal. 

Corollary 4: The necessary and sufficient condition for parametric curves to be 

orthogonal is that F is zero.  

The proof of this result is obvious as we know that combined quadratic equation of 

parametric curves is 

                                                 du. dv = 0                                          ……..(28)  

Therefore, general quadratic equation of families of curves given by  

                                                P du2 + 2Q du dv + R dv2  = 0.              ……(29) 

will express parametric curves if and only if  P = 0, Q ≠ 0, R = 0. 

Substituting P = 0, Q ≠ 0, R = 0, in equation (27), of orthogonality, we have 

F = 0. 

Hence F = 0 is the necessary and sufficient condition for parametric curves to be 

orthogonal. 
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Example 1: The parametric equation of a surface in terms of parameters u and v is given 

by (x,y,z) = (u Cosv, u Sinv,  a log √(u2-a2)). 

Prove that the parametric curves on the sphere always form an orthogonal system. 

Determine the families of curves (i)v = constant, (ii) u = constant, at angle π/4 and 3π/4. 

Solution. Equation of sphere is given as 

   r = (x,y,z) = (u Cosv, u Sinv, a log √(u2-a2)). 

Differenciting w.r.t. paramaeters u and v, and using standard notations, we have 

r1 =  (Cosv,  Sinv, au/(u2-a2) ). 

r2 =  (-u Sinv, u Cosv, 0). 

Therefore, taking dot (scalar) product, we have  

E = r1
2  = r1 .r1 = a2u2 /(u2-a2)2 

 F = r1.r2 = 0 

G = r2
2= r2 .r2 = u2  

Since F= 0, the parametric curves are orthogonal. 

H2 = EG- F2 = a2u2 /(u2-a2)2. u2 ,  

Which implies that  H= au2 /(u2-a2). 

As in previous case, we solve the remaining part of the problem. 

Example 2:  If the parametric curves are orthogonal, show that the differential equation 

of the curves cutting the curves u = constant, at a constant angle δ is  

du/dv = tan δ √(G/E) 

Solution: Since parametric curves are given orthogonal, therefore F = 0, and  

H= √ (EG-F2 ), gives H= √ (EG). Now for the curves u = constant, the direction ratios 

are (0, 1). If  (du, dv) be the direction ratios of the curve which cuts u = constant at an 

angle  δ, then 

Using the relation, for the angle between two directions 

Tan ө

    

 
  21122121

1221





GFE

H
 = 

 

We have,   

      

 
dvG.E

duH
tan






00

0

 

Or 

 

dv

du

G

E

dvG

duEG

dvG.E

duH
tan










00

0

 

or 

                       (du/dv)  =tan δ  √(G/E),   as desired. 
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Example 3: Prove that, if ө is the angle at the point (u, v) between the two directions 

given by P du2 + 2Q du dv + R dv2  = 0. Then tan𝜃 = 

    

 
GPFQER

PRQH





2

2 2
1

2

    

 

Solution: The given quadratic equation is P du2 + 2Q du dv + R dv2  =0.      (1)   Or 

              P (du/dv)2 + 2Q (du/ dv) + R  =0.       ………. (2) 

Let the direction ratios of the curves of the two families obtained by the above equation 

(1) through a point (u, v) on the given surface be (λ1, μ1) and (λ2 , μ2). 

Then obviously the corresponding roots of differential equation (2) will be as  

(λ1/μ1) and (λ2/μ2) respectively. 

Hence by standard relations on sum and products of roots of quadratic equation and its 

coefficients, we have 

  

                                 (λ1/μ1) + (λ2/μ2) =  -2 Q/P                                       (3) 

and 

                                                    (λ1/μ1) . (λ2/μ2) = R/P                                      (4)  

As we know that angle ө between two directions is given by 

                           tan ө

    

 
  21122121

1221





GFE

H
 = 

 

                                     = 

GFE

H










































2

2

1

1

21

21

2

2

1

1

 

                                    =

GFE

.H









































































2

2

1

1

21

21

2
1

2

2

1

1
2

2

2

1

1 4

 

            Using relations (3) and (4) we have  

                                    =

G
P

Q
F

P

R
E

P

R

P

Q
H








 































 

2

4
2

2
1

2

  

 

                                    =  
 

GPFQER

PRQH





2

2 2
1

2

                             

Thus the desired result. 

 

 



GEOMETRY  MAT 611 

  

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY 
107 

 

8.10 SUMMARY  

1. The necessary and sufficient condition for parametric curves to be orthogonal is that F 

is zero.     

2. Angle between two direction ratios  11  ,  and  
22  ,  is given by   

                       Tan ө(
 
  21122121

1221





GFE

H
 =  

5. If there is a unit vector e on the tangent plane of the given surface then we can write  

= lr1 + mr2. 

5. The condition for the scalars l and m to the direction coefficients on the surface. 

  El2 + 2Flm + Gm2 =1. 

6. The directions coefficients given by (l1, m1) and (l2, m2) are orthogonal and the 

condition for the same is given by  El1 l2+ F(l1 m2+l2 m1)+ Gm1 m2 =0.                                                             

 7. The direction coefficients (l, m) can be written as 

                      (l, m)= 
 

22 2 



GFE

,
.          

Where (λ, μ) are direction ratios of the same direction.    

                                                                                

8.11 GLOSSARY 

1. Orthogonal- mutually perpendicular. 

2. Quadratic – of degree two. 

3. Transformation – mapping or function. 

4. Vanish– to become zero. 

5. Trajectory- path. 
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8.13 TERMINAL QUESTIONS 

(TQ -1) Find the direction which makes an angle π/2 with the whose direction    

            coefficient are (l, m).    

(TQ-2) Find the the equation of the curves bisecting the angles between the parametric   

              curves. 

(TQ-3) Show that on a right helicoids, the family of curves orthogonal to the curves  

              u.cosv = constant is the family (u2 + a2) Sin2 v = constant.  

(TQ-4) Show that parametric curves are orthogonal on the surface x= u.cosv, y=u.sinv,  

            Z = a.log {u+√(u2 -a2)}. 

(TQ-5) Find the differential equation of the orthogonal trajectories of the family of the  

            curves given by P du + Q dv = 0.                                                                    

(TQ-6) Find the orthogonal trajectories of the curves obtained by the section of the planes  

             z = constant on the surface, paraboloids x2 – y2 = z. 

 

8.14 ANSWERS TO SELECTD TERMINAL QUESTIONS 

(TQ -1) (l’, m’) = (-(Fl+Fm)/H , (El+Fm)/H)   

(TQ-2) E du2 - G dv2 = 0. 

(TQ-5) (EQ-FP) du + (FQ-GP) dv = 0.                                                                       

(TQ-6) xy = constant. 
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9.1 INTRODUCTION 

In differential geometry, the two principal curvatures at a given point of 

a surface are the maximum and minimum values of the curvature as expressed by 

the eigenvalues of the shape operator at that point. They measure how the surface 

bends by different amounts in different directions at that point. The concepts of 

normal and principal curvatures, fundamental in differential geometry, emerged 

from the study of curves and surfaces, with key contributions from figures like 

Euler, Monge, and Gauss, culminating in a systematic analysis by Darboux.  

 

9.2 OBJECTIVES 

 After completion of this unit learners will be able to: 

(i) Principal curvatures   

(ii) Normal Curvature 

 

9.3 NORMAL CURVATURE 

 

  Before defining normal curvature firstly, we shall define normal section. A plane 

P′ drawn through a point P on the surface, cuts the surface in a curve 

 

 

 

 

 

 

                                Fig. 9.3.1                                                                                    Fig. 9.3.2 

which is called a section of the surface. In case the plane 𝐏′ is so drawn that it contains 

the normal to the surface, then the curve is called Normal section, otherwise the curve 

is called an Oblique section. We observe that in fig. 2, the principal normal 𝐧 to the 

normal section is parallel to the surface normal 𝐍. We shall adopt the convention that 

vector 𝐧 has the same direction as that of vector N, with this convention, we have 𝐧 =
𝐍. 

https://en.wikipedia.org/wiki/Differential_geometry
https://en.wikipedia.org/wiki/Surface_(mathematics)
https://en.wikipedia.org/wiki/Curvature
https://en.wikipedia.org/wiki/Eigenvalues
https://en.wikipedia.org/wiki/Shape_operator
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Formula for normal curvature in terms of fundamental magnitudes. 

 
Let 𝒓 = 𝒓(𝑢, 𝑣) be the equation of surface and 𝑃 is any point (𝑢, 𝑣) on the surface. Let 

𝜅𝑛 represents the curvature of the normal section, it will be positive 

when the curve is concave on the side towards which N points out. Then, we 

𝑑𝑡

𝑑𝑠
= 𝐫′′ = 𝜅𝑛𝒏 = 𝜅𝑛𝑵

∴ 𝜅𝑛 = 𝐍 ⋅ 𝐫′′
 

                     [∵ 𝐫′′ = 𝜅n𝐍]               … … … …      (1)  

Again, we know that 

𝐫′ =
𝑑𝐫

𝑑𝑠
=

𝜕𝐫

𝜕𝑢

𝜕𝑢

𝑑𝑠
+

𝜕𝑟

𝜕𝑣

𝑑𝑣

𝑑𝑠
 = 𝒓1𝑢′ + 𝐫2𝑣′

∴ 𝐫′′ = 𝐫1𝑢′′ +
𝑑𝑟1

𝑑𝑠
𝑢′ + 𝐫2𝑣′′ +

𝑑𝑟2

𝑑𝑠
𝑣′

 = 𝐫1𝑢′′ + 𝐫2𝑣′′ + (
𝜕𝐫1

𝜕𝑢

𝜕𝑢

𝑑𝑠
+

𝜕𝐫1

𝜕𝑣

𝑑𝑣

𝑑𝑠
) 𝑢′ + (

𝜕𝐫2

𝜕𝑢

𝜕𝑢

𝑑𝑠
+

𝜕𝐫2

𝜕𝑣

𝑑𝑣

𝑑𝑠
) 𝑣′

 = 𝐫1𝑢′′ + 𝐫2𝑣′′ + 𝐫11𝑢′2 + 𝐫12𝑢′𝑣′ + 𝐫21𝑢′𝑣′ + 𝐫22𝑣′2

∴ 𝜅𝑛 = 𝐫′′ ⋅ 𝐍 = (𝐫1𝑢′′ + 𝐫2𝑣′′ + 𝐫11𝑢′2 + 2𝐫12𝑢′𝑣′ + 𝐫22𝑣′2) ⋅ 𝑵.

… … ….         (2)  

 

Again, 𝐫1 ⋅ 𝐍 = 0, 𝐫2 ⋅ 𝐍 = 0, 𝐫11 ⋅ 𝐍 = L, 𝐫12 ⋅ 𝐍 = M, 𝐫22 ⋅ 𝐍 = N 

Therefore 

𝜅𝑛 = 𝑵 ⋅ 𝒓′′ = 𝐿𝑢′2 + 2𝑀𝑢′𝑣′ + 𝑁𝑣′2

 = 𝐿 (
𝑑𝑢

𝑑𝑠
)

2

+ 2𝑀
𝑑𝑢

𝑑𝑠

𝑑𝑣

𝑑𝑠
+ 𝑁 (

𝑑𝑣

𝑑𝑠
)

2

 =
𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2

𝑑𝑠2

 

=
𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2

𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + Gdv2
[ Using first fundamental form ]      … … … (3)  

Equation (3) gives the curvature of the normal section usually called normal curvature 

parallel to the direction (du, dv). Its reciprocal is called the radius of normal curvature 

and is denoted by 𝜌n. 

We define the normal curvature as follows: 

 Definition. If P be a point with a position vector 𝐫(u, v) on the surface r = r(u, v), the 

normal curvature at P in the direction (du, dv) is equal to the curvature at P of the 

normal section at P parallel to the direction ( du, dv ). 

 Alternative definition. Suppose 𝐫 = 𝐫(𝐮, 𝐯) is a surface and P is any point with a 

position vector 𝐫(u, v) on it. If 𝐫 = 𝐫(s) is a curve through P on this surface, then the 

component of the curvature vector 𝐫 "along the normal to the surface is defined to be 

the normal curvature of the curve at P and is generally denoted by 𝜅n. Therefore, 𝜅n =
𝐍 ⋅ 𝐫′′ 

 Equivalence of two definitions. Let 𝐍 be the unit normal vector to the surface at 𝑃, 

then by alternative definition the normal curvature 𝜅𝑛 is given by 𝜅𝑛 = 𝐍 ⋅ 𝐫 ", where 𝐫 

" is curvature vector at 𝑃 
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Let 𝜅 be the curvature at 𝑃 of the normal section at 𝑃 containing the direction (du,dv). 

Then 

𝑟′′ = 𝜅𝑛 = 𝜅𝐍                          [∵ 𝐧 = 𝐍]  

𝐍 ⋅ 𝐫′′ =  𝐍 ⋅ (𝜅𝑁) = 𝜅                   [∵ 𝐍 ⋅ 𝐍 = 1]  
i.e., 

𝜅𝑛 = 𝜅 

Thus, we see that curvature at P of normal section at P containing the direction (du, dv) 

is equal to the normal curvature at 𝑃 in the same direction. 

Remarks 

 We know that 𝐫" is the curvature vector at P of a curve lying on the surface 𝐫(𝑢, 𝑣) then 

we have shown that 

𝑁 ⋅ 𝑟′′ =
𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2

𝑑𝑠2

 = 𝐿 (
𝑑𝑢

𝑑𝑠
)

2

+ 2𝑀 (
𝑑𝑢

𝑑𝑠
) (

𝑑𝑣

𝑑𝑠
) + 𝑁 (

𝑑𝑣

𝑑𝑠
)

2 

 We know that all curves having the same direction at P have the same values of their 

direction coefficients (
𝑑𝑢

𝑑𝑠
,

𝑑𝑣

𝑑𝑠
) at 𝑃. Also, the values of second-order fundamental 

magnitudes; L, M, N are fixed at P. Therefore, for all curves having the same direction at 

𝑃, the value of 𝐍 ⋅ 𝐫 " is fixed which is equal to the normal curvature at P of any one of 

these curves. Therefore, normal curvature is a property of the surface and a direction at 

a point on the surface. 

 

9.4 MEUSNIER’S THEOREM 

 

STATEMENT. If 𝜅 and 𝜅𝑛 are the curvatures of oblique and normal sections through 

the same tangent line and 𝜃 be the angle between these sections, then 

𝜅n = 𝜅cos 𝜃 

 

Proof. Let P be a point (𝑢, 𝑣) on the surface 𝐫 = 𝐫(𝑢, 𝑣) and 𝑟" be the curvature vector 

at P of the oblique section through P, containing the direction (𝑑𝑢, 𝑑𝑣). Then 

𝐫′′ = 𝐤𝐧                         … … … …         (1)  

where 𝐧 is the unit principal normal vector to the oblique section at 𝑃. 

                        
                                                Fig. 9.4.1 

Again, the unit normal vector 𝐍 to the surface at 𝑃 is the unit principal normal vector of 

the normal section at P parallel to the direction ( du, dv ). Since 𝜃 is the angle between 
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oblique and normal sections at 𝑃 through the same tangent line so 𝜃 is the angle 

between oblique and normal sections at 𝑃 through the same tangent line, so 𝜃 is the 

angle between the vectors 𝐧 and 𝐍 

i.e.  

𝐧 ⋅ 𝐍 = cos 𝜃                                         [∵ |𝐧| = 1, |𝑁| = 1]  

Now taking dot product of both sides of (1) by 𝐍, we have 

𝐫′′ ⋅ 𝐍 = 𝜅𝐧 ⋅ 𝐍 = 𝜅cos 𝜃 

Again 𝐫" ⋅ 𝐍 = normal curvature at 𝑃 in the direction ( du, dv ) = curvature of the 

normal section at 𝑃 parallel to be direction (𝑑𝑢, 𝑑𝑣) = 𝜅𝑛 

Therefore,                    𝜅n = 𝜅cos 𝜃 . 

 

9.5 PRINCIPAL DIRECTIONS 

The normal sections of a surface through a given point having maximum or 

minimum curvatures at the point are called principal sections of the surface at that point 

and the tangents to these sections are called principal directions at the point. In general 

there are two principal directions at every point on a surface and it will be shown that 

they are mutually orthogonal. 

 

 

Principal curvature. The curvatures of the principal sections of a surface through a 

given point, i.e., the maximum and minimum curvatures at that point are called 

principal curvatures at that point, and their corresponding radius of curvatures are 

called principal radius of curvatures. 

 EQUATION GIVING PRINCIPAL CURVATURES 
 

We know that the normal curvature 𝜅𝑛 at point P(u, v) in the direction (du, dv) is given 

by 

𝜿𝐧 =
Ldu 2 + 2Mdudv + Ndv 2

𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2
 

If (𝑙, 𝑚) be actual direction coefficients of the direction (𝑑𝑢, 𝑑𝑣), then 

𝜿𝐧 =
L𝑙2 + 2M𝑙 m + Nm2

E𝑙2 + 2Fm𝑙 + Gm2
 

Where, 

E𝑙2 + 2 F𝑙 m + Gm2 = 1                 … … … ..     (1)  

 

∴  𝜅n = Ll2 + 2Mlm + Nm2      … … ….             (2)  

Since 𝐿, 𝑀, 𝑁 are fixed at 𝑃, so the value of 𝜅𝑛 at 𝑃 depends upon the values 1, m, at 

P , i.e., Kn is a function of two variables 𝑙, m and are connected by relation (2). We 

shall find the maximum value of 𝜅𝑛 by Lagrange's method of undetermined multipliers. 

For a maximum or minimum value of kn, we have 

d𝜅n = 0 

i.e. ,  2 L𝑙 d𝑙 + 2M𝑙dm + 2Mmd𝑙 + 2Nmdm = 0 

or 

(L𝑙 + Mm)d𝑙 + (M𝑙 + Nm)dm = 0       … … … ….       (3)  
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Differentiating (1), we get 

2Eld𝑙 + 2Fldm + 2Fmd𝑙 + 2Gmdm = 0 

or 

(El + Fm)d𝑙 + (Fl + Gm)dm = 0        … … … … ..         (4)  

Now multiplying (4) by 𝜆 and adding to (3) and then equating to zero the coefficients 

of d𝑙 and 𝑑𝑚, we get 

(L𝑙 + Mm) + 𝜆(El + Fm) = 0                        … … … ..         (5)
(M𝑙 + Nm) + 𝜆(Fl + Gm) = 0            … … … ….                   (6)

 

and 

Now multiplying (5) by 𝑙 and (6) by 𝑚 and adding, we get 

or 

(Ll2 + 2Mlm + Nm2) + 𝜆(E𝑙2 + 2Flm + Gm2) = 0
𝜅n + 𝜆 = 0     or     𝜆 = −𝜅n.

 

Putting 𝜆 = −𝜅n in (5) and (6), we get 

 (L𝑙 + Mm) − 𝜅n(E𝑙 + Fm) = 0     … … …         (7)

 (M𝑙 + Nm) − 𝜅n(Fl + Gm) = 0         … … …              (8)
 

and 

Now we shall eliminate 𝑙, 𝑚 between (7) and (8). From (7), we have 

(𝐿 − 𝜅𝑛𝐸)𝑙 + (𝑀 − 𝜅𝑛𝐹)𝑚 = 0          … … … … ….                (9)
 

 

From (8), 

(𝑀 − 𝜅𝑛𝐹)𝑙 + (𝑁 − 𝜅𝑛𝐺)𝑚 = 0                 … … … … ….             (10)  

 

From (9) and (10), we have 

(𝐿 − 𝜅𝑛𝐸)(𝑁 − 𝜅𝑛𝐺) = (𝑀 − 𝜅𝑛𝐹)(𝑀 − 𝜅𝑛𝐹)
 

Or 

𝜅𝑛
2(𝐸𝐺 − 𝐹2) − 𝜅𝑛(𝐸𝑛 + 𝐿𝐺 − 2𝐹𝑀 + (𝐿𝑁 − 𝑀2) 

This is the required quadratic equation giving the maximum or minimum values of 

normal curvature at P . Its roots are principal curvatures of the surface at P and are 

usually denoted by 𝜅𝑎 and 𝜅b. Thus we have 

𝒌𝒂 + 𝒌𝒃 =
𝐸𝑁 + 𝐿𝐺 − 2𝐹𝑀

𝐸𝐺 − 𝐹2
 and  𝒌𝒂𝒌𝒃 =

𝐿𝑁 − 𝑀2

𝐸𝐺 − 𝐹2
=

𝑇2

𝐻2
 

 

 General Definition. 

1. First curvature. The sum of the principal curvature 𝜅𝑎 and 𝜅𝑏 is called the 

first curvature at the point and it is denoted by symbol 𝐽, 

i.e., 

J = Ka + 𝜅b =
EN + LG − 2FM

EG − F2
 

2. Mean curvature or Mean normal curvature. 
 

The arithmetic mean of the principal curvature 𝑘𝑎 and 𝑘𝑏 at a point is called the mean 

curvature at the point and is denoted by symbol 𝜇. 
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 i.e.,         𝜇 =
1

2
(𝜅𝑎 + 𝜅b) =

EN + LG − 2FM

2(𝐸𝐺 − F2)
 

Some authors denote the mean normal curvature by B 

⇒  𝐵 =
1

2
(𝜅𝑎 + 𝜅𝑏).  

Also, amplitude of normal curvature is defined by 

𝐴 =
1

2
(𝜅𝑏 + 𝜅𝑎) 

3. Gaussian curvature. The product of the principal curvatures 𝑘𝑎 and 𝑘𝑏 at 

point is called Gaussian curvature at the point and is denoted by symbol 𝐾. 

i.e., 

K = 𝜅a ⋅ 𝜅b =
LN − M2

EG − F2
=

T2

H2
 

It is also called, specific curvature, second curvature or total curvature. 

 

 TO FIND EQUATION GIVING THE PRINCIPAL DIRECTION AT 

A POINT ON THE GIVEN SURFACE 

  We know that directions having the maximum and minimum normal curvatures are 

given by equations (5) and (6), which are 

 (L𝑙 + Mm) + 𝜆(El + Fm) = 0                                         (1)

 (Ml + Nm) + 𝜆(Fl + Gm) = 0                                        (2)
 

Eliminating 𝜆 form (1) and (2) we get 

(L𝑙 + Mm)(Fl + Gm) = (Ml + Nm)(El + Fm)  

Or

 (EM − Fl)𝑙2 + (EN − GL)𝑙 m + (FN − GM)m2 = 0                              (3)  

 

Equation (3) gives principal directions at the given point. Now replacing the actual 

direction coefficients (1, m) by direction ratios (du, dv), the equation (3) reduces to 

(𝐸𝑀 − 𝐹𝐿)𝑑𝑢2 + (𝐸𝑁 − 𝐺𝐿)𝑑𝑢𝑑𝑣 + (𝐹𝑁 − 𝐺𝑀)𝑑𝑣2 = 0                              (4)  

Now (4) is a quadratic equation in 
du

dv
, therefore there are in general two principal 

directions at each point of the surface. 

