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COURSE INFORMATION 

 

The present self learning material “Theory of Relativity” has been designed for M.Sc. 

(Fourth Semester) learners of Uttarkhand Open University, Haldwani. This self learning 

material is writing for increase learner access to high-quality learning materials. This 

course provides a comprehensive introduction to the foundations and applications of 

relativity and tensor analysis across three major blocks. Block I begins with the Special 

theory of Relativity, covering the classical concepts leading to Einstein’s formulation, 

the Lorentz transformation equations, and their consequences in relativistic 

mechanics. It introduces the four-dimensional geometry of Minkowski space and 

explores key applications such as time dilation, length contraction, and relativistic 

dynamics. Block II focuses on Tensor Analysis, beginning with the concept of tensors 

and the line element, and proceeds to geodesic equations—which describe the paths of 

particles in curved spacetime—and the curvature tensor, crucial for understanding 

gravitational effects in curved geometry. Block III presents General Relativity, 

including the formulation of Einstein’s field equations, the exact Schwarzschild 

solution for spherically symmetric mass distributions, and their significance in 

cosmology, such as the expanding universe. The block concludes with an introduction to 

relativistic electrodynamics, which integrates electromagnetism into the relativistic 

framework. This structure equips students with both the theoretical tools and physical 

insights needed to study modern gravitational physics. 
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UNIT 1:-Classical Theory of Relativity  

CONTENTS: 
1.1      Introduction 

1.2      Objectives 

1.3      The Newtonian Framework of Space and Time  

1.4      Inertial and Non Inertial Frame  

1.5      Galilean Transformation 

1.6      Fictitious Force 

1.7      Electrodynamics 

1.8      Fiezeau’s Experiment 

1.9      Michelson and Morley Experiment 

1.10    Explanation of Negative Results 

1.11     Summary 

1.12     Glossary 

1.13     References 

1.14     Suggested Reading 

1.15     Terminal questions  

1.16     Answers  

 

1.1 INTRODUCTION:-  

The Classical Theory of Relativity, formulated by Albert Einstein, 

revolutionized our understanding of space, time, and gravity. It consists of 

two key components: Special Relativity (1905) and General Relativity 

(1915). Special Relativity applies to observers in inertial frames and 

introduces the principle of relativity, stating that the laws of physics 

remain the same for all observers in uniform motion. It also establishes the 

constancy of the speed of light, leading to phenomena such as time 

dilation, length contraction, and mass-energy equivalence  𝐸 = 𝑚𝑐2 . 

General Relativity extends these ideas to accelerated frames and 

gravitational fields, describing gravity not as a force but as the curvature 

of space-time caused by mass and energy. This theory predicts effects 

such as gravitational time dilation, gravitational Lansing, black holes, and 

gravitational waves. The classical theory of relativity replaced Newton’s 

concept of absolute space and time with a dynamic and relative 

framework, and it has been confirmed through numerous experiments, 
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including light bending near the Sun, precise GPS calculations, and 

gravitational wave detections. 

 

1.2 OBJECTIVES:-  

After studying this unit, the learner’s will be able to  

 To find the solutions of Inertial and Non Inertial Frame. 

 To represent he Galilean Transformation  

 To solved the Michelson and Morley Experiment 

1.3 THE NEWTONIAN FRAMEWORK OF SPACE 

AND TIME:-  

If we take into account the particle's path and velocity, we must always 

assume that there is a coordinate system (or frame of reference) in which 

the particle's position can be specified by a mean of measuring time that 

can determine the intervals of time at which the particle's position should 

be recorded, as well as some coordinates from instant to instant. The walls 

of a room or the position of the stars and the plumb line's direction might 

be thought of as examples of a coordinate system. The earth's rotational 

period can also be used to measure time. Such a frame of reference and the 

sources of time measurement allow for the verification of Newton's law or 

the law of mechanics, at least to a very good approximation. Newton's 

second law states that when a change occurs in the direction that the force 

acts, the rate of change of momentum is proportional to the net force 

impressed. i.e. 

𝐹 =  𝑚𝑎 

where 𝑚 is the mass of the body and 𝑎 is acceleration. This law is valid in 

such frames of reference.  However, this law does not hold in some frames 

of reference. 

 There are generally two types of reference systems: 

1. Accelerated frame of reference  

2. Unaccelerated frame of reference 

1.4 INERTIAL AND NON INERTIAL FRAME:-  
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Inertial Frame 

“The frames with respect to which an unaccelerated body appears 

unaccelerated are Inertial frame. In other words the frames which are at 

rest or in uniform translator motion relative to one other are inertial 

frames.”  

Let's look at a coordinate system that a moving body has co-ordinates 

(𝑥, 𝑦, 𝑧) as well.Since the body is moving at a constant speed and is not 

being affected by any forces, the coordinates 𝑥, 𝑦, and 𝑧 are functions of 

time 𝑡. 

𝑑2𝑥

𝑑𝑡2
= 0,

𝑑2𝑦

𝑑𝑡2
= 0,

𝑑2𝑧

𝑑𝑡2
= 0, 

𝑑𝑥

𝑑𝑡
= 𝑢,

𝑑𝑦

𝑑𝑡
= 𝑣,

𝑑𝑧

𝑑𝑡
= 𝑤, 

where 𝑢, 𝑣,𝑤 being velocity components in 𝑥, 𝑦, 𝑧 directions respectively. 

This is Newton’s first law of inertia. 

We define this type of coordinate system as an inertial frame.  

Accordingly, "An inertial frame of reference is one in which Newton's 

first law is true."  Or an inertial frame is an unaccelerated frame. 

Non-Inertial Frames 

“Non-Inertial frames” are the frames that make an unaccelerated body 

appear accelerated.  Alternatively said, the accelerated frames are non 

inertial. 

1.5 GALILEAN TRANSFORMATION:-  

The outcome of research work of Galileo on the motion of the projectile 

led him to formulate Galilean Transformations. These are used to relates 

the motions which are observed by two observers in two different inertial 

frames. His two main results are as follows: 

1. The motion of a particle projected at any angle may be derived 

from the motion of the particle thrown vertically upward. 

2. If a particle is thrown straight up from a cart which is moving with 

uniform speed, the observer on the cart may see the particle 

moving up and down, but the motion observed by an observer on 
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the ground may be described by superimposing the motion of the 

cart into that of the projectile. 

Let's look at two frames of reference, 𝑆 and 𝑆′, one at rest and the other 

traveling at a constant speed, v.  Assume that the observers 𝑂 and 𝑂˹ 

are located at the origins of S and Sʹ, respectively.  At any point P, 

they observe the identical event.  Assume that the Xʹ, Yʹ, and Zʹ axes 

are parallel to one another, or that the two frames are parallel to one 

another.  Let (x, y, z, t) and (xʹ, yʹ, zʹ, tʹ) be the coordinates of P with 

respect to origin O and Oʹ, respectively. 

Two frames have been chosen so that their origins overlap at time 𝑡 =

 0 (𝑡ʹ =  0). 

 

Fig.1.1 

Case I: When the frame Sʹ have the velocity v only in Xʹ direction. 

In that case, 𝑂′ has velocity 𝑣 only along the 𝑋 axis (see figure 1.2). 

The two systems can be combined to each other by the following 

equations  

                    

𝑥′ = 𝑥 − 𝑣𝑡
𝑦′ = 𝑦

𝑧′ = 𝑧
𝑡′ = 𝑡

}                                 … (1) 
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Fig.1.2 

Case II: When the frame Sʹ have velocity v along any straight line in 

any direction such that 𝒗 = 𝒊𝒗𝒙 + 𝒋𝒗𝒚 + 𝒌𝒗𝒛. 

During a time 𝑡,  the frame 𝑆′  separated from 𝑆  by 𝑡𝑣𝑥 , 𝑡𝑣𝑦 , 𝑡𝑣𝑧   and 

𝑡𝑣𝑧 along the 𝑥, 𝑦, and 𝑧 axes, respectively. Then, the following equations 

can be used to relate the two systems. 

                                                

𝑥′ = 𝑥 − 𝑡𝑣𝑥
𝑦′ = 𝑦 − 𝑡𝑣𝑦
𝑧′ = 𝑧 − 𝑡𝑣𝑧
𝑡′ = 𝑡 }

 

 
                               … (2) 

 

Fig.1.3 

Transformations (1) and (2) are known as Galilean Transformations. 
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Case III: Galilean transformation in vector form: 

 

Fig.1.4 

 

Let 𝑆 and 𝑆′ be two systems that are moving with a velocity 𝑣 in relation 

to 𝑆.  Two systems' origins initially coincide. 

Suppose that, after time 𝑡, 𝑟 and 𝑟′ are the position vectors of any particle 

𝑃 with regard to origins 𝑂 and 𝑂′ of systems 𝑆 and 𝑆′, respectively.  Then 

𝑂𝑂′⃗⃗⃗⃗ ⃗⃗  ⃗ = 𝑣𝑡. 

Accordingly, using the law of triangles of vector addition, fig. 1.4 

𝑟 = 𝑟′ + 𝑣𝑡 

 ⇒                                                  𝑟′ = 𝑟 − 𝑣𝑡                         … (3) 

   𝑎𝑙𝑠𝑜                                                    𝑡′ = 𝑡                            … (4) 

These equations are known as Galilean transformations of space and time 

in vector form. 

Equations (1), (2) and (3) are represent time dependent Galilean 

transformation since they are time dependent and were given by Galileo. 

EXAMPLE1: Prove that the Galilean transformation of a position vector 

is expressed as 𝑟 = 𝑟0 + 𝑟
′ + 𝑣𝑡 , where v is the linear velocity of the 

frame Oʹ and 𝑟0 is the position vector of origin Oʹ as measured by O at 

𝑡 ′ = 0. 
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Fig.1.5 

SOLUTION: Take two frames 𝑆 and 𝑆ʹ, the latter moving with velocity 

𝑣 relative to former. Consider 𝑂 and 𝑂ʹ to be the observers of the event 

occurring at 𝑃, who are positioned at 𝑆 and 𝑆ʹ, respectively. When 𝑟 and 

𝑟′ represent the point 𝑃 position vectors at any given time (fig. 1.5), we 

written 

                                                 𝑟 = 𝑟′ + 𝑅                                          … (1) 

where 𝑅 is the position vector of observer 𝑂′ relative to 𝑂 after time 𝑡. 

If 𝑟0(𝑂𝑄⃗⃗⃗⃗⃗⃗ ) is the position vector of the observer 𝑂′ relative to 𝑂 at 𝑡 = 0, 

then from Fig. 1.5, we get 

𝑅 = 𝑂𝑄⃗⃗⃗⃗⃗⃗ + 𝑄𝑂′⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

                                                     = 𝑟0 + 𝑣𝑡                                        … (2)                                      

The distance traversed 𝑄𝑂′⃗⃗⃗⃗ ⃗⃗  ⃗ by the observer 𝑂ʹ in time t is 𝑣𝑡. 

Substituting the value of  R from (2) in (1), we obtain 

𝑟 = 𝑟′ + 𝑟0 + 𝑣𝑡 

EXAMPLE2: Let two systems S and Sʹ moving with velocity 𝑣 = 𝑖𝑣𝑥 +

𝑗𝑣𝑦 + 𝑘𝑣𝑧 relative to S. If the origins of the two systems coincide at 𝑡 =

𝑡′ = 𝑡0, find the Galilean transformation equations. 
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SOLUTION: The system Sʹ is moving with respect to S at velocities 𝑣𝑥 ,

𝑣𝑦 ,   and  𝑣𝑧  along the 𝑋, 𝑌,  and 𝑍 axes in a positive direction, 

respectively. If two frames have the same origin at 𝑡 = 𝑡′ = 𝑡0, then 

The distance traversed by observer Oʹ in Sʹ relative to observer O in S at 

any instant t along axis of X = 𝑣𝑥(𝑡 − 𝑡0) 

The distance traversed by observer Oʹ relative to observer O at any instant 

t along Y axis = 𝑣𝑦(𝑡 − 𝑡0) 

The distance traversed by observer Oʹ relative to observer O at any instant 

t along Z axis = 𝑣𝑧(𝑡 − 𝑡0) 

Hence the Galleon transformation equations are 

𝑥′ = 𝑥 − 𝑣𝑥(𝑡 − 𝑡0) 

𝑦′ = 𝑦 − 𝑣𝑦(𝑡 − 𝑡0) 

𝑧′ = 𝑧 − 𝑣𝑧(𝑡 − 𝑡0) 

EXAMPLE3. The origin of two systems S and Sʹ coincide initially. The 

system Sʹ is moving with velocity (3𝑖 + 4𝑗 + 6𝑘)cm/sec. relative to S. 

After 2 sec if the co-ordinates of any point as observed by an observer at 

the origin of S are (5, 6, -9) cm. Find the co-ordinates of the point relative 

to an observer at the origin of Sʹ. 

SOLUTION: we know that, the Galilean transformation equations are 

𝑥′ = 𝑥 − 𝑣𝑥𝑡 

𝑦′ = 𝑦 − 𝑣𝑦𝑡 

𝑧′ = 𝑧 − 𝑣𝑧𝑡 

Given 𝑥 = 5, 𝑦 = 6, 𝑧 = −9, 𝑡 = 2𝑠𝑒𝑐, 𝑣𝑥 = 3𝑐𝑚/𝑠𝑒𝑐, 𝑣𝑦 =

4𝑐𝑚/𝑠𝑒𝑐, 𝑣𝑧 = 4𝑐𝑚/𝑠𝑒𝑐 

∴ 𝑥′ = 5 − 3 × 2 = −1 

𝑦′ = 6 − 4 × 2 = −2 

𝑧′ = −9− 6 × 2 = −21 
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The co-ordinate of the point relative to an observer at the origin of Sʹ are 

(−1,−2,−21)cm. 

1.6 FICTITIOUS FORCE:-  

The presence of a mass particle in an accelerated frame relative to a 

stationary frame observer makes the frame non-inertial, and even when the 

particle is at rest, the acceleration of the frame gives the impression that a 

force is operating on it. The term "fictitious force" refers to this kind of 

force. As an illustration: Coriolis force 

Example 4. Show that the length of the rod is invariant under Galilean 

transformation. 

Solution: Let us suppose the co-ordinates of two point A and B in two 

inertial frame S and Sʹare 

(𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2) 𝑎𝑛𝑑 (𝑥1
′ , 𝑦1

′ , 𝑧1′), (𝑥2
′ , 𝑦2

′ , 𝑧2′) respectively. 

If Sʹ is moving with velocity v relative to S along Xʹ axis, then according 

to Galilean transformation 

𝑥1
′ = 𝑥1 − 𝑣𝑡, 𝑦1

′ = 𝑦1, 𝑧1
′ = 𝑧1

𝑥2
′ = 𝑥2 − 𝑣𝑡, 𝑦2

′ = 𝑦2, 𝑧2
′ = 𝑧2

}            … (1) 

The distance between the points A and B in the frame Sʹ 

= [(𝑥2′ − 𝑥1′)
2 + (𝑦2

′ − 𝑦1′)
2 + (𝑧2

′ − 𝑧1′)
2]
1
2 

By using equation (1), 

= [{(𝑥2 − 𝑣𝑡) − (𝑥1 − 𝑣𝑡)}
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2]
1
2 

= distance between the poinsin the frame S 

⇒the length of rod is invariant under Galilean transformation. 

Theorem 1. Invariance of Newton’s Law: To prove that Newtonian 

fundamental equations are invariant under Galilean transformation. 

Proof: Using Newton's second rule of motion, we demonstrate this claim. 

A particle acted upon by a force F has an acceleration
𝑑2𝑥

𝑑𝑡2
, in the absolute 

system of coordinates, so that 
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𝐹 = 𝑚
𝑑2𝑥

𝑑𝑡2
                     … (1) 

In Galileon frame of reference, we get 

𝑥′ = 𝑥 − 𝑣𝑡, 𝑦′ = 𝑦, 𝑧′ = 𝑧, 𝑡′ = 𝑡 

⇒        
𝑑𝑥′

𝑑𝑡
=
𝑑𝑥

𝑑𝑡
− 𝑣, 𝑑𝑡′ = 𝑑𝑡 

⇒          
𝑑𝑥′

𝑑𝑡′
=
𝑑𝑥

𝑑𝑡
− 𝑣 

⇒         
𝑑2𝑥′

𝑑𝑡′2
=
𝑑2𝑥

𝑑𝑡2
          … (2) 

Forces and masses are absolute quantities in Newtonian mechanics, thus 

that 

                                                   𝑚′ = 𝑚,𝐹′ = 𝐹           … (3) 

Substituting thevalues from (2) and (3) in (1)’ 

                                                       𝐹′ = 𝑚′ 𝑑
2𝑥′

𝑑𝑡′2
           … (4) 

Newton's second rule of motion is invariant under Galilean 

transformation, according to a comparison of (1) and (4). 

1.7 ELECTRODYNAMICS:-  

The forces between two moving charges in classical mechanics are 

dependent on their distance from one another and are directed down the 

straight line that connects them. According to electrodynamics, the force 

between two moving charges is determined by their velocities and distance 

from one another. Furthermore, the active force's path does not connect 

the charges in a straight in a straight line. 

This is how electrodynamics and classical mechanics vary from one 

another. Therefore, in the case of electrodynamics, the fundamental ideas 

of Newtonian or classical mechanics may not be applicable. Maxwell's 

basic equations of electrodynamics are the outcome of applying the 

principle of relativity to electrodynamics through experiments conducted 

in two distinct inertial frames. In line with Maxwell,  
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ʺElectrodynamics waves propagate in empty space with a uniform velocity 

𝑐 = 3 × 1010𝑐𝑚/𝑠𝑒𝑐.  light waves are electromagnetic waves and the 

velocity of light in vacuum is independent to the state of motion of the 

source of light and is equal to the constant value, 𝑐 = 3 × 1010𝑐𝑚/𝑠𝑒𝑐.ʺ 

Then, regardless of the motion of the light source, the velocity of light 

must have a constant value c with respect to all inertial frames. This is in 

contrast to the classical theory, which also shows in Galilean 

transformation that a system moving in the direction of the velocity of a 

particle has a lower velocity than a system at rest. Therefore, if the moving 

system is traveling with a constant velocity in the direction of light 

propagation, the velocity of light must be different in the two systems—

one at rest and the other moving—and its value in the moving system must 

be lower than the stationary one. 

As a result, the relativity principle and the constancy of the speed of light 

are incompatible with classical theory. Therefore, we must rethink our 

standard understanding of space and time if we embrace the relativity 

principle in the context of electromagnetism. 

1.8 FIZEAU’S EXPERIMENT:-  

The purpose of this experiment was to use ether to measure the earth's 

absolute velocity. Water served as Fizeau's medium within the block. He 

used two light beams in his experiment, one pointing in the direction of 

the water's velocity and the other in the opposite direction. The setup of 

the experiment is depicted in fig. 1.6. 

 

Fig.1.6 
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In the tube 𝐴𝐵𝐶𝐷𝐸𝐹 , the arrow at points A through F indicates the 

direction of the water flow, while 𝑆 represents a light source. Following its 

emission from source S, the light beam strikes a semi-silvered mirror 𝑀1, 

which is angled 450 degrees from the horizontal. A portion of the light 

beam falling in direction 𝑀1 is transmitted in direction 𝑀1𝐷 , while the 

other portion is reflected in direction 𝑀1𝑀2 . 

The reflected beam follows the path 𝑀1𝑀2is reflected towards 𝑀2𝐶, at 𝑀2, 

is reflected again by mirrors 𝐶  and 𝐷  at 𝐶  and 𝐷,  falls on 𝑀1  and then 

enters the telescope following reflection.  As a result, the transmitted part 

follows path 𝑀1𝐸𝐷𝐶𝑀2𝑀 in the opposite direction of the water's velocity 

and subsequently enters the telescope, whereas the reflected part follows 

path 𝑀1𝑀2𝐶𝐷𝑀1. Interference is a phenomena that results in interference 

fringes because the two beams enter the telescope at different times since 

they take different amounts of time to travel the same path. 

The time difference between the two rays is: 

=
𝑑

𝑐
𝜇 + 𝑓𝑣 − 𝑢 (1 −

1
𝜇2
)
−

𝑑

𝑐
𝜇 + 𝑓𝑣 + 𝑢 (1 −

1
𝜇2
)
 

= 𝑑
2𝑢 (1 −

1
𝜇2
)

{
𝑐
𝜇 + 𝑓𝑣 − 𝑢 (1 −

1
𝜇2
)} {

𝑐
𝜇 + 𝑓𝑣 + 𝑢 (1 −

1
𝜇2
)}

 

= 2𝑢𝑑. (1 −
1

𝜇2
) [
𝜇2

𝑐2
{1 +

𝑓𝑣𝜇

𝑐
+
𝜇𝑣

𝑐
(1 −

1

𝜇2
)}

−1

. {1 +
𝑓𝑣𝜇

𝑐

+
𝑢𝜇

𝑐
(1 −

1

𝜇2
)}
−1

] 

=
2𝑢𝑑𝜇2

𝑐2
(1 −

1

𝜇2
)  

(Neglecting higher order terms). 

 

One oscillator's period T is divided by the equation to determine the phase 

difference. Let 𝑛  be the frequency at which the light oscillates. 

Consequently, 𝑛𝑇 = 1. 

Phase difference: 

                     =
2𝑢𝑑

𝑐2𝑇
(𝜇2 − 1) =

2𝑢𝑑𝑛

𝑐2
(𝜇2 − 1)                          … (1) 
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Fizeau noticed that the interference pattern's fringes were shifting, and he 

discovered that this was just what equation (1) predicted. He was 

unsuccessful in determining the earth's velocity. 

 

1.9 MICHELSON AND MORLEY EXPERIMENT:-  

The Michelson and Morley experiment, conducted in 1887 by Albert A. 

Michelson and Edward W. Morley, is one of the most significant 

experiments in the history of physics. It was designed to detect the 

presence of a hypothetical medium known as the luminiferous aether, 

which was believed to be the substance through which light waves 

propagated analogous to how sound waves require air. Using an optical 

device called an interferometer, the experiment attempted to measure 

differences in the speed of light in perpendicular directions, assuming that 

the Earth’s motion through the aether would cause a measurable "aether 

wind." According to classical physics, light moving with or against this 

wind would have different speeds, leading to observable shifts in 

interference patterns. However, the experiment produced a null result no 

significant change in the interference pattern was observed. This 

surprising outcome strongly suggested that the speed of light is constant in 

all directions; regardless of the motion of the source or the observer 

relative to the supposed aether.The implications of this result were 

profound. It undermined the ether theory and paved the way for Albert 

Einstein's theory of Special Relativity (1905), which postulated that the 

speed of light in a vacuum is constant for all inertial observers and that 

space and time are interwoven into a single continuum: space-time.  

The experiment is set up so that a monochromatic light source 𝑆 shines on 

a half-silvered plate 𝑃₁ that is angled 45 0degrees from the light beam 

from 𝑆. The light beam is split into two halves by the half-silvered plate 

𝑃₁; one is transmitted through it, and the other is reflected perpendicular to 

its initial direction. The reflected beam enters the telescope 𝑇 after 

generally striking a flat mirror 𝑀₁ at 𝐴 and reflecting back along its own 

path, passing via 𝑃₁. After being transmitted through 𝑃₁, the other beam 

travels through a plate 𝑃₂ that is parallel to it and has a thickness equal to 

𝑃₁. It then travels along its own route and is generally reflected by a plane 

mirror 𝑀₂ at 𝐵. After going through 𝑃₂, the reflected beam hits 𝑃₁ and is 

reflected back to the telescope 𝑇. Both mirrors, 𝑀₁ and 𝑀₂, are at similar 

distances from 𝑃₁,  such that .,  𝑃1𝐵 = 𝑃1𝐴 , and are highly polished to 

prevent double total internal reflection. 
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Fig.1.7 

Interference fringes are created when the two beams that are reflected 

from the mirrors 𝑀1 and 𝑀2  enter the telescope.  Since the reflected beam 

crosses plate 𝑃2  twice, the plate 𝑃2 serves just to offset the additional path 

it takes.  Therefore, the plate 𝑃2 is added in the path so that the two beams 

before entering the telescope can travel equal distances, allowing the 

transmitted beam to have to travel an equal additional distance. 

Let's now assume that the entire apparatus is traveling toward the right at 

the earth's velocity, or along 𝑆𝑃1𝐵 ether, while remaining stationary. 

Because of the earth's motion, the beam is reflected by the mirror M_1 at 

A' rather than A, and again by 𝑀2  at 𝐵′  rather than 𝐵.  

During this period, the earth's motion causes the plate 𝑃1 to shift to 𝑃1′, 

which causes the two beams in the telescope 𝑇 to collide. It is clear that in 

this instance, the transmitted and reflected beams' journey lengths are not 

equal. 

 

Fig.1.8 

Suppose 

 𝑐 = velocity of light w.r.t. ether. 

v = velocity of earth w.r.t. ether, 𝑃1𝐴 = 𝑙 
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𝑡1 = time taken by the transmitted beam which travels the distance from 

𝑃1 𝑡𝑜 𝐵
′𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝐵′𝑡𝑜 𝑃1′  

𝑡2 =  time taken by the reflected beam which travels from 

𝑃1 𝑡𝑜 𝐴
′𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝐴′𝑡𝑜 𝑃1′  

Since the mirror 𝑀1  at A and the mirror 𝑀2  at B are placed at equal 

distance and therefore  

𝑃1𝐴 = 𝑃1𝐵 = 𝑙 

To calculate𝒕𝟏 

The device is traveling to the right with a velocity of 𝑣.  Consider the 

laboratory to be the norm. It implies that the device could be assumed to 

be located in the stream of ether traveling leftward at velocity 𝑣. velocity 

of light in relation to the device in the appropriate direction. 

= velocity of light w.r.t. ether + velocity of ether w.r.t. apparatus 

= 𝑐 + (−𝑣) = 𝑐 − 𝑣 

Thus, 𝑐 − 𝑣 is the relative velocity of light along 𝑃1𝐵
′. 

Similarly, 𝑐 + 𝑣 is the relative velocity of light along 𝐵′𝑃1′ 

𝑡1 = time taken by the beam from 𝑃1 𝑡𝑜 𝐵
′𝑎𝑛𝑑 𝐵′𝑡𝑜 𝑃1′ 

=
𝑙

𝑐 − 𝑣
+

𝑙

𝑐 + 𝑣
=

2𝑙𝑐

𝑐2 − 𝑣2
=
2𝑙𝑐

𝑐2
[1 −

𝑣2

𝑐2
]

−1

 

=
2𝑙𝑐

𝑐2
[1 +

𝑣2

𝑐2
] =

2𝑙

𝑐
[1 +

𝑣2

𝑐2
] 

𝑣 being small in comparison to 𝑐.
𝑣3

𝑐3
 and higher power of 𝑣/𝑐 have been 

neglected. 

To calculate 𝒕𝟐: for the path 𝑃1𝐴′𝑃1′, when the beam travels from 𝑃1𝑡𝑜 𝐴′, 

the apparatus travels from A to Aʹ and hence  

𝐴𝐴′

𝑃1𝐴′
=
𝑣

𝑐
 

𝐴𝐴′ =
𝑣

𝑐
𝑃1𝐴′ 



Theory of Relativity  MAT609 

Department of Mathematics  

Uttarakhand Open University Page 17 
 

In ∆𝑃1𝐴𝐴
′, 𝑃1𝐴

2 + 𝐴′𝐴2 = 𝑃1𝐴′
2 

𝑙2 +
𝑣2

𝑐2
𝑃1𝐴′

2 = 𝑃1𝐴′
2 

𝑃1𝐴
′ =

𝑙

√[1 −
𝑣2

𝑐2
]

= 𝑙 [1 −
𝑣2

𝑐2
]

−1
2⁄

= 𝑙 [1 +
𝑣2

2𝑐2
] 

𝑡2 = time taken by the beam from 𝑃1𝑡𝑜 𝐴
′𝑎𝑛𝑑 𝐴′𝑡𝑜 𝑃1′ 

= 2 time taken by the beam from 𝑃1𝑡𝑜 𝐴′ 

= 2
𝑃1𝐴′

𝑐
. 𝐹𝑜𝑟 𝑡𝑖𝑚𝑒 =

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
 

=
2𝑙

𝑐
[1 +

𝑣2

2𝑐2
] 

The difference in two timings results from the relative distance with 

respect to the apparatus being 𝑙 in the travel towards 𝑏 and backwards. 

∆𝑡 = 𝑡1 − 𝑡2 =
2𝑙

𝑐
(1 +

𝑣2

𝑐2
) −

2𝑙

𝑐
(1 +

𝑣2

2𝑐2
) 

=
2𝑙

𝑐
[1 +

𝑣2

𝑐2
− 1 −

𝑣2

2𝑐2
] =

𝑙𝑣2

𝑐3
 

The two systems will be in reverse positions when the device is turned 

90° degrees and hence. 

𝑡1̅ = 𝑡2̅, 𝑡2̅ = 𝑡1 

∆𝑡̅ = 𝑡1̅ − 𝑡2̅ = 𝑡2 − 𝑡1 = −(𝑡1 − 𝑡2) = −∆𝑡 

∆𝑡̅ − ∆𝑡 = −∆𝑡 − ∆𝑡 = −2∆𝑡 = −
2𝑙𝑣2

𝑐3
 

Let T be the time period, 𝑛 the frequency. 

Then 𝑛𝑇 = 1 

𝑝ℎ𝑎𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

𝑇
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=
2𝑙𝑣2

𝑐3
.
𝑛

1
 

𝑝ℎ𝑎𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = −
2𝑛𝑙𝑣2

𝑐3
 

Therefore, a shift in fringes could be anticipated as a result of the 

aforementioned discrepancy, but none was seen. In order to increase the 

distance, the experiment was performed using many mirrors; nonetheless, 

the outcome remained the same, i.e., all produced null results . 𝑣 =  0 

could be one reason, although Fresnel's law of drift contradicts this 

supposition. No change in fringes was seen when Trouton and Noble 

conducted the experiment again in 1904 using electromagnetic waves 

rather than visible light. All recent attempts to precisely avoid potential 

mistakes were unable to significantly alter the initial outcome. 

1.10 EXPLANATION OF NEGATIVE RESULTS:-  

1. Drag Theory: As started earlier, one possible explanation is 𝑣 = 0 i.e. 

velocity of earth relative to ether is zero. 

This gives 𝑡1 = 𝑡2. for  

𝑡1 =
2𝑙

𝑐
(1 +

𝑣2

𝑐2
) , 𝑡2 =

2𝑙

𝑐
(1 +

𝑣2

2𝑐2
) 

In that case, the earth and the ether have no relative velocity.  Stated 

differently, the ether is pulled with the earth's gravity at the same speed as 

the earth.  There shouldn't be any aberration light, though, if this argument 

is adopted.  The value of aberration and the lack of shift in fringes cannot 

be explained at the same time, even if the ether is thought to be partially 

pulled. 

Lorentz and Fitzgerald Contraction Hypothesis: Fitzgerald proposed a 

theory in 1892 to account for the negative results of the Michelson-Morley 

experiment, which became known as the Lorentz Fitzgerald contraction 

hypothesis. Their hypothesis is “All material bodies moving with velocity v 

are contracted in the direction of motion by a factor (1 −

𝛽2)1/2𝑤ℎ𝑒𝑟𝑒 𝛽 =
𝑣

𝑐
  ”. 
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According to this hypothesis, if 𝑙0 is the length of a body at rest with 

regard to ether and 𝑙 is its length when it is moving with velocity 𝑣 with 

respect to ether, then𝑙 = 𝑙0(1 − 𝛽
2)1/2 .  

Using this idea, they offered the following explanation for the negative 

results of the Michelson-Morley experiment: 

𝑡1 =
2𝑙

𝑐
(1 +

𝑣2

𝑐2
) , 𝑡2 =

2𝑙

𝑐
(1 +

𝑣2

2𝑐2
) 

According to Lorentz and Fitzgerald, then we get 

𝑡1 =
2𝑙

𝑐
(1 +

𝑣2

𝑐2
)(1 −

𝑣2

𝑐2
)

1/2

 

=
2𝑙

𝑐
(1 −

𝑣2

2𝑐2
)(1 +

𝑣2

𝑐2
) 

=
2𝑙

𝑐
(1 +

𝑣2

𝑐2
−
𝑣2

2𝑐2
−
𝑣4

2𝑐4
) =

2𝑙

𝑐
(1 +

𝑣2

2𝑐2
) = 𝑡2 

Neglecting the term 
𝑣4

𝑐4
 

∴ 𝑡1 = 𝑡2. 

Consequently, there is no phase difference between the transmitted and 

reflected beams because their response times are equal. As a result, no 

change in fringes is seen. 

Example 5: In an experiment, the length of the arm of the interferometer 

was 11 meters, the wavelength of light 5.5 × 10−5  centimeters and the 

earth velocity 30 km/sec, calculate the amount of the fringe-shift. 

Solution: given: 𝑙 = 1100𝑐𝑚, 𝜆 = 5.5 × 10−5𝑐𝑚, 𝑣 = 30 ×

105𝑐𝑚/𝑠𝑒𝑐, 𝑐 = 3 × 1010𝑐𝑚/𝑠𝑒𝑐 

The required fringe-shift i.e., phase difference 𝑥0 is given by 

𝑥0 =
2𝑙𝑛𝑣2

𝑐3
=
2𝑙𝑣2

𝑐3
.
𝑐

𝜆
=
2𝑙𝑣2

𝑐2𝜆
 

𝑥0 =
2 × 1100 × (3 × 106)2

(3 × 1010)2 × 5.5 × 10−5
=
2

5
= 0.4 
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SELF CHECK QUESTIONS 

1. Frames for which law of inertia is valid are called 

a) Inertial 

b) Rotational 

c) Non-inertial 

d) None of these 

2. the reference frame where fundamental laws of physics are 

invariant are called: 

a) rotational 

b) inertial frame 

c) accelerated frame 

d) frame attached to earth 

3. the fundamental laws of physics are the same which are : 

a) rotationary frame 

b) inertial frame 

c) accelerated frame  

d) frames connected to earth 

4. In Michelson-Morley experiment if the effective lenghth of path is 

7 meter and wavelength of light is 700 𝐴°  , then fringe 

displacement is 

a) 0.2 

b) 0.1 

c) 0.4 

d) 0 

5. Newton’s 1st law of motion holds good in 

a) Inertial frame 

b) Every frame 

c) Non-inertial frame 

d) None of these 

6. Newton’s 2nd law of motion is invariant under 

a) Galilean transformation 

b) Lorentz transformation 

c) Both of the above 

d) None of these 

1.11 SUMMARY:-  

In this unit, we explored the Newtonian framework of space and 

time, where space and time are treated as absolute and independent 
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entities. We distinguished between inertial frames (those moving 

with constant velocity) and non-inertial frames (accelerating 

frames), introducing the concept of fictitious forces that appear in 

non-inertial frames to explain apparent accelerations. The Galilean 

transformation was studied as the mathematical tool to relate the 

coordinates and velocities between different inertial frames in 

classical mechanics. We extended our study to classical 

electrodynamics, highlighting the inconsistencies it faced when 

subjected to Galilean transformations. Experimental efforts to 

resolve these issues, such as Fizeau’s experiment (which tested the 

speed of light in moving media) and the Michelson-Morley 

experiment (which attempted to detect the aether), were discussed 

in detail. The null result of the Michelson-Morley experiment and 

its explanation marked a pivotal shift in physics, setting the stage 

for Einstein’s theory of Special Relativity. 

 

1.12 GLOSSARY:-  

 

 Relativity: The principle that the laws of physics are the same in 

all inertial frames of reference. 

 Galilean Relativity: A classical theory proposed by Galileo 

stating that mechanical laws are invariant under Galilean 

transformations between inertial frames. 

 Inertial Frame of Reference: A frame of reference in which a 

body remains at rest or moves at constant velocity unless acted 

upon by a force. 

 Non-Inertial Frame of Reference: A frame that is accelerating, 

where fictitious forces (like centrifugal force) must be introduced 

to apply Newton’s laws. 

 Galilean Transformation: Equations used to transform 

coordinates and time between two inertial frames in classical 

mechanics. 

 Absolute Time: The concept in Newtonian mechanics that time 

flows uniformly for all observers, independent of their motion. 

 Absolute Space: The idea that space exists independently and is 

the same for all observers. 

 Relative Motion: The change in position of an object with respect 

to a particular frame of reference. 
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 Velocity Addition Law: In Galilean relativity, velocities add 

linearly (𝑒. 𝑔. , 𝑢′ = 𝑢 + 𝑣). 

 Fictitious Force: A force that appears when observing motion 

from a non-inertial frame (e.g., Coriolis force or centrifugal force). 

 Michelson-Morley Experiment: A famous experiment aimed at 

detecting the motion of Earth through the aether; it yielded a null 

result, challenging classical relativity. 

 Fizeau’s Experiment: An experiment measuring the speed of light 

in moving water, supporting the idea of partial aether drag. 

 Electrodynamics: The study of electric and magnetic fields, 

particularly how they behave with moving charges; classical 

electrodynamics struggled under Galilean transformations. 

 Aether: A hypothetical medium once thought to carry light waves 

through space. 

 Null Result: An experimental result showing no expected effect; 

in relativity, often refers to the Michelson-Morley experiment’s 

failure to detect the aether. 

 

1.13 REFERENCES:-  
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 Spencer A. Klein (2017), "Relativistic Mechanics and 

Electrodynamics". 

 Ta-Pei Cheng (2015),"Relativity, Gravitation and Cosmology: A 

Basic Introduction" (2nd Edition). 

1.14 SUGGESTED READING:-  

 Satya Prakash and K.P. Gupta (Nineteenth Edition, 2019), 

Relativistic Mechanics. 
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Theory of Relativity. 

1.15 TERMINAL QUESTIONS:- 

(TQ-1)Discuss Michelson-Morley experiment and explain the outcome 

of this experiment. 
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(TQ-2) Explain Lorentz- Fitzgerald contraction idea. How was the idea 

used to account for the negative result of the Michelson-Morley 

experiment? 

(TQ-3) In the Michelson-Morley experiment, the wavelength of the 

monochromatic light used in 5000𝐴°. What will be the expected fringe-

shift on the basis of stationary ether hypothesis if the effective length of 

each path be 5 meter? Given velocity of earth =3× 104 m/sec and 𝑐 = 3 ×

108𝑚/𝑠𝑒𝑐. 

(TQ-4) in Fizeau’s experiment, the approximation values of the 

parameters were as follows 

𝑙 = 1.5 𝑚, 𝑛 = 1.33, 𝜆 = 5.3 × 10−7𝑚,𝑣𝑤 = 7𝑚/𝑠𝑒𝑐 

A shift of 0.23m fringes was observed from the case 𝑣𝑤 = 0. Calculate the 

drag coefficient and compare it with the predicted value. 

 

1.16 ANSWERS:- 

SELF CHECK ANSWERS (SCQ’S) 

1. (𝑎) 

2. (𝑏) 

3. (𝑏) 

4. (𝑎) 

5. (𝑎) 

6. (𝑎) 

 

TERMINAL ANSWERS (TQ’S) 

(TQ-3) 
1

5
𝑚 

(TQ-4) d=0.4922 

  

 

 



Theory of Relativity  MAT609 

Department of Mathematics  

Uttarakhand Open University Page 24 
 

UNIT 2:- Lorentz Transformation Equations  

CONTENTS: 
2.1      Introduction 

2.2      Objectives 

2.3      The Relativistic Concept of Space & Time 

2.4      Postulates of Special theory of Relativity 

2.5      Lorentz Transformation 

2.6      Consequences of Lorentz Transformation 

2.7      Time Dilation or Apparent Retardation of Rest 

2.8      Simultaneity 

2.9      Lorentz Transformation for a group 

2.10    Aberration (Relativistic Treatment) 

2.11    Doppler’s Effect 

2.12     Summary 

2.13     Glossary 

2.14     References 

2.15     Suggested Reading 

2.16     Terminal questions  

2.17     Answers  

 

2.1 INTRODUCTION:-  

The Lorentz transformation is a set of linear equations that relate the space 

and time coordinates of events as measured in two different inertial frames 

of reference moving at a constant velocity relative to each other. It was 

developed by Hendrik Lorentz and later incorporated into Einstein’s 

Special Theory of Relativity. The need for Lorentz transformation arose 

when the classical Galilean transformation failed to explain phenomena 

involving the speed of light, such as the null result of the Michelson-

Morley experiment. According to Einstein’s second postulate of special 

relativity, the speed of light is constant in all inertial frames, which 

contradicted the assumptions of classical mechanics. Lorentz 

transformations preserve the constancy of the speed of light and the form 

of the equations of electrodynamics (Maxwell's equations) across different 

inertial frames. They show that measurements of time, length, and 

simultaneity are relative, depending on the observer’s frame of reference. 

This leads to important relativistic effects such as time dilation and length 

contraction. 
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2.2 OBJECTIVES:-  

After studying this unit, the learner’s will be able to  

 To explain relativistic concept of space and time. 

 To explain the postulates of special theory of relativity. 

 To derive Lorentz transformation equations. 

 To understand the Doppler’s Effect. 

2.3 THE RELATIVISTIC CONCEPT OF SPACE 

AND TIME:-  

Despite careful studies, Michelson-Morley, Trouton, Noble, and others 

were unable to ascertain the earth's velocity with respect to ether. Lorentz 

and Fitzgerald put out the following theory in an effort to explain the 

undesirable result: Every inertial frame requires the use of unique space 

coordinates (Fitzgerald hypothesis) and unique time coordinates (Lorentz 

hypothesis), which differ from the time and space coordinates in the 

absolute ether system. Thus, Lorentz and Fitzgerald suspected a new 

understanding of space and time in addition to the concept of an absolute 

ether frame. Einstein boldly asserted in 1905 that whereas motion via ether 

is a useless idea, motion relative to material entities has physical 

substance. This was done in response to the unfavorable findings of the 

Michelson-Morley and other tests that were carried out to ascertain the 

earth's velocity through ether, as well as the scientific tradition that 

prohibits making assumptions about things that are by definition 

impossible to observe. In other words, there is no absolute frame; all 

frames can be used to explain motion, but there may be circumstances in 

which a certain frame is more useful than others. He therefore rejected the 

notion that space is absolute. To clarify the two contradicting claims that 

follow: 

 

1. The velocity of any motion varies depending on how observers 

move in relation to one another, according to classical mechanics. 

2. Experimental investigations indicate that the motion of the frame 

of reference has no effect on the velocity of light. 

Einstein concluded that the disagreement between them had to be caused 

by a flaw in the traditional theories of measuring time and space. By 

challenging our preconceived notions of simultaneity, he disproved the 

idea of absolute time. 

His argument's nature can be viewed as follows: 

The phrase “The two events X and Y take place simultaneously without 

reference of any co-ordinate system” may be meaningless, but let's check. 
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Let's examine a light signal that travels from point 𝑋  to point  𝑌 𝑖 n a 

straight path within a given inertial frame. Only if the clocks at 𝑋 and 

𝑌 are positioned correctly will the difference (𝑡2 − 𝑡1)  obtained in this 

way provide the actual time it takes for light to travel from 𝑋 to 𝑌. This is 

presuming that a clock at 𝑋 reads the emission time 𝑓 and a clock at 𝑌 

reads the arrival time 𝑡₂. The clocks at X and Y must be synced because 

this obviously requires that both clocks' hands be in the same place at the 

same time. 

Now, how can we make sure that the two events occurring in two different 

places are occurring simultaneously? Will two events that happen at the 

same time in one frame also happen in any other frame? Examine two 

occurrences that occur in the inertial frame 𝑆 at two fixed locations, 𝑋 and 

𝑌. Since the velocity of light is 𝑐 in all directions, it follows that for these 

occurrences to occur simultaneously with regard to system 𝑆, the two light 

signals released from 𝑋 and 𝑌 at the time of the events must meet in the 

center 𝑂 of the line connecting 𝑋 and 𝑌 .A same condition for simultaneity 

also applies to system 𝑆′, which has a constant velocity  𝑣 compared to 

system 𝑆.  Assume for the moment that the two events take place in 

relation to system 𝑆 at the same time and that the line connecting 𝑋 and 

𝑌 runs parallel to the direction of system 𝑆′ velocity. Next, examine two 

points 𝑋′ and 𝑌′ in system 𝑆′ that correspond to those points at the moment 

of the events. At that point, 𝑂 will coincide with the center 𝑂′ between 𝑋′ 

and 𝑌′. Like 𝑋′ and 𝑌′, 𝑂′ now moves with system 𝑆′ at a velocity 𝑣  with 

respect to system 𝑆. 𝑂′ will not coincide with 𝑂 at the intersection of the 

light signals from 𝑋 and 𝑌. According to the aforementioned criterion, the 

two events are not synchronous with respect to system 𝑆′ since the light 

signals do not meet in 𝑂′. 

Simultaneity is therefore a relative rather than an absolute concept. 

Therefore, the idea of simultaneity between two events in separate spatial 

positions has an accurate meaning only when referring to a certain inertial 

system. In other words, each frame of reference has its own time. 

Therefore, unless we mention the reference system to which the time 

statement is referencing, expressing the time of an occurrence has no 

value. Since the absolute concept of simultaneity is excluded, the absolute 

concept of space is also ultimately excluded. Finding an object's end 

points at the same time is necessary to measure its length. The length 

measurements will be influenced by the frame of reference in the same 

manner as simultaneity is dependent on it. Therefore, rather from being 
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absolute, the concept of length, or space, is relative. The experimental 

observation that observers moving relative to each other measure the 

speed of light at the same speed can be explained by Einstein's relativistic 

theories of space and time. Given these new concepts of space and time, a 

new class of transformation equations based on the invariant nature of the 

speed of light must be developed to replace the Galilean transformation 

equations. 

The theory of relativity, which is separated into two sections and has a 

novel concept of space and time, applies to all optical and electromagnetic 

phenomena in addition to mechanical phenomena. 

1. Special or restricted theory of relativity. 

2. General theory of relativity. 

According to the special theory of relativity, systems that move in uniform 

rectilinear motion relative to one another are called inertial systems. Thus, 

"All systems of co-ordinates are equally suitable for description of 

physical phenomena." When applied to accelerated systems that is, 

systems moving more quickly than one another the theory of relativity is 

known as the "general theory of relativity." The general theory of 

relativity provides a more sophisticated explanation of the laws of 

gravitation than Newton did, and it is relevant to them. 

2.4 POSTULATES OF SPECIAL THEORY OF 

RELATIVITY:-  

1. “The natural laws must preserve their forms relative to all observers 

in a state of relative uniform motion.” 

According to this postulate, velocity is not absolute but relative. It is a fact 

drawn from the failure of Michelson and Morley experiment which was 

performed to determine velocity of earth through ether. 

2. “The velocity of light in vacuum is independent of the velocity of 

observer or the velocity of the source.” 

According to Galilean transformation this postulate is not true. In fact, it is 

confirmed experimentally that the velocity of light calculated by any 

method is constant. The second postulate is important in the sense that it 

gives a clear distinction between classical theory and Einstein theory of 

relativity. 
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2.5 LORENTZ TRANSFORMATION:-  

According to Einstein the theory of relativity is applicable to laws of 

optics. Thus for the constancy of velocity of light we have to introduce the 

new transformation equations which fulfill the following requirements: 

1. The speed of light c must have the same value in every inertial 

frame. 

2. The transformation must be linear and for low speed 𝑣 ≪ 𝑐 they 

should approach the Galilean transformations. 

3. They should not be based on “absolute time and absolute space”. 

The above requirements were fulfilled by H. A. Lorentz by introducing 

transformation equations relating the observations of position and times 

made by two observers in two different inertial frames and are known as 

“Lorentz Transformation Equations”. 

 

Fig.2.1 

Assume that 𝑆 and 𝑆ʹ are two inertial frames of reference, and that 𝑆ʹ is 

traveling relative to 𝑆 with a constant velocity 𝑣.  Assume that two 

observers Any event 𝑃 from systems 𝑆 and 𝑆ʹ is observed by 𝑂 and 𝑂ʹ. 

Its coordinates are (𝑥. 𝑦, 𝑧, 𝑡) and(𝑥 ′, 𝑦 ′, 𝑧 ′, 𝑡′) in 𝑆 and 𝑆ʹ, respectively. 

When the origins of two frames coincide and both 𝑡 and 𝑡ʹ are zero, the 

event 𝑃 a light signal is created. 

Points which are at rest relative to Sʹ will move with velocity v relative 

to S in X-direction. In particular the point 𝑥′ = 0  will move with 

velocity v in X-direction, i.e. 𝑥′ = 0 will be identical with 𝑥 = 𝑣𝑡 so 

that 

𝑥′ = 𝛼(𝑥 − 𝑣𝑡)    … (1) 
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Where 𝛼 is some function of v. 

Since the velocity of  Sʹ is only along X-axis. Hence by symmetry 

                                    
𝑦′ = 𝑦

𝑧′ = 𝑧
}                                 … (2) 

An equation in 𝑡 and 𝑡ʹ must be created in order to complete the set of 

equations. Linearly, 𝑡ʹ  depends on 𝑡, 𝑥, 𝑦,  and 𝑧.  Since clocks in 𝑆ʹ 

would seem to conflict as seen from 𝑆, we suppose that 𝑡ʹ does not 

depend on 𝑦 and 𝑧 for the zone of symmetry. Consequently, we have 

                                   𝑡′ = 𝛽𝑡 + 𝛾𝑥                        … (3) 

Where 𝛽 𝑎𝑛𝑑 𝛾 both are functions of v only. We are to determine the 

unknown 𝛼, 𝛽, 𝛾. 

The light pulse generated at 𝑡 = 0 will expand into a growing sphere, 

and the wavefront radius will increase with speed 𝑐. Since (𝑥, 𝑦, 𝑧, 𝑡) 

are the event's coordinates from the observer in system 𝑆 at rest, the 

equation for a spherical surface whose radius increases with speed 𝑐 is 

                              𝑥2 + 𝑦2 + 𝑧2 = 𝑐2𝑡2                 … (4) 

Similarly the equation of spherical surface for observer Oʹ in system Sʹ 

is 

                                   𝑥′2 + 𝑦′2 + 𝑧′2 = 𝑐2𝑡′2       … (5) 

From equation (1), (2) & (3) substituting value 𝑥ʹ, 𝑦ʹ, 𝑧ʹ& 𝑡ʹ in equation 

(5) 

𝛼2(𝑥 − 𝑣𝑡)2 + 𝑦2 + 𝑧2 = 𝑐2(𝛽𝑡 + 𝑥𝛾)2 

𝑥2(𝛼2 − 𝑐2𝛾2) + 𝑦2 + 𝑧2 − 2𝑥𝑡(𝛼2𝑣 + 𝑐2𝛽𝛾) = (𝑐2𝛽2 − 𝛼2𝑣2)𝑡2 

Equation (4) and the equation above both describe the same motion. 

Therefore, when we compare the coefficients of different terms, we get 

𝛼2 − 𝑐2𝛾2 = 1     [6(𝑖)] 

𝛼2𝑣 + 𝑐2𝛽𝛾 = 0     [6(𝑖𝑖)] 

𝑐2𝛽2 − 𝛼2𝑣2 = 𝑐2     [6(𝑖𝑖𝑖)] 

𝑣 × [6(𝑖)] − [6(𝑖𝑖)] gives 
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−𝑐2𝛾2𝑣 − 𝑐2𝛽𝛾 = 𝑣 

                                   𝑣(1 + 𝑐2𝛾2) + 𝑐2𝛽𝛾 = 0          … (7) 

Similarly 𝑣2 × [6(𝑖)] + [6(𝑖𝑖𝑖)] gives 

−𝑣2𝑐2𝛾2 + 𝑐2𝛽2 = 𝑣2 + 𝑐2 

                                  −𝑣2(1 + 𝑐2𝛾2) + 𝑐2𝛽2 = 𝑐2     … (8) 

Similarly 𝑣 × (7) + (8) gives 

𝑣𝑐2𝛽𝛾 + 𝑐2𝛽2 = 𝑐2 

𝑣𝛽𝛾 + 𝛽2 = 1 

𝛽2 − 1 = −𝑣𝛽𝛾    … (9) 

Removing 𝛾 between (7) and (9) 

𝑣 {1 + 𝑐2 (
𝛽2 − 1

𝑣𝛽
)

2

} + 𝑐2 (
1 − 𝛽2

𝑣
) = 0 

𝑣[𝑣2𝛽2 + 𝑐2(𝛽2 − 1)2]

𝑣2𝛽2
+

[𝑐2(1 − 𝛽2)]

𝑣
= 0 

𝑣2𝛽2 + 𝑐2(𝛽2 − 1)2 + 𝑐2𝛽2(1 − 𝛽2) = 0 

𝛽2[𝑣2 + 𝑐2 − 2𝑐2] + 𝑐2 = 0 

𝛽2 =
𝑐2

𝑐2 − 𝑣2
 

Putting the value of 𝛽2 in equation [6(iii)] 

𝑐4

𝑐2 − 𝑣2
− 𝛼2𝑣2 = 𝑐2 

𝛼2𝑣2 =
𝑐4

𝑐2 − 𝑣2
− 𝑐2 =

𝑣2𝑐2

𝑐2 − 𝑣2
 

𝛼2 =
𝑐2

𝑐2 − 𝑣2
= 𝛽2 

From equation [6(ii)] 
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𝛾 =
−𝛼2𝑣

𝑐2𝛽
=

−𝛼𝑣

𝑐2
=

−𝛽𝑣

𝑐2
 

∵ 𝛼 = 𝛽 

Also 

𝛼 = 𝛽 =
1

√1 − 𝑣2 𝑐2⁄
 

𝑥′ = 𝛼(𝑥 − 𝑣𝑡) =
1

√1 − 𝑣2 𝑐2⁄
(𝑥 − 𝑣𝑡) 

𝑡′ = 𝛽𝑡 + 𝛾𝑥 = 𝛽𝑡 − 𝛽
𝑣𝑥

𝑐2
= 𝛽 (𝑡 −

𝑣𝑥

𝑐2
) 

Thus Lorentz transformation equations are 

𝑥′ = 𝛽(𝑥 − 𝑣𝑡), 𝑦′ = 𝑦, 𝑧′ = 𝑧, 𝑡′ = 𝛽 (𝑡 −
𝑣𝑥

𝑐2
) 

Where  

𝛽 =
1

√1 −
𝑣2

𝑐2

 

Note: If v is very small, then (𝑣 𝑐)⁄ → 0 𝑠𝑜 𝑡ℎ𝑎𝑡 𝛽 → 1. In this case 

Lorentz transformation equations becomes  

𝑥′ = (𝑥 − 𝑣𝑡), 𝑦′ = 𝑦, 𝑧′ = 𝑧, 𝑡′ = 𝑡 

These are the equations of Galilean transformation. So that Lorentz 

transformation reduce to Galilean transformation as 𝑣 ≪ 𝑐. 

2.6 CONSEQUENCE OF LORENTZ 

TRANSFORMATION:-  

(1) Lorentz and Fitzgerald Contraction (Length Contraction) 

For a system Sʹ moving with velocity v in relation to a system S, the 

Lorentz transformation equations are obtained by 

𝑥′ = 𝛽(𝑥 − 𝑣𝑡), 𝑦′ = 𝑦, 𝑧′ = 𝑧, 𝑡′ = 𝛽 (𝑡 −
𝑣𝑥

𝑐2
) 
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𝛽 =
1

√1 −
𝑣2

𝑐2

 

 

Assume that a rod of length l has been placed on the X-axis. If 𝑥1& 𝑥2  are 

the rod's end points, then 

𝑙 = 𝑥2 − 𝑥1     … (1) 

Since the measurement of the both ends are taken at the same time t, then 

𝑡1 − 𝑡2 = 𝑡 

Assume that, according to an observer 𝑆′ system, 𝑥1
′ 𝑎𝑛𝑑 𝑥2′  are the same 

rod's locations along the X-axis at time 𝑡′. At time 𝑡ʹ, the rod's two end 

locations are simultaneously observed in order to 

𝑡1
′ = 𝑡2

′ = 𝑡′ 

𝑙′ = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑟𝑜𝑑 𝑖𝑛 𝑆′𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑥2
′ − 𝑥1′ 

By Lorentz transformation equations  

𝑥1 = 𝛽(𝑥1
′ + 𝑣𝑡1

′), 𝑥2 = 𝛽(𝑥2
′ + 𝑣𝑡2

′ ) 

Substituting the value of 𝑥1& 𝑥2 in equation (1) 

𝑙 = 𝛽(𝑥2
′ + 𝑣𝑡2

′ ) − 𝛽(𝑥1
′ + 𝑣𝑡1

′ ) 

𝑙 = 𝛽(𝑥2
′ − 𝑥1

′ ) + 𝑣𝛽(𝑡2
′ − 𝑡1

′) = 𝛽𝑙′ 

∵ 𝑡1
′ = 𝑡2′ 

𝑙′ =
𝑙

𝛽
= 𝑙 (1 −

𝑣2

𝑐2
)

1
2⁄

< 𝑙 

∴ 𝑙′ < 𝑙 
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This illustrates how the ratio (1 − 𝑣2 𝑐2⁄ )
1

2⁄   decreases the apparent 

length of a rigid body in the direction of motion. 

 

2.7 TIME DILATION OR APPARENT 

RETARDATION OF REST:-  

Examine two reference frames, 𝑆 𝑎𝑛𝑑 𝑆′. 𝑆′ is traveling along the X-axis 

at a uniform velocity, 𝑣. Let 𝑥 = 𝑥1 be the location of a clock in system 𝑆. 
Let 𝑡₁′ be the time that an observer in 𝑆′ measures in relation to the signal 

that this clock provides at time 𝑡 =  𝑡 𝑖𝑛 𝑆 . Afterward, by Lorentz 

transformation 

𝑡1
′ = 𝛽 (𝑡1 −

𝑣𝑥1

𝑐2
)    … (1) 

𝑤ℎ𝑒𝑟𝑒 𝛽 =
1

√1 −
𝑣2

𝑐2

 

Let's say that at time t₂ in S, the clock gives another signal, and t₂' is the 

matching time in S'. Then, 

𝑡2
′ = 𝛽 (𝑡2 −

𝑣𝑥1

𝑐2
)   … (2) 

Compose ∆𝑡 = 𝑡2 − 𝑡1, ∆𝑡′ = 𝑡2′ − 𝑡1
′  

Equation (2)-(1) gives, 

∆𝑡′ = 𝛽 (𝑡2 −
𝑣𝑥1

𝑐2
) − 𝛽 (𝑡1 −

𝑣𝑥1

𝑐2
) 

∆𝑡′ = 𝛽∆𝑡    … (3) 

∆𝑡′ = ∆𝑡 (1 −
𝑣2

𝑐2
)

−1
2⁄

= (1 +
𝑣2

2𝑐2
) ∆𝑡′ > ∆𝑡 

The following is equation (3)'s physical significance: 

The interval   ∆𝑡′, as it appears to the observer in motion, is lengthened, 

i.e, the time is dilated and hence the name "time est dilation". It means 

that the time interval At appears to be dilated or miengthened by the 

factor ẞ to the moving observer. Therefore, a clock moving in relation to 

an observer is observed to run more slowly than one that is at rest in 

relation to him, as per (3). Stated otherwise, a physical process with a 

finite duration will go significantly more slowly in a moving frame than it 

would in a stationary frame. 
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Let's do it the other way around and suppose that the clock is at 𝑥1′.  in 

system 𝑆ʹ. When the clock gives a signal at 𝑡1
′ in S', and 𝑡1 is the observer's 

measurement of the corresponding time in S... As per the Lorentz inverse 

transformation, 

𝑡1 = 𝛽 (𝑡1′ +
𝑣𝑥1

𝑐2
) 

𝑡2 = 𝛽 (𝑡2′ +
𝑣𝑥1′

𝑐2
) 

Then ∆𝑡 = 𝑡2 − 𝑡1 = 𝛽(𝑡2′ − 𝑡1′) = 𝛽∆𝑡′     … (4) 

⟹ ∆𝑡 > ∆𝑡′ 

It states that, to an observer traveling with velocity v in relation to Sʹ, the 

time interval ∆𝑡′ seems to be dilated by the factor𝛽 . This is the same 

conclusion that was previously discussed.  

Thus, based on the reasoning above, we may say, “A moving clock always 

appears to go slow”. As a result, the clock at rest seems to be delayed by 

the factor √1 −
𝑣2

𝑐2 to the observer in motion. This means that: This 

appears to be clock retardation. From what has been done it follows: 

 

Every clock appears to go at its fastest rate when it is at rest relative to the 

observer. If the clock moves w.r.t. the observer with velocity r, then it 

appears to go at its slowest rate by the factor. 

√1 −
𝑣2

𝑐2
  

Thus, the issue deduction Clock Hypothesis or Clock Paradox 

The observer in S believes that the clock in S' is moving slowly, while 

from S' perspective, the clock in S' is moving quickly. As a result, when he 

returns to S', he discovers the exact opposite phenomenon. 

2.8 SIMULTANEITY:-  

Any two events are said to be simultaneous if they occur at the same time. 

Let 𝑆 𝑎𝑛𝑑 𝑆′ be two frames of reference. 𝑆′ is traveling along the X-axis 

with velocity 𝑣.  Also let two events occur simultaneously in 𝑆  at two 

distinct points 𝑃1(𝑥1, 𝑦1, 𝑧1, 𝑡1)𝑎𝑛𝑑 𝑃2(𝑥2, 𝑦2, 𝑧2, 𝑡2) so that 
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𝑥1 ≠ 𝑥2, 𝑡1 ≠ 𝑡2 

Since the events are simultaneous in 𝑆 so that 

𝑡1 = 𝑡2 

Assume that 𝑡1′  and 𝑡2′  are the times in S' that correspond to time 

𝑡1 𝑎𝑛𝑑 𝑡2 in S. Through Lorentz transformations 

𝑡1
′ = 𝛽 (𝑡1 −

𝑣𝑥1

𝑐2
) , 𝑡2′ = 𝛽 (𝑡2 −

𝑣𝑥2

𝑐2
) 

𝑡2
′ − 𝑡1

′ = 𝛽 (𝑡2 −
𝑣𝑥2

𝑐2
) − 𝛽 (𝑡1 −

𝑣𝑥1

𝑐2
) 

= 𝛽(𝑡2 − 𝑡1) + 𝛽
𝑣

𝑐2
(𝑥1 − 𝑥2) 

= 𝛽
𝑣

𝑐2
(𝑥1 − 𝑥2) 𝑓𝑜𝑟 𝑡1 = 𝑡2 

 

However, since𝑥1 ≠ 𝑥2, the final statement reads 𝑡1′ ≠ 𝑡2′. Thus, in S', the 

two events occurrences are not happening at the same time. 

 

Two events (𝑃1 𝑎𝑛𝑑 𝑃2)  at two distinct locations For an observer S' 

traveling with velocity v relative to S along the X-axis, which are 

simultaneous for an observer at rest in S, are no longer simultaneous. It 

demonstrates that simultaneity is relative rather than absolute. 

 

2.9 LORENTZ TRANSFORMATION FOR A 

GROUP OR GROUP PROPERTY OF LORENTZ 

TRANSFORMATIONS:-  

Theorem 1: To prove that Lorentz transformations from a group. 

Or 

Show that the result of two successive Lorentz Transformations is itself a 

Lorentz Transformation. 

Proof: Examine three frames of reference 𝑆, 𝑆′, and 𝑆" as shown in Fig. 

2.3, 𝑆′ has relative velocity 𝑣 with respect to 𝑆 along position X-axis and 

𝑆" has relative velocity 𝑣′ with respect to 𝑆′ along positive X-axis. 
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Fig. 2.3 

By Lorentz transformation, the frames S and Sʹ can be related as 

𝑥′ = 𝛽(𝑥 − 𝑣𝑡), 𝑦′ = 𝑦, 𝑧′ = 𝑧, 𝑡′ = 𝛽 (𝑡 −
𝑣𝑥

𝑐2
)    … (1) 

𝑤ℎ𝑒𝑟𝑒 𝛽 =
1

√1 −
𝑣2

𝑐2

 

Similarly for the frames Sʹ and Sʺ can be related as 

𝑥=β'(x'-v't'),y"=y', z"=z', t"=β' (𝑡′ −
𝑣′𝑥′

𝑐2
)    … (2) 

𝑤ℎ𝑒𝑟𝑒 𝛽′ =
1

√1 −
𝑣′2

𝑐2

 

Let us assume vʺ is the resultant velocity of v and vʹ then 

𝑣" =
𝑣 + 𝑣′

1 +
𝑣𝑣′
𝑐2

    … (3) 

Where vʺ is the velocity of frame Sʺ relative to S. So that 

𝛽" =
1

√1 −
𝑣"2

𝑐2

 

If we show that 
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𝑥" = 𝛽"(𝑥 − 𝑣t), y" = 𝑦, 𝑧" = 𝑧, 𝑡" = 𝛽" (𝑡 −
𝑣"𝑥

𝑐2
)    … (4) 

Then the required result will be proved. 

1

𝛽"2
= 1 −

𝑣"2

𝑐2
= 1 −

1

𝑐2
(

𝑣 + 𝑣′

1 +
𝑣𝑣′
𝑐2

)

2

 

From equation (3) 

=
𝑐2 (1 +

𝑣𝑣′
𝑐2 )

2

− (𝑣 + 𝑣′)2

𝑐2 (1 +
𝑣𝑣′
𝑐2 )

2  

=
𝑐2 (1 +

2𝑣𝑣′
𝑐2 +

𝑣2𝑣′2

𝑐4 ) − (𝑣2 + 2𝑣𝑣′ + 𝑣′2)

𝑐2 (1 +
𝑣𝑣′
𝑐2 )

2  

=
𝑐2 + 2𝑣𝑣′ +

𝑣2𝑣′2

𝑐2 − 𝑣2 − 2𝑣𝑣′ − 𝑣′2

𝑐2 (1 +
𝑣𝑣′

𝑐2 )
2  

=

𝑐2 (1 +
𝑣2𝑣′2

𝑐4 −
𝑣2

𝑐2 −
𝑣′2

𝑐2 )

𝑐2 (1 +
𝑣𝑣′

𝑐2 )
2  

=

(1 −
𝑣2

𝑐2 ) (1 −
𝑣′2

𝑐2 )

(1 +
𝑣𝑣′

𝑐2 )
2  

𝛽" = (1 +
𝑣𝑣′

𝑐2
) √(1 −

𝑣2

𝑐2
) √(1 −

𝑣′2

𝑐2
)⁄  

𝛽" = 𝛽𝛽′ (1 +
𝑣𝑣′

𝑐2
)    … (5) 

From equation (1) & (2) 
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𝑥" = 𝛽′(𝑥′ − 𝑣′𝑡′) = 𝛽′ [𝛽(𝑥 − 𝑣𝑡) − 𝑣′𝛽 (𝑡 −
𝑣𝑥

𝑐2
)] 

= 𝛽′𝛽 [𝑥 (1 +
𝑣𝑣′

𝑐2
) − 𝑡(𝑣 + 𝑣′)] 

= 𝛽′𝛽 (1 +
𝑣𝑣′

𝑐2
) {𝑥 −

𝑣 + 𝑣′

(1 +
𝑣𝑣′

𝑐2 )
. 𝑡} = 𝛽"(𝑥 − 𝑣"𝑡) 

From equation (3) & (5) 

Again from equation (2) & (1) 

𝑡" = 𝛽′ (𝑡′ −
𝑣′𝑥′

𝑐2
) = 𝛽′ [𝛽 (𝑡 −

𝑣𝑥

𝑐2
) −

𝑣′

𝑐2
𝛽(𝑥 − 𝑣𝑡)] 

= 𝛽′𝛽 [𝑡 (1 +
𝑣𝑣′

𝑐2
) −

𝑥

𝑐2
(𝑣 + 𝑣′)] 

= 𝛽′𝛽 (1 +
𝑣𝑣′

𝑐2
) {𝑡 −

𝑣 + 𝑣′

1 +
𝑣𝑣′

𝑐2

.
𝑥

𝑐2
} 

= 𝛽" (𝑡 −
𝑥𝑣"

𝑐2
) 

From equation (3) & (5) 

𝑦" = 𝑦′, 𝑦′ = 𝑦 ⟹ 𝑦" = 𝑦 

𝑧" = 𝑧′, 𝑧′ = 𝑧 ⟹ 𝑧" = 𝑧 

Thus, we have prove that 

𝑥" = 𝛽"(𝑥 − 𝑣t), y" = 𝑦, 𝑧" = 𝑧, 𝑡" = 𝛽" (𝑡 −
𝑣"𝑥

𝑐2
)     

2.10 ABERRATION (RELATIVISTIC 

TREATMENT):-  

The phenomenon of aberration was originally discovered by Bradley in 

1927. This phenomenon of light is very useful to determine the velocity of 

earth if the velocity of light is known. The phenomenon of aberration 
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results "The speed of light is independent of the medium of transmission; 

but the direction of light rays depends on the motion of the source emitting 

light relative to the observer". 

The direction of a light ray emitted from a star is compared here with 

respect to the inertial frames S and S'. S' is traveling in the positive 

direction of the X-axis at a constant speed v in relation to S. 

Given that the earth orbits the sun, we can presume that the system 𝑆 is 

fixed in the sun and S' in the earth. A full light beam from star 𝑃 is located 

in 𝑋𝑌 -plane or 𝑋ʹ𝑌ʹ − plane. At any given time 𝑡,  the observers at 

𝑂 𝑎𝑛𝑑 𝑂′ observe that, the direction of this light ray makes angles 

𝛼 𝑎𝑛𝑑 𝛼′ with the X-axis, respectively as shown in fig. 2.4. Then 

                    𝑢𝑥 = 𝑐 𝑐𝑜𝑠𝛼, 𝑢𝑦 = −𝑐 𝑠𝑖𝑛𝛼, 𝑢𝑧 = 0                  … (1) 

                    𝑢𝑥
′ = 𝑐 𝑐𝑜𝑠𝛼′, 𝑢𝑦

′ = −𝑐 sin 𝛼′, 𝑢𝑧
′ = 0               … (2) 

By Lorentz Transformation 

𝑥′ = 𝛽(𝑥 − 𝑣𝑡), 𝑦′ = 𝑦, 𝑧′ = 𝑧, 𝑡′ = 𝛽 (𝑡 −
𝑣𝑥

𝑐2
) 

𝑤ℎ𝑒𝑟𝑒 𝛽 =
1

√1 −
𝑣2

𝑐2

 

 

 
Fig. 2.4 

 

⟹ 𝑑𝑥′ = 𝛽(𝑑𝑥 − 𝑣𝑑𝑡), 𝑑𝑦′ = 𝑑𝑦, 𝑑𝑡′ = 𝛽 (𝑑𝑡 −
𝑣

𝑐2
𝑑𝑥) 

𝑑𝑥′

𝑑𝑡′
=

𝛽(𝑑𝑥 − 𝑣𝑑𝑡)

𝛽 (𝑑𝑡 −
𝑣
𝑐2) 𝑑𝑥

,
𝑑𝑦′

𝑑𝑡′
=

𝑑𝑦

𝛽 (𝑑𝑡 −
𝑣
𝑐2 𝑑𝑥)

 

𝑢𝑥
′ =

𝑢𝑥 − 𝑣

1 −
𝑣
𝑐2 𝑢𝑥

, 𝑢𝑦
′ =

𝑢𝑦

𝛽 (1 −
𝑣
𝑐2 𝑢𝑥)
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𝑜𝑟 
𝑢𝑦′

𝑢𝑥′
= −

𝑐 sin 𝛼′

𝑐 cos 𝛼′
=

𝑢𝑦

𝛽 (1 −
𝑣
𝑐2 𝑢𝑥)

.
1 −

𝑣
𝑐2 𝑢𝑥

𝑢𝑥 − 𝑣
 

− tan 𝛼′ =
𝑢𝑦

𝛽(𝑢𝑥 − 𝑣)
= −

𝑐 sin 𝛼

𝛽(𝑐 cos 𝛼 − 𝑣)
 

= −
𝑐 tan 𝛼

𝑐𝛽 (1 −
𝑣

𝑐 cos 𝛼)
 

− tan 𝛼′ =
tan 𝛼

𝛽 (1 −
𝑣
𝑐 sec 𝛼)

 

tan 𝛼 =
𝑡𝑎𝑛𝛼 (1 −

𝑣2

𝑐2 )
1/2

1 −
𝑣
𝑐 sec 𝛼

 

This is known as the relativistic formula for aberration. 