Again, we know that the two directions given by 

𝑃𝑑𝑢2 + 2𝑄𝑑𝑢𝑑𝑣 + 𝑅𝑑𝑣2 = 0 

 Are orthogonal if 

𝐸𝑅 − 2𝐹𝑄 + 𝐺𝑃 = 0                    (5)  

On comparing (4) and (5), we have 

P = EM − FL, Q =
EN − GL

2
, R = FN − GM 

Hence in this case 

ER − 2FQ + GP = E(FN − GM) − F(EN − GL) + G(EM − FL) = 0 

Therefore, the two directions given by (4) are orthogonal hence the principal direction 

are orthogonal. 

The discriminant of equation (4) is 
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 (EN − GL)2 − 4(EM − FL)(FN − GM)

 ≡
4(EG − F2)

E2
(EM − FL)2 + {EN − GL −

2 F

E
(EM − FL)}

 

But EG − F2 > 0, if follows that the roots of equation (4) are real and distinct, provided 

that the coefficients E,F,G and L,M,N are not proportional. Thus, if at a point 𝑃 the 

coefficients 𝐸, 𝐹, 𝐺 are not proportional to 𝐿, 𝑀, 𝑁 then we have two real and distinct 

principal direction at P which are orthogonal. When 
𝐿

𝐸
=

𝑀

𝐹
=

𝑁

𝐺
, the equation (4) fails to 

determine principal directions i.e., the principal directions are indeterminate.  

 

Umbilic Definition. A point on a surface is called an umbilic if at that point we have 

𝐿

𝐸
=

𝑀

𝐹
=

𝑁

𝐺
   

The normal curvature k at a point (𝑢, 𝑣) in the direction (du, dv) is given by 

𝜅 =
𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2

𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2
 

Therefore, at an umbilic, the normal curvature is the same in all direction. 

 

9.6 MINIMAL SURFACE 

Definition. If mean curvature of a surface is zero at all points, then the surface is called 

a minimal surface.  

Hence the surface will be minimal if, μ = 0 ⇒ Ka + Kb = 0  EN + GL − 2FM = 0 
at every point of the surface. 

Theorem. If there is a surface of minimum passing through a closed space curve, it is 

necessarily a minimal surface. 

Proof. Let 𝐫 = 𝐫(u, v) be the equation of a surface S bounded by a closed curve C. 

Given to S, a small displacement ε in the direction of normal to derive a surface S. 

Here 𝜀 is a function of 𝑢 and 𝑣. Let 
𝜕𝜀

𝜕𝑢
= 𝜀1 and 

𝜕𝜀

𝜕𝑣
=

𝜀2 be both small quantities. More exactly we take 

𝜀1 = 𝑂(𝜀), 𝜀2 = 𝑂(𝜀) as 𝜀 → 0 

Let 𝐑 be the position vector of any point on the 

surface 𝑆∗, then 

𝐑 = 𝐫 + 𝜀𝐍 

where 𝐫, 𝜀, 𝐍 are all functions of 𝑢 and 𝑣. 
∴ 𝐑1 = 𝐫1 + 𝜀1𝐍 + 𝜀𝐍1,

𝐑2 = 𝐫2 + 𝜀2𝐍 + 𝜀𝐍2
 

Let 𝐸∗, 𝐹∗, 𝐺∗ be first order fundamental 

coefficients of 𝑆∗. 

Fig. 9.6.1 
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∴ 𝐸∗ = 𝐑1
2 = (𝐫1 + 𝜀1𝐍 + 𝜀𝐍1)2.

 = 𝐫1
2 + 2𝜀𝐫1 ⋅ 𝐍 + 2𝜀𝐫1 ⋅ 𝐍1 + 𝑂(𝜀2)

 = E − 2𝜀 L + O(𝜀2)

F∗ = 𝐑1 ⋅ 𝐑2 = (𝐫1 + 𝜀1𝐍 + 𝜀𝐍1) ⋅ (𝐫2 + 𝜀2𝐍 + 𝜀𝐍2)

 = 𝐫1 ⋅ 𝐫2 + 𝜀2𝐫1 ⋅ 𝐍 + 𝜀𝐫2 ⋅ 𝐍2 + 𝜀1𝐍 ⋅ 𝐫2 + 𝜀𝐍1 ⋅ 𝐫2 +∩ (𝜀2)

 = 𝐹 − 2𝜀𝑀 + 𝑂(𝜀2)

𝐺∗ = 𝐑2
2 = (𝐫2 + 𝜀𝐍 + 𝜀𝐍2)2 = 𝐺 − 2𝜀𝐍 + 𝑂(𝜀)2

 ∴  𝐻∗2 = 𝐸∗𝐺∗ − 𝐹∗2

= {𝐸 − 2𝜀𝐿 + 𝑂(𝜀)2} ∣ 𝐺 − 2𝜀𝑁 + 𝑂(𝜀2)} − {𝐹 − 2𝜀𝑀 + 𝑂(𝜀2)}2

 = EG − F2 − 2𝜀(EN − 2FM + GL) + O(𝜀2)

 = H2 − 4𝜀H2 (
EN − 2FM + GL

2H2
) + O(𝜀2)

 

= H2 − 4𝜀H2𝜇 + O(𝜀2), where 𝜇 is mean curvature of S 

= H2[1 − 4𝜀𝜇 + O(𝜀2)]. 
Example 1. Show that the equation for the principal curvature through a point of the 

surface z = f(x, y) is 

H4κn 2 − H[(1 + p2)t + (1 + q2)r − 2spq]κn + (rt − s2) = 0 

Solution: The given surface is z = f(x, y), thus we have 

 

    𝐫 = (x, y, f(x, y)) 

∴  𝐫2 = (1,0, p); 𝐫2 = (0,1, q); 𝐫11 = (0,0, r); 𝐫12 = (0,0, s); 

𝐫22 = (0,0, t) 

Therefore,  E = 𝐫1 ⋅ 𝐫1 = 1 + p2; F = 𝐫1 ⋅ 𝐫2 = pq; G = 𝐫2 ⋅ 𝐫2 = 1 + q2. 

 

Therefore, H2 = EG − F2 = (1 + p2)(1 + q2) − p2q2 = 1 + p2 + q2 

𝐍 =
𝐫1 × 𝐫2

H
=

(−p, −q, 1)

H
 

L = 𝐍 ⋅ 𝐫11 =
𝐫

H
; M = 𝐍 ⋅ 𝐫12 =

s

H
; N = 𝐍 ⋅ 𝐫22 =

t

H
; 

and 

T2 = LN − M2 =
rt − s2

H2
 

Equation of principal curvature is given by 

H2κn
2 − (EN + GL − 2FM)κn + T2 = 0 

Putting the values of E, F, G, L, M, N in this equation, we get 

H4κn
2 − H[(1 + p2)t + (1 + q2)r − 2spq]κn + (rt − s2) = 0 

which is the equation of principal curvatures. 

 

Example 2. Show that the principal radii of curvature of the surface ycos 
z

a
= xsin 

z

a
 are 

equal to ±
x2+y2+a2

a
. Find the lines of curvature. 

 

Solution. Surface is ycos 
z

a
= xsin 

z

a
 i.e. z = atan−1 

y

x
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The parametric equations of the surface are 

X=u cos v, y=u sin v, z=av 

 

∴ r = (ucos v, usin v, av)
r1 = (cos v, sin v, 0); r2 = (−usin v, ucos v, a)

   𝐫11 = (0,0,0); r12 = (−sin v, cos v, 0)
r22 = (−ucos v, −usin v, 0);

∴  E = r1
2 = 1; F = r1 ⋅ r2 = 0, G = r2

2 = u2 + a2;

H2 = EG − F2 = u2 + a2

  

 
𝐍 =

r1×𝐫2

H
=

(asin v,−acos v,u)

H
.

L = 𝐍 ⋅ 𝐫11 = 0, 𝐌 = 𝐍 ⋅ 𝐫12 = −
a

H
, N = N ⋅ 𝐫22 = 0.

 

The principal curvatures of the surface are given by 

H2κn
2 − (EN − 2FM + GL)κn + T2 = 0 

or 

(EG − F2)κn
2 − (EN − 2FM + GL)κn + (LN − M2) = 0 

Putting the values of E, F, G, L, M, N in the equation, we get 

(u2 + a2)κ2 + (0 −
a2

H2
) = 0 or ρ2 =

(u2 + a2)H2

a2
=

(u2 + a2)2

a2

or                                       ρ = ±
(x2 + y2 + a2)

a

 

which are the principal radii of curvatures. 

Again the lines of curvature are given by the equation 

(EM − FL)du2 + (EN − GL)dudv + (FN − GM)dv2 = 0 

On putting the values of E, F, G, L, M and N in this equation we get 

−
a

H
du2 + (u2 + a2)

a

H
dv2 = 0 or 

du

±√[(u2 + a2)]
= dv 

Integrating, v = ±sinh−1 
u

a
+ C, where C is constant. 

 

or                                           tan−1 
y

x
= ±sinh−1 

[(x2+y2)]

a
+ C 

 

 

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. Equation of First curvature is  

                       J = Ka + 𝜅b =
EN+LG−2FM

EG−F2  . 

Problem 2. The amplitude of normal curvature is defined by 

                     𝐴 =
1

2
(𝜅𝑏 + 𝜅𝑎). 

Problem 3. If mean curvature of a surface is one at all points, then the  

                    surface is called a minimal surface. 
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Problem 4. If mean curvature of a surface is zero at all points,   

                    then the surface is called a minimal surface. 

 

 

9.7 SUMMARY 

 

i.      Meusnier’s theorem: If 𝜅 and 𝜅𝑛 are the curvatures of oblique and normal    

       sections through the same tangent line and 𝜃 be the angle between these sections,   

        then 𝜅n = 𝜅cos 𝜃. 

ii.        Minimal surface:  If mean curvature of a surface is zero at all points,   

        then the surface is called a minimal surface. 

iii.         Principal curvature: The curvatures of the principal sections of a surface through   

        a given point, i.e., the maximum and minimum curvatures at that point are called  

        principal curvatures at that point, and their corresponding radius of curvatures are  

        called principal radius of curvatures. 

 

9.8 GLOSSARY 

  

 (i)  Derivatives  

 (ii)  Determinant   

 

9.9 REFERENCES AND SUGGESTED READINGS 

  

1. An introduction to Riemannian Geometry and the Tensor calculus by C.E.  

       Weatherburn “Cambridge University Press.” 

2.       Matrices and Tensors in physics by A.W. Joshi “Wiley Eastern Limited”. 

3.        Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”. 

4.        Differential Geometry by Gupta, Malik and Pundir “Pragati Edition’’. 

 

9.10 TEWRMINAL QUESTIONS 

 

1. Define Normal Curvature, write its equation. 

2. Define Principal Curvature, write its equation. 

3. Define Mean Curvature, find its equation. 
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4. Define Gaussian Curvature, find its equation. 

 

9.11 ANSWERS 

 

CYQ 1. True  

CYQ 2. True 

CYQ 3. False 

CYQ 4. True 
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UNIT 10:  RODRIGUE’S FORMULA AND  

                  EULER’S THEOREM 

 

CONTENTS: 

10.1    Introduction     

10.2    Objectives 

10.3    Rodrigue’s Formula 

10.4      Monge’s Theorem 

10.5      lines of curvature as parametric curve 

10.6      Euler’s theorem 

10.7     Summary 

10.8     Glossary 

10.9     References and Suggested Readings 

10.10     Terminal questions 

10.11     Answers 
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10.1 INTRODUCTION 

In geometry, Rodrigues' formula is used to define orthogonal polynomials, 

like Legendre polynomials, providing a way to derive them from a differential 

operator. It's a general formula that expresses a polynomial as a derivative of a 

product of a polynomial and a weight function. Local non-intrinsic properties in 

surface differential geometry are those that depend on how a surface is embedded 

in space, like the normal vector at a point, whereas intrinsic properties depend only 

on the surface itself, like the Gaussian curvature.  

 

10.2 OBJECTIVES 

 After completion of this unit learners will be able to: 

(i) Rodrigue’s Formula 

(ii) Euler’s theorem 

(iii)        Monge’s Theorem 

 

10.3 RODRIGUE’S FORMULA 

 

 Statement. A necessary and sufficient condition that a curve on a surface be the line 

of curvature is that 

dN

ds
∝

 d𝐫

ds
 or dN + 𝜅d𝐫 = 𝟎 

at each of its points, where κ denotes the normal curvature. 

 

Proof. Let (du, dv) be a line of curvature on the surface, then it is a principal direction 

at the point (𝑢, 𝑣) to the surface, so we have from equations 

(𝐿 − 𝜅𝐸)𝑑𝑢 + (𝑀 − 𝜅𝐹)𝑑𝑣 = 0                  (1)  

and 

 (𝑀 − 𝜅𝐹)𝑑𝑢 + (𝑁 − 𝜅𝐺)𝑑𝑣 = 0               (2)  

 

where 𝜅 is one of the principal curvatures. 
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Putting the values of L,M,N,E,F,G in (1) and (2) by their expressions in terms of 

derivatives of 𝐫 and 𝐍, viz. 

L = −𝐍1 ⋅ 𝐫1, M = −𝐍1 ⋅ 𝐫2 = −𝐍2 ⋅ 𝐫1, N = −𝐍2 ⋅ 𝐫2

E = 𝐫1
2, F = 𝐫1 ⋅ 𝐫2, 𝐺 = 𝐫2

2.
 

We have 

or 

(−𝐍1 ⋅ 𝐫1 − 𝜿𝒓1
2)𝑑𝑢 + (−𝐍2 ⋅ 𝐫1 − 𝜅𝐫1 ⋅ 𝐫2)dv = 0

 or (𝐍1𝑑𝑢 + 𝐍2𝑑𝑣) ⋅ 𝐫1 + 𝜅(𝐫1𝑑𝑢 + 𝐫2𝑑𝑣) ⋅ 𝐫1 = 0

 

 

Or 

(dN) ⋅ 𝐫1 + (𝜅𝑑𝐫) ⋅ 𝐫1 = 0 or (d𝐍 + 𝜅𝑑𝐫) ⋅ 𝐫1 = 0                   (3)  

 

Similarly form (2), we have 

(d𝐍 + 𝜅d𝐫) ⋅ 𝐫2 = 0                (4)  

Again 

𝐍 ⋅ 𝐍 = 1 

On differentiating it, we get 2𝐍 ⋅ d𝐍 = 0 i.e., d𝐍 is normal to 𝐍 or d𝐍 is a tangent 

vector. Also 𝑑𝐫 is a tangential vector, so the vector 𝜅𝑑𝐫 + d𝐍 is tangential vector to the 

surface. Also 𝐫1 and 𝐫2 are tangential vectors, therefore in order that equations (3) and 

(4) are satisfied, we must have 

dN + 𝜅d𝐫 = 0 

or 

dN

ds
∝

 d𝐫

ds
, i.e., the condition is necessary.  

Sufficient condition. Let there be curve on the surface at each point of which 

𝑑𝐍

𝑑𝑠
∝

𝑑𝐫

𝑑𝑠
, i.e.,  𝜅𝑑𝐫 + d𝐍 = 0. 

where 𝜅 is any function, now reversing the order of steps, we get the equations 

(3) and (4) which are 

and 
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 (𝐿 − 𝜅𝐸)𝑑𝑢 + (𝑀 − 𝜅𝐹)𝑑𝑣 = 0

 (𝑀 − 𝜅𝐹)𝑑𝑢 + (𝑁 − 𝜅𝐺)𝑑𝑣 = 0
 

Thus the curve is line of curvature in case K is normal curvature to the surface. Given, 

𝜅𝑑𝑟 + 𝑑𝑁 = 0 ⇒ 𝜅𝑑𝑟 = −𝑑𝑁 

⇒                                     𝜅(𝐫1𝑑𝑢 + 𝐫2𝑑𝑣) = −(𝑵1𝑑𝑢 + 𝑵2𝑑𝑣) 

Taking dot product of ( 𝐫1du + 𝐫2dv) both sides, 

 

⇒  𝜿(𝐫1𝑑𝑢 + 𝐫2𝑑𝑣) ⋅ (𝐫1𝑑𝑢 + 𝐫2𝑑𝑣) = −(𝐍1𝑑𝑢 + 𝐍2𝑑𝑣) ⋅ (𝐫1𝑑𝑢 + 𝐫2𝑑𝑣) 

 

⇒  𝜅(𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + Gdv2) = Ldu2 + 2Mdudv + Ndv 2 

⇒  𝜅 =
Ld𝑢2 + 2Mdudv + Ndv2

 Ed𝑢2 + 2Fdudv + Gdv2
 

⇒ 𝜅 is a normal curvature at the point (𝑢, 𝑣) in the direction ( 𝑑𝑢, 𝑑𝑣 ). 

 

Hence, the direction at each point of the curve is a principal direction and thus the curve 

is a line of curvature on the surface. 

Remark. 

𝜎 In Rodrigue's formula, it is not necessary that k is the curvature of the curve under 

consideration. It is simply a scalar function. In fact, at any point of the curve, 𝜅 is the 

normal curvature of the surface at that point in the direction of the curve. 

 

10.4 MONGE’S THEOREM 

A necessary and sufficient condition that a curve on a surface be a line of curvature is 

that the surface normals along the curve form a developable. 

 

Proof. Let 𝐫 = 𝐫(u, v) be a surface and 𝐫 = 𝐫(s) be a curve on it. Let N denote a unit 

vector along normal to the surface 𝐫 = 𝐫(u, v) at any point P, r(s) on the curve 𝐫 =

𝐫(s); 𝐍 can be taken as a function of s alone. Let 𝐑 denote the position vector of any 

point on this normal, then 

𝐑 = 𝐫(s) + vN( s) 

This equation can be taken as the function of the surface generated by the normals to 

the given surface at points on the curve 𝐫 = 𝐫(s). In equation (1) the two parameters are 

s and v. 

⇒ 
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∂𝐑

∂s
= 𝐑1 =

d𝐫

ds
+ v

d𝐍

ds
= t + v𝐍′

∂𝐑

∂v
= 𝐑2 = 𝐍, 𝐑12 = N′, 𝐑22 = 0

 

Then  HM = [𝐑12, 𝐑1, 𝐑2] = [𝐍′, 𝐭 + 𝐯𝐍′, 𝐍] 

 = [𝐍′, 𝐭, 𝐍] + v[𝐍′, 𝐍′, 𝐍]

 = [𝐍′, 𝐭, 𝐍] [∵ [𝐍′, 𝐍′, 𝐍] = 0, 𝐑22 = 0]
 

and 

HN = [𝐑22, 𝐑1, 𝐑2] = 0, 
Now  HN = 0 ⇒  N = 0, since H ≠ 0 

Further 

𝐌 =
1

H
[𝐍′, 𝐭, 𝐍] =

1

H
[𝐭, 𝐍, 𝐍′] 

Now the surface (1) is developable if and only if its Gaussian curvature is zero 

 

i.e., if and only if   
LN−M2

H2 = 0 

⇔ M = 0
⇔ [𝐭, 𝐍, 𝐍′] = 0.

[∵ 𝐍 = 0 for (1) ] 

Hence, the normals to the surface 𝐫 = 𝐫(u, v) along the curve 𝐫 = 𝐫(s) form a 

developable if and only if [𝐭, 𝐍, 𝐍′] = 0. Therefore in order to prove the theorem we are 

now to prove that 

[𝐭, 𝐍,  𝐍′] = 0 

is a necessary and sufficient condition for 𝐫 = 𝐫(s) to be a line of curvature on the 

surface 𝐫 = 𝐫(u, v). 

Now 

[𝐭, 𝐍, 𝐍′] = 0, [𝐭, 𝐍′, 𝐍] = 0, (𝐭 × 𝐍′) ⋅ 𝐍 = 0 

But   𝐍 ≠ 0. 

Also 𝐍′ is perpendicular to 𝐍. So 𝐍′ lies in the tangent plane to the surface 𝐫 = 𝐫(u, v). 

Now 𝐭 × 𝐍′ is perpendicular to both 𝐭 and 𝐍′. Therefore 𝐭 × 𝐍′ is normal to the surface 

𝐫 = 𝐫(u, v). Thus 𝐭 × 𝐍′ is parallel to 𝐍. Therefore if t × 𝐍′ ≠ 0, then (𝐭 × 𝐍′). 𝐍 

cannot be zero. 

⇒                                                       (𝐭 × 𝐍′) ⋅ 𝐍 = 0, ⇒ 𝐭 × 𝐍′ = 0 

⇒  N′ = −κt for some scalar function κ . 

⇒  κ
d𝐫

ds
+

d𝐍

ds
= 0 

⇒  The given curve is a line of curvature by Rodrigue's formula. 

Conversely. If the given curve is a line of curvature, then by Rodrigue's formula, we 

have 

𝛋
dr

ds
+

d𝐍

ds
 = 0

−κt = N′

∴  [𝐭, 𝐍, 𝐍′] = [𝐭, 𝐍, −𝛋𝐭] = 0

 

Hence the proof of the theorem is complete. 
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10.5 LINE OF CURVATURE AS PARAMETRIC  

        CURVE 

 

The necessary and sufficient condition that parametric curves be lines of curvature 

 F = 0, M = 0. 

 

Proof. The parametric curves are 𝑢 = constant and 𝑣 = constant therefore combined 

differential equation of parametric curves is given by 

𝑑𝑢𝑑𝑣 = 0                                          (1)  

Again the differential equation of lines of curvatures is 

[EM − FL]𝑑u2 + [EN − GL]dudv + [FN − GM]dv2 = 0                         (2)  

If the lines of curvature are taken as parametric curves, then F = 0, since the principal 

directions are orthogonal. 

Comparing (1) and (2), we have 

EM − FL = 0, FN − GM = 0 and EN − GL ≠ 0 

Since F = 0, so we have 

EM = 0, GM = 0 which gives M = 0 

Hence F = 0, M = 0 are necessary conditions for the parametric curves to be lines of 

curvature. 

Sufficient condition. If F = 0, M = 0 the equation (2) of lines of curvature becomes 

(𝐸𝑁 − 𝐺𝐿)𝑑𝑢𝑑𝑣 = 0 

But                       EN − GL ≠ 0; ∴ dudv = 0 

 

Which is the differential equation of the parametric curves. 