2.11 DOPPLER’S EFFECT:-  

2.11.1 Non Relativistic Treatment 

According to this phenomena, which most readers have probably read 

about in physics class, the pitch sound that an observer hears changes in 

two situations: first, when the source and observer are both stationary, and 

second, when they are moving relative to one another. The perceived 

frequency rises as the source and observer get closer to one another and 

falls as they get farther away. This phenomenon, known as Doppler's 

effect, happens with all types of wave motion, albeit it differs slightly 

from electromagnetic waves like light, which do not involve a medium, in 

the case of mechanical waves that involve a material medium. If the 

spectrum of light waves is viewed in a spectrometer, the motion of the 

source causes a shift in the spectral line's position from its initial position. 

We start by looking at the scenario in which the source is traveling toward 

the observer at velocity 𝑢 while the observer is at rest. Set the source's 

frequency to f so that the wave speed is c and the time period 𝑇 =  1/𝑓. 

The wave travels a distance 𝑐𝑇 in a time interval 𝑇 during which it emits 

one cycle, yet the source waves in the same direction 𝑢𝑇 during the same 

period. Therefore, rather than 𝑐𝑇, the wave length, which is the distance 
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between two successive peaks in the wave, is cT-ut. As a result, the 

matching frequency represented by 𝑓1′ is provided by 

𝑓1
′ =

𝑐

𝑇(𝑐 − 𝑢)
=

𝑐𝑓

𝑐 − 𝑢
=

𝑓

1 − 𝑐/𝑢
    … (1) 

This indicates a perceived rise in the frequency. We substitute - u for u in 

(1) to obtain the appropriate 𝑓1 ′  if the source is moving away from the 

observer. 

The apparent frequency in the second scenario, where the source is 

stationary but the observer is traveling v from the source, is because the 

wave speed in relation to the observer is c-v and rather than c. 

𝑓2
′ =

𝑐 − 𝑣

𝜆
=

𝑐 − 𝑣

𝑐/𝑓
=

𝑐 − 𝑣

𝑐
𝑓 = (1 −

𝑣

𝑐
) 𝑓    … (2) 

Where 𝑓 = 𝑐/𝜆 is the frequency in the stationary case. 

Now when both the source of the observer is moving with velocities u and 

v along the same direction, the same result may be combined as follows: 

 

The source's velocity causes the apparent wave length in the first scenario 

mentioned above to be 

𝜆1
′ =

𝑐

𝑓1′
=

𝑐 − 𝑢

𝜆
 

This indicates that the second wave maximum is𝜆1
′  behind the first wave 

maximum when it reaches the observer. However, because of the 

observer's motion, the wave speed in relation to the observer is𝑐 − 𝑣, and 

as a result, the observer perceives the apparent frequency. 

𝑓′ =
𝑐 − 𝑣

𝜆1′
=

𝑐 − 𝑣

𝑐 − 𝑢
𝑓 

If the source and observer are moving in different directions, the signs of u 

and v will be adjusted appropriately. 

𝑖𝑓 𝑣 > 𝑢 𝑡ℎ𝑒𝑛𝑓′ < 𝑓 𝑖𝑓 𝑣 < 𝑢 𝑡ℎ𝑒𝑛 𝑓′ > 𝑓 
 

Therefore, the apparent frequency falls as the source and observer move 

apart, resulting in an increase in wave length; the opposite is true when the 

source and observer are moving closer together. 

 

2.11.1.1 Experimental Evidence for Non-Relativistic Treatment 

When light waves are viewed in a spectrometer, the mobility of the source 

causes a change in the spectral line's position from its initial position. 

There are two kinds of this spectral line shift. 

A decrease in wave length is shown by several spectral lines shifting 

towards violet. However, in some situations, these lines change in the 

direction of red, signifying an increase in wave length. Doppler's effect 

provides the following explanation for the above: 
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The velocity of stars has a major impact in this change. The star is moving 

toward the earth (us) in the first scenario and away from the earth in the 

second. The shift is proportional to the distance of source from the earth. 

By (1), 

 

𝑓′ = (
𝑐

𝑐 − 𝑢
) 𝑓 

 
1

𝜆′
= (

𝑐

𝑐 − 𝑢
)

1

𝜆
 

 

For 𝑣 = 𝑛𝜆, 𝑖. 𝑒. 𝑐 = 𝑓1
′𝜆′, 𝑐 = 𝑓1𝜆 

𝜆′ = (
𝑐 − 𝑢

𝑐
) 𝜆        (𝑓𝑜𝑟 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ) 

𝜆′ = (
c + u

c
) λ        (for recession) 

2.11.2 Relativistic Treatment 

Examine two inertial frames, S and S', where S' is traveling along the X-

axis at a velocity v relative to S. If f and T stand for frequency and time 

period respectively, in the S system, then fʹ and T' stand for the S' system. 

Using the standard time dilation formula, 

𝑇′ =
𝑇

√1 −
𝑣2

𝑐2

 

But T= 1/f 

∴ 𝑇′ =
1

𝑓√1 −
𝑣2

𝑐2

 

𝑓′ =
𝑐

𝜆′
=

𝑐

(𝑐 − 𝑣)𝑇′
 

=
𝑐

𝑐 − 𝑣
.
𝑓√1 − 𝑣2 𝑐2⁄

1
= 𝑓√

𝑐 + 𝑣

𝑐 − 𝑣
 

Finally we get 

𝑓′ = (
𝑐 + 𝑣

𝑐 − 𝑣
)

1/2

𝑓 

 

Solved Examples: 

EXAMPLE 1: A particle with a mean proper life of 1𝜇 second moves 

through the laboratory at 2.7 × 1010𝑐𝑚/𝑠𝑒𝑐. 

(1) What will be its life as measured by an observer in the laboratory? 

(2) What will be the distance transversed by it before disintegrating? 
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(3)  Find the distance transversed without taking relativity into account 

SOLUTION: Given 

∆𝑡 = 1𝜇 𝑠𝑒𝑐 = 1 × 10−6𝑠𝑒𝑐, 𝑣 = 2.7 × 1010𝑐𝑚/𝑠𝑒𝑐 

(1) By the result of time dilation, 

∆𝑡′ = ∆𝑡 (1 −
𝑣2

𝑐2
)

−1
2⁄

 

∆𝑡′ = 1 × 10−6 √(1 −
(2.7 × 1010)2

(3 × 1010)2
)⁄  

∆𝑡′ = 10−6 √1 − (
2.7

3
)

2

⁄  

∆𝑡′ = 3 × 10−6 √9 − (2.7)2⁄  

∆𝑡′ = 3 × 10−6 √1.71⁄ = 3 × 10−6 1.31⁄ = 2.3 × 10−6𝑠𝑒𝑐 

∆𝑡′ = 2.3𝜇 𝑠𝑒𝑐. 

(2) Distance transversed by the particle: 

= 𝑣. ∆𝑡′ = 2.7 × 1010
× 2.3 × 10−6 = 6.21 × 104 = 621 𝑚𝑒𝑡𝑒𝑟 

(3) Distance transversed  with relativistic effects 

= 𝑣. ∆𝑡 = 2.7 × 1010 × 1 × 10−6 = 27 × 104𝑐𝑚 = 270 𝑚𝑒𝑡𝑒𝑟 

EXAMPLE 2: A body has the dimensions represented by 6𝑖 + 7𝑗 meters 

in reference system S. How these dimensions will be represented in the 

system Sʹ? If S is moving with velocity 0.6c along positive X axis 𝑖, 𝑗 

being unit vector along respective axis. 

Solution:  By Lorentz contraction 

𝑙′ = 𝑙√1 −
𝑣2

𝑐2
 

Given v=0.6c 

𝑙′ = 6√1 − (
0.6𝑐

𝑐
)

2

= 6√0.64 = 6 × 0.8 

𝑙′ = 4.8 

In S' system, the body's dimension along the X-axis is 4.8. However, since 

there is no motion along the y-axis in S', there is no contraction in the y-
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axis direction. Therefore, in S' system, the body will be represented by 

4.8𝑖 + 7𝑗 meters. 

 

EXAMPLE 3: The length of a rocket ship is 100 meters on the ground. 

When it is in fight its length observed on the ground is 99 meters, 

calculate its speed. 

SOLUTION:  By Lorentz transformation 

𝑙′ = 𝑙√1 −
𝑣2

𝑐2
 

99 = 100√1 −
𝑣2

𝑐2
 

As 𝑙′ < 𝑙 

(
99

100
)

2

= 1 −
𝑣2

𝑐2
⇒

𝑣2

𝑐2
= 1 −

992

1002
=

199

104
 

⟹
𝑣

𝑐
=

√199

100
⟹ 𝑣 =

√199

100
× 3 × 108 

⟹ 𝑣 = 42.3 × 106𝑚/𝑠𝑒𝑐 

EXAMPLE 4: A man in rocket ship is travelling with velocity 0.9c 

relative to an observer on the earth. He fires a proton in the direction of 

travel at a velocity of 0.9c relative to rocket ship. What is the velocity of 

proton relative to the observer on earth? 

SOLUTION: We have 

𝑣 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑟𝑜𝑐𝑘𝑒𝑡 𝑠ℎ𝑖𝑝 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑎𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟 𝑜𝑛 𝑡ℎ𝑒 𝑒𝑎𝑟𝑡ℎ = 0.9𝑐 

𝑢′ = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑝𝑟𝑜𝑡𝑜𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑟𝑜𝑐𝑘𝑒𝑡 𝑠ℎ𝑖𝑝 = 0.9𝑐 

𝑉 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑝𝑟𝑜𝑡𝑜𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑎𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟 𝑜𝑛 𝑒𝑎𝑟𝑡ℎ 

We know that 

𝑉 =
𝑢′ + 𝑣

1 + 𝑢′
𝑣
𝑐2

=
0.9𝑐 + 0.9𝑐

1 +
0.9𝑐 × 0.9𝑐

𝑐2

 

𝑉 =
1.80𝑐

1.81
= 0. .995𝑐 
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EXAMPLE 5: If u and v are two velocities in the same direction and V 

their resultant velocity given by 

tanh−1
𝑉

𝑐
= tanh−1

𝑢

𝑐
+ tanh−1

𝑣

𝑐
 

Then deduce the law of composition of velocities from this equation. 

SOLUTION: Given that 

tanh−1
𝑉

𝑐
= tanh−1

𝑢

𝑐
+ tanh−1

𝑣

𝑐
 

This equation is expressible as 

1

2
𝑙𝑜𝑔

𝑐 + 𝑉

𝑐 − 𝑉
=

1

2
𝑙𝑜𝑔

𝑐 + 𝑢

𝑐 − 𝑢
+

1

2
𝑙𝑜𝑔

𝑐 + 𝑣

𝑐 − 𝑣
 

𝑙𝑜𝑔
𝑐 + 𝑉

𝑐 − 𝑉
= 𝑙𝑜𝑔

𝑐 + 𝑢

𝑐 − 𝑢
.
𝑐 + 𝑣

𝑐 − 𝑣
 

⇒
𝑐 + 𝑉

𝑐 − 𝑉
=

𝑐 + 𝑢

𝑐 − 𝑢
.
𝑐 + 𝑣

𝑐 − 𝑣
=

𝑐2 + (𝑢 + 𝑣)𝑐 + 𝑢𝑣

𝑐2 − (𝑢 + 𝑣)𝑐 + 𝑢𝑣
 

⇒
𝑐 + 𝑉

𝑐 − 𝑉
− 1 =

𝑐2 + (𝑢 + 𝑣)𝑐 + 𝑢𝑣

𝑐2 − (𝑢 + 𝑣)𝑐 + 𝑢𝑣
− 1 

⇒
2𝑉

𝑐 − 𝑉
=

2(𝑢 + 𝑣)𝑐

𝑐2 − (𝑢 + 𝑣)𝑐 + 𝑢𝑣
 

⇒
𝑐 − 𝑉

𝑉
=

𝑐2 − (𝑢 + 𝑣)𝑐 + 𝑢𝑣

(𝑢 + 𝑣)𝑐
 

⇒
𝑐

𝑉
− 1 =

𝑐

𝑢 + 𝑣
− 1 +

𝑢𝑣

(𝑢 + 𝑣)𝑐
 

⇒
𝑐

𝑉
=

𝑐

𝑢 + 𝑣
+

𝑢𝑣

(𝑢 + 𝑣)𝑐
=

𝑐2 + 𝑢𝑣

(𝑢 + 𝑣)𝑐
 

⇒
𝑉

𝑐
=

(𝑢 + 𝑣)𝑐

𝑐2 + 𝑢𝑣
 

⇒ 𝑉 =
(𝑢 + 𝑣)𝑐2

𝑐2 (1 +
𝑢𝑣
𝑐2 )

 

⇒ 𝑉 =
(𝑢 + 𝑣)

(1 +
𝑢𝑣
𝑐2 )
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This is required expression for V. 

SELF CHECK QUESTIONS  

1. The resultant of two velocities of light each of which is less than c 

is also 

a) Less than c 

b) Equal to c 

c) Greater than c 

d) None of these 

2. Aberration of light stars is caused due to: 

a) The travelling of light in the atmosphere 

b) Elliptical orbit of the earth around the sun 

c) The finite speed of light and the speed of earth in its orbit around 

the sun. 

d) The scattering of light by the air particles. 

3. The basic theory of field is governed by 

a) Lorentz transformation 

b) Laplace transformation 

c) Legendre’s transformation 

d) Lagrange’s formalism 

4. Lorentz transformation reduce to Galilean transformation on if 

a) 𝑣 = 𝑐 

b) 𝑣 ≪ 𝑐 

c) 𝑣 ≫ 𝑐 

d) None of these 

5. The result of two successive Lorentz transformation is: 

a) Galilean transformation 

b) Lorentz transformation 

c) Einstein transformation 

d) None of these 

2.12 SUMMARY:-  

In this unit, we explored the relativistic concept of space and time, which 

replaces the classical notion of absolute space and time with a unified 

space-time framework. The unit began with the postulates of the Special 

Theory of Relativity proposed by Einstein, emphasizing that the laws of 

physics are the same in all inertial frames and that the speed of light in 

vacuum is constant for all observers, regardless of their motion. We then 

studied the Lorentz transformation, which mathematically relates the 
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space and time coordinates between two inertial frames in relative motion, 

and ensures the invariance of the speed of light. The unit further examined 

the consequences of Lorentz transformation, including key relativistic 

effects such as: 

 Time Dilation, where a moving clock appears to tick slower. 

 Length Contraction, where objects in motion appear shortened 

along the direction of motion. 

 Relativity of Simultaneity, which shows that simultaneous events 

in one frame may not be simultaneous in another. 

We also studied the group properties of Lorentz transformations, 

establishing that they form a group under composition. Additionally, the 

unit covered relativistic optical phenomena such as aberration, which 

refers to the apparent shift in the direction of incoming light due to the 

motion of the observer, and the relativistic Doppler effect, which explains 

the frequency shift in light or sound due to the relative motion between 

source and observer. 

2.13 GLOSSARY:- 

 Lorentz Transformation: A set of equations that relate space and 

time coordinates between two inertial frames moving at constant 

velocity, ensuring the speed of light remains constant across all 

inertial frames. 

 Inertial Frame: A reference frame in which a body remains at rest 

or moves with constant velocity unless acted upon by a force. 

 Relative Motion: The motion of an object as observed from a 

particular frame of reference. 

 Space-Time Interval: A quantity invariant under Lorentz 

transformations; it combines differences in space and time between 

two events. 

 Time Dilation: A phenomenon where time appears to pass slower 

in a moving frame as observed from a stationary frame. 

 Length Contraction: The shortening of an object's length in the 

direction of motion as observed from a stationary frame. 

 Simultaneity: The concept that two events that are simultaneous 

in one frame may not be simultaneous in another due to relative 

motion. 

 Postulates of Special Relativity:  

 The laws of physics are the same in all inertial frames. 
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 The speed of light in a vacuum is constant in all inertial 

frames, regardless of the motion of the light source or 

observer. 

 Aberration of Light: The apparent change in the direction of 

incoming light due to the motion of the observer. 

 Relativistic Doppler Effect: The change in frequency or 

wavelength of light from a moving source, accounting for time 

dilation effects. 

 Group Property: Lorentz transformations form a group, meaning 

they satisfy closure, associativity, identity, and inverse properties.  

 

2.14 REFRENCES:- 

 Ta-Pei Cheng (2015),"Relativity, Gravitation and Cosmology: A 

Basic Introduction" (2nd Edition). 

 Spencer A. Klein (2017), "Relativistic Mechanics and 

Electrodynamics". 

 James J. Callahan (2019), "The Geometry of Spacetime: An 

Introduction to Special and General Relativity" (2nd Edition. 

2.15 SUGGESTED READING:- 

 Satya Prakash and K.P. Gupta (Nineteenth Edition, 2019), 

Relativistic Mechanics. 

 Dr. J.K. Goyal and Dr. K.P. Gupta (Twenty Eight Edition, 2018), 

Theory of Relativity. 

2.16 TERMINAL QUESTIONS:- 

(TQ-1) Explain the postulates of special theory of relativity. 

(TQ-2) Explain the phenomenon of time dilation in special relativity. 

(TQ-3) Obtain the law of transformation for the Lorentz contraction 

factor. 

(TQ-4) Discuss the concept of Simultaneity in special theory. 

 (TQ-5) A rod has length 100cm when the rod is in a satellite moving with 

velocity 0.8c relative to laboratory, what is length of the rod as determined 

by an observer, (i) in the satellite and (ii) in the laboratory? 
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(TQ-6) Calculate the length of a rod moving with a velocity of 0.8c in a 

direction inclined at 60° to its own length. Proper length of the rod is 

given to be 100 cm. 

(TQ-7) A man is in a car travelling at 30 miles/hour. He throws a ball in 

the direction of travel, at a velocity of 30 miles/hour relative to the car. 

What is the velocity of the ball relative to the ground? 

 

2.17 ANSWERS:- 

SELF CHECK ANSWERS 

1. a 

2. b 

3. a 

4. b 

5. b 

(TQ-5) (i) 100cm, (ii)60cm 

(TQ-6) 91.6 

(TQ-7) 59.999 miles/hour 
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UNIT 3:- Relativistic Mechanics   

 

3.1      Introduction 

3.2      Objectives 

3.3      Mass and Momentum  

3.4      Newton’s Law of Motion 

3.5      Measurement of Different Units 

3.6      Variation of Mass with Velocity 

3.7       Experimental verification 

3.8      Transformation Formula for Mass 

3.9      Transformation Formula for Momentum and Energy 

3.10     Particle with Rest Mass Zero 

3.11     Binding Energy 

3.12    Transformation Formula for Force 

3.13     Relativistic Transformation Formula for Density 

3.14     Summary 

3.15     Glossary 

3.16     References 

3.17     Suggested Reading 

3.18     Terminal questions  

3.19     Answers  

 

3.1 INTRODUCTION:-  

Relativistic mechanics is the branch of physics that extends classical 

Newtonian mechanics to account for objects moving at or near the speed 

of light. It is based on Albert Einstein’s theory of special relativity, which 

fundamentally changed our understanding of space, time, and motion. In 

relativistic mechanics, the assumptions of absolute time and space are 

replaced by the idea that measurements of time and distance depend on the 

relative motion between observers. One of the key insights is that the laws 

of physics are the same in all inertial frames, and the speed of light is 

constant for all observers, regardless of their relative motion. This leads to 

phenomena such as time dilation, length contraction, and the relativity of 

simultaneity, which have been experimentally verified. Additionally, the 

famous equation 𝐸 = 𝑚𝑐2 emerges from relativistic mechanics, 

establishing the equivalence of mass and energy. This framework is 



Theory of Relativity  MAT609 

Department of Mathematics  

Uttarakhand Open University Page 51 
 

essential not only in particle physics and astrophysics but also in 

technologies like GPS, where relativistic corrections are necessary for 

accurate functioning. 

3.2 OBJECTIVES:-  

After studying this unit, the learner’s will be able to  

 To explain mass and momentum. 

 To solve equivalence of mass and energy relation. 

 To obtain the law of variation of mass with velocity. 

 To understand the formulation of energy momentum. 

 To solve the Binding energy. 

3.3 MASS AND MOMENTUM:-  

A moving particle's linear momentum (𝑝)  is described in classical 

mechanics as 𝑝 = 𝑚𝑣, where m is the mass and 𝑣 is the velocity.  

We assume in classical mechanics that  

 A moving body's mass is equal to that of a stationary one. 

 

 In the absence of external forces, a body's total momentum stays 

constant. 

 The law of conservation of momentum refers to this. 

If we use Lorentz transformations to test assumption (1), it will not 

be true. 

The law of conservation of momentum's Lorentz invariance suggests that 

a moving body's mass is not constant but rather varies with velocity, as we 

will see later. 

 

3.4  NEWTON’S LAW OF MOTION:-  

In classical mechanics, Newton has given three laws of motion namely. 

1. A body at rest remains at rest and a body in motion continues with 

constant velocity in a straight line unless as external force is 

applied to it. Symbolically, 

𝐹 =  0 ⇒  𝑎 =  0 

Where 𝐹  and a denote respectively net external force and 

acceleration. 

2. If a force 𝐹 acts on a body, then the momentum of the body will be 

changed so that rate of change of momentum is proportional to the 
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force and is in the direction of the force. Mathematically it is 

expressed as:  

𝐹 = 𝐾
𝑑𝑝

𝑑𝑡
 

Where 𝐾 is constant of proportionality. We defined 𝐾 s.t. 𝐾 =  1 and 

dimension less.  

∴                                                   𝐹 =
𝑑𝑝

𝑑𝑡
 

In the non-relativistic limit the momentum is given by  

𝐹 = 𝑚
𝑑𝑣

𝑑𝑡
= 𝑚𝑎 

It is non-relativistic form of Newton's second law. 

3. Whenever two bodies intersect at, then forces 𝐹1→2 on the second 

body exerted by the first body is equal and opposite to the force 

𝐹2→1 on the first body due the second. That is to say, action and 

reaction are equal and opposite. 

𝐹1→2 = −𝐹2→1 

3.5 MEASUREMENT OF DIFFERENT UNITS:-  

The three unit systems are C.G.S., F.P.S., and M.K.S. Keep in mind that 

the ergs is in C.G.S. and the Joule is in M.K.S. 

1. In the formula 𝐸 = 𝑚𝑐2 ,units of m, 𝑐 and 𝐸 are gram, cm/sec and 

ergs 

2.  𝑙𝑒𝑉 =  1 electron Volt =  1.6 × 10−12 ergs 

3. 1 Joule =  107 ergs  

1𝑒𝑉 =  1.6 × 10−12 × 10−7 = 1.6 × 10−19Joule  

MeV =Million electron Volt, BeV = Billion electron Volt. 

4. 1𝑀𝑒𝑉 =  106 𝑒𝑉 = 1.6 × 10−12 × 106ergs  

1𝐵𝑒𝑉 =  109 𝑒𝑉 = 109 × 1.6 × 10−12 ergs= 1.6 × 10−3 ergs 

5. Rest mass of proton =  𝑚0 = 1.67 × 10−24 gm. 

6.  Rest mass of electron = 𝑚0 = 9 × 10−28 gram. 

7.  1 Kilo watt hour =  1 K.W.H. =  3.6 × 10¹² ergs 

8.  1gm =  6 × 1023a.m.u.  

a.m.u. =Atomic mass unit 

9. 1 calorie = 4.2 × 107𝑒𝑟𝑔𝑠 = 4.2 joules 
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10. Distance from the earth to the sun is about 150 × 106 Km. 

3.6 VARIATION OF MASS WITH VELOCITY:-  

Examine two frames of reference, 𝑆 and 𝑆′. 𝑆' is traveling along the X-axis 

at a constant rate, 𝑣. If 𝑚1 is the mass of a particle traveling along the x-

axis in system 𝑆 at velocity u_1, then 𝑚1
′  and 𝑢1′ are the mass and velocity 

of the identical particle in system S', respectively. 

Suppose  

𝛽 =
1

√1 −
𝑣2

𝑐2

, 𝛽1 =
1

√1 −
𝑢12

𝑐2

, 𝛽2 =
1

√1 −
𝑢1′2

𝑐2

    … (1) 

By the formula of composition of velocities, 

𝑢1 =
𝑢1
′ + 𝑣

1 +
𝑣
𝑐2
𝑢1′

 

𝑢1 (1 +
𝑣

𝑐2
𝑢1′) = 𝑢1

′ + 𝑣 

                                                   𝑢1
′ =

𝑢1−𝑣

1−
𝑣

𝑐2
𝑢1
                            … (2) 

∴                              

                                       𝛽1
′𝑢1′ =

𝑢1−𝑣

√1−
𝑢1′

2

𝑐2
(1−

𝑣

𝑐2
𝑢1)

                      … (3) 

Now, 

 1 −
𝑢1′

2

𝑐2
= 1 −

(𝑢1 − 𝑣)
2

𝑐2 (1 −
𝑣
𝑐2
𝑢1)

2 

=
𝑐2 (1 −

𝑣
𝑐2
𝑢1)

2

− (𝑢1 − 𝑣)
2

𝑐2 (1 −
𝑣
𝑐2
𝑢1)

2  

∴ 𝑐2 (1 −
𝑢1′

2

𝑐2
) (1 −

𝑣

𝑐2
𝑢1)

2

= (1 −
𝑣

𝑐2
𝑢1)

2

𝑐2 − (𝑢1 − 𝑣)
2 

= 𝑐2 (1 +
𝑣2

𝑐4
𝑢1

2 −
2𝑢1𝑣

𝑐2
) − (𝑢1

2 + 𝑣2 − 2𝑢1𝑣) 

= 𝑐2 +
𝑢1

2𝑣2

𝑐2
− 𝑢1

2 − 𝑣2 = 𝑐2 [1 −
𝑢1

2 + 𝑣2

𝑐2
+
𝑢1

2𝑣2

𝑐4
] 

Dividing by 𝑐2 
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(1 −
𝑢1′

2

𝑐2
) (1 −

𝑣

𝑐2
𝑢1)

2

= 1 −
𝑢1

2 + 𝑣2

𝑐2
+
𝑢1

2𝑣2

𝑐4
 

Taking square root both sides, we get 

√1 −
𝑢1′2

𝑐2
(1 −

𝑣

𝑐2
𝑢1) = (1 −

𝑢1
2 + 𝑣2

𝑐2
+
𝑢1

2𝑣2

𝑐4
)

1/2

 

Putting the above value in equation (3) 

                                  𝛽1
′𝑢1
′ =

𝑢1−𝑣

(1−
𝑢1
2+𝑣2

𝑐2
+
𝑢1
2𝑣2

𝑐4
)

1
2

                  … (4) 

=
𝑢1 − 𝑣

[(1 −
𝑣2

𝑐2
) (1 −

𝑢12

𝑐2
)]

1
2

 

𝛽1
′𝑢1
′ = 𝛽𝛽1(𝑢1 − 𝑣) 𝑏𝑦 (1) 

                                        
𝛽1
′𝑢1

′

𝛽1
= 𝛽(𝑢1 − 𝑣)                             … (5) 

Assuming that several of these particles are traveling along the X-axis and 

that their masses and momentum remain constant within the system S, we 

can now 

∑𝑚1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

∑𝑚1𝑢1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
} 

Since 𝛽 𝑎𝑛𝑑 𝑣 are same for every particle and therefore 

 

                                
∑𝑚1𝛽𝑣 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
∑𝑚1𝑢1𝛽 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

}                                … (6) 

Subtracting, we get 

∑𝑚1𝛽(𝑢1 − 𝑣) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

From equation (5) 

                                     ∑ [𝑚1
𝛽1
′𝑢1

′

𝛽1
] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                         … (7) 

Appling in Sʹ, law of conservation of momentum 

                                       ∑𝑚1′𝑢1′ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                           … (8) 
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Comparing equation (7) & (8)  

𝑚1𝛽1
′

𝛽1
= 𝑚1

′  

𝑚1

𝛽1
=
𝑚1
′

𝛽1
′ = 𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑚0(𝑠𝑎𝑦) 

Then 

𝑚1 =
𝑚0

√1 −
𝑢12

𝑐2

, 𝑚′ =
𝑚0

√1 −
𝑢1′

2

𝑐2

 

According to this, if a particle with mass m in relation to system S is 

traveling with velocity u in relation to system S, then  

 

𝑚 =
𝑚0

√1 −
𝑢2

𝑐2

 

If 𝑢 = 0, then the last given 𝑚 = 𝑚0 

Hence is the mass of the body at rest. Hence, 𝑚0 is also called rest mass or 

proper 𝑚0 mass. 

For it is the mass of the body measured, like proper length and proper 

time, in the inertial frame in which the body is at rest. 

3.7 EXPERIMENTAL VARIFICATION:-  

The mass velocity relation: 

𝑚 =
𝑚0

√1 −
𝑣2

𝑐2

    … (1) 

can be verified in the experiments measuring the mass or e/m of the final 

traveling electrons. We here offer the experiment by Guye and Lavanchy. 
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Fig.1 

3.7.1 Experiment of Guye and Lavanchy 

In 1915, Guye and Lavanchy used their "identical paths" method, which is 

seen in figure 1, to achieve the most accurate validation of equation (1). In 

a vacuum tube, a cathode-anode system C*A is set up and run at several 

thousand volts. The hole B in the anode collimates the cathode rays into a 

fine beam, which then travels in a straight line to impact a photographic 

plate Fat 0. By applying a potential difference between the plates D and E 

and the latter employing an electromagnet M, represented by a dotted 

circle, electric and magnetic fields are arranged in the course of the 

former's electron beam. 

Two fields sequentially deflect the electron beam. The field strengths are 

set up so that the path taken by the electrons being studied matches the 

path taken by a reference beam of low-speed electrons. Assuming that the 

electric and magnetic field strengths X' and H' are such that the fast 

electrons (velocity v') experience the identical electric and magnetic 

deflectors as the slow electrons (velocity v) under the field strengths X and 

H, it can be shown that 

𝑣′

𝑣
=
𝑋′𝐻

𝑋𝐻′
𝑎𝑛𝑑 

𝑚′

𝑚
= (

𝑋′𝐻

𝑋𝐻′
) 

 

Where m is the mass of the electron in the reference beam of low speed 

electrons and m' that of an electron in the beam of fast electrons under 

examination. 

 

Guye and Lavanchy produced approximately 2000 determinations of for 

electrons with (m') / m velocity ranging from 26 to 48% that of light and 

showed that their results confirmed therewith to an accuracy of 1 part in 

2000.     

 

Theorem 1. Equivalence of mass and energy: To show that 𝐸 = 𝑚𝑐2. 
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Proof: Let S and S' be two systems. S' is traveling along the x-axis with 

velocity v in relation to S. In the system S, suppose that a particle of mass 

m is traveling along the X-axis at velocity v. Then 

𝑚 =
𝑚0

√1 −
𝑣2

𝑐2

                                      … (1) 

The equation 𝑑𝑇 = 𝐹. 𝑑𝑟 = 𝑓𝑜𝑟𝑐𝑒 × 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 , where dr is the 

particle's displacement, gives the particle's increase in energy if a force F 

is applied to it. 

𝑑𝑇 = 𝐹.
𝑑𝑟

𝑑𝑡
. 𝑑𝑡 = 𝐹. 𝑣𝑑𝑡                  … (2) 

Since force is defined as the rate of change in momentum so that 

𝐹 =
𝑑

𝑑𝑡
(𝑚𝑣)𝑜𝑟 𝐹𝑑𝑡 = 𝑑(𝑚𝑣) 

From equation (2) 

𝑑𝑇 = 𝑣𝑑(𝑚𝑣) = 𝑣𝑑

[
 
 
 
𝑚0𝑣

√1 −
𝑣2

𝑐2]
 
 
 

 

= 𝑚0𝑣

[
 
 
 
√1 −

𝑣2

𝑐2
+

𝑣2

𝑐2

√1 −
𝑣2

𝑐2 ]
 
 
 

𝑑𝑣

(1 −
𝑣2

𝑐2
)
 

𝑑𝑇 =
𝑚0𝑣𝑑𝑣

(1 −
𝑣2

𝑐2
)
3/2
                                … (3) 

Taking differential of both sides in (1), we get 

𝑑𝑚 =
𝑚0(−2𝑣/𝑐

2)𝑑𝑣

(−2) (1 −
𝑣2

𝑐2
)
3/2

=
𝑚0𝑣𝑑𝑣

𝑐2 (1 −
𝑣2

𝑐2
)
3/2

 

𝑐2𝑑𝑚 =
𝑚0𝑣𝑑𝑣

(1 −
𝑣2

𝑐2
)
3/2
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𝑑𝑇 = 𝑐2𝑑𝑚                                           … (4) 

From equation (3) 

Assume the particle has a mass of 𝑚0  and is initially at rest. Its mass 

becomes𝑚0 + 𝑑𝑚 = 𝑚 , say, once force F is applied. The particle's total 

K.E. T is determined by 

 

𝑇 = ∫𝑑𝑇 =∫ 𝑐2𝑑𝑚
𝑚

𝑚0

= 𝑐2(𝑚 −𝑚0) 

𝑇 = 𝑚𝑐2−𝑚0𝑐
2 

𝑜𝑟 𝑇 + 𝑚0𝑐
2 = 𝑚𝑐2 

⇒ 𝐸 = 𝐾. 𝐸. 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑣𝑖𝑛𝑔 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 + 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑡 𝑟𝑒𝑠𝑡 
= 𝑇 +𝑚0𝑐

2 
We obtain 

𝐸 = 𝑚𝑐2 
This formula is known as Einstein formula showing that the two 

fundamental conceptions of mass and energy are identical. 

Here 𝑚0𝑐
2 is called interval or rest energy. 

 

 

 3.8 TRANSFORMATION FORMULA FOR MASS:-  

Let's look at systems 𝑆 and 𝑆. 𝑆′ is traveling along the x-axis at velocity 

𝑣. A body moving with velocity 𝑢 and 𝑢′ in S and S' has masses 𝑚 and 

𝑚′ in 𝑆 and 𝑆′, respectively. 

We have, 

𝑚 =
𝑚0

√1 −
𝑢2

𝑐2

, 𝑚′ =
𝑚0

√1 −
𝑢′2

𝑐2

                        … (1) 

   
𝑢2 = 𝑢𝑥

2 + 𝑢𝑦
2 + 𝑢𝑧

2, 𝑢′2 = 𝑢𝑥′
2 + 𝑢𝑦′

2 + 𝑢𝑧′
2 

By the law of composition of velocities 

𝑢𝑥
′ =

𝑢𝑥 − 𝑣

1 −
𝑣
𝑐2
𝑢𝑥
, 𝑢𝑦
′ =

𝑢𝑦 (1 −
𝑣2

𝑐2
)
1/2

1 −
𝑣
𝑐2
𝑢𝑥

, 𝑢𝑧
′ =

𝑢𝑧 (1 −
𝑣2

𝑐2
)
1/2

1 −
𝑣
𝑐2
𝑢𝑥

 

 

From equation (1) 

𝑚

𝑚′
= (

1 −
𝑢′
2

𝑐2

1 −
𝑢2

𝑐2

)

1
2

                                … (2) 

1 −
𝑢′
2

𝑐2
= 1 −

1

𝑐2
(𝑢𝑥′

2 + 𝑢𝑦′
2 + 𝑢𝑧′

2) 
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= 1 − [(𝑢𝑥 − 𝑣)
2 + 𝑢𝑦

2 (1 −
𝑣2

𝑐2
) + 𝑢𝑧

2 (1 −
𝑣2

𝑐2
)] .

1

𝑐2 (1 −
𝑣
𝑐2
𝑢𝑥)

2 

=
1

𝑐2 (1 −
𝑣
𝑐2
𝑢𝑥)

2 [𝑐
2 (1 −

𝑣

𝑐2
𝑢𝑥)

2

− {(𝑢𝑥 − 𝑣)
2 + 𝑢𝑦

2 (1 −
𝑣2

𝑐2
) + 𝑢𝑧

2 (1 −
𝑣2

𝑐2
)}] 

Taking 𝛼2 = 1/𝑐2 (1 −
𝑣

𝑐2
𝑢𝑥)

2

, we get 

 

1 −
𝑢′
2

𝑐2
= 𝛼2 [𝑐2 (1 +

𝑣2

𝑐4
𝑢𝑥

2 −
2𝑣𝑢𝑥
𝑐2

)

− {𝑢2 − 2𝑥𝑢𝑥 −
𝑣2

𝑐2
(𝑢𝑦

2 + 𝑢𝑧
2) + 𝑣2}] 

= 𝛼2 [𝑐2 (1 −
𝑢2

𝑐2
) +

𝑣2

𝑐2
𝑢2 − 𝑣2] 

= 𝛼2 [𝑐2 (1 −
𝑢2

𝑐2
) + 𝑣2 (

𝑢2

𝑐2
− 1)] 

 

= 𝛼2 (1 −
𝑢2

𝑐2
) [𝑐2 − 𝑣2] 

1 −
𝑢′
2

𝑐2
= 𝛼2𝑐2 (1 −

𝑢2

𝑐2
)(1 −

𝑣2

𝑐2
) 

 

1 −
𝑢′
2

𝑐2
=
𝑐2 (1 −

𝑢2

𝑐2
) (1 −

𝑣2

𝑐2
)

𝑐2 (1 −
𝑣
𝑐2
𝑢𝑥)

2  

Taking square root 

(1 −
𝑢′
2

𝑐2
)

1
2

=
(1 −

𝑢2

𝑐2
)

1
2
(1 −

𝑣2

𝑐2
)

1
2

(1 −
𝑣
𝑐2
𝑢𝑥)

 

(
1 −

𝑢′
2

𝑐2

1 −
𝑢2

𝑐2

)

1
2

=
(1 −

𝑣2

𝑐2
)

1
2

(1 −
𝑣
𝑐2
𝑢𝑥)
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𝑚

𝑚′
=
(1 −

𝑣2

𝑐2
)

1
2

(1 −
𝑣
𝑐2
𝑢𝑥)

 

𝑚′ =
𝑚(1 −

𝑣
𝑐2
𝑢𝑥)

(1 −
𝑣2

𝑐2
)
1/2

 

This is the transformation formula for mass. 

If 𝑢𝑥 = 0, then 

𝑚′ =
𝑚

(1 −
𝑣2

𝑐2
)
1/2

 

 

3.9TRANSFORMATION FORMULA FOR 

MOMENTUM AND ENERGY:-  

Consider the two systems, 𝑆 and 𝑆′. 𝑆′ is traveling along the 𝑋 −axis with 

velocity 𝑣.  Assume that a body in 𝑆  and 𝑆′  has masses 𝑚  and 𝑚′.  The 

body traveling with velocities 𝑢(𝑢𝑥 , 𝑢𝑦, 𝑢𝑧)𝑎𝑛𝑑 𝑢
′(𝑢𝑥

′ , 𝑢𝑦
′ , 𝑢𝑧

′ ) is in 𝑆 and 

𝑆′ respectively.  

Next is the relationship, 

𝑚′ = 𝑚(1 −
𝑣

𝑐2
𝑢𝑥)𝛽 

𝑢𝑥
′ =

𝑢𝑥 − 𝑣

1 −
𝑣
𝑐2
𝑢𝑥
, 𝑢𝑦′ = 𝑢𝑦/𝛽 (1 −

𝑣

𝑐2
𝑢𝑥) 

𝑢𝑧′ = 𝑢𝑧/𝛽 (1 −
𝑣

𝑐2
𝑢𝑥) 

𝛽 =
1

√1 −
𝑣2

𝑐2

 

The components of the momentum p are: 

𝑝𝑥 = 𝑚𝑢𝑥 , 𝑝𝑦 = 𝑚𝑢𝑦, 𝑝𝑧 = 𝑚𝑢𝑧 𝑖𝑛 𝑆 𝑠𝑦𝑠𝑡𝑒𝑚. 

𝑝𝑥′ = 𝑚′𝑢𝑥′, 𝑝𝑦′ = 𝑚′𝑢𝑦′, 𝑝𝑧′ = 𝑚′𝑢𝑧′ 𝑖𝑛 𝑆′ 𝑠𝑦𝑠𝑡𝑒𝑚. 

𝑝𝑥
′ = 𝑚′𝑢𝑥′ = 𝑚 (1 −

𝑣

𝑐2
𝑢𝑥)𝛽

𝑢𝑥 − 𝑣

1 −
𝑣
𝑐2
𝑢𝑥
= (𝑚𝑢𝑥 −𝑚𝑣)𝛽 
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∵ 𝐸 = 𝑚𝑐2 ⇒ 𝑚 =
𝐸

𝑐2
 

∴ 𝑝𝑥
′ = (𝑝𝑥 −𝑚𝑣)𝛽 = (𝑝𝑥 −

𝑣𝐸

𝑐2
) 𝛽 

𝑝𝑦
′ = 𝑚′𝑢𝑦

′ = 𝑚(1 −
𝑣

𝑐2
𝑢𝑥) 𝛽

𝑢𝑦

1 −
𝑣
𝑐2
𝑢𝑥
= 𝑚𝑢𝑦 = 𝑝𝑦 

𝑝𝑧
′ = 𝑚′𝑢𝑧

′ = 𝑚(1 −
𝑣

𝑐2
𝑢𝑥) 𝛽

𝑢𝑧

1 −
𝑣
𝑐2
𝑢𝑥
= 𝑚𝑢𝑧 = 𝑝𝑧 

𝐸′ = 𝑚′𝑐2 = 𝑚(1 −
𝑣

𝑐2
𝑢𝑥)𝛽𝑐

2 = 𝛽(𝑚𝑐2 −𝑚𝑣𝑢𝑥) 

= 𝛽(𝐸 − 𝑣𝑝𝑥) 

[∵ 𝐸 = 𝑚𝑐2, 𝑝𝑥 = 𝑚𝑢𝑥] 

Thus, we have shown that 

𝑝𝑥
′ = (𝑝𝑥 −

𝑣𝐸

𝑐2
) 𝛽, 𝑝𝑦

′ = 𝑝𝑦, 𝑝𝑧
′ = 𝑝𝑧 , 𝛽 =

1

√1 −
𝑣2

𝑐2

 

These are transformation equations for momentum. These transformation 

equations are exactly similar to Lorentz transformation equations if we 

replace 𝑥, 𝑦, 𝑧 𝑏𝑦 𝑝𝑥, 𝑝𝑦, 𝑝𝑧 ,
𝐸

𝑐2
 respectively. 

3.10PARTICLE WITH REST MASS:-  

A particle with rest mass 𝑚0 and momentum p has relativistic energy 𝐸, 
which may be found using 

𝐸2 = 𝑝2𝑐2 +𝑚0
2𝑐4 

                                                 𝐸 = (𝑝2𝑐2 +𝑚0
2𝑐4)

1

2     … (1) 
Where𝑚0 = 0, then equation (1) can be written as 𝐸 = 𝑝𝑐    … (2) 
But 

𝑝 =
𝑣𝐸

𝑐2
 

∴ 𝑝2 =
𝑣2𝐸2

𝑐4
 

From equation (2) 

𝐸2

𝑐2
= 𝑝2 =

𝑣2𝐸2

𝑐4
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⇒ 𝑣2 = 𝑐2 𝑜𝑟 𝑣 = 𝑐 
This proves that the particle of zero mass travels with the speed of light. 

 

3.11 BINDING ENERGY:-  

The binding energy of a nucleus is the amount of energy required to break 

its protons and neutrons apart across an infinite distance. 

 

Therefore, we anticipate that the nucleus's mass will be less than that of 

the constituent nucleus by a factor of  

∆𝑚 = ∆𝐸/𝑐2 

Where ∆𝐸 is the nucleus' binding energy. 

 

3.12TRANSFORMATION FORMULA FOR 

FORCE:-  

Let's look at two systems. 𝑆 and 𝑆′ are traveling along the 𝑋 −axis at a 

certain velocity. The masses of a body in 𝑆 and 𝑆′, with velocities a and 

𝑢′ in 𝑆 and 𝑆′, respectively, are denoted by 𝑚 and 𝑚′. If a body with mass 

m and velocity an is subject to a force, then 

𝐹 = 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 =
𝑑

𝑑𝑡
(𝑚𝑢)     … (1) 

= 𝑢
𝑑𝑚

𝑑𝑡
+ 𝑚

𝑑𝑢

𝑑𝑡
= 𝑢

𝑑𝑚

𝑑𝑡
+ 𝑚�̇� 

𝐹 = 𝑖𝐹𝑥 + 𝑗𝐹𝑦 + 𝑘𝐹𝑧 , 𝑢 = 𝑖𝑢𝑥 + 𝑗𝑢𝑦 + 𝑘𝑢𝑧 

This gives 

𝐹𝑥 = 𝑢𝑥
𝑑𝑚

𝑑𝑡
+ 𝑚𝑢�̇�

𝐹𝑦 = 𝑢𝑦
𝑑𝑚

𝑑𝑡
+ 𝑚𝑢�̇�

𝐹𝑧 = 𝑢𝑧
𝑑𝑚

𝑑𝑡
+ 𝑚𝑢�̇�}

 
 

 
 

                                             … (2) 

𝑑𝑚

𝑑𝑡
=
𝑑

𝑑𝑡

{
 

 
𝑚0

√1 −
𝑢2

𝑐2}
 

 

=
𝑢

𝑐2
𝑚0

𝑑𝑢

𝑑𝑡

1

(1 −
𝑢2

𝑐2
)
3/2

 

= 𝑢
𝑑𝑢

𝑑𝑡
.

𝑚

𝑐2 (1 −
𝑢2

𝑐2
)
=

𝑚

(𝑐2 − 𝑢2)
𝑢
𝑑𝑢

𝑑𝑡
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𝑑𝑚

𝑑𝑡
=

𝑚

(𝑐2 − 𝑢2)
𝑢
𝑑𝑢

𝑑𝑡
    … (3) 

𝑢2 = 𝑢𝑥
2 + 𝑢𝑦

2 + 𝑢𝑧
2 

Differentiating w.r.t. t, we get 

𝑢�̇� = 𝑢𝑥𝑢𝑥 +̇ 𝑢𝑦𝑢�̇� + 𝑢𝑧𝑢�̇� 

Equation 3 now becomes 

𝑑𝑚

𝑑𝑡
=
𝑚(𝑢𝑥𝑢𝑥 +̇ 𝑢𝑦𝑢�̇� + 𝑢𝑧𝑢𝑧)̇

(𝑐2 − 𝑢2)
 

 

Equation 2 now becomes 

𝐹𝑥 = 𝑢𝑥
𝑚(𝑢𝑥𝑢𝑥 +̇ 𝑢𝑦𝑢�̇� + 𝑢𝑧𝑢𝑧)̇

(𝑐2 − 𝑢2)
+ 𝑚𝑢�̇�

𝐹𝑦 = 𝑢𝑦
𝑚(𝑢𝑥𝑢𝑥 +̇ 𝑢𝑦𝑢�̇� + 𝑢𝑧𝑢𝑧)̇

(𝑐2 − 𝑢2)
+ 𝑚𝑢�̇�

𝐹𝑧 = 𝑢𝑧
𝑚(𝑢𝑥𝑢𝑥 +̇ 𝑢𝑦𝑢�̇� + 𝑢𝑧𝑢𝑧)̇

(𝑐2 − 𝑢2)
+ 𝑚𝑢�̇�}

  
 

  
 

    … (4) 

By Lorentz transformation, 

𝑡′ = 𝛽 (𝑡 −
𝑣𝑥

𝑐2
) 

𝑑𝑡′

𝑑𝑡
= 𝛽 (𝑡 −

𝑣

𝑐2
𝑢𝑥) 

𝑤ℎ𝑒𝑟𝑒 𝛽 =
1

√1 −
𝑣2

𝑐2

 

In the system Sʹ, according to equation (1) 

𝐹𝑥
′ =

𝑑

𝑑𝑡′
(𝑚′𝑢𝑥′) =

𝑑

𝑑𝑡
(𝑚′𝑢𝑥′)

𝑑𝑡

𝑑𝑡′
 

=
𝑑

𝑑𝑡

[
 
 
 𝑚 (1 −

𝑣
𝑐2
𝑢𝑥)

(1 −
𝑣2

𝑐2
)
1/2

.
𝑢𝑥 − 𝑣

1 −
𝑣
𝑐2
𝑢𝑥
]
 
 
 

.
1

𝛽 (1 −
𝑣
𝑐2
𝑢𝑥)
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=
1

𝛽 (1 −
𝑣2

𝑐2
)
1/2

𝑑

𝑑𝑡
[𝑚(𝑢𝑥 − 𝑣)].

1

(1 −
𝑣
𝑐2
𝑢𝑥)

 

=
1

(1 −
𝑣
𝑐2
𝑢𝑥)

[
𝑑𝑚

𝑑𝑡
(𝑢𝑥 − 𝑣) +𝑚𝑢�̇�] 

𝐹𝑥
′ =

1

(1 −
𝑣
𝑐2
𝑢𝑥)

[
𝑚

𝑐2 − 𝑢2
(𝑢𝑥𝑢𝑥 +̇ 𝑢𝑦𝑢�̇� + 𝑢𝑧𝑢�̇�)(𝑢𝑥 − 𝑣)

+ 𝑚𝑢�̇�]     … (5) 

Observe that 

𝐹𝑥 −
(
𝑣
𝑐2
) (𝑢𝑦𝐹𝑦 + 𝑢𝑧𝐹𝑧)

(1 −
𝑣
𝑐2
𝑢𝑥)

 

From equation (4) 

=
𝑚

𝑐2 − 𝑢2
(𝑢𝑥𝑢𝑥 +̇ 𝑢𝑦𝑢�̇� + 𝑢𝑧𝑢�̇�)𝑢𝑥 +𝑚𝑢�̇�

−
(𝑣/𝑐2)

(1 −
𝑣
𝑐2
𝑢𝑥)

[
𝑚

𝑐2 − 𝑢2
(𝑢𝑦

2 + 𝑢𝑧
2)(𝑢𝑥𝑢𝑥 +̇ 𝑢𝑦𝑢�̇�

+ 𝑢𝑧𝑢�̇�) + 𝑚(𝑢𝑦𝑢�̇� + 𝑢𝑧𝑢�̇�)] 

=
𝑚

(1 −
𝑣
𝑐2
𝑢𝑥)

[
1

(𝑐2 − 𝑢2)
. (𝑢𝑥𝑢𝑥 +̇ 𝑢𝑦𝑢�̇� + 𝑢𝑧𝑢�̇�) {(1 −

𝑣

𝑐2
𝑢𝑥) 𝑢𝑥

−
𝑣

𝑐2
(𝑢𝑦

2 + 𝑢𝑧
2)} − (𝑢𝑦𝑢�̇� + 𝑢𝑧𝑢�̇�)

𝑣

𝑐2
+ (1 −

𝑣

𝑐2
𝑢𝑥) �̇�𝑥] 

=
𝑚

(1 −
𝑣
𝑐2
𝑢𝑥)

[
(𝑢𝑥𝑢𝑥 +̇ 𝑢𝑦𝑢�̇� + 𝑢𝑧𝑢�̇�) (𝑢𝑥 −

𝑣
𝑐2
𝑢2)

(𝑐2 − 𝑢2)

−
𝑣

𝑐2
(𝑢𝑥𝑢𝑥 +̇ 𝑢𝑦𝑢�̇� + 𝑢𝑧𝑢�̇�) + �̇�𝑥

2] 

=
1

(1 −
𝑣
𝑐2
𝑢𝑥)

[
𝑚

𝑐2 − 𝑢2
(𝑢𝑥𝑢𝑥 +̇ 𝑢𝑦𝑢�̇� + 𝑢𝑧𝑢�̇�)(𝑢𝑥 − 𝑣) + 𝑚𝑢�̇�] = 𝐹𝑥

′ 
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𝐹𝑥
′ = 𝐹𝑥 −

(
𝑣
𝑐2
) (𝑢𝑦𝐹𝑦 + 𝑢𝑧𝐹𝑧)

(1 −
𝑣
𝑐2
𝑢𝑥)

 

By virtue of (1) 

𝐹𝑦
′ =

𝑑

𝑑𝑡′
(𝑚′𝑢𝑦′) =

𝑑

𝑑𝑡
(𝑚′𝑢𝑦′)

𝑑𝑡

𝑑𝑡′
 

=
1

𝛽 (1 −
𝑣
𝑐2
𝑢𝑥)

𝑑

𝑑𝑡

[
 
 
 𝑚 (1 −

𝑣
𝑐2
𝑢𝑥)

√1 −
𝑣2

𝑐2

. 𝑢𝑦

√1 −
𝑣2

𝑐2

(1 −
𝑣
𝑐2
𝑢𝑥)

]
 
 
 

 

=
√1 −

𝑣2

𝑐2

(1 −
𝑣
𝑐2
𝑢𝑥)

𝑑

𝑑𝑡
(𝑚𝑢𝑦) =

√1 −
𝑣2

𝑐2

(1 −
𝑣
𝑐2
𝑢𝑥)

. 𝐹𝑦 

Thus, we have shown that 

𝐹𝑥
′ = 𝐹𝑥 −

(
𝑣
𝑐2
) (𝑢𝑦𝐹𝑦 + 𝑢𝑧𝐹𝑧)

(1 −
𝑣
𝑐2
𝑢𝑥)

, 𝐹𝑦
′ =

√1 −
𝑣2

𝑐2

(1 −
𝑣
𝑐2
𝑢𝑥)

. 𝐹𝑦 ,  

𝐹𝑧
′ =

√1 −
𝑣2

𝑐2

(1 −
𝑣
𝑐2
𝑢𝑥)

. 𝐹𝑧  

These are the required transformation formula for force acting on a body. 

3.13RELATIVISTICT RANSFORMATION 

FORMULA FOR DENSITY:-  

Let 𝑆  and 𝑆′ be two systems. Assume that 𝑆′  is traveling with velocity 

relative to 𝑆 in the r-axis' positive direction. Let  

𝛽 = √1 −
𝑣2

𝑐2
 

Case 1: Assume that a body in system S is at rest. Let 𝑉0𝑎𝑛𝑑 𝑉′ represent 

the body's two systems' volumes. Then, 

𝑉′ = 𝑉0𝛽 
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If 𝜌 𝑎𝑛𝑑 𝜌′ be the densities, then 

𝜌0 =
𝑚0

𝑉0
, 𝜌′ =

𝑚′

𝑉′
, 𝑚′ =

𝑚0

𝛽
 

⇒ 𝜌′ =
𝑚0

𝛽𝑉0𝛽
=
𝜌0
𝛽2

 

⇒ 𝜌′ =
𝜌0

(1 −
𝑣2

𝑐2
)
 

Case 2: A body moving with velocity 𝑢(𝑢𝑥 , 𝑢𝑦, 𝑢𝑧) relative to 𝑆  and 

𝑢′(𝑢𝑥′, 𝑢𝑦′, 𝑢𝑧′) related to S' is what we'll assume. Then  

𝑢 = 𝑖𝑢𝑥 + 𝑗𝑢𝑦 + 𝑘𝑢𝑧 

𝑢′ = 𝑖𝑢𝑥′ + 𝑗𝑢𝑦′ + 𝑘𝑢𝑧′ 

Let 𝑉  represent the body's volume in system 𝑆 and 𝑉ʹ as determined by 

𝑆ʹ. Let 𝑙𝑥, 𝑙𝑦𝑎𝑛𝑑 𝑙𝑧 be the lengths of the body's edges when it is at rest in 

system 𝑆, and let 𝑉0 be the volume. Then, 

𝑉0 = 𝑙𝑥𝑙𝑦 𝑙𝑧 

By Lorentz contraction, the length of edges in system 𝑆 are 

𝑙𝑥√1 −
𝑢𝑥2

𝑐2
, 𝑙𝑦√1 −

𝑢𝑦2

𝑐2
, 𝑙𝑧√1 −

𝑢𝑧2

𝑐2
 

respectively. Then  

𝑉 = 𝑙𝑥𝑙𝑦 𝑙𝑧 [(1 −
𝑢𝑥

2

𝑐2
)(1 −

𝑢𝑦
2

𝑐2
) (1 −

𝑢𝑧
2

𝑐2
)]

1/2

 

Let  

𝐴 = [(1 −
𝑢𝑥

2

𝑐2
)(1 −

𝑢𝑦
2

𝑐2
)(1 −

𝑢𝑧
2

𝑐2
)]

1
2

    … (1) 

Then, 

𝑉 = 𝑉0𝐴    … (2) 

Mass of the body as observed from the system 𝑆 is given by 
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𝑚 =
𝑚0

√1 −
𝑢2

𝑐2

 

𝑚0 = 𝑟𝑒𝑠𝑡 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑑𝑦 

𝜌 =
𝑚

𝑉
=

𝑚0

√1 −
𝑢2

𝑐2

.
1

𝑉0𝐴
 

From equation (2) 

𝜌 =
𝜌0

𝐴√1 −
𝑢2

𝑐2

    … (3) 

𝑤ℎ𝑒𝑟𝑒 𝑢2 = 𝑢𝑥
2 + 𝑢𝑦

2 + 𝑢𝑧
2 

To obtain the density expression for the system 𝑆ʹ, 
 

𝑢𝑥
′ =

𝑢𝑥 − 𝑣

1 −
𝑣
𝑐2
𝑢𝑥
, 𝑢𝑦
′ =

𝑢𝑦𝛽

1 −
𝑣
𝑐2
𝑢𝑥
, 𝑢𝑧

′ =
𝑢𝑧𝛽

1 −
𝑣
𝑐2
𝑢𝑥

 

𝑚′ =
𝑚0

√1 −
𝑢′2

𝑐2

 

Lengths of edges in system 𝑆ʹ are 

𝑙𝑥√1 −
𝑢𝑥′2

𝑐2
, 𝑙𝑦√1 −

𝑢𝑦′2

𝑐2
, 𝑙𝑧√1 −

𝑢𝑧′2

𝑐2
 

We have 

𝑉′ = 𝑙𝑥𝑙𝑦 𝑙𝑧𝐴
′ 

𝑉′ = 𝑉0𝐴
′    … (4) 

𝜌′ =
𝑚′

𝑉′
=

𝑚0

√1 −
𝑢′2

𝑐2

.
1

𝑉0𝐴′
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𝑜𝑟 𝜌′ =
𝜌0

𝐴′√1 −
𝑢′2

𝑐2

       … (5) 

𝑏𝑢𝑡 √1 −
𝑢′2

𝑐2
=
𝛽 (1 −

𝑢2

𝑐2
)
1/2

(1 −
𝑣
𝑐2
𝑢𝑥)

 

Now from equation (5) 

𝜌′ =
𝜌0 (1 −

𝑣
𝑐2
𝑢𝑥)

𝐴′𝛽 (1 −
𝑢2

𝑐2
)
1/2

 

From equation (3), we get 

𝜌′ =
𝜌𝐴√1 −

𝑢2

𝑐2
(1 −

𝑣
𝑐2
𝑢𝑥)

𝐴′𝛽 (1 −
𝑢2

𝑐2
)
1/2

 

𝜌′ =
𝜌𝐴 (1 −

𝑣
𝑐2
𝑢𝑥)

𝐴′𝛽
   … (6) 

Putting the value of A and Aʹ, we get 

𝜌′ =

𝜌 (1 −
𝑣
𝑐2
𝑢𝑥) [(1 −

𝑢𝑥
2

𝑐2
) (1 −

𝑢𝑦
2

𝑐2
) (1 −

𝑢𝑧
2

𝑐2
)]

1
2

√1 −
𝑣2

𝑐2
[(1 −

𝑢𝑥′2

𝑐2
) (1 −

𝑢𝑦′2

𝑐2
) (1 −

𝑢𝑧′2

𝑐2
)]

1
2

 

Solved Examples 

Example 1: The rest mass of an electron is 9 × 10−28𝑔. what will be its 

mass if it were moving with 4/5th the speed of light? 

Solution: The mass of an electron if it were moving with speed 𝑣  is 

determined by 

𝑚 =
𝑚0

√1 −
𝑣2

𝑐2
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Where 𝑚0 is the rest mass of the electron 

Here  

𝑣 =
4

5
𝑐 = 0.8𝑐 & 𝑚0 = 9 × 10

−28𝑔 = 9 × 10−31𝑘𝑔 

∴ 𝑚 =
9 × 10−31

√1 − (
0.8𝑐
𝑐 )

2
 

=
9 × 10−31

√1 − 0.64
=
9 × 10−31

√0.36
=
9 × 10−31

0.6
 

= 1.5 × 10−30𝑘𝑔 

Example 2: How much electric energy could theoretically be obtained by 

annihilation of 1 gm of matter? 

Solution: We have 

∆𝐸 = ∆𝑚. 𝑐2 

= (1 × 10−3𝑘𝑔) × (3 × 108𝑚/𝑠)2 

= 9 × 1013𝑗𝑜𝑢𝑙𝑒 

1 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑣𝑜𝑙𝑡 = 1.62 × 10−19𝑗𝑜𝑢𝑙𝑒 

Therefore, electrical energy obtained 

=
9 × 1013

1.602 × 10−19
𝑒𝑉 

=
9 × 1032

1.602
𝑒𝑉 

= 5.618 × 1032𝑒𝑉 

Example 3: Proton and neutron rest masses are 1.6725 × 10−24gm and 

1.6748 × 10−24 gm, respectively. The deuteron’s measured mass is 

3.3433 × 10−24 grams. Determine the binding energy. 

Solution: We know that a nucleus of deuteron consists of one proton and 

one neutron. 
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∆𝑚 = (𝑚𝑎𝑠𝑠 𝑜𝑓 𝑝𝑟𝑜𝑡𝑜𝑛 +𝑚𝑎𝑠𝑠 𝑜𝑓 𝑛𝑒𝑢𝑡𝑟𝑜𝑛 − 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑑𝑒𝑢𝑡𝑒𝑟𝑜𝑛) 

= (1.6725 + 1.6748) × 10−24 − 3.3433 × 10−24 

= 0.0040 × 10−24 = 4 × 10−27𝑔𝑚 

Binding energy ∆𝐸 is given by 

∆𝐸 = ∆𝑚. 𝑐2 = 4 × 10−27 × (3 × 1010)2 = 36 × 10−7𝑒𝑟𝑔 

=
36 × 10−7

1.6 × 10−12
𝑒𝑉 =

36 × 10−7

1.6 × 10−12 × 106
𝑀𝑒𝑉 

=
3.6

1.6
= 2.25𝑀𝑒𝑉 

Example 4: A particle with rest mass 2 × 10−24𝑘𝑔 is moving with speed 

2.1 × 108𝑚/𝑠𝑒𝑐. Calculate its moving mass. 

Solution: Given 

𝑚0 = 2 × 10
−24𝑘𝑔, 𝑣 = 2.1 × 108𝑚/𝑠𝑒𝑐, 𝑐 = 3 × 108𝑚/𝑠𝑒𝑐 

We have to calculate m. 

𝑚 =
𝑚0

√1 −
𝑣2

𝑐2

 

=
2 × 10−24

√1 − (
2.1 × 108

3 × 108
)
2

 

=
2 × 10−24

0.714
 

= 2.8 × 10−24𝑘𝑔 

Example 5: Calculate rest mass of photon. 

Solution: We know that for photon 𝑣 = 𝑐, then 

𝑚 =
𝑚0

√1 −
𝑣2

𝑐2
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𝑚0 = 𝑚√1 −
𝑣2

𝑐2
= 𝑚√1 −

𝑐2

𝑐2
 

𝑚0 = 𝑚 × 0 = 0 

∴ rest mass of photon= 0 

Example 6: From the relativistic concept of mass and energy show that 

the kinetic energy of the moving mass m with velocity v is 𝑚0𝑣
2/2 when 

𝑣 ≪ 𝑐 where c being velocity of light. 

Solution: We know that 

𝐸 = 𝐾. 𝐸. 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑣𝑖𝑛𝑔 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 + 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑡 𝑟𝑒𝑠𝑡 

(∵ 𝐸 = 𝑚𝑐2, 𝑇 = 𝐾. 𝐸. 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑣𝑖𝑛𝑔 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒) 

𝑚𝑐2 = 𝑇 +𝑚0𝑐
2 ⇒ 𝑇 = 𝑐2(𝑚 −𝑚0) 

𝑇 = 𝑐2

(

 
𝑚0

√1 −
𝑣2

𝑐2

−𝑚0

)

  

= 𝑚0𝑐
2 [(1 −

𝑣2

𝑐2
)

−1/2

− 1] = 𝑚0𝑐
2 [1 +

𝑣2

2𝑐2
− 1] 

Neglecting higher power as 𝑣 ≪ 𝑐 

𝑇 = 𝑚0𝑐
2
𝑣2

2𝑐2
=
1

2
𝑚0𝑣

2 

SELF CHECK QUESTIONS 

1. Prove that the relation between momentum and energy is 

𝐸2 = 𝑝2𝑐2 +𝑚0
2𝑐4 

2. Rest mass of photon is 

a) ℎ/𝜆𝑐 

b) ℎ𝑣/𝑐2 

c) 0 

d) m 

3. The variation of mass relation is given by 
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𝑎) 𝑚 =
𝑚0

√1 −
𝑣2

𝑐2

 

𝑏) 𝑚 = 𝑚0
√1 −

𝑣2

𝑐2
 

𝑐) 𝑚 =
𝑚0

1 −
𝑣2

𝑐2

 

d) None of these 

3.14 SUMMARY:-  

In this unit, we studied the fundamental modifications required in classical 

mechanics to accurately describe physical phenomena at relativistic 

speeds. We began with a review of mass and momentum, followed by 

Newton’s laws of motion and the measurement of physical quantities in 

different unit systems. A major focus was on the variation of mass with 

velocity, where we learned that mass increases with speed, as supported 

by experimental verifications. We then studied the transformation 

formulas for mass, momentum, and energy, which are essential for 

analyzing particle motion in different inertial frames. Special emphasis 

was given to the behavior of particles with zero rest mass, such as 

photons, and how they still carry energy and momentum. The concept of 

binding energy was introduced, illustrating the mass-energy relationship in 

nuclear processes. Additionally, we examined the relativistic 

transformation formula for force, showing how force components change 

under Lorentz transformations. Finally, we discussed the transformation of 

density in relativistic contexts, reinforcing the idea that even quantities 

like mass density are frame-dependent. Overall, this unit laid a solid 

foundation for understanding motion, forces, and energy in the realm of 

high velocities close to the speed of light. 

3.15 GLOSSARY:-  

 Relativistic Mechanics: The branch of physics that modifies 

classical mechanics to account for objects moving at speeds close 

to the speed of light, incorporating the principles of special 

relativity. 
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 Special Relativity: Einstein’s theory that describes the physics of 

objects in inertial frames moving at constant high speeds, based on 

two postulates: the constancy of the speed of light and the 

invariance of physical laws in all inertial frames. 

 Lorentz Transformation: A set of equations that relate space and 

time coordinates of events between two inertial frames moving at 

constant velocity relative to each other. 

 Rest Mass (𝒎𝟎): The mass of an object as measured in its own 

rest frame; it is invariant (does not change with speed). 

 Binding Energy: The energy required to separate the components 

of a bound system, such as a nucleus; it's equal to the mass defect 

multiplied by 𝑐2. 

 Particle with Zero Rest Mass: Particles like photons that have no 

rest mass but carry energy and momentum and always move at the 

speed of light. 

 Transformation of Force: In relativistic mechanics, the 

components of force transform differently along and perpendicular 

to the direction of motion. 

 Relativistic Density: The mass density of an object as observed 

from a moving frame, which changes due to length contraction. 

 Relativistic Mass ( 𝒎 ): The effective mass of an object increases 

with its velocity according to  

𝑚 =
𝑚0

√1 −
𝑣2

𝑐2

 

 Momentum (Relativistic):Momentum in special relativity is given 

by 

𝑝 =
𝑚0𝑣

√1 −
𝑣2

𝑐2

 

It grows without bound as velocity approaches the speed of light. 

 Energy-Mass Equivalence: Expressed as 𝐸 = 𝑚𝑐2 , this famous 

relation shows that mass and energy are interchangeable. 

 Total Energy ( 𝑬 ): The sum of rest energy and kinetic energy: 

𝐾. 𝐸.= 𝐸 = 𝑚0𝑐
2 

It increases more steeply than in classical mechanics as speed 

increases. 

 Time Dilation: The phenomenon where a moving clock appears to 

tick slower when observed from a stationary frame: 
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Δ𝑡 =
Δ𝑡0

√1 −
𝑣2

𝑐2

 

 Length Contraction: The phenomenon where a moving object 

appears shorter along the direction of motion: 

𝐿 = 𝐿0√1 −
𝑣2

𝑐2
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3.18 TERMINAL QUESTIONS:- 

(TQ-1) Derive and discuss  𝐸 = 𝑚𝑐2 

(TQ-2) The normal 12 volt car battery has the capacity to deliver 31 

amperes for 20 minutes from full charge to discharge. It weighs 20 kg 

when fully charged. When it is not charged, how much less does it weigh? 

 (TQ-3) Calculate the velocity at which the mass of a particle becomes 8 

times its rest mass. 

 (TQ-4) If the mass of a hydrogen atom is 1.00814 a.m.u., that of a 

neutron is 1.00898 a.m.u., and that of a helium atom is 4.00388 a.m.u., 

then determine the binding energy of one helium nucleus.  

(TQ-5) Prove the formula 
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𝑚 =
𝑚0

√1 −
𝑢2

𝑐2

 

(TQ-6) Explain the formulation of energy- momentum vector in special 

relativity. 

(TQ-7) Describe experimental verification of the variation of mass with 

velocity. 

(TQ-8) A particle is moving with speed 0.6c. Calculate the ratio of rest 

mass to moving mass. 

 

3.19 ANSWERS:- 

SELF CHECK ANSWERS  

1. c 

2.  a 

 

TERMINAL ANSWERS  

(TQ-2) 12.96 × 10−9 

(TQ-3) 0.992𝑐 

 (TQ-4) 28.687𝑀𝑒𝑉 

 (TQ-8)  4/5 
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UNIT 4:-Minkowski Space  

CONTENTS: 
4.1      Introduction 

4.2      Objectives 

4.3      Minkowski Space 

4.4      Geometrical Interpretation of Lorentz Transformation 

4.5      Space and Time like Interval 

4.6      World Points and World Lines 

4.7      Light Cone 

4.8       Proper Time 

4.9      Energy Momentum Four Vector 

4.10     Four Vector (World Vector) 

4.11    Relativistic Equation of Motion 

4.12    Minkowski’s Equation of Motion 

4.13     Summary 

4.14     Glossary 

4.15     References 

4.16     Suggested Reading 

4.17     Terminal questions  

4.18     Answers  

 

4.1 INTRODUCTION:-  

Minkowski space is a fundamental concept in the theory of special 

relativity that combines space and time into a single four-dimensional 

continuum known as spacetime. Proposed by the German mathematician 

Hermann Minkowski in 1908, it provided a new geometric interpretation 

of Einstein’s special theory of relativity. Unlike classical Newtonian 

mechanics, where space and time are treated as separate and absolute 

entities, Minkowski space treats them as interconnected dimensions. Each 

point in this space, called an "event," is described by four coordinates: 

three for space (𝑥, 𝑦, 𝑧) and one for time t, often written as ct to ensure 

consistent units. This unification allows the laws of physics, especially the 

behavior of light and motion at high speeds, to be expressed more 

naturally and precisely. Minkowski space forms the mathematical 

foundation for analyzing relativistic effects and understanding the 

structure of spacetime in both special and general relativity.  
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4.2 OBJECTIVES:-  

After studying this unit, the learner’s will be able to  

 To explain Minkowski’s four dimensional space- time continuums.  

 To solve geometric interpretation of Lorentz transformation. 

 To define space and time like interval. 

 To define world points, world lines, light cone, proper time and 

four vector. 

 To obtain relativistic equations of motion and Minkowski’s 

equation of motion.  