 

10.6 EULER’S THEOREM 

Statement. The normal curvature κn at a point on a surface is given in terms of 

principal curvatures κa and κb by the formula 

κn = κacos2 ψ + κbsin2 ψ 

(known as Euler's formula) where κa and κb are the principal curvatures and ψ is the 

angle at which the direction (du, dv) of the normal section made with the principal 

direction dv = 0 

 

Proof. Let the lines of curvature be taken as parametric curves, then F = 0, M = 0 and 

the normal curvature 

κn =
Ldu2 + 2Mdudv + Ndv2

Edu2 + 2Fdudv + Gdv2
 

reduce to 

κn =
Ldu2 + Ndv2

Edu2 + Gdv2
                                             (1)  
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Since the direction 𝐯 = constant [  having direction coefficients (
1

√E
, 0)] and 

 u = constant [  having direction coefficient (0,
1

√G
)] are principal directions, so the 

curvatures for these directions are principal curvatures and are given by 

κa =
L

E
 [ Put dv = 0 in (1)]                                      (2)  

And 

κb =
N

G
  [Put du = 0 in (1)]                           (3)  

 

As the direction du = (du, dv) makes angle ψ 

with the parametric curve v = constant, so we 

have  

(
1

√E
, 0)

cos ψ =
1

√E
(E

du

ds
+ F

dv

ds
)

 = √(E)
du

ds
 

  

 

sin ψ =
H

√E

dv

ds
=

√(EG − F2)dv

√Eds
= √(G)

dv

ds
                            [∵ F = 0]  

 

Again,                          ds2 = Edu2 + 2Fdudv + Gdv2 

= Edu2 + Gdv2                                                                              [∵ F = 0]  

 

Again from (1) 

κn =
Ldu2 + Ndv2

ds2
= L (

du

ds
)

2

+ N (
dv

ds
)

2

 =
L

E
cos2 ψ +

N

G
sin ψ

 

or 

κn = κa cos2 ψ + κb sin2 ψ                                               (4)  

 

 Deduction. The sum of the normal curvature in two orthogonal directions is equal to 

the sum of the principal curvatures at that point.  

Proof. Let κn1
 and κn2

 denote normal curvature in two orthogonal directions on the 

surface and ψ be the angle between the first direction and the principal direction dv =
0; thus, the angle between the second direction and the principal direction du = 0 will 

be 
π

2
+ ψ. Thus, from Euler's formula (4), we have 

Fig.(10.5.1) 
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κn1
= κa cos2 ψ + Kb sin2 ψ (1) 

and 

κn2
 = κacos2 (

π

2
+ ψ) + κbsin2 (

π

2
+ ψ)

 = κasin2 ψ + κbcos2 ψ (2)
 

Now on adding (1) and (2), we get 

κn1
+ κn2

= κa + κb 

This is known as Dupin's theorem. 

 Elliptic points. The points on the surface at which the principal curvatures κa 

and κb have the same sign i.e., the Gaussian curvature K is positive are called elliptic 

points. 

Again K = KaKb =
LN−M2

EG−F2 =
LN−M2

H2 . 

Thus, we conclude that a point is an elliptic point if 

LN − M2 > 0. 

Note:  If κa and κb have different signs then the indicatrix is one of two conjugate 

hyperbolas depending on the sign of h. In this case surface in the neighbourhood of 

Olies on both sides of the tangent plane. Such portions of the surface are called 

Anticlastic at that point. 

 Hyperbolic points. The points on the surface at which the Gaussian curvature 

K is negative i.e., LN − M2 < 0 are called hypervolic points. In this case principal 

curvatures at the points are of opposite signs. 

Note:  If one of the principal curvatures is zero, i.e., either ka = 0 or κb = 0, then the 

indicatrix is a pair of parallel straight lines. 

 Parabolic points. The points on the surface at which the Gaussian curvature 

K = 0 are called parabolic points. In this case LN − M2 = 0. 

Example 1. Show that the equation for the principal curvature through a point of the 

surface z = f(x, y) is 

H4κn 2 − H[(1 + p2)t + (1 + q2)r − 2spq]κn + (rt − s2) = 0 

Solution: The given surface is z = f(x, y), thus we have 

 

    𝐫 = (x, y, f(x, y)) 

∴  𝐫2 = (1,0, p); 𝐫2 = (0,1, q); 𝐫11 = (0,0, r); 𝐫12 = (0,0, s); 

𝐫22 = (0,0, t) 

Therefore,  E = 𝐫1 ⋅ 𝐫1 = 1 + p2; F = 𝐫1 ⋅ 𝐫2 = pq; G = 𝐫2 ⋅ 𝐫2 = 1 + q2. 
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Therefore, H2 = EG − F2 = (1 + p2)(1 + q2) − p2q2 = 1 + p2 + q2 

𝐍 =
𝐫1 × 𝐫2

H
=

(−p, −q, 1)

H
 

L = 𝐍 ⋅ 𝐫11 =
𝐫

H
; M = 𝐍 ⋅ 𝐫12 =

s

H
; N = 𝐍 ⋅ 𝐫22 =

t

H
; 

and 

T2 = LN − M2 =
rt − s2

H2
 

Equation of principal curvature is given by 

H2κn
2 − (EN + GL − 2FM)κn + T2 = 0 

Putting the values of E, F, G, L, M, N in this equation, we get 

H4κn
2 − H[(1 + p2)t + (1 + q2)r − 2spq]κn + (rt − s2) = 0 

which is the equation of principal curvatures. 

 

Example 2. Show that the principal radii of curvature of the surface ycos 
z

a
= xsin 

z

a
 are 

equal to ±
x2+y2+a2

a
. Find the lines of curvature. 

 

Solution. Surface is ycos 
z

a
= xsin 

z

a
 i.e. z = atan−1 

y

x
  

 

The parametric equations of the surface are 

X= u cos v, y = u sin v, z = av 

 

∴ r = (ucos v, usin v, av)

r1 = (cos v, sin v, 0); r2 = (−usin v, ucos v, a)
   𝐫11 = (0,0,0); r12 = (−sin v, cos v, 0)

r22 = (−ucos v, −usin v, 0);

∴  E = r1
2 = 1; F = r1 ⋅ r2 = 0, G = r2

2 = u2 + a2;

H2 = EG − F2 = u2 + a2

  

 
𝐍 =

r1×𝐫2

H
=

(asin v,−acos v,u)

H
.

L = 𝐍 ⋅ 𝐫11 = 0, 𝐌 = 𝐍 ⋅ 𝐫12 = −
a

H
, N = N ⋅ 𝐫22 = 0.

 

The principal curvatures of the surface are given by 

H2κn
2 − (EN − 2FM + GL)κn + T2 = 0 

or 

(EG − F2)κn
2 − (EN − 2FM + GL)κn + (LN − M2) = 0 

Putting the values of E, F, G, L, M, N in the equation, we get 

(u2 + a2)κ2 + (0 −
a2

H2
) = 0 or ρ2 =

(u2 + a2)H2

a2
=

(u2 + a2)2

a2

or                                       ρ = ±
(x2 + y2 + a2)

a

 

which are the principal radii of curvatures. 

Again the lines of curvature are given by the equation 

(EM − FL)du2 + (EN − GL)dudv + (FN − GM)dv2 = 0 

On putting the values of E, F, G, L, M and N in this equation we get 
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−
a

H
du2 + (u2 + a2)

a

H
dv2 = 0 or 

du

±√[(u2 + a2)]
= dv 

Integrating, v = ±sinh−1 
u

a
+ C, where C is constant. 

 

or                                           tan−1 
y

x
= ±sinh−1 

[(x2+y2)]

a
+ C 

Example 3. For the hyperboloid 2z = 7x2 + 6xy − y2, prove that the principal radii at 

the are 
1

8
, −

1

2
 and the principal sections are x = 3y, 3x = −y. 

 

Solution. The given surface 

is

z =
1

2
(7x2 + 6x − y2) (1) 

which is of the form                            z = f(x, y) 

In Example 1, we have calculated the fundamental magnitudes of such surface which 

are given by 

E = 1 + p2; F = pq; G = 1 + q2 

L =
r

H
; M =

s

H
; N =

t

H
 [∵ H = √[(1 + p2 + q2)] 

In this case 

p =
∂z

∂x
= 7x + 3y = 0 [at origin] 

q =
∂z

∂y
= (3x) − y = 0 [at origin] 

r =
∂2z

∂x2
= 7; s =

∂2z

∂x ∂y
= 3; t =

∂2z

∂y2
= −1 

Therefore, we have 

E = 1, F = 0, G = 1, H = 1, L = 1, M = 3, N = −1 

Equations giving the principal curvatures is 

(EG − F)κn
2 − (EN − 2FM + LG)κn + (LN − M2) = 0 

Putting the values of E, F, G, L, M, N and H in this equation, we get κn
2 − 6κn − 16 = 0, 

i.e., κn = 8, −2. Hence the principal radii are 
1

8
, −

1

2
. 

Again, the equation of line curvature is 

(EM − FL)dx2 + (EN − GL)dxdy + (FN − GM)dy2 = 0 

Or                3dx2 − 8dxdy − 3dy2 = 0      or      (3dx + dy)(dx − 3dy) = 0 

or                 3x + y = c1, x − 3y = c2 

At origin,                               c1 = 0 = c2 

Therefore, principal sections at origin are 

x = 3y, 3x = −y 

Example 4. Find the principal radii of the surface a2x2 = z2(x2 + y2) at the points 

where x = y = z. 

Solution. Parametric equations of the surface are given by 

x = ucos θ, y = usin θ, z = acos θ 

where u and θ are parameters. 
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∴  r = (ucos θ, usin θ, acos θ) 

𝐫1 = (cos θ , sin θ , 0),     𝐫2 = (− usin θ , ucos θ , − asin θ) 

𝐫11 = (0,0,0); 𝐫12 = (− sin θ , cos θ , 0) 
𝐫22 = (−ucos θ, −usin θ, −acos θ) 

 NH = r1 × 𝐫2 = (−a sin2 θ , asin θ cos θ , u); 

 ∴ E = 1, F = 0, G = u2 + a2sin2 θ, H2 = u2 + a2sin2 θ 

∴ L = 0, M =
a sinθ

H
, N = −

au sinθ

H
, T2 =

a2sin2θ

H2
 

The principal curvatures are given by the equation 

H2κn
2 − (EN + GL − 2FM)κn + T2 = 0 

or     Principal radii are given by the equation 

T2ρ2 − (EN + GL − 2FM)ρ + H2 = 0 

Substituting values of E, F, G, L, M, N, T and H , we have 

−a2sin2 θ

(u2 + a2sin2 θ)
ρ2 − [

−aucos θ

√(u2 + a2sin2 θ)
] ρ + (u2 + a2sin θ) = 0 

or  ρ2(a2sin2 θ) − ρ[(u2 + a2sin2 θ)1/2]aucos θ − (u2 + a2sin θ)2 = 0 

Again at x = y = z, u = a, θ = π/4, 

∴  
ρ2a2

2
− ρ√(a2 +

a2

2
) ⋅ a ⋅ a ⋅

1

√2
− (a2 +

a2

2
)

2

= 0

or                                       ρ2a2 − ρa3√3 −
9a4

2
= 0

or                                  2ρ2a2 − 2a3ρ√3 − 9a4 = 0

or                                         2ρ2 − 2aρ√3 − 9a2 = 0

or                                    ρ =
2a√3 ± √12a2 + 72a2

4

or          ρ =
2a√3 ± a ⋅ 2√(21)

4
=

a√3

2
(1 ± √7).

 

 

Example 5. At a point of the curve of intersection of the paraboloid xy = cz and 

the hyperboloid x2 − y2 + z2 + c2 = 0 the principal radii of curvatures are 
z2

c
(1 ±

√2). 

 

Solution. The position vector rof any point on the curve is given by 

𝐫 = (u, v,
uv

c
) (1) 

As this is the point of intersection of the two given surfaces, so we have from x2 +

y2 − z2 + c2 = 0, the equation 

u2 + v2 + c2 =
u2v2

c
(2) 

 Now  r1 = (1.0. v) 289 

 Now  r1 = (1,0,
v

c
) , r2 = (0,1,

u

c
) , r11 = (0,0,0),  
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𝐫12 = (0,0,
1

c
) , 𝐫22 = (0,0,0) 

𝐍 =
𝐫1 × 𝐫2

𝐇
= (

−v

c
,
−u

c
, 1) /H 

∴  E = r1
2 = 1 +

v2

c2
, F = r1 ⋅ r2 =

uv

c2
, G = r2

2 = 1 +
u2

c2
 

H2 = EG − F2 = 1 +
u2

c2
+

v2

c2
 

L = 𝐍 ⋅ 𝐫11 = 0, M = 𝐍 ⋅ 𝐫12 =
1

cH
, N = 𝐍 ⋅ 𝐫22 = 0 

T2 =
−1

c2H2
 

The principal radii of curvature are given by the equation 

T2ρ2 − (EN + GL − 2FM)ρ + H2 = 0

 −
1

c2H2
ρ2 +

2uv

c2
⋅

1

cH
ρ + H2 = 0

or                      ρ −
2uv

c
⋅ ρ√[(1 +

u2

c2
+

v2

c2
)] − c2 (1 +

u2

c2
+

v2

c2
)

2

= 0

or                      ρ −
2uvρ

c
⋅

1

c
⋅

uv

c
−

c2

c4
−

u4v4

c4
= 0

 

or

 ρ2 −
2z2

c
ρ −

z4

c4 = 0                           (∵ z =
uv

c
)  

 

 

 

or 

ρ =

2z2

c ± √[
4z4

c2 +
4z4

c2 ]

2
=

z2

c
(1 ± √2) 

 

Example 6. Show that the points of intersection of the surface xm + ym + zm = am 

and the line x = y = z are umbilics and that the curvature at an umbilic is given by ρ =
a

m−1
(3)

m−2

2m . 

 

Solution. We have xm + ym + zm = am 

∴  mxm−1 + mzm−1 ⋅
∂z

∂x
= 0  

∴ p = −
xm−1

zm−1
                                 (∵ p =

∂z

∂x
) (A) 

Similarly, q = −
ym−1

zm−1 

 

Now,  log p = −∣ m − 1)log x − (m − 1)log z ∣ 
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1

p

∂P

∂x
= −(m − 1) [

1

x
−

1

z
⋅ P] 

∴  
r

p
= (m − 1) (

P

z
−

1

x
)                                    (1)  

Also
s

p
=

(m−1)q

z
                                          (2)  

And

t = (m − 1) (
q

z
−

1

y
)                            (3)  

Now for an umbilical, 

1 + p2

r
=

pq

s
=

z

m − 1
  [Using(2)] 

∴  (1 + p2) =
z

(m − 1)
[p(m − 1) (

p

z
−

1

x
)] = p2 −

pz

x
  

p =
−z

x
= −

xm−1

zm−1
                              (Using A)  

Similarly,  ym−2 = zm−2 

 

∴  xm−2 = ym−2 = zm−2 

⇒  x = y = z 

∴                                     For an umbilic,  x = y = z 

 

Again if 

x = y = z, p = 1, q = 1, s =
m − 1

a/(3)1/m
 

Now 

H = √(1 + p2 + q2) = √1 + 1 + 1) = √3 

∴  ρ =
pqH

 S
=

√3a

(m − 1)31/m
=

a(3)
m−2
2m

m − 1
 

Example 7. Find the principal directions and the principal curvature on the surface x =

a(u + v), y = b(u − v), z = uv. 

 

Solution. The position vector r of any point on the surface is given by 

𝐫 = [a(u + v), b(u − v), uv]

 ∴  𝐫1 = (a, b, v)𝐫2 = (a, −b, u)

𝐫1 × 𝐫2 = [b(u + v), a(v − u), −2ab]. 

Also,          𝐫11 = (0,0,0), 𝐫12 = (0,0,1), 𝐫22 = (0,0,0). 

 

Nor                       E = r1
2 = a2 + b2 + v2, 

                             F = r1 ⋅ r2 = a2 − b2 + uv,  

                                G = r2
2 = a2 + b2 + u2. 

𝐍 =
𝐫1 × 𝐫2

H
=

[b(u + v), a(v − u), −2ab]

H
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∴ L = 𝐍 ⋅ 𝐫11 = 0, M = 𝐍 ⋅ 𝐫2 =
−2ab

H
, 𝐍 = 𝐍 ⋅ 𝐫22 = 0. 

The differential equation of lines of curvature (or principal directions) is given by 

(EM − FL)du2 + (EN − GL)dudv + (FN − GM)dv2 = 0 

Or 

−(a2 + b2 + v2)
2ab

H
du2 + (a2 + b2 + u2)

2ab

H
dv2 = 0 

Or 

(a2 + b2 + v2)du2 − (a2 + b2 + u2)dv2 = 0 

or 

du

√(a2 + b2 + u2)
= ±

dv

√(a2 + b2 + v2)
 

Integrating we get 

sinh−1 
u

√(a2 + b2)
= ±sinh−1 

v

√a2 + b2
+ c 

 

where c is a constant. 

 

The equation giving principal curvatures is 

H2κ2 − κ(EN − 2FM + GL) + (LN − M2) = 0 

Or 

H2κ2 − κ {−2(a2 − b2 + uv) (−
2ab

H
)} −

4a2 b2

H2
= 0 

or 

H4κ2 − 4abH(a2 − b2 + uv)κ − 4a2 b2 = 0 

Where, 

H2 = EG − F2 = (a2 + b2 + v2)(a2 + b2 + u2) − (a2 − b2 + uv)2 

Example 8. Find the Gaussian curvature at the point (u, v) of the anchor ring x =
(b + a cos u) cos v , y = (b + a cos u) sin v , z = asin u, where the domain of u, v is 

0 < u < 2π, 0 < v < 2π. Verify that the total curvature of the whole surface is zero. 

Solution. Position vector 𝐫 of any point on the surface is given by 

𝐫 = [(b + a cos u) cos v , (b + a cos u) sin v , asin u]

𝐫1 = (−a sin u cos v , −a sin u sin v , a cos u 

𝐫2 = [−(b + a cos u) sin v , (b + a cos u) cos v , 0],
 

𝐫1 × 𝐫2 = [−a(b + a cos u) cos u cos v 

− a(b + a cos u) cos u sin v , −a(b + a cos u) sin u ]

= (b + a cos u)(− a cos u cos v , −a cos u sin v , −a sin u) 

 

Also 

 r11 = (−acos vcos u, −acos usin v, −asin u),

r12 = (asin ⋅ usin v, −asin ucos v, 0),

r22 = [−(b + acos u)cos v, −(b + acos u)sin v, 0]
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Now,  

E = r1
2 = a2, F = r1 ⋅ r2 = 0, 

G = r2
2 = (b + a cos u)2, 

H2 = EG − F2 = a2(b + acos u)2, 
Again, 

 𝐍 =
r1 × 𝐫1

H

=
(b + acos u)(−acos ucos v, −acos usin v, asin u)

H

∴ L = N ⋅ r11 =
a2(b + acos u)

H
=

a2(b + acos u)

a(b + acos u)
= a

M = N ⋅ r12 = u; N = N ⋅ r22 = (b + acos u)cos u.

 

Now Gaussian curvature 

K =
LN − M2

EG − F2
=

a(b + acos u)cos u

a2(b + acos u)2
=

cos u

a(b + acos u)
 

Total curvature of the whole surface 

 = ∫  KdS, integrated over the whole surface S

 = ∫  
2π

v=0

 ∫  
2π

u=0

 KHdudv, since dS = Hdudv

 = ∫  
2π

v=0

 ∫  
2π

u=0

 
cos u

a(b + acos u)
a(b + acos u)dudv

 = ∫  
2π

0

 ∫  
2π

0

 cos ududv = 0.

 

Example 9. Prove that the cone κxy = z ∣ √[(x2 + z2)] + √[(y2 + z2)] passes through 

a line curvature of the paraboloid xy = az. 

 

Solution. From the paraboloid z =
xy

a
, we have 

p =
∂z

∂x
=

y

a
, q =

∂z

∂y
=

x

a
, r = 0, s =

1

a
, t = 0 

The lines of curvature are given by 

|
dy2 −dxdy dx2

 1 + p2 pq 1 + q2

r s t

 | = 0. 

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. Equation of Euler’s equation κn = κacos2 ψ + κb sin2 ψ . 
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Problem 2. The sum of the normal curvature in two orthogonal directions is equal  

                     to the sum of the principal curvatures at that point. 

Problem 3. A necessary and sufficient condition that a curve on a surface be a   

                    line of curvature is that the surface normals along the curve form a  

                    developable. 

 

 

 

10.7 SUMMARY 

 

i. MONGE’S THEOREM: A necessary and sufficient condition that a curve on a 

surface be a line of curvature is that the surface normals along the curve form a 

developable. 

Euler’s Theorem:  The normal curvature κn at a point on a surface is given in terms of 

principal curvatures κa and κb by the formula 

κn = κacos2 ψ + κbsin2 ψ 

(known as Euler's formula) where κa and κb are the principal curvatures and ψ is the 

angle at which the direction (du, dv) of the normal section made with the principal 

direction dv = 0 

 

10.8 GLOSSARY 

  

 (i)  Derivatives  

 (ii)  Determinant 

(iii)  Vector   

 

 

10.9 REFERENCES AND SUGGESTED READINGS 

  

1. An introduction to Riemannian Geometry and the Tensor calculus by C.E.  

       Weatherburn “Cambridge University Press.” 

2.       Matrices and Tensors in physics by A.W. Joshi “Wiley Eastern Limited”. 

3.        Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”. 
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4.        Differential Geometry by Gupta, Malik and Pundir “Pragati Edition’’. 

 

10.10 TERMINAL QUESTIONS 

 

1. States and prove Euler’s theorem. 

2. States and Drive Rodrigue’s formula. 

3. States and prove Monge’s theorem. 

 

10.11 ANSWERS 

 

CYQ 1. True  

CYQ 2. True 

CYQ 3. True 
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11.2 Objectives 

11.3 n – Dimensional Space 

11.4      Einstein Summation Convention 

11.5      Dummy Suffix 

11.6      Real Suffix 

11.7      Einstein’s Summation Convention 

11.8      Kronecker delta 

11.9      Transformation of co-ordinates 

11.10 Summary 

11.11 Glossary 

11.12 References and Suggested Readings 

11.13 Terminal questions 

11.14    Answers 

 

 

 

 

 

 

 

 

 

 

 



GEOMETRY  MAT 611 

  

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY 

141 

 

11.1 INTRODUCTION 

In geometry, Two Dimensional Space: In two dimensional space the coordinates of a 

point are given by the doublets of the form (x, y), where x, y are two numbers. 

Three Dimensional Space: In three dimensional space the coordinates of a point are 

given by the triplets of the form (x, y, z), where x, y, z are three numbers. 

Four Dimensional Space: In four dimensional space the coordinates of a point are given 

by the four touples of the form (x, y, z, u), where x, y, z, u are four numbers. 

 

11.2 OBJECTIVES 

 After studying this unit Learner will be able to   

i. Understand the concept of n- dimensional space. 

ii. Define a subspace. 

iii. Write superscript and subscript. 

iv. Understand the Einstein Summation Convention. 

 

11.3 n – DIMENSIONAL SPACE 

 

 Consider an ordered set of n real variables  

                               (𝑥1, 𝑥2, … , 𝑥𝑖 , … 𝑥𝑛)    

These variables 𝑥1, 𝑥2, … , 𝑥𝑖 , … 𝑥𝑛 are called coordinates. The space generated by all 

points corresponding to different values of the coordinates is called n- dimensional space 

and is denoted by 𝑉𝑛. Here 1, 2, … 𝑛 are not the powers of x but are the labels only. The 

suffix 𝑖 in the coordinate 𝑥𝑖 does not have the character of power indices. Usually powers 

will be denoted by brackets e.g., (𝑥𝑖)
3
 means the cube of 𝑥𝑖. 
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Note: 

  A subspace 𝑉𝑚(𝑚 < 𝑛) of 𝑉𝑛  is defined as the collection of points which satisfy the n-

equations  𝑥𝑖 = 𝑥𝑖(𝑢1, 𝑢2, … , 𝑢𝑚),       (i = 1,2, … , n).          

 The variables 𝑢1, 𝑢2, … , 𝑢𝑚 are the coordinates of  𝑉𝑚 . The suffixes 1,2, … , 𝑛   serve 

as labels only and do not possess any significance as power indices. 

 A curve in 𝑉𝑛  is defined as the collection of points which satisfy the n-equations  

            𝑥𝑖 = 𝑥𝑖(u), (i = 1,2, … , n)  u being a parameter and 𝑥𝑖(u) denotes a function of u.  

 Superscript and Subscript:  The suffixes 𝑖 and 𝑗 in 𝐵𝑗
𝑖 are called superscript and 

subscript respectively. The upper position always denotes the superscript and the lower 

position denotes subscript. 

 

11.4 EINSTEIN SUMMATION CONVENTION 

We know that the expression                                                                                                                                              

                                        𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛   

is represented by  ∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=1 . 

Dropping the sigma sign and writing the sum   ∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=1   as 𝑎𝑖𝑥
𝑖  is called the summation 

convention. 

Thus summation convention means if a suffix occurs twice in a term, once in the lower 

position and once in the upper position, then that suffix implies sum over defined range. 

If the range is not given, then we assume that the range is from 1 to 𝑛. 

Example 1: Write the following by using summation convention 

                          𝐴1
𝑘𝐵1 + 𝐴2

𝑘𝐵2 + ⋯ + 𝐴𝑛
𝑘 𝐵𝑛  

Solution:  By using summation convention we can write 

                           𝐴1
𝑘𝐵1 + 𝐴2

𝑘𝐵2 + ⋯ + 𝐴𝑛
𝑘 𝐵𝑛 = 𝐴𝑖

𝑘𝐵𝑖  

Example 2: Write the following by using summation convention 

                          𝑔21𝑔11 + 𝑔22𝑔21 + 𝑔23𝑔31 + 𝑔24𝑔41 + 𝑔25𝑔51 + 𝑔26𝑔61 + 𝑔27𝑔71 

Solution:  By using summation convention, we can write 

         𝑔21𝑔11 + 𝑔22𝑔21 + 𝑔23𝑔31 + 𝑔24𝑔41 + 𝑔25𝑔51 + 𝑔26𝑔61 + 𝑔27𝑔71 =

𝑔2𝑖𝑔𝑖1, 𝑛 = 7  

Example 3:  Write the terms in the following indicated sums  

                          𝐴𝑖
𝑘𝐵𝑖, 𝑛 = 5  
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Solution:  Here the index i is repeated and n= 5 therefore i takes the values 1 to 5 

                           𝐴𝑖
𝑘𝐵𝑖 = ∑ 𝐴𝑖

𝑘𝐵𝑖5
𝑖=1 = 𝐴1

𝑘𝐵1 + 𝐴2
𝑘𝐵2 + 𝐴3

𝑘𝐵3 + 𝐴4
𝑘𝐵4 + 𝐴5

𝑘𝐵5  

EXAMPLE 4: Write the terms in the following indicated sums  

                            𝑎𝑖𝑥
𝑖𝑥3  

SOLUTION: Here the index  𝑖 is repeated therefore the sum is over the index 𝑖. Hence 

                          𝑎𝑖𝑥
𝑖𝑥3 = ∑ 𝑎𝑖𝑥

𝑖𝑥3 = 𝑎1𝑥1𝑥3 + 𝑎2𝑥2𝑥3 + ⋯ + 𝑎𝑛𝑥𝑛𝑥3𝑛
𝑖=1   . 

 

11.5 DUMMY SUFFIX 

 A suffix which occurs twice in a term, once in the upper position and once in the lower 

position, is called dummy suffix. For example q is a dummy suffix in ApqAqr. Umbral 

suffix and dextral index are the other names for dummy suffix. 

Theorem: To show that a dummy suffix can be replaced by another dummy suffix not 

used in that term. 

Proof: Let us take ai
μ

xi in which i is a dummy suffix. Evidently 

                                  ai
μ

xi = a1
μ

x1 + a2
μ

x2 + ⋯ + an
μ

xn … … … (1)  

                                  aj
μ

xj = a1
μ

x1 + a2
μ

x2 + ⋯ + an
μ

xn … … … (2)    

As R.H.S. of both the equations are same, we can say that ai
μ

xi = aj
μ

xj which proves that 

a dummy suffix can be replaced by another dummy suffix not used in that term.  

Similarly, it can be proved that two or more than two dummy suffixes can also be 

interchanged i.e., aαβ
∂xα

∂x′i

∂xβ

∂x′j = aβα
∂xβ

∂x′i

∂xα

∂x′j . 

 

11.6 REAL SUFFIX 

A suffix which is not repeated is called a real or free suffix. It may be in superscript or in 

subscript also. For example α is a real suffix in ai
αxi . A real suffix can not be replaced 

by another real suffix. Since ai
αxi ≠ ai

β
xi .   

Kronecker delta:- It is denoted by δj
i and is defined as            

                                                                             δj
i = {

0
1

           if i≠j
if i=j

          

Some Properties of Kronecker delta 

(i) δi
i = N 

                Here i is a dummy suffix. So by summation convention, 

                                                                    δi
i = δ1

1 + δ2
2 + ⋯ + δn

n 

                                                                          = 1 + 1 + ⋯ + 1 = n  
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Remark: Due to this property we use the statement δj
i = 1, if i = j    

instead of saying δi
i = 1. 

(ii) δj
iAjk = Aik  

Here j is a dummy suffix. So by summation convention, 

δj
iAjk = δ1

i A1k + δ2
i A2k + ⋯ + δi

iAik + ⋯ δn
i Ank    

           = 0 + 0 + ⋯ + 1. Aik + ⋯ 0 

                       = Aik    

   (iii)       If x1, x2, … , xN  be N independent variables, Then 

                           
∂xi

∂xj = δj
i    

Clearly, xi and xj  are independent variables when i ≠ j  and dependent when  i = j.   

So     
∂xi

∂xj = {
0
1

           if i≠j
if i=j

   

Hence,     
∂xi

∂xj = δj
i. 

 

Example 1: Prove that δj   
i δk

j
= δk

i . 

Solution:  Here j is a dummy suffix. So  

            δj   
i δk

j
= δ1   

i δk
1 + δ2   

i δk
2 + ⋯ + δi   

i δk
i … + δn   

i δk
n 

            δj   
i δk

j
= 0 + 0 + ⋯ δk

i + ⋯ + 0 = δk
i  

                       = δk
i    

Example 2: Prove that δj   
i Am

jl
= Am

il . 

Solution:  Here j is a dummy suffix. So  

                            δj   
i Am

jl
= δ1   

i Am
1l + δ2   

i Am
2l + ⋯ + δi   

i Am
il … + δn   

i Am
nl   

                         

                    δj   
i Am

jl
= 0 + 0 + ⋯ + Am

il … + 0   

                                = Am
il  

 

11.7 EINSTEIN’S SUMMATION CONVENTION 

 Let n quantities be denoted by 1 2 3 2, , ,x x x x  where the upper indices (subscripts) are 

in dentification labels and do not indicate powers. Consider the expression 

1 2 3
1 2 3

1

n
i n

i n
i

a x a x a x a x a x

      

 These expressions will be written by introducing the summation convention of 

Einstein; where a index/suffice occurs twice in a term, once in the lower position and 

once in the upper position; a summation implied, the range of the summation being 

known from the context. 
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 Example 1. Write the following using the summation convention. 
2 1 2 3 2 3 2 2

1 22 33( ) ( ) ( ) ( )n
nnds g dx g dx g dx g dx     

 Solution: Given expression can be expressed as 
2 1 1 2 2 3 33

11 22 33
n n

nnds g dx dx g dx dx g dx dx g dx dx     

 Here a index occurs twice in each term, once in the lower position and once in the upper 

position, therefore summation convention in applicable as 

          
2 i j

ijds g dx dx    ( Riemannian metric) 

 

 Example 2.  Write value of a determinant using summation convention. 

 Solution : Let A be a matrix of order n and let 
i
ja  be its thj  element of thi  row i.e., 

symbols I and j denoted the row and column to which the element belongs. Let 
j

iA  is 

the cofactor of the element 
i
ja  in the determinant a = det (A). 

 It is well-know that the sum of the products of the elements of the thi  row (or column) 

by the cofactors of the corresponding elements of the thj  row (column) is equal to 

determinant if i j  and to zero if i j  i.e., 

1 2 3
1 2 3

det ( ) if

0 if

j i i i n i k
j j j n j k j

A i j
a A a a a A a A a A

i j


      

 

 

 Example 3. Write matrix multiplication of two matrices using summation convention. 

 Solution: Let A and B are two matrices, compatible for matrix multiplication. Let 
i
ja  

and 
j

kb  are th( , )i j  and th( , )j k  element of A and B respectively where , ,i j k  take 

integral value from I to m, n, p respectively. Then 

1
mxp

,
n

i j i j i
j k j k k

j
AB a b a b c



 
   
 

 i.e., AB = C 

 

11.8 KRONECKER DELTA 

 The symbol 
i
j  introduced by German Mathematician L. Kronecker, is called 

Kronecker delta, which is defined 

1 ;

0 ;

ij i
ij j

i j

i j
  


   

       

 

 Properties: (i) If 2, , nx x x  are independent co-ordinates then by differential 

calculus, we have 

0,
i

j

x
i j

x


 


 and 1,

i

j

x
i j

x


 


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 Thus        
i

i
jj

x

x






 

 By Chain rule, we have 
i i k

j k j

x x x

x x x

  


  
 

i i k
j k j  

   
 

 (ii)   
1 2
1 2

i n
i n       

        1 1 1    

   
i
i n   

 (iii)    
i

ij k ika a    and  
ij k ik

ja a   

 Since   
1

n
l j

ij k ij k
j

a a 


   

             
1 2

1 2
k n

i k i k ik k iA ka a a a        

             1 20 0 1 . 0i i ik in ika a a a a      

 Therefore,   
j

ij k ika a   

 Similarly,   2
1 2

1

n
ij j ij k il k i k in k

k j n
j

a a a a a    


      

              
1 2. 0 . 0 .1 . 0i i ik ina a a a a      

    
ij k ik

ja a   

 (iv) If ija  are constant and ij jia a  then 

( ) 2ij i j ik ik
a x x a x

x





   and    

2 ( )
2

ij i j

k l

a x x

x x




 
 

 Since      
( )

( )
i j

ij i j ij

k k

x x
a x x a

x x




 
 

      

j i
ij i j

k k

x x
a x x

x x

 
  

  
 

      

( )j i
ij i k j ka x x    

      

( ) ( )j l
ij k i ij k ja x a x    

      
ik i kj ja x a x   

      
ik i jk ja x a x   

       

( ) 2ij i j ik i

k

a x x a x
x





  

j  dummy index 

 and again differentiation gives 
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2 ( )
( )

ij i j

ij l j

k l l k

x a x x
a x x

x x x x

   
  

    
 

      

(2 ) 2 i
ik i ik

l l

x
a x a

x x


 
 

 

          

2( )
2 2

ij i j i
ik l lk

k l

a x x
a a

x x



 

 
 

11.9 TRANSFORMATION OF CO-ORDINATES 
  

In a 2-dimensional Euclidean space 2E , let 1 2( , )x x  and 1 2( , )y y  are coordinate of two 

points P and Q respectively. Then coordinates of vector PQ are given by 
1 1 2 2( , )y x y x  . 

P( , )x x1 2

Q( , )y y1 2

O
X1

X2

 
Fig. 1 

 

 Consider a simple transformation i.e., shifting origin O to O  whose coordinates are 

1 2( , )b b  with reference to old coordinate system. Let 
2

.o x o x    are axes parallel to 

1 2,ox ox  respectively. Then transformation is given by 

 

 

 

P( , )x x1 2

O
X1

X2

O

Q( , )x x1 2

X2

X1

P( , )b b1 2

 
Fig. 2 

 

     ; 1, 2
i i ix x b i         

 … (1) 

and coordinates of points P and Q with reference to new coordinate system are 
1 2( , )P x x  , 1 2( , )Q y y   where  

    
1 1 2 2 1 1 2 2 2, ; ,lx x b x b y b y y b             

 … (2) 
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 Therefore coordinate of vector PQ  with reference to new coordinate system are given 

by 1 1 2 2 1 1 2 2( , ) ( , )y x y x y x y x         

 Consider other form of transformation i.e., rotation of coordinate axes through an angle 

 ; Which transform the coordinates by the rule 

O
X

1

X2

X2

X
1

Q

P





 
Fig. 3 

 

     
1 1 2 2 1 2cos sin , sin cosx x x x x x           

 …. (3) 

 Thus  1 2 1 2 1 2( , ) ( cos sin , sin cos )P x x x x x x          

             
1 2 1 2 1 2( , ) ( cos sin , sin cos )Q y y y y y y          

 And coordinates of PQ  are given 

  
1 1 2 2 1 1 2 2( ) cos ( ) sin , ( ) sin ( ) cos )y x y x y x y x          PQ  

 … (4) 

 In view of above discussion we observe the following  facts : 

 (i) Magnitude of PQ  or distance between P and Qin invariant in both the case i.e., 

1 1 2 2 2| | ( ) ( )y x y x       PQ  Euclidean distance. 

 (ii) Both the transformation are reversible i.e., 

 Shifting of origin : 1 1, 2i ix x b i     

 Rotation of axes : 1 1 2 2 1 2cos sin , sin cosx x x x x x           

 (Solving Eqs. (1) and (3) results can easily be verified). 

 The existence of reversible transformation is not a coincidence instead it is based on 

well-known theory i.e., transformation is orthogonal and it can easily be verified from 

Eqs. (3) as 

1 1

2 2

cos sin

sin cos

x x

x x

 

 





    
    

       

 with det 
cos sin

( ) 1
sin cos

A
 

 
 


 

or      
cos sin cos sin 1 0

sin cos sin cos 0

TAA I
     

            

   

   
 

 Transformation given by (3) can be expressed 

       
1 11 1 12 2;x a x x x     

      
2 21 1 22 2x a x x x    

where 11 12 21 22cos , sin , sin , cosa a a a         
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 Both the above transformation can be combined as 
1 11 1 12 2 1x a x a x b     

2 21 1 22 2 2x a x a x b     

with      

11 12

21 22
1 0

a a

a a
   

 We can writes it as 

    

2

1
; 1, 2i ij j i

j
x a x b i


     

or         i ij j ix a x b     (by summation convention) … (6) 

 The new co-ordinate or PQ  will be 1 1 2 2( , )y x y x      

 and we write 
2 2

1

1 1
( ) ( )i i ij j i ij j i

j j
z y x a y b a x b  

 
         

              

2 2

1 1
( )i ij j j ij j

j j
z a y x a z

 
      

              
i ij jz a z   (By summation convention) 

or      
i

i j

j

x
z z

x


 

      

(From (6))         … (7) 

 According to Klein, it is law of change of transformation which the coordinates obey. 

Thus a vector in 2E  can be regarded as an object which is determined by a set of 

components of obeying the law given by (7). 

 Let us consider two different n-dimensional frames of reference and let 1 2( , , ) nx x x  

and 1 2 3( , , , )    nx x x x  be coordinate of a point with reference to these frames. These 

two systems have the following n-independent relations. 

     

1 1 1 2 3

2 2 1 2 3

1 2 3

( , , , )

( , , , , )

( , , , )





 


  


  

n

n

n n n

x g x x x x

x g x x x x

x g x x x x
   

                                                                                                               

… (8) 

where 1 2, , ng g g  are the single-value continuous function of 1 2 3, ,  nx x x x  and have 

continuous partial derivatives upto desire order. The necessary and sufficient condition 

for reversables transformation is automatically fulfilled by choice of n -independent 

relations given by (8). This condition is also expressed in terms of “functional 

determinant”, J formed by the partial derivatives 




i

j

x

x
 as 

X
1

X2

O ( , )b b1 21 

X2

X1

P

Q

 
Fig .5 
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1 1 1

1 2 2

2 2 2
1 2

1 2
1 2

1 2

, ,

( , , ) , ,
0

( , , )

, ,

n

n
n

n n n

n

x x x

x x x

x x x
x x x

J x x x
x x x

x x x

x x x

  

  
  

  

  


  

  
  

    
 

  


  

 

 Under this condition, equation (8) can be solved for ix  as 

 
1 2( , , ); 1, 2, 3     i i nx h x x x i n      … (9) 

 The class of coordinate transformation satisfying these properties as “admissible 

transformations”. 

 Spherical Polar-Coordinates 

 Let P be point in space and let OP = r. The lines 

OP, OZ, OX are regarded as radial, polar and 

equatorial axes respectively, where plane XOY is 

called equatorial plane. 

 Let OQ is projection of OP an equatorial plane. 

Suppose   is angle between OP and polar axis and 

  is angle between OQ and equatorial angle. This 

three variable , ,r    are related to point P and are 

called radial, polar and azimuthual coordinates 

of point P. 

 Let, L, M, N are points on OX, OY, OZ axes 

respectively such that they are foot of 

perpendicular drawn from Qand Prespectively.If 

(x, y, z) are coordinates of P in rectangular 

coordinates system then 

   , ,  x OL y OM z ON         … (1) 

 

 If OQ   be projections of OP , then 

cos ( )OQ OP POQ     i.e., cos sin
2

r r
 

       
 

 i.e.,            sinr    

 The geometrical correspondence between coordinate system with common origin is 

   

cos sin cos

cos sin sin
2

cos cos

x OQ r

y OQ r

z OP r

     


  
       


    

    … (2) 

O

Z

QL

X

Y

P ( , 
, 

)

r
 

M

N


^


^

r̂





 
Fig .5 
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 In vector notation,  | |r r r  

 i.e.,    sin cos sin sin cosr i j k         

 Similarly,    ˆ , cos cos cos sin sin
2

r i j k
 

              
 

     

, sin cos
2 2

r i j
  

            
 

 The range of , ,r    is 0 , 0 , 0 2r            

 Remarks: (1) r  is along OP  i.e., as r  increases. 

  (2) ̂  is perpendicular to OP i.e., as   increases. 

  (3) ̂  is in a plane parallel to the equatorial plane. 

  (4) r  Constant, represents the surface of sphere. 

  (5)   Constant, represents the surface of cone with vertex at the origin and 

polar axis as its axis. 

  (6)   Constant, represents a half-plane bounded on one side by the entire polar  

axis. 

 Cylindrical Coordinate 

 In cylindrical coordinate system, z-axis and x-

axis i.e., polar and equatorial axes are kept same as 

in spherical coordinate system. The third axis is 

take along equatorial projection OP i.e., along OQ 

and is called cylindrical radial coordinate axis such 

that OQ   . Then cylindrical polar coordinates 

are ( , , )z   with 

  cos , sin ,x y z z            … (1) 

In vector notation, 

  ˆˆ ˆˆ cos sinr zk     i j  

  ˆ       i.e.,   ˆ ˆˆ cos sin    i j  

  ˆ ˆsin cosi j        as  ˆ ˆ
2

 
      

  … (2) 

    ˆẑ k  

 The range of 0, 0 2 ; z           

    Remarks:  

(1)   is along OQ  i.e., as   increases  

(2)  is along perpendicular to OQ  as   increases and lies in plane parallel to 

equitorial plane. 

(3) ẑ is along z-axis. 

(4)    constant, represents the surface of infinite cylinder. 

O

Z

QL

X

Y
M

N


^

( )
^




r

P

Z
^




^

^

^(  )

(Polar axis)

(Cylinderical
axis)(equitorial

axis)  
Fig .6 
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(5)    constant, represents vertical plane. 

(6) z constant, represents horizontal plane. 

 

            Note : (1) The distinction between the terms spherical polar and cylindrical polar is due to   

                               the fact that r constant represents the surface of sphere but   constant   

                               represents the surface of cylinder infinite. 

  (2) Both are polar due to symmetry about the axes of z . 

    (3) The plane polar coordinate system is a special case of both the spherical and  

                            cylindrical polar coordinates, i.e., ( , )   

 

 Example 1. Find the cylindrical coordinate system in terms of the rectangular Cartesian  

                       coordinate system. 

 Solution: Let 1 2 3( , , )x x x and 1 2 3( , , )y y y be coordinates of a point in certesian and 

cylindrical coordinates. Then 

              
1 1 2 2 1 2 3 3cos , sin  x y y x y y x y      

   … (1) 

and    

1 1 1

1 2 3
2

2 2 2
2 1 2 1

1 2 3

3 3 3

1 2 3

cos sin 0

sin cos 0 0

0 0 1

x x x

y y y
y y y

x x x
J y y y y

y y y

x x x

y y y

  

  


  
   

  

  

  

 

 If 1 0y  then 

   

2
1 2 2 2 1 2 2 1

1
( ) ( ) ( ) ; tan  

    
 

x
x x y y

x
 

and     
2

1 1 2 2 2 1/2 2 1 3 3

1
[( ) ( ) ] , tan ,  

    
 

x
y x x y y x

x
           

… (2) 

 Example 2. Find the spherical coordinate system in terms of the rectangular cartesian 

coordinate system. 

 Solution : Let 1 2 3( , , )x x x  and 1 2 3( , , )y y y  be coordinates of a point in rectangular 

cartesian and spherical coordinates respectively. Then 

 
1 1 2 3 2 1 2 3 3 1 2sin cos , sin sin , cos  x y y y x y y y x y y  … (1) 

and   

2 3 1 2 3 1 2 3

2 3 1 2 3 1 2 3

2 1

sin cos cos cos sin sin

sin sin cos sin sin cos

cos 0







y y y y y y y y

J y y y y y y y y

y y

 

       

21 2( ) sin ( ) 0 y y as 
2

1 0, 0  y y  
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 Therefore 1 2 2 2 3 2 1 2( ) ( ) ( ) ( )  x x x y , 

    

3
2 1

1 2 2 2 3 2
cos

( ) ( ) ( )


 
 
   

x
y

x x x
 

    

2
3 1

1
tan  

  
 

x
y

x
 

 Example 3. If 
6 6

, ,1
2 2

 
 
 

 are rectangular coordinates then find the spherical and 

cylindrical coordinates. 

 Solution: Here 1 2 36 6
, , 1

2 2
  x x x . Therefore 

 (I)          
1 1 2 2 2 3 2 36 36

( ) ( ) ( ) 1 37
2 2

y x x x        

           2 1 3 1

6

1 2cos , tan
6 437

2

 

 
  

    
   

 
 


y y  

 Thus, 1 2 3 1 1
( , , ) 37, cos ,

37 4

  
   

  


y y y  

 (I)        
1 1 2 2 2 36 36

( ) ( ) 6
2 2

    y x x  

         

2
2 1 3 3

1
tan , 1

4

  
    

 

x
y y x

x
 

 Thus 1 2 3( , , ) 6, ,1
4

 
  
 


y y y

 
 

 Example 4. If 4, ,1
3

 
 
 


 is cylindrical coordinates then find cartesian coordinates and 

spherical coordinates. 