4.3MINKOWSKI SPACE:-  

Minkowski argues that the external world is not Euclidean space of three 

dimensions, meaning that it is made up of events with coordinates of 

(𝑥1, 𝑥2, 𝑥3, 𝑥4), where the first three (𝑥1, 𝑥2, 𝑥3)are space coordinates and 

the fourth one is time. In other words, the external world is not made up of 

points with coordinates of (x, y, z), where x, y, and z are real numbers. If 

anything happens in space, the location of the event in the four-

dimensional continuum represents both the point where it happens and the 

moment it happens. The four directions are not interchangeable. Because a 

meter stick cannot be turned into a clock, an axis that measures distance in 

the X-direction can be rotated to measure distance in the Y and Z-

direction. However, the same axis cannot be rotated to measure time 

interval. As a result, the time interval's direction is not unique. The space-

time continuum is described as 3+1 dimensional instead of four 

dimensional to convey this distinction. 

The interval between two events whose co-ordinates are 

(𝑥, 𝑦, 𝑧, 𝑥4)𝑎𝑛𝑑 (𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑧 + 𝑑𝑧, 𝑥4 + 𝑑𝑥4), is given by 

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 + 𝑑𝑥4
2           … (1) 

Where the co-ordinates 𝑥4 involves t. this interval must be independent of 

transformation from one system to another system. 

We have seen that the expression  

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 − 𝑐2𝑑𝑡2 
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Is the Lorentz invariant. The invariant interval between two adjacent 

points must therefore have the following form 

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 − 𝑐2𝑑𝑡2         … (2) 

Comparing equation (1) and (2), we get 

𝑥4 = 𝑖𝑐𝑡, 𝑤ℎ𝑒𝑟𝑒 𝑖 = √(−1) 

Four elements (x, y, z, t) can be used to identify an event in Newtonian 

physics, where t is the time at which the event happens and x, y, and z are 

the rectangular Cartesian coordinates of the location. Since it is evident 

that an event requires four numbers to be identified, we say that the 

totality of all possible occurrences forms a four-dimensional continuum in 

Newtonian physics. We are unable to eliminate the hyphen and refer to 

space and time separately because this continuum is known as space-time. 

Since𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧, 𝑥4 = 𝑡, the coordinates of an event can thus 

also be obtained at ( 𝑥1, 𝑥2, 𝑥3, 𝑥4). 

 

4.4 GEOMETRICAL INTERPRETATION OF 

LORENTZ TRANSFORMATION:-  

To prove that Lorentz transformation is simply a rotation in four 

dimensional spaces. 

Assume 𝑝 = 𝑖𝑐𝑡 . We are aware that under the Lorentz transformation 

𝑥2 − 𝑐2𝑡2 = 𝑥2 + 𝑝2 is invariant. It indicates that there is no change in 

the distance between a point P(x, p) and the origin O. 

To create the new rectangular axes, Ox' and Op', rotate the rectangular 

axes Ox and Op via an angle of 𝜃. Let P's coordinates be (x', p') with 

respect to the new axes. The relationships come next. 

𝑂𝑃2 = 𝑥2 + 𝑝2 𝑖𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 𝑥𝑝 

𝑂𝑃2 = 𝑥′2 + 𝑝′2 𝑖𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 𝑥′𝑝′ 
𝑥′ = 𝑥𝑐𝑜𝑠𝜃 + 𝑝𝑠𝑖𝑛𝜃   … (1) 

𝑝′ = 𝑥𝑐𝑜𝑠(90° + 𝜃) + 𝑝𝑠𝑖𝑛(90° + 𝜃) 

𝑝′ = −𝑥𝑠𝑖𝑛𝜃 + 𝑝𝑐𝑜𝑠𝜃    … (2) 

𝑙𝑒𝑡 
𝑣

𝑐
= 𝛽, 𝑡𝑎𝑛𝜃 = 𝑖𝛽, 𝑠𝑜 𝑡ℎ𝑎𝑡 

𝑠𝑖𝑛𝜃 =
𝑖𝛽

√(1 − 𝛽2)
 , 𝑐𝑜𝑠𝜃 =

1

√(1 − 𝛽2)
  

Putting the value of 𝑠𝑖𝑛𝜃 and 𝑐𝑜𝑠𝜃in equation (1), we get 

𝑥′ =
𝑥

√(1 − 𝛽2)
+

𝑝𝑖𝛽

√(1 − 𝛽2)
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But we know that 𝑝 = 𝑖𝑐𝑡 &
𝑣

𝑐
= 𝛽, 

𝑥′ =
𝑥 − 𝑣𝑡

√(1 − 𝛽2)
                   … (3) 

Putting the value of 𝑠𝑖𝑛𝜃 and 𝑐𝑜𝑠𝜃 in equation (2), we get 

𝑝′ =
−𝑥𝑖𝛽 + 𝑝

√(1 − 𝛽2)
                 … (4) 

−𝑥𝑖𝛽 + 𝑝 = −𝑥𝑖
𝑣

𝑐
+ 𝑖𝑐𝑡 = 𝑖𝑐 (𝑡 −

𝑣𝑥

𝑐2
) 

Now equation (4) becomes 

𝑖𝑐𝑡′ = 𝑖𝑐
(𝑡 −

𝑣𝑥
𝑐2)

√(1 − 𝛽2)
 

𝑜𝑟 𝑡′ =
(𝑡 −

𝑣𝑥
𝑐2)

√(1 − 𝛽2)
               … (5) 

The equation (3) & (5) represent Lorentz transformation. Thus, we have 

proved that Lorentz transformations are equivalent to rotation of axes in 

four dimensional space (𝑥, 𝑦, 𝑧)𝑜𝑟 (𝑥, 𝑦, 𝑧, 𝑖𝑐𝑡)  through an hypothetical 

angle 

𝜃 = tan−1(𝑖𝛽) = tan−1 (
𝑖𝑣

𝑐
) 

 

4.5 SPACE AND TIME LIKE INTERVAL:-  

Assume that two frame of references S and Sʹ. Sʹ is moving with constant 

velocity v along X-axis. Then by Lorentz transformation 

𝑥′ = 𝛽(𝑥 − 𝑣𝑡), 𝑦′ = 𝑦, 𝑧′ = 𝑧, 𝑡′ = 𝛽 (𝑡 −
𝑣𝑥

𝑐2
)     … (1) 

𝑤ℎ𝑒𝑟𝑒 𝛽 =
1

√1 −
𝑣2

𝑐2

    

Assume two events whose coordinates are 

(𝑥1, 𝑦1, 𝑧1, 𝑡1)𝑎𝑛𝑑(𝑥2, 𝑦2, 𝑧2, 𝑡2) in S. 

𝑠12
2 = −[(𝑥2 − 𝑥1)

2 + (𝑦2 − 𝑦1)
2 + (𝑧2 − 𝑧1)

2] + 𝑐2(𝑡2 − 𝑡1)
2   … (2) 

Similarly in system Sʹ 

𝑠′12
2
= −[(𝑥2′ − 𝑥1′)

2 + (𝑦2′ − 𝑦1′)
2 + (𝑧2′ − 𝑧1′)

2]

+ 𝑐2(𝑡2′ − 𝑡1′)
2    … (3) 
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From equation (1) 

𝑠′
12

2
= −[𝛽2{(𝑥2 − 𝑥1) − 𝑣(𝑡2 − 𝑡1)}

2 + (𝑦2 − 𝑦1)
2 + (𝑧2 − 𝑧1)

2]

+ 𝑐2𝛽2 {(𝑡2 − 𝑡1) −
𝑣

𝑐2
(𝑥2 − 𝑥1)}

2

 

= −[𝛽2(𝑥2 − 𝑥1)
2 (1 −

𝑣2

𝑐2
) + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2]

+ 𝑐2𝛽2(𝑡2 − 𝑡1)
2 (1 −

𝑣2

𝑐2
) − 2𝑣𝛽2(𝑥2 − 𝑥1)(𝑡2 − 𝑡1)

+
2𝑣

𝑐2
𝑐2𝛽2(𝑥2 − 𝑥1) − 𝑣(𝑡2 − 𝑡1) 

𝑏𝑢𝑡 𝛽2 (1 −
𝑣2

𝑐2
) = 1 

Hence 

𝑠′
12

2
= −[(𝑥2 − 𝑥1)

2 + (𝑦2 − 𝑦1)
2 + (𝑧2 − 𝑧1)

2] + 𝑐2(𝑡2 − 𝑡1)
2 = 𝑠12

2 

⇒ 𝑠′12
2
= 𝑠12

2 

⇒ 𝑠′
12 = 𝑠12 

This proves that the interval 𝑠12 is Lorentz invariant. 

Consequently, the following outcome is obtained. 

The space-time, interval between two events is an invariant. 

1. If𝑠12 = 0, then the intervals 𝑠12,given by equation (2), is called 

singular. Also 𝑠12 = 0 given 

−[(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2] + 𝑐2(𝑡2 − 𝑡1)

2 = 0 

This suggest that 

−[𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2] + 𝑐2𝑑𝑡2 = 0 

This equation is known as equation of null cone or light cone. 

2. Let the two events occur at the same point in Sʹ and also let the 

first event occur after the second event so that 

𝑥2′ = 𝑥1′, 𝑦2′ = 𝑦1′, 𝑧2′ = 𝑧1′, 𝑡2′ > 𝑡1′ 

Putting these values in equation (3) 

𝑠′
12

2
= 𝑐2(𝑡2′ − 𝑡1′)

2 > 0 

𝑠′
12

2
> 0 & 𝑠′

12 > 0 

𝑏𝑢𝑡 𝑠′
12 = 𝑠12 . 

ℎ𝑒𝑛𝑐𝑒𝑠12 > 0 ⇒ 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑠12𝑖𝑠 𝑟𝑒𝑎𝑙. 
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Real intervals are called time like intervals. 

For 𝑠′
12 contains only time component. 

The condition that the intervals is time like interval is 

𝑐2(𝑡2′ − 𝑡1′)
2 > (𝑥2 − 𝑥1)

2 + (𝑦2 − 𝑦1)
2 + (𝑧2 − 𝑧1)

2 

If the interval is time like, then there exists a frame of reference for 

which the interval between two events is real. 

3. Next, we assume that 𝑡1′ = 𝑡2′ since the two events in S' happen 

simultaneously. 3 now turns into 

𝑠′
12

2
= −[(𝑥2 − 𝑥1)

2 + (𝑦2 − 𝑦1)
2 + (𝑧2 − 𝑧1)

2] < 0 

𝑠′
12

2
< 0 𝑜𝑟 𝑠12

2 > 0  
Or 𝑠12 is imaginary. 

Imaginary intervals are called space like intervals. For 𝑠′12 

contains only space co-ordinates. The condition that an interval is 

space like interval is 

𝑐2(𝑡2′ − 𝑡1′)
2 < (𝑥2 − 𝑥1)

2 + (𝑦2 − 𝑦1)
2 + (𝑧2 − 𝑧1)

2 

Thus if the interval is space like, then there exists a frame of 

reference in which two events occur at the same time. 

If the magnitude of a vector is real, it is said to be time-like. If its 

magnitude is imaginary, it is space-like. If its magnitude is zero, 

then it is null. 

  

4.6WORLD POINTS AND WORLD LINES:-  

Each particle corresponds to a certain line known as the world line, and 

the events in the four-dimensional space, or Minkowski space, are 

represented by points called world points. We just take into account one 

space axis, the X-axis, without sacrificing generality. A space-time 

diagram with a horizontal space axis and a vertical time axis that is 

orthogonal to one another can therefore be used to depict the coordinates 

(x, t) of an event. If we take ct (= m, say) rather than r, we can maintain 

the same dimensions of the coordinates. The formulae for the Lorentz 

transformation for and fare 

𝑥′ =
𝑥 − 𝛽𝑚

√(1 − 𝛽2)
                             … (1) 

𝑚′ =
𝑚 − 𝛽𝑥

√(1 − 𝛽2)
                           … (2) 
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Fig. 4.1 

𝑥 =
𝑥′ − 𝛽𝑚′

√(1 − 𝛽2)
 , 𝑚 =

𝑚′ − 𝛽𝑥′

√(1 − 𝛽2)
𝑤ℎ𝑒𝑟𝑒𝛽 = 𝑣/𝑐  

In the frame S, we assume that the X-axis is horizontal and the m axis is 

vertical. A particle's trajectory in this frame will look like a world line, 

which is a curve whose points are determined by 

𝑡𝑎𝑛𝛼 =
1

𝑐

𝑑𝑥

𝑑𝑡
=

𝑣

𝑐
 

Where 𝛼  is the angle between the m-axis and the tangent.  Additionally, 

for each material particle, 𝛼 < 45°𝑎𝑠 𝑣 < 𝑐. In such case, the world line 

for the light signal (v = c) is a straight line that forms a 45° angle with the 

m-axis. 

The junction of two particles' world lines is represented by a collision. It is 

clear that an event and a space-time diagram at that event determine a 

material particle's world line. If the final velocity is the same as the initial 

velocity but different in direction, the collision is considered elastic. 

 

4.7 LIGHT CONE:-  

The quantity 

𝑠2 = 𝑥2 + 𝑦2 + 𝑧2 − 𝑐2𝑡2                          … (1) 

remains the invariant under Lorentz transformations. Here we take 

              𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧, 𝑥4 = 𝑖𝑐𝑡 = 𝑐𝑡√(−1)… (2) 

Naturally, the square of the four-dimensional distance between the event 

(𝑥𝑖)and the origin (0,0,0,0) equals the invariant from (1). The equation 

describes a surface made up of all the points with zero distance from the 

origin. 
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                   𝑠2 = 𝑥2 + 𝑦2 + 𝑧2 − 𝑐2𝑡2 = 0                    … (3) 

We refer to this surface as the light cone. The propagation of a spherical 

light wave from the origin O(0, 0, 0) at 𝑡 =  0 was described by equation 

(2). According to the inequalities, the light cone separates the (3 + 1) 

space into two distinct and invariant domains, 𝑆1 𝑎𝑛𝑑 𝑆2. 

 

𝑠2 = 𝑥2 + 𝑦2 + 𝑧2 − 𝑐2𝑡2 < 0 

𝑎𝑛𝑑 𝑠2 = 𝑥2 + 𝑦2 + 𝑧2 − 𝑐2𝑡2 > 0 

Respectively. We have the instance of simultaneity with respect to Lorentz 

transformations in the domain  𝑆2. It is not possible to change two events 

in the domain  𝑆1 in this way. 

 4.8 PROPER TIME:-  

Working with the invariant 𝑑𝑇2 = 𝑑𝑠2/𝑐2 instead of 𝑑𝑠2 itself is 

sometimes more convenient. Thus, we designate it as the element of 

appropriate time and assign it a unique symbol, 𝑑𝑇. 

𝑑𝑇2 =
1

𝑐2
𝑑𝑠2 = −

1

𝑐2
(𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) + 𝑑𝑡2 

𝑑𝑇 = 𝑑𝑡 [1 −
1

𝑐2
{(

𝑑𝑥

𝑑𝑡
)
2

+ (
𝑑𝑦

𝑑𝑡
)
2

+ (
𝑑𝑧

𝑑𝑡
)
2

}]

1/2

 

If the particle has a velocity u, then the last becomes 

𝑑𝑇 = 𝑑𝑡 (1 −
𝑢2

𝑐2
)

1/2

 

Integral of proper time along a world line 

𝑇 = ∫(1 −
𝑢2

𝑐2
)

1/2

𝑑𝑡 

4.9 ENERGY MOMENTUM FOUR VECTOR:-  

To describe how the energy-momentum vector is formulated in special 

relativity. 

 

The definition of momentum 𝑝  in classical mechanics is 𝑝 = 𝑚𝑣 . 

Similarly, the definition of momentum 𝑝 in relativistic terms is 
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𝑝 =
𝑚0𝑣

(1 −
𝑣2

𝑐2)

1
2

   … (1) 

We know that 

𝑑𝑠2 = −(𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) + 𝑐2𝑑𝑡2 

(
𝑑𝑠

𝑑𝑡
)
2

= − [(
𝑑𝑥

𝑑𝑡
)
2

+ (
𝑑𝑦

𝑑𝑡
)
2

+ (
𝑑𝑧

𝑑𝑡
)
2

] + 𝑐2 = 𝑐2 − 𝑣2 

⇒
𝑑𝑠

𝑐
= 𝑑𝑡√(1 −

𝑣2

𝑐2
)  

But we know that 

𝛽 =
1

√1 −
𝑣2

𝑐2

    

⇒
𝑑𝑠

𝑐
=

𝑑𝑡

𝛽
𝑜𝑟𝛽𝑑𝑠 = 𝑐𝑑𝑡 

Writing Cartesian equivalent of (1), we have 

𝑝𝑥 =
𝑚0𝑣𝑥

√1 −
𝑣2

𝑐2

= 𝛽𝑚0𝑣𝑥 = 𝛽𝑚0

𝑑𝑥

𝑑𝑡
= 𝑚0

𝑐𝑑𝑥

𝑑𝑠
 

From equation (2) 

𝑜𝑟                                                   𝑝𝑥 = 𝑚0

𝑐𝑑𝑥

𝑑𝑠
 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦  𝑝𝑦 = 𝑚0

𝑐𝑑𝑦

𝑑𝑠
 ,  𝑝𝑧 = 𝑚0

𝑐𝑑𝑧

𝑑𝑠
 

𝐸 = 𝑚𝑐2 =
𝑚0𝑐

2

√1 −
𝑣2

𝑐2

= 𝛽𝑚0𝑐
2 = 𝑚0𝑐

2
𝑐𝑑𝑡

𝑑𝑠
 

From equation (2) 

(𝐸/𝑐) = 𝑚0𝑐
𝑐𝑑𝑡

𝑑𝑠
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Write 𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧, 𝑥4 = 𝑐𝑡, we get 

 𝑝𝑥 = 𝑚0

𝑐𝑑𝑥1

𝑑𝑠
,  𝑝𝑦 = 𝑚0

𝑐𝑑𝑥2

𝑑𝑠
,  𝑝𝑧 = 𝑚0

𝑐𝑑𝑥3

𝑑𝑠
,
𝐸

𝑐
= 𝑚0

𝑐𝑑𝑥4

𝑑𝑠
 

It is evident from this that the four quantities ( 𝑝𝑥,  𝑝𝑦,  𝑝𝑧 ,
𝐸

𝑐
) belong to the 

energy momentum four-vector, which we represent by 𝑝𝜇 i.e. 

𝑝𝜇 = ( 𝑝𝑥,  𝑝𝑦,  𝑝𝑧 ,
𝐸

𝑐
) 

This is the significance of the fourth component of momentum. 

 

4.10 FOUR VECTOR (WORLD VECTOR):-  

The ordinary vector analysis can be extended to four dimensions by 

introducing four-dimensional space (x, y, z, ict). We refer to these four-

dimensional vectors as world vectors or four vectors. 

Below their emblems are bars that represent the world vectors. 
𝐴
→ = 𝑖𝐴1 + 𝑗𝐴2 + 𝑘𝐴3 + 𝑝𝐴4 

𝐵
→ = 𝑖𝐵1 + 𝑗𝐵2 + 𝑘𝐵3 + 𝑝𝐵4 

If we write �⃗� =
𝑑𝑟⃗⃗⃗⃗  ⃗

𝑑𝑡
= 𝑖𝑢𝑥 + 𝑗𝑢𝑦 + 𝑘𝑢𝑧 in usual three dimensional velocity 

vector, then components of velocity four vector 
𝑢
→ are 

𝑢1 = 𝛽𝑢𝑥, 𝑢2 = 𝛽𝑢𝑦, 𝑢3 = 𝛽𝑢𝑧 , 𝑢1 = 𝛽(𝑖𝑐) 

𝑤ℎ𝑒𝑟𝑒 𝛽 =
1

√1 −
𝑢2

𝑐2

 

𝐴
→ .

𝐵
→ = 𝐴1𝐵1 + 𝐴2𝐵2 + 𝐴3𝐵3 + 𝐴4𝐵4 

Now we can defined four velocity 𝑢𝜇 of a particle as 

𝑢𝜇 =
𝑑𝑥𝜇 

𝑑𝑠
= �̇�𝜇 

Also we define four acceleration vector as 

�̇�𝜇 = �̈�𝜇 =
𝑑𝑢𝜇 

𝑑𝑠
=

𝑑

𝑑𝑠
(
𝑑𝑥𝜇 

𝑑𝑠
) 
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4.11 RELATIVISTIC EQUATION OF MOTION:-  

The relativity theory adopts Newton's equations for motion and 

momentum, but with the distinction that a body of mass m traveling at 

velocity 𝑣 fulfills the equation 

𝑚 =
𝑚0

√1 − 𝛽2
 

𝑤ℎ𝑒𝑟𝑒 𝛽 =
𝑣

𝑐
 

Momentum p is defined as 

𝑝 = 𝑚𝑣 =
𝑚0𝑣

√1 − 𝛽2
 

Hence the components of momentum are 

 𝑝𝑥 =
𝑚0�̇�

√1 − 𝛽2
 ,  𝑝𝑦 = 

𝑚0�̇�

√1 − 𝛽2
,  𝑝𝑧 = 

𝑚0�̇�

√1 − 𝛽2
 

𝑤ℎ𝑒𝑟𝑒 𝛽2 =
𝑣2

𝑐2
=

�̇�2 + �̇�2+�̇�2

𝑐2
 

Here dots denotes differentiation w.r.t. time 𝑡. the equation of motion are 

𝑑 𝑝𝑥

𝑑𝑡
= 𝐹𝑥,

𝑑 𝑝𝑦

𝑑𝑡
= 𝐹𝑥,

𝑑 𝑝𝑧

𝑑𝑡
= 𝐹𝑥 

𝑚0

𝑑

𝑑𝑡
[

�̇�

√1 − 𝛽2
] = 𝐹𝑥 , 𝑚0

𝑑

𝑑𝑡
[

�̇�

√1 − 𝛽2
] = 𝐹𝑦, 𝑚0

𝑑

𝑑𝑡
[

�̇�

√1 − 𝛽2
] = 𝐹𝑧 

 

4.12 MINKOWSKI’S EQUATION OF MOTION:-  

The equation 

�̇�𝜇 = 𝐾𝜇𝑖. 𝑒.
𝑑

𝑑𝑠
(𝑚0𝑐

𝑑𝑥𝜇

𝑑𝑠
) = 𝐾𝜇 

is referred to as Minkowski’s equation of motion and the 𝐾𝜇 is four force. 

This 𝐾𝜇 is alo known as Minkowski’s force. 
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To prove that Minkowski’s equation reduces to the Newtonian form in the 

limit where 𝑣/𝑐 → 0 

Equation (1) is expressible as 

𝑑

𝑑𝑡
(𝑚0

𝑑𝑥𝜇

𝑑𝑡

𝑑𝑡

𝑑𝑠
)
𝑑𝑡

𝑑𝑠
= 𝐾𝜇 

𝑑

𝑑𝑡
(𝑚0

𝑑𝑡

𝑑𝑠

𝑑𝑥𝜇

𝑑𝑡
)
𝑑𝑡

𝑑𝑠
= 𝐾𝜇

𝑑𝑠

𝑑𝑡
    … (2) 

𝑑𝑠2 = −[(𝑑𝑥)2 + (𝑑𝑦)2 + (𝑑𝑧)2] + 𝑐2𝑑𝑡2 

(
𝑑𝑠

𝑐𝑑𝑡
)
2

= 1 − [(
𝑑𝑥

𝑑𝑡
)
2

+ (
𝑑𝑦

𝑑𝑡
)
2

+ (
𝑑𝑧

𝑑𝑡
)
2

] .
1

𝑐2
= 1 −

𝑣2

𝑐2
 

1

𝑐
.
𝑑𝑠

𝑑𝑡
= √(1 −

𝑣2

𝑐2
)    … (3) 

∴ 𝑚0𝑐
𝑑𝑡

𝑑𝑠
= 𝑚0𝑐.

1

𝑐√(1 −
𝑣2

𝑐2)

=
𝑚0

√(1 −
𝑣2

𝑐2)

= 𝑚    … (4) 

(According the law of variation of mass with velocity) 

From equation (2), (3) & (4) 

𝑑

𝑑𝑡
(𝑚

𝑑𝑥𝜇

𝑑𝑡
) = 𝐾𝜇. 𝑐√(1 −

𝑣2

𝑐2
) 

Taking limit as 𝑣/𝑐 → 0, we get 

𝑑

𝑑𝑡
(𝑚

𝑑𝑥𝜇

𝑑𝑡
) = 𝑐𝐾𝜇    𝑓𝑜𝑟 𝜇 = 1,2,3,4. 

Hence in particular 

𝑑

𝑑𝑡
(𝑚

𝑑𝑥𝑖

𝑑𝑡
) = 𝑐𝐾𝑖     𝑓𝑜𝑟 𝑖 = 1,2,3 

This is Newton’s form of equation of motion. 

SELF CHECK QUESTIONS 



Theory of Relativity  MAT609 

Department of Mathematics  

Uttarakhand Open University Page 88 
 

1. What are the four coordinates used to describe an event in 

Minkowski space? 

2. What is the formula for the spacetime interval between two events 

in Minkowski space? 

3. What are the three types of intervals in Minkowski space, based on 

the sign of 𝑠2? 

4. Is the spacetime interval invariant under Lorentz transformations? 

5. What transformation replaces Galilean transformations in 

Minkowski space? 

6. Why is the time coordinate often written as ct in Minkowski 

space? 

4.13 SUMMARY:-  

In this unit we have studied the Minkowski space is a four-dimensional 

framework that merges the three dimensions of space with the dimension 

of time to form a unified concept called spacetime. Developed by 

Hermann Minkowski, it provides the geometric foundation of Einstein's 

special theory of relativity. In this space, events are represented by four 

coordinates (𝑐𝑡, 𝑥, 𝑦, 𝑧),  where ct is the time component scaled by the 

speed of light. The key feature of Minkowski space is the spacetime 

interval, which remains invariant under Lorentz transformations, unlike 

distances in classical mechanics. This interval determines whether two 

events are causally connected and is classified as timelike, spacelike, or 

lightlike. The geometry of Minkowski space is pseudo-Euclidean, 

meaning it has one time dimension with a different sign in the metric 

compared to the three space dimensions. This structure allows for a natural 

explanation of relativistic phenomena such as time dilation, length 

contraction, and the constancy of the speed of light, making it essential for 

understanding modern physics. 

4.14 GLOSSARY:-  

 Minkowski Space: A four-dimensional spacetime framework that 

combines three spatial dimensions and one time dimension, used to 

describe the structure of space and time in special relativity. 

 Spacetime: The unified concept of space and time as a single four-

dimensional continuum, where events are located using space and 

time coordinates. 
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 Event: A point in spacetime defined by four coordinates (ct,x,y,z), 

representing a specific place at a specific time. 

 Spacetime Interval (𝒔𝟐): An invariant quantity defined as 𝑠2 = 𝑥2 +

𝑦2 + 𝑧2 − 𝑐2𝑡2  that remains the same in all inertial frames of 

reference. 

 An interval with 𝑠2 < 0<0, meaning two events can be connected 

by a signal moving slower than light; they are causally connected. 

 Spacelike Interval: An interval with 𝑠2 > 0, meaning two events 

cannot influence each other; they are outside each other's light 

cones. 

 Lightlike (Null) Interval: An interval with 𝑠2 = 0, representing 

the path of a light signal; the events lie on each other's light cone. 

 Worldline:The path that an object traces in Minkowski spacetime, 

showing its position over time. 

  Light Cone: A cone-shaped surface in spacetime representing all 

possible light paths from an event. It separates the past, future, and 

elsewhere (causally disconnected regions). 

 Proper Time ( 𝝉 ):The time interval measured by a clock moving 

with the object; the actual experienced time between two events on 

a timelike path. 

 Metric Tensor (𝜼𝝁𝝂 ): A matrix that defines the geometry of 

spacetime in special relativity. For Minkowski space, it typically 

has the form: 

𝜂𝜇𝜈 = 𝑑𝑖𝑎𝑔(−1,+1,+1,+1) 

 Causality: The principle that a cause must precede its effect; 

preserved in Minkowski space by restricting causal influence to 

within the light cone. 

 Inertial Frame: A reference frame in which an object not acted 

upon by a force moves in a straight line at constant speed. 

  Pseudo-Euclidean Geometry: A geometry where the time 

component has a different sign than spatial components in the 

metric, as in Minkowski space. 

4.15 REFERENCES:-  

 Ashok Das (2011), Lectures on Gravitation, University of 

Rochester, USA ,Saha Institute of Nuclear Physics, India. 

 Richard Feynman (2018), Feynman Lectures On Gravitation. 

 

https://www.google.com/search?sca_esv=1ae9f50945506fbf&udm=36&udm=36&q=inauthor:%22Richard+Feynman%22&sa=X&ved=2ahUKEwjI7v2_ls-LAxWO4zgGHRuxE1UQ9Ah6BAgJEAY
https://books.google.co.in/books?id=AEtnDwAAQBAJ&printsec=frontcover&dq=Lectures+on+Gravitation&hl=en&newbks=1&newbks_redir=1&sa=X&ved=2ahUKEwjI7v2_ls-LAxWO4zgGHRuxE1UQ6AF6BAgJEAM
https://books.google.co.in/books?id=AEtnDwAAQBAJ&printsec=frontcover&dq=Lectures+on+Gravitation&hl=en&newbks=1&newbks_redir=1&sa=X&ved=2ahUKEwjI7v2_ls-LAxWO4zgGHRuxE1UQ6AF6BAgJEAM
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4.16 SUGGESTED READING:-  

 Satya Prakash and K.P. Gupta (Nineteenth Edition, 2019), 

Relativistic Mechanics. 

 Dr. J.K. Goyal and Dr. K.P. Gupta (Twenty Eight Edition, 2018), 

Theory of Relativity. 

4.17 TERMINAL QUESTIONS:- 

(TQ-1) Discuss Minkowski’s four dimensional space- time continuums.  

 (TQ-2) Explain Minkowski’s four dimensional formation bringing out the 

significance of the four components of momentum and the equations of 

motion. 

(TQ-3) Explains the following terms in detail; light cone, world line, 

space like vector, time like vector. 

(TQ-4) Derive the four vector equation of motion and discuss the physical 

significance of the force four-vector in terms of classical quantities. 

(TQ-5) What is Minkowski space and how does it relate to special 

relativity? 

(TQ-6) Explain the concept of the spacetime interval and its physical 

significance. 

(TQ-7) How are Lorentz transformations derived from Minkowski space, 

and what is their role? 

(TQ-8) Describe the geometry of Minkowski space and contrast it with 

Euclidean space. 

(TQ-9) How does Minkowski spacetime help explain time dilation and 

length contraction? 

(TQ-10) What is the significance of Minkowski space in general 

relativity? 

 

4.18 ANSWERS:- 

SELF CHECK ANSWERS 

1. (𝑐𝑡, 𝑥, 𝑦, 𝑧) 

2. 𝑠2 = −[(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2] 

3. Timelike (𝑠2 < 0), Spacelike(𝑠2 > 0), Null(𝑠2 = 0). 

4. The spacetime interval is invariant—it has the same value in all 

inertial frames. 
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5. Lorentz transformations replace Galilean transformations to 

preserve the spacetime interval. 

6. Multiplying time 𝑡 by 𝑐 (the speed of light) makes the units of time 

and space the same (typically meters), simplifying the interval 

formula and unifying space and time. 
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UNIT 5:-Some Applications of Special Theory 

of Relativity  

CONTENTS: 
5.1      Introduction 

5.2      Objectives 

5.3      Compton Effect 

5.4  Experiments on Compton Scattering 

5.5      De-Broglie Hypothesis of Matter  

5.6      Summary 

5.7      Glossary 

5.8      References 

5.9      Suggested Reading 

5.10    Terminal questions  

5.11     Answers  

 

5.1 INTRODUCTION:-  

The Special Theory of Relativity, formulated by Albert Einstein, is not 

only a profound theoretical advancement but also a practical framework 

with far-reaching applications in modern science and technology. At its 

core, the theory redefines fundamental notions of time, space, and energy, 

especially at speeds approaching that of light. While originally developed 

to resolve inconsistencies in classical mechanics and electromagnetism, 

special relativity now serves as the basis for interpreting high-speed 

phenomena in various domains. Its effects are no longer just theoretical 

curiosities—they manifest in everyday technologies such as satellite 

communication, particle accelerators, and even nuclear energy production. 

From ensuring the accuracy of GPS navigation to explaining the dynamics 

of cosmic rays, the theory's applications extend across both terrestrial and 

astronomical scales. Exploring these applications highlights the essential 

role of relativity in bridging abstract physics with real-world functionality. 

5.2 OBJECTIVES:-  

After studying this unit, the learner’s will be able to  

 To explain Compton Effect and its importance. 
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 To discuss De-Broglie hypothesis of matter wave. 

5.3 COMPTON EFFECT:-  

The term “Compton effect” or “Compton scattering” refers to the elastic 

scattering of a photon from an electron. Compton asserts that when 

electrons in the scatter a high-frequency radiation beam, lower-frequency 

radiations are also produced. The Compton Effect is the name given to this 

observable shift in the frequency or wave length of the scattered high 

frequency radiations. Compton discovered that the direction the scattered 

beam travels, or the angle it makes with the indirect photon, affects this 

change. The simultaneous application of the theory of relativity provided 

an explanation for this effect on the fundamentals of quantum theory. 

According to the quantum theory's radiation principle, 

 

I. Photons with energy ℎ𝑣 , where h = Planck's constant and 

frequency, make up radiations. 

II.  The photons move at the speed of light c,  

𝑐 = 3 × 1010𝑐𝑚/𝑠𝑒𝑐 

 
Fig.5.1 

III. When the photons hit the scatterer's electrons, they follow all the 

rules of energy and momentum conservation. 

IV.  Some photons' K.E. is passed to electrons when they collide with 

them, resulting in scattered photons having a lower K.E. than the 

incident one. 

To Derive the Formula for Scattering 

Prior to the collision, let's assume that the electron is free and at rest. 

Figure 5.1 displays the dispersed photon and electron trajectories 

following a collision. 

∵ ℎ𝑣 = 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛 = 𝑚𝑎𝑠𝑠. 𝑐2 

(By 𝐸 = 𝑚𝑐2) 

∴ 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛 =
ℎ𝑣

𝑐2
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𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛 = 𝑚𝑎𝑠𝑠. 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝑚𝑎𝑠𝑠. 𝑐 =
ℎ𝑣

𝑐2
𝑐 =

ℎ𝑣

𝑐
 

Before Collision: 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛 = ℎ𝑣 

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝ℎ𝑜𝑡𝑜𝑛 =
ℎ𝑣

𝑐
 

𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 = 𝑚0𝑐
2; 𝑚0  is the mass of electron when it is at 

rest. 

Momentum of electron=0 as electron is at rest before collision. 

After Collision: Let after collision the scattered photon and recoil electron 

make angles 𝛼 𝑎𝑛𝑑 𝛽 respectively with the direction of incident beam. 

𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 𝑝ℎ𝑜𝑡𝑜𝑛 = ℎ𝑣′ 

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑜𝑓 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 𝑝ℎ𝑜𝑡𝑜𝑛 =
ℎ𝑣′

𝑐
 

𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 = 𝑚𝑐2 

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑜𝑓 𝑟𝑒𝑐𝑜𝑖𝑙 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 = 𝑚𝑣 

Where m is the mass of the electron when it is moving with velocity v. 

Calculations: By the principle of conservation of energy, 

Energy before collision = Energy after collision  

                                           ℎ𝑣 + 𝑚0𝑐
2 = ℎ𝑣′ + 𝑚𝑐2                         … (1) 

By principle of conservation of momentum, 

Momentum before collision = Momentum after collision along and 

perpendicular to the direction of incident photon 

We get 

ℎ𝑣

𝑐
𝑐𝑜𝑠0 + 0 =

ℎ𝑣′

𝑐
𝑐𝑜𝑠𝛼 + 𝑚𝑣𝑐𝑜𝑠𝛽 

& 
ℎ𝑣

𝑐
𝑠𝑖𝑛0 + 0 =

ℎ𝑣′

𝑐
𝑠𝑖𝑛𝛼 − 𝑚𝑣𝑠𝑖𝑛𝛽 
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⇒
ℎ𝑣

𝑐
=
ℎ𝑣′

𝑐
𝑐𝑜𝑠𝛼 + 𝑚𝑣𝑐𝑜𝑠𝛽 & 

ℎ𝑣′

𝑐
𝑠𝑖𝑛𝛼 − 𝑚𝑣𝑠𝑖𝑛𝛽 = 0  

⇒                                    𝑐𝑚𝑣 𝑐𝑜𝑠𝛽 = ℎ(𝑣 − 𝑣′𝑐𝑜𝑠𝛼)                                … (2) 

                                 & 𝑐𝑚𝑣 𝑠𝑖𝑛𝛽 = ℎ𝑣′𝑠𝑖𝑛𝛼                                           … (3) 

Squaring (2) and (3) and then adding, 

                          𝑚2𝑣2𝑐2 = ℎ2[𝑣2 + 𝑣′2 − 2𝑣𝑣′𝑐𝑜𝑠𝛼]                             … (4) 

Let p and E denote respectively momentum and energy of recoil electron. 

Then  

𝑝 = 𝑚𝑣, 𝐸 = 𝑚𝑐2 

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4) ⇒             𝑝2𝑐2 = ℎ2[𝑣2 + 𝑣′2 − 2𝑣𝑣′𝑐𝑜𝑠𝛼] 

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) ⇒                 𝐸2 = [ℎ(𝑣 − 𝑣′) + 𝑚0𝑐
2]2 

𝑜𝑟              𝐸2 = ℎ2(𝑣2 + 𝑣′2 − 2𝑣𝑣′) + 𝑚0
2𝑐4 + 2𝑚0𝑐

2ℎ(𝑣 − 𝑣′)   … (5) 

Subtracting equation (4) from (5), we get 

𝐸2 − 𝑝2𝑐2 = 2𝑣𝑣′ℎ2(𝑐𝑜𝑠𝛼 − 1) + 𝑚0
2𝑐4 + 2ℎ𝑚0𝑐

2(𝑣 − 𝑣′) 

But we know that 

𝐸2 − 𝑝2𝑐2 = 𝑚0
2𝑐4 

𝑜𝑟                𝑚0
2𝑐4 = 2𝑣𝑣′ℎ2(𝑐𝑜𝑠𝛼 − 1) + 𝑚0

2𝑐4 + 2ℎ𝑚0𝑐
2(𝑣 − 𝑣′) 

𝑜𝑟                2𝑣𝑣′ℎ2(1 − 𝑐𝑜𝑠𝛼) = 2ℎ𝑚0𝑐
2(𝑣 − 𝑣′) 

𝑜𝑟                            
ℎ(1 − 𝑐𝑜𝑠𝛼)

𝑚0𝑐
2

=
(𝑣 − 𝑣′)

𝑣𝑣′
  

𝑜𝑟                                
1

𝑣′
−
1

𝑣
=

ℎ

𝑚0𝑐
2
(1 − 𝑐𝑜𝑠𝛼)                                     … (6) 

As 𝛼 is acute so that 𝑐𝑜𝑠𝛼 < 1.
1

𝑣′
−

1

𝑣
> 0 

𝑜𝑟                                                  𝑣 − 𝑣′ > 0 𝑜𝑟 𝑣 > 𝑣′ 

But velocity = frequency. Wave length 

∴                                     𝑐 = 𝑣𝜆 𝑎𝑛𝑑 𝑐 = 𝑣′𝜆′𝑓𝑜𝑟 𝑝ℎ𝑜𝑡𝑜𝑛  
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⇒                                                   𝑣 =
𝑐

𝜆
, 𝑣′ =

𝑐

𝜆′
 

Using this in equation (6), we get 

𝜆′

𝑐
−
𝜆

𝑐
=

ℎ

𝑚0𝑐
2
(1 − 𝑐𝑜𝑠𝛼) 

                                           𝜆′ − 𝜆 =
ℎ

𝑚0𝑐
(1 − 𝑐𝑜𝑠𝛼)                                 … (7)  

⇒ 𝜆′ − 𝜆 > 0 ⇒ 𝜆′ > 𝜆 

The frequency change indicated by relation (6) implies that incoming 

radiation has a higher frequency than scattered radiation. The relation (7) 

indicates that the wave-length of incident radiation is smaller than the 

wave-length of dispersed radiation. 

If 𝛼 = 𝜋/2, then 𝑐𝑜𝑠𝛼 = 0 so that (7) gives 

                                                𝜆′ − 𝜆 =
ℎ

𝑚0𝑐
                                                   … (8) 

ℎ = 6.62 × 10−27𝑒𝑟𝑔𝑠 𝑠𝑒𝑐, 𝑐 = 3 × 1010𝑐𝑚/𝑠𝑒𝑐 

𝑒𝑙𝑒𝑐𝑡𝑜𝑛𝑖𝑐 𝑟𝑒𝑠𝑡 𝑚𝑎𝑠𝑠 = 𝑚0 = 9 × 10−28𝑔𝑟𝑎𝑚 

ℎ

𝑚0𝑐
=

6.62 × 10−27

9 × 10−28 × 3 × 1010
=

66.2

27 × 1010
= 2.4519 × 10−10𝑐𝑚

= 0.024519Å 

This quantity is called Compton wavelength and is denoted by 𝜆𝑐. 

𝜆𝑐 = 0.024519Å 

∆𝜆 = 𝜆′ − 𝜆 =
ℎ

𝑚0𝑐
(1 − 𝑐𝑜𝑠𝛼) = 2𝜆𝑐𝑠𝑖𝑛

2(𝛼/2) 

Since 𝜆𝑐 is finite in every inertial frame and hence it is impossible for a 

free electron to emit or absorb a photon. 

5.4 EXPERIMENT ON COMPTON EFFECT:-  

In 1905, De-Broglie and Geiger carried out an experiment to confirm 

Compton's idea. In order to detect the photons and electrons produced by 

an X-ray beam scattering in hydrogen gas, two Geiger counters were 

placed opposite each other and perpendicular to the beam. While the other 
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counter was sensitive to electrons exclusively, the platinum foil used to 

close one of the counters was sensitive to photons since it absorbs 

electrons, enabling only X-rays to enter the chamber. A secondary electron 

is created when a photon interacts with the gas inside the chamber. The 

photon counter actually reacts only to a secondary electron, not to a 

photon that strikes it directly. 

 

 

Fig.5.2 

Compton theory states that an electron enters the electron counter for 

every photon entering the photon counter. About ten electrons were found 

in the electron counter for each scattered photon that was recorded in the 

photon counter. The reason is that no secondary electron is created by 

each photon that enters the chamber. The simultaneous detection of about 

10% ionization in both counters can be attributed to chance and 

coincidence. The simultaneous emission of a scattered photon and a 

recoiling electron can be attributed to the observed coincidence, 

supporting the Compton theory as a two-particle action. 

 

5.5 DE-BROGLIE HYPOTHESIS OF MATTER 

WAVES:-  

De-Broglie Hypothesis: De-Broglie proposed that just like the dual nature 

of electromagnetic radiation, a material particle such as electron, proton 

etc., might have dual nature. He asserted, “A moving particle whatever its 

nature has wave properties associated with it”. According to him: 𝜆 =

ℎ/𝑚𝑣 where 𝜆 is the wave length associated with the moving particle, m 

the mass of the particle, v its velocity and h is Planck's constant. 

(ℎ = 6.62 × 10−34𝑗𝑜𝑢𝑙𝑒𝑠/ 𝑠𝑒𝑐) 

Derivation: In case of radiation, the momentum of photon: 
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𝑝 =
ℎ𝑣

𝑐
=
ℎ

𝜆
𝑜𝑟 𝜆 =

ℎ

𝑝
 

𝑎𝑠 𝑣 = 𝑛𝜆 𝑔𝑖𝑣𝑒𝑠 𝑐 = 𝜈𝜆 

Similarly, the wavelength of the matter wave is given by 

𝜆 =
ℎ

𝑝
=

ℎ

𝑚𝑣
 

The special theory of relativity can also be used to determine this value of 

the matter wave's wave length. Similar to a proton or electron, a material 

particle can be thought of as the standing wave system in the space region, 

then 

                                                                𝜓 = 𝜓0𝑒
2𝜋𝑖𝑣𝑡                                    … (1) 

Where 𝑣 is the particle's frequency in the remaining frame, 𝜓0  is the 

wave's amplitude at the position (𝑥, 𝑦, 𝑧) at the moment &, and 𝜓 is the 

quantity that varies periodically to produce matter waves. Using the 

Lorentz transformation of this wave function in the new frame of variables 

(𝑥′, 𝑦′, 𝑧′), let the particle travel with velocity 𝑣 in the positive direction of 

the X-axis., we have 

                           𝜓 = 𝜓0𝑒𝑥𝑝

{
 

 

2𝜋𝑖𝑣
(𝑡′ +

𝑣𝑥′
𝑐2
)

√(1 −
𝑣2

𝑐2
)
}
 

 

                                      … (2) 

Now the standard equation of wave equation is 

                          𝜓 = 𝜓0𝑒𝑥𝑝 {2𝜋𝑖𝑣 (𝑡 +
𝑥′

𝑢′
)}                                             … (3) 

Where 𝑢′  is the phase velocity of the wave in the new frame. From 

equation (2) & (3), we get 

                                    𝑣′ =
𝑣

√(1 −
𝑣2

𝑐2
)

𝑎𝑛𝑑 𝑢′ =
𝑐2

𝑣
                                  … (4) 

Taking the mass of the particle 𝑚0  in the position of rest, we get by 

Einstein’s mass energy and quantum hypothesis 

𝐸 = ℎ𝑣 = 𝑚0𝑐
2 

⇒                                                        𝑣 =
𝑚0𝑐

2

ℎ
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Putting this value in equation (4), we get 

𝑣′ =

𝑚0𝑐
2

ℎ

√(1 −
𝑣2

𝑐2
)

=
𝑚0

√(1 −
𝑣2

𝑐2
)

 .
𝑐2

ℎ
=
𝑚𝑐2

ℎ
 

𝑎𝑠 𝑚 =
𝑚0

√(1 −
𝑣2

𝑐2
)

 

Hence, the wave length of the matter particle is 

𝑢′

𝑣′
=

𝑐2

𝑣
𝑚𝑐2

ℎ

=
ℎ

𝑚𝑣
 

Thus, the wave length of De-Broglie wave associated with a material 

particle is given by the expression 

𝜆 =
ℎ

𝑝
 

A relation between the particle and wake aspects of the matter. 

SOLVED EXAMPLE 

EXAMPLE: 1. An excited nucleus of rest mass 𝑚0 is at rest with respect 

to a chosen inertial frame. It goes over to the lower state whose energy is 

smaller by ∆𝐸. As a result it emits a 𝛾 − 𝑟𝑎𝑦  photon and undergoes a 

recoil. Show that frequency v of the 𝛾 − 𝑟𝑎𝑦 photon is given by 

𝑣 =
∆𝐸

ℎ
[1 −

∆𝐸

2𝑚0𝑐
2
] 

SOLUTION: The mass m of the recoil nucleus in the inertial frame where 

its rest mass is 𝑚0 is determined by taking v to be the frequency of the 

𝛾 − 𝑟𝑎𝑦  photon that is emitted and allowing the nucleus to recoil with 

velocity V. 

                                                          𝑚 =
𝑚0𝑐

2 − ∆𝐸

𝑐2 (1 −
𝑉2

𝑐2
)
1/2                             … (1) 

According to the principle of conservation of energy, 
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                                               𝑚0𝑐
2 =

𝑚0𝑐
2 − ∆𝐸

𝑐2 (1 −
𝑉2

𝑐2
)

1
2

+ ℎ𝑣                     … (2) 

𝑝 = 𝑚𝑣 𝑔𝑖𝑣𝑒𝑠 𝑝 = 𝑚𝑐 𝑓𝑜𝑟 𝑝ℎ𝑜𝑡𝑜𝑛 𝑎𝑛𝑑 𝑠𝑜 

𝑝 =
𝑚𝑐2

𝑐
=
𝐸

𝑐
=
ℎ𝑣

𝑐
 

                                                          𝑝 =
ℎ𝑣

𝑐
                                                 … (3) 

According to the principle of conservation of energy, 

                                                 
ℎ𝑣

𝑐
=
(𝑚0𝑐

2 − ∆𝐸)𝑉

𝑐2 (1 −
𝑉2

𝑐2
)

1
2

                               … (4) 

It follows from (1) and (3) 

(4) ⇒                                        ℎ𝑣 =
(𝑚0𝑐

2 − ∆𝐸)

(1 −
𝑉2

𝑐2
)

1
2

 .
𝑉

𝑐
                         … (5) 

(2) ⇒                                     𝑚0𝑐
2 −  ℎ𝑣 =

(𝑚0𝑐
2 − ∆𝐸)

(1 −
𝑉2

𝑐2
)

1
2

                   … (6) 

(5) ⇒                                        
ℎ𝑣𝑐

𝑉
=
(𝑚0𝑐

2 − ∆𝐸)

(1 −
𝑉2

𝑐2
)

1
2

                            … (5) 

Equating (6) & (7) 

𝑚0𝑐
2 −  ℎ𝑣 =

ℎ𝑣𝑐

𝑉
  

𝑜𝑟                                              
𝑚0𝑐

2 −  ℎ𝑣

ℎ𝑣
=
𝑐

𝑉
  

𝑜𝑟                                              
𝑉

𝑐
=

ℎ𝑣

𝑚0𝑐
2 −  ℎ𝑣

 

Putting the expression for V/c in (5), we get 
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ℎ𝑣 =
(𝑚0𝑐

2 − ∆𝐸)

[1 − (
ℎ𝑣

𝑚0𝑐
2 −  ℎ𝑣

)
2

]

1
2

 

1 =
(𝑚0𝑐

2 − ∆𝐸)

[(𝑚0𝑐
2 −  ℎ𝑣)2 − (ℎ𝑣)2]1/2

 

(𝑚0𝑐
2 − ∆𝐸)2 = (𝑚0𝑐

2 − 2ℎ𝑣)𝑚0𝑐
2 

(𝑚0𝑐
2)2 − 2𝑚0𝑐

2∆𝐸 + (∆𝐸)2 = (𝑚0𝑐
2)2 − 2ℎ𝑣𝑚0𝑐

2 

∆𝐸[∆𝐸 − 2𝑚0𝑐
2] = −2ℎ𝑣𝑚0𝑐

2 

𝑣 =
∆𝐸

ℎ
[1 −

∆𝐸

2𝑚0𝑐
2
] 

EXAMPLE2: Show that it is not possible for a photon to transfer all its 

energy to a free electron. 

SOLUTION: Allow a photon with momentum p and energy E to transfer 

all of its energy to a free electron if at all possible. An electron with rest 

mass 𝑚0 move with velocity v following the energy transfer.  

We can regard the motion of an electron as a non-relativistic one so that 

                                                      𝐸 =
1

2
𝑚0𝑣

2                                             … (1)  

(Since mass of electron compared to that of photon is infinitely large.) 

  
𝐸

𝑐
= 𝑝 = 𝑚0𝑣  

                                                        
𝐸

𝑐
= 𝑚0𝑣                                                … (2) 

Dividing (1) by (2), we get 

𝑐 =
𝑣

2
𝑜𝑟 𝑣 = 2𝑐 

This demonstrates that the electron travels at twice the speed of light. A 

contradiction. The maximum speed at which any particle in nature may 

travel is the speed of light.  
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SELF CHECK QUESTIONS 

1. If 𝜆 𝑎𝑛𝑑 𝜆′ are wavelengths at emission and reception respectively, 

if the condition of red sift is 

a) 𝜆′ = 𝜆 

b) 𝜆′ ≤ 𝜆 

c) 𝜆′ > 𝜆 

d) None of thes 

2. What is time dilation and where is it observed in real-life 

applications? 

3. How does the special theory of relativity apply to particle 

accelerators? 

4. What role does length contraction play in high-speed travel? 

5. How does special relativity help explain the decay of fast-moving 

muons? 

5.6 SUMMARY:-  

This unit focused on key discoveries that marked the transition from 

classical physics to quantum theory. We began by studying the Compton 

Effect, which provided strong evidence for the particle nature of light. The 

effect, observed during Compton scattering experiments, confirmed that 

photons carry momentum and that their interaction with electrons leads to 

a measurable shift in wavelength something that classical wave theory 

could not explain. Moving forward, we examined the groundbreaking De 

Broglie Hypothesis, which introduced the concept that all matter exhibits 

wave-like behavior. This idea extended the notion of wave-particle duality 

from light to matter, leading to the conclusion that particles such as 

electrons have a wavelength inversely proportional to their momentum. 

These topics not only deepen our understanding of the quantum world but 

also form the theoretical foundation for technologies like electron 

microscopes and quantum computing. 

5.7GLOSSARY:-  

 Time Dilation: The phenomenon where time appears to pass more 

slowly for an object moving at a high velocity relative to a 

stationary observer. 
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 Length Contraction: The shortening of an object in the direction 

of its motion as its speed approaches the speed of light, relative to 

an observer. 

 Relativistic Mass: The concept that the mass of an object 

increases with its speed, becoming significantly larger as it 

approaches the speed of light. 

 Photon: A quantum (particle) of electromagnetic radiation that has 

zero rest mass and travels at the speed of light. 

 Relativistic Momentum: The momentum of a particle moving at 

relativistic speeds, given by 𝑝 = 𝛾𝑚𝑣,  where 𝛾  is the Lorentz 

factor. 

 Global Positioning System (GPS): A satellite-based navigation 

system that requires corrections from both special and general 

relativity to provide accurate location data. 

 Muons: Elementary particles produced by cosmic rays in the 

upper atmosphere, whose extended life when traveling fast is 

evidence of time dilation. 

 Particle Accelerators: Devices that accelerate particles to near-

light speeds, where relativistic effects must be taken into account 

to predict motion and collisions. 

 Cosmic Rays: High-energy particles from space that travel at 

nearly the speed of light, used in experiments confirming 

relativistic effects. 

 Simultaneity: The concept that two events occurring at the same 

time in one frame may not occur simultaneously in another moving 

frame. 

 Twin Paradox: A thought experiment that illustrates time dilation: 

a twin who travels at high speed and returns ages less than the one 

who stayed on Earth 

5.8 REFERENCES:-  

 Rindler, W. (2018). Introduction to Special Relativity (2nd ed.). Oxford 

University Press. A modern and accessible textbook covering both 

theory and applications, including GPS, relativistic kinematics, and 

particle physics. 

5.9 SUGGESTED READING:-  
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 Satya Prakash and K.P. Gupta (Nineteenth Edition, 2019), 

Relativistic Mechanics. 

 Dr. J.K. Goyal and Dr. K.P. Gupta (Twenty Eight Edition, 2018), 

Theory of Relativity. 

5.10 TERMINAL QUESTIONS:- 

(TQ-1)  What is Compton Effect? Give its theory and importance. 

(TQ-2) Using special theory of relativity derive De-Broglie hypothesis. 

(TQ-3) Calculate De- Broglie wavelength of an electron whose kinetic 

energy is 50eV. (𝑚 = 9.1 × 10−28𝑔𝑚) 

5.11 ANSWERS:- 

SELF CHECK ANSWERS  

1. c) 

2. Time dilation is the effect where time appears to pass more slowly 

for an object moving at high speed relative to a stationary observer. 

It is observed in real-life in the accurate timing of GPS satellites, 

which must account for both special and general relativistic effects 

to provide precise location data. 

3. In particle accelerators, particles move at speeds close to the speed 

of light. Due to relativistic effects, their mass increases with speed, 

and relativistic momentum and energy equations must be used to 

describe their behavior accurately. 

4. Length contraction is the phenomenon where objects moving at 

relativistic speeds appear shortened in the direction of motion. 

Although not experienced at everyday speeds, it becomes 

significant in relativistic space travel or in cosmic ray interactions 

with Earth’s atmosphere. 

5. Muons created by cosmic rays in the upper atmosphere have a 

short lifetime. However, due to time dilation, they appear to live 

longer from the perspective of an Earth observer, allowing them to 

reach the ground before decaying. 

 

TERMINAL ANSWERS  

(TQ-3) 𝜆 = 1.73Å 
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UNIT 6:-Tensor and line Element I  

CONTENTS: 
6.1      Introduction 

6.2      Objectives 

6.3      Summation Convention 

6.4      Dummy suffix 

6.5      Real Suffix 

6.6      Kronecker Delta 

6.7      Determinant 

6.8      Four Vectors (World Vectors) 

6.9      Transformation of Co-ordinates 

6.10     Summary 

6.11     Glossary 

6.12     References 

6.13     Suggested Reading 

6.14     Terminal questions  

6.15     Answers  

 

6.1 INTRODUCTION:-  

In this section, we are introduced to the fundamental concepts of tensors 

and the line element, which play a crucial role in the mathematical 

formulation of physics, especially in the theory of general relativity. A 

tensor is a generalization of scalars and vectors that remains invariant 

under coordinate transformations, allowing physical laws to be expressed 

in a form valid in all reference frames. The line element is an expression 

for the infinitesimal distance between two nearby points in space or space-

time and is defined using the metric tensor, which encodes the geometric 

structure of the space. This forms the foundation for describing the 

curvature and geometry of space and time in both special and general 

relativity. 

6.2 OBJECTIVES:-  

After studying this unit, the learner’s will be able to  
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 To explain Summation Convention, Dummy suffix and Real 

suffix. 

 To define Kronecker Delta. 

 To explain four vectors and determinant. 

 To discuss transformation of co-ordinate. 

6.3 SUMMATION CONVENTION:-  

The expression 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 is represented by  

∑ 𝑎𝑖𝑥𝑖

𝑛

𝑖=1

 

Summation convention means drop the sigma sign and adopt the 

convention  

∑ 𝑎𝑖𝑥𝑖

𝑛

𝑖=1

= 𝑎𝑖𝑥
𝑖 

According to the summation convention, a suffix implies sum across a 

specified range if it appears twice in a phrase, once in the upper position 

and once in the lower position. We assume that the range is between 1 and 

4 if it is not specified. 

 

6.4DUMMY SUFFIX:-  

The word "dummy suffix" refers to a suffix that appears twice in a term, 

once in the upper position and once in the lower position. For example 𝑖 is 

dummy suffix in 𝑎𝑖
𝜇

𝑥𝑖. 
If we have 

𝑎𝑖
𝜇

𝑥𝑖 = 𝑎1
𝜇

𝑥1 + ⋯ + 𝑎4
𝜇

𝑥4 

𝑎𝑗
𝜇

𝑥𝑗 = 𝑎1
𝜇

𝑥1 + ⋯ + 𝑎4
𝜇

𝑥4 

The last two equations prove that 𝑎𝑖
𝜇

𝑥𝑖 = 𝑎𝑗
𝜇

𝑥𝑗. This shows that a dummy 

suffix can be replaced by another dummy suffix not used in that term. 

Also two or more than two dummy suffixes can be interchanged. For 

example 

𝑔𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥′𝑖

𝜕𝑥𝛽

𝜕𝑥′𝑗
= 𝑔𝛽𝛼

𝜕𝑥𝛽

𝜕𝑥′𝑖

𝜕𝑥𝛼

𝜕𝑥′𝑗
 

6.5REAL SUFFIX:-  
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Real suffixes are those that are not repeated. For example 𝜇 is a real suffix 

in 𝑎𝑖
𝜇

𝑥𝑖. A real suffix cannot be replaced by another real suffix. i.e. 

𝑎𝑖
𝜇

𝑥𝑖 ≠ 𝑎𝑖
𝑣𝑥𝑖 

 

6.6KRONECKER DELTA:-  

It is denoted by 𝛿𝑗
𝑖 and is defined as 

𝛿𝑗
𝑖 = {

1 𝑖𝑓 𝑖 = 𝑗
0 𝑖𝑓 𝑖 ≠ 𝑗

 

Properties: 

1.  
𝜕𝑥𝑖

𝜕𝑥𝑗
= 𝛿𝑗

𝑖 

2.  𝛿𝑗
𝑖𝐴𝑗 = 𝐴𝑖 

3.  𝛿𝑗
𝑖 = 4  

𝑓𝑜𝑟 𝛿1
1 + 𝛿2

2 + 𝛿3
3 + 𝛿4

4 = 1 + 1 + 1 + 1+= 4 

4.  𝛿𝑗
𝑖𝛿𝑘

𝑖 = 𝛿𝑘
𝑖  

6.7DETERMINANT:-  

Consider the determinant 

||

𝑎1
1  𝑎2

1  𝑎3
1  𝑎4

1

𝑎1
2  𝑎2

2  𝑎3
2  𝑎4

2

𝑎1
3  𝑎2

3  𝑎3
3  𝑎4

3

𝑎1
4  𝑎2

4  𝑎3
4  𝑎4

4

|| = 𝑎(𝑠𝑎𝑦) 

In this case, 𝑎𝑣
𝜇

 might be interpreted as this determinant's general element. 

The row and column to which the element 𝑎𝑣
𝜇

 belongs are indicated by the 

suffix 𝜇 𝑎𝑛𝑑 𝑣 , which is also used to indicate this determinant|𝑎𝑣
𝜇|. 𝐴𝜇

𝑣  

stands for the element 𝑎𝑣
𝜇

’s cofactor. The determinant's symmetry or anti-

symmetry is determined by 

𝑎𝑣
𝜇

= 𝑎𝜇
𝑣 𝑜𝑟 𝑎𝑣

𝜇
= −𝑎𝜇

𝑣 ∀𝜇 𝑎𝑛𝑑 𝑣 

We have 

𝑎𝑣
𝜇

𝐴𝜎
𝑣 = 𝑎1

𝜇
𝐴𝜎

1 + 𝑎2
𝜇

𝐴𝜎
2 +𝑎3

𝜇
𝐴𝜎

3 +𝑎4
𝜇

𝐴𝜎
4  
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By the well known property of determinant 

𝑎𝑣
𝜇

𝐴𝜎
𝑣 = 0 𝑖𝑓 𝜇 ≠ 𝜎 

𝑎𝑣
𝜇

𝐴𝜎
𝑣 = 𝑎 𝑖𝑓 𝜇 = 𝜎 

These two results can be represented by a single equation 

𝑎𝑣
𝜇

𝐴𝜎
𝑣 = 𝑎𝛿𝜎

𝜇
 

6.7.1. Differentiation of Determinant 

Let the element 𝑎𝑣
𝜇

 be functions of independent variables 𝑥, 𝑦, 𝑧, … etc. So 

that 

𝜕𝑎

𝜕𝑥
=

|

|

𝜕𝑎1
1

𝜕𝑥
  

𝜕𝑎2
1

𝜕𝑥
 … 

𝜕𝑎4
1

𝜕𝑥
𝑎1

2     𝑎2
2   … 𝑎4

2

…    …      …   …
𝑎1

4     𝑎2
4     … 𝑎4

4

|

|
+ ⋯ +

|
|

𝑎1
1   …  𝑎4

1

𝑎1
2   …  𝑎4

2

… … …
𝜕𝑎1

4

𝜕𝑥
… 

𝜕𝑎4
4

𝜕𝑥

|
|
 

First det. on R.H.S 

𝜕𝑎1
1

𝜕𝑥
. 𝐴1

1 +
𝜕𝑎2

1

𝜕𝑥
. 𝐴1

2 + ⋯ +
𝜕𝑎4

1

𝜕𝑥
𝐴1

4 =
𝜕𝑎𝑣

1

𝜕𝑥
. 𝐴1

𝑣  

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, 𝑙𝑎𝑠𝑡 𝑑𝑒𝑡. 𝑜𝑛 𝑅. 𝐻. 𝑆. =  
𝜕𝑎𝑣

1

𝜕𝑥
. 𝐴1

𝑣  

𝐹𝑖𝑛𝑎𝑙𝑙𝑦,                 
𝜕𝑎

𝜕𝑥
=

𝜕𝑎𝑣
1

𝜕𝑥
. 𝐴1

𝑣 + ⋯ +
𝜕𝑎𝑣

4

𝜕𝑥
. 𝐴4

𝑣 =
𝜕𝑎𝑣

𝜇

𝜕𝑥
. 𝐴𝜇

𝑣   

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦,                             
𝜕𝑎

𝜕𝑦
=

𝜕𝑎𝑣
𝜇

𝜕𝑦
. 𝐴𝜇

𝑣  

6.8FOUR VECTORS (WORLD VECTORS):-  

The concept of four-dimensional space has been introduced to us. 

Ordinary vector analysis (three vectors) can now be extended to four 

dimensions, or four vectors. Four vectors or world vectors are these four-

dimensional vectors. 

Given that the coordinates in four dimensions are orthogonal, 

𝑖. 𝑖 = 𝑗. 𝑗 = 𝑘. 𝑘 = 𝑝. 𝑝 = 1 

𝑖. 𝑗 = 𝑗. 𝑘 = 𝑘. 𝑝 = 𝑝. 𝑖 = 𝑝. 𝑗 = 𝑘. 𝑖 = 0 
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The bars underneath their symbols represent the world vectors. Given two 

world vectors, A and B, then 

𝐴 = 𝑖𝐴1 + 𝑗𝐴2 + 𝑘𝐴3 + 𝑝𝐴4 

And  

𝐵 = 𝑖𝐵1 + 𝑗𝐵2 + 𝑘𝐵3 + 𝑝𝐵4 

The scalar product 𝐴. 𝐵 is defined as 

𝐴. 𝐵 = 𝐴1𝐵1 + 𝐴2𝐵2 + 𝐴3𝐵3 + 𝐴4𝐵4 

𝑜𝑟 𝐴. 𝐵 = 𝐴. 𝐵 + 𝐴4𝐵4 

Where 𝐴 𝑎𝑛𝑑 𝐵 are ordinary vectors. 

𝑇ℎ𝑢𝑠,                                        𝐴 = 𝐴(𝐴1, 𝐴2, 𝐴3, 𝑖𝐴4) 

𝐻𝑒𝑛𝑐𝑒 𝐴2 = 𝐴. 𝐴 = 𝐴1
2 + 𝐴2

2 + 𝐴3
2 − 𝐴4

2 

𝑜𝑟 𝐴2 = 𝐴
2

− 𝐴4
2 where 𝐴 = 𝐴(𝐴1, 𝐴2, 𝐴3), is ordinary three dimensional 

vector. 

The world vector 𝚨 is said to be space-like 𝚨2 ≥ 0 and time like if 𝚨2 <

0. 

Corresponding to three dimensional operator ∇ we have four dimensional 

operator 

  ☐(𝐷’𝑎𝑙𝑒𝑚𝑏𝑒𝑟𝑡𝑖𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟)𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 

 ☐ = i
𝜕

𝜕𝑥
+ j

𝜕

𝜕𝑦
+ k

𝜕

𝜕𝑧
+ p

𝜕

𝜕𝑝
 

𝐷𝑖𝑣𝐴 =  ☐. 𝐴 =
𝜕𝐴1

𝜕𝑥
+

𝜕𝐴2

𝜕𝑦
+

𝜕𝐴3

𝜕𝑧
+

𝜕𝐴4

𝜕𝑝
 

𝐶𝑢𝑟𝑙𝐴 =  ☐ × 𝐴 = |

𝑖     𝑗     𝑘      𝑝
𝜕

𝜕𝑥
  

𝜕

𝜕𝑥
  

𝜕

𝜕𝑥
  

𝜕

𝜕𝑥
𝐴1   𝐴1  𝐴1   𝐴1

| 

6.9TRANSFORMATION OF CO-ORDINATES:-  
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We examine a transition from one coordinate system (𝑥1, 𝑥2, 𝑥3, 𝑥4) to 

another (𝑥′1, 𝑥′2, 𝑥′3, 𝑥′4) , where 𝑥′𝑖 = 𝑥′𝑖(𝑥′1, 𝑥′2, 𝑥′3, 𝑥′4), 𝑖 = 1,2,3,4. 
 

For co-ordinates 𝑥𝑖 , the four functions 𝑥′𝑖 are continuous differentiable 

with a single value. It is claimed that the four equations above define a 

transformation of coordinates. According to the equations, the differentials 
(𝑑𝑥1, 𝑑𝑥2, 𝑑𝑥3, 𝑑𝑥4)are transformed. 

𝑑𝑥′1 =
𝜕𝑥′1

𝜕𝑥1
𝑑𝑥1 +

𝜕𝑥′1

𝜕𝑥2
𝑑𝑥2 +

𝜕𝑥′1

𝜕𝑥3
𝑑𝑥3 +

𝜕𝑥′1

𝜕𝑥4
𝑑𝑥4 =

𝜕𝑥′1

𝜕𝑥𝑗
𝑑𝑥𝑗 

Generalizing this, we get, 

𝑑𝑥′𝑖 =
𝜕𝑥′𝑖

𝜕𝑥𝑗
𝑑𝑥𝑗 

This is the transformation law of co-ordinates. 

SELF CHECK QUESTIONS 

1. What is a tensor? 

2. What is the role of the metric tensor in defining the line element? 

3. What does the term "infinitesimal" in the line element mean? 

6.10 SUMMARY:-  

In this unit, we studied essential concepts that form the mathematical 

foundation for tensor analysis and special relativity. We began with the 

Einstein Summation Convention, which simplifies tensor notation by 

implying summation over repeated indices. The ideas of dummy suffix 

(repeated indices summed over) and real suffix (free indices that represent 

tensor components) were introduced to distinguish between variables in 

expressions. We explored the Kronecker delta, a special symbol used as 

the identity operator in tensor calculus. The concept of determinants was 

discussed in the context of coordinate transformations and matrix 

operations. We also studied four-vectors (or world vectors), which 

combine spatial and temporal components into a single object invariant 

under Lorentz transformations. Finally, we learned how coordinate 

transformations affect tensor components, preparing us for understanding 

more complex structures in relativistic physics. 

6.11 GLOSSARY:-  
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 Tensor: A mathematical object that generalizes scalars and 

vectors, characterized by components that transform systematically 

under coordinate transformations. Tensors describe physical laws 

in a coordinate-independent way. 

 Line Element 𝒅𝒔𝟐: An expression representing the infinitesimal 

distance between two nearby points in space or space-time, 

typically written as 𝑑𝑠2 = 𝑔𝜇𝑣𝑑𝑥𝜇𝑑𝑥𝑣. 

 Metric Tensor 𝒈𝝁𝒗: A symmetric tensor that defines the geometry 

of spacetime by specifying how distances and angles are measured. 

It appears in the line element. 

 Einstein Summation Convention: A shorthand notation where 

repeated indices in a term are assumed to be summed over without 

explicitly writing the summation symbol. 

 Dummy Suffix (Index): An index that appears twice in a term and 

is summed over. It does not appear in the final result and can be 

replaced by any other letter. 

 Real Suffix (Index): A free index that appears only once in a term 

and indicates the specific component of a tensor. It must match on 

both sides of an equation. 

 Kronecker Delta(𝜹𝝁𝒗): A symbol defined as 1 when μ=ν and 0 

otherwise. It acts as the identity operator in tensor equations. 

 Determinant: A scalar value calculated from a square matrix, used 

in transformations and to determine properties such as invertibility 

and volume scaling. 

 Four-Vector (World Vector): A vector in four-dimensional 

spacetime, consisting of time and spatial components (e.g., 𝑥𝜇 =

(𝑐𝑡, 𝑥, 𝑦, 𝑧), 𝑥 which transforms under Lorentz transformations. 

 Coordinate Transformation: A rule that relates the coordinates in 

one frame to those in another. Tensors transform according to 

specific laws under such transformations. 

6.12 REFERENCES:-  

 Tevian Dray(2023), Differential Forms and the Geometry of 

General Relativity , CRC Press. 

 Iva Stavrov (2020),Curvature of Space and Time, with an 

Introduction to Geometric Analysis, American Mathematical 

Society. 
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6.13 SUGGESTED READING:-  

 Satya Prakash and K.P. Gupta (Nineteenth Edition, 2019), 

Relativistic Mechanics. 

 Dr. J.K. Goyal and Dr. K.P. Gupta (Twenty Eight Edition, 2018), 

Theory of Relativity. 

6.14 TERMINAL QUESTIONS:- 

(TQ-1)  Write short note on Kronecker Delta. 

(TQ-2)  Define four vectors. 