 Solution: Here, 1 2 34, , 1
3

  


y y y . Therefore, 

 (I) Let 1 2 3( , , )x x x  be Cartesian coordinates. Then 

    
1 1 2 2 1 2 3 3cos , sin ,  x y y x y y x y  

    

1 2 34 cos 2, 4 sin 2 3, 1
3 3

   
       

   

 
x x x  

 i.e.,    1 2 3( , , ) (2, 2 3,1)x x x  
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 (II) Let 1 2 3
2 2( , , )z z z  be spherical polar coordinates of 1 2 3( , , ) (2, 2 3,1)x x x . Then 

    
1 1 2 2 2 3 2( ) ( ) ( ) 4 12 1 17      z x x x  

    

3
2 1 1

1 2 2 2 3 2

1
cos cos

17( ) ( ) ( )

 
   
         

x
z

x x x
 

    

2
3 1 1

1

2 3
tan tan

2 3

 
  

      
   

x
z

x
 

 Thus  
1 2 3 1 1

( , , ) 17, cos ,
317

  
   

  


z z z

. 

 

11.10 SUMMARY 

 

1. The symbol 
i
j  introduced by German Mathematician L. Kronecker, is called 

Kronecker delta, which is defined 

1 ;

0 ;

ij i
ij j

i j

i j
  


   

       

2. Superscript and Subscript:  The suffixes 𝑖 and 𝑗 in 𝐵𝑗
𝑖 are called superscript 

and subscript respectively. The upper position always denotes the superscript 

and the lower position denotes subscript. 

 

 

11.11 GLOSSARY 

  

 (i)  Derivatives  

 (ii)  Determinant 

(iii)  Vector   
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v. Tensor Calculus and Riemannian geometry , J. K. Goyal, K. P. Gupta,1999, Pragati 

Prakashan Meerut. 

vi. Tensors and Differential geometry, Dr. P. P. Gupta, Dr. H. D. Pandey, Prof. G. S. Malik, 

1997 Pragati Prakashan Meerut. 

11.13 TERMINAL QUESTIONS 

 (TQ-1) Write each of the following by using summation convention   

(i) 𝑎1𝑥1𝑥3 + 𝑎2𝑥2𝑥3 + ⋯ + 𝑎𝑛𝑥𝑛𝑥3 

(ii) 
𝑑𝑥̅𝑘

𝑑𝑡
=

𝜕𝑥̅𝑘

𝜕𝑥1 𝑑𝑥1 +
𝜕𝑥̅𝑘

𝜕𝑥2 𝑑𝑥2 +
𝜕𝑥̅𝑘

𝜕𝑥3 𝑑𝑥3 

(iii) 𝑑𝜃 =
𝜕𝜃

𝜕𝑥1 𝑑𝑥1 +
𝜕𝜃

𝜕𝑥2 𝑑𝑥2+. . . +
𝜕𝜃

𝜕𝑥𝑛 𝑑𝑥𝑛 

 (TQ-2) Write the terms in each of the following indicated sums   

(i) 𝑎𝑖𝑗𝑥𝑗 

(ii) 
𝜕(√𝑔𝐴𝑖)

𝜕𝑥𝑖  

11.14 ANSWERS 

(TQ-1(i))  𝑎𝑖𝑥
𝑖𝑥3                                             

 (TQ-1(ii)) 
𝑑𝑥̅𝑘

𝑑𝑡
=

𝜕𝑥̅𝑘

𝜕𝑥𝑝 𝑑𝑥𝑝, 𝑝 = 1,2,3 𝑜𝑟 𝑛 = 3   

(TQ-1(iii)) 𝑑𝜃 =
𝜕𝜃

𝜕𝑥𝑖 𝑑𝑥𝑖    

(TQ-2(i))  𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 + ⋯ 𝑎𝑖𝑛𝑥𝑛 

(TQ-2(ii))  
𝜕(√𝑔𝐴1)

𝜕𝑥1
+

𝜕(√𝑔𝐴2)

𝜕𝑥2
+ ⋯

𝜕(√𝑔𝐴𝑛)

𝜕𝑥𝑛
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UNIT 12:  CHRISTOFFEL SYMBOLS OR  

                   CHRISTOFFEL BRACKETS 
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12.1 INTRODUCTION 

In mathematics and physics, the Christoffel symbols are an array of 

numbers describing a metric connection. The metric connection is a specialization 

of the affine connection to surfaces or other manifolds endowed with a metric, 

allowing distances to be measured on that surface. The Christoffel symbols can be 

derived from the vanishing of the covariant derivative of the metric tensor gik: As 

a shorthand notation, the nabla symbol and the partial derivative symbols are 

frequently dropped, and instead a semicolon and a comma are used to set off the 

index that is being used for the derivative. 

 

12.2 OBJECTIVES 

 After studying this unit Learner will be able to   

i.      Understand the relationship between first and second kind Christoffel symbols. 

ii. Understand the covariant derivatives of vector are tensor. 

iii. Understand the Christoffel symbol are not tensors. 

iv. Understand the tensor form of differential operators. 

v. Understand the Ricci Tensor and Ricci theorem. 

 

12.3 CONSTANT VECTOR FIELD 
  

 Let a vector field A  is constant in cartesian coordinates as A . Transforming the 

curvilinear system ix  to cartesian ix , we get 

     
.

i
i j

j

x
A A

x


 

       

… (1) 

 The ( )C C t  be curve in the space and observe the change in iA , when we move on 

the curve by an infinitesimally small step dt as 

     

2i i k i j
j

j k j

dA x x x A
A

dt dt tx x x

     
 

                  
… (2) 

 Since 
iA
 is constant in Cartesian coordinates therefore 0

idA

dt



  and Eq. (2) becomes 
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2

0
i k i j

j

j k j

x x x A
A

dt dtx x x

    
 

  
                        … (3) 

 Which shows that a vector field is expressed in curvilinear coordinates. 

 

 

12.4 CHRISTOFFEL SYMBOLS 

 Multiplying equation (3) by 
i

rp

p

x
g

x




 we get 

    

2

0
i i k i i j

rp j rp

p j k p j

x x x x x dA
g A g

dt dtx x x x x

       
 

      

    
2

0
i i k j

rp j rp
pjp j k

x x x dA
g A g g

t dtx x x

   
 

          
ij i j

r r
g

x x

 

   

    

2

0
i i k j

rp j r
jp j k

x x x dA
g A

t dtx x x

   
  

    

    

2

0
i i k r

rp j

p j k

x x x dA
g A

t dtx x x

    
        

    
[ , , ] 0

k r
rp jx dA

g i j p A
t dt


 

              … (4) 

 Where [jk, p] is called Chrisloffel symbol of first kind. 

 and   
2

[ , ]
i i

p j k

x x
jk p

x x x

  

    

 Find partial derivatives of the metric tensor ijg  w.r.t. to all three coordinates as 

 Since     
t j

ij i j

x x
g

x x

 

   

 therefore,   
2 2t l l l

ij

k i j k i k j

g x x x x

x x x x x x x

    
 

                           

 … (5) 

    

2 2l l l l
jk

i j k i j i k

g x x x x

x x x x x x x

    
 

      
                     

 … (6) 

    

2 2l l l l
ki

j k i j k j i

g x x x x

x x x x x x x

    
 

      
                       … (7)

 

 Adding (6) and (7) then subtracting (5) we get 

  

2

2
l l

jk ijik

i j k k i j

g gg x x

x x x x x x

    
   

        

 Thus,
   

2 1
[ , ]

2

l l
jk ijik

k i j i j k

g ggx x
ij k

x x x x x x

   
    
                  

… (8)
 

 It is event that in rectangular Cartesian coordinates 
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     ij ijg   and 0
ij ij

k k

g

x x

 
 

   
 Therefore [ij, k] is always zero and equation (4) reduces to 

0
rdA

dt


 

 It is expected result i.e., rA  is constant Cartesian coordiantes.
 

 Introduing [ , ]lkl
g ij k

ij

 
 

 
, know as the Christoffel symbol of second kind, the 

equation (4) can be simplified to
 

     

0
r k

j
rdA x

A
jkdt dt

  
  
 

                       … (9)
 

 or     0
r k k

j

k

rA dx dx
A

jkdt dtx

 
  

    

     

0
r k

j

k

rA dx
A

jk dtx

  
   

   
               … (10)

 

 Since 0
kdx

dt
  along a general curve

 
( )c t  therefore equation (10) can be written as

 

     

0
r

j

k

rdA
A

jkdx

 
  
 

                  … (11)
 

 This is the differential equation of constant vector field in any Riemannian space. In 

case of covariant vector 

     

0r
jk

jdA
A

rkx

 
  

  
                      … (12)

 

 Finally, the Christoffel symbols are defined as 

    

1
[ , ]

2

[ , ]

jk ijik

i j k

k kl
ik

g gg
ij k

x x x

k
g ij l

ij

   
    

    


  
    

  

 

 
and equations for parallel transmission are 

     
0

i
k k
ikj

A
A

x


  

  

     
0

i
k k
ikj

A
A

x


  

   

 Theorem: The Christoffel is symbol
 
[ , ]ij k  and

 

k

ij

 
 
 

 are symmetric with respect to the   

                     indices i and j. 
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 Proof: The christoffel symbol of first kind is 

    

1
[ , ]

2

jk ijik

j i
k

g gg
ij k

xx x

  
   

  
                   … (1)

 

 Interchanging i and j we get 

    

1
[ , ]

2

jk jiik

i j k

g gg
ij k

x x x

  
   

     

             

1

2

jk ijik

j i k

g gg

x x x

  
   

            

as    ij jig g
 

    [ , ] [ , ]ij k ji k                    … (2)
  The Christoffel symbol of second kind is 

      

[ , ]khk
g ij h

ij

 
 

 
                  … (3)

 

 Interchanging i and j 

     

[ , ] [ , ]kh kh
k

g ji h g ij h
ji

 
  

 
                 (From (2))

 

     

k k

ji ij

   
   

   
                        … (4)

 

 Theorem: Prove that 

 (i)

 

[ , ] km

k
ij m g

ij

 
  

 
 

 (ii) [ , ] [ , ]
ij

k

g
ik j jk i

x


 


 

 

(iii)
ij jl im

k

g i j
g g

lk mkx

    
     

    
 

 Proof: (i) Multiplying Christoffel symbol of second by mkg  we get 

    

[ , ]kl
mk km

k
g g g ij l

ij

 
 

 
 

        
[ , ]l

m ij l   

    

[ , ]km

k
g ij m

ij

 
 

 
 

 (ii) By def. of Chrestoffel symbol of second kind, we directly obtain 

       

1
[ , ] [ , ]

2

ij ji ij

k k
k

g g g
ij k jk l

xx x

   
    

           
ji jig g  

 (iii) Differentiation of 
ij i

lj lg g    w.r.t. kx  gives 
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0
ij

ij lk
ljk k

g g
g g

g x

 
 

 
 

 Multiplying by lmg  we get 

    
0

ij
ljlm ij lm

ljk k

x g
g g g g

x x

 
 

 
 

    
0

ij
ljlm ij m

jk k

g g
g g

x x

 
  

 
 

    

0
im

ljlm ij

k k

x g
g g

g g

 
 

 
 

 i.e.,   [ ([ , ] [ , ])]
lm

lm ij

k

g
g g lk j jk l

x


  


                   (From (ii)) 

             

lm iji m
g g

lk jk

   
     

   
 

     

ij
lj lm

k

i mg
g g

lk mkx

   
     

    
  as 

ij jig g  

 Theorem : Prove that 
(log )

j

i g

ij x

 
 

 
 

 Proof : As we have already prove that 

        
k

g

x





 cofactor of 

ij

ij k

g
g

x




 

    

Cofactor of1 ij ij

k k

g gg

g gx x




 
 

       
(log )

ijij

k k

g
g g

x x




 
 

     [[ , ] [ . ]]ijg ik j lk i           (From previous theorem) 

     

i j

ik kj

   
    
   

 

     2
i

ij

 
  

   

as k is dummy suffices. 

 Example 1. If 0ijg   for i j  then 

 (i) 0 for
k

i j k
ij

 
   

 
 

 (ii) 
log1

2

ii

i

i g

ii x

 
 

 
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 (iii) 
log1

2

ii

j

i g

ij x

  
 

 
 

 (iv) 
1 1

2

jj

i
i

gi

jj g x

 
  

 
 

 Solution :We have 

    

1
[ , ]

2

jk ijik

i j k

g gg
ij k

x x x

  
   

   
              … (1) 

      

[ , ]khk
g ij h

ij

 
 

 
                      … (2) 

 and   0ijg   when i j  and 
1

; 0ii ij

it

g g
g

   if i j        … (3) 

 Then (i) For ; 0ij jk iki j k g g g      and by (1) [ , ] 0 [ , ]ij k ij h       (From (3)) 

 Using in (2) we have 

    

0 0khk
g

ij

 
  

 
 

(ii)     [ , ]iii
g ii i

ii

 
 

 
 

              From (2)) 

           

1

2

ii ii ii ii

i i i

g g g
g

x x x

   
      

             (From (1)) 

           

1

2

ii ii

i

g
g

x





 

           

1

2

ii ii

i

g
g

x





 

           

1 1

2

ii

i
ii

g

g x




      

1
as g 0 ifii

ij

ii

g i j
g

    

    

(log )1

2

ii

i

i g

ii x

  
 

 
 

 (iii)   [ , ]iii
g ij i

ij

 
 

   

           

1

2

ji ijii ii

i j i

g gg
g

x x x

  
   

   
 

           

1 1 1
(log )

2 2

ii
iiii j j

g
g

g x x

  
    

      
1ii

ii

g
g

  

 (iv)   { , }ii
i

g jj i
ij

 
 

 
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1

2

ji jjii ii

i j i

g gg
g

x x x

  
   

   
as 0ijg   if i j  

    

1 1

2

jj

i
ii

gi

jj g x

 
  

 
 

 Example 2. If 
2 2 2 2 2sinds dr r d r d      , find  

     

1 3
[22,1], [13, 3], ,

22 13

   
   
   

 

 Solution : We have 

    
2 2 2 2( ) ( ) ( sin )ds dr r d r d       

 i.e.,   2 2 2
11 22 331, , sin , 0,ijg g r g r g      when i j  

 Then by result, 
1ii

ii

g
g

 and 0ijg i j   , we get 

    

11 22 33 12 13 23

2 2 2

1 1
1, , ; 0

sin
g g g g g g

r r
     


       … (2) 

 (i) By definition of Christoffel symbol first kind 

     
1

[ , ]
2

jk ijik

i j k

g xg
ij k

x x x

  
   

   
 

     

21 21 22

2 2 1

1
[22,1]

2

g g g

x x x

   
      

 

     

21
0 0

2

r
r

r

 
     

 
                   (From (1)) 

      

33 13 13

1 3 3

1
[13, 3]

2

g g g

x x x

   
      

 

     

2 21 ( sin )
0 0

2

r

r

  
   

 
 

     
2sinr   

 (ii) By definition of Christoffel symbol of second kind 

         

[ , ]khk
g ij h

ij

 
 

 
 

        

11
[22, ]

22

hg h
 

 
 

 

     

11 12 13[22,1] [22, 2] [22, 3]g g g    

     

1[22,1] 0 0                        (From (2)) 

      

1

22
r

 
  

 
                        (From (1)) 
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 and     33
[13, ]

13

hg h
 

 
 

 

     

31 32 33[13,1] [13, 2] [13, 3]g g g    

     
2 2

1
0 0 [13, 3]

sinr
  


               (From (2)) 

       

3 1

13 r

 
 

                          (From (1)) 

 

 

12.5 LAW OF TRANSFORMATION OF CHRISTOFFEL  

        SYMBOL OF FIRST KIND 
 

 From the law of transformation of covariant tensor of type (0, 2) we have 

    

i j

ijlm l m

x x
g g

x x 

 


            
… (1) 

 Different w.r.t. nx  we get 

  

 

2 2

. . .
k i j i j i j

ijlm
ijn k n l m n l m l n m

gx x x x x x x x
g

x x x x x x x x x x x         

         
   

           
   

                                                                                                             … (2) 

 Similarly, 

  

 

2 2
ln

k i j i j i j
ij

ijm k m l l m l n l m n

xg x x x x x x x x
g

x x x x x x x x x x x         

         
   

           
  … (3) 

   

2 2k i j i j i j
ijmn

ijn k l m n l m n m l n

gg x x x x x x x
g

x x x x x x x x x x x         

         
   

           
 

 … (4) 

 Using (2) and (4) in 

   

ln1
[ , ]

2

mn lm

m l n

g gg
lm n

x x x  

  
      

 

 We obtain  

   

2

[ , ] [ , ]
i j k i j

ijm n l l m n

x x x x x
lm n ik j g

x x x x x x     

    
 

                 
 … (5) 

 The exitance of 2nd term in R.H.S. of (5) shows that the Chirisloffel symbol of first 

kind is not a tensor. 
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12.6 LAW OF TRANSFORMATION OF CHRISTOFFEL  

        SYMBOL FOR SECOND KIND 
 

 Taking inner product of (5) with 
n s

ns pq

p q

x x
g g

x x

 
  


 

 

 we get 

   
[ , ] [ , ]

i j k n s
ns pq

m n l p q

x x x x x
g lm n ik j g

x x x x x

 


  

    


    
 

     

2 i j n s
pq

ij l m n p q

x x x x
g g

x x x x x

 

  

   


    
 

       

2

[ , ] .
i k s i s

pq j pq j
p ij pm l q l m q

s x x x x x
g ik j g g

lm x x x x x x

 

   

      
    

      
 

     

2

[ , ]
i k i s

jq js
ijm l l m q

x x x x
g ik j g g

x x x x x



   

    
  

     
 

      

2i k s q s

m l q l m q

s q x x x x x

lm ik x x x x x x

 

   

        
    

        
         … (1) 

 The existance of 2nd term in R.H.S. of above equation shows that the Christoffel 

symbol of second kind is not a tensor. 

 This result can be expressed as 

    

2 q q i k

l m s m l

s qx x x x

lm ikx x x x x    

      
    

       
 

    

2 q q k i

l m s l m

s qx x x x

lm ikx x x x x    

      
    

       
                … (2) 

 Note :Similarly result can easily be obtained 

    

2 q q k i

l m s l m

s qx x x x

lm ikx x x x x

 

    

      
    

       
 

 
 
 

12.7 COVARIANT DIFFERENTIATION OF VECTORS 
  

 We have already studied the algebraic operations on tensors and a natural question 

arises, whether differentiation of tensors, can produces a tensor or not. But it has been 

shown that partial differentiation of an invariant is a tensor and partial differentiation of 

a covariant vector of order 1 is not a tensor in general. Thus there is an urgent need to 

introduce a new kind of differentiation when applied to tensors will produce again 

tensors. 
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12.7.1 Covariant Differentiation of a Covariant Vector 
 From the transformation of a covariant vector 

       

i

k i k

x
A A

x



           

… (1) 

 Differentiation w.r.t. jx  we get 

    

2m i i
k i

ij m j k j k

A A x x x
A

x x x x x x    

    
 

     
 

 Using result 

       

2 i i p q

j k x j k

s ix x x x

kj pqx x x x x    

      
    

       
 

 In above equation we get 

    

.
m i i p q

k i
ij m j k s j k

s iAA x x x x x
A

kj pqx x x x x x x     

         
      
           

 

    

 

.
m i i p q

i
i im j k s j k

s iA x x x x x
A A

kj pqx x x x x x    

        
     
        

 

     

m i p q
i

s im j k j k

s iA x x x x
A A

kj pqx x x x x   

       
     
       

 

 Changing the dummy index i q in first term and pm in the third term on the right 

hand side of the above equation we get 

   

k
sj

A
A

x





 
,

m q m q
q

im j k j k

As ix x x x
A

kj m qx x x x x   

      
    
       

 

     

m q
q

im j k

A i x x
A

mqx x x 

    
    

    
 

 Define       ,
k

k j s
j

sA
A A

kjx
 

   
  

 to obtain 

    
, ,

i q

k j q m k k

x x
A A

x x 

 


 
 

    
, ,

i m

k j i m k j

x x
A A

x x 

 


           
 … (2) 

 Which shows that ,i mA  is a covariant tensor of type (0, 2) and ,i mA  is covariant 

derivative of covariant vectors kA  w.r.t. jx . 

 

12.7.2 Covariant Differentiation of a Contravariant Vectors 
 From the law of transformation for a contravariant vector, 

      

k
k i

i

x
A A

x









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 Different w.r.t. jx  

    

2k i n k k n
i

j n j i i n j

A A x x x x
A

x x x x x x x

  


   

     
 

      
 

 Using result 

       

2

.
k k p q

i n s i n

s kx x x x

in pqx x x x x    

      
    

       
 

 We get 

    

k i n k p q n
i

j n j s i n j

s kA A x x x x x
A

in pqx x x x x x x

  


    

          
      

          
 

            

i n k k n p
i q i

nn j i s j i

s kA x x x x x
A A

in pqx x x x x x

  
 

   

        
      
        

 

            

i n k k n p
i i

n j i s j i

s kA x x x x x
A A

in pnx x x x x x

  
 

   

        
     
        

 

 Interchanging is in first term of R.H.S. 

   

 

k i n k i
i p i p

j n j s p

s kA A x x x
A A A A

in pnx x x x x

  
 

 

        
                

 

     

k i n k
p i

j n j s

k sA A x x
A A

pn inx x x x

 


 

        
       
          

 

 Define 
k

k p
j j

kA
A A

pnx

 
   
  

. Then 

       
, ,

n k
k i
j n j s

x x
A A

x x






 


 
 

 Which shows that ,
k
jA  is a tensor of type (0, 2) and is called covariant derivative of a 

contravariant vector. 
 
 
 

12.7.3 Covariant Differentiation of Tensors 
 From the transformation of tensors of type (0, 2), 

    

i j

pq ij p q

x x
A A

x x 

 


 
                   … (1) 

 Differentiation w.r.t. rx  we get 
2 2l i j i j i j

pq ij

ij ijr l r p q p r q p q r

AA x x x x x x x
A A

x x x x x x x x x x x         

       
  

          
 

 Using result 
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2 a a

b c d b c

d ax x x x

bcx x x x x

 

    

      
    

       
 

                    

 … (3) 

 We get 

         

i i j j i u v
pq ij

ijr l r p q q x p r

A s iA x x x x x x x
A

pr uvx x x x x x x x x       

            
      

            
 

    

.
,

i j m n

ij p s q r

s jx x x x
A

qr m nx x x x   

       
     
        

 

      

l i j u v j
ij

sq ijl r p q p r q

A s ix x x x x x
A A

pr uvx x x x x x x     

         
     
         

 

    

m n i

ps ij q r p

s j x x x
A A

qr mn x x x  

      
    

     
 

 Changing the dummy indices ui, vl, iu in 3rd term and j u, mj, nl in 

5th term, we get 

  

i j l
pq ij

pssq uj lur i p q r

As s u uA x x x
A A A A

pr qr il jlx x x x x   

           
                        

 

       
, ,

i j l

pq r ij l p p r

x x x
A A

x x x  

  


  
             … (4) 

 Where    ,

ij

ij l ul iui

A u u
A A A

il jlx

    
     
    

            … (5) 

 This shows that the covariant derivative of a tensors of type (0, 2) is a covariant of type  

(0, 3). 

 Note: Similarly, the covariant derivative of ijA  w.r.t. kx  

 i.e.,     ,

ij
ij lj il
k k

i jA
A A A

lk lkx

   
     
    

 

 To covariant derivative of 
i
jA  w.r.t. kx  is 

      
,

i
ji i i

j k j lk

A i l
A A A

lk jkx

    
     
      

 
 

12.8 RICCI'S THEOREM 
  

Theorem: The covariant derivative of the Kronecker delta and the fundamental tensor,  

                   ,
ij

ijg g  is zero. 

 Proof: The covariant derivative 
i
j  w.r.t. kx  is 
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,

,

i
ji l i

j k j lk

i l

lk j kx

    
        

    
 

            

0
i i

jk jk

   
     

   
as

1 ;

0 ;

i
j

i j

i j


  


 i.e., constant 

    , 0l
j k   

 The covariant derivative of ijg  w.r.t. kx  is 

    
,

ij

ij k mj im

k

g m m
g g g

ik jkx

    
     
    

 

            [ , ] [ , ] [ , ] [ , ]ik j jk i ik j jk i     

    , 0ij kg 
    

[ , ] km

k
ij m g

ij

 
  

 
 

 We know im i
mj jg g   . Differentiation w.r.t. kx  

    , , ,
im im i
k mj mj k j kg g g g    

         , 0 0im im
k mjg g g      (From (1) and (2)) 

 i.e.,    , 0im
kg      … (3) 

 Example. If at a specified point, the derivatives of ijg w.r.t. kx are all zero, prove the  

                    components of covariant derivatives at that point are the same as ordinary  

                    derivatives. 

 Solution:  Given that 

     
0 , ,

ij

k

g
i j k

x


 


at point 0P                … (1) 

 Let 
i
jA  be tensor. Then covariant derivative w.r.t. kx  is. 

     
,

i
ji l i

j k k lk

A i l
A A A

lk jkx

    
     
    

           … (2) 

 Since 
1

[ , ]
2

ljij ij ki lk

l k j

gi g g
g lk j g

lk x x x

    
      

     
, therefore in view of (1), 

i

lk

 
 
 

 and 

l

jk

 
 
 

 are zero. Thus from (2), we observe that 

     
,

i
ji

j k k

A
A

x





at 0P . 
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12.9 SUMMARY 

 

1. The covariant derivative of the Kronecker delta and the fundamental tensor,  

 ,
ij

ijg g  is zero. 

 

2. Superscript and Subscript:  The suffixes 𝑖 and 𝑗 in 𝐵𝑗
𝑖 are called superscript and 

subscript respectively. The upper position always denotes the superscript and the lower 

position denotes subscript. 

 

12.10 GLOSSARY 

  

 (i)  Derivatives  

 (ii)  Determinant 
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12.12 TERMINAL QUESTIONS 

  1.         Prove that 
2 r r s i

k l i k i

i rx x x x

kl stx x x x x

         
    

       
 

 2. , ,ij i j j iA B B  prove that , , , 0ij k jk i ki jA A A    

 3. Prove that [ , ] [ , ]
ij jk

k i

g g
jk i ij k

x x

 
  

 
 

 4. Prove that , ,( )i j i i
ij i k i kk

g A B A B A B
x


 


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13.1 INTRODUCTION 

  The subject matter of this block is presented to explain the origin of the concept of 

tensor and in what sense tensor is the extension of the vector. Beside it, a mathematically 

and geometrically systematic approach is developed to explain the distinction between 

Contravariant and Covariant vectors. For the purpose of further use and application, 

various operations in tensors are also discussed. 

 

13.2 OBJECTIVES 

  

After studying this block, you should be able to  

1.  Understand the distinction between Contravariant and Covariant vectors (Tensors). 

2.  Understand the relationship between scalars, vectors and tensors. 

3.  Understand whether the given mathematical entities are tensors or not. 

4.  Understand the transformation of operators from one co-ordinate system to other 

   coordinate system. 

 

13.3 DEFINITIONS 

   

  Tensor Calculus is a generalization of Differential Geometry of Gauss and 

Riemann. Its systematic exposition was elaborated by mathematician Ricci and Levi-

Civita. Later on Einstein observed that it to be a most suitable tool for General Relativity. 

The reason is that a physicist wants a formulation of the Laws of physics which remains 

invariant with respect to observers and view of Mathematician, the main preoccupation 

of Tensor Calculus is the study of the behavior of an expression under Co-ordinates 

transformation. 

 Elementary physical laws such as that the acceleration of a body is proportional to the 

force acting on it, which can be stated mathematically as  

F
a

m
    i.e.,   F ma  

where a, F, m are the acceleration, force and mass of the body respectively. It should be 

kept in mind that, however that the law is a special case and apply strictly only to isotopic 

media or to media of high symmetry. In real life, many media are anisotropic and as a 

result, the acceleration “a” is not necessarily parallel to the applied force. In such 

situation, this equation can be generalized as 

1 1 1
x x y z

xx xy xx

a F F F
m m m

    

1 1 1
y x y z

yx yy yz

a F F F
m m m

    
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1 1 1
z y z

zx zy zz

a F F
m m m

  

       

 

where , ,x y za a a  and , ,x y zF F F  are Cartesian components of “a” and “F” respectively 

and 
1

; , , ,
ij

i j x y z
m

  are components of the mass tensor. 

13.3.1 Invariants 

 A function or equation in invariant if it preserves its value or form in a transformation 

of co-ordinates. 

 For example if 2 2 22AX ABXY B Y    , then it will be invariant if it is transformed 

2 2
2A X ABXY BY    . But contrary to it, the temperature T of a fluid is not same 

in terms of Cartesian and spherical co-ordinates as the function T. Thus T is “physical 

invariant” is not “tensorial invariant”. 

 

13.3.2 Notation and Conventions 

 Let NV  be and N -dimensional space and let 1 2 3, , , Nx x x X  be any set of co-

ordinates in NV . It is important to note that ix  does not denote the thi  power of x  and 

( )i rx  denotes that 
thr  power of ix . 

 let ; 1, 2, 3,x N      is another set of co-ordinate in the space NV . Then it is clear 

that each co-ordinates ix  will be function of the N-co-ordinates x   and conversely. 

 In symbol,   

1 2

1 2

( , , );1

( , , , );1

i i N

N

x x x x x i N

x x x x N

  

 

    


         

… (1) 

 Differentiating, we find that 

and     
1

1

;1

;1

iN
i

N
i

ii

x
dx dx i N

x

x
dx dx N

x

 

  

 
 




    




     
    

 … (2) 

 

 Due to Einstein, summations appear in RHS of (2) are expressed as 

       
;1

i
i x

dx dx i N
x

 

 


  
    

… (3) 

and     ;1i

i

x
dx dx N

x

 
  

   


    … (4) 

 In equation (3),   appears twice in RHS however i appears twice in RHS of equation 

(4). The index appears only once in any term and let has a definite value between 1 and 

N is called “free index”. In equations (3) and (4); i  and   are free indices respectively. 

These equations can be expressed as 
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i
i x

dx dx
x

 

 



    

… (5) 

and      i

i

x
dx dx

x

 
  




   … (6) 

 These are set of N equations for each value of i and  respectively. 

 On the other hand, an index which is repeated and over which summation is implied, is 

called a “dummy index” and it is important to note that this “dummy index” can be 

replaced by an other index other than free and dummy indices. 

 The equation (5) and (6) can be expressed as 

          

1
ix

dx dx
x

 

 





      

 … (7) 

and        j

j

x
dx dx

x

 
  




 

13.3.3 Kroneker Delta 

 Since the co-ordinates ix  are independent of each other, therefore by differential 

calculus it is clear that 

      

1 ;

0 ; 1

i

j

i jdx

jdx


 


 

 and we can define it as 

      

i
i
jj

dx

dx
 

   
 where   

1 ;

0 ; 1

i
j

i j

j


  


 

 Where 
i
j  is called Kronecker Delta 

 Similarly,             
dx

dx

 

 

 
 

 

13.4 CONTRAVARIANT AND COVARIANT VECTORS 

 Let 1 2( , , )i Nx x x x   be co-ordinates of a point in a co-ordinate system and let 

1 2( , , , )Nx x x x      be co-ordinates of the same point in another co-ordinate system. 

 Let 1, 2, 3,iA i N    be N -functions of co-ordinate ix . If 
iA  are transformed to 

iA
 in another co-ordinate system as 

i
i x

A A
x


 





    

 or     i

i

x
A A

x

 
  




 

 Then 
iA  is called components of contravariant vector of order 1 or of type (1, 0). 

 Similarly, let ; 1, 2, 3,iA i N   be N -functions of the co-ordinates ix  in a co-

ordinates system. If the quantities iA  are transformed to iA  in another co-ordinate system 

as 
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i
i

x
A A

x







       

 or     
i

a
x

A
x 





 

 Then iA  is called components of covariant vector of order 1 or of type (0, 1). 

 

 Note: A superscript /subscript is always used to indicate contravariant/covariant     

                           component or character. 

 

 

13.4.1 Geometrical Interpretation 

 Let ˆ ˆ ˆ3r x y  i j k  be the positions vector of a point P in 3E . In curvilinear co-

ordinates position vector of point P is 1 2 3( , , )r r u u u . Define unit tangent and unit 

normal vector as 

   

1
1

1

; 1, 2, 3

r

u
t i

r

u




 





 to the curve 1u  at point P. 

and 1

1

; 1, 2, 3
| |

i

u
N i

u


 


 to the surface 1u   Constant at P. 

 Thus at each point P of a curvilinear system there 

exists two sets of unit vectors 1 2 3( , , )t t t
 
tangential 

to the co-ordinate curves and 1 2 3( , , )N N N  normal 

to the co-ordinate 

surface. Therefore any vector A can be represented in-terms of unit vector 1 or it N  as 

     
1 2 3

1 1 2 2 3 3 1 2 3A a t a t a t a N a N a N       

     

31 2
1 1 2 3

1 2 3

rr r

uu u
A a a a a

r r r

u u u

  
 

    
   
     

 

     

1
1 2 3

1 2 3

1

; i

ar r r
A A A A A

u u u r

u

  
   

   



 

and     1 2 23 31 2

1 2 3 1

;
| | | | | | | |

t
iuu u a

A a a a A
u u u u

 
   

   
 

     
1 2 3

1 2 3A A u A u A u       

where 1 2 3, ,A A A  and 1 2 3, ,A A A  are contravariant and covariant components of vector 

A. 

O
x

y

z

N2

t3 N3

t1

t2 N1

u3 = constant

u1 = constant

P (u1, u , u )2 3

u2

 
Fig. 1 
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or      i

i

r
A A

u





     and    3

iA A u   

13.4.2 Transformation law for Contravariant and Covariant Vectors 

 Let a given vector A is define in two general curvilinear co-ordinate system 1 2 3( , , )x x x  

and 1 2 3( , , )x x x    as 

     

t

i

r
A A

x





    and    i

i

r r
A A A

x x

  

  

 
 

 
     … (1) 

 By ordinary partial differentiation, 

     

i

i

r
dr dx

x





   and   
r

dr dx
x

 

 





       … (2) 

 Hence     
i

i a

dr r
dx x

dx x

 




 


                   … (3) 

 Since ix  and 1x  are two co-ordinate system therefore 
1 2 3( , , )i ix x x x x      i.e.,   ( )i ix x x   

and by differentiation, we have 

           

i
i x

dx dx
x

 

 





      … (4) 

Using in (3) we get 

            

i

i

r x r

x x x   

  


  
                … (5) 

and by (1) we have 

      

i
i

i i

r r x
A A

x x x

 

 

  


  
 

            

i
i x

A A
x

 

 





 

i.e.,           i

i

x
A A

x

 
 



               … (6) 

or             
i

i x
A A

x










 

 Similarly,    ( )i
iA A x     and    ( )A A x          … (7) 

where      i j k
x y z

  
   

  
 

 By ordinary partial differential, we have 

     

i

i

x x x

x xx

     


    
 as   ( )ix x x                … (8) 

and     
x x x

x i j k
x y z

     
    

   
  
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i i i

i

x x x x
i j k

x y zx

      
   

    
 

     

i

i

x
x x

x

 
  

  


     … (9) 

Using in (7), we have 

            

( )i i
i i

x
A x A x

x

 



 
   

 
 

           
i i

x
A A

x

 







 

          

i

i

x
A A

x


 





    or     i

i

x
A A

x



 





  … (10) 

Remarks:  1. Contravariant vector involve derivatives of the new co-ordinates 

w.r.t. the  

                              old co-ordinates. 

    2. Covariant vector involve derivative of  the old co-ordinates w.r.t. the new  

co-ordinates. 

    3. In rectangular (orthogonal) system, both curvilinear co-ordinates are identical. 

Hence contravariant and covariant vector are identical. 

 Example 1. If ix  be the co-ordinate of a point in N-dimensional space NV , then show 

that idx  is component of a contravariant vector. Also show that velocity and acceleration 

are contravariant vectors. 

 Solution : Let ix  and ; , 1, 2, 3,x i N      be two co-ordinates in NV  Then each co-

ordinates x   is function of the N-co-ordinates ix  and conversely i.e., 
1 2( , , );1Nx x x x x N         

 Differentiating ix  we have 

      

i

i

x
dx dx

x

 
  




    … (1) 

 Which show that idx  component of a contravariant vector. If ( )i ix x t  where t  is time 

1, 2, 3,i N    then by differential calculus, we have 

      

i

i

dx dx dx

dt dtdx

   

    … (2) 

 If we define the component of the velocity in both co-ordinate system by 

         
,

i
idx dx

v v
dt dt

 
        … (3) 

 Equation (2) becomes 

         

i

i

x
v v

dx

 
  

    … (4) 
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which shows that the velocity iv  is a contravariant vector. Taking time-derivatives of (4), 

we obtain 

      

t

i

dv dx dv

dt dtdx

   

    … (5) 

 If we define the components of acceleration in both co-ordinate system by 

        
,

a i
idv dv

a a
dt dt


      … (6) 

 Equation (5) becomes 

        

i

i

x
a a

x

 
  




 

which shows that the acceleration ia  is a contravariant vector. 

 It should be noted that the coefficient 
i

x

x

 


 are independent of time for fixed co-

ordinate systems because the co-ordinates ix  in 
idx

dt
 are co-ordinate of a particles in 

motion while 
i

x

x

 


 is a relation between two co-ordinate system, which is independent 

of time. 

 

 If each ( )i ix x s  where s  is arc-length parameter, then by Eq. (2) we have 

      

i

i

x x dx

ds dsx

    



    … (8) 

 Which shown that 
dx

ds

 

 (tangent) is a contravariant vector. 

 Example 2. Show that the gradient of sealar function is a covariant vector. OR show 

that 
ix




 is a covariant vector where   is a scalar function. 

 Solution : Let ( )ix    be a field. Being a scalar field, its functional form remains 

unchanged under coordinate transformations, so that 

      ( ) ( ) ( )ix x x          … (1) 
 On using partial derivatives, it is clear that 

        
i i

x

x x x

 

 

  


  
 

 i.e.,              ( ) ( )i i

x

x

 




  


   or   i i

x
A A

x

 







  … (2) 

 Which shws that the gradient of a scalar function/field is a covariant vector. 

 Example 3. Show that the co-ordinates ix  do not form a contravariant vector 
iA . 

 Solution : Let 
iA  is a contravariant vector. Then by law of transformation from co-

ordinates 
ix  to x  , we have 
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i

i

x
A A

x

 
  




    … (1) 

 If we put i iA x  then 

      

i

i

x
A x

x

 
  




 
 In general, it does not reduce to A x    . Hence 

ix  is not a contravariant vector. 

 Example 4. Show that the second derivatives of a scalar field   i.e., 
2

ij i i
A

x x

 

 

 are 

not the components of a second rank tensor. 
 Solution : Let ( )ix    be a scalar function of ix  and let ix  be another co-ordinate 

system such that 

        ( )ix x x   
 

 Then,     
i

i

x

x x x   

  


      
… (1) 

 Differentiating (1) partially w.r.t. x   

         

2 2 2i i

i i

x x

x x x x x x x x           

      
 

         

       

2 2

.
i i i

i i i

x x x

x x x x x x x       

     
 
        

            

2 2 2

.
i i i i

i i i

x x x x

x x x x x x x x x           

      
 

        
   … (2) 

which shows that Eq. (2) does not represent tensor law of transformation due to presence 

of second term in RHS of Eq. (2). 

 Example 5. There is no distinction between contravariant and covariant vector under 

rectangular cartesian co-ordinates transformations. 

 Solution : Let ( , )P x y  be a point w.r.t. the rectangular Cartesian co-ordinates axes X  

and Y and let ( , )P x y  be the same point w.r.t. the rectangular coordinates axes X  and 

Y , which is obtained by rotating X Y  systems about OZ  axis. Let 1 1( , )l m  and 2 2( , )l m  

be the direction cosines of the axes X and Y  respectively. Then the transformation 

relations are given by. 

O
X

Y

Y (l , m )2 2

X (l , m )1 1

• P ( , ) = x y P ( , )x y

 
Fig. 2 

         1 1y l x m y      … (1) 
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         2 2y l x m y       … (2) 

and         1 2x l x l y       … (3) 

         1 2y m x m y       … (4) 

Also     1 1 2 2, , ,
x x y y

l m l m
x y x y

   
   

   
    … (5) 

 Suppose 
1 2 1 2, ; ,x x x y x x x y     . Then by contravariant transformation for A 

with components 1 2,A A  we have 

    ; 1, 2
i

i x
A A

x


 




  


  and  1, 2i        … (6) 

Thus,      
1

1 2

1 2

ix x
A A

x x

 
  
 

   

      
2 2

2 2 2

1 2

x x
A A A

x x

 
  

 
   

 Using (2) we have 

       
1 1 2

1 1A A l A m        ;      
2 1 2

2 2A A l A m              … (7) 

 Consider covariant transformation for A with components 1 2,A A  we have 

      1 ; 1, 2
i

x
A A

x



 


  


   and   1, 2i   

Thus,      
1 2

1 1 21 1

x x
A A A

x x 

 
 

   

      
1 2

2 1 22 2

x x
A A A

x x 

 
 

 
 

 Using (3) we have 

      1 1 2 2A Al A m      ;     2 1 2 2 2A Al A m         … (8) 

 Result (7) and (8) show that 

      
1 2

1 2;A A A A  
 

 Hence contravariant and covariant vectors are identically same in rectangular co-

ordinate system. 

 Example 6. If a vector has components .x y  in rectangular Cartesian co-ordinates, then 

they are .r  , in polar co-ordinates and if vector has components ,x y  in rectangular 

Cartesian co-ordinates then they are 
2 2
,r r r

r
      in polar co-ordinates. 

 Solution: Let ( , )x y  and ( , )r   be position of a point in rectangular Cartesian and polar 

co-ordinates respectively. Then relations between these two co-ordinates system are 

        cos , sinx r y r        … (1) 

with      2 2 2 1, tan
y

r x y
x

  
     

 
     … (2) 
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 By simple application of differential calculs, 

      
2 2

, , ,
r x r y y x

x y y r x yr r

    
   

   
   … (3) 

        cos sin , sin cosx r r y r r            … (4) 

and         2 2 2 2x y r r        (squaring and adding (4))  … (5) 

 Also from (2), we have 

      
2 2 3

2
, ( )

xy xy xy yx r
rr xx yy xy xy

r r r

 
          … (6) 

   2 2 2r rr x y xx yy        i.e.,  2 2 2( )xx yy r rr x y      … (7) 

 Let     1 2,x x x y   and 1 2,x r x    . Then by contravariant 

transformation we have 

     ; 1, 2
i

i x
A A

x


 




  


   and   1, 2i     … (8) 

     
1 1

1 1 2

1 2

x x
A A A

x x

 
  
 

 
                     … (9) 

     
2 2

2 1 2

1 2

x x
A A A

x x

 
  

 
 

      … (10) 

 Case I : Let     1 2,A x A y  . Then by (9) and (10), we have 

      1 x y xx yy
A x y

r r r

 
                (From (3)) 

 Using (6), we have 

     1A r   

 and    2

2 2

y x
A x y

r r

    
    

   
   (From (3)) 

 Using (4) we have 

             

2 2

cos ( sin cos ) sin ( cos sin )xy xy r r r r r r

r r

          
   

     
2

2

2

r
A

r

 
    

 Case II :     1 2,A x A y  . Then by (9) and (10) we have 

     1 x y
A x y

r r

    

            
xx yy

r


  

            
2 2 2( )r rr x y

r

  
      (From (7)) 

            
2 2 2 2r rr r r

r

   
   (From (5)) 

     1 2A r r     
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 And    2

2 2

y x
A x y

r r

    
    

   
 

             
2

xy xy

r


  

             
3

2
( )

r
xy xy

r

 
    
 

 

     2 2
( )

r
A

r

         (From (6)) 

Note : 1. In case (i) and (ii); 1A  represent radial velocity and radial acceleration 

respectively. 

  2. In both cases, 2A r  is transverse velocity and transverse accelerations 

respectively. 

 Example 7. If 
2 2 2

2 2 2
, ,x y z

d x d y d z
a a a

dt dt dt
    be Cartesian components of the 

acceleration vector then find the component of the acceleration vector in the spherical 

polar co-ordinates. 

 

 Solution : Since acceleration is a contravariant vector therefore 

      i

i

x
a a

x

 
  




   … (1) 

 let     
1 2 3 1 2 3, , ; , ,x y zx x x y x z a a a a a a       

 and  
1 2 3 1 2 3

,, , ; ,rx r x x a a a a a a     
          

 The relationship connecting and spherical polar co-ordinates is given by 

    sin cos , sin sin , cosx r y r z r            … (2) 

 and   
2 2

2 2 2 1/2 1 1( ) , tan , tan
x y y

r x y z
z x

 
   
             

  … (3) 

 By partial differentiation, we have 

     sin cos , sin sin , cos
r r r

x y z

  
       

  
 

     
cos cos cos sin sin

, ,
r

x r y r z r

       
  

  
    … (4) 

     
sin cos

, , 0
sin sinx r y r z

    
  

    
 

 For 1;   Eq. (1) gives 

     
1 1 1

1 1 2 3

1 2 3r

x x x
a a a a a

x x x

  
   

   
  

 

          x y z

r r r
a a a

x y z

  
  

  
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2 2 2

2

x r y r d z r

x dt y dt zt

    
  

  
 

 Using (2) and first Eq. of (4) we get 

     
2 2

2 2
sin cos ( sin cos ) sin sin ( sin sin )r

d d
a r r

dt dt
         

       
2

2
cos ( cos )

d
r

dt
   

     2 2 2sinra r r r        … (5) 

 Similarly   2sin cosa           … (6) 

     22
2 cota r

r
             … (7) 

 These are required components of acceleration in spherical co-ordiantes. 

 Remarks : 1. The only component ra  has the dimensions of acceleration. 