(TQ-3) What do you understand by transformation of co-ordinates? 

(TQ-4) What is meant by the term dummy suffix in tensor notation? 

Explain its role in tensor equations and how it relates to summation 

convention. 

(TQ-5) How does the summation convention help in the efficient 

calculation of physical quantities in relativistic and tensor equations? 

(TQ-6) Discuss the significance of free indices in tensor expressions, and 

give examples of how real indices are used in the formation of tensor 

components. 

(TQ-7) Discuss the concept of the determinant in the context of tensors 

and their transformations. How is the determinant of the metric tensor 

important in general relativity? 

(TQ-8) Explain how coordinate transformations work in tensor calculus. 

Discuss how the components of a tensor transform when changing from 

one coordinate system to another. 

 

6.14 ANSWERS:- 

SELF CHECK ANSWERS 

 

1. A tensor is a mathematical object that generalizes scalars, vectors, 

and matrices. It can be described in terms of its components, which 

transform in a specific way under a change of coordinates. In 

essence, a tensor is a multi-dimensional array of quantities that 

obeys a set of transformation rules depending on the type 

(contravariant, covariant, mixed) and rank (order of the tensor). 
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2. The metric tensor gμν defines the geometry of the space or 

spacetime. It determines how distances and angles are measured. 

In the context of the line element, the metric tensor allows the 

calculation of the infinitesimal distance ds between two nearby 

points in a given coordinate system. It also dictates how vectors 

and tensors transform under coordinate changes. 

3. The term "infinitesimal" refers to a very small quantity, 

approaching zero. In the context of the line element, it describes 

the infinitesimally small distance ds between two points that are 

arbitrarily close to each other in the manifold. This allows for the 

calculation of the distance between points in the limit as the 

separation between them tends to zero. 
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UNIT 7:-Tensor and Line Element II  

CONTENTS: 
7.1      Introduction 

7.2      Objectives 

7.3      Tensor 

7.4      Symmetric Tensor 

7.5      Anti-symmetric Tensor 

7.6      Addition of Tensor 

7.7      Inner Product of Two Vectors 

7.8      Multiplication of Tensors  

7.9      Contraction  

7.10      Reciprocal Symmetric Tensor 

7.11      Relative Tensor 

7.12      Riemannian Metric 

7.13      Associate Tensors 

7.14      Magnitude of Vector 

7.15      Angle between two vectors 

7.16     Summary 

7.17     Glossary 

7.18     References 

7.19     Suggested Reading 

7.20     Terminal questions  

7.21     Answers  

 

7.1 INTRODUCTION:-  

Tensor and Line Element II delves deeper into the mathematical 

framework used to describe curved spaces in differential geometry and 

general relativity. It focuses on key concepts like the Riemann curvature 

tensor, which measures the curvature of spacetime, and the Christoffel 

symbols, which describe how vectors change when parallel transported in 

curved spaces. The line element, expressed through the metric tensor, 

provides a way to calculate the infinitesimal distance between points in a 

curved manifold. Additionally, the covariant derivative, geodesics, and 

metric compatibility are explored to understand how objects move and 

interact in curved spacetime. These tools are essential for describing the 
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geometry of space-time and are foundational in the study of general 

relativity and other areas of physics involving curved geometries. 

 7.2 OBJECTIVES:-  

After studying this unit, the learner’s will be able to  

 T derives the mathematical expression for the Riemann tensor and 

understands its physical interpretation. 

 To examine how the line element describes infinitesimal distances 

in both curved and flat spaces. 

7.3 TENSOR:-  

We will define scalar and vector first, followed by a tensor. 

1. Scalar: A quantity that can be expressed by a single number is 

called a scalar. For example, body mass, and body temperature. 

2.  Vector. Any quantity that can be represented by three numbers in 

three dimensions is called a vector. For example, 

𝑢1, 𝑢2, 𝑎𝑛𝑑 𝑢3 three dimensions can be used to indicate the 

velocity𝑞. 

3.  Tensor: A collection of numbers 𝐴(𝑖)  is said to be vector if it 

fulfills the transformation law 

                                                               𝐴′𝜇 = 𝐴𝛼
𝜕𝑥′𝜇

𝜕𝑥𝛼
                                … (1) 

Or if it satisfies the transformation law 

                                                              𝐴′𝜇 = 𝐴𝛼

𝜕𝑥𝛼

𝜕𝑥′𝜇
                                 … (2) 

It is referred to as a contra variant vector or contra variant tensor of rank 

one if it satisfies the first one, and as a covariant vector or covariant tensor 

of rank one if it satisfies the second. 

The total number of real indices or suffixes for each component is known 

as the tensor’s rank. 

The suffix's upper place is set aside for indicating characters that are 

contra variants. The suffix's lower position is set aside to denote covariant 

character.  

As an extension of (1) and (2), we express the 

Contra variant tensor of rank 𝑝, i.e. tensor of the type (𝑝, 0)… 

𝐴′𝜇1𝜇2…𝜇𝑝 = 𝐴𝑎1𝑎2…𝑎𝑝
𝜕𝑥′𝜇1

𝜕𝑥𝑎1

𝜕𝑥′𝜇2

𝜕𝑥𝑎2
…

𝜕𝑥′𝜇𝑝

𝜕𝑥𝑎𝑝
 

Covariant tensor of rank 𝑞, i.e. tensor of the type (0, 𝑞)… 
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𝐴′𝑣1𝑣2…𝑣𝑞
= 𝐴𝛽1𝛽2…𝛽𝑞

𝜕𝑥𝛽1

𝜕𝑥′𝑣1

𝜕𝑥𝛽2

𝜕𝑥′𝑣2
…

𝜕𝑥𝛽𝑞

𝜕𝑥′𝑣𝑞
 

Mixed tensor of rank 𝑝 + 𝑞, i.e. tensor of the type (𝑝, 𝑞)… 

 

𝐴′𝑣1𝑣2…𝑣𝑞

𝜇1𝜇2…𝜇𝑝 = 𝐴
𝛽1𝛽2…𝛽𝑞

𝑎1𝑎2…𝑎𝑝 𝜕𝑥′𝜇1

𝜕𝑥𝑎1

𝜕𝑥′𝜇2

𝜕𝑥𝑎2
…

𝜕𝑥′𝜇𝑝

𝜕𝑥𝑎𝑝

𝜕𝑥𝛽1

𝜕𝑥′𝑣1

𝜕𝑥𝛽2

𝜕𝑥′𝑣2
…

𝜕𝑥𝛽𝑞

𝜕𝑥′𝑣𝑞
 

In  4 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝑢 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠) , a tensor of rank 𝑚  consists of 

4𝑚(𝑛𝑚) components. Therefore, scalars (tensor of rank zero) and vectors 

(tensor of rank one) are included in the general form of tensor. 

Remark: if 𝐴
𝛽1𝛽2…𝛽𝑞

𝑎1𝑎2…𝑎𝑝 = 0, then evidently 

𝐴′
𝑣1𝑣2…𝑣𝑞

𝜇1𝜇2…𝜇𝑝 = 0 

This shows that if a tensor vanishes is one co-ordinate system then it 

vanishes in all co-ordinate systems. 

7.4 SYMMETRIC TENSOR:-  

If two contravariant or covariant indices may be interchanged without 

modifying the tensor, then the tensor is said to be symmetric with regard 

to these two indices. i.e. 

                                                                  
𝐴𝜇𝑣 = 𝐴𝑣𝜇

𝐴𝜇𝑣 = 𝐴𝑣𝜇
}                                      … (1) 

Claim 1: Symmetric property remains unchanged by tensor law of 

transformation. If we show that 

𝐴′𝜇𝑣 = 𝐴′𝑣𝜇 

The result will follow. 

From equation (1) 

                                                              𝐴𝛼𝛽 = 𝐴𝛽𝛼                                           … (2) 

 

𝐴′
𝜇𝑣 = 𝐴𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥′𝜇

𝜕𝑥𝛽

𝜕𝑥′𝑣
= 𝐴𝛽𝛼

𝜕𝑥𝛼

𝜕𝑥′𝜇

𝜕𝑥𝛽

𝜕𝑥′𝑣
 

From equation (2) 

= 𝐴𝛽𝛼

𝜕𝑥𝛽

𝜕𝑥′𝑣

𝜕𝑥𝛼

𝜕𝑥′𝜇
= 𝐴′

𝑣𝜇 

𝑜𝑟 𝐴′𝜇𝑣 = 𝐴′𝑣𝜇 

 

Claim 2: A symmetric tensor 𝐴𝜇𝑣 has 
4(4+1)

2
 independent components. 

𝐴𝜇𝑣 has 42 components in 4 dimensions which are written as follows: 

𝐴11 𝐴12 𝐴13 𝐴14 

𝐴21 𝐴22 𝐴23 𝐴24 
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𝐴31 𝐴32 𝐴33 𝐴34 

𝐴41 𝐴42 𝐴43 𝐴44 

No. of components corresponding to a repeated suffix is 4. 
No. of components corresponding to a distinct suffix is42 − 4. 

Due to symmetric property this no. is reduced to 
42−4

2
. 

Total no. of independent components is 

42 − 4

2
+ 4 =

42 − 4 + 2 × 4

2
=

4(4 + 1)

2
 

Note: A tensor 𝐴𝜇𝑣𝜎 is said to be symmetric in suffixes 𝜇 𝑎𝑛𝑑 𝑣 if 

𝐴𝜇𝑣𝜎 = 𝐴𝑣𝜇𝜎 

The total no. of independent component in this tensor has  

𝑛(𝑛 + 1)

2
. 𝑛 =

𝑛2

2
(𝑛 + 1) 

 

7.5 ANTI-SYMMETRIC TENSOR:-  

 When two contravariant or covariant indices are switched, a tensor is said 

to be skew symmetric or anti-symmetric with regard to these two indices if 

each component changes in sign but not in magnitude. i.e. 

                                                                  
𝐴𝜇𝑣 = −𝐴𝑣𝜇

𝐴𝜇𝑣 = −𝐴𝑣𝜇
}                                      … (1) 

Claim 1: An anti-symmetric property remains unchanged by tensor law of 

transformation. 

For this we have to show that 

                                                         𝐴′𝜇𝑣 = −𝐴′𝑣𝜇                                           … (2) 
From equation (1) 

                                                      𝐴𝛼𝛽 = −𝐴𝛽𝛼                                               … (3) 

𝐴′𝜇𝑣 = 𝐴𝛼𝛽
𝜕𝑥′𝜇

𝜕𝑥𝛼

𝜕𝑥′𝑣

𝜕𝑥𝛽
= −𝐴𝛽𝛼

𝜕𝑥′𝜇

𝜕𝑥𝛼

𝜕𝑥′𝑣

𝜕𝑥𝛽
 

From equation (3) 

= −𝐴𝛽𝛼
𝜕𝑥′𝑣

𝜕𝑥𝛽

𝜕𝑥′𝜇

𝜕𝑥𝛼
= −𝐴′𝑣𝜇 

Claim 2: An anti-symmetric tensor 𝐴𝜇𝑣  has 
4(4−1)

2
 independent 

components. 

𝐴𝜇𝑣 has 42 components in 4 dimensions which are written as follows: 

𝐴11 𝐴12 𝐴13 𝐴14 

𝐴21 𝐴22 𝐴23 𝐴24 

𝐴31 𝐴32 𝐴33 𝐴34 
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𝐴41 𝐴42 𝐴43 𝐴44 

Putting 𝜇 = 𝑣 in equation (1) 

𝐴𝜇𝜇 = −𝐴𝜇𝜇 ⇒ 𝐴𝜇𝜇 = 0 

Hence no. of independent components corresponding to a repeated suffix 

is 0. 

No. of independent components corresponding to a distinct suffix is 42 −

4. 

Due to anti-symmetric property this no reduce to 
42−4

2
. 

Total no. of independent components is 

=
42 − 4

2
+ 0 =

4(4 − 1)

2
= 6 

 

Note:  

1. A tensor 𝐴𝜇𝑣𝜎 is said to be skew-symmetric in suffixes 𝜇 𝑎𝑛𝑑 𝑣 if 

𝐴𝜇𝑣𝜎 = −𝐴𝑣𝜇𝜎 

The total no. of independent component in this tensor has  

𝑛(𝑛 − 1)

2
. 𝑛 =

𝑛2

2
(𝑛 − 1) 

2. A tensor 𝐴𝜇𝑣𝜎 is said to be skew-symmetric in suffixes 𝜇, 𝑣 𝑎𝑛𝑑 𝜎  

if 

𝐴𝜇𝑣𝜎 = −𝐴𝑣𝜇𝜎 , 𝐴𝜇𝑣𝜎 = −𝐴𝜇𝜎𝑣 , 𝐴𝜇𝑣𝜎 = −𝐴𝜎𝑣𝜇 

The total no. of independent component in this tensor has  

(
𝑛

3
) =

𝑛

6
(𝑛 − 1)(𝑛 − 2) 

Theorem 1: To prove that tensor (mixed tensor) law of transformation 

posses group property. 

Proof: Consider transformation of co-ordinate 

𝑥𝜇 → 𝑥′𝜇 → 𝑥"𝜇   
(𝑖) → (𝑖𝑖) → (𝑖𝑖𝑖) 

𝐴𝑣
𝜇

      𝐴′𝑣
𝜇

      𝐴"𝑣
𝜇
 

In case of transformation (𝑖) → (𝑖𝑖), we have 

                                                𝐴′𝑞
𝑝

= 𝐴𝛽
𝛼

𝜕𝑥′𝑝

𝜕𝑥𝛼

𝜕𝑥𝛽

𝜕𝑥′𝑞 
                                        … (1) 

In case of transformation (𝑖𝑖) → (𝑖𝑖𝑖) 

𝐴"𝑣
𝜇

= 𝐴′
𝑞
𝑝 𝜕𝑥"𝜇

𝜕𝑥′𝑝

𝜕𝑥′𝑞

𝜕𝑥"𝑣
= 𝐴𝛽

𝛼
𝜕𝑥′𝑝

𝜕𝑥𝛼

𝜕𝑥𝛽

𝜕𝑥′𝑞 

𝜕𝑥"𝜇

𝜕𝑥′𝑝

𝜕𝑥′𝑞

𝜕𝑥"𝑣

= 𝐴𝛽
𝛼

𝜕𝑥′𝑝

𝜕𝑥𝛼

𝜕𝑥"𝜇

𝜕𝑥′𝑝

𝜕𝑥𝛽

𝜕𝑥′𝑞 

𝜕𝑥′𝑞

𝜕𝑥"𝑣
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𝐴"𝑣
𝜇

= 𝐴𝛽
𝛼

𝜕𝑥"𝜇

𝜕𝑥𝛼

𝜕𝑥𝛽

𝜕𝑥"𝑣
 

This implies that the same law of transformation is obtained if we directly 

change from (𝑖)  →  (𝑖𝑖). The following is an expression for this property: 

Group property is present in the Tensor Law of Transformation. 

 

7.6 ADDITION OF TENSOR:-  

If two tensors are of the same rank and character, they can be added or 

subtracted. 

Then sum or difference of two tensors is a tensor of the same rank and 

similar character. This is proved in the following theorem: 

 

Theorem 2: To show that the sum of two tensors is a tensor of the same 

rank and similar character. 

Proof: Let 𝐴𝜇𝑣
𝜎  𝑎𝑛𝑑 𝐵𝜇𝑣

𝜎  be mixed tensors. Their sum is defined as  

                                                𝐴𝜇𝑣
𝜎 + 𝐵𝜇𝑣

𝜎 = 𝐶𝜇𝑣
𝜎                                              … (1) 

If we show that 𝐶𝜇𝑣
𝜎  is a mixed tensor of rank three, the result will follow: 

From equation (1) 

                                              𝐶𝛼𝛽
𝛾

= 𝐴𝛼𝛽
𝛾

+ 𝐵𝛼𝛽
𝛾

                                             … (2) 

𝑎𝑛𝑑                                      𝐶′𝜇𝑣
𝜎 = 𝐴′𝜇𝑣

𝜎 + 𝐵′𝜇𝑣
𝜎  

                                                       = 𝐴𝛼𝛽
𝛾 𝜕𝑥𝛼

𝜕𝑥′𝜇

𝜕𝑥𝛽

𝜕𝑥′𝑣

𝜕𝑥′𝜎

𝜕𝑥𝛾
+ 𝐵𝛼𝛽

𝛾 𝜕𝑥𝛼

𝜕𝑥′𝜇

𝜕𝑥𝛽

𝜕𝑥′𝑣

𝜕𝑥′𝜎

𝜕𝑥𝛾
 

                                                       = [(𝐴𝛼𝛽
𝛾

+ 𝐵𝛼𝛽
𝛾

)
𝜕𝑥𝛼

𝜕𝑥′𝜇

𝜕𝑥𝛽

𝜕𝑥′𝑣

𝜕𝑥′𝜎

𝜕𝑥𝛾
] 

  𝐶′𝜇𝑣
𝜎 = 𝐶𝛼𝛽

𝛾 𝜕𝑥𝛼

𝜕𝑥′𝜇

𝜕𝑥𝛽

𝜕𝑥′𝑣

𝜕𝑥′𝜎

𝜕𝑥𝛾
 

This proves the required result. 

 

7.7 INNER PRODUCT OF TWO VECTORS:-  

Let 𝐵𝛼 be a covariant vector and 𝐴𝛼  be a contravariant vector. The inner 

product or scalar product of vectors 𝐴𝛼  𝑎𝑛𝑑 𝐵𝛽  is the product𝐴𝛼𝐵𝛼. The 

outer or open product of 𝐴𝛼  𝑎𝑛𝑑 𝐵𝛽 is the product 𝐴𝛼𝐵𝛽. 

𝐴′𝜇𝐵′𝜇 = 𝐴𝛼
𝜕𝑥′𝜇

𝜕𝑥𝛼
𝐵𝛽

𝜕𝑥𝛽

𝜕𝑥′𝜇
 

                                                   = 𝐴𝛼𝐵𝛽 𝜕𝑥′𝜇

𝜕𝑥𝛼

𝜕𝑥𝛽

𝜕𝑥′𝜇 = 𝐴𝛼𝐵𝛽 𝜕𝑥𝛽

𝜕𝑥𝛼 = 𝐴𝛼𝐵𝛽𝛿𝛼
𝛽

 

                                                          = 𝐴𝛼𝐵𝛼 = 𝐴𝜇𝐵𝜇 

𝑜𝑟                                        𝐴′𝜇𝐵′𝜇 = 𝐴𝜇𝐵𝜇 
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This proves that 𝐴𝜇𝐵𝜇 remains unchanged by tensor law of transformation 

and hence 𝐴𝜇𝐵𝜇 is a scalar or invariant. 

 7.8 MULTIPLICATION OF TENSORS:-  

A tensor whose rank is the sum of the ranks of the two tensors is called a 

product of two tensors. More broadly, if we multiply a tensor 𝐴𝑣1𝑣2…𝑣𝑚

𝜇1𝜇2…𝜇𝑙  

(which is covariant of order 𝑚 and contravariant of order 𝑛) by tensor 

𝐵
𝛽1𝛽2…𝛽𝑞

𝑎1𝑎2…𝑎𝑝
 (which is covariant of order 𝑞 and contravariant of order 𝑝). The 

result is a tensor that is covariant of order 𝑚 +  𝑞 and contravariant of 

order𝑙 + 𝑝. This product is referred to as the outer product or the open 

product of two tensors. 

 

Theorem 3: The product of two tensors is also a tensor. 

Proof: Let 𝐴𝑣
𝜇

 𝑎𝑛𝑑 𝐵𝜎 be any two tensors. Let 

                                                      𝐶𝑣𝜎
𝜇

= 𝐴𝑣
𝜇

𝐵𝜎                                               … (1) 

If we show that 𝐶𝑣𝜎
𝜇

 is a tensor, the result will follow: 

From equation (1) 

                                    𝐶′𝑣𝜎
𝜇

= 𝐴′𝑣
𝜇

𝐵′𝜎 

= 𝐴𝑞
𝑝 𝜕𝑥′𝜇

𝜕𝑥𝑝

𝜕𝑥𝑞

𝜕𝑥′𝑣
 . 𝐵𝑟

𝜕𝑥𝑟

𝜕𝑥′𝜎
 

= 𝐴𝑞
𝑝

. 𝐵𝑟

𝜕𝑥′𝜇

𝜕𝑥𝑝

𝜕𝑥𝑞

𝜕𝑥′𝑣
 

𝜕𝑥𝑟

𝜕𝑥′𝜎
 

= 𝐶𝑣𝜎
𝜇 𝜕𝑥′𝜇

𝜕𝑥𝑝

𝜕𝑥𝑞

𝜕𝑥′𝑣
 

𝜕𝑥𝑟

𝜕𝑥′𝜎
 

From this it follows that 𝐶𝑣𝜎
𝜇

 is a tensor. 

7.9 CONTRACTION:-  

When one contravariant and one covariant suffix are equivalent in a 

tensor, the process is referred to as contraction. 

Let 𝐴𝑟𝑠𝑡
𝑝𝑞

 be a tensor of rank five. Then by tensor law of transformation 

𝐴′𝑟𝑠𝑡
𝑝𝑞

= 𝐴𝑖𝑗𝑘
𝛼𝛽 𝜕𝑥′𝑝

𝜕𝑥𝛼

𝜕𝑥′𝑞

𝜕𝑥𝛽

𝜕𝑥𝑖

𝜕𝑥′𝑟

𝜕𝑥𝑗

𝜕𝑥′𝑠

𝜕𝑥𝑘

𝜕𝑥′𝑡
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Taking𝑡 = 𝑝, we get 

𝐴′𝑟𝑠𝑝
𝑝𝑞

= 𝐴𝑖𝑗𝑘
𝛼𝛽 𝜕𝑥′𝑝

𝜕𝑥𝛼

𝜕𝑥′𝑞

𝜕𝑥𝛽

𝜕𝑥𝑖

𝜕𝑥′𝑟

𝜕𝑥𝑗

𝜕𝑥′𝑠

𝜕𝑥𝑘

𝜕𝑥′𝑝
 

𝐵𝑢𝑡                     𝐴𝑖𝑗𝑘
𝛼𝛽 𝜕𝑥′𝑝

𝜕𝑥𝛼

𝜕𝑥𝑘

𝜕𝑥′𝑝
= 𝐴𝑖𝑗𝑘

𝛼𝛽 𝜕𝑥𝑘

𝜕𝑥𝛼
= 𝐴𝑖𝑗𝑘

𝛼𝛽
𝛿𝛼

𝑘 = 𝐴𝑖𝑗𝛼
𝛼𝛽

 

𝐻𝑒𝑛𝑐𝑒, 𝐴′𝑟𝑠𝑝
𝑝𝑞

= 𝐴𝑖𝑗𝛼
𝛼𝛽 𝜕𝑥′𝑞

𝜕𝑥𝛽

𝜕𝑥𝑖

𝜕𝑥′𝑟

𝜕𝑥𝑗

𝜕𝑥′𝑠
= 𝑡𝑒𝑛𝑠𝑜𝑟 𝑜𝑓 𝑟𝑎𝑛𝑘 3 

For R.H.S. contains three partial derivatives. 

This shows that contraction reduces the rank of a tensor by two. 

Theorem 4: Quotient law of tensors. A set of quantities, whose inner 

product with an arbitrary vector is a tensor, is itself a tensor. 

Proof: Let 𝐴𝑗1𝑗2…𝑗
𝑚𝑘

𝑖1𝑖2…𝑖𝑙  be a set of quantities whose inner product with an 

arbitrary vector 𝑢𝑘 is a tensor of the type 𝐵𝑗1𝑗2…𝑗𝑚

𝑖1𝑖2…𝑖𝑙 . 

To prove that 𝐴𝑗1𝑗2…𝑗
𝑚𝑘

𝑖1𝑖2…𝑖𝑙  is a tensor. 

By assumption 𝐵𝑗1𝑗2…𝑗𝑚

𝑖1𝑖2…𝑖𝑙 = 𝐴𝑗1𝑗2…𝑗
𝑚𝑘

𝑖1𝑖2…𝑖𝑙 𝑢𝑘 

From which, we get 

                                          𝐵𝛽1𝛽2…𝛽𝑚

𝛼1𝛼2…𝛼𝑙 = 𝐴𝛽1𝛽2…𝛽𝑚𝑎

𝛼1𝛼2…𝛼𝑙 𝑢𝑎                                    … (1) 

𝑎𝑛𝑑                                   𝐵′𝑗1𝑗2…𝑗𝑚

𝑖1𝑖2…𝑖𝑙 = 𝐴′𝑗1𝑗2…𝑗
𝑚𝑘

𝑖1𝑖2…𝑖𝑙 𝑢′𝑘  

∵ 𝐵′𝑗1𝑗2…𝑗𝑚

𝑖1𝑖2…𝑖𝑙  is a tensor. 

∴ 𝐵𝛽1𝛽2…𝛽𝑚

𝛼1𝛼2…𝛼𝑙
𝜕𝑥′𝑖1

𝜕𝑥𝛼1

𝜕𝑥′𝑖2

𝜕𝑥𝛼2
…

𝜕𝑥′𝑖𝑙

𝜕𝑥𝛼𝑙

𝜕𝑥𝛽1

𝜕𝑥′𝑗1

𝜕𝑥𝛽2

𝜕𝑥′𝑗2
…

𝜕𝑥𝛽𝑚

𝜕𝑥′𝑗𝑚
= 𝐴′

𝑗1𝑗2…𝑗
𝑚𝑘

𝑖1𝑖2…𝑖𝑙 𝑢′𝑘
 

Using equation (1), we get 

𝐴𝛽1𝛽2…𝛽𝑚𝑎

𝛼1𝛼2…𝛼𝑙 𝑢𝑎
𝜕𝑥′𝑖1

𝜕𝑥𝛼1

𝜕𝑥′𝑖2

𝜕𝑥𝛼2
…

𝜕𝑥′𝑖𝑙

𝜕𝑥𝛼𝑙

𝜕𝑥𝛽1

𝜕𝑥′𝑗1

𝜕𝑥𝛽2

𝜕𝑥′𝑗2
…

𝜕𝑥𝛽𝑚

𝜕𝑥′𝑗𝑚
− 𝐴′

𝑗1𝑗2…𝑗
𝑚𝑘

𝑖1𝑖2…𝑖𝑙 𝑢′𝑘 = 0 

Making use of the fact that 𝑢𝑘 is a vector, 
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𝐴𝛽1𝛽2…𝛽𝑚𝑎

𝛼1𝛼2…𝛼𝑙 𝑢′𝑘 𝜕𝑥𝑎

𝜕𝑥′𝑘

𝜕𝑥′𝑖1

𝜕𝑥𝛼1
…

𝜕𝑥′𝑖𝑙

𝜕𝑥𝛼𝑙

𝜕𝑥𝛽1

𝜕𝑥′𝑗1
…

𝜕𝑥𝛽𝑚

𝜕𝑥′𝑗𝑚
− 𝐴′

𝑗1𝑗2…𝑗
𝑚𝑘

𝑖1𝑖2…𝑖𝑙 𝑢′𝑘 = 0 

𝑜𝑟 𝑢′𝑘 [𝐴𝛽1𝛽2…𝛽𝑚𝑎

𝛼1𝛼2…𝛼𝑙
𝜕𝑥𝑎

𝜕𝑥′𝑘

𝜕𝑥′𝑖1

𝜕𝑥𝛼1
…

𝜕𝑥′𝑖𝑙

𝜕𝑥𝛼𝑙

𝜕𝑥𝛽1

𝜕𝑥′𝑗1
…

𝜕𝑥𝛽𝑚

𝜕𝑥′𝑗𝑚
− 𝐴′

𝑗1𝑗2…𝑗
𝑚𝑘

𝑖1𝑖2…𝑖𝑙 ] = 0 

Since 𝑢𝑘 is an arbitrary vector and hence the expression within the bracket 

vanishes. Consequently 

𝐴′
𝑗1𝑗2…𝑗

𝑚𝑘

𝑖1𝑖2…𝑖𝑙 = 𝐴𝛽1𝛽2…𝛽𝑚𝑎

𝛼1𝛼2…𝛼𝑙
𝜕𝑥𝑎

𝜕𝑥′𝑘

𝜕𝑥′𝑖1

𝜕𝑥𝛼1
…

𝜕𝑥′𝑖𝑙

𝜕𝑥𝛼𝑙

𝜕𝑥𝛽1

𝜕𝑥′𝑗1
…

𝜕𝑥𝛽𝑚

𝜕𝑥′𝑗𝑚
 

This proves that 𝐴𝑗1𝑗2…𝑗
𝑚𝑘

𝑖1𝑖2…𝑖𝑙  is a tensor. 

7.10RECIPROCAL SYMMETRIC TENSOR:-  

Theorem 5: If 𝑎𝑖𝑗 is a symmetric covariant tensor then conjugate tensor 

𝑎𝑖𝑗 is also a tensor. 

Proof: Let 𝑎𝑖𝑗 be a second rank covariant symmetric tensor. Consider the 

determinant 

|

𝑎11  𝑎12  𝑎13  𝑎14

𝑎21  𝑎22  𝑎23  𝑎24

𝑎31  𝑎32  𝑎33  𝑎34

𝑎41  𝑎42  𝑎43  𝑎44

| = 𝑎 (𝑠𝑎𝑦) 

The cofactor of 𝑎𝑖𝑗 in this determinant is denoted by 𝐴𝑗𝑖 . We define 

 𝑎𝑖𝑗 =
 𝐴𝑗𝑖

𝑎
 

𝑎𝑖𝑗  𝑖𝑠 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 ⇒  |𝑎𝑖𝑗| = 𝑎 𝑖𝑠  𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐  

⇒  𝐴𝑗𝑖  𝑖𝑠 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐  

⇒  𝑎𝑖𝑗 =
 𝐴𝑗𝑖

𝑎
 𝑖𝑠 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐  

⇒  𝑎𝑖𝑗  𝑖𝑠 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 

Let  𝑢𝑖 be an arbitrary vector. Then 𝑎𝑖𝑗  𝑢𝑖 is a tensor since the product of 

two tensors is a tensor. Let 𝐵𝑗 = 𝑎𝑖𝑗  𝑢𝑖 
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Now 𝐵𝑗 is an arbitrary vector. 

𝐵𝑗 𝑎𝑗𝑘 =  𝑢𝑖𝑎𝑖𝑗  𝑎𝑗𝑘 =  𝑢𝑖𝑎𝑖𝑗

 𝐴𝑘𝑗

𝑎
=

 𝑢𝑖

𝑎
𝑎𝛿𝑖

𝑘 =  𝑢𝑘 = 𝑎 𝑡𝑒𝑛𝑠𝑜𝑟  

∴                                            𝐵𝑗 𝑎𝑗𝑘 = 𝑎 𝑡𝑒𝑛𝑠𝑜𝑟 

This proves, by quotient law that 𝑎𝑗𝑘  is a tensor. i.e.  𝑎𝑖𝑗  is tensor. 

The tensors 𝑎𝑖𝑗  𝑎𝑛𝑑  𝑎𝑖𝑗 are defined as reciprocal to each other. They are 

also called conjugate tensor. 

Note: 

1. 𝑎𝑖𝑗  𝑎𝑗𝑘 = 𝛿𝑖
𝑘  

𝑓𝑜𝑟 𝑎𝑖𝑗  𝑎𝑗𝑘 = 𝑎𝑖𝑗  
 𝐴𝑘𝑗

𝑎
=

𝑎𝛿𝑖
𝑘

𝑎
= 𝛿𝑖

𝑘  

2. 𝑎𝑖𝑗  𝑎𝑖𝑗 = 4  

For 𝑘 = 𝑖 the result (1) gives 

𝑎𝑖𝑗  𝑎𝑗𝑖 = 𝛿𝑖
𝑖 = 4 

𝑜𝑟 𝑎𝑖𝑗  𝑎𝑖𝑗 = 4 𝑓𝑜𝑟  𝑎𝑖𝑗  𝑖𝑠 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐. 

3. These results are of vital importance for future study. 

7.11 RELATIVE TENSOR:-  

Let 𝐴𝜇𝑣 be a tensor 

𝑖𝑓 𝐴′𝜇𝑣 = 𝐴𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥′𝜇

𝜕𝑥𝛽

𝜕𝑥′𝑣
|
𝜕𝑥

𝜕𝑥′
|

𝜔

  

Then 𝐴𝜇𝑣 is called relative tensor of weight 𝜔. 

A relative tensor of weight one is called tensor density; while if the weight 

is zero, the tensor is absolute.  

A relative tensor of order one is called relative vector. Thus, if 

𝐴′𝜇 = 𝐴𝛼

𝜕𝑥𝛼

𝜕𝑥′𝜇
|
𝜕𝑥

𝜕𝑥′
|

𝜔

 

Then 𝐴𝜇 is called a relative vector of weight 𝜔. A relative vector of weight 

one is called vector density, while if the weight is zero, the vector is 

absolute.  

A relative tensor of rank zero is called relative scalar. Thus, 
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𝑖𝑓 𝑎′ = 𝑎 |
𝜕𝑥

𝜕𝑥′
|

𝜔

 

Then a is called relative scalar of weight 𝜔. A relative scalar of weight one 

is called scalar density, while if the weight is zero, the scalar is absolute.  

7.12 RIEMANNIAN METRIC:-  

The term "line element" or "metric" refers to a formula that expresses the 

distance between adjacent points. 

For example 𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 is a line element. For it expresses 

the distance between adjacent(𝑥 , 𝑦 , 𝑧)  and(𝑥 +  𝑑𝑥, 𝑦 +  𝑑𝑦, 𝑧 +  𝑑𝑧). 

More generally for any curvilinear co-ordinates 𝑢, 𝑣, 𝑤, 

𝑑𝑠2 = 𝑎𝑑𝑢2 + 𝑏𝑑𝑣2 + 𝑐𝑑𝑤2 + 2𝑓𝑑𝑣𝑑𝑤 + 2𝑔𝑑𝑤𝑑𝑢 + 2ℎ𝑑𝑢𝑑𝑣 

Where the coefficients 𝑎, 𝑏, 𝑐 , . . . , ℎ are functions of co-ordinates 𝑢𝑣𝑤.By 

defining the infinitesimal distance 𝑑𝑠 between neighboring points whose 

coordinates in any system are 𝑥𝑖 and 𝑥𝑖 + 𝑑𝑥𝑖 , Riemann expanded this 

concept to a space of 𝑛 dimensions. 

𝑑𝑠2 = 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗  (𝑖, 𝑗 = 1,2, … , 𝑛) 

Where the coefficients 𝑔𝑖𝑗 are functions of co-ordinates 𝑥𝑖. 

𝑑𝑠2 = 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗  is the quadratic differential form known as the 

Riemannian metric for 𝑛-dimensional space. A space that is defined by 

this metric is referred to as a Riemannian space of 𝑛 dimensions. The term 

Riemannian geometry of 𝑛 dimensions refers to the geometry based on 

this metric. 

In general theory of relativity, the line element is given by  

𝑑𝑠2 = 𝑔𝜇𝑣𝑑𝑥𝜇𝑑𝑥𝑣  (𝜇, 𝑣 = 1,2,3,4). 

The case of special theory of relativity corresponds to 

𝑔11 = 𝑔22 = 𝑔33 = 1, 𝑔11 = −𝑐2 

𝑔𝜇𝑣 = 0(𝜇 ≠ 𝑣) 

Note:  

1. The determinant formed by the elements 𝑔𝜇𝑣 is denoted by 𝑔 and 

is always assumed to be non-zero. i.e. 
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𝑇ℎ𝑢𝑠                         𝑔 ≠ 0 𝑎𝑛𝑑 𝑔 = |𝑔𝑖𝑗| = |

𝑔11  𝑔12  𝑔13  𝑔14

𝑔21  𝑔22  𝑔23  𝑔24

𝑔31  𝑔32  𝑔33  𝑔34

𝑔41  𝑔42  𝑔43  𝑔44

| 

2. We define  

𝑔𝜇𝑣 =
𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑔𝜇𝑣 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡

𝑔
 

It can be shown that 

𝑔𝜇𝑣𝑔𝜇𝑣 = 4, 𝑔𝜇𝑣𝑔𝑣𝜎 = 𝑔𝜇
𝜎 = 𝛿𝜇

𝜎 

This tensor 𝑔𝜇𝑣  is called reciprocal tensor of 𝑔𝜇𝑣 . The tensors 

𝑔𝜇𝑣  𝑎𝑛𝑑 𝑔𝜇𝑣 are called fundamental tensor. 

Theorem 6: Fundamental tensor: to show that 𝑔𝜇𝑣  is covariant 

symmetric tensor of second order. 

Proof: Firstly we shall show that 𝑑𝑥𝛼 is a contravariant vector. Consider 

the transformation 𝑥𝜇 → 𝑥′𝜇
. 

𝑒𝑣𝑖𝑑𝑒𝑛𝑡𝑙𝑦                                  𝑑𝑥′𝜇 = 𝑑𝑥𝛼
𝜕𝑥′𝜇

𝜕𝑥𝛼
 

If we write 𝑑𝑥𝛼 = 𝐴𝛼, then  

𝐴′𝜇 = 𝐴𝛼
𝜕𝑥′𝜇

𝜕𝑥𝛼
 

This confirms the tensor law of transformation. Hence, 𝐴𝛼  is a 

contravariant vector. Secondly we shall show that 𝑔𝜇𝑣  is a second rank 

covariant tensor. 𝑑𝑠2  is a invariant under any co-ordinate system. Then 

𝑑𝑠2 = 𝑔𝛼𝛽𝑑𝑥𝛼𝑑𝑥𝛽: 𝑖𝑛 𝑥𝑖 𝑠𝑦𝑠𝑡𝑒𝑚 

𝑑𝑠2 = 𝑔′𝜇𝑣𝑑𝑥′𝜇𝑑𝑥′𝑣: 𝑖𝑛 𝑥′𝑖 𝑠𝑦𝑠𝑡𝑒𝑚 

From which, we get  

𝑔𝛼𝛽𝑑𝑥𝛼𝑑𝑥𝛽 = 𝑔′
𝜇𝑣

𝑑𝑥′𝜇𝑑𝑥′𝑣
 

Since 𝑑𝑥𝛼 is a contravariant vector, 

𝑔𝛼𝛽𝑑𝑥𝛼𝑑𝑥𝛽 = 𝑔′
𝜇𝑣

𝑑𝑥𝛼
𝜕𝑥′𝜇

𝜕𝑥𝛼
𝑑𝑥𝛽

𝜕𝑥′𝑣

𝜕𝑥𝛽
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𝑜𝑟                          (𝑔𝛼𝛽 − 𝑔′
𝜇𝑣

𝜕𝑥′𝜇

𝜕𝑥𝛼

𝜕𝑥′𝑣

𝜕𝑥𝛽
) 𝑑𝑥𝛼𝑑𝑥𝛽 = 0 

Since 𝑑𝑥𝛼 is arbitrary, the expression within the bracket vanishes. 

∴                                        𝑔𝛼𝛽 = 𝑔′
𝜇𝑣

𝜕𝑥′𝜇

𝜕𝑥𝛼

𝜕𝑥′𝑣

𝜕𝑥𝛽
 

This confirms the tensor law of transformation. 𝑔𝛼𝛽  is hence a covariant 

tensor of second rank. Finally, we demonstrate that 𝑔𝜇𝑣 is symmetric. 𝑔𝜇𝑣 

can be expressed as  

𝑔𝜇𝑣 = 𝐴𝜇𝑣 + 𝐵𝜇𝑣 

𝑤ℎ𝑒𝑟𝑒       𝐴𝜇𝑣 =
1

2
(𝑔𝜇𝑣 + 𝑔𝑣𝜇) = 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑡𝑒𝑛𝑠𝑜𝑟 & 

𝐵𝜇𝑣 =
1

2
(𝑔𝜇𝑣 − 𝑔𝑣𝜇) = 𝑎𝑛𝑡𝑖 − 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑡𝑒𝑛𝑠𝑜𝑟  

𝑔𝜇𝑣𝑑𝑥𝜇𝑑𝑥𝑣 = (𝐴𝜇𝑣 + 𝐵𝜇𝑣)𝑑𝑥𝜇𝑑𝑥𝑣 

𝑜𝑟              (𝑔𝜇𝑣 − 𝐴𝜇𝑣)𝑑𝑥𝜇𝑑𝑥𝑣 = 𝐵𝜇𝑣𝑑𝑥𝜇𝑑𝑥𝑣                                         … (1) 

𝐵𝑢𝑡 𝐵𝜇𝑣𝑑𝑥𝜇𝑑𝑥𝑣 = 𝐵𝑣𝜇𝑑𝑥𝑣𝑑𝑥𝜇, by interchanging dummy suffix 𝜇 𝑎𝑛𝑑 𝑣 

                             = −𝐵𝜇𝑣𝑑𝑥𝑣𝑑𝑥𝜇 . For 𝐵𝜇𝑣 is anti-symmetric 

𝑜𝑟 2𝐵𝜇𝑣𝑑𝑥𝜇𝑑𝑥𝑣 = 0 ⇒ 𝐵𝜇𝑣𝑑𝑥𝜇𝑑𝑥𝑣 = 0 

⇒ (𝑔𝜇𝑣 − 𝐴𝜇𝑣)𝑑𝑥𝜇𝑑𝑥𝑣 = 0                                             From equation (1) 

⇒ 𝑔𝜇𝑣 − 𝐴𝜇𝑣 = 0 

⇒ 𝑔𝜇𝑣 = 𝐴𝜇𝑣 = 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑡𝑒𝑛𝑠𝑜𝑟 

⇒ 𝑔𝜇𝑣 𝑖𝑠 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 

7.13 ASSOCIATE TENSORS:-  

We define  

                                                  𝐴𝜇 = 𝑔𝜇𝛼𝐴𝛼                                                    … (1) 
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The tensor 𝐴𝜇 is called associate to 𝐴𝜇. Also we say that the tensors 𝐴𝜇 

and  𝐴𝜇 are associate to each other. We also define 

                                                  𝐴𝜇 = 𝑔𝜇𝛼𝐴𝛼                                                    … (2) 

This is called raising the subscript. 

Multiplying equation (2) by 𝑔𝜇𝑝, we get 

 𝑔𝜇𝑝𝐴𝜇 = 𝑔𝜇𝛼 𝑔𝜇𝑝𝐴𝛼 = 𝛿𝑝
𝛼𝐴𝛼 = 𝐴𝑝 

𝑜𝑟 𝐴𝑝 =  𝑔𝜇𝑝𝐴𝜇 = 𝑔𝛼𝑝𝐴𝛼 =  𝑔𝑝𝛼𝐴𝛼 

𝑜𝑟 𝐴𝑝 = 𝑔𝑝𝛼𝐴𝛼  𝑜𝑟 𝐴𝜇 = 𝑔𝜇𝛼𝐴𝛼   

This is equation (1). 

This is called lowering the superscript. 

Thus, there are three processes: 

1. Multiplication by 𝑔𝜇𝑣 gives substitution with raising. 

2. Multiplication by 𝑔𝜇𝑣 gives substitution with lowering. 

3. Multiplication by 𝑔𝑣
𝜇
 gives a simple substitution. 

7.14 MAGNITUDE OF A VECTOR:-  

The magnitude 𝐴 of a vector 𝐴𝛼 is defined as  

𝐴2 = 𝑔𝛼𝛽𝐴𝛼𝐴𝛽 

𝑜𝑏𝑣𝑖𝑜𝑢𝑠𝑙𝑦 𝐴2 = 𝑔𝛼𝛽𝐴𝛼𝐴𝛽 = 𝐴2 = 𝐴𝛽𝐴𝛽 = 𝐴2 = 𝐴𝛽𝑔𝛼𝛽𝐴𝛼 = 𝑔𝛼𝛽𝐴𝛼𝐴𝛽 

𝑜𝑟                                                     𝐴2 = 𝑔𝛼𝛽𝐴𝛼𝐴𝛽 

This shown that magnitude of contravariant component and covariant 

component of the same vectors are equal. 

7.15 ANGLE BETWEEN TWO VECTORS:-  

Let 𝜃 is the angle between any two vectors 𝐴𝛼  𝑎𝑛𝑑 𝐵𝛼 , then we define 



Theory of Relativity  MAT609 

Department of Mathematics  

Uttarakhand Open University Page 129 
 

cos 𝜃 =
𝑔𝛼𝛽𝐴𝛼𝐵𝛽

√(𝑔𝛼𝛽𝐴𝛼 𝐴𝛽)√(𝑔𝜇𝑣𝐵𝜇𝐵𝑣)

 

SOLVED EXAMPLE 

EXAMPLE1: Calculate the quantities 𝑔𝑖𝑗 for a 𝑉3 where fundamental 

form in co-ordinates (𝑢, 𝑣, 𝑤) is  

𝑎(𝑑𝑢)2 + 𝑏(𝑑𝑣)2 + 𝑐(𝑑𝑤)2 + 2𝑓𝑑𝑣𝑑𝑤 + 2𝑔𝑑𝑤𝑑𝑢 + 2ℎ𝑑𝑢𝑑𝑣 

SOLUTION: Comparing 𝑑𝑠2 = 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗  (𝑖, 𝑗 = 1,2,3) 

𝑑𝑠2 = 𝑔11(𝑑𝑥1)2 + 𝑔22(𝑑𝑥2)2 + 𝑔33(𝑑𝑥3)2 + 2𝑔12𝑑𝑥1𝑑𝑥2

+ 2𝑔23𝑑𝑥2𝑑𝑥3 + 2𝑔31𝑑𝑥3𝑑𝑥1  

𝑤𝑖𝑡ℎ 𝑑𝑠2 = 𝑎(𝑑𝑢)2 + 𝑏(𝑑𝑣)2 + 𝑐(𝑑𝑤)2 + 2𝑓𝑑𝑣𝑑𝑤 + 2𝑔𝑑𝑤𝑑𝑢

+ 2ℎ𝑑𝑢𝑑𝑣 

𝑤𝑒 𝑔𝑒𝑡 𝑥1 = 𝑢, 𝑥2 = 𝑣, 𝑥3 = 𝑤, 𝑔11 = 𝑎, 𝑔22 = 𝑏, 𝑔33 = 𝑐,

𝑔12 = 𝑔21 = ℎ, 𝑔23 = 𝑔32 = 𝑓, 𝑔13 = 𝑔31 = 𝑔  

|𝑔𝑖𝑗| = |

𝑔11  𝑔12  𝑔13

𝑔21  𝑔22  𝑔23

𝑔31  𝑔32  𝑔33

| = |

𝑎  ℎ  𝑔
ℎ  𝑏  𝑓
𝑔  𝑓  𝑐

| = 𝑔 

This completes the problem. 

Deduction: To find quantities 𝑔𝑖𝑗, 

𝑔𝑖𝑗 =
𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑔𝑖𝑗  

|𝑔𝑖𝑗|
=

𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑔𝑖𝑗  

𝑔
 

∴  𝑔11 =
𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑔11 

𝑔
=

𝑏𝑐 − 𝑓2  

𝑔
, 𝑔12 =

−(𝑐ℎ − 𝑔𝑓) 

𝑔
 

Similarly we calculate the other 𝑔𝑖𝑗 

Form the determinant 

|𝑔𝑖𝑗| = |

𝑔11  𝑔12  𝑔13

𝑔21  𝑔22   𝑔23

𝑔31  𝑔32  𝑔33

| =
1

𝑔
|

𝑏𝑐 − 𝑓2  𝑔𝑓 − 𝑐ℎ  𝑓ℎ − 𝑏𝑔

𝑔𝑓 − 𝑐ℎ  𝑎𝑐 − 𝑔2   𝑔ℎ − 𝑎𝑓

𝑓ℎ − 𝑏𝑔  𝑔ℎ − 𝑎𝑓  𝑎𝑏 − ℎ2

| 

EXAMPLE2: Prove that Kronecker delta is an invariant tensor. 
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SOLUTION: Consider two co-ordinate systems 𝑥𝑖 𝑎𝑛𝑑 𝑥′𝑖. By tensor law 

of transformation, 

𝛿′𝑗
𝑖 = 𝛿𝛽

𝛼 .
𝜕𝑥′𝑖

𝜕𝑥𝛼

𝜕𝑥𝛽

𝜕𝑥′𝑗
 

                                                         = (𝛿𝛽
𝛼.

𝜕𝑥′𝑖

𝜕𝑥𝛼
)

𝜕𝑥𝛽

𝜕𝑥′𝑗
= (

𝜕𝑥′𝑖

𝜕𝑥𝛽
) (

𝜕𝑥𝛽

𝜕𝑥′𝑗
) 

=
𝜕𝑥′𝑖

𝜕𝑥′𝑗
= 𝛿𝑗

𝑖 

∴ 𝛿′𝑗
𝑖 = 𝛿𝑗

𝑖, showing thereby 𝛿𝑗
𝑖 is an invariant tensor. 

EXAMPLE3: If 𝐴𝑖  𝑎𝑛𝑑 𝐵𝑗 are contravariant vectors and 𝐶𝑖𝑗𝐴𝑖𝐵𝑗 is an 

invariant. Prove that 𝐶𝑖𝑗 is a tensor of the second order. 

SOLUTION: Suppose 𝐴𝑖  𝑎𝑛𝑑 𝐵𝑗 are contravariant vectors. Also suppose 

that 𝐶𝑖𝑗𝐴𝑖𝐵𝑗 is an invariant so that 

                                             𝐶𝑖𝑗𝐴𝑖𝐵𝑗 = 𝐶′𝑖𝑗𝐴′𝑖𝐵′𝑗                                          … (1) 

To prove that 𝐶𝑖𝑗 is a tensor. 

Equation (1) ⇒ 

𝐶𝛼𝛽𝐴𝛼𝐵𝛽 = 𝐶′
𝑖𝑗𝐴′𝑖𝐵′𝑗 = 𝐶′

𝑖𝑗𝐴𝛼
𝜕𝑥′𝑖

𝜕𝑥𝛼
𝐵𝛽

𝜕𝑥′𝑗

𝜕𝑥𝛽
 

⇒                    𝐴𝛼𝐵𝛽 (𝐶𝛼𝛽 − 𝐶′
𝑖𝑗

𝜕𝑥′𝑖

𝜕𝑥𝛼

𝜕𝑥′𝑗

𝜕𝑥𝛽
) = 0. 𝐴𝑙𝑠𝑜𝐴𝛼 , 𝐵𝛽 ≠ 0 

⇒                                         𝐶𝛼𝛽 = 𝐶′
𝑖𝑗

𝜕𝑥′𝑖

𝜕𝑥𝛼

𝜕𝑥′𝑗

𝜕𝑥𝛽
 

⇒  𝐶𝑖𝑗   is a second rank covariant tensor. 

EXAMPLE4: Transform 𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 in polar and 

cylindrical co-ordinates. 

SOLUTION: Let 𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2. Comparing this with   

𝑑𝑠2 = 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗  (𝑖, 𝑗 = 1,2,3) 
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We obtain 𝑔11 = 𝑔22 = 𝑔33 = 1 𝑎𝑛𝑑 𝑔𝑖𝑗 = 0𝑓𝑜𝑟 𝑖 ≠ 𝑗 

                                         𝑔′
𝑖𝑗

= 𝑔𝑎𝑏

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
 

                                                 = ∑ 𝑔𝑎𝑎

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑎

𝜕𝑥′𝑗

3

𝑎=1

  𝑓𝑜𝑟 𝑔𝑎𝑏 = 0 𝑠. 𝑡. 𝑎 ≠ 𝑏   

                                               = ∑
𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑎

𝜕𝑥′𝑗

3

𝑎=1

  𝑓𝑜𝑟 𝑔𝑎𝑎 = 1 ∀𝑎 

∴                                    𝑔′
𝑖𝑗

= ∑
𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑎

𝜕𝑥′𝑗

3

𝑎=1

 

1. To determine polar form of the given line element. 

Polar co-ordinates are 

𝑥 = 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 

𝑦 = 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 

𝑧 = 𝑟𝑐𝑜𝑠𝜃 

𝑠𝑒𝑡 𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧, 𝑥′1 = 𝑟, 𝑥′2 = 𝜃, 𝑥′3 = 𝜙 

From equation (1) 

                                  𝑔′
11

= ∑
𝜕𝑥𝑎

𝜕𝑥′1

𝜕𝑥𝑎

𝜕𝑥′1

3

𝑎=1

 

                                            =
𝜕𝑥1

𝜕𝑥′1

𝜕𝑥1

𝜕𝑥′1 +
𝜕𝑥2

𝜕𝑥′1

𝜕𝑥2

𝜕𝑥′1 +
𝜕𝑥3

𝜕𝑥′1

𝜕𝑥3

𝜕𝑥′1 

                                           = (
𝜕𝑥

𝜕𝑟
)

2

+ (
𝜕𝑦

𝜕𝑟
)

2

+ (
𝜕𝑧

𝜕𝑟
)

2

 

                                           = (𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙)2 + (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)2 + (𝑐𝑜𝑠𝜃)2 

                                           = 1 

From equation (1) 

                         𝑔′
22

= ∑
𝜕𝑥𝑎

𝜕𝑥′2

𝜕𝑥𝑎

𝜕𝑥′2

3

𝑎=1

 

                                  = ∑ (
𝜕𝑥𝑎

𝜕𝑥′2)
23

𝑎=1

 

                                  = (
𝜕𝑥

𝜕𝜃
)

2

+ (
𝜕𝑦

𝜕𝜃
)

2

+ (
𝜕𝑧

𝜕𝜃
)

2

 

                                               = (𝑟𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙)2 + (𝑟𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)2 + (−𝑟𝑠𝑖𝑛𝜃)2 
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                                 = 𝑟2 

From equation (1) 

                         𝑔′
33

= ∑
𝜕𝑥𝑎

𝜕𝑥′3

𝜕𝑥𝑎

𝜕𝑥′3

3

𝑎=1

 

                                  = ∑ (
𝜕𝑥𝑎

𝜕𝑥′3)
23

𝑎=1

 

                                  = (
𝜕𝑥

𝜕𝜙
)

2

+ (
𝜕𝑦

𝜕𝜙
)

2

+ (
𝜕𝑧

𝜕𝜙
)

2

 

                                               = (−𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)2 + (𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙)2 + (0)2 

                                 = 𝑟2𝑠𝑖𝑛2𝜃 

From equation (1) 

                           𝑔′
12

= ∑
𝜕𝑥𝑎

𝜕𝑥′1

𝜕𝑥𝑎

𝜕𝑥′2

3

𝑎=1

 

                                    =
𝜕𝑥

𝜕𝑟

𝜕𝑥

𝜕𝜃
+

𝜕𝑦

𝜕𝑟

𝜕𝑦

𝜕𝜃
+

𝜕𝑧

𝜕𝑟

𝜕𝑧

𝜕𝜃
 

                           = (𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙)(𝑟𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙) + (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙) 

                  (𝑟𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙) + (𝑐𝑜𝑠𝜃)(−𝑟𝑠𝑖𝑛𝜃) 

                                     = 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙[𝑐𝑜𝑠2𝜙 + 𝑠𝑖𝑛2𝜙 − 1] = 0 

Similarly   𝑔′
23

= 0, 𝑔′
31

= 0. 

Hence, 𝑔′
𝑎𝑏

= 0 𝑓𝑜𝑟 𝑎 ≠ 𝑏. 

                        𝑑𝑠2 = 𝑔′
𝑎𝑏

𝑑𝑥′𝑎𝑑𝑥′𝑏 = ∑ 𝑔′𝑎𝑎

3

𝑎=1

(𝑑𝑥′𝑎)2 

                      = 𝑔′11(𝑑𝑥′1)2 + 𝑔′22(𝑑𝑥′2)2 + 𝑔′33(𝑑𝑥′3)2 

                        𝑑𝑠2 = dr2 + r2dθ2 + r2sin2θdϕ2 

2. To determine cylindrical form. 

Cylindrical co-ordinates are  

𝑥 = 𝑟𝑐𝑜𝑠𝜃 

𝑦 = 𝑟𝑠𝑖𝑛𝜃 

𝑧 = 𝑧 

𝑠𝑒𝑡 𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧, 𝑥′1 = 𝑟, 𝑥′2 = 𝜃, 𝑥′3 = 𝑧 

From equation (1) 

                                  𝑔′
11

= ∑
𝜕𝑥𝑎

𝜕𝑥′1

𝜕𝑥𝑎

𝜕𝑥′1

3

𝑎=1
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                                           = ∑ (
𝜕𝑥𝑎

𝜕𝑥′3)
23

𝑎=1

 

                                           = (
𝜕𝑥

𝜕𝑟
)

2

+ (
𝜕𝑦

𝜕𝑟
)

2

+ (
𝜕𝑧

𝜕𝑟
)

2

 

                                           = (𝑐𝑜𝑠𝜃)2 + (𝑠𝑖𝑛𝜃)2 + (0)2 

                                           = 1 

 

From equation (1) 

                         𝑔′
22

= ∑
𝜕𝑥𝑎

𝜕𝑥′2

𝜕𝑥𝑎

𝜕𝑥′2

3

𝑎=1

 

                                  = ∑ (
𝜕𝑥𝑎

𝜕𝑥′2)
23

𝑎=1

 

                                  = (
𝜕𝑥

𝜕𝜃
)

2

+ (
𝜕𝑦

𝜕𝜃
)

2

+ (
𝜕𝑧

𝜕𝜃
)

2

 

                                               = (−𝑟𝑠𝑖𝑛𝜃)2 + (𝑟𝑐𝑜𝑠𝜃)2 + (0)2 

                                 = 𝑟2 

From equation (1) 

                         𝑔′
33

= ∑
𝜕𝑥𝑎

𝜕𝑥′3

𝜕𝑥𝑎

𝜕𝑥′3

3

𝑎=1

 

                                  = ∑ (
𝜕𝑥𝑎

𝜕𝑥′3)
23

𝑎=1

 

                                  = (
𝜕𝑥

𝜕𝑧
)

2

+ (
𝜕𝑦

𝜕𝑧
)

2

+ (
𝜕𝑧

𝜕𝑧
)

2

 

                                               = (0)2 + (0)2 + (1)2 = 1 

From equation (1) 

                           𝑔′
12

= ∑
𝜕𝑥𝑎

𝜕𝑥′1

𝜕𝑥𝑎

𝜕𝑥′2

3

𝑎=1

 

                                    =
𝜕𝑥

𝜕𝑟

𝜕𝑥

𝜕𝜃
+

𝜕𝑦

𝜕𝑟

𝜕𝑦

𝜕𝜃
+

𝜕𝑧

𝜕𝑟

𝜕𝑧

𝜕𝜃
 

                           = 𝑐𝑜𝑠𝜃(−𝑟𝑠𝑖𝑛𝜃) + 𝑠𝑖𝑛𝜃(𝑟𝑐𝑜𝑠𝜃) + 0 = 0 

Similarly   𝑔′
23

= 0, 𝑔′
31

= 0. 

Hence, 𝑔′
𝑎𝑏

= 0 𝑓𝑜𝑟 𝑎 ≠ 𝑏. 
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                        𝑑𝑠2 = 𝑔′
𝑎𝑏

𝑑𝑥′𝑎𝑑𝑥′𝑏 = ∑ 𝑔′𝑎𝑎

3

𝑎=1

(𝑑𝑥′𝑎)2 

                      = 𝑔′11(𝑑𝑥′1)2 + 𝑔′22(𝑑𝑥′2)2 + 𝑔′33(𝑑𝑥′3)2 

                        𝑑𝑠2 = dr2 + r2dθ2 + dz2 

SELF CHECK QUESTIONS 

1. Tensor equations are invariant under. 

a) Energy equations 

b) Velocity transformation 

c) Momentum transformation 

d) Co-ordinate transformation 

2. What is the Riemann curvature tensor? 

3. What is the covariant derivative? 

4. How do the tools of differential geometry help describe spacetime 

in general relativity? 

7.16 SUMMARY:-  

In this unit, we have studied various fundamental concepts related to 

tensors and their operations. A tensor is a mathematical object that 

generalizes scalars, vectors, and matrices, and is used to represent physical 

quantities in multiple dimensions. We examined symmetric tensors, which 

remain unchanged when their indices are swapped and anti-symmetric 

tensors, which change sign when their indices are swapped. The addition 

of tensors involves combining tensors element-wise when they have the 

same rank, and the inner product of two vectors is a scalar product that 

measures the projection of one vector onto another. Multiplication of 

tensors includes various operations like contraction, where repeated 

indices are summed over, and the reciprocal symmetric tensor, which is a 

symmetric tensor whose inverse follows specific properties. We also 

studied relative tensors, which change with coordinate transformations, 

and the Riemannian metric, which defines distances in curved spacetime. 

Associate tensors are related through operations like contraction or 

multiplication, while the magnitude of a vector is computed using the 

metric, and the angle between two vectors is determined by the cosine of 

their inner product divided by their magnitudes. These concepts form the 

basis for analyzing geometrical and physical problems in curved spaces 

and spacetime. 

7.17 GLOSSARY:-  
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 Tensor: A mathematical object that generalizes scalars, vectors, 

and matrices, capable of representing multi-dimensional data and 

transforming according to specific rules under coordinate changes. 

 Symmetric Tensor: A tensor that remains unchanged when its 

indices are swapped, i.e., 𝑇𝜇𝑣 = 𝑇𝑣𝜇 . 

 Anti-symmetric Tensor: A tensor that changes sign when its 

indices are swapped, i.e., 𝑇𝜇𝑣 = 𝑇𝑣𝜇. 

 Addition of Tensors: The operation where two tensors of the 

same rank and dimension are added element-wise, resulting in a 

new tensor where each component is the sum of the corresponding 

components of the two tensors. 

 Inner Product of Two Vectors: The operation that combines two 

vectors to produce a scalar, defined as 𝐴𝜇𝐵𝜇, where 𝐴𝜇 and 𝐵𝜇 are 

the components of the vectors. 

 Multiplication of Tensors: The operation of combining tensors 

through different methods, such as the tensor product or 

contraction, to form a new tensor. 

 Contraction: The operation of summing over repeated indices in a 

tensor, which reduces its rank by 2 and results in a scalar or lower-

rank tensor. 

 Reciprocal Symmetric Tensor: A symmetric tensor whose 

inverse also exhibits symmetry, meaning the inverse tensor 

maintains the property 𝑇𝜇𝑣 = 𝑇𝑣𝜇 . 

 Relative Tensor: A tensor whose components transform according 

to specific rules when the reference frame or coordinate system is 

changed. 

 Riemannian Metric: A mathematical tool in differential geometry 

that defines the geometry of a curved space by providing a way to 

measure distances between points, represented by the metric tensor 

𝑔 𝜇𝑣. 

 Associate Tensors: Tensors that are related through operations 

such as contraction or multiplication, leading to new tensors 

derived from the original ones. 

 Magnitude of a Vector: The length or norm of a vector, 

calculated as  

 |𝑉| = √𝑉𝜇𝑉𝜇 , where the components of the vector are contracted 

with the metric tensor. 
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 Angle Between Two Vectors: The angle between two vectors A 

and  

 B, defined by 𝑐𝑜𝑠(𝜃) =
𝐴𝜇𝐵𝜇

|𝐴||𝐵|
, using the inner product and 

magnitudes of the vectors. 

 Geodesic: The shortest path between two points in a curved space, 

representing the trajectory of a free-falling particle in general 

relativity. 

 Christoffel Symbols: Connection coefficients that describe how 

vectors change during parallel transport in curved spaces, used in 

the calculation of covariant derivatives. 

 Covariant Derivative: An extension of the partial derivative to 

curved spaces, which takes into account the curvature of the 

manifold and is used to differentiate tensors. 

 Riemann Curvature Tensor: A tensor that describes how 

spacetime is curved due to mass and energy, and how vectors 

change as they are parallel transported around a closed loop. 

 Parallel Transport: The process of moving a vector along a curve 

while keeping it parallel according to the connection in a curved 

space. 

 Metric Compatibility: A property of a connection in which the 

covariant derivative of the metric tensor is zero, ensuring the 

preservation of distances and angles under parallel transport. 

 Conformal Transformation: A transformation that preserves 

angles but not necessarily distances, often used in the study of 

scaling and geometry in curved spaces. 

 

7.18 REFERENCES:-  

 Tevian Dray(2023), Differential Forms and the Geometry of 

General Relativity , CRC Press. 

 Iva Stavrov (2020),Curvature of Space and Time, with an 

Introduction to Geometric Analysis, American Mathematical 

Society. 

7.19 SUGGESTED READING:-  

 Satya Prakash and K.P. Gupta (Nineteenth Edition, 2019), 

Relativistic Mechanics. 
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 Dr. J.K. Goyal and Dr. K.P. Gupta (Twenty Eight Edition, 2018), 

Theory of Relativity. 

7.20 TERMINAL QUESTIONS:- 

(TQ-1)  Show that the open product of two vectors is a tensor of rank 2. 

(TQ-2)  Show that Kronecker delta is a mixed tensor of rank two. 

(TQ-3)  Explain what is meant by covariant and mixed tensor. 

(TQ-4)  Show that the contraction of two suffixes in a tensor 

reduces its rank by two.  

(TQ-5)  Find the components of a vector in polar co-ordinates, whose 

components in Cartesian co-ordinates are �̇�, �̇� 𝑎𝑛𝑑 �̈�, �̈�.   

(TQ-6)  Show that √𝑔𝑑𝑥1𝑑𝑥2 … 𝑑𝑥𝑛 is an invariant. 

(TQ-7)   If 𝐵𝑣𝜎 is any arbitrary covariant tensor, and 𝐴(𝜇, 𝑣)𝐵𝑣𝜎 = 𝐶𝜇𝜎, 

where 𝐶𝜇𝜎 is a tensor, then show that 𝐴(𝜇, 𝑣) is a mixed tensor. 

 

7.21 ANSWERS:- 

SELF CHECK ANSWERS  

1. d) 

2. The Riemann curvature tensor measures the intrinsic curvature of a 

manifold, describing how vectors change when parallel transported 

around a closed loop. 

3. The covariant derivative is a generalization of the partial derivative 

that accounts for curvature when differentiating tensors in curved 

spaces. 

4. The tools of differential geometry, such as tensors and covariant 

derivatives, provide the mathematical framework for describing the 

curvature and geometry of spacetime in general relativity. 

 

 

TERMINAL ANSWERS  

(TQ-5) (i) Polar form of �̇�, �̇� are �̇�, θ̇ 

 (ii) Polar form of �̈�, �̈� are �̈� + 𝑟�̇�2 𝑎𝑛𝑑 �̈� +
2�̇��̇�

𝑟
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UNIT 8:-Geodesic Equations and Their 

Applications  

CONTENTS: 
8.1      Introduction 

8.2      Objectives 

8.3      Christoffel Symbols 

8.4      Geodesic 

8.5      Covariant Differentiation of Tensor 

8.6      Gradient of a Scalar 

8.7      Derived Vector Projection 

8.8      Tendency of Vector 

8.9      Curl of a vector 

8.10     Divergence of a Vector 

8.11     Parallel Displacement of Vectors 

8.12     Principal Normal 

8.13     Geodesic Co-ordinates 

8.14     Natural Co-ordinates  

8.15     Summary 

8.16     Glossary 

8.17     References 

8.18     Suggested Reading 

8.19     Terminal questions 

8.20     Answers  

 

8.1 INTRODUCTION:-  

Geodesic equations form a fundamental part of differential geometry and 

general relativity, describing the path that a particle or object follows 

when moving solely under the influence of spacetime curvature, without 

any external forces. In simple terms, geodesics represent the "straightest 

possible" lines in curved space or spacetime, generalizing the idea of a 

straight line in Euclidean geometry. These equations are derived from the 

principle of extremal action, typically minimizing the proper time or 

distance between two events. Mathematically, geodesics are expressed 

using second-order differential equations involving Christoffel symbols, 

which encode information about the curvature of the space. Applications 
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of geodesic equations are vast and include predicting the motion of planets 

and light in gravitational fields, analyzing satellite orbits, understanding 

black hole dynamics, and modeling the structure of the universe in 

cosmology. 

8.2 OBJECTIVES:-  

After studying this unit, the learner’s will be able to  

 To explain Christoffel symbols. 

 To understand differential equation of geodesic. 

 To solve the  transformation law for Christoffel symbols. 

 To discuss Principal normal, Geodesic co-ordinates and Natural 

co-ordinates. 

8.3 CHRISTOFFEL SYMBOLS:-  

We define 

Γ𝜇𝑣,𝜎 =
1

2
(

𝜕𝑔𝑣𝜎

𝜕𝑥𝜇
+

𝜕𝑔𝜇𝜎

𝜕𝑥𝑣
−

𝜕𝑔𝜇𝑣

𝜕𝑥𝜎
) 

Γ𝜇𝑣
𝜎 = 𝑔𝜎𝛽Γ𝜇𝑣,𝛽 

The first one Γ𝜇𝑣,𝜎  is known as the Christoffel symbol of the first kind, 

whiles the second one,  Γ𝜇𝑣
𝜎  is known as the Christoffel symbol or 

Christoffel's bracket of the second kind. 

 

Note: 

1. Γ𝜇𝑣,𝜎 = Γ𝑣𝜇,𝜎  

This follows from the fact 𝑔𝜇𝑣 is symmetric tensor. 

2. Γ𝜇𝑣
𝜎 = Γ𝑣𝜇

𝜎  

For Γ𝜇𝑣
𝜎 = 𝑔𝜎𝛽Γ𝜇𝑣,𝛽 = 𝑔𝜎𝛽Γ𝑣𝜇,𝛽 = Γ𝑣𝜇

𝜎  

3. The following notations are used by some authors: 

Γ𝜇𝑣,𝜎 = [𝜇𝑣, 𝜎] 

{
𝜎

𝜇𝑣} = Γ𝜇𝑣
𝜎  

4. 𝑔𝑘𝑝Γ𝑖𝑗
𝑘 = Γ𝑖𝑗,𝑝 

By definition 

Γ𝑖𝑗
𝑘 = 𝑔𝑘𝑝Γ𝑖𝑗,𝑝 
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∴                                 𝑔𝑘𝑟Γ𝑖𝑗
𝑘 = 𝑔𝑘𝑟𝑔𝑘𝑝Γ𝑖𝑗,𝑝 = 𝛿𝑟

𝑝
Γ𝑖𝑗,𝑝  

𝑜𝑟                                      𝑔𝑘𝑟Γ𝑖𝑗
𝑘 = Γ𝑖𝑗,𝑟 

⇒                                       𝑔𝑘𝑝Γ𝑖𝑗
𝑘 = Γ𝑖𝑗,𝑝  

Theorem:1. To prove that 

𝑎) Γ𝑖𝑗,𝑘 + Γ𝑗𝑘,𝑖 =
𝜕𝑔𝑖𝑘

𝜕𝑥𝑗
  

  𝑜𝑟   
𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
−  Γ𝑗𝑘,𝑖 − Γ𝑖𝑘,𝑗 = 0 

𝑏) Γ𝑖𝑗
𝑖 =

𝜕

𝜕𝑥𝑗
𝑙𝑜𝑔√(−𝑔) 

𝑐) Γ𝑖𝑗
𝑖 =

𝜕

𝜕𝑥𝑗
𝑙𝑜𝑔√𝑔 

𝑑) 
𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
= −𝑔𝑖𝑙Γ𝑙𝑘

𝑗
− 𝑔𝑙𝑗Γ𝑙𝑘

𝑖  

Proof: a) By definition 

Γ𝑖𝑗,𝑘 + Γ𝑗𝑘,𝑖 =
1

2
(

𝜕𝑔𝑗𝑘

𝜕𝑥𝑖
+

𝜕𝑔𝑖𝑘

𝜕𝑥𝑗
−

𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
) +

1

2
(

𝜕𝑔𝑘𝑖

𝜕𝑥𝑗
+

𝜕𝑔𝑗𝑖

𝜕𝑥𝑘
−

𝜕𝑔𝑗𝑘

𝜕𝑥𝑖
) 

                             =
𝜕𝑔𝑖𝑘

𝜕𝑥𝑗
 

b) & c) We know that 

                                    
𝜕𝑎

𝜕𝑥
= 𝐴𝑗

𝑖
𝜕𝑎𝑖

𝑗

𝜕𝑥
                             (in usual notation) 

In this case it becomes 

𝜕𝑔

𝜕𝑥𝑗
= (cofector of 𝑔𝑖𝑘)

𝜕𝑔𝑖𝑘

𝜕𝑥𝑗
 

= 𝑔𝑔𝑖𝑘

𝜕𝑔𝑖𝑘

𝜕𝑥𝑗
 ;  𝑔𝑖𝑘 =

cofector of 𝑔𝑖𝑘

𝑔
  

𝑜𝑟                               
1

𝑔
.