    2. The components 0 ,a a  have the dimensions (times) 2 . 

    3. If 
2


   then spherical polar co-ordiantes reduce to polar co-

ordinates and 

     components of acceleration become 

     2 2
,ra r r a r

r
       

 Which is exactly same as in example (5). 

 Example 8. Find the components of acceleration in cylindrical co-ordinates , ,r z  

which are related to the Cartesian co-ordinates cos , sin ,x r y r z z      

 Solution : Since the acceleration is a contravariant vector therefore, 

     
i

i

x
a a

x

 
  




 

 let        
1 2 2 1 2 3, , ; , ,x y zx x x y x z a a a a a a       

 and     
1 2 3 1 2 3, , ; , ,r zx r x x z a a a a a a     

        

 The relationship connecting carteisan and cylindrical coordinates is given by 

          cos , sin ,x r y r z z       … (2) 

 and         2 2 1, tan
y

r x y
x

  
     

 
  … (3) 

 By partial differentiation, we have 

       cos , sin ; 0
r r r

x y z

  
    

  
 

       
sin cos

, , 0
x r y r z

    
   

  
 … (4) 

       0, 0, 1
z z z

x y z

  
  

  
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 For 1  ; Eq. (1) gives 

     
1 1 1

1 1 2 3

1 2 3r

x x x
a a a a a

x x x

  
   

   
  

 

          x x z

x r r
a a a

x y z

  
  

  

2 2 2

2 2 2

d x r d y r d z r

x y zdt dt dt

  
  

  
 

 Using Eq. (2) and first equation of (4) we have 

     
2 2

2 2
cos ( cos ) sin ( sin )r

d d
a r r

dt dt
       

         cos ( cos sin ) sin ( sin cos )
d d

r r r r
dt dt

             

         2cos ( cos 2 sin sin )r r r            

      2sin ( sin 2 cos sin cos )r r r r            

     2
ra r r        ... (5) 

 For 2;   Eq. (1) gives 

     

2 2 2

2 2 2

d x d y d z
a

x y zdt dt dt


  
  

  
 

          2

2

sin
( cos 2 sin cos sin )r r r r

r


             

     

 2 2cos
( sin 2 cos sin sin cos )r r r r r

r


               

     0

2r
a

r


        … (6) 

 From 3;   Eq. (1) gives 

     
2 2 2

2 2 2z

d z dz d y z d z z
a

dx y zdt dt dt

 
  

 
 

          
2

2
0 0 .1

d z

dt
    

     
2

2z

d z
a z

dt
       … (7) 

 Example 9. Find ,i
idiv A div A  and 2   in cylindrical co-ordinates where iA  and iA  

are vectors and   is a scalar. 

 Solution : In Cartesian co-ordinates, we have 

     
x y z

i A A A
div A

x y z

  
  

  
    … (1) 

 The cylindrical co-ordinates , ,r z  are related to the Cartesian co-ordinates given by 

             cos , sin ,x r y r z z       … (2) 

 If the components of 
iA  in cylindrical co-ordiantes, are , ,r zA A A  then 
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           x r zx x x
A A A A

r z

  
  
  

 

      cos sinrA r A       … (3) 

           y r zy y y
A A A A

r z

  
  
  

 

      sin cosrA r A        … (4) 

           z r z zz z z
A A A A A

r z

  
   
  

        … (5) 

 Also,        
x x x xA A r A A z

x r x x z x

      
  

      
 

      
sin

cos
x xA A

r r

  
  

 
   … (6) 

     

2 2 2 1

2 2

, tan

and ,

y
r x y

x

r x y

x r x x y

  
       

 
  

      

 

     
y y y yA A r A A z

y r y y z y

      
  

      
 

             
cos

sin
y yA A

r r

  
  

 
   … (7) 

     
z zA A

z z

 


 
      … (8) 

 Using (3) in (6) we get 

     cos cos sin sin
x yA A A

A r
x r r


   

       
   

 

sin
sin cos cos sin

r
r A A

A r A r
r


   

         
  

 

    
2 2sin cos

cos sin cos sin
r rA A A A

r
r r r

      
       

   
 

2sin rA

r


                                  … (9) 

 Using (4) in (7) we get 

     
2 sin cos

sin sin cos
y r rA A A A

r
y r r r

     
     

   
 

                      
2

2 cos
cos rA

A
r

 
  


 … (10) 

     
z zA A

z z

 


 
    … (11) 
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 Using (9) to (10) in (1) we get 

             
r r

i A A A
div A

r r

 
  

 
 

 (II) For a covariant vlector iA , 

             
yx z

i

AA A
div A

x y z

 
  
  

    … (13) 

 If the components of iA  in cylindrical coordinates are , ,r zA A A  then 

       x r z

r z
A A A A

x x x


  
  

  
 

       
sin

cosx yA A A
r




      … (14) 

     y r z

z z
A A A A

y y z


  
  

  
 

     
cos

siny rA A A
r




             … (15) 

     z r z

r z
A A A A

z z z


  
  

  
 

     z zA A     … (16)  

 Also,           x x x xA A A Ar z

x r x x z x

     
  

      
 

          
sin

cos x xA A

r r

 
  

 
   … (17) 

               
y y y yA A A Ar z

y r y y y

     
  

      
 

          
cos

sin
y yA A

r r

 
  

 
   … (18) 

             
y z

A A

z z

 


 
   … (19) 

 Using (14) in (17) we get 

              
2

sin sin
cos cosx rA AA

A
x r r rr




    
        

 

sin cos sin
sin cos r

r

AA
A A

r r r




    
      

  
 

       
2

2 sin 2 sin cos sin cos
cos z

r

AA
A A

r r r r r




     
    

 
 

                                  
2

2

sin A

r





   … (20) 

 Using (15) in (18) we get 
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2

cos cos
sin sin

y yA A A
A

y r r rr




   
     

   
 

cos sin cos
sin cosr

r

AA
A A

r r r




   
      

  
 

   
2

2 cos sin cos sin cos
sin 2r

r

AA
A A

r r r r r




     
    

 
 

2

2

cos A

r





   … (21) 

            z zA A

z z

 


 
     … (22) 

 Using (20) – (22) in (13) we get 

    
2

1 1r z
i r

AA A
div A A

r r zr

 
   
  

 … (23) 

 (III) Since   is a scalar field, therefore 

        
2 2 2

2

2 2 2x y z

     
    

  
    … (24) 

 By Calculus 

          
r z

x r x x z x

      
  

      
 

     
sin

cos
r r

  
  
 

   … (25) 

         
2

2

r z

x x r x x x x z x xx

                   
          
                  

 

     
sin

cos
r x x r

      
     
      

 

    

 
sin sin sin

cos cos cos
r r r r r

           
         

        
 

     
2 2

2 2

sin sin
cos cos

r rr r

       
     

   
 

     

 
2 2

2

sin cos sin
sin cos

r r r r r

          
      

    
 

    

 
2 2 2

2

2 2

2 sin cos 2 sin cos sin
cos

r r r rr r

          
    

   
 

2 2

2 2

sin

r

  



  … (26) 
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2 2 2

2

2 2 2

2 sin cos 2 sin cos
sin

r ry r r

          
   

   
 

2 2 2

2 2

cos cos

r r r

    
 

 
  … (27) 

         
2 2

2 2z z

   


 
      … (28) 

 Using (26) and (28) in (24) we get 

        
2 2 2

2

2 2 2 2

1 1

r rr r z

      
     

  
         … (29) 

13.5 TENSOR 
 Mathematically, physical quantities are represented by as either scalar or vectors 

depending on their transformation properties under rotation of the coordinate axes. A 

physical quantity which requires magnitude only for its complete specification is called 

“scalar”. For instance, mass, length, temperature are scalar quantities. In similar way, a 

physical quantity which requires a direction beside magnitude for its complete 

specification is called “vector”. For instance, displacement, velocity, acceleration are 

vector quantities. 

 In fact, there are many physical quantities which requires multi-directions along with 

magnitude for their complete specification are called “tensors”. For example, Stress, 

Strain, Conductivity, moment of inertia, dielectric susceptibility etc are tensors. 

Particularly, in case of stress, magnitude, direction of force and direction of normal on 

which the component acts are required i.e., two directions, one for direction of force and 

other is direction of normal to plane. In symbol, ij  is a stress tensor at a point in 

Euclidean space 3E  having nine components. 

 In view of above facts, “Tensors” are a natural and logical generalization of vectors, 

which are of great use in general relativity theory, differential geometry, mechaincs, 

elasticity, electromegatic theory etc. According to German mathematician F. Klein, how 

term tensor is generalization of the vector, can easily be understood with the help of 

theory of group of transformations. 

13.5.1 Contravariant Tensor of Rank Two or Order (2, 0) 

 A set of 2n  functions ijA  of the n coordinates ix  i = 1, ... n are said to be the component 

of a contravariant tensor of rank 2 or order (2, 0) if they transform according to the law 

iji j

x x
A A

x x

   
   


 

 

 On changing coordinates ix  to ix ; i = 1, 2, 3, ... n. 

13.5.2 Covariant Tensor of Rank Two or Order (0, 2) 

 A set of 2n  functions ijA  of the n coordinates ix ; i = 1, 2, ... n are said to be the 

components of a covariant tensor of rank 2 or order (0, 2) if they transform according to 

the law 
i j

ijx
A A

x x


   

 

 
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 On changing coordinates ix  to ix ; i = 1, 2, 3, ... n. 

13.5.3 Mixed Tensor of Rank Two Or Order (1, 1) 

 A set of 2n  functions i
jA  of the n coordinates ix ; 1, 2, ... n are said to be the components 

of a mixed tensor of rank 2 or order (1, 1) if they transform according to the law 
j

i
ji

x x
A A

x x

 
 
  

 


 
 

 On changing coordinates ix  to ix ; i = 1, 2, ... n. 

13.5.4 Rank or Order of Tensor 

 The number of indices (excluding the dummy indices) of a tensor is called the rank of 

the tensor i.e., total number of indices per component. 

 Physically, the rank of tensor means, number of directions besides magnitude are 

required for its complete specification and it is not an indicator of the nature of tensor 

i.e., it does not characterise that whether a tensor is contravariant or covariant or mixed. 

Therefore it is better to use form “order” instead of “rank” because order (r, s) of a tensor 

shows that r is contravariant order and s is covariant order of given tensor. 

Note : 1. Scalars and vectors are tensors of zero and one rank respectively. 

  2. The number of components of a tensor is rn  where n is the dimension of the space 

and r is the rank of tensor. 

13.5.5 Tensors Field : 

 In a region of a space, if a tensor is defined for each point of the region, there is a tensor 

field defined in the region. 

 

13.6 TENSORS OF HIGHER ORDER 

 

13.6.1 Contravariant Tensor of Rank r or Order (r, 0) 

 A set of rn functions 1 2 3, , , ri i i i
A


of the  coordinates ix  ; i = 1, 2, ...n is said to be the 

components of a contravariant tensor of order (r, 0) if they are transform according to 

law 
1 2

1 2 1 2

1 2

, , , ,.
r

r r

r

i j i

i i i

x x x
A A

x x x

     
      

 
  

 

 A changing of coordinates ix  to ix . 

13.6.2 Covariant Tensor of Rank ‘s’ or Order (o, s) 

 A set of sn  funtions 
1 2, , si i iA   of the n coordinates 1, 2,i n   is said to be the 

components of a covariant tensor of order (0, s) if they transform according to law                 
1 2

1 2 2 21 2 2
, , , ,

x

x s

ii i

a i i i

x x x
A A

x x x
        

  
 
  

 

 On changing coordinates ix  to ix . 

13.6.3 Mixed Tensor of Rank (r + s) or order (r, s) 

 A set of r sn   functinons 1 2

1 2

, ,

, ,
r

z

i i i

j j jA   of the n coordinates ; 1, 2, 3,ix i n   is said be 

the components of a mixed tensor of order (r, s) if they transform according to law 
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1
1 2 1 2

1, , 1 212 1

, , , ,

, ,

r r
r r

sr s

j j
i i i

j j ji i

x x x x
A A

x x x x 

  
    

     

   
  
   

 

 on changing of coordinates ix  to ix . 

 

13.7 ALGEBRA OF TENSORS 

 

13.7.1 Summation of Tensors 
 The sum of two tensors that have the same number of covariant and contravariant 

indices and the same dimension in all indices is again a tensor of the same number of 

covariant and contravariant indices : 
ij ij ij
k k kC A B   (summation convention is not applied) 

 where elements are all sums of the corresponding elements of the two summed 

tensors. 

 Theorem : The sum (and difference) of two tensors which have same number of 

covariant and the same contravariant indices is again a tensor of the same rank and type 

as the given tensors. 

 Proof : Let 1 2

1 2

, ,

, ,
ri i i

j jA


 and 1 2

1 2

, ,

, ,
r

s

i i i

j j jB


  be two tensors of type (r, s). Then by law of 

transformation 

    
1

1 2 1 2

1, , 1 212 1

, , , ,

, ,

r r
r r

sr s

j j
i i i

j j ji i

x x x x
A A

x x x x 

  
    

     

   
  
   

  … (1) 

    
51

1 2 1 2

1 2 1 21 1 1

, , , ,

, , , ,

r
r r

s sr

jj
i i i

j j ji i

x x x x
B B

x x x x

  
    

      

   
  

   
    … (2) 

 Then   
51

1 2 1 2

1 2 1 21 1

, , , ,

, , , ,

r
r r

s sr s

jj
i i i

j j ji i

x x x x
C C

x x x x

  
    

      

   
  

   
    … (3) 

 where   1 2 1 2 1 2

1 2 1 2 1 2

, , , , , ,

, , , , , ,
r r r

s s sbC A C
           

           

 and       1 2 1 2 1 2

1 2 1 2 1 2

, , , , , ,

, , , , , ,
r r r

s s s

i i i i i i i i i

j j j j j j j j jC A B
  

     

 This is law of transformation of a mixed tensor of rank (r + s). Therefore 1 2

1 2

, ,

, ,
r

s

i i i

j j jC


  is 

a tensor of type (r, s). 

Note: The summation is commutative and associative i.e., 
i i i i
j j j jA B B A    

  ( ) ( )ij ij ij ij ij ijA B C A B C      

13.7.2 Multiplication of a Tensor by a Constant 
 The product of a constant scalar and a tensor is again a tensor of the same rank or order 

whose elements are equal to the corresponding elements (of the multiplicand tensor) 

multiplied by the constant 

If be a scalar and 1 2

1 2

, ,

, ,
r

s

i i i

j j jA


  be a tensor, then 

1 2 1 2

1 2 1 2

, , , ,

, , , ,
r r

s s

i i i i i i

j j j j j jB A
 

    

 Note that the multiplication is associative and commutative 

 i.e.,     ( )ij ijA A     and  ( ) ( ) )ij ijA A      

13.7.3 Opposite Tensor 
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 Opposite tensor ijB  to a tensor ijA  is again a tensor of the same rank whose elements/ 

components are equal to the negatively taken corresponding elements/components of ijA

. It is denoted by ijA  and we have 

0ij ijA B     or   ( 1)ij ijB A   

 Its tensorial properties follows immediately from multipication by a constant if 

1. 

13.7.4 Multiplication of Tensors 
 The product of two tensors is a tensor of a rank that is a sum of the ranks of the two 

constituent tensors and its components are products of the corresponding components of 

the constituent tensors. This product is called outer product of tensors. 

 Theorem: The outer product of two tensors is a tensor whose rank is the sum of the 

rank of two tensors. 

 Proofs : Let 1 2

1 2

, ,

, ,
r

s

i i i

j j jA


  and 1 2

1 2

, ,

, ,
m

n

k k k

l l lB


  be two tensors of type (r, s) and (m, n) 

respectively. 

Then by law of transformation. 

1 1
1 2 2 1 2

1 2 1 21

, , , ,

, , , ,

sr
r

s sr s

jj
t i i i

j j ji i

x x x x
A A

x x x x

   
    

     

   
  

   
 

 and    
1 1

1 2 1 2

1 2 1 21 1

, , , ,

, , , ,

m
nm m

n nm n

l
la a a k k k

b b b l l lk k b b

xx x x
B B

x xx x

  
  

  

  
  

  
 

 Then   
1 1

1 2 1 2

1 2 1 2 1

, , , ,

, , , , ,

mr
r m

s n r

a
d a a a

b b b i i k m

x x x x
C

x xx x

     
   

   

   
  

  
 

      
1 1

1 2 1 2

1 2 1 21 1

, ... ...

... , ...... ...
s n

r m

s ns n

j lj b
l l i k k k

j j j l l lb b

x x x x
C

x xx x
   

   


  
 

 where    1 2 1 2 1 21 2

1 2 1 2 1 2 1 2

, ... ... , ..., ...

... , ... , ... , ...
r m mr

s n s m

l l i k k k k k kl l i

j j j l l l j j j l l lC A B  

 This is law of transformation of a mixed tensor of rank (r + m, s + n) 

Note : 1. In general outer product is not commutative i.e., 

      ;ij l l ij ij l l ij
k mn mk n k kA B B A A B B A   

  2. Outer product is associative and distributive i.e., 

      ( )ij l l ij l ij l
m m in mA B C A B A C    

 Theorem : If iA  and jB  are two vectors then 
i

jA B  is tensor of type (1, 1). 

 Proof : Same as previous theorem. 

 

             Note: The outer product of two contravariant (covariant) vectors is a contrvariant 

(covariant) tensor rank 2. But a contravariant (covariant) tensor of rank 2 is not 

necessarily the outer product of two vectors. 

 

13.7.5 Contraction 
 Contraction is an operation by which we reduce the rank of the tensor by two. If we set 

one contravarriant and one covariant indices to be equal to each other i.e., this index 

becomes dummy index. 

or 
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 Contraction is an operation by which the rank of a mixed tensor is reduced by 2 when 

one contravariant and one covariant indices are kept same and performing the summation 

process. For instance 

  , , ,il l jl l kj k ji j
ij j ij j ij i ik kA B A C A D A E     

In order to visualize, let [ ]i
ja  is matrix of order n i.e., 

      

1 1 1
1 2

2 2 2
1 2

1 2

[ ]

n

i
j n

n n n
n

a a a

a a a a

a a a

 
 

  
 

  

 

 Then 
1

n
i
i

i
a


     trace ( )A   scalar. In that case [ ]i

jA a  is a tensor of rank 2, then 

contraction of i
ja  is 

i
ia   trace (A) = scalar. 

 In case of tensor of type (r, s), tensor by applying contraction is of type (r 1, s 1) 
 

13.7.6 Inner Product of Two Tensors 
 The inner product of two tensor is outer product of the tensors followed by a   

    contraction. 

 Example: Then inner product of tensors 
i
jA  and 

kj
mB  is tensor of type (2, 1). 

 Solution: Let 
i
jA  and 

kl
mB  be two tensors of type (1, 1) and (2, 1) respectively. Then 

      
j

i
ji

x x
A A

x x

 
 
  

 


 
 

 and    
a b m

ab kl
c mk l c

x x x
B B

x x x

 




  

  

 

 Then         
a b j m

ab i kl
c j mi k l c

x x x x x
A B A B

x x x x x

   
  
   

    


    
 

 Set           j = k, 

          
a b j m

ab i kl
c j mi k l c

x x x x x
A B A B

x x x x x

   
  
   

    


    
 

              
a k b m

i kl
k mi k l c

x x x x x
A B

x x x x x

   

  

     
  

     
 

              for and 1
b m

i kl
k mi l c

x x x x
A B a

x x x x

    

  

    
   

    
 

              ( ) ( )
b m

a ab i kl
a c k mi l c

x x x
A B A B

x x x

  
 



  


  
 

 This is the law of transformation of a mixed tensor of rank three i.e., of order (2, 1). 

 

                   

 

 

                  Note: 1. Inner and outer product of vectors (tensors) are same as scalar and vector     
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                                             product of vectors in vector calculus. 

       2. Inner product is also called contracted product. For instance 

      ( )i l i m l
j ik m j ikA B A B   

13.8 TENSOR CHARACTER AND QUOTIENT LAW 
  

It is noticed that the three basic tensorial operations i.e. summation, multiplication and 

contraction, produce always again a tensor. They are said to preserve the tensor character. 

This property serves as another means of distinguishing a tensor and called tensor algebra 

on 

Riemannian space. 

 This property is known as “Quotient law” which is stated as “if the inner product of 

set of function with an arbitrary tensor is a tensor then these set of functions are 

component of a tensor”. 

 

 Example: Show that the expression A (I, j, k) is a convariant tensor of rank three if A  

                    (I, j, k) kB  is a covariant tensor of rank 2 and kB  is a cotravariant vector. 

 Solution: Since ( , , ) kA i j k B  is a covariant tensor of rank 2 therefore by tensor law of 

transformation, we have 

( , , ) ( , , )
a b

k c

i j

x x
A i j k B A a b c B

x x



 

 

 

   

 Using tensor law of transformation for vector kB  i.e., 

       
k

k c

c

x
B B

x


 




  or  
c

c k

k

x
B B

x









 

 we get           ( , , ) ( , , )
a b c c

k k

i j k k

x x x x
A i j k B A a b c B

x x x x

 

   

   

   

 

           ( , , ) ( , , ) 0
a b c

k

i j k

x x x
A i j k A a b c B

x x x



  

   
     

 

 Since kB  is arbitrary vector therefore 

( , , ) ( , , )
a b c

k

i j k

x x x
A i j k B A a b c

x x x



  

  

  

 

 This is law of transformation of a tensor of type (0, 3) i.e., A (i, j, k ) are component of 

a covariant tensor of rank 3. 

 

13.9 SYMMETRIC AND SKEW-SYMMETRIC TENSORS 
  

The order of the index in a tensor is important. The tensor ijA  (or ijA ) is not necessarily 

the same as that of the tensor 
jiA  (or ijA ). In case of matrices, 

jiA  is the transpose of 

ijA . 

 If two contravariant or covariant indices of a tensor can be interchanged without altering 

the tensor, then it is called “symmetric” in every pair of such indices. 
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 In symbols, ijA  is symmetric iff k k
ij jiA A  and ijA  is skew-symmetric iff k k

ij jiA A   . 

 Following facts should be noted: 

 • In general, symmetry and skew-symmetry of a tensor can not be defined for a tensor with 

respect to two indices of which one is contravariant and the other is covariant. 

 • The kronecker delta i
j  is symmetric in i and j i.e., symmetry is reversed under coordinate 

transformation i.e., i j
j i    and j

j i
    . 

 • In skew symmetric tensor 0 1, 2, 3,iiA i n     

 • No of independent distinct component of symmetric and skew-symmetric tensor of rank 

2 is 
( 1)

2

n n 
 and 

( 1)

2

n n 
respectively. 

 Theorem: A covariant or contravariant tensor of rank two can always be expressed as  

                     the sum of a symmetric and skew-symmetric tensors. 

 Proof: Let Aij be a covariant tensor. Then 

      
1

( ) ( )
2 2

ij ij ji ij jiA A A A A


     

      ij ij ijA S T          … (1) 

 where     
1 1

( ); ( )
2 2

ij ij ji ij ij jiS A A T A A     

 Now     
1 1

( ) ( )
2 2

ji ji ij ij ji ijS A A A A S      

 i.e., Sij is symmetric tensor. 

 and     
1 1

( ) ( )
2 2

ij ij ji ji ij jiT A A A A T        

 i.e., ijT  is skew-symmetric tensor. 