𝜕𝑔

𝜕𝑥𝑗
= 𝑔𝑖𝑘

𝜕𝑔𝑖𝑘

𝜕𝑥𝑗
= 𝑔𝑖𝑘[Γ𝑖𝑗,𝑘 + Γ𝑗𝑘,𝑖] 

= 𝑔𝑖𝑘Γ𝑖𝑗,𝑘 + 𝑔𝑖𝑘Γ𝑗𝑘,𝑖 
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                                                 =  Γ𝑖𝑗
𝑖 + Γ𝑗𝑘

𝑘 =  Γ𝑖𝑗
𝑖 +  Γ𝑗𝑖

𝑖 = 2 Γ𝑖𝑗
𝑖   

𝑜𝑟                            
1

2𝑔
.

𝜕𝑔

𝜕𝑥𝑗
= Γ𝑖𝑗

𝑖                                                                 … (1) 

𝐵𝑢𝑡                          
1

2𝑔
.

𝜕𝑔

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
𝑙𝑜𝑔√𝑔                                               … (2)  

𝐴𝑙𝑠𝑜                         
1

2𝑔
.

𝜕𝑔

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
𝑙𝑜𝑔√(−𝑔)                                        … (3)  

Equating equation (1) to (3), we get the result (b) i.e.  

Γ𝑖𝑗
𝑖 =

𝜕

𝜕𝑥𝑗
𝑙𝑜𝑔√(−𝑔) 

Equating equation (1) to (2), we get the result (c) i.e. 

Γ𝑖𝑗
𝑖 =

𝜕

𝜕𝑥𝑗
𝑙𝑜𝑔√𝑔 

d) We know that 

𝑔𝑖𝑗𝑔𝑗𝑘 = 𝛿𝑖
𝑘 = 1 𝑜𝑟 0. 

Differentiating it w.r.t.  𝑥𝑚, 

𝑔𝑗𝑘
𝜕𝑔𝑖𝑗

𝜕𝑥𝑚
+ 𝑔𝑖𝑗

𝜕𝑔𝑗𝑘

𝜕𝑥𝑚
= 0 

Multiplying it by 𝑔𝑙𝑖 and noting that 

𝑔𝑖𝑗𝑔𝑙𝑖 = 𝛿𝑗
𝑙 , 𝛿𝑗

𝑙
𝜕𝑔𝑗𝑘

𝜕𝑥𝑚
=

𝜕𝑔𝑙𝑘

𝜕𝑥𝑚
, 

We obtain 

𝑔𝑙𝑖𝑔𝑗𝑘
𝜕𝑔𝑖𝑗

𝜕𝑥𝑚
+

𝜕𝑔𝑙𝑘

𝜕𝑥𝑚
= 0  

𝑜𝑟                             
𝜕𝑔𝑙𝑘

𝜕𝑥𝑚
+ 𝑔𝑙𝑖𝑔𝑗𝑘[Γ𝑖𝑚,𝑗 + Γ𝑗𝑚,𝑖] = 0 

𝑜𝑟                                    
𝜕𝑔𝑙𝑘

𝜕𝑥𝑚
+ 𝑔𝑙𝑖Γ𝑖𝑚

𝑘 + 𝑔𝑗𝑘Γ𝑗𝑚
𝑙 = 0 
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𝑜𝑟                                
𝜕𝑔𝑙𝑘

𝜕𝑥𝑚
+ 𝑔𝑙ℎΓℎ𝑚

𝑘 + 𝑔ℎ𝑘Γℎ𝑚
𝑙 = 0 

In view of this, we have 

−
𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
= 𝑔𝑙𝑗Γ𝑙𝑘

𝑖 + 𝑔𝑖𝑙Γ𝑙𝑘
𝑗

 

8.4 GEODESIC:-  

It is a curve whose length stays constant for arbitrary displacements as 

long as the end points are held constant. 

That is to say, 

∫ 𝑑𝑠
𝐵

𝐴

 𝑖𝑠 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦. 

𝑜𝑟                                        𝛿 ∫ 𝑑𝑠
𝐵

𝐴

= 0 

Theorem:2. Differential equation of a geodesic: Determine the 

differential equations of a geodesic, which is defined as a path of 

extremum distance between any two points on it. 

                                                      or 

To use a variational concept in a given space to find the differential 

equations of a geodesic. 

Proof: A geodesic is an extremum-distance path that connects any two 

places on it. In other words, for a geodesic's differential equations, we 

obtain 

∫ 𝑑𝑠
𝐵

𝐴

 𝑖𝑠 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 i. e. 𝛿 ∫ 𝑑𝑠
𝐵

𝐴

= 0 

We have 𝑑𝑠2 = 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗 

Taking differential of both sides, 

2𝑑𝑠. 𝛿(𝑑𝑠) =
𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
𝛿𝑥𝑘. 𝑑𝑥𝑖𝑑𝑥𝑗 + 𝑔𝑖𝑗𝛿(𝑑𝑥𝑖)𝑑𝑥𝑗 + 𝑔𝑖𝑗𝑑𝑥𝑖𝛿(𝑑𝑥𝑗) 

Interchanging the dummy suffixes in the last term on R.H.S. 
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2𝑑𝑠. 𝛿(𝑑𝑠) =
𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
𝛿𝑥𝑘. 𝑑𝑥𝑖𝑑𝑥𝑗 + 2𝑔𝑖𝑗𝛿(𝑑𝑥𝑖)𝑑𝑥𝑗 

Dividing by 2𝑑𝑠 and then integrating 

∫ 𝛿(𝑑𝑠)
𝐵

𝐴

=
1

2
∫

𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
𝛿𝑥𝑘

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
𝑑𝑠

𝐵

𝐴

+ ∫ 𝑔𝑖𝑗

𝛿(𝑑𝑥𝑖)

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
𝑑𝑠

𝐵

𝐴

 

But the geodesic 𝛿 ∫ 𝑑𝑠
𝐵

𝐴
= 0 

∴            
1

2
∫

𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
𝛿𝑥𝑘

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
𝑑𝑠

𝐵

𝐴

+ ∫ 𝑔𝑖𝑗

𝛿(𝑑𝑥𝑖)

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
𝑑𝑠

𝐵

𝐴

= 0        … (1) 

But by integrating by parts 

∫
𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
𝛿𝑥𝑘

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
𝑑𝑠

𝐵

𝐴

= [𝑔𝑖𝑗𝛿𝑥𝑖.
𝑑𝑥𝑗

𝑑𝑠
]

𝐴

𝐵

− ∫
𝑑

𝑑𝑠
(𝑔𝑖𝑗

𝑑𝑥𝑗

𝑑𝑠
) 𝛿𝑥𝑖. 𝑑𝑠

𝐵

𝐴

 

                 = − ∫
𝑑

𝑑𝑠
(𝑔𝑖𝑗

𝑑𝑥𝑗

𝑑𝑠
) 𝛿𝑥𝑖. 𝑑𝑠

𝐵

𝐴

  

(since 𝛿𝑥𝑖 = 0 at both A and B) 

= − ∫
𝑑

𝑑𝑠
(𝑔𝑘𝑗

𝑑𝑥𝑗

𝑑𝑠
) 𝛿𝑥𝑘. 𝑑𝑠

𝐵

𝐴

 

= − ∫ [
𝜕𝑔𝑘𝑗

𝜕𝑥𝑖

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
+ 𝑔𝑘𝑗

𝑑2𝑥𝑗

𝑑𝑠2
] 𝛿𝑥𝑘. 𝑑𝑠

𝐵

𝐴

 

Putting this in equation (1), we get 

∫ [ 
1

2

𝜕𝑔𝑖𝑗

𝜕𝑥𝑘

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
−

𝜕𝑔𝑘𝑗

𝜕𝑥𝑖

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
− 𝑔𝑘𝑗

𝑑2𝑥𝑗

𝑑𝑠2
] 𝛿𝑥𝑘. 𝑑𝑠

𝐵

𝐴

= 0 

But 𝛿𝑥𝑘 is arbitrary and hence the integrand of the last integral vanishes. 

1

2

𝜕𝑔𝑖𝑗

𝜕𝑥𝑘

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
−

𝜕𝑔𝑘𝑗

𝜕𝑥𝑖

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
− 𝑔𝑘𝑗

𝑑2𝑥𝑗

𝑑𝑠2
= 0 

𝑜𝑟     𝑔𝑘𝑗

𝑑2𝑥𝑗

𝑑𝑠2
+

1

2

𝜕𝑔𝑘𝑗

𝜕𝑥𝑖

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
+

1

2

𝜕𝑔𝑘𝑗

𝜕𝑥𝑖

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
−

1

2

𝜕𝑔𝑖𝑗

𝜕𝑥𝑘

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0 

Interchanging the dummy suffixes 𝑖 𝑎𝑛𝑑 𝑗 in third term, we get 
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𝑔𝑘𝑗

𝑑2𝑥𝑗

𝑑𝑠2
+

1

2

𝜕𝑔𝑘𝑗

𝜕𝑥𝑖

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
+

1

2

𝜕𝑔𝑘𝑗

𝜕𝑥𝑖

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
−

1

2

𝜕𝑔𝑗𝑖

𝜕𝑥𝑘

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0 

𝑜𝑟                                 𝑔𝑘𝑝

𝑑2𝑥𝑝

𝑑𝑠2
+ Γ𝑖𝑗,𝑘

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0 

𝑜𝑟                                 𝑔𝑘𝑝

𝑑2𝑥𝑝

𝑑𝑠2
+ 𝑔𝑘𝑝Γ𝑖𝑗

𝑝 𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0 

𝑜𝑟                                   𝑔𝑘𝑝 [
𝑑2𝑥𝑝

𝑑𝑠2
+

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
Γ𝑖𝑗

𝑝] = 0 

But  𝑔𝑘𝑝  is arbitrary. Hence  

𝑑2𝑥𝑝

𝑑𝑠2
+

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
Γ𝑖𝑗

𝑝
= 0 

This is required differential equation of a geodesic. For 𝑝 = 1,2,3,4 this 

equation gives four equations to determine a geodesic. 

Null geodesic: A geodesic is referred to as null if there is no distance 

between any two of its points i.e. the distance between any two points on 

geodesic is zero. The characteristics of the null geodesics are 

𝑔𝑖𝑗

𝑑𝑥𝑖

𝑑𝜆

𝑑𝑥𝑗

𝑑𝜆
= 0  

𝑎𝑛𝑑                              
𝑑2𝑥𝛼

𝑑𝑠2
+ Γ𝑖𝑗

𝛼
𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0 

Theorem: 3. Geodesics for Euclidean space are straight lines that are 

referred to as rectangular coordinates. 

or 

Show that the geodesics in  𝑆𝑛 the Euclidean space of n dimensions are 

straight lines. 

Proof: We know that differential equation of geodesic are 

                                               
𝑑2𝑥𝛼

𝑑𝑠2
+ Γ𝛽𝛾

𝛼
𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0                                … (1) 

In case of Euclidean space, 𝑔𝑖𝑗 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∀ 𝑖 𝑎𝑛𝑑 𝑗  
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⇒                                                             Γ𝛽𝛾
𝛼 = 0 ∀ 𝛼, 𝛽, 𝛾 

From equation (1) 

𝑑2𝑥𝛼

𝑑𝑠2
+ 0 = 0 

Integrating the above equation, we get 

𝑑𝑥𝛼

𝑑𝑠
= 𝑎𝛼 

Again integrating, we get 

                                                              𝑥𝛼 = 𝑎𝛼𝑠 + 𝑏𝛼                                   … (2) 

Where 𝑎𝛼  and 𝑏𝛼 are integration constants. 

Clearly, equation (2) of the type 𝑦 = 𝑚𝑥 + 𝑐 

Hence, equation (2) represents straight line. But equation (2) is the 

solution of equation (1). Hence geodesic are straight line in case of 

Euclidian space. 

Theorem: 4. To determine the distance formula in 𝑆𝑛. 

Proof: We know that geodesic is straight line in 𝑆𝑛. The Euclidian space 

of 𝑛 dimension whose equation is 

                                                𝑦𝑖 = 𝑎𝑖𝑠 + 𝑏𝑖                                                    … (1) 

Where 𝑏𝑖 is constant of integration. 

Equation (1) shows that 𝑎𝑖 are components of unit tangent vector and so 

                                               1 = 𝑎2 = 𝑎𝑖𝑎𝑗 = ∑(𝑎𝑖)
2

𝑛

𝑖=1

                             … (2) 

Let 𝑃(𝑦1
𝑖 ) 𝑎𝑛𝑑 𝑄(𝑦2

𝑖 ) be two points on the line (1) and 𝑙 be the length of 

the line joining 𝑃 𝑡𝑜 𝑄. 

Then equation (1) 

⇒                                        𝑦1
𝑖 = 𝑎𝑖𝑠1 + 𝑏𝑖 , 𝑦2

𝑖 = 𝑎𝑖𝑠2 + 𝑏𝑖 

⇒                               𝑦2
𝑖 − 𝑦1

𝑖 = 𝑎𝑖(𝑠2 − 𝑠1) = 𝑎𝑖𝑙 
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⇒                             ∑(𝑎𝑖𝑙)2

𝑛

𝑖=1

= ∑(𝑦2
𝑖 − 𝑦1

𝑖 )
2

𝑛

𝑖=1

 

Using equation (2), 

𝑙2 = ∑(𝑦2
𝑖 − 𝑦1

𝑖 )
2

𝑛

𝑖=1

  

𝑜𝑟                                             𝑙 = {∑(𝑦2
𝑖 − 𝑦1

𝑖 )
2

𝑛

𝑖=1

}

1/2

 

This is the required distance formula. 

Theorem: 5. To obtain geodesic equations from Lagrangian equation. 

Proof: We know that 

                                            𝑑𝑠2 = 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗  

(
𝑑𝑠

𝑑𝑡
)

2

= 𝑔𝑖𝑗

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 𝑔𝑖𝑗�̇�𝑖�̇�𝑗 

Where dot denote differentiation with respect to 𝑡. 

𝑑𝑠 = √[𝑔𝑖𝑗�̇�𝑖�̇�𝑗]𝑑𝑡 

Let 𝐼 = √[𝑔𝑖𝑗�̇�𝑖�̇�𝑗] , we get 

𝑑𝑠 = 𝐼𝑑𝑡     𝑜𝑟        
𝑑𝑠

𝑑𝑡
= �̇� = 𝐼 = √[𝑔𝑖𝑗�̇�𝑖�̇�𝑗]   

∴                                             
𝜕𝐼

𝜕𝑥𝑘
=

1

2�̇�

𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
�̇�𝑖�̇�𝑗  

𝑎𝑛𝑑                                        
𝜕𝐼

𝜕�̇�𝑘
= 2

1

2�̇�
𝑔𝑖𝑘�̇�𝑖 

⇒                                  
𝜕

𝜕𝑡
(

𝜕𝐼

𝜕�̇�𝑘
) = −

1

�̇�2
�̈�𝑔𝑖𝑘�̇�𝑖 +

1

�̇�

𝜕𝑔𝑖𝑘

𝜕𝑥𝑗
�̇�𝑗�̇�𝑖 +

1

�̇�
𝑔𝑖𝑘�̈�𝑖 

For a geodesic, ∫ 𝑑𝑠
𝐵

𝐴

 is stationary. i. e. ∫ 𝐼𝑑𝑡
𝐵

𝐴

 is stationary. 
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This is obtaining by putting, 

 
𝜕

𝜕𝑡
(

𝜕𝐼

𝜕�̇�𝑘
) −

𝜕𝐼

𝜕𝑥𝑘
= 0 

Which are known as Euler- Lagrange equations. 

−
1

�̇�2
�̈�𝑔𝑖𝑘�̇�𝑖 +

1

�̇�

𝜕𝑔𝑖𝑘

𝜕𝑥𝑗
�̇�𝑗�̇�𝑖 +

1

�̇�
𝑔𝑖𝑘�̈�𝑖 −

1

2�̇�

𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
�̇�𝑖�̇�𝑗 = 0 

𝑜𝑟         −
1

�̇�2
�̈�𝑔𝑖𝑘�̇�𝑖 +

1

�̇�

𝜕𝑔𝑖𝑘

𝜕𝑥𝑗
�̇�𝑗�̇�𝑖 +

1

�̇�
𝑔𝑝𝑘�̈�𝑝 −

1

2�̇�

𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
�̇�𝑖�̇�𝑗 = 0 

𝑜𝑟                                      𝑔𝑝𝑘�̈�𝑝 + Γ𝑖𝑗,𝑘�̇�𝑖�̇�𝑗 = 0  

𝑜𝑟                        𝑔𝑝𝑘𝑔𝑘𝑟�̈�𝑝 + 𝑔𝑘𝑟Γ𝑖𝑗,𝑘�̇�𝑖�̇�𝑗 = 0 

𝑜𝑟                                          𝛿𝑝
𝑟�̈�𝑝 + Γ𝑖𝑗

𝑟 �̇�𝑖�̇�𝑗 = 0 

�̈�𝑟 + Γ𝑖𝑗
𝑟 �̇�𝑖�̇�𝑗 = 0 

𝑜𝑟                                   
𝑑2𝑥𝑟

𝑑𝑠2
+ Γ𝑖𝑗

𝑟
𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0 

For 𝑟 = 1,2,3,4 this gives four equations for determining a geodesic. 

Theorem: 6. Transformation law for Christoffel symbols: Prove that 

Christoffel symbols are not tensors. 

Proof: ∵  𝑔𝑖𝑗  is a second rank covariant tensor 

𝑔′𝑖𝑗 = 𝑔𝑎𝑏

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
 

Differentiate with respect to 𝑥′𝑘, we get 

𝜕𝑔′
𝑖𝑗

𝜕 𝑥′𝑘 =
𝜕𝑔𝑎𝑏

𝜕 𝑥𝑐

𝜕𝑥𝑐

𝜕 𝑥′𝑘

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
+ 𝑔𝑎𝑏

𝜕2𝑥𝑎

𝜕𝑥′𝑖𝜕 𝑥′𝑘

𝜕𝑥𝑏

𝜕𝑥′𝑗
 

                                                                                  +𝑔𝑎𝑏

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕2𝑥𝑏

𝜕𝑥′𝑗𝜕 𝑥′𝑘
        … (1) 

Similarly differentiation of 𝑔′𝑗𝑘     

= 𝑔𝑏𝑐

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕𝑥𝑐

𝜕𝑥′𝑘
 with respect to 𝑥′𝑖, we get 
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𝜕𝑔′
𝑗𝑘

𝜕 𝑥′𝑖
=

𝜕𝑔𝑏𝑐

𝜕 𝑥𝑎

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕𝑥𝑐

𝜕 𝑥′𝑘 + 𝑔𝑏𝑐

𝜕2𝑥𝑏

𝜕𝑥′𝑗𝜕𝑥′𝑖

𝜕𝑥𝑐

𝜕𝑥′𝑘 

                                                                                  +𝑔𝑏𝑐

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕2𝑥𝑐

𝜕𝑥′𝑖𝜕 𝑥′𝑘
        … (2) 

Similarly differentiation of 𝑔′𝑘𝑖     

= 𝑔𝑐𝑎

𝜕𝑥𝑐

𝜕𝑥′𝑘

𝜕𝑥𝑎

𝜕𝑥′𝑖
 with respect to 𝑥′𝑗, we get 

𝜕𝑔′
𝑘𝑖

𝜕 𝑥′𝑗
=

𝜕𝑔𝑐𝑎

𝜕 𝑥𝑏

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕𝑥𝑐

𝜕 𝑥′𝑘

𝜕𝑥𝑎

𝜕𝑥′𝑖
+ 𝑔𝑐𝑎

𝜕2𝑥𝑐

𝜕𝑥′𝑘𝜕𝑥′𝑗

𝜕𝑥𝑎

𝜕𝑥′𝑖
 

                                                                                  +𝑔𝑐𝑎

𝜕𝑥𝑐

𝜕𝑥′𝑘

𝜕2𝑥𝑎

𝜕𝑥′𝑖𝜕 𝑥′𝑗
        … (3) 

Equation(1) +  equation (2) –  equation(3), we get 

𝜕𝑔′
𝑖𝑗

𝜕 𝑥′𝑘 +
𝜕𝑔′

𝑗𝑘

𝜕 𝑥′𝑖
−

𝜕𝑔′
𝑘𝑖

𝜕 𝑥′𝑗
=

𝜕𝑔𝑎𝑏

𝜕 𝑥𝑐

𝜕𝑥𝑐

𝜕 𝑥′𝑘

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
+ 𝑔𝑎𝑏

𝜕2𝑥𝑎

𝜕𝑥′𝑖𝜕 𝑥′𝑘

𝜕𝑥𝑏

𝜕𝑥′𝑗
 

+𝑔𝑎𝑏

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕2𝑥𝑏

𝜕𝑥′𝑗𝜕 𝑥′𝑘
+

𝜕𝑔𝑏𝑐

𝜕 𝑥𝑎

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕𝑥𝑐

𝜕 𝑥′𝑘 + 𝑔𝑏𝑐

𝜕2𝑥𝑏

𝜕𝑥′𝑗𝜕𝑥′𝑖

𝜕𝑥𝑐

𝜕𝑥′𝑘  

+𝑔𝑏𝑐

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕2𝑥𝑐

𝜕𝑥′𝑖𝜕 𝑥′𝑘
−

𝜕𝑔𝑐𝑎

𝜕 𝑥𝑏

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕𝑥𝑐

𝜕 𝑥′𝑘

𝜕𝑥𝑎

𝜕𝑥′𝑖
− 𝑔𝑐𝑎

𝜕2𝑥𝑐

𝜕𝑥′𝑘𝜕𝑥′𝑗

𝜕𝑥𝑎

𝜕𝑥′𝑖

− 𝑔𝑐𝑎

𝜕𝑥𝑐

𝜕𝑥′𝑘

𝜕2𝑥𝑎

𝜕𝑥′𝑖𝜕 𝑥′𝑗
 

2Γ′𝑖𝑗,𝑘 = 2Γ𝑎𝑏,𝑐

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕𝑥𝑐

𝜕 𝑥′𝑘 + 2𝑔𝑎𝑏

𝜕2𝑥𝑎

𝜕𝑥′𝑖𝜕𝑥′𝑗

𝜕𝑥𝑏

𝜕 𝑥′𝑘  

𝑜𝑟               Γ′
𝑖𝑗,𝑘 = Γ𝑎𝑏,𝑐

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕𝑥𝑐

𝜕 𝑥′𝑘 + 𝑔𝑎𝑏

𝜕2𝑥𝑎

𝜕𝑥′𝑖𝜕𝑥′𝑗

𝜕𝑥𝑏

𝜕 𝑥′𝑘             … (4) 

Multiplying eq. (4) by 𝑔′𝑘𝑝  

𝑔′𝑘𝑝 = 𝑔𝛼𝛽
𝜕 𝑥′𝑘

𝜕 𝑥𝛼

𝜕 𝑥′𝑝

𝜕 𝑥𝛽
 

                                    𝑔′𝑘𝑝Γ′
𝑖𝑗,𝑘 = 𝑔𝛼𝛽Γ𝑎𝑏,𝑐

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕𝑥𝑐

𝜕 𝑥′𝑘

𝜕 𝑥′𝑘

𝜕 𝑥𝛼

𝜕 𝑥′𝑝

𝜕 𝑥𝛽
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+𝑔𝑎𝑏𝑔𝛼𝛽
𝜕2𝑥𝑎

𝜕𝑥′𝑖𝜕𝑥′𝑗

𝜕𝑥𝑏

𝜕 𝑥′𝑘

𝜕 𝑥′𝑘

𝜕 𝑥𝛼

𝜕 𝑥′𝑝

𝜕 𝑥𝛽
 

𝑜𝑟              Γ′
𝑖𝑗
𝑝

= 𝑔𝛼𝛽𝛿𝛼
𝑐Γ𝑎𝑏,𝑐

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕 𝑥′𝑝

𝜕 𝑥𝛽
+ 𝑔𝑎𝑏𝑔𝛼𝛽𝛿𝛼

𝑏
𝜕2𝑥𝑎

𝜕𝑥′𝑖𝜕𝑥′𝑗

𝜕 𝑥′𝑝

𝜕 𝑥𝛽
 

𝑜𝑟              Γ′
𝑖𝑗
𝑝

= [Γ𝑎𝑏
𝛽 𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
+

𝜕2𝑥𝛽

𝜕𝑥′𝑖𝜕𝑥′𝑗
]

𝜕 𝑥′𝑝

𝜕 𝑥𝛽
                                 … (5) 

𝑓𝑜𝑟 𝑔𝛼𝛽𝛿𝛼
𝑐 Γ𝑎𝑏,𝑐 = 𝑔𝛽𝑐Γ𝑎𝑏,𝑐 = Γ𝑎𝑏

𝛽
 𝑎𝑛𝑑 𝑔𝑎𝑏𝑔𝛼𝛽𝛿𝛼

𝑏 = 𝑔𝑎𝑏𝑔𝑏𝛽 = 𝛿𝑎
𝛽

  

𝑎𝑛𝑑                      𝛿𝑎
𝛽 𝜕2𝑥𝑎

𝜕𝑥′𝑖𝜕𝑥′𝑗
=

𝜕2𝑥𝛽

𝜕𝑥′𝑖𝜕𝑥′𝑗
 

Equation (5) is also expressible as 

                        Γ′
𝑖𝑗
𝑝

= [Γ𝑎𝑏
𝑐

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
+

𝜕2𝑥𝑐

𝜕𝑥′𝑖𝜕𝑥′𝑗
]

𝜕 𝑥′𝑝

𝜕 𝑥𝑐
                           … (6) 

𝑜𝑟                   Γ′
𝑖𝑗
𝑝

= Γ𝑎𝑏
𝑐

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕 𝑥′𝑝

𝜕 𝑥𝑐
+

𝜕2𝑥𝑐

𝜕𝑥′𝑖𝜕𝑥′𝑗

𝜕 𝑥′𝑝

𝜕 𝑥𝑐
                    … (7) 

Christoffel's bracket of the first kind is not tensor, according to equation 

(4). Christoffel's bracket of the second kind is not tensor, according to 

equation (7). 

It is evident from the work done that Christoffel's brackets are not tensor 

components. 

Remarks: 

1. From equation (6), we have 

Γ′
𝑖𝑗
𝑝 𝜕 𝑥𝑐

𝜕 𝑥′𝑝
= Γ𝑎𝑏

𝑐
𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
+

𝜕2𝑥𝑐

𝜕𝑥′𝑖𝜕𝑥′𝑗
 

This result is of important for further study. 

2. If the linear transformation of the type 

𝑥𝑖 = 𝑎𝑗
𝑖𝑥′𝑗 + 𝑏𝑖 

Is valid, then equation (4) and (7) becomes 

Γ′
𝑖𝑗,𝑘 = Γ′

𝑎𝑏,𝑐

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕 𝑥𝑐

𝜕 𝑥′𝑘 

Γ′
𝑖𝑗
𝑝

= Γ𝑎𝑏
𝑐

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕 𝑥′𝑝

𝜕 𝑥𝑐
 

Christoffel's brackets are tensors with respect to linear 

transformations, as demonstrated by these equations. 

 

3. The transformation laws for Christoffel's brackets are found in 

equations (4) and (7). 
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Theorem: 7. Covariant derivative of a covariant vector: Define covariant 

derivative of a covariant vector and show that it is a tensor of rank 2. 

Proof: Let 𝐴𝑖 be a covariant vector, then by tensor law of transformation 

𝐴′𝑖 = 𝐴𝑎

𝜕𝑥𝑎

𝜕𝑥′𝑖
 

Differentiation of it with respect to 𝑥′𝑗
, we get 

                         
𝜕𝐴′𝑖

𝜕𝑥′𝑗
=

𝜕𝐴𝑎

𝜕𝑥𝑏

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
+ 𝐴𝑎

𝜕2𝑥𝑎

𝜕𝑥′𝑖𝜕𝑥′𝑗
                                … (1) 

𝑏𝑢𝑡          Γ′
𝑖𝑗
𝑝 𝜕 𝑥𝑐

𝜕 𝑥′𝑝
= Γ𝑎𝑏

𝑐
𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
+

𝜕2𝑥𝑐

𝜕𝑥′𝑖𝜕𝑥′𝑗
 

Now the last equation becomes 

𝜕𝐴′𝑖

𝜕𝑥′𝑗
=

𝜕𝐴𝑎

𝜕𝑥𝑏

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
+ 𝐴𝑐 [Γ′

𝑖𝑗
𝑝 𝜕 𝑥𝑐

𝜕 𝑥′𝑝
− Γ𝑎𝑏

𝑐
𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
] 

                                  =
𝜕𝐴𝑎

𝜕𝑥𝑏

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
+ 𝐴′𝑝Γ′

𝑖𝑗
𝑝

− 𝐴𝑐Γ𝑎𝑏
𝑐

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
 

𝑜𝑟                       
𝜕𝐴′

𝑖

𝜕𝑥′𝑗
− 𝐴′

𝑝Γ′
𝑖𝑗
𝑝

= (
𝜕𝐴𝑎

𝜕𝑥𝑏
− 𝐴𝑐Γ𝑎𝑏

𝑐 )
𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
 

If we write 

𝐴𝑎,𝑏 =
𝜕𝐴𝑎

𝜕𝑥𝑏
− 𝐴𝑐Γ𝑎𝑏

𝑐   

Then the last equation becomes 

𝐴′𝑖,𝑗 = 𝐴𝑎,𝑏

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
 

This says that is a second rank covariant tensor and this tensor is defined 

as 𝐴𝑎,𝑏 covariant derivative of covariant vector 𝐴𝑎 W.r.t. 𝑥𝑏. 

Remark: If only linear transformation of the type 

                                                       𝑥𝑖 = 𝑎𝑗
𝑖𝑥′𝑗 + 𝑏𝑖                                         … (2) 

Is valid, then equation (1) becomes 

𝜕𝐴′𝑖

𝜕𝑥′𝑗
=

𝜕𝐴𝑎

𝜕𝑥𝑏

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
 

This demonstrates that, in relation to the linear transformation (2), the 

ordinary partial derivative of a covariant vector is a second rank covariant 

tensor. 

Theorem: 8. Define covariant derivative of a contravariant vector and 

show that it is a tensor. 
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Proof: Let 𝐴𝑖  be a contravariant vector, then by the tensor law of 

transformation 

𝐴𝑎 = 𝐴′𝑖
𝜕𝑥𝑎

𝜕𝑥′𝑖
 

Differentiate the above equation with respect to 𝑥𝑏 

𝜕𝐴𝑎

𝜕𝑥𝑏
=

𝜕𝐴′𝑖

𝜕𝑥′𝑗

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥′𝑗

𝜕𝑥𝑏
+ 𝐴′𝑖 𝜕2𝑥𝑎

𝜕𝑥′𝑖𝜕𝑥′𝑗

𝜕𝑥′𝑗

𝜕𝑥𝑏
… (1) 

𝑏𝑢𝑡          Γ′
𝑖𝑗
𝑝 𝜕 𝑥𝑐

𝜕 𝑥′𝑝
= Γ𝑎𝑏

𝑐
𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
+

𝜕2𝑥𝑐

𝜕𝑥′𝑖𝜕𝑥′𝑗
 

Now the last equation becomes 

𝜕𝐴𝑎

𝜕𝑥𝑏
=

𝜕𝐴′𝑖

𝜕𝑥′𝑗

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥′𝑗

𝜕𝑥𝑏
+ 𝐴′𝑖 𝜕𝑥′𝑗

𝜕𝑥𝑏
[Γ′

𝑖𝑗
𝑝 𝜕 𝑥𝑎

𝜕 𝑥′𝑝
− Γ𝑚𝑐

𝑎
𝜕𝑥𝑚

𝜕𝑥′𝑖

𝜕𝑥𝑐

𝜕𝑥′𝑗
] 

 

𝑜𝑟 
𝜕𝐴𝑎

𝜕𝑥𝑏
+ 𝐴′𝑖 𝜕𝑥′𝑗

𝜕𝑥𝑏

𝜕𝑥𝑚

𝜕𝑥′𝑖

𝜕𝑥𝑐

𝜕𝑥′𝑗
Γ𝑚𝑐

𝑎 =
𝜕𝐴′𝑖

𝜕𝑥′𝑗

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥′𝑗

𝜕𝑥𝑏
+ 𝐴′𝑝 𝜕𝑥′𝑗

𝜕𝑥𝑏

𝜕𝑥𝑎

𝜕𝑥′𝑖
Γ′

𝑝𝑗
𝑖

 

 

𝑜𝑟                         
𝜕𝐴𝑎

𝜕𝑥𝑏
+ 𝐴𝑚𝛿𝑏

𝑐Γ𝑚𝑐
𝑎 = [

𝜕𝐴′𝑖

𝜕𝑥′𝑗
+ 𝐴′𝑝Γ′

𝑝𝑗
𝑖 ]

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥′𝑗

𝜕𝑥𝑏
 

𝑜𝑟                             
𝜕𝐴𝑎

𝜕𝑥𝑏
+ 𝐴𝑚Γ𝑚𝑏

𝑎 = [
𝜕𝐴′𝑖

𝜕𝑥′𝑗
+ 𝐴′𝑝Γ′

𝑝𝑗
𝑖 ]

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥′𝑗

𝜕𝑥𝑏
 

If we write 

𝐴,𝑏
𝑎 =

𝜕𝐴𝑎

𝜕𝑥𝑏
+ 𝐴𝑚Γ𝑚𝑏

𝑎  

Then the last equation becomes 

𝐴,𝑏
𝑎 = 𝐴,𝑗

′𝑖
𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥′𝑗

𝜕𝑥𝑏
 

This proves that 𝐴,𝑏
𝑎  is a mixed tensor of rank two and this tensor is 

defined as covariant derivative of 𝐴𝑎  w.r.t. 𝑥𝑏 . Here covariant 

differentiation is denoted by subscript preceded by a comma. 

Remark: If the linear transformation of the type 

                                                       𝑥𝑖 = 𝑎𝑗
𝑖𝑥′𝑗 + 𝑏𝑖                                         … (2) 



Theory of Relativity  MAT609 

Department of Mathematics  

Uttarakhand Open University Page 152 
 

Is valid, then equation (1) becomes 

𝜕𝐴𝑎

𝜕𝑥𝑏
=

𝜕𝐴′𝑖

𝜕𝑥′𝑗

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥′𝑗

𝜕𝑥𝑏
 

In relation to the linear transformation (2), this demonstrates that the 

ordinary partial derivative of 𝐴𝑎 w.r.t. 𝑥𝑏  is a second rank tensor. 

 

Theorem: 9. Define covariant derivative of covariant tensor of second 

order and show that it is a covariant tensor of rank three. 

Proof: Let 𝐴𝑖𝑗 be a second rank covariant tensor, then by tensor law of 

transformation 

𝐴′𝑖𝑗 = 𝐴𝑎𝑏

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
 

Differentiation of it with respect to 𝑥′𝑘
, we get 

𝜕𝐴′
𝑖𝑗

𝜕𝑥′𝑘 =
𝜕𝐴𝑎𝑏

𝜕𝑥𝑐

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕𝑥𝑐

𝜕𝑥′𝑘 + 𝐴𝑎𝑏

𝜕2𝑥𝑎

𝜕𝑥′𝑖𝜕𝑥′𝑘

𝜕𝑥𝑏

𝜕𝑥′𝑗
 

+𝐴𝑎𝑏

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕2𝑥𝑏

𝜕𝑥′𝑗𝜕𝑥′𝑘
                    … (1) 

Now 

𝐴𝑎𝑏

𝜕2𝑥𝑎

𝜕𝑥′𝑖𝜕𝑥′𝑘

𝜕𝑥𝑏

𝜕𝑥′𝑗
= 𝐴𝑝𝑏

𝜕2𝑥𝑝

𝜕𝑥′𝑖𝜕𝑥′𝑘

𝜕𝑥𝑏

𝜕𝑥′𝑗
 

       = 𝐴𝑝𝑏

𝜕𝑥𝑏

𝜕𝑥′𝑗
[Γ′

𝑖𝑘
𝑟 𝜕 𝑥𝑝

𝜕 𝑥′𝑟
− Γ𝑎𝑐

𝑝 𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑐

𝜕𝑥′𝑗
] 

[𝑓𝑜𝑟 Γ′
𝑖𝑗
𝑝 𝜕𝑥𝑐

𝜕𝑥′𝑗
= Γ𝑎𝑏

𝑐
𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
+

𝜕2𝑥𝑐

𝜕𝑥′𝑖𝜕𝑥′𝑗
] 

                                   = 𝐴′𝑟𝑗Γ′
𝑖𝑘
𝑟 − 𝐴𝑝𝑏

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕𝑥𝑐

𝜕𝑥′𝑘 Γ𝑎𝑐
𝑝

                       … (2) 

𝑎𝑛𝑑 𝐴𝑎𝑏

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕2𝑥𝑏

𝜕𝑥′𝑗𝜕𝑥′𝑘
= 𝐴𝑎𝑝

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕2𝑥𝑝

𝜕𝑥′𝑖𝜕𝑥′𝑘
 

                                             = 𝐴𝑝𝑏

𝜕𝑥𝑎

𝜕𝑥′𝑖
[Γ′

𝑗𝑘
𝑟 𝜕 𝑥𝑝

𝜕 𝑥′𝑟
− Γ𝑏𝑐

𝑝 𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕𝑥𝑐

𝜕𝑥′𝑘
] 
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                                             = 𝐴′𝑖𝑟Γ′
𝑗𝑘
𝑟 − 𝐴𝑎𝑝

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕𝑥𝑐

𝜕𝑥′𝑘 Γ𝑏𝑐
𝑝

             … (3) 

Writing equation (1) with the help of equation (2) and (3) 

𝜕𝐴′
𝑖𝑗

𝜕𝑥′𝑘 − 𝐴′𝑖𝑟Γ′
𝑗𝑘
𝑟 − 𝐴′𝑟𝑗Γ′

𝑖𝑘
𝑟 = [

𝜕𝐴𝑎𝑏

𝜕𝑥𝑐
− 𝐴𝑝𝑏Γ𝑎𝑐

𝑝
− 𝐴𝑎𝑝Γ𝑏𝑐

𝑝
]

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕𝑥𝑐

𝜕𝑥′𝑘 

If we write 𝐴𝑎𝑏,𝑐 =
𝜕𝐴𝑎𝑏

𝜕𝑥𝑐
− 𝐴𝑝𝑏Γ𝑎𝑐

𝑝
− 𝐴𝑎𝑝Γ𝑏𝑐

𝑝
 then the last equation  

Becomes 

𝐴𝑖𝑗,𝑘 = 𝐴𝑎𝑏,𝑐

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗

𝜕𝑥𝑐

𝜕𝑥′𝑘  

This proves that 𝐴𝑎𝑏,𝑐 is a third rank covariant tensor and this tensor is 

defined as covariant derivative of 𝐴𝑎𝑏 w.r.t. 𝑥𝑐. 

8.5 COVARIANT DIFFERENTIATION OF 

TENSOR:-  

A subscript followed by comma or semicolon indicates the covariant 

differentiation of a tensor. We define 

𝐴𝑎,𝑏 =
𝜕𝐴𝑎

𝜕𝑥𝑏
− 𝐴𝑐Γ𝑎𝑏

𝑐  

𝐴𝑎 , 𝑏 =
𝜕𝐴𝑎

𝜕𝑥𝑏
+ 𝐴𝑐Γ𝑏𝑐

𝑎  

𝐴𝑎𝑏,𝑐 =
𝜕𝐴𝑎𝑏

𝜕𝑥𝑐
− 𝐴𝑝𝑏Γ𝑎𝑐

𝑝
− 𝐴𝑎𝑝Γ𝑝𝑐

𝑏  

𝐴𝑎𝑏 , 𝑐 =
𝜕𝐴𝑎𝑏

𝜕𝑥𝑐
+ 𝐴𝑝𝑏Γ𝑎𝑐

𝑝
− 𝐴𝑎𝑝Γ𝑝𝑐

𝑏  

More generally, 

𝐴𝑗1𝑗2…𝑗𝑚 ,𝑏
𝑖1𝑖2…𝑖𝑙 =

𝜕𝐴𝑗1𝑗2…𝑗𝑚

𝑖1𝑖2…𝑖𝑙

𝜕𝑥𝑏
+ 𝐴𝑗1𝑗2…𝑗𝑚

𝑎𝑖2…𝑖𝑙 Γ𝑎𝑏
𝑖1 + ⋯ + 𝐴𝑗1𝑗2…𝑗𝑚

𝑖1𝑖2…𝑖𝑙−1𝑎
Γ𝑎𝑏

𝑖𝑙 − 𝐴𝑎𝑗2…𝑗𝑚

𝑖1𝑖2…𝑖𝑙 Γ𝑗𝑖𝑏
𝑎

− ⋯ − 𝐴𝑗1𝑗2…𝑗𝑚−1

𝑖1𝑖2…𝑖𝑙 Γ𝑗𝑚𝑏
𝑎  
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Theorem: 10. Show that covariant derivatives of the fundamental tensor 

and Kronecker delta vanish. 

Proof: We have to prove that 

                                                          𝑔𝑖𝑗,𝑘 = 0                                                  … (1) 

                                                         𝑔𝑖𝑗
,𝑘

= 0                                                  … (2) 

                                                            𝑔𝑗,𝑘
𝑖 = 0                                                 … (3) 

𝑔𝑖𝑗,𝑘 =
𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
− 𝑔𝑎𝑗Γ𝑖𝑘

𝑎 − 𝑔𝑖𝑎Γ𝑗𝑘
𝑎 =

𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
− Γ𝑖𝑘,𝑗 − Γ𝑗𝑘,𝑖 

=
𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
− [Γ𝑖𝑘,𝑗 + Γ𝑗𝑘,𝑖] =

𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
−

𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
= 0 

Refer theorem 1. 

Hence                                                𝑔𝑖𝑗,𝑘 = 0 

Hence the equation (1) becomes 

𝑔𝑖𝑗𝑔𝑗𝑘 = 𝛿𝑖
𝑘 = 1 𝑜𝑟 0 

Differentiating it w.r.t. 𝑥𝑚, we get 

𝑔𝑗𝑘
𝜕𝑔𝑖𝑗

𝜕𝑥𝑚
+ 𝑔𝑖𝑗

𝜕𝑔𝑗𝑘

𝜕𝑥𝑚
= 0 

Multiplying the above equation by 𝑔𝑙𝑖  and noting that 

𝑔𝑖𝑗𝑔𝑙𝑖 = 𝛿𝑗
𝑙 , 𝛿𝑗

𝑙
𝜕𝑔𝑗𝑘

𝜕𝑥𝑚
=

𝜕𝑔𝑙𝑘

𝜕𝑥𝑚
 

We obtain  

𝑔𝑙𝑖𝑔𝑗𝑘
𝜕𝑔𝑖𝑗

𝜕𝑥𝑚
+

𝜕𝑔𝑙𝑘

𝜕𝑥𝑚
= 0 

𝑜𝑟                         
𝜕𝑔𝑙𝑘

𝜕𝑥𝑚
+ 𝑔𝑙𝑖𝑔𝑗𝑘[Γ𝑖𝑚,𝑗 + Γ𝑗𝑚,𝑖] = 0 

𝑜𝑟                                 
𝜕𝑔𝑙𝑘

𝜕𝑥𝑚
+ 𝑔𝑙𝑖Γ𝑖𝑚

𝑘 + 𝑔𝑗𝑘Γ𝑗𝑚
𝑙 = 0 
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𝑜𝑟                                  
𝜕𝑔𝑙𝑘

𝜕𝑥𝑚
+ 𝑔𝑙𝑖Γ𝑖𝑚

𝑘 + 𝑔𝑖𝑘Γ𝑖𝑚
𝑙 = 0                                 … (4) 

𝑜𝑟                                    𝑔𝑙𝑘
,𝑚

= 0     𝑜𝑟       𝑔𝑖𝑗
,𝑘

= 0 

⇒                                      𝑔𝑖𝑗
,𝑘

= 0 

Hence equation (2) proved. 

𝑔𝑗,𝑘
𝑖 =

𝜕𝑔𝑗
𝑖

𝜕𝑥𝑘
+ 𝑔𝑗

𝑚Γ𝑚𝑘
𝑖 − 𝑔𝑎

𝑖 Γ𝑗𝑘
𝑎  

=
𝜕𝑔𝑗

𝑖

𝜕𝑥𝑘
+ Γ𝑗𝑘

𝑖 − Γ𝑗𝑘
𝑖 =

𝜕𝑔𝑗
𝑖

𝜕𝑥𝑘
= 0 𝑎𝑠 𝑔𝑗

𝑖 = 0 𝑜𝑟 1 

Hence equation (3) proved.  

Theorem: 11. To show that the covariant differentiation for products, 

sums, differences obeys the same rule as in the case of ordinary 

differentiation. 

Proof: Let 𝐴𝑖  𝑎𝑛𝑑 𝐵𝑗𝑘 be any two tensors, then their outer product 𝐴𝑖𝐵𝑗𝑘 

is also a tensor. Let 

                           𝐶𝑗𝑘
𝑖 = 𝐴𝑖𝐵𝑗𝑘  

                (𝐴𝑖𝐵𝑗𝑘)
,𝑙

= 𝐶𝑗𝑘,𝑙
𝑖  

                                 =
𝜕𝐶𝑗𝑘

𝑖

𝜕𝑥𝑙
+ 𝐶𝑗𝑘

𝑎 Γ𝑎𝑙
𝑖 − 𝐶𝑎𝑘

𝑖 Γ𝑗𝑙
𝑎 − 𝐶𝑗𝑎

𝑖 Γ𝑘𝑙
𝑎  

                                 =
𝜕𝐴𝑖𝐵𝑗𝑘

𝜕𝑥𝑙
+ 𝐴𝑎𝐵𝑗𝑘Γ𝑎𝑙

𝑖 − 𝐴𝑖𝐵𝑎𝑘Γ𝑗𝑙
𝑎 − 𝐴𝑖𝐵𝑗𝑎Γ𝑘𝑙

𝑎  

                                =
𝜕𝐴𝑖

𝜕𝑥𝑙
. 𝐵𝑗𝑘 + 𝐴𝑖

𝜕𝐵𝑗𝑘

𝜕𝑥𝑙
+ 𝐴𝑎𝐵𝑗𝑘Γ𝑎𝑙

𝑖 − 𝐴𝑖𝐵𝑎𝑘Γ𝑗𝑙
𝑎 − 𝐴𝑖𝐵𝑗𝑎Γ𝑘𝑙

𝑎  

                                = 𝐵𝑗𝑘 (
𝜕𝐴𝑖

𝜕𝑥𝑙
+ 𝐴𝑎Γ𝑎𝑙

𝑖 ) + 𝐴𝑖 (
𝜕𝐵𝑗𝑘

𝜕𝑥𝑙
− 𝐵𝑎𝑘Γ𝑗𝑙

𝑎 − 𝐵𝑗𝑎Γ𝑘𝑙
𝑎 ) 

                                = 𝐵𝑗𝑘𝐴,𝑙
𝑖 + 𝐴𝑖𝐵𝑗𝑘,𝑙 

𝑜𝑟          (𝐴𝑖𝐵𝑗𝑘)
,𝑙

= 𝐵𝑗𝑘𝐴,𝑙
𝑖 + 𝐴𝑖𝐵𝑗𝑘,𝑙                                                            … (1) 
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We can show that this approach works for all situations involving outer 

products by generalizing this finding. 

The inner product of two tensors that are created via contraction and outer 

multiplication. Thus, it is a total of the products. Therefore, equation (1) 

also applies in this case. For example 

                                 (𝐴𝑘
𝑖𝑗

𝐵𝑙𝑚
𝑘 )

,𝑎
= 𝐴𝑘,𝑎

𝑖𝑗
𝐵𝑙𝑚

𝑘 + 𝐴𝑘
𝑖𝑗

𝐵𝑙𝑚,𝑎
𝑘                               … (2) 

Let 𝐴𝑖𝑗  𝑎𝑛𝑑 𝐵𝑖𝑗  be any two tensors, each of the same rank and similar 

character. Then their sum is tensor of the same rank and similar character. 

Let  

                    𝐶𝑖𝑗 = 𝐴𝑖𝑗 + 𝐵𝑖𝑗 

   (𝐴𝑖𝑗 + 𝐵𝑖𝑗)
,𝑙

= 𝐶𝑖𝑗,𝑙 

                           =
𝜕𝐶𝑖𝑗

𝜕𝑥𝑙
− 𝐶𝑎𝑗Γ𝑖𝑙

𝑎 − 𝐶𝑖𝑎Γ𝑗𝑙
𝑎 

                           =
𝜕

𝜕𝑥𝑙
(𝐴𝑖𝑗 + 𝐵𝑖𝑗) − (𝐴𝑎𝑗 + 𝐵𝑎𝑗)Γ𝑖𝑙

𝑎 − (𝐴𝑖𝑎 + 𝐵𝑖𝑎)Γ𝑗𝑙
𝑎 

                           =
𝜕𝐴𝑖𝑗

𝜕𝑥𝑙
+

𝜕𝐵𝑖𝑗

𝜕𝑥𝑙
− 𝐴𝑎𝑗Γ𝑖𝑙

𝑎 − 𝐵𝑎𝑗Γ𝑖𝑙
𝑎 − 𝐴𝑖𝑎Γ𝑗𝑙

𝑎 − 𝐵𝑖𝑎Γ𝑗𝑙
𝑎 

                            = (
𝜕𝐴𝑖𝑗

𝜕𝑥𝑙
− 𝐴𝑎𝑗Γ𝑖𝑙

𝑎 − 𝐴𝑖𝑎Γ𝑗𝑙
𝑎) + (

𝜕𝐵𝑖𝑗

𝜕𝑥𝑙
− 𝐵𝑎𝑗Γ𝑖𝑙

𝑎 − −𝐵𝑖𝑎Γ𝑗𝑙
𝑎) 

                            = 𝐴𝑖𝑗,𝑙 + 𝐵𝑖𝑗,𝑙 

⇒  (𝐴𝑖𝑗 + 𝐵𝑖𝑗)
,𝑙

= 𝐴𝑖𝑗,𝑙 + 𝐵𝑖𝑗,𝑙                                                                      … (3) 

Similarly we can show that 

                                       (𝐴𝑖𝑗 − 𝐵𝑖𝑗)
,𝑙

= 𝐴𝑖𝑗,𝑙 − 𝐵𝑖𝑗,𝑙                                     … (4) 

From equation (1),(2),(3) and (4), it follows that covariant differentiation 

of products, sums, differences obeys the same rule as in the case of 

ordinary differentiation. 

Theorem: 12. To show that covariant derivative of an invariant is the 

same as ordinary derivative. 

Proof: Let 𝐼  be an invariant and 𝐴𝑖  be a covariant vector so that the 

product 𝐼𝐴𝑖 is a covariant vector. 

To prove that 
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𝐼,𝑗 =
𝜕𝐼

𝜕𝑥𝑗
 

By definition 

(𝐼𝐴𝑖),𝑗 =
𝜕𝐼𝐴𝑖

𝜕𝑥𝑗
− 𝐼𝐴𝑎Γ𝑖𝑗

𝑎 =
𝜕𝐼

𝜕𝑥𝑗
𝐴𝑖 + 𝐼

𝜕𝐴𝑖

𝜕𝑥𝑗
− 𝐼𝐴𝑎Γ𝑖𝑗

𝑎 

                                   = 𝐼 (
𝜕𝐴𝑖

𝜕𝑥𝑗
− 𝐴𝑎Γ𝑖𝑗

𝑎) +
𝜕𝐼

𝜕𝑥𝑗
𝐴𝑖 

𝑜𝑟                 (𝐼𝐴𝑖),𝑗 = 𝐼𝐴𝑖,𝑗 + 𝐴𝑖

𝜕𝐼

𝜕𝑥𝑗
                                                           … (1) 

𝑏𝑢𝑡               (𝐼𝐴𝑖),𝑗 = 𝐼,𝑗𝐴𝑖 + 𝐼𝐴𝑖,𝑗                                                               … (2) 

For covariant differentiation of products obeys the same rule as in the case 

of ordinary differentiation. Equating equation (1) to (2) 

𝐼,𝑗𝐴𝑖 + 𝐼𝐴𝑖,𝑗 = 𝐼𝐴𝑖,𝑗 + 𝐴𝑖

𝜕𝐼

𝜕𝑥𝑗
 

𝑜𝑟                                  (𝐼,𝑗 −
𝜕𝐼

𝜕𝑥𝑗
) 𝐴𝑖 = 0 

𝑜𝑟                                             𝐼,𝑗 −
𝜕𝐼

𝜕𝑥𝑗
= 0. 𝐹𝑜𝑟 𝐴𝑖 𝑖𝑠 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 

𝑜𝑟                                                          𝐼,𝑗 =
𝜕𝐼

𝜕𝑥𝑗
  

8.6 GRADIANT OF SCALAR:-  

The ordinary derivative of a scalar (or invariant) 𝐼 is its gradient, and it is 

represented by ∇𝐼 ≡ grad 𝐼. 

Thus                                         ∇𝐼 ≡ grad 𝐼 =
𝜕𝐼

𝜕𝑥𝑖
  

But                                         
𝜕𝐼

𝜕𝑥𝑖
= 𝐼,𝑖  (refer theorem 12 )  

∴                                             ∇𝐼 ≡ grad 𝐼 =
𝜕𝐼

𝜕𝑥𝑖
= 𝐼,𝑖 

8.7 DERIVED VECTOR PROJECTION:-  
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1. 𝑎,𝑗
𝑖 𝑏𝑖 is the derived vector of vector 𝑎𝑖 in the direction of 𝑏𝑖. 

2.  𝑎𝑖,𝑗𝑏𝑗  is the derived vector of vector 𝑎𝑖 in the direction of 𝑏𝑖. 

3. 𝑎𝑖𝑏𝑖 = 𝑎𝑖𝑏𝑖 is the projection of 𝑎𝑖 in the direction of 𝑏𝑖. 

 

Another name for the derived vector is the intrinsic derivative. 

 

 8.8 TENDENCY OF VECTORS:-  

1. Tendency of 𝑎𝑖 in the direction of 𝑏𝑖 

= 𝑎,𝑗
𝑖 𝑏𝑖𝑏𝑗  

2. Tendency of 𝑎𝑖 in the direction of 𝑏𝑖  

= 𝑎𝑖,𝑗𝑏𝑖𝑏𝑗  

       3.   
𝑑𝑥𝑗

𝑑𝑠
is the intrinsic derivative of 𝑎𝑖  in the direction of a curve 𝑎,𝑗

𝑖 . 

       4.   
𝑑𝑥𝑗

𝑑𝑠
is the intrinsic derivative of 𝑎𝑖  in the direction of a curve𝑎𝑖,𝑗 . 

 

8.9 CURL OF A VECTOR:-  

The curl of vector 𝑨 is defined as 

𝑪𝒖𝒓𝒍 𝑨 = 𝑪𝒖𝒓𝒍 𝐴𝑖 = 𝐴𝑖,𝑗 − 𝐴𝑗,𝑖 

𝐵𝑢𝑡                           𝐴𝑖,𝑗 − 𝐴𝑗,𝑖 =
𝜕𝐴𝑖

𝜕𝑥𝑗
− 𝐴𝑎Γ𝑖𝑗

𝑎 − (
𝜕𝐴𝑗

𝜕𝑥𝑖
− 𝐴𝑎Γ𝑗𝑖

𝑎) 

=
𝜕𝐴𝑖

𝜕𝑥𝑗
−

𝜕𝐴𝑗

𝜕𝑥𝑖
  

∴                                     𝑪𝒖𝒓𝒍 𝑨 = 𝐴𝑖,𝑗 − 𝐴𝑗,𝑖 =
𝜕𝐴𝑖

𝜕𝑥𝑗
−

𝜕𝐴𝑗

𝜕𝑥𝑖
 

𝐶𝑢𝑟𝑙𝑖𝑗{𝑎𝑖} = 𝑎𝑖;𝑘 − 𝑎𝑘;𝑖 = 𝑎𝑖,𝑘 − 𝑎𝑘,𝑖 =
𝜕𝑎𝑖

𝜕𝑥𝑘
−

𝜕𝑎𝑘

𝜕𝑥𝑖
 

𝐶𝑢𝑟𝑙𝑖𝑗𝑘{𝐹𝑖𝑗} = 𝐹𝑖𝑗;𝑘 + 𝐹𝑗𝑘;𝑖 + 𝐹𝑘𝑖;𝑗 =
𝜕𝐹𝑖𝑗

𝜕𝑥𝑘
+

𝜕𝐹𝑗𝑘

𝜕𝑥𝑖
+  

𝜕𝐹𝑘𝑖

𝜕𝑥𝑗
 

If  𝐹𝑖𝑗 is anti-symmetric tensor. 

8.10 DIVERGENCE OF A VECTOR:-  



Theory of Relativity  MAT609 

Department of Mathematics  

Uttarakhand Open University Page 159 
 

Given a vector 𝑨, its divergence can be defined as the contraction of its 

covariant derivative, or the divergence of its contravariant component 𝐴𝑖. 

Thus  

𝑑𝑖𝑣 𝐴 = 𝑑𝑖𝑣 𝐴𝑖 = 𝐴,𝑖
𝑖  

To prove that 

𝐴,𝑖
𝑖 =

1

√𝑔

𝜕(𝐴𝑖√𝑔)

𝜕𝑥𝑖
 

By definition 

𝐴,𝑗
𝑖 =

𝜕𝐴𝑖

𝜕𝑥𝑗
+ 𝐴𝑎Γ𝑎𝑗

𝑖  

Putting 𝑖 = 𝑗, we get  

𝐴,𝑖
𝑖 =

𝜕𝐴𝑖

𝜕𝑥𝑖
+ 𝐴𝑎Γ𝑎𝑖

𝑖  

𝑜𝑟                               𝑑𝑖𝑣 𝐴𝑖 =
𝜕𝐴𝑖

𝜕𝑥𝑖
+ 𝐴𝑎

𝜕(𝑙𝑜𝑔√𝑔)

𝜕𝑥𝑎
=

𝜕𝐴𝑖

𝜕𝑥𝑖
+

𝐴𝑖

√𝑔

𝜕√𝑔

𝜕𝑥𝑖
 

𝑜𝑟                               𝑑𝑖𝑣 𝐴𝑖 =
1

√𝑔
(√𝑔

𝜕𝐴𝑖

𝜕𝑥𝑖
+ 𝐴𝑖

𝜕√𝑔

𝜕𝑥𝑖
) =

1

√𝑔

𝜕(𝐴𝑖√𝑔)

𝜕𝑥𝑖
 

𝑜𝑟                               𝑑𝑖𝑣 𝐴𝑖 = 𝐴,𝑖
𝑖 =

1

√𝑔

𝜕(𝐴𝑖√𝑔)

𝜕𝑥𝑖
 

Theorem: 13. A necessary and sufficient condition that the first covariant 

derivative of a covariant vector be symmetric is that the vector be 

gradient. 

Proof: Let 𝐴𝑖 be a covariant vector such that the first covariant derivative 

of 𝐴𝑖  is symmetric so that 

𝐴𝑖,𝑗 = 𝐴𝑗,𝑖 

We have to prove that 𝐴𝑖 = 𝑔𝑟𝑎𝑑𝜙 where 𝜙 is scalar. 

Equation (1) ⇒  
𝜕𝐴𝑖

𝜕𝑥𝑗
+ 𝐴𝑎Γ𝑖𝑗

𝑎 =
𝜕𝐴𝑗

𝜕𝑥𝑖
+ 𝐴𝑎Γ𝑗𝑖

𝑎 

 

⇒                                                     
𝜕𝐴𝑖

𝜕𝑥𝑗
=

𝜕𝐴𝑗

𝜕𝑥𝑖
 

 

⇒                                            
𝜕𝐴𝑖

𝜕𝑥𝑗
𝑑𝑥𝑗 =

𝜕𝐴𝑗

𝜕𝑥𝑖
𝑑𝑥𝑗 

⇒                                       ∫
𝜕𝐴𝑖

𝜕𝑥𝑗
𝑑𝑥𝑗 = ∫

𝜕𝐴𝑗

𝜕𝑥𝑖
𝑑𝑥𝑗 

⇒                                               ∫ 𝑑𝐴𝑖 =
𝜕

𝜕𝑥𝑗
∫ 𝐴𝑗𝑑𝑥𝑗 

⇒                                          𝐴𝑖 =
𝜕𝜙

𝜕𝑥𝑖
= 𝑔𝑟𝑎𝑑𝜙 
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where ∫ 𝐴𝑗𝑑𝑥𝑗 = 𝜙 = a scalar 

⇒                                          𝐴𝑖 = 𝑔𝑟𝑎𝑑𝜙 

Conversely let 𝐴𝑖 be a covariant vector such that 

𝐴𝑗 = 𝑔𝑟𝑎𝑑𝜙 =
𝜕𝜙

𝜕𝑥𝑗
 

Where 𝜙 is scalar. 

We have to prove that  
𝐴𝑖,𝑗 = 𝐴𝑗,𝑖 

                                               𝐴𝑖,𝑗 − 𝐴𝑗,𝑖 = (
𝜕𝜙

𝜕𝑥𝑖
) , 𝑗 − (

𝜕𝜙

𝜕𝑥𝑗
) , 𝑖 

                                                                  = (𝜙,𝑖)
,𝑗

− (𝜙,𝑗)
,𝑖

= 𝜙,𝑖𝑗 − 𝜙,𝑗𝑖 = 0 

𝑜𝑟                                          𝐴𝑖,𝑗 − 𝐴𝑗,𝑖 = 0  

𝑜𝑟                                                      𝐴𝑖,𝑗 = 𝐴𝑗,𝑖 

 

8.11 PARALLEL DISPLACEMENT OF VECTORS:-  

In a Riemannian 𝑉𝑛 , let 𝐴𝑖 be a vector with a constant magnitude that is 

defined along curve C. Along curve C, the vector 𝐴𝑖  is said to suffer a 

parallel displacement if 

                                                     𝐴,𝑗
𝑖

𝑑𝑥𝑗

𝑑𝑠
= 0                                                  … (1) 

At each point of C. 

It is also expressed by saying that the vector 𝐴𝑖 is parallel along C. 

Equation (1) ⇒  

                                                    𝐴𝑖,𝑗

𝑑𝑥𝑗

𝑑𝑠
= 0                                                 … (2) 

Equation (1) multiplying by 𝑔𝑖𝑘 , we get  

𝑔𝑖𝑘𝐴,𝑗
𝑖

𝑑𝑥𝑗

𝑑𝑠
= 0  

𝑜𝑟                                            (𝑔𝑖𝑘𝐴𝑖)
,𝑗

𝑑𝑥𝑗

𝑑𝑠
= 0. 𝑓𝑜𝑟 𝑔𝑖𝑘,𝑗 = 0  

𝑜𝑟                                      𝐴𝑘,𝑗

𝑑𝑥𝑗

𝑑𝑠
= 0       𝑜𝑟           𝐴𝑖,𝑗

𝑑𝑥𝑗

𝑑𝑠
= 0  

Writing equation (1) in full 

𝜕𝐴𝑖

𝜕𝑥𝑗

𝑑𝑥𝑗

𝑑𝑠
+ 𝐴𝑎Γ𝑎𝑗

𝑖
𝑑𝑥𝑗

𝑑𝑠
= 0 

 

𝑜𝑟                                             
𝑑𝐴𝑖

𝑑𝑠
= −𝐴𝑎Γ𝑎𝑗

𝑖
𝑑𝑥𝑗

𝑑𝑠
  

𝑜𝑟                                              𝑑𝐴𝑖 =  −𝐴𝑎Γ𝑎𝑗
𝑖 𝑑𝑥𝑗                                       … (3) 

Similarly equation (2) gives 

                                                  𝑑𝐴𝑖 = 𝐴𝑎Γ𝑖𝑗
𝑎𝑑𝑥𝑗                                             … (4) 
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Thus the increments in components of 𝐴𝑖 𝑎𝑛𝑑 𝐴𝑖 due to the displacement 

𝑑𝑥𝑗 along C are given by equation (3) and (4) respectively. This concept 

is due to Levi and Cita. 

 

Theorem: 14. To prove that the magnitude of all vectors of a field of 

parallel vectors is constant. 

Proof: If 𝑎𝑖 forms a field of parallel vectors along the curve 𝑥𝑖 = 𝑥𝑖(𝑡), 

then we have 

                                                          𝑎,𝑗
𝑖

𝑑𝑥𝑗

𝑑𝑠
= 0                                             … (1) 

We have to prove that 𝑎 = 0 ,where 𝑎 is the magnitude of 𝑎𝑖 

Equation (1) ⇒ 

𝑎𝑖,𝑗

𝑑𝑥𝑗

𝑑𝑠
= 0 

∵                                                               𝑎2 = 𝑎𝑖𝑎𝑖 

∴                            
𝑑𝑎2

𝑑𝑠
=

𝑑

𝑑𝑠
(𝑎𝑖𝑎𝑖) = (𝑎𝑖𝑎𝑖)

,𝑗

𝑑𝑥𝑗

𝑑𝑠
 

= (𝑎,𝑗
𝑖

𝑑𝑥𝑗

𝑑𝑠
) 𝑎𝑖 + 𝑎𝑖 (𝑎𝑖,𝑗

𝑑𝑥𝑗

𝑑𝑠
) 

                                        = (0)𝑎𝑖 + 𝑎𝑖(0) = 0 

⇒                           
𝑑𝑎2

𝑑𝑠
= 0 

Integrating above equation, we get 

𝑎2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑟 𝑎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
 

Theorem: 15. To prove that a vector of constant magnitude is orthogonal 

to its intrinsic derivative in any direction. 

Proof: Let 𝐴 be a vector of constant magnitude so that 

                                                   𝐴2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                             … (1) 

Let 𝑎𝑖  be any unit vector. Then the intrinsic derivative of 𝐴  in the 

direction of 𝑎𝑖 is 𝐴,𝑗
𝑖 𝑎𝑗. 

To prove that 𝐴,𝑗
𝑖 𝑎𝑗 is orthogonal to A, we have to show that 

                                      (𝐴,𝑗
𝑖 𝑎𝑗)𝐴𝑖 = 0                                                            … (2) 

Equation (1) ⇒                 𝐴𝑖𝐴𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = (𝐴𝑖𝐴𝑖),𝑗
= 0 

⇒                                     𝐴,𝑗
𝑖 𝐴𝑖 + 𝐴𝑖𝐴𝑖,𝑗 = 0 

Since the dummy suffix has freedom to movement and therefore the last 

equation becomes 

𝐴,𝑗
𝑖 𝐴𝑖 + 𝐴𝑖𝐴,𝑗

𝑖 = 0 ⇒ 2𝐴,𝑗
𝑖 𝐴𝑖 = 0 

⇒ 𝐴,𝑗
𝑖 𝐴𝑖 = 0 

Forming scalar product of this with 𝑎𝑗, we get 

(𝐴,𝑗
𝑖 𝐴𝑖)𝑎𝑗 = 0 

𝑜𝑟                                                  (𝐴,𝑗
𝑖 𝑎𝑗)𝐴𝑖 = 0 
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8.12 PRINCIPAL NORMAL:-  

The derived vector of 𝑡𝑖 in its own direction is known as the first curvature 

vector of C relative to  𝑉𝑛  is represented by 𝑝𝑖. Let 𝑡𝑖 be the unit tangent 

vector at any point 𝑃(𝑥𝑖) lie on a curve C in a 𝑉𝑛.  

                                         𝑝𝑖 = 𝑡,𝑗
𝑖

𝑑𝑥𝑗

𝑑𝑠
 ; 𝑡𝑖 =

𝑑𝑥𝑖

𝑑𝑠
                                        … (1) 

The magnitude of 𝑝𝑖  is denoted by 𝑘 , is defined as first curvature (or 

curvature simply) of the curve C relative to 𝑉𝑛. Then  

                                       𝑘2 = 𝑔𝑖𝑗𝑝𝑖𝑝𝑗                                                             … (2) 

If 𝑛 be unit vector along 𝑝𝑖, then 

                                        𝑝𝑖 = 𝑘𝑛𝑖                                                                     … (3) 

𝑛𝑖, contravariant component of 𝑛 is called unit principal normal. 

From equation (1) 

𝑝𝑖 = (
𝜕𝑡𝑖

𝜕𝑥𝑗
+ 𝑡𝑎 {

𝑖
𝑎𝑗

})
𝑑𝑥𝑗

𝑑𝑠
 

=
𝑑𝑡𝑖

𝑑𝑠
+ {

𝑖
𝑎𝑗

}
𝑑𝑥𝑎

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
 

𝑜𝑟                                     𝑝𝑖 =
𝑑

𝑑𝑠
(

𝑑𝑥𝑖

𝑑𝑠
) + {

𝑖
𝑗𝑘

}
𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑘

𝑑𝑠
  

𝑜𝑟                                     𝑝𝑖 =
𝑑2𝑥𝑖

𝑑𝑠2
+ {

𝑖
𝑗𝑘

}
𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑘

𝑑𝑠
  

𝑜𝑟             𝑛𝑖 =
 𝑝𝑖

𝑘
 𝑜𝑟  𝑛𝑖 =

1

𝑘
[
𝑑2𝑥𝑖

𝑑𝑠2
+ {

𝑖
𝑗𝑘

}
𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑘

𝑑𝑠
]                            … (4) 

This is required expression for principle normal. 

Theorem: 16. Any vector of constant magnitude which undergoes a 

parallel displacement along a geodesic is inclined at a constant angle to a 

curve. 

Proof: Let a vector 𝛼𝑖 of constant magnitude undergoes a parallel 

displacement along a geodesic C, so that 
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                                                    𝛼,𝑗
𝑖

𝑑𝑥𝑖

𝑑𝑠
= 0                                                   … (1) 

At each point of C. 

Let 𝑡𝑖 be the unit tangent vector to the curve C, so that 

                                                       𝑡,𝑗
𝑖

𝑑𝑥𝑗

𝑑𝑠
= 0                                                 … (2) 

At each point of C. since geodesics are auto- parallel curves. 

Let 𝜃 be the angle between the vector 𝛼𝑖 and 𝑡𝑖. Hence  

𝛼𝑖 𝑡𝑖 = 𝛼. 1. 𝑐𝑜𝑠𝜃  

𝑑

𝑑𝑠
(𝛼𝑐𝑜𝑠𝜃 ) =

𝑑

𝑑𝑠
(𝛼𝑖 𝑡𝑖) = (𝛼𝑖 𝑡𝑖)

,𝑗

𝑑𝑥𝑗

𝑑𝑠
  

𝑜𝑟 − 𝛼𝑠𝑖𝑛𝜃
𝑑𝜃

𝑑𝑠
=  𝑡𝑖𝛼𝑖

,𝑗

𝑑𝑥𝑖

𝑑𝑠
+ 𝛼𝑖 𝑡𝑖

,𝑗

𝑑𝑥𝑗

𝑑𝑠
 

From equation (1) and (2), we get 

𝛼𝑠𝑖𝑛𝜃
𝑑𝜃

𝑑𝑠
= 0. 𝑡𝑖 + 0. 𝛼𝑖 = 0 

𝑜𝑟                                         𝑠𝑖𝑛𝜃
𝑑𝜃

𝑑𝑠
= 0 𝑓𝑜𝑟 𝛼 ≠ 0 

⇒                                                𝑠𝑖𝑛𝜃 = 0         𝑜𝑟      
𝑑𝜃

𝑑𝑠
= 0 

⇒                                                      𝜃 = 0         𝑜𝑟        𝜃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

⇒                                                      𝜃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

8.13 GEODESIC CO-ORDINATE:-  

With the pole at 𝑃0 , the coordinate system 𝑥𝑖 is referred to as a geodesic 

coordinate system if 𝑔𝑖𝑗 are locally constant in the neighbourhood of the 

point  𝑃0. 𝑔𝑖𝑗 are said to be locally constant in the neighbourhood of  𝑃0 if 

 

𝑎𝑛𝑑                                             
𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
≠ 0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 
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Or equivalently 

Γ𝑖𝑗,𝑘 = 0 = Γ𝑖𝑗 
𝑘  𝑎𝑡  𝑃0 

To determine the necessary and sufficient condition for a given coordinate 

system to be a geodesic coordinate system with the pole at 𝑃0. 

 

Γ′𝑖𝑗 
𝑎

𝜕𝑥𝑙

𝜕𝑥′𝑎
= Γ𝛼𝛽

𝑙
𝜕𝑥𝛼

𝜕𝑥′𝑖

𝜕𝑥𝛽

𝜕𝑥′𝑗
+

𝜕2𝑥𝑙

𝜕𝑥′𝑖𝜕𝑥′𝑗
 

Interchanging co-ordinate system 𝑥𝑖 and 𝑥′𝑖, 

Γ𝑖𝑗 
𝑎

𝜕𝑥′𝑙

𝜕𝑥𝑎
= Γ′𝛼𝛽

𝑙
𝜕𝑥′𝛼

𝜕𝑥𝑖

𝜕𝑥′𝛽

𝜕𝑥𝑗
+

𝜕2𝑥′𝑙

𝜕𝑥𝑖𝜕𝑥𝑗
 

𝑜𝑟             − Γ′𝛼𝛽
𝑙

𝜕𝑥′𝛼

𝜕𝑥𝑖

𝜕𝑥′𝛽

𝜕𝑥𝑗
= −Γ𝑖𝑗 

𝑎
𝜕𝑥′𝑙

𝜕𝑥𝑎
+

𝜕2𝑥′𝑙

𝜕𝑥𝑖𝜕𝑥𝑗
                                … (1) 

For a given value of 𝑙, 𝑥′𝑙  is a scalar function of 𝑥𝑖 and hence 
𝜕𝑥′𝑙

𝜕𝑥𝑖
 is a  

covariant vector.  Write  

𝐴𝑖 =
𝜕𝑥′𝑙

𝜕𝑥𝑖
= 𝑥′𝑙 , 𝑖 

Then equation (1) becomes  

−Γ′
𝛼𝛽
𝑙 𝜕𝑥′𝛼

𝜕𝑥𝑖

𝜕𝑥′𝛽

𝜕𝑥𝑗
=

𝜕𝐴𝑖

𝜕𝑥𝑗
− 𝐴𝑎Γ𝑖𝑗

𝑎 = 𝐴𝑖,𝑗 = (𝑥′
,𝑖
𝑙 )

,𝑗
 

𝑜𝑟,                                         𝑥′
,𝑖𝑗
𝑙 = −Γ′

𝛼𝛽
𝑙 𝜕𝑥′𝛼

𝜕𝑥𝑖

𝜕𝑥′𝛽

𝜕𝑥𝑗
                                 … (2) 

Case (𝒊): Let 𝑥′𝑙 be a geodesic co-ordinate system with the pole at 𝑃0, 

then Γ′
𝛼𝛽
𝑙 = 0 at 𝑃0. In this even (2) shows that 𝑥′

,𝑖𝑗
𝑙 = 0 at  𝑃0. 

Case (𝒊𝒊): Conversely suppose that 𝑥′
,𝑖𝑗
𝑙 = 0 at 𝑃0. 

Then equation (2) becomes  

Γ′
𝛼𝛽
𝑙 𝜕𝑥′𝛼

𝜕𝑥𝑖

𝜕𝑥′𝛽

𝜕𝑥𝑗
= 0 
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∵                                                               |
𝜕𝑥′𝛼

𝜕𝑥𝑖
| ≠ 0  

ℎ𝑒𝑛𝑐𝑒                                                         Γ′
𝛼𝛽
𝑙 = 0 𝑎𝑡  𝑃0  

This ⇒ 𝑥′𝑙 is a geodesic co-ordinate system with the pole at  𝑃0. 

This proves that a necessary and sufficient condition that a given co-

ordinate system be geodesic co-ordinate system with the pole at  𝑃0 are 

that all their second order covariant derivatives w.r.t. space co-ordinate 

vanish at 𝑃0.  

8.14NATURAL CO-ORDINATE:-  

At the geodesic coordinate pole 
𝜕𝑔𝑖𝑗

𝜕𝑥𝑘 = 0. To obtain Galilean values for 

all 𝑔𝑖𝑗 , a transformation of coordinates can be introduced. A particle in 

motion at rest can also be created by using a Lorentz transformation. Such 

a coordinate system is referred to as a proper or natural coordinate system. 

 

SOLVED EXAMPLE 

EXAMPLE1: Show that all Christoffel symbols vanish at a point where 

𝑔𝑖𝑗 are constants. 

SOLUTION: ∵  𝑔𝑖𝑗 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∀ 𝑖 𝑎𝑛𝑑 𝑗 

𝑠𝑜                                    
𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
= 0 ∀ 𝑖, 𝑗, 𝑘 

⇒                                      Γ𝑖𝑗,𝑘 = 0, Γ𝑖𝑗
𝑘 = 0 ∀ 𝑖, 𝑗, 𝑘 

⇒ All Christoffel symbols vanish.  

EXAMPLE2: Show that if 𝑡𝑖 is unit tangent to a geodesic, then 𝑡,𝑘
𝑖 𝑡𝑘 = 0, 

comma denoting covariant difference. 

SOLUTION: The differential equation of a geodesic C is  

                                    
𝑑2𝑥𝑎

𝑑𝑠2
+ Γ𝑗𝑘

𝑎
𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑘

𝑑𝑠
= 0                                           … (1) 

Suppose 𝑡𝑖 is unit tangent vector to the curve C is that 
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𝑡𝑖 =
𝑑𝑥𝑖

𝑑𝑠
 

We have to prove that equation (1) is equivalent to the equation 𝑡,𝑘
𝑖 𝑡𝑘 = 0 

Now equation (1) is expressible as 

𝑑

𝑑𝑠
(

𝑑𝑥𝑎

𝑑𝑠
) + Γ𝑗𝑘

𝑎
𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑘

𝑑𝑠
= 0  

𝑜𝑟                                                      
𝑑𝑡𝑎

𝑑𝑠
+ Γ𝑗𝑘

𝑎 𝑡𝑗𝑡𝑘 = 0  

𝑜𝑟                                             
𝜕𝑡𝑎

𝜕𝑥𝑘

𝑑𝑥𝑘

𝑑𝑠
+ Γ𝑗𝑘

𝑎 𝑡𝑗𝑡𝑘 = 0  

𝑜𝑟                                           (
𝜕𝑡𝑎

𝜕𝑥𝑘
+ Γ𝑗𝑘

𝑎 𝑡𝑗) 𝑡𝑘 = 0  

𝑜𝑟                                                                 𝑡,𝑘
𝑎 𝑡𝑘 = 0  

𝑜𝑟                                                                 𝑡,𝑘
𝑖 𝑡𝑘 = 0 

EXAMPLE3: If 𝐴𝑖 is a vector show that, in general, 

 
𝜕𝐴𝑖

𝜕𝑥𝑘
is not a tensor but that 

𝜕𝐴𝑖

𝜕𝑥𝑘
−

𝜕𝐴𝑘

𝜕𝑥𝑖
 is a tensor. 

SOLUTION: If 𝐴𝑖 is a vector so that, by tensor law of transformation, 

                                                    𝐴′𝑖 = 𝐴𝑎

𝜕𝑥𝑎

𝜕𝑥′𝑖
                                                … (1) 

(i) We have to prove that 
𝜕𝐴𝑖

𝜕𝑥𝑘
is not a tensor, in general 

Partially differentiating equation (1) with respect to 𝑥′𝑘, we get 

𝜕𝐴′𝑖

𝜕𝑥′𝑘
=

𝜕𝐴𝑎

𝜕𝑥𝑏

𝜕𝑥𝑏

𝜕𝑥′𝑘

𝜕𝑥𝑎

𝜕𝑥′𝑖
+ 𝐴𝑎

𝜕2𝑥𝑎

𝜕𝑥′𝑖𝜕𝑥′𝑘
 … (2) 

This says that if the term 
𝜕2𝑥𝑎

𝜕𝑥′𝑖𝜕𝑥′𝑘
 were absent, then 

𝜕𝐴𝑖

𝜕𝑥𝑘
 is a component 

of a tensor. But in general, (2)says that 
𝜕𝐴𝑖

𝜕𝑥𝑘
 is not a tensor. 
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(𝑖𝑖)
𝜕𝐴𝑖

𝜕𝑥𝑘
−

𝜕𝐴𝑘

𝜕𝑥𝑖
=

𝜕𝐴𝑖

𝜕𝑥𝑘
− 𝐴𝑎Γ𝑖𝑘

𝑎 + 𝐴𝑎Γ𝑖𝑘
𝑎 −

𝜕𝐴𝑘

𝜕𝑥𝑖
 

= (
𝜕𝐴𝑖

𝜕𝑥𝑘
− 𝐴𝑎Γ𝑖𝑘

𝑎 ) − (
𝜕𝐴𝑘

𝜕𝑥𝑖
− 𝐴𝑎Γ𝑖𝑘

𝑎 ) 

             
𝜕𝐴𝑖

𝜕𝑥𝑘
−

𝜕𝐴𝑘

𝜕𝑥𝑖
= 𝐴𝑖,𝑘 − 𝐴𝑘,𝑖                                                                  … (3) 

R.H.S. of equation (3) is a difference of two tensor each is second rank 

covariant tensor. Hence R.H.S. of equation (3) is a second rank covariant 

tensor. Therefore  L.H.S. of equation (3) is also second rank covariant 

tensor. 

𝑖. 𝑒.
𝜕𝐴𝑖

𝜕𝑥𝑘
−

𝜕𝐴𝑘

𝜕𝑥𝑖
 is second rank covariant tensor. 

EXAMPLE4: If 𝐴𝑖𝑘  is an anti-symmetric tensor of the second order, 

show that  

𝜕𝐴𝑖𝑘

𝜕𝑥𝑚
+

𝜕𝐴𝑘𝑚

𝜕𝑥𝑖
+

𝜕𝐴𝑚𝑖

𝜕𝑥𝑘
 is a tensor. 

SOLUTION: Suppose 𝐴𝑖𝑘  is an anti-symmetric tensor so that 

𝐴𝑖𝑘 = −𝐴𝑘𝑖 

𝐻𝑒𝑛𝑐𝑒                                  𝐴𝑖𝑘 + 𝐴𝑘𝑖 = 0                                                    … (1) 

We claim 

                        𝐴𝑖𝑘,𝑚 + 𝐴𝑘𝑚,𝑖 + 𝐴𝑚𝑖,𝑘 =
𝜕𝐴𝑖𝑘

𝜕𝑥𝑚
+

𝜕𝐴𝑘𝑚

𝜕𝑥𝑖
+

𝜕𝐴𝑚𝑖

𝜕𝑥𝑘
             … (2) 

L.H.S. of equation (2) 

                  = (
𝜕𝐴𝑖𝑘

𝜕𝑥𝑚
− 𝐴𝑎𝑘Γ𝑖𝑚

𝑎 − 𝐴𝑖𝑎Γ𝑘𝑚
𝑎 ) − (

𝜕𝐴𝑘𝑚

𝜕𝑥𝑖
− 𝐴𝑎𝑚Γ𝑘𝑖

𝑎 − 𝐴𝑘𝑎Γ𝑚𝑖
𝑎 ) 

                                                                            + (
𝜕𝐴𝑚𝑖

𝜕𝑥𝑘
− 𝐴𝑎𝑖Γ𝑚𝑘

𝑎 − 𝐴𝑚𝑎Γ𝑖𝑘𝐹
𝑎 ) 

                    = (
𝜕𝐴𝑖𝑘

𝜕𝑥𝑚
+

𝜕𝐴𝑘𝑚

𝜕𝑥𝑖
+

𝜕𝐴𝑚𝑖

𝜕𝑥𝑘
) − (𝐴𝑎𝑘 + 𝐴𝑘𝑎)Γ𝑚𝑖

𝑎  

                                                                   −(𝐴𝑖𝑎 + 𝐴𝑎𝑖)Γ𝑚𝑘
𝑎 − (𝐴𝑎𝑚 + 𝐴𝑚𝑎)Γ𝑖𝑘

𝑎  
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                    = (
𝜕𝐴𝑖𝑘

𝜕𝑥𝑚
+

𝜕𝐴𝑘𝑚

𝜕𝑥𝑖
+

𝜕𝐴𝑚𝑖

𝜕𝑥𝑘
) 

From equation (1) 

                   = 𝑅. 𝐻. 𝑆 𝑜𝑓 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2) 

Since L.H.S. of equation (2) is sum of tensors of rank 3 therefore L.H.S. 

and R.H.S. of equation (2) is also tensor of rank 3. 

SELF CHECK QUESTIONS 

A. The rank of the covariant derivative of a covariant tensor of second 

rank is: 

a) One 

b) Two 

c) Three 

d) Four 

B. The geodesics in three dimensional Euclidean space are: 

a) Straight lines 

b) Spheres 

c) Paraboloids 

d) None of these 

C. The differential equation of the geodesic is: 

      𝑎) 𝑎2 {(
𝑑𝑟

𝑑𝜃
)

2

+ 𝑟2} = 𝑘2𝑟4 

       𝑏) 𝑎2 {(
𝑑𝑟

𝑑𝜃
)

2

+ 𝑟2} = 𝑟4 

       𝑐) 𝑎2 {(
𝑑𝑟

𝑑𝜃
)

2

− 𝑟2} = 𝑘2𝑟4 

d) None of these 

D. With usual symbols, the differential equation: 

𝑑2𝑥𝑝

𝑑𝑠2
+

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
Γ𝑖𝑗

𝑝
= 0 

a) Riemannian equation 

b) Newtonian equation 

c) Geodesic equation 

d) Metric equation 
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8.15 SUMMARY:-  

In this unit, we have studied essential concepts in differential geometry 

and tensor calculus relevant to curved spaces and general relativity. 

Christoffel symbols were introduced as mathematical tools that help 

define how vectors change in curved spaces. We explored the concept of a 

geodesic, which is the shortest path between two points in a curved space, 

governed by geodesic equations. The unit also covered covariant 

differentiation of tensors, which extends the concept of differentiation to 

curved spaces while preserving tensorial properties. The gradient of a 

scalar gives the direction of the greatest rate of increase of the scalar field, 

while derived vector projection involves projecting vectors along 

specific directions. We studied the tendency of a vector, a notion 

capturing how a vector changes along a curve. Furthermore, we learned 

about the curl and divergence of a vector field, measuring the field’s 

rotation and outward flux, respectively. The parallel displacement of 

vectors explained how vectors can be transported while maintaining their 

direction relative to the space. The concept of principal normal relates to 

curvature in a curve, helping to define the plane of curvature. Finally, we 

explored geodesic coordinates, where Christoffel symbols vanish at a 

point simplifying calculations, and natural coordinates, which are 

adapted to the geometry of a specific problem or surface. These concepts 

are crucial for understanding motion, forces, and geometry in curved 

spaces. 

 

8.16 GLOSSARY:-  

 Geodesic: The shortest path between two points in a curved space 

or spacetime, representing the natural trajectory of a free particle 

under no external forces. 

 Christoffel Symbols: Mathematical expressions derived from the 

metric tensor, used to describe how coordinate bases change from 

point to point in a curved space. 

 Covariant Derivative: A generalization of the derivative that 

accounts for curvature, allowing for the proper differentiation of 

tensors in curved spaces. 

 Gradient of a Scalar: A vector field that points in the direction of 

the greatest rate of increase of a scalar function, defined as the 

covariant derivative of the scalar. 
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 Derived Vector Projection: The component of a vector projected 

in a specified direction, often used in describing motion along 

curves. 

 Tendency of a Vector: Describes the change in direction and 

magnitude of a vector along a curve or field in a manifold. 

 Curl of a Vector: A measure of the rotational tendency of a vector 

field; in curved space, defined using covariant derivatives. 

 Divergence of a Vector: A scalar measure of how much a vector 

field spreads out or converges at a point; calculated using the 

covariant derivative. 

 Parallel Displacement: The process of moving a vector along a 

curve while keeping it parallel according to the rules of curved 

geometry. 

 Principal Normal: A unit vector perpendicular to the tangent of a 

curve, pointing in the direction of the curve’s immediate turning. 

 Geodesic Coordinates: A coordinate system in which the 

Christoffel symbols vanish at a point, simplifying the form of 

geodesic equations locally. 

 Natural Coordinates: Coordinates chosen to simplify a problem 

based on the geometry or symmetry of the space, often aligned 

with curves or surfaces. 

 Affine Parameter (λ): A parameter along the geodesic that 

preserves the form of the geodesic equation and is often 

proportional to proper time or arc length. 

 Manifold: A mathematical space that locally resembles Euclidean 

space and allows the definition of tensors and geodesics. 

 

8.17 REFERENCES:-  

 Sean M. Carroll(2019), Spacetime and Geometry: An 

Introduction to General Relativity (2nd Edition), Cambridge 

University Press. 

 José Natário(2021), General Relativity Without Calculus, 

Springer. 

8.18 SUGGESTED READING:-  

 Satya Prakash and K.P. Gupta (Nineteenth Edition, 2019), 

Relativistic Mechanics. 
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Theory of Relativity. 

8.19 TERMINAL QUESTIONS:- 

(TQ-1) Show that  

{
𝑖
𝑖𝑗

} =
𝜕

𝜕𝑥𝑗
𝑙𝑜𝑔√𝑔 

(TQ-2) Define geodesic and obtain their equations with the help of 

variational principle. 

(TQ-3) Show that fundamental tensor is covariant constant. 

(TQ-4) Prove that intrinsic derivative of fundamental tensors 𝑔𝑖𝑗 , 𝑔𝑖𝑗 , 𝑔𝑗
𝑖  

vanish. 

(TQ-5) Find the condition of the tensor 𝐴𝑖,𝑗 to be symmetric. 

(TQ-6) Show that unit tangent to a geodesic suffers a parallel 

displacement along the geodesic. 

(TQ-7)  Show that 

Γ𝑖𝑗,𝑘 + Γ𝑗𝑘,𝑖 + Γ𝑘𝑖,𝑗 =
1

2
(

𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
+

𝜕𝑔𝑗𝑘

𝜕𝑥𝑖
+

𝜕𝑔𝑖𝑘

𝜕𝑥𝑗
) 

8.20 ANSWERS:- 

SELF CHECK ANSWERS  

A. c) 

B. a) 

C. a) 

D. c) 
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UNIT 9:-Tensor of Curvature  

CONTENTS: 
9.1      Introduction 

9.2      Objectives 

9.3      Riemannian Christoffel Tensor 

9.4      Covariant Curvature Tensor 

9.5      Flat Space Time 

9.6      Summary 

9.7      Glossary 

9.8      References 

9.9      Suggested Reading  

9.10     Terminal questions 

9.11     Answers  

 

9.1 INTRODUCTION:-  

The Tensor of Curvature, commonly known as the Riemann Curvature 

Tensor, is a fundamental object in differential geometry and general 

relativity that measures the intrinsic curvature of a differentiable manifold. 

It provides a precise mathematical description of how vectors change 

when parallel transported around infinitesimal loops, revealing the 

manifold’s deviation from flatness. Denoted as 𝑅𝜎𝜇𝑣
 𝜌

, the tensor depends 

on the metric and its derivatives, and encapsulates the effects of 

gravitational fields in Einstein’s theory. It is essential for defining other 

important curvature-related tensors, such as the Ricci Tensor and the 

Scalar Curvature, and plays a crucial role in the Einstein Field Equations, 

governing the dynamics of space-time under the influence of mass and 

energy. 

9.2 OBJECTIVES:-  

After studying this unit, the learner’s will be able to  

 T explain Riemannian Christoffel tensor. 

 To solve xplain properties of covariant curvature tensor. 

 To prove Bianchi identity. 

 To discuss flat space time. 
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9.3 RIEMANNIAN CHRISTOFFEL TENSOR:-  

Let 𝐴𝑖 be a covariant vector. 

Write 𝐴𝑖,𝑗 = 𝐴𝑖𝑗  , 𝐴𝑖𝑗,𝑘 = 𝐴𝑖𝑗𝑘  

            𝐴𝑖,𝑗 =
𝜕𝐴𝑖

𝜕𝑥𝑗
− 𝐴𝑎Γ𝑖𝑗

𝑎 = 𝐴𝑖𝑗 

 

          𝐴𝑖𝑗,𝑘 =
𝜕𝐴𝑖𝑗

𝜕𝑥𝑘
− 𝐴𝑎𝑗Γ𝑖𝑘

𝑎 − 𝐴𝑖𝑎Γ𝑗𝑘
𝑎  

                   =
𝜕

𝜕𝑥𝑘
(

𝜕𝐴𝑖

𝜕𝑥𝑗
− 𝐴𝑎Γ𝑖𝑗

𝑎) − Γ𝑖𝑘
𝑎 (

𝜕𝐴𝑎

𝜕𝑥𝑗
− 𝐴𝑏Γ𝑎𝑗

𝑏 ) 

                                                                                                  −Γ𝑗𝑘
𝑎 (

𝜕𝐴𝑖

𝜕𝑥𝑎
− 𝐴𝑏Γ𝑖𝑎

𝑏 ) 

                   =
𝜕2𝐴𝑖

𝜕𝑥𝑗𝜕𝑥𝑘
− Γ𝑖𝑗

𝑎
𝜕𝐴𝑎

𝜕𝑥𝑘
− 𝐴𝑎

𝜕Γ𝑖𝑗
𝑎

𝜕𝑥𝑘
− Γ𝑖𝑘

𝑎
𝜕𝐴𝑎

𝜕𝑥𝑗
+ 𝐴𝑏Γ𝑎𝑗

𝑏 Γ𝑖𝑘
𝑎 − Γ𝑗𝑘

𝑎
𝜕𝐴𝑖

𝜕𝑥𝑎
 

                                                                                                                    +𝐴𝑏Γ𝑖𝑎
𝑏 Γ𝑗𝑘

𝑎  

Rearranging the terms 

       𝐴𝑖𝑗,𝑘 = (
𝜕2𝐴𝑖

𝜕𝑥𝑗𝜕𝑥𝑘
− Γ𝑗𝑘

𝑎
𝜕𝐴𝑖

𝜕𝑥𝑎
+ 𝐴𝑏Γ𝑖𝑎

𝑏 Γ𝑗𝑘
𝑎 ) − Γ𝑖𝑗

𝑎
𝜕𝐴𝑎

𝜕𝑥𝑘
− Γ𝑖𝑘

𝑎
𝜕𝐴𝑎

𝜕𝑥𝑗
 

                                                                                    −𝐴𝑎

𝜕Γ𝑖𝑗
𝑎

𝜕𝑥𝑘
+ 𝐴𝑏Γ𝑎𝑗

𝑏 Γ𝑖𝑘
𝑎   … (1) 

Interchanging 𝑗 𝑎𝑛𝑑 𝑘 in the equation (1), we get 

       𝐴𝑖𝑘,𝑗 = (
𝜕2𝐴𝑖

𝜕𝑥𝑘𝜕𝑥𝑗
− Γ𝑘𝑗

𝑎
𝜕𝐴𝑖

𝜕𝑥𝑎
+ 𝐴𝑏Γ𝑖𝑎

𝑏 Γ𝑘𝑗
𝑎 ) − Γ𝑖𝑘

𝑎
𝜕𝐴𝑎

𝜕𝑥𝑗
− Γ𝑖𝑗

𝑎
𝜕𝐴𝑎

𝜕𝑥𝑘
 

                                                                                    −𝐴𝑎

𝜕Γ𝑖𝑘
𝑎

𝜕𝑥𝑗
+ 𝐴𝑏Γ𝑎𝑘

𝑏 Γ𝑖𝑗
𝑎   … (2) 

Subtracting equation (2) from equation (1), we get 

           𝐴𝑖𝑗,𝑘 − 𝐴𝑖𝑘,𝑗 = −𝐴𝑎

𝜕Γ𝑖𝑗
𝑎

𝜕𝑥𝑘
+ 𝐴𝑏Γ𝑎𝑗

𝑏 Γ𝑖𝑘
𝑎 + 𝐴𝑎

𝜕Γ𝑖𝑘
𝑎

𝜕𝑥𝑗
− 𝐴𝑏Γ𝑎𝑘

𝑏 Γ𝑖𝑗
𝑎 
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           𝐴𝑖𝑗,𝑘 − 𝐴𝑖𝑘,𝑗 = 𝐴𝑎 (−
𝜕Γ𝑖𝑗

𝑎

𝜕𝑥𝑘
+ Γ𝑏𝑗

𝑎 Γ𝑖𝑘
𝑏 +

𝜕Γ𝑖𝑘
𝑎

𝜕𝑥𝑗
− Γ𝑏𝑘

𝑎 Γ𝑖𝑗
𝑏)  

Taking            𝑅𝑖𝑗𝑘
𝑎 = −

𝜕Γ𝑖𝑗
𝑎

𝜕𝑥𝑘
+ Γ𝑏𝑗

𝑎 Γ𝑖𝑘
𝑏 +

𝜕Γ𝑖𝑘
𝑎

𝜕𝑥𝑗
− Γ𝑏𝑘

𝑎 Γ𝑖𝑗
𝑏   

We get               𝐴𝑖𝑗,𝑘 − 𝐴𝑖𝑘,𝑗 = 𝐴𝑎𝑅𝑖𝑗𝑘
𝑎                                                        … (3) 

A difference of two tensors of rank three each makes up the first element 

of (3). As a result, both the first and second members of (3) are covariant 

tensors of rank three. The inner product of 𝐴𝑎 𝑎𝑛𝑑 𝑅𝑖𝑗𝑘
𝑎  is a tensor of rank 

three since the covariant vector 𝐴𝑎 is outside the bracket, and the quantity 

inside the bracket is a mixed tensor of type 𝑅𝑖𝑗𝑘
𝑎  of rank four, according to 

the quotient law. The symbols 𝑅𝑖𝑗𝑘
𝑎  are known as Riemann's symbols of 

the second kind, and the tensor 𝑅𝑖𝑗𝑘
𝑎  is known as the Curvature tensor.  

The following have the same meaning: 

Riemann Christoffel's tensor, Riemann Christoffel curvature tensor, 

Curvature tensor. 

 

9.4 COVARIANT CURVATURE TENSOR:-  

We define  

𝑅ℎ𝑖𝑗𝑘 = 𝑔ℎ𝑎𝑅𝑖𝑗𝑘
𝑎  

𝑅ℎ𝑖𝑗𝑘  is thus referred to as the covariant curvature tensor. 

The symbols 𝑅ℎ𝑖𝑗𝑘  are referred to as Riemann’s symbol of the first kind. 

Now, 

          𝑅ℎ𝑖𝑗𝑘 = 𝑔ℎ𝑎𝑅𝑖𝑗𝑘
𝑎  

                     = 𝑔ℎ𝑎 (−
𝜕Γ𝑖𝑗

𝑎

𝜕𝑥𝑘
+

𝜕Γ𝑖𝑘
𝑎

𝜕𝑥𝑗
+ Γ𝑖𝑘

𝑏 Γ𝑏𝑗
𝑎 − Γ𝑖𝑗

𝑏Γ𝑏𝑘
𝑎 ) 

                     = −
𝜕

𝜕𝑥𝑘
𝑔ℎ𝑎Γ𝑖𝑗

𝑎 + Γ𝑖𝑗
𝑎

𝜕𝑔ℎ𝑎

𝜕𝑥𝑘
+

𝜕

𝜕𝑥𝑗
𝑔ℎ𝑎Γ𝑖𝑘

𝑎 − Γ𝑖𝑘
𝑎

𝜕𝑔ℎ𝑎

𝜕𝑥𝑗
+ Γ𝑖𝑘

𝑏 Γ𝑏𝑗,ℎ 

                                                                                                                        −Γ𝑖𝑗
𝑏Γ𝑏𝑘,ℎ 

                     = −
𝜕

𝜕𝑥𝑘
Γ𝑖𝑗,ℎ + Γ𝑖𝑗

𝑎(Γℎ𝑘,𝑎 + Γ𝑎𝑘,ℎ) +
𝜕

𝜕𝑥𝑗
Γ𝑖𝑘,ℎ 

                                                             −Γ𝑖𝑘
𝑎 (Γℎ𝑗,𝑎 + Γ𝑎𝑗,ℎ) + Γ𝑖𝑘

𝑏 Γ𝑏𝑗,ℎ − Γ𝑖𝑗
𝑏Γ𝑏𝑘,ℎ 
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                     =
1

2
(

𝜕2𝑔𝑖𝑗

𝜕𝑥ℎ𝜕𝑥𝑘
−

𝜕2𝑔𝑗ℎ

𝜕𝑥𝑖𝜕𝑥𝑘
−

𝜕2𝑔𝑖ℎ

𝜕𝑥𝑗𝜕𝑥𝑘
+

𝜕2𝑔ℎ𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
+

𝜕2𝑔𝑖ℎ

𝜕𝑥𝑗𝜕𝑥𝑘

−
𝜕2𝑔𝑖𝑘

𝜕𝑥𝑗𝜕𝑥ℎ
) − Γ𝑖𝑘

𝑎 Γℎ𝑗,𝑎 + Γ𝑖𝑗
𝑎Γℎ𝑘,𝑎 

         𝑅ℎ𝑖𝑗𝑘 =
1

2
(

𝜕2𝑔ℎ𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
+

𝜕2𝑔𝑖𝑗

𝜕𝑥ℎ𝜕𝑥𝑘
−

𝜕2𝑔𝑖𝑘

𝜕𝑥𝑗𝜕𝑥ℎ
−

𝜕2𝑔ℎ𝑗

𝜕𝑥𝑖𝜕𝑥𝑘
) + 𝑔𝑎𝑏Γ𝑖𝑗

𝑎Γℎ𝑘
𝑏  

                                                                                                            −𝑔𝑎𝑏Γ𝑖𝑘
𝑎 Γℎ𝑗

𝑏  

This is required relation for 𝑅ℎ𝑖𝑗𝑘 . 

Theorem: 1. Properties of covariant curvature tensor. To show that 

covariant curvature tensor 𝑅ℎ𝑖𝑗𝑘  is  

a) Skew-symmetric in the first two indices. 

b) Skew-symmetric in the last two indices. 

c) Symmetric in two pairs of indices. 

Proof: We know that 

         𝑅ℎ𝑖𝑗𝑘 =
1

2
(

𝜕2𝑔ℎ𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
+

𝜕2𝑔𝑖𝑗

𝜕𝑥ℎ𝜕𝑥𝑘
−

𝜕2𝑔𝑖𝑘

𝜕𝑥𝑗𝜕𝑥ℎ
−

𝜕2𝑔ℎ𝑗

𝜕𝑥𝑖𝜕𝑥𝑘
) + 𝑔𝑎𝑏Γ𝑖𝑗

𝑎Γℎ𝑘
𝑏  

                                                                                                        −𝑔𝑎𝑏Γ𝑖𝑘
𝑎 Γℎ𝑗

𝑏       … (1)  

We have to show that 

a) 𝑅ℎ𝑖𝑗𝑘 = −𝑅𝑖ℎ𝑗𝑘  

b) 𝑅ℎ𝑖𝑗𝑘 = −𝑅ℎ𝑖𝑘𝑗  

c) 𝑅ℎ𝑖𝑗𝑘 = 𝑅𝑗𝑘ℎ𝑖 

Interchanging the suffixes ℎ 𝑎𝑛𝑑 𝑖 in equation (1), we get 

         𝑅𝑖ℎ𝑗𝑘 =
1

2
(

𝜕2𝑔𝑖𝑘

𝜕𝑥ℎ𝜕𝑥𝑗
+

𝜕2𝑔ℎ𝑗

𝜕𝑥𝑖𝜕𝑥𝑘
−

𝜕2𝑔ℎ𝑘

𝜕𝑥𝑗𝜕𝑥𝑖
−

𝜕2𝑔𝑖𝑗

𝜕𝑥ℎ𝜕𝑥𝑘
) + 𝑔𝑎𝑏Γℎ𝑗

𝑎 Γ𝑖𝑘
𝑏  

                                                                                                        −𝑔𝑎𝑏Γℎ𝑘
𝑎 Γ𝑖𝑗

𝑏 

Comparing the above equation with equation (1), we get 

𝑅ℎ𝑖𝑗𝑘 = −𝑅𝑖ℎ𝑗𝑘  
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Hence the result a) 

Interchanging the suffixes 𝑗 𝑎𝑛𝑑 𝑘 in equation (1), we get 

𝑅ℎ𝑖𝑘𝑗 =
1

2
(

𝜕2𝑔ℎ𝑗

𝜕𝑥𝑖𝜕𝑥𝑘
+

𝜕2𝑔𝑖𝑘

𝜕𝑥ℎ𝜕𝑥𝑗
−

𝜕2𝑔𝑖𝑗

𝜕𝑥𝑘𝜕𝑥ℎ
−

𝜕2𝑔ℎ𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
) + 𝑔𝑎𝑏Γ𝑖𝑘

𝑎 Γℎ𝑗
𝑏  

                                                                                                        −𝑔𝑎𝑏Γ𝑖𝑗
𝑎Γℎ𝑘

𝑏  

Comparing the above equation with equation (1), we get 

𝑅ℎ𝑖𝑗𝑘 = −𝑅ℎ𝑖𝑘𝑗  

Hence the result b) 

Interchanging the suffixes ℎ 𝑎𝑛𝑑 𝑗 in equation (1), we get 

𝑅𝑗𝑖ℎ𝑘 =
1

2
(

𝜕2𝑔𝑗𝑘

𝜕𝑥𝑖𝜕𝑥ℎ
+

𝜕2𝑔𝑖ℎ

𝜕𝑥𝑗𝜕𝑥𝑘
−

𝜕2𝑔𝑖𝑘

𝜕𝑥ℎ𝜕𝑥𝑗
−

𝜕2𝑔𝑗ℎ

𝜕𝑥𝑖𝜕𝑥𝑘
) + 𝑔𝑎𝑏Γ𝑖ℎ

𝑎 Γ𝑗𝑘
𝑏  

                                                                                                        −𝑔𝑎𝑏Γ𝑖𝑘
𝑎 Γ𝑗ℎ

𝑏  

Again interchanging the suffixes 𝑖 𝑎𝑛𝑑 𝑘 in above equation, we get 

𝑅𝑗𝑘ℎ𝑖 =
1

2
(

𝜕2𝑔𝑘ℎ

𝜕𝑥𝑗𝜕𝑥𝑖
+

𝜕2𝑔𝑗𝑖

𝜕𝑥𝑘𝜕𝑥ℎ
−

𝜕2𝑔𝑘𝑖

𝜕𝑥𝑗𝜕𝑥ℎ
−

𝜕2𝑔𝑗ℎ

𝜕𝑥𝑘𝜕𝑥𝑖
) + 𝑔𝑎𝑏Γ𝑘ℎ

𝑎 Γ𝑗𝑖
𝑏 

                                                                                                        −𝑔𝑎𝑏Γ𝑘𝑖
𝑎 Γ𝑗ℎ

𝑏  

Comparing the above equation with equation (1), we get 

𝑅ℎ𝑖𝑗𝑘 = 𝑅𝑗𝑘ℎ𝑖 

Theorem: 2. Prove the cyclic property 

𝑅ℎ𝑖𝑗𝑘 + 𝑅ℎ𝑗𝑘𝑖 + 𝑅ℎ𝑘𝑖𝑗 = 0 

Proof: We know that 

         𝑅ℎ𝑖𝑗𝑘 =
1

2
(

𝜕2𝑔ℎ𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
+

𝜕2𝑔𝑖𝑗

𝜕𝑥ℎ𝜕𝑥𝑘
−

𝜕2𝑔𝑖𝑘

𝜕𝑥𝑗𝜕𝑥ℎ
−

𝜕2𝑔ℎ𝑗

𝜕𝑥𝑖𝜕𝑥𝑘
) + 𝑔𝑎𝑏Γ𝑖𝑗

𝑎Γℎ𝑘
𝑏  

                                                                                                            −𝑔𝑎𝑏Γ𝑖𝑘
𝑎 Γℎ𝑗

𝑏  

From the above equation we have 



Theory of Relativity  MAT609 

Department of Mathematics  

Uttarakhand Open University Page 177 
 

         𝑅ℎ𝑗𝑘𝑖 =
1

2
(

𝜕2𝑔𝑗𝑘

𝜕𝑥ℎ𝜕𝑥𝑖
+

𝜕2𝑔ℎ𝑖

𝜕𝑥𝑗𝜕𝑥𝑘
−

𝜕2𝑔𝑗𝑖

𝜕𝑥ℎ𝜕𝑥𝑘
−

𝜕2𝑔ℎ𝑘

𝜕𝑥𝑗𝜕𝑥𝑖
) + 𝑔𝑎𝑏Γ𝑗𝑘

𝑎 Γℎ𝑖
𝑏  

                                                                                                            −𝑔𝑎𝑏Γ𝑗𝑖
𝑎Γℎ𝑘

𝑏  

𝑎𝑛𝑑 𝑅ℎ𝑘𝑖𝑗 =
1

2
(

𝜕2𝑔𝑘𝑖

𝜕𝑥𝑗𝜕𝑥ℎ
+

𝜕2𝑔𝑗ℎ

𝜕𝑥𝑘𝜕𝑥𝑖
−

𝜕2𝑔𝑘𝑗

𝜕𝑥ℎ𝜕𝑥𝑖
−

𝜕2𝑔ℎ𝑖

𝜕𝑥𝑘𝜕𝑥𝑗
) + 𝑔𝑎𝑏Γ𝑘𝑖

𝑎 Γ𝑗ℎ
𝑏  

                                                                                                            −𝑔𝑎𝑏Γ𝑘𝑗
𝑎 Γℎ𝑖

𝑏  

Adding the above three equation, we get 

𝑅ℎ𝑖𝑗𝑘 + 𝑅ℎ𝑗𝑘𝑖 + 𝑅ℎ𝑘𝑖𝑗 = 0 

Theorem: 3. Contraction of 𝑹𝒊𝒋𝒌
𝒂 . To show that the curvature tensor may 

be contracted in two ways. One of these leads to a zero tensor and the 

other method leads to Ricci tensor. 

Proof: We have 

                          𝑅𝑖𝑗𝑘
𝑎 = −

𝜕Γ𝑖𝑗
𝑎

𝜕𝑥𝑘
+

𝜕Γ𝑖𝑘
𝑎

𝜕𝑥𝑗
− Γ𝑏𝑘

𝑎 Γ𝑖𝑗
𝑏 + Γ𝑖𝑘

𝑏 Γ𝑏𝑗
𝑎                            … (1) 

Three methods exist for contracting the curvature tensor. A zero tensor is 

the result of one of them. 

i. Contraction of 𝑅𝑖𝑗𝑘
𝑎  with respect to 𝑎 𝑎𝑛𝑑 𝑖 in equation (1) 

𝑅𝑎𝑗𝑘
𝑎 = −

𝜕Γ𝑎𝑗
𝑎

𝜕𝑥𝑘
+

𝜕Γ𝑎𝑘
𝑎

𝜕𝑥𝑗
− Γ𝑏𝑘

𝑎 Γ𝑎𝑗
𝑏 + Γ𝑎𝑘

𝑏 Γ𝑏𝑗
𝑎  

                                 = −
𝜕2𝑙𝑜𝑔√𝑔

𝜕𝑥𝑘𝜕𝑥𝑗
+

𝜕2𝑙𝑜𝑔√𝑔

𝜕𝑥𝑗𝜕𝑥𝑘
− Γ𝑏𝑘

𝑎 Γ𝑎𝑗
𝑏 + Γ𝑏𝑘

𝑎 Γ𝑎𝑗
𝑏  

(on interchanging dummy suffixes a and b in the last term)  

∴                                  𝑅𝑎𝑗𝑘
𝑎 = 0 

ii. Contraction of 𝑅𝑖𝑗𝑘
𝑎  with respect to 𝑎 𝑎𝑛𝑑 𝑘 in equation (1) 

This approach produces the Ricci tensor, a significant tensor 

represented by 𝑅𝑖𝑗, which is defined as 

 

           𝑅𝑖𝑗 = 𝑅𝑖𝑗𝑎
𝑎 = −

𝜕Γ𝑖𝑗
𝑎

𝜕𝑥𝑎
+

𝜕Γ𝑖𝑎
𝑎

𝜕𝑥𝑗
− Γ𝑏𝑎

𝑎 Γ𝑖𝑗
𝑏 + Γ𝑖𝑎

𝑏 Γ𝑏𝑗
𝑎  

           𝑅𝑖𝑗 = −
𝜕Γ𝑖𝑗

𝑎

𝜕𝑥𝑎
+

𝜕2𝑙𝑜𝑔√𝑔

𝜕𝑥𝑗𝜕𝑥𝑖
− Γ𝑖𝑗

𝑏
𝜕𝑙𝑜𝑔√𝑔

𝜕𝑥𝑏
+ Γ𝑖𝑎

𝑏 Γ𝑏𝑗
𝑎           … (2) 

Interchanging 𝑖 𝑎𝑛𝑑 𝑗 in equation (2), we get 
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           𝑅𝑗𝑖 = −
𝜕Γ𝑗𝑖

𝑎

𝜕𝑥𝑎
+

𝜕2𝑙𝑜𝑔√𝑔

𝜕𝑥𝑖𝜕𝑥𝑗
− Γ𝑗𝑖

𝑏
𝜕𝑙𝑜𝑔√𝑔

𝜕𝑥𝑏
+ Γ𝑗𝑎

𝑏 Γ𝑏𝑖
𝑎            … (3) 

Comparing equation (2) and (3), we get 

 𝑅𝑖𝑗 =  𝑅𝑗𝑖 

Hence it is symmetric tensor. 

iii. Contraction of 𝑅𝑖𝑗𝑘
𝑎  with respect to 𝑎 𝑎𝑛𝑑 𝑘 in equation (1) 

Here we get the Ricci tensor with negative sign. For 

𝑅𝑖𝑎𝑘
𝑎 = −𝑅𝑖𝑘𝑎

𝑎 = −𝑅𝑖𝑘 = negative of Ricci tensor  

𝑓𝑜𝑟        𝑅𝑖𝑗𝑘
𝑎 = −𝑅𝑖𝑘𝑗

𝑎   

Theorem: 4. Bianchi identity: To prove that 

𝑅𝑖𝑗𝑘,𝑙
𝑎 + 𝑅𝑖𝑘𝑙,𝑗

𝑎 + 𝑅𝑖𝑙𝑗,𝑘
𝑎 = 0 

𝑜𝑟                                      𝑅ℎ𝑖𝑗𝑘,𝑙 + 𝑅ℎ𝑖𝑘𝑙,𝑗 + 𝑅ℎ𝑖𝑙𝑗,𝑘 = 0 

Proof: We know that 

𝑅𝑖𝑗𝑘
𝑎 = −

𝜕Γ𝑖𝑗
𝑎

𝜕𝑥𝑘
+

𝜕Γ𝑖𝑘
𝑎

𝜕𝑥𝑗
− Γ𝑏𝑘

𝑎 Γ𝑖𝑗
𝑏 + Γ𝑖𝑘

𝑏 Γ𝑏𝑗
𝑎  

Introducing geodesic co-ordinates with the pole at 𝑃0, then 

Γ𝑖𝑗
𝑘 = 0 = Γ𝑖𝑗,𝑘  𝑎𝑡 𝑃0 

At 𝑃0, covariant derivative reduces to ordinary partial derivative. 

Differentiating covariantly with respect to  𝑥𝑙  and them imposing the 

condition of geodesic co-ordinates with the pole at 𝑃0 , we get  

𝑅𝑖𝑗𝑘,𝑙
𝑎 = −

𝜕2Γ𝑖𝑗
𝑎

𝜕𝑥𝑙𝜕𝑥𝑘
+

𝜕2Γ𝑖𝑘
𝑎

𝜕𝑥𝑙𝜕𝑥𝑗
 𝑎𝑡 𝑃0 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑅𝑖𝑘𝑙,𝑗
𝑎 = −

𝜕2Γ𝑖𝑘
𝑎

𝜕𝑥𝑗𝜕𝑥𝑙
+

𝜕2Γ𝑖𝑙
𝑎

𝜕𝑥𝑗𝜕𝑥𝑘
 𝑎𝑡 𝑃0 

𝑅𝑖𝑙𝑗,𝑘
𝑎 = −

𝜕2Γ𝑖𝑙
𝑎

𝜕𝑥𝑘𝜕𝑥𝑗
+

𝜕2Γ𝑖𝑗
𝑎

𝜕𝑥𝑘𝜕𝑥𝑙
 𝑎𝑡 𝑃0 

Adding the above three equations, we get 

𝑅𝑖𝑗𝑘,𝑙
𝑎 + 𝑅𝑖𝑘𝑙,𝑗

𝑎 + 𝑅𝑖𝑙𝑗,𝑘
𝑎 = 0 𝑎𝑡 𝑃0   … (1) 
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Multiplying equation (1) by 𝑔ℎ𝑎  where  𝑔ℎ𝑎  is constant under covariant 

differentiation, i.e. 

 𝑔ℎ𝑎𝑅𝑖𝑗𝑘,𝑙
𝑎 = ( 𝑔ℎ𝑎𝑅𝑖𝑗𝑘

𝑎 ), 𝑙 = 𝑅ℎ𝑖𝑗𝑘,𝑙, we get 

𝑅ℎ𝑖𝑗𝑘,𝑙 + 𝑅ℎ𝑖𝑘𝑙,𝑗 + 𝑅ℎ𝑖𝑙𝑗,𝑘 = 0 … (2) 

Given that each term in this equation is a tensor component, (2) is a 

tensorial equation. In other words, it is true in all coordinate systems. 𝑃0  
is also an arbitrary point of 𝑉𝑛 . As a result, equation (2) holds for all 

coordinate systems in Riemannian space. As a tribute to its discoverer, 

Bianchi, it is known as Bianchi identity. 

Hence equation (1) and (2) gives required result. 

Theorem: 5. To show that curvature tensor has 20 components in four 

dimensional space.  

Proof: Let 𝑉𝑛  be a Riemannian space with 𝑛  dimensions. It has 𝑛4 

components since 𝑅ℎ𝑖𝑗𝑘  is of rank four. None of them are unrelated to the 

properties listed below that belong to 𝑅ℎ𝑖𝑗𝑘 : 

                                 𝑅ℎ𝑖𝑗𝑘 = −𝑅ℎ𝑖𝑘𝑗  (𝑎𝑛𝑡𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 

𝑅ℎ𝑖𝑗𝑘 = 𝑅𝑗𝑘ℎ𝑖  (𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 

  𝑅ℎ𝑖𝑗𝑘 + 𝑅ℎ𝑗𝑘𝑖 + 𝑅ℎ𝑘𝑖𝑗 = 0 (𝑐𝑦𝑐𝑙𝑖𝑐 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 

Case I: When 𝑅ℎ𝑖𝑗𝑘  has one unlike suffix, i.e. of the type 𝑅ℎℎℎℎ. 

By anti-symmetric property, 

𝑅ℎℎℎℎ = −𝑅ℎℎℎℎ  

⇒ 𝑅ℎℎℎℎ = 0 

The curvature tensor itself vanishes, indicating that 𝑅ℎℎℎℎ  has no 

component. 

Case II: When it contains two unlike suffixes, i.e., of the type, 𝑅ℎ𝑖ℎ𝑖  ℎ can 

be had in 𝑛 ways. Once a specific value is assigned to ℎ, the remaining 

𝑛 − 1 values can be assigned to 𝑖. There are thus 𝑛(𝑛 − 1) ways to have 

ℎ 𝑎𝑛𝑑 𝑖. 
By anti-symmetric property, 

𝑅ℎ𝑖ℎ𝑖 = −𝑅𝑖ℎℎ𝑖 = 𝑅𝑖ℎ𝑖ℎ  

𝑜𝑟 𝑅ℎ𝑖ℎ𝑖 = 𝑅𝑖ℎ𝑖ℎ  
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i.e. 𝑖 𝑎𝑛𝑑 ℎ be interchanged. 

Due to this property the number  𝑛(𝑛 − 1) is reduced to (𝑛/2)(𝑛 − 1).  

By cyclic property, 

𝑅ℎ𝑖ℎ𝑖 + 𝑅ℎℎ𝑖𝑖 + 𝑅ℎ𝑖𝑖ℎ = 0 

𝑜𝑟 − 𝑅ℎ𝑖𝑖ℎ + 0 + 𝑅ℎ𝑖𝑖ℎ = 0  

𝑜𝑟 0 = 0 

Proving the satisfaction of their cyclic property. Because of this property, 

there is no reduction. As a result, 𝑅ℎ𝑖ℎ𝑖  has (𝑛 / 2)(𝑛 −  1) independent 

components. 

Case III: When it has three unlike suffixes, ie., of the type  𝑅ℎ𝑖ℎ𝑗  . It can 

be easily shown that ℎ, 𝑖 𝑎𝑛𝑑 𝑗 can be had 𝑛(𝑛 −  1)(𝑛 −  2) ways. Due 

to symmetric property, this number is reduced to 1/2 𝑛(𝑛 −  1)(𝑛 −  2). 

Consider the cyclic property, 

𝑅ℎ𝑖ℎ𝑗 + 𝑅ℎℎ𝑗𝑖 + 𝑅ℎ𝑗𝑖ℎ = 0 

𝑜𝑟 𝑅ℎ𝑖ℎ𝑗 + 0 + 𝑅𝑖ℎℎ𝑗 = 0 

𝑜𝑟 − 𝑅𝑖ℎℎ𝑗 + 𝑅𝑖ℎℎ𝑗 = 0  

𝑜𝑟 0 = 0 

Therefore satisfying the cyclic property itself. Because of this 

characteristic, there is no reduction. This means that 𝑅ℎ𝑖ℎ𝑗  has (𝑛 /

 2)(𝑛 −  1)(𝑛 −  2) independent components. 

Case IV: When it has four unlike suffixes. i.e. of the type 𝑅ℎ𝑖𝑗𝑘 . 

All the suffixes ℎ, 𝑖, 𝑗 𝑎𝑛𝑑 𝑘 are unequal. 

It can be shown that ℎ, 𝑖, 𝑗 𝑎𝑛𝑑 𝑘 can be had in 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) 

ways. Due to anti-symmetric this no. reduces to 

9.5 FLAT SPACE TIME:-   

If a Galiean frame of reference can be constructed in a given area of the 

world, that area is considered flat or homogeneous.  We know that 

Galilean coordinates can be generated and that the line element 𝑑𝑠² in 

four-dimensional space simplifies to the sum of four squares where guy 
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are constants.  Therefore, if such coordinates can be discovered in the 

space-time for which 𝑔 𝜇𝑣are constants, then the space-time is said to be 

flat. This is an equivalent definition of flat-space time. 

Furthermore, all of the three-index symbols disappear when guy is a 

constant. However, since 3-index symbols do not form a tensor, they 

generally do not also disappear when other coordinates are replaced in the 

same flat region. The Riemann-Christofell tensor, which is made up of 

products and derivatives of Christofell's 3-index symbols, will disappear 

once more when 8µv are constants. Because it is a tensor, it will also 

disappear when other coordinates are substituted in the same flat region. 

Therefore, the vanishing of the Riemann-Christofell tensor is a 

prerequisite for flat-space time. This condition will also be sufficient if the 

converse is also true, i.e., if the Riemann-Chris-tofell tensor vanishes, the 

space-time must be flat. 

Theorem: To prove that vanishing of Riemann Christoffel tensor is a 

necessary and sufficient condition for the flat space-time (or or Euclideam 

space). 

Proof: In above section we have shown that the construction of a uniform 

tor field by parallel displacement of a vector all over the region is 

posssible if 

                                                    𝑅𝜇𝑣𝜎
𝜆 = 0                                 … (1) 

Given four uniform vector fields 𝐴(𝛼)
𝜇

 with the tensor suffix  𝛼 =

 1, 2, 3, 4, eqn. (1) implies 

𝐴(𝛼)
𝜇

; 𝜎 =
𝜕𝐴(𝛼)

𝜇

𝜕𝑥𝜎
+ Γ𝜆𝜎

𝜇
𝐴(𝛼)

𝜆  

                                                
𝜕𝐴(𝛼)

𝜇

𝜕𝑥𝜎 = −Γ𝜆𝜎
𝜇

𝐴(𝛼)
𝜆                          … (2) 

Let's now examine the coordinate transformation law 

                                        𝑑𝑥𝜇 = 𝐴(𝛼)
𝜇

𝑑𝑥̅̅̅̅ 𝛼(𝛼 =  1, 2, 3, 4)        … (3) 

Since 𝑑𝑠2 is an invariant, we obtain 

𝑑𝑠2 = �̅�𝛼𝛽𝑑𝑥̅̅̅̅ 𝛼𝑑𝑥̅̅̅̅ 𝛽 = 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 
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= 𝑔𝜇𝜈𝐴(𝛼)
𝜇

𝑑𝑥̅̅̅̅ 𝛼𝐴(𝛽)
𝜇

𝑑𝑥̅̅̅̅ 𝛽 

                                                     �̅�𝛼𝛽 = 𝑔𝜇𝜈𝐴(𝛼)
𝜇

𝐴(𝛽)
𝜇

               … (4) 

Differentiating above equation w.r.t.𝑥𝜎 , we have 

𝜕�̅�𝛼𝛽

𝜕𝑥𝜎
= 𝑔𝜇𝜈𝐴(𝛼)

𝜇
𝜕𝐴(𝛽)

𝜇

𝜕𝑥𝜎
+ 𝑔𝜇𝜈𝐴(𝛼)

𝑣
𝜕𝐴(𝛼)

𝜇

𝜕𝑥𝜎
+ 𝐴(𝛼)

𝜇
𝐴(𝛽)

𝜇 𝜕𝑔𝜇𝑣

𝜕𝑥𝜎
 

Using (2), we have 

𝜕�̅�𝛼𝛽

𝜕𝑥𝜎
= −𝑔𝜇𝜈𝐴(𝛼)

𝜇
𝐴(𝛽)

𝜆 Γ𝜆𝜎
𝑣 − 𝑔𝜇𝜈𝐴(𝛼)

𝑣 𝐴(𝛽)
𝜆 Γ𝜆𝜎

𝜇
+ 𝐴(𝛼)

𝜇
𝐴(𝛽)

𝜇 𝜕𝑔𝜇𝑣

𝜕𝑥𝜎
 

Changing the dummy suffix, we obtain 

𝜕�̅�𝛼𝛽

𝜕𝑥𝜎
= 𝐴(𝛼)

𝜇
𝐴(𝛽)

𝑣 [−𝑔𝜇𝜈Γ𝜆𝜎
𝑣 − 𝑔𝜆𝜈Γ𝜇𝜎

𝜆 +
𝜕𝑔𝜇𝑣

𝜕𝑥𝜎
] 

= 𝐴(𝛼)
𝜇

𝐴(𝛽)
𝑣 [−Γ𝜇;𝜈𝜎 − Γ𝑣;𝜇𝜎 +

𝜕𝑔𝜇𝑣

𝜕𝑥𝜎
] 

= 𝐴(𝛼)
𝜇

𝐴(𝛽)
𝑣 [−

𝜕𝑔𝜇𝑣

𝜕𝑥𝜎
+

𝜕𝑔𝜇𝑣

𝜕𝑥𝜎
] = 0 

Integrating, we have 

�̅�𝛼𝛽 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑜𝑢𝑡 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 

It is clear from definition that space-time is flat. For flat space time, the 

vanish-or is therefore a necessary and sufficient condition. 

 

SELF CHECK QUESTIONS 

1. Contraction of Riemann- Christoffel tensor leads to  

a) Ricci tensor only 

b) Zero tensor only 

c) Ricci and zero tensors 

d) None of the above 

2. What does the Riemann curvature tensor represent? 

It represents the intrinsic curvature of a manifold and measures 

how vectors change under parallel transport around a loop. 
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3. What is the condition for a spacetime to be flat? 

A spacetime is flat if the Riemann curvature tensor is zero 

everywhere. 

4. Which geometric space is used to model flat spacetime? 

Minkowski spacetime is used to model flat spacetime in special 

relativity. 

5. What role does the curvature tensor play in general relativity? 

It describes how mass and energy curve spacetime and appears in 

the formulation of Einstein’s field equations. 

6. Is curvature always due to gravity? 

Yes, in general relativity, spacetime curvature is interpreted as the 

manifestation of gravity. 

7. Which tensors are derived from the Riemann curvature tensor? 

The Ricci tensor and scalar curvature are derived by contracting 

the Riemann curvature tensor. 

8. What is parallel transport in curved spacetime? 

It is the process of moving a vector along a curve while keeping it 

"parallel" according to the manifold’s geometry. 

9. Does the curvature tensor depend on the coordinate system? 

No, although its components may change, the curvature tensor 

itself is a geometric object independent of coordinates. 

9.7 SUMMARY:-  

In this unit, we have studied the Riemannian Christoffel Tensor, which 

provides the connection coefficients necessary for defining covariant 

derivatives in curved spacetime; the Covariant Curvature Tensor, more 

formally known as the Riemann Curvature Tensor, which measures the 

intrinsic curvature of a manifold and describes how vectors are affected by 

parallel transport; and the concept of Flat Spacetime, an idealized model 

with zero curvature where the Riemann tensor vanishes, typically 

represented by Minkowski spacetime in special relativity. 

9.8 GLOSSARY:-  

 Riemann Curvature Tensor: A fourth-rank tensor that measures 

the curvature of a manifold by describing how vectors change 

when parallel transported around a closed loop. 
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 Christoffel Symbols: Mathematical objects representing 

connection coefficients used to define covariant derivatives and 

geodesics in curved spaces. 

 Covariant Derivative: A derivative that accounts for the curvature 

of space, allowing for differentiation of tensors in a coordinate-

independent way. 

 Ricci Tensor: A second-rank tensor obtained by contracting the 

Riemann curvature tensor, used in Einstein’s field equations to 

describe gravitational effects. 

 Scalar Curvature: A single number derived from the Ricci tensor 

that summarizes the overall curvature of spacetime at a point. 

 Parallel Transport: The process of moving a vector along a curve 

on a manifold such that it remains parallel according to the 

manifold’s connection. 

 Geodesic: The generalization of a straight line to curved spaces, 

representing the shortest path between two points on a curved 

surface. 

 Flat Spacetime: A spacetime with zero curvature where the 

Riemann curvature tensor vanishes, typically modeled by 

Minkowski geometry. 

 Metric Tensor: A symmetric tensor that defines the geometric 

properties of space or spacetime, including distances and angles. 

 Bianchi Identities: Mathematical identities involving the Riemann 

tensor that are crucial in deriving Einstein’s field equations in 

general relativity. 

 

9.9 REFERENCES:-  
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9.11 TERMINAL QUESTIONS:- 
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(TQ-1) Show that 𝑈𝑖,𝑗𝑘 = 𝑈𝑖,𝑘𝑗  for all covariant vector 𝑈𝑖 iff curvature 

tensor is zero. Prove that 

𝑅𝑖𝑗𝑘
𝑙 + 𝑅𝑗𝑘𝑖

𝑙 + 𝑅𝑘𝑖𝑗
𝑙 = 0 

(TQ-2) Show that the vanishing of Riemann-Christoffel tensor is a 

necessary condition for flat space time. Is this condition sufficient also ? 

(TQ-3) Prove that divergence of 𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗  is zero where 𝑅𝑖𝑗  is 

Einstein’s tensor. 

(TQ-4) Show that algebraically independent components of curvature 

tensor 𝑅ℎ𝑖𝑗𝑘  in a 𝑉4  cannot exceed 20. 

(TQ-5) Prove that 

𝑅ℎ𝑖𝑗𝑘,𝑙 + 𝑅ℎ𝑖𝑘𝑙,𝑗 + 𝑅ℎ𝑖𝑙𝑗,𝑘 = 0 

 

(TQ-6) Define a flat space time. Show that the vanishing of curvature 

tensor is a necessary and sufficient condition for a space time to be flat. 

(TQ-7) Show that in general 𝐴𝜇,𝑣𝜎 ≠ 𝐴𝜇,𝜎𝑣 

(TQ-8) Show that the divergence of 𝐺𝜇
𝑣 −

1

2
𝑔𝑣

𝜇
 is identically zero. 

(TQ-9) Define Riemann Christoffel curvature tensor and obtain an 

expression for it. 

(TQ-10) Show that vanishing of the Reimann curvature tensor is a 

necessary and sufficient condition that the space be flat. 

(TQ-11) Prove that Bianchi Identity 

𝑅𝑖𝑗𝑘,𝑙
𝑎 + 𝑅𝑖𝑘𝑙,𝑗

𝑎 + 𝑅𝑖𝑙𝑗,𝑘
𝑎 = 0 

𝑜𝑟                                      𝑅ℎ𝑖𝑗𝑘,𝑙 + 𝑅ℎ𝑖𝑘𝑙,𝑗 + 𝑅ℎ𝑖𝑙𝑗,𝑘 = 0 

(TQ-12) show that covariant curvature tensor 𝑅ℎ𝑖𝑗𝑘  is  

a) Skew-symmetric in the first two indices. 

b) Skew-symmetric in the last two indices. 

c) Symmetric in two pairs of indices. 

(TQ-13) show that 

a) 𝑅ℎ𝑖𝑗𝑘 = −𝑅𝑖ℎ𝑗𝑘  

b) 𝑅ℎ𝑖𝑗𝑘 = −𝑅ℎ𝑖𝑘𝑗  

c) 𝑅ℎ𝑖𝑗𝑘 = 𝑅𝑗𝑘ℎ𝑖 



Theory of Relativity  MAT609 

Department of Mathematics  

Uttarakhand Open University Page 186 
 

 

9.12 ANSWERS:- 

SELF CHECK ANSWERS  

1. c) 

2. It represents the intrinsic curvature of a manifold and measures 

how vectors change under parallel transport around a loop. 

3. A spacetime is flat if the Riemann curvature tensor is zero 

everywhere. 

4. Minkowski spacetime is used to model flat spacetime in special 

relativity. 

5. It describes how mass and energy curve spacetime and appears in 

the formulation of Einstein’s field equations. 

6. Yes, in general relativity, spacetime curvature is interpreted as the 

manifestation of gravity. 

7. The Ricci tensor and scalar curvature are derived by contracting 

the Riemann curvature tensor. 

8. It is the process of moving a vector along a curve while keeping it 

"parallel" according to the manifold’s geometry. 

9. No, although its components may change, the curvature tensor 

itself is a geometric object independent of coordinates. 
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UNIT 10:-Introduction of the General Theory 

of Relativity  

CONTENTS: 
10.1      Introduction 

10.2      Objectives 

10.3      Principal of Covariance 

10.4      Principal of Equivalence 

10.5      Equality of Inertial and Gravitational Masses  

10.6      Summary 

10.7      Glossary 

10.8      References 

10.9      Suggested Reading 

10.10    Terminal questions  

 

10.1 INTRODUCTION:-  

The General Theory of Relativity (GTR), proposed by Albert Einstein in 

1915, is a fundamental theory of gravitation that describes gravity not as a 

force but as the curvature of space-time caused by mass and energy. It 

extends the Special Theory of Relativity to include acceleration and 

gravity, introducing key principles such as the Principle of Covariance, 

which ensures that the laws of physics hold in all coordinate systems, and 

the Principle of Equivalence, which states that locally, the effects of 

gravity are indistinguishable from acceleration. The theory replaces 

Newton’s concept of gravitational force with the idea that massive objects 

bend space-time, influencing the motion of other objects along geodesic 

paths. General Relativity successfully explains several gravitational 

phenomena, including gravitational time dilation, the bending of light near 

massive bodies, gravitational waves, and black holes, and has been 

confirmed by numerous experiments such as the Mercury perihelion shift, 

gravitational Lansing. 

The Special Theory of Relativity originated from the development of 

electrodynamics and is based on the principle that the motion of a body 

can only be detected and measured relative to other bodies, with no 

absolute motion being meaningful. It specifically considers the relativity 

of uniform translational motion in regions of free space where 
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gravitational effects can be neglected. This leads to the conclusion that 

physical laws remain unchanged in inertial reference frames, where the 

law of inertia holds. However, to address phenomena such as the "clock 

paradox" and the universal law of gravitation, the theory had to be 

extended to non-inertial systems, which involve acceleration. This 

extension led to the General Theory of Relativity, which incorporates 

gravity into the relativistic framework by describing it as the curvature of 

spacetime. Despite its success, early theoretical predictions struggled to 

fully explain certain observed gravitational phenomena, necessitating 

further refinements and experimental verification. 

These deviations arose due to the following reasons: 

1. The theory fails for fixed particles in a gravitational field, as 

observed in the redshift of spectral lines. In such cases, atoms 

remain fixed, and the spectral lines emitted by these atoms are 

affected by strong gravitational and magnetic fields. 

2. The theory is fails for phenomena involving velocities comparable 

to the speed of light, such as the bending of light rays under the 

influence of a massive attracting body. 

3. According to the Special Theory of Relativity, the predicted 

bending of light rays passing near the Sun should be 0.88 arc 

seconds, whereas actual observations show a bending of 1.75 arc 

seconds. 

4. The theory also fails in scenarios where both velocity and 

gravitational fields are present, as seen in the precession of the 

perihelion of Mercury. 

The predictions of Special Relativity suggest an advance of 7.2 seconds of 

arc per century, but the observed value is 43 seconds of arc per century, 

indicating a discrepancy that requires modification. Special Relativity 

applies only to inertial reference frames, where physical laws remain 

invariant under Lorentz transformations. However, this invariance is 

restricted to such frames, meaning it does not account for gravitational 

effects or accelerated motion. Since real-world phenomena often involve 

non-inertial frames, Special Relativity alone is insufficient to describe 

nature comprehensively. To address this limitation, Einstein extended the 

principles of Special Relativity to include non-inertial reference frames, 

leading to the General Theory of Relativity (GR). GR describes gravity 

not as a force but as the curvature of space-time caused by mass and 
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energy. When applied to gravitational phenomena, GR predicts small 

deviations from Special Relativity, such as the anomalous precession of 

Mercury’s orbit. These deviations, confirmed through experimental 

observations, validate the accuracy of General Relativity and demonstrate 

its superiority in explaining gravitational interactions beyond the scope of 

Special Relativity. 

10.2 OBJECTIVES:-  

After studying this unit, you will be able to  

 Define and apply the Equivalence Principle in different physical 

situations. 

 Understand the Principle of General Covariance and how it 

ensures the consistency of physical laws in all reference frames. 

10.3 PRINCIPAL OF COVARIANCE:-  

When referring to different sets of Cartesian axes that are in uniform 

relative translatory motion, the laws describing any phenomenon in free 

space must have the space form and contents and be independent of the 

velocity of the specific observer making the measurements, according to 

the special theory of relativity. We fully utilize the basic concept of 

relativity for all types of motion in general theory.  Here the laws must be 

expressible in a form which is independent of the particular space time co-

ordinate choosen or in other words laws of nature remain invariant w.r.t. 

any space time co-ordinate system. This statement is called the principle 

of genera covariance. 

Therefore, all of our laws must be expressed using covariant equations that 

do not require a specific coordinate system. Since the form of a tensor 

equation, which expresses a law, is precisely the same in all coordinate 

systems, we utilize tensor calculus to do this. As we can see, the equation's 

modified form 

𝑑𝑠² =  − (𝑑𝑥² +  𝑑𝑦² +  𝑑𝑧²)  +  𝑐²𝑑𝑡2 

in tensor form is 

𝑑𝑠² =  𝑔𝑖𝑗  𝑑𝑥𝑖 𝑑𝑥𝑗 (𝑖, 𝑗 =  1,2,3,4). 
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The fundamental tensor 𝑔𝑖𝑗  is co-variant tensor of rank two that transforms 

according to the law  

𝑔𝑖𝑗
′ = 𝑔𝑎𝑏

𝜕𝑥𝑎

𝜕𝑥′𝑖

𝜕𝑥𝑏

𝜕𝑥′𝑗
 

where 𝑔𝑖𝑗
′  is the transformed metric in the new coordinate system 𝑥′𝑖. 

Suppose the physical laws of the nature in 𝑥𝑖 co-ordinate system are 

expressed by an equation involving tensors, such as 

𝐴𝑗
𝑖 = 𝐵𝑗

𝑖 

Then we can write the transformation law for this tensor as 

𝐴𝑗
′𝑖 − 𝐵𝑗

′𝑖 = 𝐴𝛽
𝛼

𝜕𝑥′𝑖

𝜕𝑥𝛼

𝜕𝑥𝛽

𝜕𝑥′𝑗
− 𝐵𝛽

𝛼
𝜕𝑥′𝑖

𝜕𝑥𝛼

𝜕𝑥𝛽

𝜕𝑥′𝑗
 

(𝐴𝛽
𝛼 − 𝐵𝛽

𝛼)
𝜕𝑥′𝑖

𝜕𝑥𝛼

𝜕𝑥𝛽

𝜕𝑥′𝑗
= 0.

𝜕𝑥′𝑖

𝜕𝑥𝛼

𝜕𝑥𝛽

𝜕𝑥′𝑗
= 0 

𝐴𝑗
′𝑖 − 𝐵𝑗

′𝑖 = 0   𝑜𝑟  𝐴𝑗
′𝑖 = 𝐵𝑗

′𝑖   

Thus, we see that tensorial quantities follow the general covariant laws, 

ensuring that physical equations retain their form under arbitrary 

coordinate transformations, which is a fundamental principle of General 

Relativity. 

10.4 PRINCIPAL OF EQUIVALANCE:-  

The principle of co-variance is the assumption that the physical laws may 

be stated in a way that is independent of the coordinate system, and the 

principle of equivalence is the actual hypothesis that introduces 

gravitational considerations into the development. It is now possible for us 

to examine the principle of equivalency in depth 

The inertial mass is a coefficient which measures the resistance of intertia 

of the body opposing the action of force. If the acceleration given to the 

body by the force F is a, then inertial mass is and the gravitational mass is 

𝐹

𝛼
= 𝑚𝑖 

as well as the coefficient that determines  the attractive force that a body 

experiences in the gravitational field. According to Newtonian theory the 
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gravitational mass and inertial mass are always equal. This is called the 

principle of equivalence. 

𝑚𝑖 = 𝑚𝑞 

and    

𝑚𝑖

𝑑2𝑥

𝑑𝑡2
= 𝑚𝑞𝑔 

𝑑2𝑥

𝑑𝑡2
= 𝑔 

𝑑2𝑥𝑘

𝑑𝑡2
= 𝑔𝑘 

We may observe that the equation above is unaffected by the body's mass. 

Consequently, we assert that, regardless of mass, the rate at which all 

bodies fall under the influence of gravity is the same. Galleilo verified the 

same empirically. All bodies, regardless of mass, fall in the same manner 

in an evacuated laboratory, he claims (here the word evacuation is simply 

used to avoid via friction of air). 

Relative deceleration, which occurs when a system of reference is 

subjected to accelerated motion, is similar to gravitational acceleration i.e., 

when an elevator is accelerated ward, a person in the elevator feels 

momentarily heavier and en the acceleration is in the downward direction, 

he feels Lighter. Thus Einstein noticed this fact and gave a very 

fundamental and important idea that the gravitational field produced by 

accelerating uniformly ah inertial frame of reference. According to 

Einstein the principle of equivalence can be stated as follows: 

In the neighborhood of any given point, we can distinguish between the 

gravitational field produced by the attraction of masses and the field 

produced by accelerating uniformly ah inertial frame of reference. 