 Thus A is sum of a symmetric and a skew - symmetric tensors. 

 Theorem: If iT  be the component of a covariant vector than 
ji

j i

TT

x x

 
   

 are 

components of a skew-symmetric covariant tensor of rank two. 
 

 Proof: Since Ti is a covariant vector therefore by law of transformation, 

      i
i

x
T T

x









     … (1) 

 Differentiating w.r.t. jx  partially 

            
2 2

j i j j i

TT x x
T

x x x x x




    

  
 

    
 

 i.e.,           
2

j i j j i

TT x T x
T

x x x x x x

  


     

   
 

     
   … (2) 

 Similarly,          
2

.
i j i i j

T x x T x
T

x x x x x x

   

     

    
 

     
  … (3) 

 Subtracting (3) from (2) we get 
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ji

j i i j

T TT Tx x

x x x x x x

 


     

     
            

 … (4) 

 This law of transformation of a covariant tensor of rank 2. 

 let      
ji

ij j i

TT
A

x x


 
 

 

 Then     
j ji i

ji iji j j i

T TT T
A A

x x x x

   
       
    

 

 Which shows that 
ji

ij j i

TT
A

x x


 
 

 are components of a skew-symmetric tensor of rank 

2. Note: Due to presence of 2nd form in Eq. (2), i

j

T

x




 are not components of a Tensor. 

 

 Theorem: Show that kronecker delta is a mixed tensor of order (1, 1) and it is invariant. 

 Proof: Let ix  i 1, 2, n be coordinates of a point in nV .Then 

         
i i a

j a j

x x x

x x x

 

 

  


  
 

       
i a b

a b j

x x x

x x x





  

  

 

     . .
i i b a i b

i a
j bj a j b a j

x x x x x x

x x x x x x

  


  

     
    

     
  … (1) 

 Which shows that 
i
j  i.e., Kronecker delta is a mixed tensor of rank 2. 

 Now from (1) 

             
i b i a

i a
j ba j a j

x x x x

x x x x

 


 

      
      

      
 

             
i

i
j j

x

x







 


 

 i.e., 
i
j  is invariant. 

 Theorem: Prove that the transformation of a contravariant (covariant) tensor is   

                     transitive. Prove that the transformation of a contravariant (covariant) tensor   

                     form a group. 

 Proof: Let ijA  be a contravariant vector in a coordinate system ( 1, 2, )ix i n   . 

Then by law of transformation we have 

      
i j

ij x x
A A B

x x

 
  

 

 

 

  (From ix  to ix )  … (1) 

 Applying law of transformation from 
ix  to 

ix  we have 

      
a b

ab ij

i j

x x
A A

x x

 
 

 

 

 

    … (2) 

 Using (1) in (2) we get 
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      .
a b i j

ab

i j

x x x x
A A B

x x x x

   
  

   

   

   

 

               
a i b j

i j

x x x x
A B

x x x x

   
 

  

      
    

      
 

      
a b

ab x x
A A B

x x

 
  

 

 

 

     … (3) 

 This is law of transformation of a contravariant from ix  to ix  . This property is called 

that transformation of contravariant is transitive or form a group. 

 

                  Note: 1. Proceeding on the same lines as above, theorem for covariant  

                                             tensor/vector can easily be proved. 

  2.             This theorem can easily be proved for mixed tensor. 

 

 Theorem: If all components of tensor in one coordinate system are zero at a point, then 

they are all zero at this point in every coordinate system. 

 Proof: Let 0A   in , 1, 2,x n     . Then on using in (1) and (2) of previous 

theorem we get 0ij abA A   . Hence proved. 

 Example: If ija  and ijg  are symmetric and ,i iu v  are components of contravariant 

vector such that 

( ) 0; ( ) 0 , 1, 2, 3i
ij ij ij ija kg u a k g v i j n        and k k   

 then       0i j i j
ij ijg u v a u v   

 Solution : We have 

      ( ) 0; ( ) 0i i
ij ij ij ija kg u a k g v         … (1) and (2) 

 Multiplying (1) and (2) jv  and ju  and subtracting we get 

      0i j i j j j i j
ij ij ij ija u v kg u v a v u k g v u       … (3) 

 Interchanging i  and j  we get 

      0j i j i i j i j
ji ij ji jia u v kg u v a u v k g u v     

 Using ij jia a  and ij jig g  we have 

      0j i j i j j i j
ij ij ij ija u v kg u v a u v k g u v       … (4) 

 Adding (3) and (4) we have 

( ) ( ) 0j i i j
ij ijk k g u v k k g u v      

0i j i j
ji ijg u v g v u    ik k  

          2 0i j
ijg u v   i.e., 0i j

ijg u v      … (5) 

 Multiplying ju  in (1) and using (5) we get 

        0i j
ija u v       … (6) 
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13.10 IMPORTANT FACTS 
  

There are same simple rules for checking the correctness of the indices in a tensor 

equation: 

 1.  A free index should match in all terms throughout the equation at the same level. 

 2.  A dummy index should match in each term of the equation separately i.e., twice at   

               opposite levels. 

 3.  No index should occur more than twice in any term. 

 4.  If a tensor equation is true in one coordinate system then it is true in all other co-ordinate   

               system i.e., they are in one to one correspondence. 

5. The rank/order of each term of tensor equation is same. 

 

13.11 SUMMARY 
  

In this block, we have learned about the various type of tensors and their addition, 

substation multiplication (inner and outer product) along with symmetric property, 

contraction of a tensor and quotient law. 

 

13.12 REFERENCE 
  

1.   An introduction to Riemannian Geometry and the Tensor calculus by C.E.  

  Weatherburn “Cambridge University Press.” 

 2. Matrices and Tensors in physics by A.W. Joshi “Wiley Eastern Limited”. 

 3. Tensors by Ram Bilas Mishra “Hardwari publications Allahabad”. 

 

13.13 TERMINAL QUESTIONS 
 

1. The components of a contravariant vector iA  in x-co-ordinate system are 

; 0; 2, 3, 4,iA f A j n    . Find its components in x -coordiante system. 

2. Let 1 2,A A  are the contravariant component of a vector in 1 2( , )x x  coordinate 

system. Find the contravariant and covariant components of A  in 1 2( , )x x   if 

  1 1 2 2 2cot ,x x x x x      cosec   and 1 2,A A  are covariant components of A in 

1 2( , )x x  

3. The components of a contravariant vector in the x-coordinate system are 2 and 3. 

Find its components in the x  coordinate system if 

   1 1 2 2 1 2 2 23 ( ) , 5 ( ) 3( )x x x x x     

4. If 
1 2

2 1
,

x x

x x
 be covariant components of a vector in rectangular coordinates 1 2,x x , 

find its components in polar coordinates ,r  . 
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5. Show that the tensor equation m
n m na    where   is an invariant and m  are 

arbitrary vector, demands that m m
n na    . 

6. If the components of a contravariant tensor of type (2, 0) in 
2 1 2 1 2{ , ) | , }V x x x x R   are 11 12 21 221, 0, 0, 1T T T T     find ijT   in 

2 1 2{( , ) }V x x R     where functional relation between the two coordinate systems are 

1 1 2 2 2 2( ) , ( )x x x x    

7. Show that the contracted tensor m
nA  is scalar. 

8. Applying contraction on i
j  find is value. 

9. If 0iju   are components of a tensor of type (0, 2) and if the equation 

       0ij jifu gu   

 holds, then prove that either f g  and iju  is skew-symmetric or f g   and iju  is 

symmetric. 

10. If ijA  is a skew-symmetric tensor, prove that 

       ( ) 0i k i k
j l l j ikA       

11. If ijA  is a skew-symmetric tensor and iB  is a contravariant vector then show that 

0i j
ijA B B  . Is the converse true? 

12. If ( , ) j
iX i j B C , jB  is an arbitrary contravariant vector and iC  is a covariant 

vector, show that ( , )X i j  is a tensor. What is its type? 

 

13.14 ANSWERS 

1. 
1

k
k x

A f
x


 




 

2. 1 1 2 2 2cot , cosecA A A A a      , 1 21 2 2, cos sinA A A A A      

3. 1 1 212 , 20 18x x x  

4. 
3 3cos sin

, (sin cos )
sin cos

r
  

  
 

 

6. 11 1 12 21 22 24 , 0 , 4T x T T T x          

8. n 

12. (0, 2). 
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UNIT 14: DIVERGENCE AND CURL OF A  

                  VECTOR 

 

CONTENTS: 
 

14.1 Introduction 

14.2 Objectives 

           14.3 Gradient 

           14.4 Divergence 

14.5 Curl 

14.6 Summary 

14.7 References 

14.8 Terminal Questions 

14.9 Answers 
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14.1 INTRODUCTION 

   

  In tensor geometry, the divergence of a vector field is a scalar field representing the 

"outward flow" from a point, while the curl is a vector field measuring the rotational 

tendency or "swirling" at a point. Divergence and curl are two measurements of vector 

fields that are very useful in a variety of applications. Both are most easily understood 

by thinking of the vector field as representing a flow of a liquid or gas; that is, each vector 

in the vector field should be interpreted as a velocity vector. Roughly speaking, 

divergence measures the tendency of the fluid to collect or disperse at a point, and curl 

measures the tendency of the fluid to swirl around the point. Divergence is a scalar, that 

is, a single number, while curl is itself a vector. The magnitude of the curl measures how 

much the fluid is swirling, the direction indicates the axis around which it tends to swirl.  

 

14.2 OBJECTIVES 

  

After studying this block, you should be able to  

1. Gradient 

2. Divergence 

3.  Curl 

 

 

14.3 GRADIENT 

  

Gradient 

 Let ( )if x  be a scalar function. As in Euclidean space, the gradient of ( )if x  in 

Riemannian space nV is defined as 

    grade ( ) i ii

f
f f f

x


    


              … (1) 

 It is earlier verified that gradient of a scalar function is a covariant vector and is normal 

to the surface represented by ( )if x   constant. 

 In view of the definition of magnitude of a covariant vector, the square of the magnitude 

of the gradient vector is defined as 

            1 ( ) ( )ij
i jf g f f                   … (2) 

 It is also known as Beltrami first order differential order operator. 

 Another Belitrami first order different operator 1( , )f   is defined as 

    1( , ) ( ) ( )ij
i jf g f       

 In view of above     1 1( ) ( , )f f f    
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14.4 DIVERGENCE 

 

     Divergence 

 Let iA  be a contravariant vector, function of coordinates ; 1, 2, 3,ix i n  . As 

Euclidean space, the divergence of iA  Riemannian space nV  is defined as 

    div ,
i i i

i iA A A              … (1) 

 But covariant differentiation of contrvariant vector is defined as 

        
,

i
i k

j j

iA
A A

kjx

 
   
  

         … (2) 

 Therefore (1) can be expressed as 

     div
i

i i k
i i

iA
A A A

kix

 
     

  
 

 or    div 
i

i j

i

iA
A A

ijx

 
   
  

       … (3) 

 The divergence of a covariant vector iA  is defined as 

    div
i ij

i i j iA A g A  
     

… (4) 

 Theorem: Prove that div iA  div iA  and div 
( )1

k
i

k

g A
A

xg





 

 Proof:       We have 

    div ,
i ik

i kA g A  

    div , , ,( ) ( )i ik k k
i k k kA g A A A   div iA  

 and   div ,

i
i i k

i i

iA
A A A

ikx

 
    

  
 

     

(log ) (log )
i

k

i k k

lA
g A g

lkx x x

   
   
   

and

| |ijg g  

     

1i
k

i k

gA
A

x xg


 
 

 

     div
1

( )i i

i
A g A

xg





. 

 
 

 Theorem: The div 
iA  is a scalar function. 

 Proof:        By law transformation 
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i
i a

a

x
A A

x








   
or  

a
a i

i

x
A A

x


 




             … (1) 

 Different w.r.t. kx  is 

     

2

.
i a b i i b

a

k b k a b a k

A A x x x x
A

x x x x x x x

  


   

     
 

      
        … (2) 

 Using      
2 i i j l

b a c a b

c ix x x x

ab jlx x x x x   

      
    

       
 

 We get 

     

.
i a b i i j l b

a

k b k a c a b k

c iA A x x x x x x
A

ab jlx x x x x x x x

  


   

           
      

            

 

          

i a b i
aj

k b k a

i aA x x x
A A

jk cbx x x x

 

 

       
      

       
                … (3) 

 let   
i

i j
k k

iA
A A

jkx

 
    

                              

… (4) 

 Then   
b i

i
abk k a

x x
A A

x x





 
 

 
 

 Therefore 

    div 
b i

i i a
bi k a

x x
A A A i k

x x






 
  

 
 

     
a b

b aA    

      div
i i a

aiA A A   

 Which shows that div iA  is a scalar function. 

 

 Note: div
1

( ) ( )ij ij aj

j

i
A g A A

ajxg

 
   

  
 

      div
1

( ) ( )i i i i
j i j j ai

a
A A g A A

ijxg

 
     

  
 

 

 

 

14.5 CURL 

 

 Curl of a Covariant Vector 

 Let iA  be covariant vector. The skew-symmetric part of the covariant derivative of iA

w.r.t. the indices i and j is a covariant tensor of order (0, 2) : 

    Curl ( )i i j j iA A A    



GEOMETRY  MAT 611 

  

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY 
204 

 

 is called the curl (or rotation) of lA  i.e., 

    Curl ( )
j i

i j
i

A A
A

x x

 
 
 

 

 It should be noted that Curl ( )iA  is skew-symmetric tensor and can have at most 

( 1)

2

n n 
 linearly independent components in a nV . 

 

 Theorem: Show that if the covariant derivative of a covariant vector is symmetric then  

                        vector is gradient. 

 Proof: If the covariant derivative of a covariant vector is symmetric then 

    , ,i j j iA A  

 where  ,
i

i j mj

mA
A A

ijx

 
   
  

 

 Thus      
ji

m mj i

Am mA
A A

ij jix x

   
     

    
 

    

ji

j i

AA

x x




 
as

a

bc

 
 
 

 is symmetric w.r.t. b and c 

       
. .

jj ji

j i

AA
dx dx

x x




 
 

     
( )i i

ji
dA A dx

x





1
j

i

x

x





iff i j  

 Integration gives 

       
( )j j

i j ji i
A A x A dx

x x

 
  

 
   

 Hence ,i ii
A

x


   


grad  , because i
jA dx  is scalar quantity. 

 

 Theorem: A necessary and sufficient condition that the curl of a vector vanishes is that 

the  

                        vector field be gradient. 

 Proof: Let the curl of a vector iA  vanishes i.e., 

    curl , ,( ) 0i i j j iA A A    

 In view of above theorem it can easily be prove that iA  grad  , 

 Let iA   . Then 

              
i i

A
x


  


 

 and           
2 2

;
ji

j j i i i j

AA

x x x x x x

    
 

     
 

 Therefore           
i

j

j i

AA

x x




 
 as 

2 2

j i i jx x x x

   


   
 

 i.e., curl ( ) 0iA 
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 Theorem: If   is a scalar function of ix  then 

            

2 1 kr

k r
g g

x xg

  
    

  
 

 Proof: Since 
2    div (grad  ), therefore 

 and           grad 
1

( ) ( )i k

k
A g A

xg





 

 Also,           grad 
rx


 


 and kr k

r
g A

x





 

 Thus         2 1 kr

k r
g g

x xg

  
    

    
 

 Example 4. Divergence and Laplacian operators in cylindrical coordinates. 

 Solution: In cylindrical coordinates, 

    
2 1 2 1 2 2 3 2( ) ( ) ( ) ; 0ids dx x dx dx x     

 where    
1 2 3, ,x r x x z     

 Thus,    
1 2 1 2

11 22 33 12 23 131, ( ) , 1; 0; ( )g g x g g g g g x        

 And    
11 22 33

1 2

1
1, , 1

( )
g g g

x
    

 We know that div 
( )1

( )
k

i

k

g A
A

xg





 

 Therefore       div 1 2 3

2 3

1
( ) ( ) ( ) ( )iA g A g A g A

x x xg

   
      

 

           

1 1 1 2 1 3

1 1 2 3

1
( ) ( ) ( )x A x A x A

x x x x

   
      

 

           

1 2 3
1 1 1 1
11 1 2 3

1 A A A
A x x x

x x x x

   
    

   
 

           

1 2 3 1

1 2 3 1

A A A A

x x x x

  
   
  

 

 or        div 
1 2 3

1 1( )
AA A A

A
r z r

  
   
  

             … (1) 

 Since div ( )iA  div 1( )A  therefore 

           div 31 2 1
1 1 2 3

1

( )
AA A A

A
xx x x

 
   
  

            … (2) 

 Since 
j

i ijA g A  therefore 

        
1 2 3 1

1 11 12 13A g A g A g A A     
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2 1 2 2 2 2

2 22 ( )A g A x A A r    

        
3 3

3 33A g A A   

 Using in div ( )iA  div ( )iA  we get (From (1)) 

           div 2 1
1 32

( ) ( ) ( )i

A A
A A A

r z rr

   
    
   

 

           div 31 2 1

2

1
( )i

AA A A
A

r z rr

 
   
                     

 … (3) 

 We know that 

     

2 1 kr

k r
g g

x xg

  
    

  
 

 Therefore,    
2 1

1

1 kr

k r
x g

x x x

  
    

  
 

           

1 1 1 2 1 3

1 1 2 3

1 r r r

r rr r
x g x g x g

x x x x x x

            
        

           
 

           

1 11 1 22 1 33

1 1 1 2 2 3 3

1
x g x g x g

x x x x x x

            
        

           
 

           

1 1
11 1 1 2 1 2 2 3 3

1 1

( )
x x x

x x x x x x x x

          
       

          
 

22

1 2
22

1 1

( )
g

g x
   

           

2 2 2
1

11 1 1 2 1 2 2 3 2

1 1

( ) ( ) ( )
x x

x x x x x x

       
    

    
 

           

2 2 2

1 2 1 2 2 2 3 2 1 1

1 1

( ) ( ) ( ) ( )dx x x x x x

      
   

  
 

    

2 2 2
2

2 2 2 2

1 1

r rr r z

      
     

  
 

 

 Example 5. Find div and 2  in spherical polar coordinates. 

 Solution: In spherical polar coordinates, 

    
2 1 2 1 2 2 1 2 2 3 2( ) ( ) ( sin ) ( )ds dx x dx x x dx    

 Therefore,   
1 2 1 2 2

11 22 33 12 13 221, ( ) , ( sin ) ; 0g g x g x x g g g       

 and   11 22 33 1 4 2 2

1 2 1 3 2

1 1
1, , ; ( ) sin ( )

( ) ( sin )
g g g g x x

x x x
     

 we know      div 
1

( ) ( )i k

k
A g A

xg





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1 2 2 1 1 2 2 2

1 2 2 1 2

1
(( ) sin ) (( ) sin )

( ) sin
x x A x x A

x x x x

 
  

 

1 2 2 2

3
(( ) sinx x A

x

 
  

 

          

1
1 2 1 1 2 2

1

1 2 2 2
1 2 2 1 2 2 2

2

2 sin ( ) sin
1

( ) sin
( ) sin ( ) cos

A
x x A x x

x

x x A
x x x x A

x

 



 
 



 

3
1 2 2

3
( ) sin

A
x x

x


 

 
 

     

1 2 3
1 2 2

1 2 3 1

2
( ) coti A A A

div A A x A
x x x x

  
    
         

 … (1) 

      

1 2 3 1
2 22

( ) coti A A A A
div A A

r w r

  
     

  
 

 We also know that div ( )iA  div 1( )A  and 
j ij

jA g A  i.e., 

    

1 2 3 3
1 21 2 1 2 2 2

1
, ,

( ) ( ) (sin )

A
A A A A A

x x x
    

 Therefore by (i) we have 

  div
2 2 2

1 2 1
3 21 1 2 2 1 2 3 1 1 2

21 cosec cot
( ) ( )

( ) ( ) ( )
i

A A Ax x
A A A

x x x x x x x

  
    
  

 

  div 31 2 1
1 22 2 2

21 1 cot ( )
( )

( ) ( ) (sin )

AA A A
A A

r rr r r

  
    
  

      … (2) 

 We know that 

    

2 1 kr

k r
g g

x xg

  
    

  
 

          
1 2 2

1 2 2

1 2 2 1 1 2 1 2 2

1 ( ) sin
( ) sin . .

( ) sin ( )

x x
x x

x x x x x x x

      
    

      
 

1 2 2

3 1 2 2 3

( ) sin

( ) sin

x x

x x x x

  
     

 

          

2
1 2 1 2 2

1 2 2 1 1 2

1
2 sin ( ) sin

( ) sin ( )
x x x x

x x x x

   
 

 
 

2 2
2 2

2 2 2 3 2
cos sin

( ) ( )
x x

x x x

    
   

   
 

    

2 2 2
2

2 2 2 2 2 2

2 cot 1 1

sinr r r r r r w

        
      

     
 … (3) 
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14.6 SUMMARY 

   

  In this block, we have learned how tensor calculus is distinct from classical 

calculus and in which sense both are identically same. The conversion of differential 

operators from Cartesian coordinates to cylindrical polar coordinates and spherical polar 

coordinates is studied in easiest way with the help of tensor Calculus. 
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14.8 TERMINAL QUESTIONS 

 1. For the metric 
2 1 2 2 2 1 2 2 2( ) [( ) ( ) ] ( )ds dx x x dx   , find 

1

22

 
 
 

 

       2. Prove that the necessary and sufficient condition that all the Christoffel symbols  

                           Vanish at a point is that ijg are constant. 

 3. Prove that 
2 r r s i

k l i k i

i rx x x x

kl stx x x x x

         
    

       
 

 4. , ,ij i j j iA B B  prove that , , , 0ij k jk i ki jA A A    

 5. If ijA  is the curl of a covariant vector, prove that , , , 0ij k jk i ki jA A A    

 6. Prove that [ , ] [ , ]
ij jk

k i

g g
jk i ij k

x x

 
  

 
 

 7. Prove that , ,( )i j i i
ij i k i kk

g A B A B A B
x


 


 

       8. Show that only non-zero Christoffel symbols, of the second kind for a space  

                           Where
2 1 2 2 1 2 2( ) sin ( )ds dx x dx  are   

                          1 1 11 2 2
sin cos , cot

22 12 21
x x x

     
        

     
. 

 9. If ijA  is a skew-symmetric tensor, show that 0jk i
A

jk

 
 

 
 

      10.   Find the Christoffel symbols corresponding to the metric 

   

                          
2 1 2 1 2 2 2( ) ( , ) ( )ds dx G x x dx   where G  is function of 

1 2,x x  
 

14.9 ANSWERS 

 1. 
1x  



GEOMETRY  MAT 611 

  

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY 
209 

 

 10. 1 2

1

1 1
( , )

22 2
x x

x

  
  

 
, 1 2

1

2 1
( , )

12 2
G x x

x

  
 

 
 

  

1 2
2 1

log ( , )
22 2

G x x
 

 
 

. 
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