Consequently, two fields are the same. The equivalency concept is also 

discovered to apply to electrical and optical phenomena. For example, a 

light beam that propagated rectilinearly with regard to the uniform 

motion's x" coordinate system was no longer rectilinear when compared to 

the accelerated motion's x" coordinate system. It follows from this that 

light beams propagate curvilinearly in gravitational fields normally. 
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10.5 EQUALITY OF INERTIAL AND 

GRAVITATIONAL MASSES:-  

Inertial mass: The inertial mass of an object determines its resistance to 

acceleration 𝑎𝑖   when a force 𝐹𝑖  is applied, as described by Newton’s 

second law: 

𝐹𝑖 = 𝑚𝑎𝑖   

where: 

 𝐹𝑖 is the applied force. 

 m inertial is the inertial mass, and 

 𝑎𝑖 is the resulting acceleration. 

𝑚𝑖 =
𝐹𝑖

𝑎𝑖
 

Thus the inertial mass of a body may be defined as the ratio of the 

inertial force acting on the body to the acceleration acquired. 

Gravitational Mass: If 𝑔  is a body's acceleration in a field of 

gravitational attraction 𝐹𝑔, then 

𝐹𝑔 = 𝑚𝑔 

where 𝑚 is the gravitational mass of the body and may be expressed as 

𝑚𝑔 =
𝐹𝑔

𝑔
 

Thus the gravitational mass of a body is defined as the ratio of the 

gravitational force to the gravitational acceleration of the body in the 

gravitational field. 

Since the principle of equivalence states that the gravitational and inertial 

forces are of the same kind and subject to the same laws, and that a desired 

gravitational field can be created by selecting an appropriate accelerated 

frame of reference, hence 

𝐹𝑖

𝑎𝑖
=

𝐹𝑔

𝑔
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𝑚𝑖 = 𝑚𝑔  

Consequently, the equality of the gravitational and inertial masses of the 

same body is implied by the principle of equivalence. This equality of 

gravitational and inertial masses has the effect of accelerating the fall of 

all bodies in the same gravitational field. The equality of inertial and 

gravitational masses has been confirmed experimentally with a high 

degree of accuracy by Dicke in 1962, Eotvos in 1896, and 1908. 

Sometimes, the concept of equivalence refers to the idea that inertial and 

gravitational masses are equivalent. 

SELF CHECK QUESTIONS 

1. What is the Principle of Covariance? 

2. Why is the Principle of Covariance important in General 

Relativity? 

3. How does the Principle of Covariance differ from Galilean 

Invariance? 

4. What mathematical tools are used to express physical laws 

covariantly? 

10.6 SUMMARY:-  

In this unit, we explored two fundamental principles of General Relativity: 

the Principle of Covariance and the Principle of Equivalence.  

 The Principle of Covariance states that the laws of physics must 

be valid in all coordinate systems, meaning their form remains 

unchanged under smooth transformations. This ensures that 

Einstein’s field equations are expressed in a covariant form using 

tensors, making them independent of the observer’s frame of 

reference.  

 The Principle of Equivalence establishes that locally, the effects 

of gravity are indistinguishable from those of acceleration. This 

implies that a uniform gravitational field is equivalent to a 

uniformly accelerated reference frame, leading to the conclusion 

that gravity is not a traditional force but rather a curvature of 

space-time caused by mass and energy. Together, these principles 

provide the conceptual framework for General Relativity, 

fundamentally redefining our understanding of gravity as the 

geometric deformation of space-time rather than a force acting at a 

distance. 
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10.7 GLOSSARY:-  

 Principle of Covariance – A fundamental concept in General 

Relativity stating that the laws of physics must have the same form 

in all coordinate systems, ensuring their invariance under smooth 

transformations. 

 General Covariance – The requirement that physical laws be 

expressed using tensors so that they remain valid in any reference 

frame or coordinate system. 

 Coordinate Independence – The idea that the formulation of 

physical laws should not depend on a specific choice of 

coordinates, reinforcing the universal applicability of physical 

principles. 

 Einstein Field Equations (EFE) – A set of covariant equations in 

General Relativity that describe the relationship between spacetime 

curvature and energy-momentum distribution. 

 Principle of Equivalence – The assertion that locally, the effects 

of gravity are indistinguishable from acceleration, meaning that a 

uniform gravitational field is equivalent to a uniformly accelerated 

reference frame. 

 Weak Equivalence Principle (WEP) – The principle stating that 

all objects, regardless of their mass or composition, fall at the same 

rate in a gravitational field. 

 Strong Equivalence Principle (SEP) – An extension of the Weak 

Equivalence Principle that includes gravitational self-energy, 

stating that the laws of physics, including General Relativity, hold 

true in all freely falling reference frames. 

 Tensors – Mathematical objects used in General Relativity to 

express physical laws in a covariant form, ensuring their validity in 

all coordinate systems. 

 Spacetime Curvature – A concept in General Relativity 

describing how mass and energy distort spacetime, leading to what 

we perceive as gravitational attraction. 

 Geodesic Motion – The trajectory of a freely falling object in 

curved spacetime, which follows the shortest path (geodesic) 

dictated by the curvature of spacetime rather than a direct force. 
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10.9 SUGGESTED READING:-  

 S.P.Puri (2013), General Theory of relativity. 

 Farook Rahman (2021), The General Theory of Relativity: A 

Mathematical Approach 

 Goyal and Gupta (1975), Theory of Relativity. 

 R.K.Pathria (2003), Theory of Relativity. 

10.10 TERMINAL QUESTIONS:- 

(TQ-1) Give an account of Einstein's principle of equivalence. What are 

the observable consequences of general theory of relativity? 

(TQ-2) Explain Einstein's principle of equivalence. Give a detailed 

account of red shift of light. How has this been verified experimentally? 

(TQ-3)Explain the principle of equivalence and give a concise account of 

the general theory of relativity. Discuss the experimental evidence in 

support of it. 

(TQ-4)State and comment on the basic hypothesis and postulates of the 

general theory of relativity and discuss how the principle of equivalence 

and covariance follow from the guiding principle in the development of 

general relativity? 

(TQ-5)Explain the principle of equivalence and the principle of general 

covariance 

(TQ-6)Write notes on the following: 

(a) Fundamental concepts of general theory of relativity. 

(b) Principle of covariance. 

(c) Postulates of general theory of relativity. 

(TQ-7) State the principle of equivalence in general theory of relativity 

and discuss that it acts as a bridge to pass from special to general theory of 

relativity. 

(TQ-8) What is the Principle of Equivalence? Discuss its role in the 

development of General Relativity. 

(TQ-9) Compare and contrast the Principle of Covariance and the 

Principle of Equivalence. 

(TQ-10) Write short note on 'principle of equivalence'. 

(TQ-11) Write short note on principle of equivalence. 

(TQ-12) State the basic postulates and principles of General Theory of 

relativity. Justify the statement that the principle of equivalence acts as a 

https://books.google.co.in/books?id=-3AjEAAAQBAJ&printsec=frontcover&dq=Theory+of+relativity&hl=en&newbks=1&newbks_redir=1&sa=X&ved=2ahUKEwi8-pacisWLAxVLUGwGHT5QMmQQ6AF6BAgGEAM
https://books.google.co.in/books?id=-3AjEAAAQBAJ&printsec=frontcover&dq=Theory+of+relativity&hl=en&newbks=1&newbks_redir=1&sa=X&ved=2ahUKEwi8-pacisWLAxVLUGwGHT5QMmQQ6AF6BAgGEAM
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bridge to pass from, special theory of relativity to General Theory of 

Relativity 

 

10.11 ANSWERS:- 

SELF CHECK ANSWERS 

 
1. The Principle of Covariance states that the laws of physics should 

take the same mathematical form in all coordinate systems. 

2. It ensures that the laws of physics, particularly Einstein’s field 

equations, are valid for all observers regardless of their state of 

motion or coordinate choice, reflecting the general nature of 

spacetime. 

3. Galilean invariance applies only to Newtonian mechanics and 

inertial frames, while the Principle of Covariance applies to all 

frames, inertial or non-inertial, using the language of tensor 

calculus. 

4. Tensors, covariant derivatives, Christoffel symbols, and metric 

tensors are key tools used to express physical laws in a covariant 

(coordinate-independent) form. 
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UNIT 11:-Relativistic Field Equations  

CONTENTS: 
11.1      Introduction 

11.2      Objectives 

11.3      Energy Momentum Tensor 

11.4      Einstein’s Field Equations  

11.5      Newtonian Equation of Motion as an Approximation of   

            Geodesic Equations 

11.6      Poisson’s Equation as an Approximation of Geodesic  

             Equations 

11.7      Summary 

11.8      Glossary 

11.9      References 

11.10    Suggested Reading 

11.11    Terminal questions  

11.12    Answers 

 

11.1 INTRODUCTION:-  

The energy-momentum tensor, also known as the stress-energy tensor, is a 

fundamental mathematical object in physics that describes the distribution 

and flow of energy and momentum in space-time. It is a second-rank 

tensor denoted by 𝑇𝜇𝜈and plays a crucial role in General Relativity (GR) 

as the source of space-time curvature in Einstein’s field equations. Each 

component of the tensor represents different physical quantities, such as 

energy density, momentum density, and stress (pressure and shear forces) 

in a given system. Depending on the type of matter or field, the energy-

momentum tensor takes different forms, including those for perfect fluids, 

electromagnetic fields, and scalar fields. In relativistic hydrodynamics and 

astrophysical models, it is often extended to include viscosity and heat 

conduction, making it essential in studying radiating stars, neutron stars, 

and cosmology. Furthermore, the conservation  ∇𝜈𝑇
𝜇𝜈 = 0 ensures that 

energy and momentum are locally conserved, governing the motion of 

matter in curved spacetime. The energy-momentum tensor serves as the 

bridge between matter-energy content and the geometry of space-time, 

shaping our understanding of gravity and the evolution of astrophysical 

objects. 
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11.2 OBJECTIVES:-  

After studying this unit, Lernear’s will be able to  

 To solve the Energy momentum tensor 

 To derive the formula of Energy momentum tensor for perfect fluid. 

 To solve the Einstein’s Field Equation. 

 To explain the derivation of Einstein’s Field Equations 

 To provide solutions to Poisson’s Equations as an Approximation of 

Field Equation. 

 To explain solutions to Newtonian Equation of Motion as an 

Approximation of Geodesic Equations. 

 

11.3 ENERGY MOMENTUM TENSOR:-  

The energy-momentum tensor or material energy-tensor or energy tensor 

𝑇𝑖𝑗  is a mathematical object that describes the density and flow of energy 

and momentum in space-time, serving as the source of gravity in 

Einstein's field equations. 

Let 
𝑑𝑥𝑗

𝑑𝑠
 represent the speed of the matter in the gravitational system, that 

is, when the velocity of light =  𝑐 =  1 , and let 𝜌0  represent the 

appropriate density of matter. 

 

The energy momentum tensor, denoted by 𝑇𝑖𝑗, is written as  

                                          𝑇𝑖𝑗 = 𝜌0
𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
                                    … (1) 

The Galilean coordinate system gives us 

𝑑𝑠2 = −𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2 + 𝑑𝑡2 , 𝑤ℎ𝑒𝑛 𝑐 = 1 

(
𝑑𝑠

𝑑𝑡
)
2

= −(
𝑑𝑥

𝑑𝑡
)
2

− (
𝑑𝑦

𝑑𝑡
)
2

− (
𝑑𝑧

𝑑𝑡
)
2

+ 1 

Taking  

𝑣2 = (
𝑑𝑥

𝑑𝑡
)
2

+ (
𝑑𝑦

𝑑𝑡
)
2

+ (
𝑑𝑧

𝑑𝑡
)
2

 

We obtain 

                                                    (
𝑑𝑠

𝑑𝑡
)
2

= 1 − 𝑣2                                   … (2) 

where 𝑐 = 1. 
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Given the coordinate density of matter 𝜌 and velocity 𝜈 with respect to the 

Galilean coordinate system, we obtain 

𝜌 =
𝜌0

1 −
𝑣2

𝑐2

=
𝜌0

1 − 𝑣2
,      (𝑤ℎ𝑒𝑛 𝑐 = 1) 

𝜌(1 − 𝑣2) = 𝜌0 

𝜌 (
𝑑𝑠

𝑑𝑡
)

2

= 𝜌0       (𝑓𝑟𝑜𝑚 (2)) 

Applying this to (1), we get 

𝑇𝑖𝑗 = 𝜌0

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 𝜌0

𝑑𝑥𝑖

𝑑𝑡

𝑑𝑡

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑡

𝑑𝑡

𝑑𝑠
 

= 𝜌0

𝑑𝑥𝑖

𝑑𝑡

𝑑𝑥𝑗

𝑑𝑡
(
𝑑𝑡

𝑑𝑠
)

2

=
𝑑𝑥𝑖

𝑑𝑡

𝑑𝑥𝑗

𝑑𝑡
[

𝜌0

(
𝑑𝑠
𝑑𝑡

)
2] = 𝜌

𝑑𝑥𝑖

𝑑𝑡

𝑑𝑥𝑗

𝑑𝑡
 

                                                     𝑇𝑖𝑗 =  𝜌
𝑑𝑥𝑖

𝑑𝑡

𝑑𝑥𝑗

𝑑𝑡
                               … (3) 

 This is the Galilean coordinate system expression for 𝑇𝑖𝑗.  

If we write 𝑢 =
𝑑𝑥1

𝑑𝑡
, 𝑣 =

𝑑𝑥2

𝑑𝑡
, 𝑤 =

𝑑𝑥2

𝑑𝑡
, then the equation(3) obtain 

𝑇𝑖𝑗 =

[
 
 
 

𝜌𝑢2 𝜌𝑢𝑣  𝜌𝑢𝑤 𝜌𝑢

𝜌𝑢𝑣  𝜌𝑣2  𝜌𝑣𝑤  𝜌𝑣

𝜌𝑢𝑤  𝜌𝑣𝑤  𝜌𝑤2  𝜌𝑤
𝜌𝑢     𝜌𝑣     𝜌𝑤     𝜌 ]

 
 
 

 

THEOREM1: To derive the formula for energy momentum tensor for a 

perfect in the form  

𝑇𝜇
𝜈 = (𝜌 + 𝑝)𝜈𝜇𝜈𝜈 − 𝑔𝜇

𝜈𝑝 

SOLUTION: Let 𝑇0
𝜇𝜈

 represent the energy momentum tensor in the 

appropriate coordinate system, where the matter is assumed to be at rest at 

the origin, we have 

                              𝑇0
11 = 𝑇0

22 = 𝑇0
33 =  𝑝0, 𝑇0

44 = 𝜌0                         … (1) 

 

The other elements all being zero. 

 

In the appropriate coordinate system,  𝑝0  and 𝜌0  stand for pressure and 

density of a perfect, respectively. When used correctly, the Galilean 

coordinate system is applicable for which 

𝑑𝑠2 = −𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2 + 𝑑𝑡2, 𝑤ℎ𝑒𝑛 𝑐 = 1 

Let 𝑔0
𝑖𝑗

  represent the Galilean coordinate system's basic tensor so that 

𝑔0
11 = 𝑔0

22 = 𝑔0
33 = −𝑔0

44 = −1, 𝑔0
𝑖𝑗 = 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗 
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In an arbitrary coordinate system, let 𝑇𝑖𝑗  and 𝑔𝑖𝑗   stand for the energy 

tensor and fundamental tensor, respectively. By the transformation's tensor 

law, 

𝑇𝑖𝑗 = 𝑇0
𝑎𝑏 𝜕𝑥𝑖

𝜕𝑥0
𝑎

𝜕𝑥𝑗

𝜕𝑥0
𝑏
 

                                                   = ∑ 𝑇0
𝑎𝑏 𝜕𝑥𝑖

𝜕𝑥0
𝑎

𝜕𝑥𝑗

𝜕𝑥0
𝑏

4
𝑎=1                𝑓𝑟𝑜𝑚 (1)           

𝑇𝑖𝑗 = 𝑝0 ∑
𝜕𝑥𝑖

𝜕𝑥0
𝑎

𝜕𝑥𝑗

𝜕𝑥0
𝑎

3
𝑎=1 + 𝜌0

𝜕𝑥𝑖

𝜕𝑥0
4

𝜕𝑥𝑗

𝜕𝑥0
4      𝑎𝑔𝑎𝑖𝑛 𝑓𝑟𝑜𝑚 (1)                   … (2) 

𝑔𝑖𝑗 = 𝑔0
𝑎𝑏

𝜕𝑥𝑖

𝜕𝑥0
𝑎

𝜕𝑥𝑗

𝜕𝑥0
𝑏

= ∑ 𝑔0
𝑎𝑎

𝜕𝑥𝑖

𝜕𝑥0
𝑎

𝜕𝑥𝑗

𝜕𝑥0
𝑎

4

𝑎=1

 

= − ∑
𝜕𝑥𝑖

𝜕𝑥0
𝑎

𝜕𝑥𝑗

𝜕𝑥0
𝑎

3

𝑎=1

= −𝑔𝑖𝑗 +
𝜕𝑥𝑖

𝜕𝑥0
4

𝜕𝑥𝑗

𝜕𝑥0
4 

From (2), we get 

𝑇𝑖𝑗 = 𝑝0 (−𝑔𝑖𝑗 +
𝜕𝑥𝑖

𝜕𝑥0
4

𝜕𝑥𝑗

𝜕𝑥0
4) + 𝜌0

𝜕𝑥𝑖

𝜕𝑥0
4

𝜕𝑥𝑗

𝜕𝑥0
4 

= (𝑝
0
+ 𝜌

0
)
𝜕𝑥𝑖

𝜕𝑥0
4

𝜕𝑥𝑗

𝜕𝑥0
4 − 𝑝

0
𝑔𝑖𝑗 

                                 𝑇𝑖𝑗 = (𝑝0 + 𝜌0)
𝜕𝑥𝑖

𝜕𝑥0
4

𝜕𝑥𝑗

𝜕𝑥0
4 − 𝑝0𝑔

𝑖𝑗                              … (3) 

Since the fluid is at rest in the proper-co-ordinate system and hence the 

velocity components can be taken as 

                                           
𝑑𝑥0

1

𝑑𝑠
=

𝑑𝑥0
2

𝑑𝑠
=

𝑑𝑥0
3

𝑑𝑠
= 0,

𝑑𝑥0
4

𝑑𝑠
= 1           … (4) 

𝑑𝑥𝑖

𝑑𝑠
=

𝜕𝑥𝑖

𝜕𝑥0
𝑗

𝑑𝑥0
𝑗

𝑑𝑠
=

𝜕𝑥𝑖

𝜕𝑥0
4

𝑑𝑥0
4

𝑑𝑠
 

=
𝜕𝑥𝑖

𝜕𝑥0
4 . 1 =

𝜕𝑥𝑖

𝜕𝑥0
4 

𝑑𝑥𝑖

𝑑𝑠
=

𝜕𝑥𝑖

𝜕𝑥0
4 

Putting the above value in (3), we obtain 

 

                                𝑇𝑖𝑗 = (𝑝0 + 𝜌0)
𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
− 𝑝0𝑔

𝑖𝑗                              … (5) 

This is the required expression for 𝑇𝑖𝑗  

From (4) it follows that  

                                𝑇𝑖𝑗 = (𝑝0 + 𝜌0)𝑣
𝑖𝑣𝑗 − 𝑝0𝑔

𝑖𝑗         

where 𝑣𝑖 =
𝑑𝑥𝑖

𝑑𝑠
= 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 .Again the equation (5) can be 

written as 
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𝑇𝜇
𝑣 = (𝑝0 + 𝜌0)𝑣

𝑣𝑣𝜇 − 𝑝𝑔𝜇
𝑣    𝑤ℎ𝑒𝑟𝑒 𝑝 = 𝑝0, 𝜌0 = 𝜌 

 

THEOREM2: Explain the construction of the energy momentum tensor T 

for matter composed of moving particles and show that the conditions of 

conservation of energy and momentum lead to the tensor equation 

(𝑇𝜇𝑣),𝑣 = 0. 

SOLUTION: Prove as in theorem 1 that  

                                 𝑇𝑖𝑗 = (𝑝0 + 𝜌0)
𝜕𝑥𝑖

𝜕𝑥0
4

𝜕𝑥𝑗

𝜕𝑥0
4 − 𝑝0𝑔

𝑖𝑗                              … (3) 

Then  

𝑇0
𝑖𝑗

=

[
 
 
 

𝑝0𝑥𝑥    𝑝0𝑥𝑦   𝑝0𝑥𝑧  0

𝑝0𝑦𝑥     𝑝0𝑦𝑦   𝑝0𝑦𝑧  0

𝑝0𝑧𝑥     𝑝0𝑧𝑦   𝑝0𝑧𝑧  0

 0            0         0       𝜌0]
 
 
 

 

where 𝑝0𝑥𝑥 , 𝑝0𝑥𝑦   etc.  Represent internal stresses. 

Let the coordinate density and velocity of the matter consisting of a 

perfect fluid flowing with regard to the Galilean coordinate system be 

represented by ρ and q (u, v, w), respectively. Then 

𝑇𝑖𝑗 =

[
 
 
 
 
𝑝

𝑥𝑥
+ 𝜌𝑢2   𝑝

𝑥𝑦
+ 𝜌𝑢𝑣    𝑝

𝑥𝑧
+ 𝜌𝑢𝑤    𝜌𝑢

𝑝
𝑦𝑥

+ 𝜌𝑣𝑢   𝑝
𝑦𝑦

+ 𝜌𝑣2    𝑝
𝑦𝑧

+ 𝜌𝑣𝑤    𝜌𝑣

𝑝
𝑧𝑥

+ 𝜌𝑤𝑢   𝑝
𝑧𝑦

+ 𝜌𝑤𝑣    𝑝
𝑧𝑧

+ 𝜌𝑤2    𝜌𝑤

𝜌𝑢                  𝜌𝑣               𝜌𝑤                𝜌 ]
 
 
 
 

 

Let  

                                                           
𝜕𝑇𝜇𝑣

𝜕𝑥𝑣 = 0                                      … (4) 

For 𝜇 = 4, the equation (4) obtain 

𝜕𝑇4𝑣

𝜕𝑥𝑣
= 0                                       

Now 

𝜕𝑇41

𝜕𝑥1
+

𝜕𝑇42

𝜕𝑥2

𝜕𝑇43

𝜕𝑥3

𝜕𝑇44

𝜕𝑥4
= 0 

                        
𝜕𝜌𝑢

𝜕𝑥
+

𝜕𝜌𝑣

𝜕𝑦
+

𝜕𝜌𝑤

𝜕𝑧
+

𝜕𝜌

𝜕𝑡
= 0                                           … (5) 

Putting 𝜇 = 1, the equation (4) gives that 

𝜕𝑇1𝑣

𝜕𝑥𝑣
= 0                                       

 

𝜕𝑇11

𝜕𝑥1
+

𝜕𝑇12

𝜕𝑥2

𝜕𝑇13

𝜕𝑥3

𝜕𝑇14

𝜕𝑥4
= 0 

or 

 
𝜕

𝜕𝑥
(𝑝𝑥𝑥 + 𝜌𝑢2) +

𝜕

𝜕𝑥
(𝑝𝑥𝑥 + 𝜌𝑢𝑣) +

𝜕

𝜕𝑧
(𝑝𝑥𝑧 + 𝜌𝑢𝑤) +

𝜕

𝜕𝑥
(𝜌𝑢)=0 



Theory of Relativity  MAT609 
 

Department of Mathematics    

Uttarakhand Open University Page 203 
 

or 

𝜕𝑝𝑥𝑥

𝜕𝑥
+

𝜕𝑝𝑥𝑦

𝜕𝑦
+

𝜕𝑝𝑥𝑧

𝜕𝑧
= − [

𝜕

𝜕𝑥
(𝜌𝑢2) +

𝜕

𝜕𝑥
(𝜌𝑢𝑣) +

𝜕

𝜕𝑧
(𝜌𝑢𝑤) +

𝜕

𝜕𝑥
(𝜌𝑢)] 

= −𝑢 [
𝜕

𝜕𝑥
(𝜌𝑢) +

𝜕

𝜕𝑥
(𝜌𝑣) +

𝜕

𝜕𝑧
(𝜌𝑤) +

𝜕𝜌

𝜕𝑥
]

− 𝜌 [𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
+

𝜕𝑢

𝜕𝑡
] 

= −𝑢. 0 −
𝜌𝑑𝑢

𝑑𝑡
= −

𝜌𝑑𝑢

𝑑𝑡
 

                                            
𝜕𝑝𝑥𝑥

𝜕𝑥
+

𝜕𝑝𝑥𝑦

𝜕𝑦
+

𝜕𝑝𝑥𝑧

𝜕𝑧
= −

𝜌𝑑𝑢

𝑑𝑡
                     … (6) 

where  

𝑑

𝑑𝑡
= 𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
+

𝜕

𝜕𝑡
  

Similarly for  𝜇 = 2,3 the equation 4 obtains 

                                            

𝜕𝑝𝑦𝑥

𝜕𝑥
+

𝜕𝑝𝑦𝑦

𝜕𝑦
+

𝜕𝑝𝑦𝑧

𝜕𝑧
= −

𝜌𝑑𝑣

𝑑𝑡

𝜕𝑝𝑧𝑥

𝜕𝑥
+

𝜕𝑝𝑧𝑦

𝜕𝑦
+

𝜕𝑝𝑧𝑧

𝜕𝑧
= −

𝜌𝑑𝑤

𝑑𝑡

}                  … (7) 

 
𝑑𝑢

𝑑𝑡

𝑑𝑣

𝑑𝑡

𝑑𝑤

𝑑𝑡
   represent components of acceleration of fluid particles. 

The hydrodynamics equation of continuity is equation (5). The 

hydrodynamic motion equations in the absence of external forces are (6) 

and (7). 

Thus, the conservation of mass and momentum is expressed by equations 

(5), (6), and (7). As a result, equation (4) in relation to Galilean 

coordinates expresses the concepts of mass and momentum conservation. 

 

Also Γ𝜇𝜈
𝜎 = 0 relative to Galilean coordinates. 

Hence 

𝑇,𝜈
𝜇𝜈 =

𝜕𝑇𝜇𝜈

𝜕𝑥𝜈  

Therefore relative to Galilean coordinates, (4) is expressible as 

(𝑇𝜇𝑣)𝑣 = 𝑇,𝜈
𝜇𝜈 = 0 

In reality 
𝜕𝑇𝜇𝜈

𝜕𝑥𝜈  denoted the rate of creation of mass and momentum in unit 

volume. 

 

11.4 EINSTEIN’S FIELD EQUATIONS:-  
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Einstein’s law of gravitation, formally known as the Einstein Field 

Equations (EFE) . According to the Newton's theory of gravity states that 

the field equations in the presence of matter are as follows: 

                            ∇2𝜙 = 4𝜋𝐺𝜌                                                       … (1) 

where 𝐺 is the gravitational constant, 𝜌 is the matter density, and is the 

gravitational potential 𝜙 . We must substitute the metric tensor guy for & 

in the relativistic theory of gravitation since 𝑔44 performs the function of 

gravitational potential in the non-relativistic limit. Consequently, it is 

necessary to describe the left-hand side in terms of the second-order 

derivatives of 𝑔𝜇𝜈  based on equation (1). The right-hand side of the 

relativistic theory of gravitation must be stated in terms of the material 

energy tensor 𝑇𝜇𝜈 in such a way that its divergence disappears since the 

density of matter, 𝜌 is one of the components of the second rank energy 

momentum tensor. Therefore, if the classical equation (1) is to be generalized 

for the relativistic theory of gravity, it must be a tensor equation that satisfying 

the following conditions: 

(i) The tensor equation should not contain the derivatives of guv 

higher than the second order. 

(ii) It must be linear in the second differential coefficients. 

(iii) Its covariant divergence must vanish identically. 

We know that the covariant derivatives of 𝑔𝜇𝜈  are known to be exactly 

zero and  𝑅𝜇𝜈  and 𝑅𝜇𝜈(= 𝑅)  are the tensors that are generated by 

contracting the curvature tensor 𝑅𝜌𝜇𝜈𝜎 once and twice. This is the sole 

tensor that involves 𝑔𝜇𝜈  up to and second order. Therefore, the most 

appropriate tensor of the form required is the Einstein’s tensor provided by  

𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 

The above eqn. (1) is generalized as 

                                        𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = −𝑘𝑇𝜇𝜈                          … (2) 

where 𝑘 is a constant and is related to the gravitational constant. If 

Newton's theory and Einstein's relativistic theory are equivalent in the 

non-relativistic approximation. In relativistic units 

                                                         𝑘 = 8𝜋                                   … (3) 

The equation (2) is obtained as 
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                𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈 = −8𝜋𝑇𝜇𝜈                                    … (4) 

                  𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈(𝑅 − 2Λ) = −8𝜋𝑇𝜇𝜈                                   … (5) 

where Λ is called cosmological constant. 

Neglecting cosmological constant Λ, the equation (4) given as 

                             𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = −8𝜋𝑇𝜇𝜈                                   … (6) 

The other two forms of Einstein's field equations are obtained by raising 

the indices using the metric is  

                      𝑅𝜇
𝜈 −

1

2
𝑔𝜇

𝜈𝑅 + Λ𝑔𝜇
𝜈 = −8𝜋𝑇𝜇

𝜈                                   … (7) 

                 𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈 = −8𝜋𝑇𝜇𝜈                                … (8) 

Now multiplying (5) by𝑔𝜇𝜈,we obtain 

 𝑅𝜇𝜈𝑔
𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑔𝜇𝜈(𝑅 − 2Λ) = −8𝜋𝑔𝜇𝜈𝑇𝜇𝜈 

𝑅 −
1

2
4(𝑅 − 2Λ) = −8𝜋𝑇 (𝑠𝑖𝑛𝑐𝑒𝑔𝜇𝜈𝑔𝜇𝜈 = 𝛿𝜇

𝜈 = 4) 

𝑅 − 2Λ = 8𝜋𝑇 

Since in the absence of matter 𝑇𝜇𝜈 = 0 so that 𝑇 = 0. then 

𝑅 = 4 Λ 

Putting these values in equation (5), we obtain  

 𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈(4 Λ − 2Λ) = −8𝜋. 0      

 𝑅𝜇𝜈 = 𝑔𝜇𝜈Λ 

Therefore, the above equation defined the Einstein’s field equations in 

general theory of relativity in the absence of matter or Einstein;’s law of 

gravitation in empty space is  

 𝑅𝜇𝜈 = 0 
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THEOREM2: To derive the field equation (in empty space) from 

Lagrangian density.  

Or 

To derive the field equation (in empty space) from variational principle. 

 

PROOF: The relativistic field equation are obtained from  

                                   𝛿 ∫ √−𝑔𝑔𝜇𝜈. 𝑅𝜇𝜈𝑑𝑇 = 0
𝐷

                                … (1) 

We assume that variations in 𝑔𝜇𝜈 or its first order derivatives stay arbitrary 

inside area 𝐷 but disappear on the edge of the four-dimensional domain 

𝐷. In other words, 

                          𝛿𝑔𝑖𝑗 = 0 = 𝛿Γ𝑖𝑗
𝑘 on the boundary D.                …(2) 

𝑅𝜇𝜈 = 𝑅𝜇𝜈𝜎
𝑎 = −

𝜕Γ𝜇𝜈
𝑎

𝜕𝑥𝑎
+

𝜕Γ𝜇𝑎
𝑎

𝜕𝑥𝑣
− Γ𝜇𝜈

𝑏 Γ𝑎𝑏
𝑎 + Γ𝜇𝑎

𝑏 Γ𝑏𝑣
𝑎  

𝛿𝑅𝜇𝜈 = −
𝜕δΓ𝜇𝜈

𝑎

𝜕𝑥𝑎
+

𝜕𝛿Γ𝜇𝑎
𝑎

𝜕𝑥𝑣
− 𝛿Γ𝑏𝜈

𝑏 Γ𝑏𝑎
𝑎 − Γ𝜇𝑣

𝑏 𝛿Γ𝑏𝑎
𝑎 + 𝛿Γ𝜇𝑎

𝑏 Γ𝑏𝑣
𝑎 + Γ𝜇𝑎

𝑏 𝛿Γ𝑏𝑣
𝑎  

𝛿𝑅𝜇𝜈 = − [
𝜕δΓ𝜇𝜈

𝑎

𝜕𝑥𝑎
+ 𝛿Γ𝜇𝑣

𝑏 Γ𝑏𝑎
𝑎 − 𝛿Γ𝜇𝑏

𝑏 Γ𝑎𝑣
𝑏 − Γ𝜇𝑎

𝑏 𝛿Γ𝑏𝑣
𝑎 ]

+ [
𝜕

𝜕𝑥𝑣
(𝛿Γ𝜇𝑎

𝑎 ) − 𝛿Γ𝑏𝑎
𝑎 Γ𝑏𝜈

𝑏 ] 

= −(𝛿Γ𝜇𝑣
𝑎 ),𝑎+ (𝛿Γ𝜇𝑎

𝑎 ),𝑣 

⇒               𝑔𝜇𝑣𝛿𝑅𝜇𝜈 = −𝑔𝜇𝑣(𝛿Γ𝜇𝑣
𝑎 ),𝑎+ 𝑔𝜇𝑣(𝛿Γ𝜇𝑎

𝑎 ),𝑣 

                            = −(𝑔𝜇𝑣𝛿Γ𝜇𝑣
𝑎 ),𝑎+ (𝑔𝜇𝑣𝛿Γ𝜇𝑎

𝑎 ),𝑣                   𝑎𝑠 𝑔𝜇𝑣 , 𝜎 = 0 

= −(𝑔𝜇𝑣𝛿Γ𝜇𝑣
𝑎 ),𝑏+ (𝑔𝜇𝑣𝛿Γ𝜇𝑎

𝑎 ),𝑏  

Or                          𝑔𝜇𝑣𝛿𝑅𝜇𝜈 = [−𝑔𝜇𝑣𝛿Γ𝜇𝑣
𝑎 + 𝑔𝜇𝑏𝛿Γ𝜇𝑎

𝑎 ]
,𝑏

 

But 

(𝐴,𝑖
𝑖 )√−𝑔 =

𝜕[𝐴𝑖√−𝑔]

𝜕𝑥𝑖
 

Hence 
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√−𝑔𝑔𝜇𝑣𝛿𝑅𝜇𝜈 =
𝜕

𝜕𝑥𝑏
[√−𝑔{−𝑔𝜇𝑣𝛿Γ𝜇𝑣

𝑎 + 𝑔𝜇𝑏𝛿Γ𝜇𝑎
𝑎 }] 

Now integrating, 

∫√−𝑔𝑔𝜇𝑣𝛿𝑅𝜇𝜈𝑑𝑇
𝐷

= ∫
𝜕

𝜕𝑥𝑏
[√−𝑔{−𝑔𝜇𝑣𝛿Γ𝜇𝑣

𝑎 + 𝑔𝜇𝑏𝛿Γ𝜇𝑎
𝑎 }]𝑑𝑇

𝐷

   … (3) 

According to the Gauss theorem, this volume integral on the R.H.S. of the 

above equations may be transformed into a surface integral, which 

disappears in line with (2). It indicates that 

                                             ∫ √−𝑔𝑔𝜇𝑣𝛿𝑅𝜇𝜈𝑑𝑇
𝐷

= 0                           … (4) 

The equation (1) can be written as 

∫√−𝑔𝑔𝜇𝑣𝛿𝑅𝜇𝜈𝑑𝑇
𝐷

+ ∫𝑅𝜇𝜈𝛿[√−𝑔𝑔𝜇𝑣]𝑑𝑇
𝐷

= 0 

                                            ∫ 𝑅𝜇𝜈𝛿[√−𝑔𝑔𝜇𝑣]𝑑𝑇
𝐷

= 0                         … (5) 

Now 

𝛿[√−𝑔𝑔𝜇𝑣] = 𝛿𝑔𝜇𝑣 .√−𝑔 +
𝑔𝜇𝑣

2√−𝑔
𝛿(−𝑔) 

−√−𝑔𝛿𝑔𝜇𝑣 −
𝑔𝜇𝑣

2√−𝑔
 𝑔𝑔𝛼𝛽𝛿𝑔𝛼𝛽  

[𝐹𝑜𝑟 
𝜕𝑔

𝜕𝑥𝜎
= (𝑔𝑔𝜇𝑣)

𝜕𝑔𝜇𝑣

𝜕𝑥𝜎
] 

𝛿[√−𝑔𝑔𝜇𝑣] = √−𝑔 𝛿𝑔𝜇𝑣 +
𝑔𝜇𝑣

2
√−𝑔(−𝑔𝛼𝛽𝛿𝑔𝛼𝛽) 

𝑅𝜇𝜈𝛿[√−𝑔𝑔𝜇𝑣] = √−𝑔. 𝛿𝑔𝜇𝑣𝑅𝜇𝜈 +
𝑅

2
√−𝑔(−𝑔𝛼𝛽𝛿𝑔𝛼𝛽) 

= ∫√(−𝑔). 𝛿𝑔𝜇𝑣 [𝑅𝜇𝜈 −
1

2
 𝑅𝑔𝜇𝜈] 𝑑𝑇 = 0

𝐷

 

⇒                  ∫ √−𝑔. 𝛿𝑔𝜇𝑣 [𝑅𝜇𝜈 −
1

2
 𝑅𝑔𝜇𝜈] 𝑑𝑇 = 0

𝐷
 

Since 𝛿𝑔𝜇𝑣 is arbitrary. 
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⇒                                           𝑅𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈 = 0 

11.5 NEWTONIAN EQUATION OF MOTION AS 

AN APPROXIMATION OF GEODESIC 

EQUATIONS:-  

Geodesic equations reducible to Newtonian equations of motion in case of 

weak static field. 

Or, 

To discuss the motion of a free particle in case of weak static field. 

PROOF: The motion of a test particle in a weak static gravitational field 

is governed by the geodesic equation, 

                                
𝑑2𝑥𝜆

𝑑𝑠2 + Γ𝜇𝜈
𝜆 𝑑𝑥𝜇

𝑑𝑠

𝑑𝑥𝜈

𝑑𝑧
= 0                                    … (1) 

The entire 𝑔𝜇𝜈 is constant and independent of coordinate systems, and the 

line element in special relativity corresponds to the Euclidean (flat) space-

time manifold. All of Christofell's symbols Γ𝜇𝜈
𝛼  disappear as a result, and 

the geodesic equations of motion provided by (1) then reduce to the 

equations of straight lines, i.e. 

𝑑2𝑥𝜆

𝑑𝑠2
= 0 

The fact that the equations of motion and the line element are determined 

by the metric tensor 𝑔𝜇𝜈  is relevant. In the first case, the geometry's 

structure is determined by the metric tensor 𝑔𝜇𝜈  components, but in the 

second case, the test particle's trajectory is determined by the derivatives 

of these components as shown by Christofell's symbols. When comparing 

Newton's equations of motion with equations of motion (1), we conclude 

that 𝑔𝜇𝜈 represents gravitational potential since the derivatives of potential 

occur in Newton's equations of motion.  

In this case, the constant components of the metric tensor 𝑔𝜇𝜈   in 

Euclidean space, represented by 𝜖𝜇𝜈 , are provided by 
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𝑔𝜇𝜈 → 𝜖𝜇𝜈 = [

−1   0   0   0
0 − 1   0   0
0   0 − 1   0
0   0   0  − 1

] 

Since  

𝑑𝑠2 = 𝑔𝜇𝑣𝑑𝑥𝜇𝑑𝑥𝑣 

= −𝑑𝑥2+𝑑𝑦2 + 𝑑𝑧2 + 𝑐2𝑑𝑡2 

Now, let's assume that 𝑔𝜇𝜈  are not constants but rather deviate by a 

negligible amount from the values provided by (3), i.e., in a weak static 

field 

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + 𝜖𝜇𝜈  

where 𝜂𝜇𝜈  is a metric tensor for Galilean values and 𝜖𝜇𝜈  is a function of 

𝑥, 𝑦, 𝑧; but independent of time 𝑡. 

𝑑𝜂𝜇𝜈

𝑑𝑥4
=

𝜕𝑔𝜇𝑣

𝜕𝑥4
= 0 

Then we obtain 

Γ𝜇𝜈
𝜆 = 𝑔𝜌𝜆Γρ,μν 

= 𝑔𝜌𝜆
1

2
(
𝜕𝑔𝜌𝜇

𝜕𝑥𝑣
+

𝜕𝑔𝜌𝑣

𝜕𝑥𝜇
−

𝜕𝑔𝜇𝑣

𝜕𝑥𝜌
) 

=
1

2
(∈𝜌𝜆+ 𝜂𝜌𝜆) (

𝜕𝜂𝜌𝜇

𝜕𝑥𝑣
+

𝜕𝜂𝜌𝑣

𝜕𝑥𝜇
−

𝜕𝜂𝜇𝑣

𝜕𝑥𝜌
) 

Now neglecting second order terms in 𝜂, we get 

Γ𝜇𝜈
𝜆 =

1

2
(
𝜕𝜂𝜆𝜇

𝜕𝑥𝑣
+

𝜕𝜂𝜆𝑣

𝜕𝑥𝜇
−

𝜕𝜂𝜇𝑣

𝜕𝑥𝜆
)                           … (2) 

Now the Galilean Coordinates are 

𝑥1 = 𝑥, 𝑥2 = 𝑦 , 𝑥3 = 𝑧, 𝑥4 = 𝑐𝑡 

𝑑𝑠2 = −𝑑𝑥2+𝑑𝑦2 + 𝑑𝑧2 + 𝑐2𝑑𝑡2 



Theory of Relativity  MAT609 
 

Department of Mathematics    

Uttarakhand Open University Page 210 
 

−𝑣2𝑑𝑡2 + 𝑐2𝑑𝑡2 = 𝑐2𝑑𝑡2 (1 −
𝑣2

𝑐2
) 

For the velocities 𝑣 ≪ 𝑐, then 

                                              𝑑𝑠 ≈ 𝑐𝑑𝑡 = 𝑑𝑥4                      … (3) 

Since the field is static, i.e., it does not change with time. Consequently, 

velocity components might be interpreted as 

                              
𝑑𝑥1

𝑑𝑠
,
𝑑𝑥2

𝑑𝑠
,
𝑑𝑥3

𝑑𝑠
= 0 𝑎𝑛𝑑 

𝑑𝑥4

𝑑𝑠
= 1                 … (4)  

By equation (1) given as 

𝑑2𝑥𝜆

𝑑𝑠2
+ Γ44

𝜆 (
𝑑𝑥4

𝑑𝑠
)

2

= 0                                     

𝑑2𝑥𝜆

𝑑𝑠2
+ Γ44

𝜆 = 0  

Using (2)above equation, we get 

𝑑2𝑥𝛼

𝑑𝑠2
= −Γ44

𝜆 ≈ −
1

2
(
𝜕𝜂44

𝜕𝑥𝛼
)  𝑓𝑜𝑟 𝛼 = 1,2,3 

Using (2) the equation may be given as 

𝑑2𝑥𝛼

𝑑𝑠2
= −

𝜕

𝜕𝑥𝛼
(
1

2
𝑐2𝑔44) 

Now the Newton’s equations of motion are 

𝑑2𝑥𝛼

𝑑𝑠2
= −

𝜕𝜙

𝜕𝑥𝛼
 

where 𝜙 is potential function. 

From the above equations, we obtain 

−
𝜕

𝜕𝑥𝛼
(
1

2
𝑐2𝑔44) = −

𝜕𝜙

𝜕𝑥𝛼
 

Integrating, we obtain 

∫
𝜕𝑔44

𝜕𝑥𝛼
𝑑𝑥𝛼 =

2

𝑐2
∫

𝜕𝜙

𝜕𝑥𝛼
𝑑𝑥𝛼 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 



Theory of Relativity  MAT609 
 

Department of Mathematics    

Uttarakhand Open University Page 211 
 

𝑔44 =
2𝜙

𝑐2
+ 𝑘 

In flat space 

𝑔44 = 1,𝜙 = 0, 𝑠𝑜 𝑡ℎ𝑎𝑡  𝑘 = 1 

Then 

𝑔44 = 1 +
2𝜙

𝑐2
 

Therefore, in the case of a weak static field, geodesic equations may be 

reduced to Newton's equations of motion if 

𝑔44 = 1 +
2𝜙

𝑐2
 

11.6 POISSON’S EQUATION AS AN 

APPROXIMATION OF GEODESIC EQUATIONS:-  

To prove that (Einstein's) field equations reduce in linear approximation to 

Newtonian equations (Poisson's equations)  

                              ∇2𝜓 = −4𝜋𝜌                                                  … (1) 

Proof: Let us consider the motion of a test particle in a weak static field. A 

weak static field is 

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + 𝜖𝜇𝜈   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

Where 𝜂𝜇𝜈 metric tensor is for Galilean line element and 𝜖𝜇𝜈  is the 

function of 𝑥, 𝑦, 𝑧. 

The deviation of the metric from unity is represented through 𝜖𝜇𝜈. The 

quantities 𝜖𝜇𝜈  are taken to be so small that the powers of 𝜖𝜇𝜈  higher than 

the first are neglected. Here we obtain 

𝜂11 = 𝜂22 = 𝜂33 = −𝜂44 = −1, 𝜂𝜇𝜈 = 0 = 𝑔𝜇𝜈𝑓𝑜𝑟 𝜇 ≠ 𝑣 

Since the field is static, i.e., it does not change with time. Consequently, 

velocity components might be interpreted as 

                              
𝑑𝑥1

𝑑𝑠
,
𝑑𝑥2

𝑑𝑠
,
𝑑𝑥3

𝑑𝑠
= 0 𝑎𝑛𝑑 

𝑑𝑥4

𝑑𝑠
= 1                         … (1)  
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Now the Galilean Coordinates are 

𝑥1 = 𝑥, 𝑥2 = 𝑦 , 𝑥3 = 𝑧, 𝑥4 = 𝑐𝑡 

Now the geodesic equations are reduced to Newtonian equations of 

motion if 

𝑔44 = 1 +
2𝜙

𝑐2
= 1 + 2𝜙  𝑤ℎ𝑒𝑛 𝑐 = 1                   … (2) 

Each element of the energy tensor will be approximately equal to zero on 

its own, with the exception of 

𝑇44 = 𝜌  so that 𝑇 = 𝑔𝜇𝑣𝑇𝜇𝑣 = 𝑔44𝑇44 

= (1 + 𝜖𝜇𝜈)
−1

𝜌 = (1 − 𝜖𝜇𝜈 + ⋯)𝜌 = 𝜌 

∴                                           𝑇44 = 𝜌  ,𝑇 = 𝜌   

Now the field equation is given by 

𝑅𝜇𝑣 −
1

2
𝑅𝑔𝜇𝑣 = −8𝜋𝑇𝜇𝑣  

From which we obtain 

𝑅𝜇𝑣 = −8𝜋 (𝑇𝜇𝑣 −
1

2
𝑔𝜇𝑣) 

𝑅44 = −8𝜋 (𝑇44 −
1

2
𝑔44) = −8𝜋𝜌(1 −

1

2
𝑔44) 

= −8𝜋𝜌(1 −
1

2
× 1) approximate 

𝑅44 = −4𝜋𝜌 

𝑅𝜇𝑣𝜎
𝑎 = −

𝜕Γ𝜇𝜈
𝑎

𝜕𝑥𝜎
+

𝜕Γ𝜇𝜎
𝑎

𝜕𝑥𝑣
− Γ𝜇𝜈

𝑏 Γ𝑏𝜎
𝑎 + Γ𝜇𝜎

𝑏 Γ𝑏𝜐
𝑎  

From above equation we have 

𝑅44 = 𝑅44𝑎
𝑎 = −

𝜕Γ44
𝑎

𝜕𝑥𝑎
+

𝜕Γ4𝑎
𝑎

𝜕𝑥4
− Γ44

𝑏 Γ𝑏𝑎
𝑎 + Γ4𝑎

𝑏 Γ𝑏4
𝑎  

Now we obtaining the first order approximation, 



Theory of Relativity  MAT609 
 

Department of Mathematics    

Uttarakhand Open University Page 213 
 

𝑅44 = −
𝜕Γ44

𝑎

𝜕𝑥𝑎
+

𝜕Γ4𝑎
𝑎

𝜕𝑥4
= −= −

𝜕Γ44
𝑎

𝜕𝑥𝜎
 

                               𝑅44 = −
𝜕Γ44

𝑎

𝜕𝑥𝑎 = 4𝜋𝜌                                              … (3) 

But 
𝜕

𝜕𝑥4 Γ44
4 = 0, 𝑠𝑖𝑛𝑐𝑒 

𝜕𝑔𝜇𝑣

𝜕𝑥𝑎 = 0,  

Hence  

                                                
𝜕Γ44

𝑎

𝜕𝑥𝑎 = 4𝜋𝜌(𝑎 = 1,2,3)                      … (4) 

If 𝑎 = 1,2,3, then 

Γ4𝑎
𝑎 = 𝑔𝑎𝑏𝛤44,𝑏 = 𝑔𝑎𝑏Γ44,4 =

1

−1 + 𝜖𝑎𝑎
(−

1

2

𝜕𝑔44

𝜕𝑥𝑎
)  as 𝑔4𝑎 = 0 

= (1 − 𝜖𝑎𝑎)−1
1

2

𝜕𝑔44

𝜕𝑥𝑎
 

= (1 + 𝜖𝑎𝑎)
1

2

𝜕𝑔44

𝜕𝑥𝜎
=

1

2

𝜕𝑔44

𝜕𝑥𝑎
 

From (4), we have 

𝜕

𝜕𝑥𝑎
(−

1

2

𝜕𝑔44

𝜕𝑥𝑎
) = 4𝜋𝜌 

∑
𝜕2𝑔44

𝜕2𝑥𝑎

3

𝑎=1

= 8𝜋𝜌  𝑜𝑟  ∇2𝑔44 = 8𝜋𝜌 

∇2(1 + 2𝜙  ) = 8𝜋𝜌 𝑏𝑦 (3) 

∇2(2𝜙  ) = 8𝜋𝜌 

∇2(𝜙  ) = 4𝜋𝜌 

This is Poisson’s equation. 

SELF CHECK QUESTIONS 
1. What is the general form of Einstein's field equations (EFE)? 

2. What does the Einstein tensor 𝐺𝜇𝑣represent? 

3. What role does the energy-momentum tensor 𝑇𝜇𝑣 play in the field 

equations? 
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4. Why are Einstein’s equations nonlinear? 

5. What is the cosmological constant Λ in Einstein's equations? 

6. How does Poisson’s equation compare to the relativistic field 

equations? 

11.7 SUMMARY:-  

In this unit we have studied the Relativistic Field Equation, or Einstein 

Field Equations (EFE), describes gravity as the curvature of space-time 

caused by mass and energy, given by  𝐺𝜇𝑣 =
8𝜋𝐺

𝑐4 𝑇𝜇𝑣 where 𝐺𝜇𝑣represents 

space-time curvature and 𝑇𝜇𝑣 represents energy-momentum distribution. In 

the Newtonian limit, where gravity is weak and velocities are much 

smaller than the speed of light, EFE reduces to Newton’s law of 

gravitation which describes gravity as force acting at a distance. Newton’s 

theory can be further expressed through Poisson’s equation,∇2(𝜙  ) = 4𝜋𝜌 

which relates the gravitational potential 𝜙  to mass density 𝜌 . While 

Poisson’s and Newton’s equations are sufficient for classical physics, they 

fail in strong gravitational fields or relativistic conditions, where 

Einstein’s equations are necessary. 

11.8 GLOSSARY:-  

 Einstein Field Equations (EFE) – A set of ten interrelated 

differential equations in General Relativity that describe how 

matter and energy influence space-time curvature. 

 Metric Tensor 𝑔𝜇𝑣 – A mathematical function that defines the 

geometry of spacetime and determines distances and intervals in 

curved space-time. 

 Einstein Tensor 𝑔𝜇𝑣  – A tensor that represents the curvature of 

spacetime, given by 𝑔𝜇𝑣 = 𝑅𝜇𝑣 −
1

2
𝑅𝑔𝜇𝑣 

 Ricci Tensor 𝑅𝜇𝑣 – A contraction of the Riemann curvature tensor 

that represents gravitational effects due to matter distribution. 

 Ricci Scalar (RRR) – A scalar quantity obtained from the Ricci 

tensor, summarizing the curvature of spacetime. 

 Energy-Momentum Tensor 𝑇𝜇𝑣  – A tensor that represents the 

distribution of energy, momentum, and stress in spacetime, acting 

as the source of gravity in EFE. 
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 Newtonian Limit – The weak-field, slow-motion approximation 

of EFE, where they reduce to Newton’s law of gravitation. 

 Cosmological Constant  𝚲– A term introduced by Einstein to 

account for the expansion of the universe, modifying the field 

equations as 𝐺𝜇𝑣 + Λ𝜇𝑣 =
8𝜋𝐺

𝑐4 𝑇𝜇𝑣. 

 Weak Field Approximation – The limit in which spacetime 

curvature is small, allowing EFE to be approximated by Poisson’s 

equation ∇2(𝜙  ) = 4𝜋𝜌. 

 Geodesic Equation – The equation describing the motion of a 

free-falling test particle in curved space-time, derived from the 

principle of least action in General Relativity. 

 Gravitational Waves – Ripples in space-time predicted by EFE, 

generated by accelerating masses, such as merging black holes or 

neutron stars. 

 Schwarzschild Solution – An exact solution of EFE that describes 

the space-time around a spherically symmetric, non-rotating 

massive object, leading to the concept of black holes. 

 Kerr Solution – A solution to EFE describing the space-time 

around a rotating massive object, important for understanding 

astrophysical black holes. 

 Stress-Energy Conservation – Expressed as ∇2𝑇𝜇𝜈 = 0 , 

indicating the local conservation of energy and momentum in 

General Relativity. 

 Bianchi Identities – Mathematical identities ∇2𝐺𝜇𝜈 = 0 , that 

ensure the consistency of EFE with energy-momentum 

conservation 
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 Satya Prakash,Revised by K.P.Gupta, Ninteenth Edition (2019), 

Relativistic Mechanics. 

 Dr. J.K.Goyal & Dr.K.P.Gupta (2018), Theory of Relaivity. 

11.9 TERMINAL QUESTIONS: 

(TQ-1) Define energy momentum tensor. Hence derive the formula for 

this tensor for a perfect fluid in the form 

𝑇𝜇
𝜈 = (𝜌 + 𝑝)𝑣𝜇 − 𝑔𝜇

𝜈𝑝 

(TQ-2)  Discuss the reason which led Einstein to choose field equations 

in the form   

𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗 = −8𝜋𝑇𝑖𝑗 

(TQ-3) Show further that these field equations reduce under 

approximation to Poisson's equations 

∇2(𝜙  ) = 4𝜋𝜌 

(TQ-4)  In general relativity derive the expression for the energy 

momentum tensor 𝑇𝑖𝑗 for a perfect fluid distribution in the 

𝑇𝑖𝑗 = (𝜌 + 𝑝)𝑣𝑖𝑣𝑗 − 𝑔𝑖𝑗𝑝 

(TQ-5) Discuss the formulation of energy-momentum vector in special 

relativity.  

(TQ-6) Define Material energy tensor. Show that in Galilean  

coordinates 𝑇𝜇𝜈 = 𝜌
𝑑𝑥𝜇

𝑑𝑠

𝑑𝑥𝑣

𝑑𝑠
. 

 (TQ-7) Show that the divergence of the energy tensor vanishes and in 

the usual notation prove that 𝐺 =  8𝜋𝛵.  

(TQ-8) Derive the energy momentum tensor for a perfect fluid in the 

form. 

𝑇𝜇
𝜈 = (𝜌 + 𝑝)𝑣𝜇𝑣𝜈 − 𝑔𝜇

𝜈𝑝 

(TQ-9) Obtain Einstein's law of gravitation of the material world and 

deduce some of its consequences. 

 (TQ-10) Verify that the equation 
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                   𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗 = −8𝜋𝑇𝑖𝑗  and   𝑇𝑖𝑗 = 𝜌0

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
. 

(TQ-11) To show that (Einstein's) field equations reduce in linear 

approximation to Newtonian equations (Poisson's equations)  

 (TQ-12) To prove that Geodesic equations reducible to Newtonian 

equations of motion in case of weak static field. 

(TQ-13) To derive the motion of a free particle in case of weak static 

field. 

(TQ-14) : Explain the construction of the energy momentum tensor T for 

matter composed of moving particles and show that the conditions of 

conservation of energy and momentum lead to the tensor equation 
(𝑇𝜇𝑣),𝑣 = 0. 

 

11.10 ANSWERS: 

SELF CHECK ANSWERS 

1. 𝐺𝜇𝑣 =
8𝜋𝐺

𝑐4  

2. 𝐺𝜇𝑣 = 𝑅𝜇𝑣 −
1

2
𝑅𝑔𝜇𝑣 

3. The energy-momentum tensor 𝑇𝜇𝑣 represents the distribution of 

energy, momentum, and stress in space-time. It acts as the 

source of the gravitational field. 

4. Einstein’s equations are nonlinear because the curvature of 

space-time (represented by the metric tensor 𝐺𝜇𝑣 itself affects 

the distribution of energy and momentum, leading to a 

feedback loop. 

5. The modified Einstein field equations with a cosmological 

constant are: 

                                                  𝐺𝜇𝑣 + Λ𝜇𝑣 =
8𝜋𝐺

𝑐4
𝑇𝜇𝑣 

where  Λ the energy density of the vacuum, responsible for the  

accelerated expansion of the universe. 

6. Poisson’s equation is a weak-field, non-relativistic limit of 

Einstein’s field equations. It describes gravity in the Newtonian 

framework, whereas Einstein’s equations describe it in a fully 

relativistic context. 
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UNIT 12:-Schwarzschild Solution  

CONTENTS: 
12.1      Introduction 

12.2      Objectives 

12.3      Schwarzschild’s Exterior Solution  

12.4      Relation between M And m  

12.5      Isotropic Coordinates  

12.6      Planetary Orbits  

12.7      Crucial Test in Relativity 

12.8      Schwarzschild’s Interior Solution 

12.9      Summary 

12.10    Glossary 

12.11    References 

12.12    Suggested Reading 

12.13    Terminal questions  

12.14    Answers 

 

12.1 INTRODUCTION:-  

The Schwarzschild solution is one of the most important exact solutions 

to Einstein's field equations, describing the spacetime around a spherically 

symmetric, non-rotating, and uncharged massive object. It plays a crucial 

role in understanding gravitational phenomena, including planetary orbits, 

gravitational time dilation, and light bending due to gravity. The solution 

also predicts the existence of black holes, introducing the concept of the 

Schwarzschild radius, which defines the event horizon beyond which 

nothing can escape. In the weak-field limit, it reduces to Newtonian 

gravity, making it a bridge between classical and relativistic gravity. The 

Schwarzschild metric has been instrumental in verifying General 

Relativity through experiments such as the precession of Mercury’s orbit 

and gravitational lensing, making it a cornerstone of modern gravitational 

physics. 

12.2 OBJECTIVES:-  

After studying this unit, Lernear’s will be able to  
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 To solve the Einstein’s law of gravitation in empty space. 

 To solve the Schwarzschild exterior solution. 

 To explain the Isotropic Coordinates 

 To explain the Crucial tests of General Relativity. 

 

12.3 SCHWARZSCHILD’S EXTERIOR 

SOLUTION:-  

The law of gravitation in empty space is represented by Einstein's original 

field equations, which are 

                                      𝑅𝜇ν = 0                                                            … (1) 

However, Einstein's law of gravity in empty space is altered as follows if 

the cosmological constant 𝛬 is included 

                                        𝑅𝜇ν = 𝛼𝑔𝜇𝜈                                                    … (2) 

Finding the line element for the interval in empty space around a 

gravitating point particle, which eventually corresponds to the field of an 

isolated particle continuously at rest at the origin, is all that is required to 

solve the aforementioned equations. Schwarzschild was the first to obtain 

this solution. 

In the absence of mass point, space time would be flat, so that the line 

element in spherical polar coordinates to be written as 

                        𝑑𝑠2 = −𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2 + 𝑑𝑡2            … (3) 

The line element would change if the mass point were present. However, 

the line element would be spherically symmetric about the point mass and 

is static since mass is isolated and static. One way to describe such a line 

element in its most generic form is as 

                 𝑑𝑠2 = −𝑒𝜆𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2 + 𝑒𝑣𝑑𝑡2            … (4) 

Here 𝜆  and 𝜈  are functions of 𝑟  only; since for spherically symmetric 

isolated particle the field will depend on 𝑟 alone and not on 𝜃 and 𝜙. 

At an infinite distance from the particle, the line element (4) must limit to 

the Galilean line element (3) because the gravitational field (i.e., the 

disruption from flat-space time) caused by the particle diminishes 

indefinitely. Hence 𝜆 and 𝜈 must tend to zero as tends to infinity. 
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The line element in general relativity is obtained by 

                                      𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝑣                                                … (5) 

Here the coordinates are 

                                    𝑥1 = 𝑟, 𝑥2 = 𝜃 , 𝑥3 = 𝜙, 𝑥4 = 𝑡                        … (6) 

Comparing (4) and (5) with the help of (6), we obtain 

                                 𝑔𝜇𝜈 = [

−𝑒𝜆       0        0     0
0           𝑟2          0        0
0        0     𝑟2𝑠𝑖𝑛2𝜃    0
0        0       0        𝑒𝑣

]                            … (7) 

Then the  𝑔𝜇𝜈  is 

𝑔 = | 𝑔𝜇𝜈| = 𝑒𝜆(−𝑟2). (−𝑟2)(−𝑟2𝑠𝑖𝑛2𝜃). 𝑒𝑣 = −𝑒𝜆+𝜈𝑟4𝑠𝑖𝑛2𝜃 

Using  

 𝑔𝜇𝜈 =
𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓  𝑔𝜇𝜈 𝑖𝑛 𝑔

𝑔
, we obtain 

                          𝑔𝜇𝜈 =

[
 
 
 
 
−𝑒𝜆             0               0                 0

0               (
1

𝑟2
)               0              0

0                  0       (
1

𝑟2𝑠𝑖𝑛2𝜃
)        0

0                 0                0               𝑒−𝑣]
 
 
 
 

                 … (8) 

If 𝜇, 𝜈, 𝜎 ae different suffixes, then we have 

                      

Γ𝜇𝜇
𝜇
=

1

2
𝑔𝜇𝜇

𝜕 𝑔𝜇𝜇

𝜕𝑥𝜇
=

1

2

𝜕(𝑙𝑜𝑔 𝑔𝜇𝜇)

𝜕𝑥𝜇

Γ𝜇𝜇
𝑣 =

1

2
𝑔𝑣𝑣

𝜕 𝑔𝜇𝜇

𝜕𝑥𝑣

Γ𝜇𝑣
𝑣 =

1

2
𝑔𝑣𝑣

𝜕 𝑔𝑣𝑣

𝜕𝑥𝜇
=

1

2

𝜕(𝑙𝑜𝑔 𝑔𝑣𝑣)

𝜕𝑥𝜇

Γ𝜇𝛼
𝜎 = 0 }

 
 

 
 

                                      … (9) 

Now we obtain the following nine independent non-vanishing 3-index 

symbols, all others being zero. 
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Γ11
1 =

1

2

𝜕𝜆

𝜕𝑟
; Γ12

2 =
1

𝑟
; Γ13

3 =
1

𝑟
;

Γ14
4 =

1

2

𝜕𝑣

𝜕𝑟
; Γ23

3 = 𝑐𝑜𝑡𝜃; Γ22
1 = −𝑟𝑒−𝜆;

Γ33
1 = −𝑟𝑠𝑖𝑛2𝜃𝑒−𝜆; Γ14

4 =
1

2
𝑒𝑣−𝜆

𝜕𝑣

𝜕𝑟
; Γ33

2 = −𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

Γ𝜇𝛼
𝜎 = 0 }

 
 
 

 
 
 

              … (10) 

We obtain 

𝑅𝜇𝜈 =
𝜕

𝜕𝑥𝑣
Γ𝜇𝛽
𝛽
−

𝜕

𝜕𝑥𝛽
Γ𝜇𝑣
𝛽
+ Γ𝜇𝛽

𝛼 Γ𝛼𝑣
𝛽
− Γ𝜇𝑣

𝛼 Γ𝛼𝛽
𝛽

 

 =
𝜕2𝑙𝑜𝑔√(|𝑔|)

𝜕𝑥𝜇𝜕𝑥𝑣
Γ𝜇𝛽
𝛽
−

𝜕

𝜕𝑥𝛽
Γ𝜇𝑣
𝛽
+ Γ𝜇𝛽

𝛼 Γ𝛼𝑣
𝛽
− Γ𝜇𝑣

𝛼 𝜕𝑙𝑜𝑔√(|𝑔|)

𝜕𝑥𝛼
                      … (11) 

𝑅11 =
𝜕2𝑙𝑜𝑔√(|𝑔|)

𝜕𝑥1𝜕𝑥1
Γ𝜇𝛽
𝛽
−

𝜕

𝜕𝑥𝛽
Γ11
𝛽
+ Γ1𝛽

𝛼 Γ𝛼1
𝛽
− Γ11

𝛼
𝜕𝑙𝑜𝑔√(|𝑔|)

𝜕𝑥𝛼
 

=
𝜕2𝑙𝑜𝑔√(|𝑔|)

𝜕𝑟2
Γ𝜇𝛽
𝛽
−
𝜕

𝜕𝑟
Γ11
1 + Γ11

1 Γ11
1 + +Γ12

2 Γ21
2 + Γ13

3 Γ31
3 + Γ14

4 Γ41
4

− Γ11
1
𝜕𝑙𝑜𝑔√(|𝑔|)

𝜕𝑟
 

As|𝑔| = 𝑒𝜆+𝜈𝑟4𝑠𝑖𝑛2𝜃,              𝑖. 𝑒. , √|𝑔| = 𝑒
𝜆+𝜈

2 𝑟2𝑠𝑖𝑛𝜃,   𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 

𝑅11 =
𝜕2

𝜕𝑟2
(
𝜆 + 𝜈

2
+ 2𝑙𝑜𝑔𝑟 + 𝑙𝑜𝑔𝑠𝑖𝑛𝜃) −

𝜕

𝜕𝑟
(
1

2

𝜕𝜆

𝜕𝑟
) + (

1

2

𝜕𝜆

𝜕𝑟
)
2

+
1

𝑟2

+ (
1

𝑟
)
2

+ (
1

2

𝜕𝜈

𝜕𝑟
)
2

−
1

2

𝜕𝜆

𝜕𝑟

𝜕

𝜕𝑟
(
𝜆 + 𝜈

2
+ 2𝑙𝑜𝑔𝑟 + 𝑙𝑜𝑔𝑠𝑖𝑛𝜃) 

𝑅11 =
𝜕2𝑣

𝜕𝑟2
+
1

4
(
𝜕𝑣

𝜕𝑟
)
2

−
1

4

𝜕𝜆

𝜕𝑟

𝜕𝜈

𝜕𝑟
−
1

𝑟

𝜕𝜆

𝜕𝑟
 

𝑅11 =
𝑣′′

2
−
𝜆′𝜈′

4
+
𝑣′2

4
−
𝜆′

𝑟
 

 

Similarly 

𝑅22 = 𝑒
−𝜆 (1 +

1

2
𝑟
𝜕𝑣

𝜕𝑟
−
1

2
𝑟
𝜕𝜆

𝜕𝑟
) − 1 = 𝑒−𝜆 [1 − 𝑟 (

𝜆′ − 𝜈′

2
)] − 1 
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𝑅33 = {𝑒
−𝜆 (1 +

1

2
𝑟
𝜕𝑣

𝜕𝑟
−
1

2
𝑟
𝜕𝜆

𝜕𝑟
) − 1} 𝑠𝑖𝑛2𝜃 = 𝑅22𝑠𝑖𝑛

2𝜃 

𝑅44 = −
1

2
𝑒𝜈−𝜆 {

𝜕2𝑣

𝜕𝑟2
+
1

2
(
𝜕𝑣

𝜕𝑟
)
2

−
1

2

𝜕𝜆

𝜕𝑟

𝜕𝜈

𝜕𝑟
+
2

𝑟

𝜕𝜈

𝜕𝑟
}

= 𝑒𝜈−𝜆 [−
𝑣′′

2
+
𝜆′𝜈′

4
−
𝑣′2

4
−
𝑣′

𝑟
] 

Additionally, for the line element mentioned above, all of 𝑅𝜇𝜈off diagonal 

components are zero. 

Hence 

𝑅𝜇𝜈 = 0 

                                 𝑅11 =
𝜕2𝑣

𝜕𝑟2
+

1

4
(
𝜕𝑣

𝜕𝑟
)
2

−
1

4

𝜕𝜆

𝜕𝑟

𝜕𝜈

𝜕𝑟
−

1

𝑟

𝜕𝜆

𝜕𝑟
= 0   … (12) 

                                            𝑒−𝜆 (1 +
1

2
𝑟
𝜕𝑣

𝜕𝑟
−

1

2
𝑟
𝜕𝜆

𝜕𝑟
) − 1 = 0    … (13) 

𝑅33 = 𝑅22𝑠𝑖𝑛
2𝜃 = 0    … (14) 

𝑅44 = −
1

2
𝑒𝜈−𝜆 {

𝜕2𝑣

𝜕𝑟2
+
1

2
(
𝜕𝑣

𝜕𝑟
)
2

−
1

2

𝜕𝜆

𝜕𝑟

𝜕𝜈

𝜕𝑟
+
2

𝑟

𝜕𝜈

𝜕𝑟
} = 0  … (14) 

Therefore, the only Einstein's field equations that 𝜆 and 𝑣 may satisfy for 

empty space are 

                                      
𝜕2𝑣

𝜕𝑟2
+

1

4
(
𝜕𝑣

𝜕𝑟
)
2

−
1

4

𝜕𝜆

𝜕𝑟

𝜕𝜈

𝜕𝑟
−

1

𝑟

𝜕𝜆

𝜕𝑟
= 0          … (15) 

                                           𝑒−𝜆 (1 +
1

2
𝑟
𝜕𝑣

𝜕𝑟
−

1

2
𝑟
𝜕𝜆

𝜕𝑟
) − 1 = 0    … (16) 

                                
1

2
𝑒𝜈−𝜆 {

𝜕2𝑣

𝜕𝑟2
+

1

2
(
𝜕𝑣

𝜕𝑟
)
2

−
1

2

𝜕𝜆

𝜕𝑟

𝜕𝜈

𝜕𝑟
+

2

𝑟

𝜕𝜈

𝜕𝑟
} = 0… (17) 

Now dividing (17) by 𝑒𝜈−𝜆 and then subtracting (16), we obtain 

1

𝑟

𝜕𝑣

𝜕𝑟
+
1

𝑟

𝜕𝜆

𝜕𝑟
= 0 

𝜕𝑣

𝜕𝑟
+
𝜕𝜆

𝜕𝑟
= 0 

Integrating, we have 
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𝑣 + 𝜆 = 𝐴 

where 𝐴 is the integrating constant, and since 𝑟 = ∞, 𝜆 = 0 and 𝑣 = 0, it is 

possible to adjust it to 0 without losing generality. Therefore  

                                                             𝜆 = −𝑣                             … (18) 

𝑒𝑣 (1 + 𝑟 
𝜕𝑣

𝜕𝜆
) = 1 

𝜕

𝜕𝑟
(𝑟𝑒𝑣) = 1 

Integrating, we get 

𝑟𝑒𝑣 = 𝑟 + 𝐵 

B being constant of integration 

                                             𝑒𝑣 = −𝑒−𝜆 = 1 −
2𝑚

𝑟
                  … (19) 

where we have substitute 𝐵 = 2𝑚. Hence, from equation (4), the line 

element resulting from a static, isolated gravitating mass point is 

𝑑𝑠2 = −(1 −
2𝑚

𝑟
)
−1

𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2

+ (1 −
2𝑚

𝑟
)𝑑𝑡2                                     … (20) 

This solution is called to as the Schwarzschild line element because it was 

first identified by Schwarzschild. In the limit  𝑟 → ∞,, the Schwarzschild 

line element clearly reduces to the line element of special relativity's flat 

space time. 

Schwarzschild singularity: The singularities of the Schwarzschild 

solution are observed to be as follows: 

1) At 𝑟 =  0,  the Schwarzschild solution becomes singular, but 

Newton's (classical) theory also occurs this singularity. 

2) When the distance 𝑟 is provided by 1 − 2𝑚 = 0, that is, 𝑟 = 2𝑚, 

the Schwarzschild solution once more becomes singular.This value 

of r is called Schwarzschild radius. For points 0 ≤  𝑟 ≤

2𝑚, 𝑑𝑠2 < 0, i.e., the interval is purely space-like. Hence there is a 

finite singular region for 0 ≤  𝑟 ≤ 2𝑚. Thus 𝑟 = 2𝑚 represents 
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the boundary of the isolated particle and the solution holds in 

empty space outside the spherical distribution of matter (or isolated 

particle) whose radius must be greater than 2𝑚. Hence egn. (20) is 

known as the Schwarzschild exterior solution for the gravitational 

field of an isolated particle. 

Schwarzschild solution (21) corresponds to Einstein's original field 

equations for empty space 

𝑅𝜇𝑣 = 0 

But when the cosmological constant Λ is taken into account, the 

Schwarzschild's solution for empty space that corresponds to field 

equations 

𝑅𝜇𝑣 =  Λ𝑔𝜇𝑣 

Leads to the line element or metric is 

𝑑𝑠2 = −(1 −
2𝑚

𝑟
−
Λ𝑟2

3
)

−1

𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2)

+ (1 −
2𝑚

𝑟
−
Λ𝑟2

3
)𝑑𝑡2                                … (21) 

This is required Birkhoff’s Solution. 

By comparing the line elements provided by equations (20) and (21) we 

can observe that the larger the region under consideration, the greater the 

effect of the 𝛬 term on the field surrounding an attractive point particle. 

However, the cosmological constant 𝛬  is so minuscule that, even if it 

deviates from zero, it has no discernible impact inside an area the size of 

the solar system. 

For empty world, we set 𝑚 = 0, we get 

𝑑𝑠2 = −(1 −
Λ𝑟2

3
)

−𝜆

𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2

+ (1 −
Λ𝑟2

3
)𝑑𝑡2                                … (22) 
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This is known as Schwarzschild exterior solution for entirely empty 

world.This solution has a singularity at 𝑟 = √
3

Λ
  because 𝑟 is very large 

and the cosmological constant Λ is very small. It represents the It 

expresses the horizon of the world. 

12.4 RELATION BETWEEN M AND m:-  

The Schwarzschild exterior solution for gravitational field of an isolated 

particle is given as below 

𝑑𝑠2 = −(1 −
2𝑚

𝑟
)
−1

𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2

+ (1 −
2𝑚

𝑟
)𝑑𝑡2                                     … (1) 

Suppose 𝑟 ≫ 2𝑚. The field of distance 𝑟 due to an attracting Mass 𝑀 is 

below 

𝑔44 = 1 +
2𝜙

𝑐2
 

Where 𝜙 is Newtonian potential, i.e.,  

2𝜙

𝑐2
= 𝑔44 − 1 = (1 −

2𝑚

𝑟
) − 1 = −

2𝑚

𝑟
 

                                           𝜙 = −
2𝑚𝑐2

𝑟2
                                                  … (2) 

If  M is the mass of the particle and G the gravitational constant, then 

𝜕𝜙

𝜕𝑟
=
𝐺𝑀

𝑟2
 

Putting the value of (2) in above equation, we get 

𝑚𝑐2

𝑟
=
𝐺𝑀

𝑟2
 

𝑚 =
𝐺𝑀

𝑟2
 

This is the relationship between Schwarzchild’s solution's constant 𝑚 and 

the attracting mass 𝑀. 
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12.5 ISOTROPIC COORDINATES:-  

Schwarzchild's exterior solution is obtained by 

𝑑𝑠2 = −(1 −
2𝑚

𝑟
)
−1

𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2

+ (1 −
2𝑚

𝑟
)𝑑𝑡2                                     … (1) 

Let the transformation 

                                𝑟 = (1 +
𝑚

2𝑟1
)
2

 𝑟1                                      … (2) 

So that 

𝑑𝑟 = (1 −
𝑚

2𝑟1
)
2

 𝑑𝑟1 

𝑑𝑟 = (1 −
𝑚2

4𝑟12
)

2

 𝑑𝑟1 

𝑑𝑟2 = (1 −
𝑚

2𝑟1
)
2

(1 +
𝑚

2𝑟1
)
2

𝑑𝑟1
2
 

(1 −
𝑚

2𝑟1
) = 1 −

2𝑚

(1 +
𝑚
2𝑟1
)
2

𝑟1

 

=
(1 −

𝑚
2𝑟1
)
2

(1 +
𝑚
2𝑟1
)
2 

Putting the above values in equation (1), we obtain 

 𝑑𝑠2 =
(1+

𝑚

2𝑟1
)
2

(1−
𝑚

2𝑟1
)
2 (1 −

𝑚

2𝑟1
)
2

(1 +
𝑚

2𝑟1
)
2

𝑑𝑟1
2 − (1 +

𝑚

2𝑟1
)
4

𝑟1
2𝑑𝜃2 −

(1 +
𝑚

2𝑟1
)
4

𝑟1
2𝑠𝑖𝑛2𝜃𝑑𝜙2 +

(1+
𝑚

2𝑟1
)
2

(1−
𝑚

2𝑟1
)
2 𝑑𝑡

2                                                     

 𝑑𝑠2 = (1 +
𝑚

2𝑟1
)
4

(𝑑𝑟1
2 + 𝑟1

2𝑑𝜃2 + 𝑟1
2𝑠𝑖𝑛2𝜃𝑑𝜙2) +

(1+
𝑚

2𝑟1
)
2

(1−
𝑚

2𝑟1
)
2 𝑑𝑟

2   … (3) 
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This is known as isotropic line element. The coordinates 𝑟1, 𝜃, 𝜙 are called 

isotropic polar coordinates. 

On applying the transformation 

𝑥 = 𝑟1𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙,     𝑦 = 𝑟1𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙,    𝑧 = 𝑟1𝑐𝑜𝑠𝜃 

The line element (3) becomes 

𝑑𝑠2 = (1 +
𝑚

2𝑟1
)
4

(𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) +
(1 +

𝑚
2𝑟1
)
2

(1 −
𝑚
2𝑟1
)
2 𝑑𝑟

2   … (4) 

This is known as isotropic line element in Cartesian Coordinates. 

12.6 PLANETARY ORBITS:-  

We shall now consider the motion of the planets in the gravitational field 

of the sun. The planets' space-time trajectories, when considered as free 

particles, are determined by geodesic equations. 

                               
𝑑2𝑥𝛼

𝑑𝑠2
+ Γ𝜇𝜈

𝛼 𝑑𝑥𝜇

𝑑𝑠

𝑑𝑥𝜈

𝑑𝑠
= 0                              … (1) 

Since the sun is an attractive point particle, its gravitational field may be 

considered as the field of a single particle that is always at rest at the 

origin. As a result, the Schwarzschild's line element for empty space 

provides the space-time, i.e. 

               𝑑𝑠2 = −𝑒𝜆𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2) + 𝑒𝜈𝑑𝑡2         … (2) 

Where   

𝜆 = −𝜈, 𝑒𝜈 = −𝑒−𝜆 = 1 −
2𝑚

𝑟
 

Now the Christoffel’s Symbols are 

Γ11
1 =

𝜆′

2
, Γ22
1 = −𝑟𝑒−𝜆, Γ44

1 =
𝑣′

2
𝑒𝑣−𝜆 

Γ12
2 =

1

𝑟
, Γ23
3 = 𝑐𝑜𝑡𝜃 
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Γ13
3 =

1

𝑟
, Γ33
1 = −𝑟𝑠𝑖𝑛2𝜃𝑒−𝜆 

Γ14
4 =

𝑣′

2
, Γ33
2 = −𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 

Our coordinate are 𝑥1 = 𝑟, 𝑥2 = 𝜃, 𝑥3 = 𝜙, 𝑥4 = 𝑡. Taking 𝛼 = 1, we get 

𝑑2𝑥1

𝑑𝑠2
+ Γ𝜇𝜈

1
𝑑𝑥𝜇

𝑑𝑠

𝑑𝑥𝜈

𝑑𝑠
= 0 

𝑑2𝑥1

𝑑𝑠2
+ Γ12

1 (
𝑑2𝑥1

𝑑𝑠2
)

2

+ Γ22
1 (

𝑑2𝑥2

𝑑𝑠2
)

2

+ Γ33
1 (

𝑑2𝑥3

𝑑𝑠2
)

2

+ Γ44
1 (

𝑑2𝑥4

𝑑𝑠2
)

2

= 0 

𝑑2𝑟

𝑑𝑠2
+
1

2

𝜕𝜆

𝜕𝑟
(
𝑑𝑟

𝑑𝑠
)
2

− 𝑟𝑒−𝜆 (
𝑑𝜃

𝑑𝑠
)
2

− 𝑟𝑠𝑖𝑛2𝜃𝑒−𝜆 (
𝑑𝜙

𝑑𝑠
)
2

−
1

2
𝑒𝜈−𝜆

𝜕𝜈

𝜕𝑟
(
𝑑𝑡

𝑑𝑠
)
2

= 0                                                                            … (3) 

For  𝛼 = 2, we obtain 

𝑑2𝑥2

𝑑𝑠2
+ Γ𝜇𝜈

2
𝑑𝑥𝜇

𝑑𝑠

𝑑𝑥𝜈

𝑑𝑠
= 0 

𝑑2𝑥1

𝑑𝑠2
+ Γ12

2
𝑑𝑥1

𝑑𝑠

𝑑𝑥2

𝑑𝑠
+ Γ21

2
𝑑𝑥2

𝑑𝑠

𝑑𝑥1

𝑑𝑠
+ Γ33

2 (
𝑑𝑥3

𝑑𝑠
)

2

= 0 

𝑑2𝜃

𝑑𝑠2
+
1

𝑟

𝑑𝑟

𝑑𝑠

𝑑𝜃

𝑑𝑠
+
1

𝑟

𝑑𝜃

𝑑𝑠

𝑑𝑟

𝑑𝑠
+ (−𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃) (

𝑑𝜙

𝑑𝑠
)
2

= 0 

                           
𝑑2𝜃

𝑑𝑠2
+

2

𝑟

𝑑𝑟

𝑑𝑠

𝑑𝜃

𝑑𝑠
− 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (

𝑑𝜙

𝑑𝑠
)
2

= 0              … (4) 

Similarly for = 3 & 4 , we get 

                                 
𝑑2𝜙

𝑑𝑠2
+

2

𝑟

𝑑𝑟

𝑑𝑠

𝑑𝜙

𝑑𝑠
+ 2𝑐𝑜𝑡𝜃

𝑑𝜃

𝑑𝑠

𝑑𝜙

𝑑𝑠
= 0              … (5) 

                                                       
𝑑2𝑡

𝑑𝑠2
+

𝜕𝑣

𝜕𝑟

𝑑𝑟

𝑑𝑥
.
𝑑𝑡

𝑑𝑠
= 0             … (6) 

Hence the equations (3),(4), (5) and (6) are the motion of planet. 

The planet moves initially on a plane 𝜃 =
𝜋

2
,  thus let's use the coordinate 

system so that 



Theory of Relativity  MAT609 
 
 

Department of Mathematics     

Uttarakhand Open University Page 229 
 

𝑐𝑜𝑠𝜃 = 0, 𝑠𝑖𝑛𝜃 = 1,
𝑑𝜃

𝑑𝑠
= 0 

Then from (4) given 

                                          
𝑑2𝜃

𝑑𝑠2
= 0                                            … (7) 

According to this equation, the planet continues to move in the plane 𝜃 =
𝜋

2
.  Consequently, we always have  

                       𝑐𝑜𝑠𝜃 = 0, 𝑠𝑖𝑛𝜃 = 1 𝑎𝑛𝑑 
𝑑𝜃

𝑑𝑠
= 0                  … (8) 

So that the equations (3), (5) and (6) become 

𝑑2𝑟

𝑑𝑠2
+
1

2

𝜕𝜆

𝜕𝑟
(
𝑑𝑟

𝑑𝑠
)
2

− 𝑟𝑒−𝜆 (
𝑑𝜙

𝑑𝑠
)
2

+
1

2
𝑒𝜈−𝜆

𝜕𝜈

𝜕𝑟
(
𝑑𝑡

𝑑𝑠
)
2

= 0                                                 … (9)     

𝑑2𝜙

𝑑𝑠2
+
2

𝑟

𝑑𝑟

𝑑𝑠

𝑑𝜙

𝑑𝑠
= 0                                         … (10) 

𝑑2𝑡

𝑑𝑠2
+
𝜕𝑣

𝜕𝑟

𝑑𝑟

𝑑𝑥
.
𝑑𝑡

𝑑𝑠
= 0                                   … (11) 

From the equation (10) and (11) may be obtained as 

1

𝑟2
𝑑

𝑑𝑠
(𝑟2

𝑑𝜙

𝑑𝑠
) = 0,   𝑖. 𝑒. ,        

𝑑

𝑑𝑠
(𝑟2

𝑑𝜙

𝑑𝑠
) = 0  

1

𝑒𝜈
𝑑

𝑑𝑠
(𝑒𝜈

𝑑𝑡

𝑑𝑠
) = 0,   𝑖. 𝑒. ,        

𝑑

𝑑𝑠
(𝑒𝜈

𝑑𝑡

𝑑𝑠
) = 0  

The above equations' integration instantly produces 

                                            
𝑟2

𝑑𝜙

𝑑𝑠
= ℎ

𝑒𝜈
𝑑𝑡

𝑑𝑠
= 𝑘

}                            … (12) 

where ℎ and 𝑘 are integration constants. The motion's angular momentum 

is measured by the constant ℎ. Additionally, because integrating equation 

(9) is difficult, we utilize the line element (2) instead, which, when 

combined with equation (8), yields 
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−𝑒𝜆 (
𝑑𝑟

𝑑𝑠
)
2

− 𝑟2 (
𝑑𝜙

𝑑𝑠
)
2

+ 𝑒𝑣 (
𝑑𝑡

𝑑𝑠
)
2

= 1 

              𝑒𝜆 (
𝑑𝑟

𝑑𝑠
)
2

+ 𝑟2 (
𝑑𝜙

𝑑𝑠
)
2

− 𝑒𝑣 (
𝑑𝑡

𝑑𝑠
)
2

+ 1 = 0      … (13) 

Now using (12), we get 

−𝑒−𝜈 (
𝑑𝑟

𝑑𝑠
)
2

+
ℎ2

𝑟2
−
𝑘2

𝑒𝜈
+ 1 = 0 

                      (
𝑑𝑟

𝑑𝑠
)
2

+
ℎ2

𝑟2
𝑒𝜈 − 𝑘2 + 𝑒𝜈 = 0                  … (14) 

We obtain 

𝑑𝑟

𝑑𝑠
=
𝑑𝑟

𝑑𝜙

𝑑𝜙

𝑑𝑠
=
ℎ2

𝑟2
𝑑𝑟

𝑑𝜙
     𝑢𝑠𝑖𝑛𝑔 (12) 

and                                   𝑒𝑣 = 1 −
2𝑚

𝑟
                𝑓𝑟𝑜𝑚 (3) 

Consequently equation (14) becomes 

(
ℎ2

𝑟2
𝑑𝑟

𝑑𝜙
)

2

+
ℎ2

𝑟2
(1 −

2𝑚

𝑟
) − 𝑘2 + (1 −

2𝑚

𝑟
) = 0                   

Now substituting 𝑢 =
1

𝑟
 and rearranging, we obtain 

                             (
𝑑𝑢

𝑑𝜙
)
2

+ 𝑢2 =
𝑘2−1

ℎ2
+

2𝑚𝑢

ℎ2
+ 2𝑚𝑢3    … (15) 

Differentiating (15) w.r.t. 𝜙, we obtain 

2
𝑑𝑢

𝑑𝜙
 
𝑑2𝑢

𝑑𝜙2
+ 2𝑢

𝑑𝑢

𝑑𝜙
=
2𝑚

ℎ2
𝑑𝑢

𝑑𝜙
+ 6𝑚𝑢2

𝑑𝑢

𝑑𝜙
 

                                        
𝑑2𝑢

𝑑𝜙2
+ 𝑢 =

𝑚

ℎ2
+ 3𝑚𝑢2             … (16) 

𝑟2
𝑑𝜙

𝑑𝑠
= ℎ 

The relativistic differential equation for the planet's trajectory is 

represented by equation (16). Here, 𝑑𝑠 is a component of the proper time 
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as determined by a clock that moves with the planet, and 𝑟 and 𝜙 are the 

special coordinates.  

One can compare the relativistic equation (16) of the planet's orbit with 

the corresponding Newtonian equation, which is 

𝑑2𝑢

𝑑𝜙2
+ 𝑢 =

𝑚

ℎ2
 

with 

𝑟2
𝑑𝜙

𝑑𝑡
= ℎ 

It is clear that the Newtonian equation of the planet's orbit has an 

additional component (3𝑚𝑢²) due to the relativistic effects of gravity, and 

the proper time element 𝑑𝑠 takes the place of the time element 𝑑𝑟. The 

additional term's ratio 3𝑚𝑢² 𝑡𝑜 
𝑚

ℎ2
 is  

3𝑚𝑢²

(
𝑚
ℎ2
)
= 3ℎ2𝑢2 = 3(𝑟

𝑑𝜙

𝑑𝑠
)
2

 

which is practically three times the square of the transverse velocity of the 

planet in relativistic units. 

In the terms of speed of light 

3ℎ2𝑢2 = 3.(
𝑟.
𝑑𝜙
𝑑𝑠
𝑐
)

2

= 3(
𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑝𝑙𝑎𝑛𝑎𝑡

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡
)
2

 

The calculated value of this ratio for the earth is 3 × 10−8  at normal 

speed, it is insignificant.  In real-world applications, this ratio indicates a 

negligible adjustment to Newtonian orbit. 

EXAMPLE: Explain the statement that the mass of the sun which is 

1.99 × 1033 𝑔𝑚𝑠. becomes in gravitational units 1.47 kilometers.  

SOLUTION: It is given that  

M Mass of the sun = 1.99 × 1033 gms.  

To prove that mass of the sun gravitational unit. 1.47 kilometres in 
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We know that  

𝑚𝑐² =  𝛾𝑀 

𝑚 =  
𝛾𝑀

𝑐²
 

where c = velocity of light = 3 ×
1010𝑐𝑚

𝑠𝑒𝑐
.  

y = Gravitational constant 6.66 × 10−8C.G.S. unit. 

𝑚 =  
𝛾𝑀

𝑐²
=
6.66 × 10−8 × 1.99 × 1033

(3 × 1010)2
 

=
13.2539 × 105

9
= 1.4694 × 105𝑐𝑚𝑠 = 1.4694 𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠 

= 1.47 𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠(𝑎𝑝𝑝) 

 12.7CRUCIAL TEST IN RELATIVITY:-  

In relativity, the following are referred to as important tests. 

(i)  Advance of perihelion. 

(ii) Gravitational deflection of light. 

(iii) Shift in spectral lines. 

(i) Advance of perihelion: To discuss the advance vanced sun, 

comparing the the perihelion of a planet's orbit around the sun, 

relativistic equations with those of classical mechanics. 

Proof: The differential equation of the path of a planet is 

𝑑2𝑢

𝑑𝜙2
+ 𝑢 =

𝑚

ℎ2
+ 3𝑚𝑢2                  … (1) 

with 

𝑟2
𝑑𝜙

𝑑𝑠
= ℎ 

Neglecting the small term 3𝑚𝑢2  as a first approximation, then we obtain 

𝑑2𝑢

𝑑𝜙2
+ 𝑢 =

𝑚

ℎ2
 

So the solution is 
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𝑢 =
𝑚

ℎ2
[1 + 𝑒𝑐𝑜𝑠(𝜙 − 𝜔)]           … (2) 

where 𝑒 and 𝜔  are integration constants that provide eccentricity and 

longitude of the perihelion. Applying this initial estimate to (1)'s R.H.S., 

we get 

𝑑2𝑢

𝑑𝜙2
+ 𝑢 =

𝑚

ℎ2
+
𝑚3

ℎ4
[1 + 𝑒𝑐𝑜𝑠(𝜙 − 𝜔)]2 

𝑑2𝑢

𝑑𝜙2
+ 𝑢 =

𝑚

ℎ2
+
3𝑚3

ℎ4
+
6𝑚3𝑒

ℎ4
𝑐𝑜𝑠(𝜙 − 𝜔) + 𝑐𝑜𝑠2(𝜙 − 𝜔)

3𝑚3𝑒2

ℎ4
 

One of the other terms is the only one that can have an impact inside the 

term's observational range  

6𝑚3𝑒

ℎ4
𝑐𝑜𝑠(𝜙 − 𝜔). 

The P.I of the terms is  

1

1 + 𝐷2
6𝑚3𝑒

ℎ4
𝑐𝑜𝑠(𝜙 − 𝜔) =

6𝑚3𝑒

ℎ4
.

1

1 + 𝐷2
. 𝑐𝑜𝑠(𝜙 − 𝜔) 

=
6𝑚3𝑒

ℎ4
.
𝜙

2
. 𝑠𝑖𝑛(𝜙 − 𝜔) =

3𝑚3𝑒

ℎ4
𝜙𝑠𝑖𝑛(𝜙 − 𝜔) 

[Here 
1

1+𝐷2
 𝑐𝑜𝑠𝑥 =

𝑥

2
𝑠𝑖𝑛𝑥 ] 

Hence the solution of (1) to the second order of approximation is 

𝑢 =
𝑚

ℎ2
[1 + 𝑒𝑐𝑜𝑠(𝜙 − 𝜔)] +

3𝑚3𝑒

ℎ4
𝜙𝑠𝑖𝑛(𝜙 − 𝜔)  𝑏𝑦 (2) 

=
𝑚

ℎ2
+
𝑚𝑒

ℎ2
[𝑐𝑜𝑠(𝜙 − 𝜔) +

3𝑚2

ℎ2
𝜙𝑠𝑖𝑛(𝜙 − 𝜔)] 

Now taking 
3𝑚2

ℎ2
𝜙 = 𝛿𝜔 and observing 𝑠𝑖𝑛𝛿𝜔, 𝑐𝑜𝑠𝛿𝜔 = 1. Since 𝛿𝜔 is 

very small so 

𝑢 =
𝑚

ℎ2
+
𝑚𝑒

ℎ2
[𝑐𝑜𝑠𝛿𝜔 𝑐𝑜𝑠(𝜙 − 𝜔) + 𝑠𝑖𝑛𝛿𝜔 𝑠𝑖𝑛(𝜙 − 𝜔)] 

𝑢 =
𝑚

ℎ2
+
𝑚𝑒

ℎ2
[ 𝑐𝑜𝑠(𝜙 − 𝜔 − 𝛿𝜔)] 
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With 
3𝑚2

ℎ2
𝜙 = 𝛿𝜔 

This is the required solution of (1).  A planet's perihelion advances a 

fraction of a revolution when it completes one orbit around the sun, which 

is equivalent to 

𝛿𝜔

𝜙
=
3𝑚2

ℎ2
=
3𝑚2

𝑚𝑙
=

3𝑚2

𝑚𝑎(1 − 𝑒2)
=

3𝑚

𝑎(1 − 𝑒2)
   𝑓𝑜𝑟 𝑙 =

𝑏2

𝑎
 

𝑖. 𝑒.,                           

𝛿𝜔

𝜙
= 

3𝑚

𝑎(1 − 𝑒2)
                                … (3) 

 [𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑤𝑒𝑙𝑙 𝑘𝑛𝑜𝑤𝑛 𝑓𝑜𝑟𝑚𝑢𝑙𝑎ℎ2 = 𝑚𝑙] 

From (3), we get 

𝛿𝜔 = 
3𝑚𝜙

𝑎(1 − 𝑒2)
                                 

By Kepler’s third law, 

𝑇 =
2𝜋

√𝑚
𝑎3/2 

From which                𝑚 =
4𝜋2𝑎3

𝑇2
 

Now  

𝛿𝜔 = 
3𝑚𝜙

𝑎(1 − 𝑒2)
=

3𝜙

𝑎(1 − 𝑒2)

4𝜋2𝑎3

𝑇2
 

𝛿𝜔 =
12𝜋2𝑎2𝜙

𝑇2(1 − 𝑒2)
 

The velocity of the light into the consideration, 

𝛿𝜔 =
12𝜋2𝑎2𝜙

𝑐2𝑇2(1 − 𝑒2)
 

Taking                   
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𝜙 = 2𝜋, 𝛿𝜔 =
24𝜋3𝑎2

𝑐2𝑇2(1 − 𝑒2)
 

T being a time period. 

Thus the relativistic theory leads to an advance of perihelion of a planetary 

orbit. In other words, this theory leads to planetary orbit with a slow 

rotation of perihelion instead of to be perfectly closed elliptical orbits of 

the Newtonian theory. 

When analyzed mathematically, the perihelion advance of all planets is 

negligibly minor, with the exception of Mercury, whose 𝑒 = 0.2056,𝑎 =

 0.6 × 108 𝑘𝑚, 𝑐 =  3 × 108 𝑚/𝑠𝑒𝑐, and 𝑇 =  88 days. This means that 

the perihelion advance of Mercury is 43 seconds of arc each century. This 

is the precise amount that has been scientifically measured for the orbit of 

Mercury; neither the Newtonian theory nor the special relativistic theory 

of gravity could account for this precession. The development of the 

perihelions of Venus and Earth has also been isolated from the influence 

of other perturbing agents in recent years with the use of electronic 

computers, and it has been observed that the theoretical formula (10) also 

coincides with the experimental data in these conditions. The general 

theory of relativity can thus be experimentally tested by the advancement 

of planet perihelions. 

(ii) Gravitational deflection of light(Binding of light rays): To 

show that the deflection in the path of light due to the 

relativistic field of a heavy mass is wice that predicted by the 

Newtonian theory. 

OR 

Assuming Schwarzchild’s solution for a particle, show that the 

relativistic deflection of light in the gravitational field of the 

sun, as observed by a terrestrial observer, is twice the 

corresponding Newtonian effect. 

Proof: Suppose the binding of light rays in the gravitational field of 

gravitating mass 𝑚 is written by 

𝑑2𝑢

𝑑𝜙2
+ 𝑢 =

𝑚

ℎ2
+ 3𝑚𝑢2                           … (1) 

with 

𝑟2
𝑑𝜙

𝑑𝑠
= ℎ                                                 … (2) 
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If 𝑑𝑠 = 0. In (2), then we obtain ℎ = ∞. Substituting ℎ = ∞. in (1), we 

given 

                    
𝑑2𝑢

𝑑𝜙2
+ 𝑢 = 3𝑚𝑢2               … (3) 

Now neglecting the small term 3𝑚𝑢2    as a first approximation, we get 

𝑑2𝑢

𝑑𝜙2
+ 𝑢 = 0 

The solution of this is 

𝑢 = 𝐴𝑐𝑜𝑠𝜙 + 𝐵𝑠𝑖𝑛𝜙                          … (4) 

Since 𝜙 = 0,
𝑑𝑢

𝑑𝜙
= 0 and  𝜙 = 0, 𝑢 =

1

𝑅
, putting these condition in above 

equation 

1

𝑅
= 𝐴 + 𝐵. 0 = 𝐴 

0 =
𝑑𝑢

𝑑𝜙
= −𝐴𝑠𝑖𝑛𝜙 + 𝐵 𝑐𝑜𝑠𝜙 = −𝐴. 0 + 𝐵. 1 = 𝐵 

𝐴 =
1

𝑅
,𝐵 = 0 

Putting these values in (4), we obtain 

𝑢 =
1

𝑅
𝑐𝑜𝑠𝜙 

From (3), we get 

𝑑2𝑢

𝑑𝜙2
+ 𝑢 =

3𝑚

𝑅2
𝑐𝑜𝑠2𝜙 

The particular integral of  
3𝑚

𝑅2
𝑐𝑜𝑠2𝜙 is 

1

1 + 𝐷2
 
3𝑚

𝑅2
𝑐𝑜𝑠2𝜙 =

3𝑚

𝑅2
.

1

1 + 𝐷2
. (
1 + 𝑐𝑜𝑠2𝜙

2
) =

𝑚

2𝑅2
(3 − 𝑐𝑜𝑠2𝜙) 

=
𝑚

2𝑅2
(3𝑐𝑜𝑠2𝜙 + 3𝑠𝑖𝑛2𝜙 − 𝑐𝑜𝑠2𝜙 + 𝑠𝑖𝑛2𝜙) =

𝑚

𝑅2
(𝑐𝑜𝑠2𝜙 + 2𝑠𝑖𝑛2𝜙) 
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=
𝑚

𝑟2𝑅2
(𝑟2𝑐𝑜𝑠2𝜙 + 2𝑟2𝑠𝑖𝑛2𝜙) 

Hence the complete solution of (3) to the second approximation is  

1

𝑟
= 𝑢 =

1

𝑅
𝑐𝑜𝑠𝜙 +

𝑚

𝑟2𝑅2
(𝑟2𝑐𝑜𝑠2𝜙 + 2𝑟2𝑠𝑖𝑛2𝜙) 

Multiplying by rR 

𝑅 = 𝑟𝑐𝑜𝑠𝜙 +
𝑚

𝑟𝑅
(𝑟2𝑐𝑜𝑠2𝜙 + 2𝑟2𝑠𝑖𝑛2𝜙) 

Introducing the Cartesian coordinates are 𝑥 = 𝑟𝑐𝑜𝑠𝜙, 𝑦 = 𝑟𝑠𝑖𝑛𝜙 

We obtain 

𝑅 = 𝑥 +
𝑚(𝑥2 + 2𝑦2)

𝑅√𝑥2 + 𝑦2
 

𝑥 = 𝑅 −
𝑚(𝑥2 + 2𝑦2)

𝑅√𝑥2 + 𝑦2
                    … (5) 

Now the first approximation is  

1

𝑟
= 𝑢 =

1

𝑅
𝑐𝑜𝑠𝜙 𝑜𝑟 𝑅 = 𝑟 𝑐𝑜𝑠𝜙  𝑜𝑟 𝑥 = 𝑅        … (6) 

From (5) and (6), we obtain the  second term =
𝑚(𝑥2+2𝑦2)

𝑅√𝑥2+𝑦2
 in (5). 

Asymptotes to (5) are given by taking 𝑦 very large compared to so that 

asymptotes to (5) are 

𝑥 = 𝑅 −
𝑚

𝑅
(±2𝑦) 

𝑥 = 𝑅 +
2𝑚𝑦

𝑅
 and 𝑥 = 𝑅 −

2𝑚𝑦

𝑅
 

𝑦 =
𝑅𝑥

2𝑚
−

𝑅2

2𝑚
 and 𝑦 = −

𝑅𝑥

2𝑚
+

𝑅2

2𝑚
 

Let 𝛼 be the angle between these asymptotes then we obtain 

𝑡𝑎𝑛𝛼 =

𝑅
2𝑚 − (

𝑅
2𝑚)

1 +
𝑅
2𝑚 × (−

𝑅
2𝑚)

=
4𝑚𝑅

4𝑚2 − 𝑅2
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𝑡𝑎𝑛𝛼 =
4𝑚𝑅

4𝑚2 − 𝑅2
 

Then  

𝑠𝑖𝑛𝛼 =
4𝑚𝑅

4𝑚2 + 𝑅2
 

Since 4𝑚2 << 𝑅2 and hence neglected 

𝑠𝑖𝑛𝛼 =
4𝑚𝑅

𝑅2
=
4𝑚

𝑅
 

𝛼 =
4𝑚

𝑅
=
4 × 1.47

697000
= 1.75 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

[∴ 𝑠𝑖𝑛𝛼 = 𝛼] 

Deflection =1.75 seconds. 

Treatment of Newtonian theory: Assume that a star's light ray is moving 

parallel to the y-axis and passing through mass m at a distance x = R. In 

the x-direction, the acceleration is provided by 

𝑑2𝑥

𝑑𝑡2
= −

𝑚

𝑟2
.
𝑥

𝑟
= −

𝑚𝑥

(𝑥2 + 𝑦2)3/2
                … (7) 

For a light ray moving parallel to y-axis, we get 

𝑑𝑦

𝑑𝑡
= 1,

𝑑2𝑦

𝑑𝑡2
= 0  

𝑑𝑥

𝑑𝑡
=
𝑑𝑥

𝑑𝑦
.
𝑑𝑦

𝑑𝑡
,   

  
𝑑2𝑥

𝑑𝑡2
=
𝑑

𝑑𝑡
(
𝑑𝑥

𝑑𝑦
.
𝑑𝑦

𝑑𝑡
) =

𝑑2𝑥

𝑑𝑦2
(
𝑑𝑦

𝑑𝑡
)
2

+
𝑑𝑥

𝑑𝑦
.
𝑑2𝑦

𝑑𝑡2
 

=
𝑑2𝑥

𝑑𝑦2
12 +

𝑑𝑥

𝑑𝑦
. 0 =

𝑑2𝑥

𝑑𝑦2
 

𝑑2𝑥

𝑑𝑡2
=
𝑑2𝑥

𝑑𝑦2
 

Using (7), we obtain 
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𝑑2𝑥

𝑑𝑦2
= −

𝑚𝑥

(𝑥2 + 𝑦2)3/2
= −

𝑚𝑅

(𝑅2 + 𝑦2)3/2
.   𝑓𝑜𝑟 𝑥 = 𝑅 

𝑑2𝑥

𝑑𝑦2
= −

𝑚𝑅

(𝑅2 + 𝑦2)3/2
 

Integrating w.r.t.𝑦, we get 

𝑑𝑥

𝑑𝑦
=  −∫

𝑚𝑅

(𝑅2 + 𝑦2)
3
2

 𝑑𝑦 = −𝑚𝑅∫
𝑅 𝑠𝑒𝑐2𝜃𝑑𝜃

𝑅3𝑠𝑒𝑐3𝜃
, 𝑦 = 𝑅. 

= −
𝑚

𝑅
∫𝑐𝑜𝑠𝜃𝑑𝜃 = −

𝑚

𝑅
𝑠𝑖𝑛𝜃 + 𝐶 

𝑑𝑥

𝑑𝑦
= −

𝑚

𝑅
𝑠𝑖𝑛𝜃 + 𝐶 = −

𝑚𝑦

𝑅√𝑥2 + 𝑦2
+ 𝐶         … (8) 

Hence 

𝑥 = −
𝑚

𝑅
√𝑥2 + 𝑦2 + 𝐶𝑦 + 𝐶1                        … (9) 

From (8) and (9)  

𝑑𝑥

𝑑𝑦
= 0, 𝑥 = 𝑅, 𝑦 = 0 

We obtain 𝐶 = 0 and 𝑅 = −𝑚 + 𝐶1 𝑖. 𝑒., 𝐶 = 0 and 𝐶1 = 𝑚 + 𝑅 

Now the equation (9) becomes  

𝑥 = 𝑅 + (𝑚 −
𝑚

𝑅
√𝑥2 + 𝑦2 + 𝐶𝑦)       … (10) 

Newtonian theory states that this is the equation for a light beam's path. 

Derivation from the path 𝑥 = 𝑅 is demonstrated by the second term, m 

divergence from the path 𝑚 −
𝑚

𝑅
√𝑥2 + 𝑦2. 

Now from (10) are written by taking 𝑦 very large compared with 𝑥 so  

𝑥 = 𝑅 + 𝑚−
𝑚

𝑅
(±𝑦) 

𝑦 =
𝑅𝑥

𝑚
(𝑅 + 𝑚)  𝑎𝑛𝑑  𝑦 = −

𝑅𝑥

𝑚
+
𝑅

𝑚
(𝑅 + 𝑚) 
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Let 𝛽 be the angle between these asymptotes then we obtain 

𝑡𝑎𝑛𝛼 =

𝑅
𝑚
− (−

𝑅
𝑚
)

1 +
𝑅
𝑚 × (−

𝑅
𝑚)

=
2𝑚𝑅

𝑚2 − 𝑅2
 

𝑡𝑎𝑛𝛼 =
2𝑚𝑅

𝑚2 − 𝑅2
 

Then  

𝑠𝑖𝑛𝛽 =
2𝑚𝑅

𝑚2 + 𝑅2
 

Since 𝑚2 << 𝑅2 and hence 𝑚2  is neglected 

𝛽 =
4𝑚𝑅

𝑅2
=
2𝑚

𝑅
 

But  

𝛼 =
4𝑚

𝑅
= 2. (

2𝑚

𝑅
) = 2𝛽 

𝛼 = 2𝛽 

This proves that the deflection on the path of a light ray due relativistic 

field is twice that predicted by Newtonian theory. 

(iii) Gravitational Shift in spectral lines: Obtain the formula for 

gravitational shift in spectral lines. 

OR 

Give the theatrical account of the red shift of spectral lines in 

gravitational fields. 

Proof: We examine how the spectral lines of light generated by an atom in 

a gravitational field change when the light is seen on Earth's surface.  

Sodium atoms vibrate at a consistent frequency.  Let 𝑑𝑡 be the equivalent 

periodic time and 𝑑𝑠 be the time interval between the start and finish of a 

single vibration.  Imagine a spectator moving beside sodium atoms.  For a 

brief moment, let the atom be in the coordinate system (𝑟, 𝜃, 𝜙, 𝑡). So that 

by Schwarzschild the line element  
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𝑑𝑠2 = −(1 −
2𝑚

𝑟
)
−1

𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2

+ (1 −
2𝑚

𝑟
)𝑑𝑡2                                     … (1) 

For 𝑑𝑟 = 𝑑𝜃 = 𝑑𝜙 = 0, then  

𝑑𝑠2 = (1 −
2𝑚

𝑟
)𝑑𝑡2 

𝑑𝑡

𝑑𝑠
= (1 −

2𝑚

𝑟
)
−
1
2
= 1 +

𝑚

𝑟
 

Up to first approximation 

We compare the periodic time of sodium atom at two places 

i. On the surface of the sun. 

ii. On the surface of the carth. 

On the surface of the sun and earth, let 𝑑𝑡 and 𝑑𝑡′ represent the periodic 

periods of a sodium atom, respectively. Then 

𝜆 + 𝛿𝜆

𝜆
=
𝑑𝑡

𝑑𝑠
= 1 +

𝑚

𝑟
                         … (2) 

𝑑𝑡′

𝑑𝑠′
= 1 

Using the fact that 𝑑𝑠  remains invariant under arbitrary co-ordinate 

transformation, we can be written as  

𝑑𝑡′

𝑑𝑠
= 1 

From (2) and above equation, we get 

𝜆 + 𝛿𝜆

𝜆
=
𝑑𝑡

𝑑𝑡′
= 1 +

𝑚

𝑟
 

𝛿𝜆

𝜆
=
𝑚

𝑟
 

This expression is required for the spectral line shift. 
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12.8 SCHWARZSCHILD’S INTERIOR 

SOLUTION:-  

To derive Schwarz child’s interior solution for a sphere of incompressible 

perfect fluid of constant proper density 𝜌 such that at the boundary 𝑟 = 𝑟1 

of the sphere, the pressure is equal to zero and the solution agrees with the 

exterior solution.  

Proof: We must determine an expression for the line cleme that holds 

inside a large body that is at rest at its origin. Additionally, we assume that 

the body is spherically symmetric since it contains an incompressible 

perfect fluid with the right density. A suitable pressure Po, we use the line 

element in the manner described below. 

𝑑𝑠2 = −𝑒𝜆𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2) + 𝑒𝜈𝑑𝑡2             … (1) 

Where 𝜆 and 𝜈 are function of r only, we get 

𝑇𝑖𝑗 = (𝜌0 + 𝑝0)
𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
− 𝑔𝑖𝑗𝑝0 

From which we get 

                                       𝑇𝑗
𝑖 = (𝜌0 + 𝑝0)

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝜇

𝑑𝑠
𝑔𝜇𝑗 − 𝛿𝑗

𝑖𝑝0        … (2) 

So the velocity components are 

                                        
𝑑𝑥1

𝑑𝑠
,
𝑑𝑥2

𝑑𝑠
,
𝑑𝑥3

𝑑𝑠
= 0 & 

𝑑𝑥4

𝑑𝑠
= 𝑒−𝜈/2            … (3) 

From(2), we have 

𝑇1
1 = (𝜌0 + 𝑝0)

𝑑𝑥1

𝑑𝑠

𝑑𝑥𝜇

𝑑𝑠
𝑔𝜇1 − 𝑝0        

= (𝜌0 + 𝑝0). 0 − 𝑝0 

= 0 − 𝑝0 = −𝑝0 

Similarly 

𝑇2
2 = −𝑝0, 𝑇3

3 = −𝑝0 

From (2),  
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𝑇4
4 = (𝜌0 + 𝑝0)

𝑑𝑥4

𝑑𝑠

𝑑𝑥𝜇

𝑑𝑠
𝑔𝜇4 − 𝑝0 

= (𝜌0 + 𝑝0)
𝑑𝑥4

𝑑𝑠

𝑑𝑥4

𝑑𝑠
𝑔44 − 𝑝0 

= (𝜌0 + 𝑝0)(𝑒
−𝜈/2)

2
𝑒𝜈 − 𝑝0 

= 𝜌0 + 𝑝0 − 𝑝0 = 𝜌0 

Thus 

                                         𝑇1
1 = 𝑇2

2 = 𝑇3
3 = −𝑝0, 𝑇4

4 = 𝜌0               … (4) 

The field equations in the interior are obtained by 

𝑅𝑗
𝑖 −

1

2
𝛿𝑗
𝑖𝑅 + Λ𝛿𝑗

𝑖 = −8𝜋𝑇𝑗
𝑖 

From which we have 

                                      −8𝜋𝑇𝑗
𝑖 = 𝑔𝑖𝛼𝑇𝑗𝛼 −

1

2
𝛿𝑗
𝑖𝑅 + Λ𝛿𝑗

𝑖             … (5) 

The non vanishing components are 

𝑅11 =
𝑣′′

2
−
𝜆′𝜈′

4
+
𝑣′2

4
−
𝜆′

𝑟
 

𝑅22 = 𝑒
−𝜆 [1 − 𝑟 (

𝜆′ − 𝜈′

2
)] − 1 

𝑅33 = 𝑅22𝑠𝑖𝑛
2𝜃 

𝑅44 = 𝑒
𝜈−𝜆 [−

𝑣′′

2
+
𝜆′𝜈′

4
−
𝑣′2

4
−
𝑣′

𝑟
] 

Where denote differentiation w.r.t. 𝑟, we get 

From (5), we obtain 

                                               8𝜋𝑝0 − Λ = 𝑔11𝑅11 −
1

2
𝑅        … (6) 

                                                 8𝜋𝑝0 − Λ = 𝑔22𝑅22 −
1

2
𝑅     … (7) 

                                         8𝜋𝑝0 − Λ = 𝑔33𝑅33 −
1

2
𝑅             … (7′) 
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                                             −8𝜋𝑝0 − Λ = 𝑔
44𝑅44 −

1

2
𝑅     … (8) 

The equation (7′) can be written as 

8𝜋𝑝0 − Λ = −
1

𝑟2𝑠𝑖𝑛2𝜃
𝑅22𝑠𝑖𝑛

2𝜃 −
1

2
𝑅    

= −
1

𝑟2
𝑅22 −

1

2
𝑅 = 𝑔22𝑅22 −

1

2
𝑅   

Since (7) and (7′) are identical. 

So 

𝑅 = 𝑔𝑖𝑗𝑅𝑖𝑗 =∑𝑔𝑖𝑖𝑅𝑖𝑖

4

𝑖=1

= 𝑔11𝑅11 + 𝑔
22𝑅22 + 𝑔

33𝑅33 + 𝑔
44𝑅44 

= 𝑔11𝑅11 + 𝑔
22𝑅22 +

𝑔22

𝑠𝑖𝑛2𝜃
𝑅22𝑠𝑖𝑛

2𝜃 + 𝑔44𝑅44 

= 𝑔11𝑅11 + 2𝑔
22𝑅22 + 𝑔

44𝑅44 

= −𝑒−𝜆 (−
𝑣′′

2
−
𝜆′𝜈′

4
+
𝑣′2

4
−
𝜆′

𝑟
) −

2

𝑟2
[𝑒−𝜆 [1 − 𝑟 (

𝜆′ − 𝜈′

2
)] − 1]

+ 𝑒𝜈−𝜆𝑒𝜈 [−
𝑣′′

2
+
𝜆′𝜈′

4
−
𝑣′2

4
−
𝑣′

𝑟
] 

                       −
𝑅

2
= 𝑒−𝜆 (𝑣′′ +

𝜆′𝜈′

2
−

𝑣′2

2
+

(𝜆′−𝑣′)

𝑟
−

2

𝑟2
) +

2

𝑟2
            … (9) 

From (6) and (9), we obtain 

8𝜋𝑝0 − Λ = 𝑔
11𝑅11 −

1

2
𝑅         

= −𝑒−𝜆 (−
𝑣′′

2
−
𝜆′𝜈′

4
+
𝑣′2

4
−
𝜆′

𝑟
)

+ 𝑒−𝜆 (𝑣′′ +
𝜆′𝜈′

2
−
𝑣′2

2
+
(𝜆′ − 𝑣′)

𝑟
−
2

𝑟2
) +

2

𝑟2
 

                                          8𝜋𝑝0 = 𝑒
−𝜆 [

𝑣′

𝑟
+

1

𝑟2
] −

1

𝑟2
+ Λ       … (10) 

Similarly  

From (7) and (9), we get 
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                  8𝜋𝑝0 = 𝑒
−𝜆 (−

𝑣′′

2
−

𝜆′𝜈′

4
+

𝑣′2

4
−

𝜆′−𝑣′

2𝑟
) + Λ          … (11) 

From (8) and (9), we have 

                             8𝜋𝑝0 = 𝑒
−𝜆 (

𝜆′

𝑟
+

𝑣′2

4
−

1

𝑟2
) +

1

𝑟2
− Λ          … (12) 

Adding  (10) and (12), we get 

                                             8𝜋(𝑝0 + 𝜌0) = 𝑒
−𝜆 (𝜆

′+𝑣′)

𝑟
           … (13) 

                                          8𝜋(𝑝0 + 𝜌0)
𝑣′

2
= 𝑒−𝜆

(𝜆′𝑣′+𝑣′2)

2𝑟
     … (13′) 

                      8𝜋
𝑑𝑝0

𝑑𝑟
= 𝑒−𝜆 (

𝑣′′

𝑟
−

𝑣′

𝑟2
−

2

𝑟3
−

𝜆′𝑣′

𝑟
−

𝜆′

𝑟2
) +

2

𝑟3
   … (14) 

Adding  (13’) and (14), we obtain 

8𝜋 [
𝑑𝑝0
𝑑𝑟

+ (𝑝0 + 𝜌0)
𝑣′

2
] = 𝑒−𝜆 (

𝑣′′

𝑟
−
𝜆′𝜈′

2𝑟
−
𝜆′ + 𝑣′

𝑟2
+
𝑣′2

2𝑟
−
2

𝑟3
) +

2

𝑟3
 

                     =
2

𝑟
[𝑒−𝜆 (

𝑣′′

𝑟
−

𝜆′𝜈′

2𝑟
−

𝜆′+𝑣′

2𝑟
+

𝑣′2

4
−

1

𝑟2
) +

1

𝑟2
]        … (15) 

Now equating (10) to (11), we have 

𝑒−𝜆 (−
𝑣′′

2
−
𝜆′𝜈′

4
+
𝑣′2

4
−
𝜆′ − 𝑣′

2𝑟
) + Λ = 𝑒−𝜆 [

𝑣′

𝑟
+
1

𝑟2
] −

1

𝑟2
+ Λ        

𝑒−𝜆 (
𝑣′′

2
−
𝜆′𝜈′

4
+
𝑣′2

4
−
𝜆′ + 𝑣′

2𝑟
−
1

𝑟2
) +

1

𝑟2
= 0 

From (15) we obtain 

8𝜋 [
𝑑𝑝0
𝑑𝑟

+ (𝑝0 + 𝜌0)
𝑣′

2
] =

2

𝑟
(0) 

                                          
𝑑𝑝0

𝑑𝑟
+ (𝑝0 + 𝜌0)

𝑣′

2
= 0              … (15′) 

Since we have to integrate (10), (12) and (15) 

From(12), 
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8𝜋𝑝0 + Λ = 𝑒−𝜆 (
𝜆′

𝑟
+
𝑣′2

4
−
1

𝑟2
) +

1

𝑟2
        

𝑑

𝑑𝑟
(𝑟𝑒−𝜆) = 1 − 𝑟2(8𝜋𝑝0 + Λ) 

Integrating,  

(𝑟𝑒−𝜆) = 𝑟 −
𝑟3

3
(8𝜋𝑝0 + Λ) + 𝐶1 

(𝑟𝑒−𝜆) = 1 −
𝑟2

3
(8𝜋𝑝0 + Λ) +

𝐶1
𝑟

 

Taking 
1

𝑅2
=

(8𝜋𝑝0+Λ)

3
, we obtain 

𝑒−𝜆 = 1 −
𝑟2

𝑅2
+
𝐶1
𝑟

 

We take 𝐶1 = 0 

                                                     𝑒−𝜆 = 1 −
𝑟2

𝑅2
              … (16) 

From(15′), we get 

𝑑𝑝0
𝑑𝑟

+ (𝑝0 + 𝜌0)
𝑣′

2
= 0 

𝑑𝑝0
𝑝0 + 𝜌0

= −
𝑑𝑣

2
 

Integrating,  

log(𝑝0 + 𝜌0) = −
𝑣

2
+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑙𝑜𝑔𝐶2𝑒

−𝑣/2 

(𝑝0 + 𝜌0) = 𝐶2𝑒
−𝑣/2 

8𝜋(𝑝0 + 𝜌0) = 8𝜋𝐶2𝑒
−𝑣/2 = 𝐶3𝑒

−𝑣/2 

𝑒
𝑣
2 (
𝜆′ + 𝑣′

𝑟
)𝑒−𝜆 = 𝐶3 𝑏𝑦 (13) 

But    𝑒−𝜆 (
𝜆′+𝑣′

𝑟
) = 𝑒−𝜆

𝜆′

𝑟
+ 𝑒−𝜆

𝑣′

𝑟
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=
2

𝑅2
+
𝑣′

2
(1 −

𝑟2

𝑅2
) , 𝑓𝑜𝑟 − 𝑒−𝜆𝜆′ = −

2𝑟

𝑅2
 

𝑒
𝑣
2 [
2

𝑅2
+
𝑣′

2
(1 −

𝑟2

𝑅2
)] = 𝐶3 

Put                            𝑒
𝑣

2 = 𝑢  𝑠𝑜
𝑑𝑢

𝑑𝑟
=

𝑣′

2
𝑒
𝑣

2 

2𝑢

𝑅2
+
2

𝑟

𝑑𝑢

𝑑𝑟
(1 −

𝑟2

𝑅2
) = 𝐶3  

                  
𝑑𝑢

𝑑𝑟
+

𝑟

𝑅2−𝑟2
𝑢 =

𝑟𝐶4

𝑅2−𝑟2
               … (17)            𝐶4 =

𝐶3

2
𝑅2 

Now we know that the solution of  

𝑑𝑢

𝑑𝑟
+ 𝑢𝑃(𝑟) = 𝑄(𝑟) 

is    𝑢𝑒∫𝑃𝑑𝑟 = ∫𝑄𝑒∫𝑃𝑑𝑟𝑑𝑟 + 𝑐𝑜𝑛𝑠𝑡. 

On applying this method of (17), we obtain the final answer 

1

𝑅2
=
8𝜋𝜌0 + Λ

3
 

From(10), we have 

                                  8𝜋𝑝0 = [
𝑣′𝑒−𝜆

𝑟
+ 𝑒−𝜆

1

𝑟2
] −

1

𝑟2
+ Λ        

=
𝑣′𝑒−𝜆

𝑟
+
1

𝑟2
−
1

𝑅2
−
1

𝑟2
+ Λ 

8𝜋𝑝0 =
𝑣′𝑒−𝜆

𝑟
−
1

𝑅2
+ Λ          … (18) 

And                            𝑒
𝑣

2
𝑣′

2
=

𝑟

𝑅2
.

𝐵

√(1−
𝑟2

𝑅2
)

 

𝑣′

𝑟
=

2𝐵/𝑅2

[𝐴 − 𝐵√(1 −
𝑟2

𝑅2
)] × {(1 −

𝑟2

𝑅2
)}
1/2
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𝑒−𝜆
𝑣′

𝑟
=
2𝐵

𝑅2 

(1 −
𝑟2

𝑅2
)

√(1 −
𝑟2

𝑅2
)

.
1

[𝐴 − 𝐵√(1 −
𝑟2

𝑅2
)]

 

𝑒−𝜆
𝑣′

𝑟
−
1

𝑅2 
=

3𝐵√(1 −
𝑟2

𝑅2
) − 𝐴

𝑅2 [𝐴 − 𝐵√(1 −
𝑟2

𝑅2
)]

 

Using (18), we have 

8𝜋𝑝0 =
3𝐵√(1 −

𝑟2

𝑅2
) − 𝐴

𝑅2 [𝐴 − 𝐵√(1 −
𝑟2

𝑅2
)]

+ Λ               … (19) 

When the distance from the origin is significantly more than 𝑟1, where 𝑟1 

is the radius of the massive body, factor Λ becomes significant. 

Hence we take  Λ = 0 for 𝑟 ≤ 𝑟1 

Also 𝑝0 = 0 for 𝑟 = 𝑟1 

Thus 𝑝0 = 0 = Λ for 𝑟 = 𝑟1 

From (19), we get 

                                𝐴 = 3𝐵 {(1 −
𝑟1
2

𝑅2
)}

1

2
                        … (20) 

The line element for an interval in the interior of the massive body is 

           𝑑𝑠2 = −(1 −
𝑟2

𝑅2
)
−1

𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2) + [𝐴 −

 𝐵√(1 −
𝑟2

𝑅2
)]

2

𝑑𝑡2                                                                    … (21) 

This is called Schwarzschild’s interior solution. 

The exterior solution is 
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𝑑𝑠2 = −(1 −
2𝑚

𝑟
)
−1

𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2)

+ (1 −
2𝑚

𝑟
)𝑑𝑡2                                … (22) 

1 −
𝑟1
2

𝑅2
= 1 −

2𝑚

𝑟
= [𝐴 −  𝐵√(1 −

𝑟2

𝑅2
)]

2

 

1 −
𝑟1
2

𝑅2
= 1 −

2𝑚

𝑟1
= 4𝐵2 (1 −

𝑟2

𝑅2
)    𝑏𝑦 (20) 

1 −
𝑟1
2

𝑅2
= 1 −

2𝑚

𝑟1
, 1 −

𝑟1
2

𝑅2
= 4𝐵2 (1 −

𝑟2

𝑅2
) 

⟹                  𝑚 =
𝑟1
3

2𝑅2
,   4𝐵2 = 1 

⟹                  
4𝜋

3
𝑟1
3𝜌0 =

𝑟1
3

2𝑅2
,   2𝐵 = 1 

⟹                  
8𝜋𝜌0

3
=

1

𝑅2
, 𝐵 =

1

2
 

Now 

1

𝑅2
=
8𝜋𝜌0 + Λ

3
   𝑤ℎ𝑒𝑟𝑒 Λ = 0𝑓𝑜𝑟 𝑟 = 𝑟1 

𝐴 =
3

2
√(1 −

𝑟2

𝑅2
) , 𝐵 =

1

2
,

1

𝑅2
=
8𝜋𝜌0
3

 

So the interior solution will be real only if  

2𝑚

𝑟1
< 1 or 

𝑟2

𝑅2
< 1, 

𝑟1
2 <

3

8𝜋𝜌0
 

This is complete. 
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SELF CHECK QUESTIONS 

1. What is the Schwarzschild solution? 

It is the exact solution to Einstein's field equations in general 

relativity that describes the spacetime geometry outside a 

spherically symmetric, non-rotating, uncharged mass. 

2. What is the Schwarzschild radius? 

The radius at which the escape velocity equals the speed of light, 

given by: 

𝑟𝑠 =
2𝐺𝑀

𝑐2
 

            This is the radius of the event horizon of a non-rotating black hole. 

3. Write the Schwarzschild metric. 

𝑑𝑠2 = −(1 −
2𝑚

𝑟
)
−1

𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2

+ (1 −
2𝑚

𝑟
)𝑑𝑡2                                

4. Is there a true singularity in the Schwarzschild solution? Where? 

Yes, at 𝑟 = 0. It is a true physical singularity, where spacetime 

curvature becomes infinite. 

5. What kind of spacetime does the Schwarzschild solution describe? 

 Static 

 Spherically symmetric 

 Vacuum (i.e., outside any mass distribution) 

6. Is the Schwarzschild solution valid inside a black hole? 

No, it breaks down at 𝑟 = 𝑟𝑠 due to coordinate singularity. For  

𝑟 < 𝑟𝑠, a different coordinate system like Kruskal–Szekeres is 

used. 

7. What is the significance of the time dilation in the Schwarzschild 

metric? 

Clocks closer to a massive object tick slower compared to clocks 

farther away. Near the event horizon, time appears to stop for a 

distant observer. 

8. How does the Schwarzschild metric reduce at large distances (i.e.,  

r→∞)? 

It reduces to the flat Minkowski metric, as gravitational effects 

vanish at infinity. 

9. Does the Schwarzschild solution include charge or rotation? 
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No. For charge, you need the Reissner–Nordström solution; for 

rotation, the Kerr solution. 

12.9 SUMMARY:-  

In this unit, we explored the Schwarzschild exterior solution, which 

describes the spacetime geometry outside a static, spherically symmetric, 

and uncharged mass, leading to important concepts such as the 

Schwarzschild radius and event horizon. We examined the relation 

between the gravitational mass M that appears in the metric and the 

inertial mass m, reinforcing the equivalence principle in general relativity. 

The Schwarzschild metric was also expressed in isotropic coordinates to 

simplify the form of the spatial components for certain applications. A 

detailed analysis of planetary orbits revealed key relativistic corrections, 

including the famous perihelion precession of Mercury. We reviewed the 

classical tests of general relativity—light bending, gravitational redshift, 

and time delay—which provided crucial experimental confirmations of 

Einstein’s theory. Finally, the Schwarzschild interior solution was studied 

to understand the spacetime geometry inside a spherically symmetric, 

static mass distribution, such as a star, giving insight into the pressure and 

density profiles necessary for hydrostatic equilibrium in relativistic stars. 

12.10 GLOSSARY:-  

 Schwarzschild Solution: An exact solution to Einstein's field 

equations representing the spacetime outside a static, spherically 

symmetric, and uncharged mass. 

 Schwarzschild Metric: The line element that defines the geometry 

of spacetime in the Schwarzschild solution. It is given by: 

o 𝑑𝑠2 = −(1 −
2𝑚

𝑟
)
−1

𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2 +

(1 −
2𝑚

𝑟
) 𝑑𝑡2                                

 Schwarzschild Radius (𝒓𝒔 = 𝒓): The radius at which the escape 

velocity equals the speed of light: 

 𝑟𝑠 =
2𝐺𝑀

𝑐2
 

 It marks the event horizon of a black hole. 

 Event Horizon: A boundary in spacetime beyond which events 

cannot affect an outside observer. In the Schwarzschild case, it lies 

at 𝑟𝑠 = 𝑟 
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 Coordinate Singularity: A point where the coordinates used in 

the metric break down (e.g., at 𝑟𝑠 = 𝑟), but the spacetime itself is 

not singular. 

 Physical Singularity: A point in spacetime where curvature 

becomes infinite and physical laws break down. In the 

Schwarzschild solution, this occurs at 𝑟 = 0. 

 Isotropic Coordinates: A coordinate transformation of the 

Schwarzschild metric where spatial components appear more 

symmetric, often used to simplify calculations or match boundary 

conditions. 

 Gravitational Mass (M): The source of the gravitational field in 

the Schwarzschild metric. It can be interpreted as the total mass-

energy of the system. 

 Inertial Mass (m): The mass that resists acceleration when a force 

is applied; in general relativity, it is equivalent to gravitational 

mass. 

 Perihelion Precession: The relativistic effect that causes the 

closest point in a planet’s orbit around the Sun (the perihelion) to 

shift over time. Explained accurately by the Schwarzschild 

solution. 

 Gravitational Time Dilation: The effect where time runs slower 

in stronger gravitational fields. In the Schwarzschild spacetime, 

clocks closer to the mass tick more slowly. 

 Light Bending: The deflection of light as it passes near a massive 

object. One of the classic tests of general relativity derived from 

the Schwarzschild geometry. 

 Interior Schwarzschild Solution: A solution to Einstein's field 

equations that describes the spacetime inside a static, spherically 

symmetric body of constant density. 
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Relativistic Mechanics. 

 Dr. J.K.Goyal & Dr.K.P.Gupta (2018), Theory of Relaivity. 

12.13 TERMINAL QUESTIONS: 

(TQ-1) State Einstein's law of gravitation (for empty space) sketch the 

method for obtaining the gravitational field isolated particle as given by 

Schwarzschild metric. 

(TQ-2) Assuming Schwarzschild solution, show how the relativistic term 

3𝑚𝑢² arises in modifying the Newtonian equation of a planetary orbit, 

𝑑2𝑢

𝑑𝜙2
+ 𝑢 =

𝑚

ℎ2
 

(TQ-3) Deduce from it the differential equation of a planetary orbit and 

compare it with Newtonian orbit for the same. 

(TQ-4) Obtain the formula for gravitational shift in spectral lines.  

(TQ-5) Derive Schwarzschild's interior solution  

 𝑑𝑠2 = −(1 −
𝑟2

𝑅2
)
−1

𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2) + [𝐴 −

 𝐵√(1 −
𝑟2

𝑅2
)]

2

𝑑𝑡2 

(TQ-5) Derive the expression for the motion of the perihelion of a 

planetary orbit round the sun.  

(TQ-7) Obtain Schwarzschild's exterior solution of an isolated 

gravitating body. 

 

(TQ-8) What are the crucial tests of General Relativity? Discuss one of 

them. 

 

(TQ-9) Derive Schwarzschild's solution for an isolated particle 

continually at rest at the origin.  

(TQ-10)  Discuss the three crucial tests of general relativity. 

 (TQ-11) Derive Schwarzschild's interior solution of a spherically 

symmetric distribution of matter with constant density.  

(TQ-12) Show how general relativity modifies the equation of planetary 

orbit and explain the advance of perihelion. 

(TQ-13) Discuss the phenomenon of red shift in general relativity. 
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(TQ-14) Derive the Schwarzschild exterior solution for the gravitational 

field of an isolated mass particle at rest. 

 

(TQ-15) Derive the expression for the motion of the perihelion of 

Mercury round the sun. 

 

12.14 ANSWERS: 

SELF CHECK ANSWERS 

1. It is the exact solution to Einstein's field equations in general 

relativity that describes the spacetime geometry outside a 

spherically symmetric, non-rotating, uncharged mass. 

2. The radius at which the escape velocity equals the speed of light, 

given by: 

𝑟𝑠 =
2𝐺𝑀

𝑐2
 

            This is the radius of the event horizon of a non-rotating black hole. 

3. 𝑑𝑠2 = −(1 −
2𝑚

𝑟
)
−1

𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2 +

(1 −
2𝑚

𝑟
) 𝑑𝑡2                                

4. Yes, at 𝑟 = 0. It is a true physical singularity, where spacetime 

curvature becomes infinite. 

5. The kind of  

 Static 

 Spherically symmetric 

 Vacuum (i.e., outside any mass distribution) 

6. No, it breaks down at 𝑟 = 𝑟𝑠 due to coordinate singularity. For  

𝑟 < 𝑟𝑠, a different coordinate system like Kruskal–Szekeres is 

used. 

7. Clocks closer to a massive object tick slower compared to clocks 

farther away. Near the event horizon, time appears to stop for a 

distant observer. 

8. It reduces to the flat Minkowski metric, as gravitational effects 

vanish at infinity. 

9. No. For charge, you need the Reissner–Nordström solution; for 

rotation, the Kerr solution. 
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UNIT 13:-Cosmology  
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13.6      de-sitter line elements 

13.7      Properties of de-sitter Universe  

13.8      Comparison of Einstein model with actual universe. 

13.9    Comparison of de-sitter with actual universe 

13.10     Summary 

13.11     Glossary 

13.12      References 

13.13      Suggested Reading 

13.14     Terminal questions  

13.15      Answers 

 

13.1 INTRODUCTION:-  

Cosmological models refer to solutions of Einstein’s field equations of 

general relativity that describe the geometric and dynamic properties of 

the universe on a large scale. These models are typically built on the 

assumption that the universe is homogeneous and isotropic, which leads to 

the use of the Friedmann–Lemaître–Robertson–Walker (FLRW) metric. 

This metric simplifies Einstein’s equations into a set of Friedmann 

equations, which relate the scale factor a(t) to physical quantities like 

energy density 𝜌, pressure p, and the cosmological constant Λ. Different 

cosmological models arise by choosing various values of curvature k, 

matter content, and the cosmological constant. For example, the Einstein-

de Sitter model assumes k=0 and Λ=0, while the de Sitter universe 

considers a vacuum-dominated model with Λ>0. These mathematical 

models are essential for predicting cosmic expansion, the age of the 

universe, and the fate of cosmic evolution. 

13.2 OBJECTIVES:-  
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After studying this unit, Lernear’s will be able to  

 To Solve Einstein's and De-Sitter line elements. 

 To explain properties of Einstein Universe. 

 To explain properties of De-Sitter Universe. 

13.3 COSMOLOGICAL MODELS:-  

Cosmology is the branch of science that deals with the study of the 

universe as a whole, including the distribution and motion of matter on a 

large scale. It aims to understand the origin, structure, evolution, and 

eventual fate of the universe. In cosmology, we construct mathematical 

models known as cosmological models or world models that describe the 

large-scale behavior of matter and the geometry of space-time. These 

models are then compared with observational data to evaluate how 

accurately they represent the actual universe. 

Theories concerning the nature of the cosmos have existed for as long as 

humanity.  It has long been known that applying Newton's gravitational 

theory to the entire cosmos presents significant challenges.  At least as far 

as the dimensions of the solar system are concerned, the three crucial tests 

of the general theory of relativity show that it has significantly modified 

the Newtonian theory and provided a workable solution to the problem of 

a star's field in the empty space surrounding it. It then seems to be of great 

interest to extend the application of the general theory of relativity to the 

universe as a whole.  Einstein originally addressed this question shortly 

after the general theory of relativity was developed.  It has been the focus 

of numerous investigations ever since.  Because several large-scale 

features of the cosmos may be compared to such a model of the universe 

and are known experimentally, this program is highly intriguing. The 

following are the most important of these properties. 

(a)Homogeneity of Matter Distribution: On average, matter is 

distributed in a fairly uniform manner throughout the universe. The 

estimated average density of matter is approximately𝜌 ≈ 10−27𝑔/𝑐𝑚³. 

(b) Isotropy of the Universe: 

From the viewpoint of the solar system, the universe appears to be fairly 

isotropic that is, it looks the same in all directions on a large scale. 

(c) Redshift of Light from Distant Nebulae: Light reaching us from 

distant nebulae is redshifted, and the amount of redshift is proportional to 

the distance the light has traveled. This relationship follows the law: 
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𝛿𝜆

𝜆
= 𝑘𝑟, 𝑘 = 6 × 10−28𝑐𝑚−1 

 

 

Assuming this redshift is due to the Doppler effect, we infer that distant 

nebulae (or galaxies) are receding from us. The speed of recession is 

proportional to their distance from us. 

(d) According to measurements of the radioactive remains, some rocks in 

the crust of earth are at least 3.5 to 4 billion years old. Hence the universe 

is older than 4 billion years. 

The modified field equations proposed by Einstein are 

                                  𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈 = −8𝜋𝑇𝜇𝜈             … (1) 

The constant Λ has such a small effect on solar system or even our own 

galaxy phenomena, but it becomes significant when the entire universe is 

taken into account. 

It is possible to construct alternative models of the cosmos by mixing 

different values of A with different possibilities of “Static cosmological 

models" are represented by the static solutions of equation (1).  Here, we 

will first examine the static, isotropic, and homogeneous models of the 

cosmos that were first put forth by Einstein and de Sitter. Finally, we will 

discuss Robrtson's non-static, isotropic, and homogeneous model.  The 

following presumptions form the basis of Einstein's de-Sitter's 

cosmological models. 

1. The universe is static, i.e., in a proper co-ordinate system matter is 

at rest and the proper pressure Po and proper density Po are the 

same everywhere. 

2. The universe is isotropic, i.e., all spatial directions are equivalent. 

3. The universe is homogeneous, i.e., no part of the universe can be 

distinguished from any other. 

4. For small values of r the line element should reduce to special 

relativity form for flat-space time since local gravitational fields 

can be neglected in small space-time regions. 

The line element satisfying the condition of spherical symmetry is given 

by 

               𝑑𝑠2 = −𝑒𝜆𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2) + 𝑒𝜈𝑑𝑡2        … (2) 

where 𝜆 and 𝜈 are functions of 𝑟 only. 

For the universe containing perfect fluids, then we have the following 

relations. 
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                                         8𝜋𝑝0 = 𝑒−𝜆 (
𝑣′

𝑟
+

1

𝑟2) −
1

𝑟2 + Λ         … (3) 

                                    8𝜋𝜌0 = 𝑒−𝜆 (
𝜆′

𝑟
−

1

𝑟2) +
1

𝑟2 − Λ               … (4) 

                                                   
𝑑𝑝0

𝑑𝑟
+ (𝑝0 + 𝜌0)

𝑣′

2
= 0             … (5) 

According to the assumption
𝑑𝑝0

𝑑𝑟
= 0, then we get 

𝑑𝑝0

𝑑𝑟
+ (𝑝0 + 𝜌0)

𝑣′

2
= 0 

(𝑝0 + 𝜌0)𝑣′ = 0 

 𝑣′ = 0  or  𝑝0 + 𝜌0 = 0

𝑝0 + 𝜌0 = 0 = 𝑣′
}                              … (𝑎) 

These solution (𝑎)  lead respectively to Einstein, De-Sitter and special 

relativity line element. 

 

13.4 EINSTEIN LINE ELEMENT:-  

This Einstein line element arises from the possibility 

 

                                             𝑣′ = 0                                   … (1) 

Integrating                             

𝑣 = 𝐶1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Applying the condition 𝜆 = 𝜈 = 0 at 𝑟 = 0, we have 

𝐶1 = 0 

Thus          

𝑣′ = 0 = 𝑣 

From (4), we obtain 

8𝜋𝜌0 = 𝑒−𝜆 (
𝜆′

𝑟
−

1

𝑟2
) +

1

𝑟2
− Λ  

(8𝜋𝜌0 + Λ)𝑟2 = 𝑒−𝜆(𝜆′𝑟 − 1) + 1 

1 − (8𝜋𝜌0 + Λ)𝑟2 =
𝑑

𝑑𝑟
 (𝑟𝑒−𝜆) 

Integrating 

𝑟𝑒−𝜆 = 𝑟 −
𝑟3

3
(8𝜋𝜌0 + 𝛬) + 𝐶 

Applying the condition 𝜆 = 𝜈 = 0 at 𝑟 = 0, we obtain 

0 = 0 − 0 + 𝐶   𝑜𝑟 𝐶 = 0 

Hence 

𝑟𝑒−𝜆 = 𝑟 −
𝑟3

3
(8𝜋𝜌0 + 𝛬) 
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𝑒−𝜆 = 1 −
𝑟2

3
(8𝜋𝜌0 + 𝛬) 

Taking       
𝑙

𝑅2 =
(8𝜋𝜌0+𝛬)

3
,  we get  𝑒−𝜆 = 1 −

𝑟2

𝑅2 

Now from (2), we have 

𝑑𝑠2 = − (1 −
𝑟2

𝑅2
)

−1

𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2) + 𝑑𝑡2 

This line element is called Einstein line element for static, isotropic and 

homogeneous universe. 

 

13.5 PROERTIES OF EINSTEIN UNIVERSE:-  

  

i. Geometry of Einstein Universe: By the transformation coordinates, 

The Einstein line element is  

𝑑𝑠2 = − (1 −
𝑟2

𝑅2
)

−1

𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2) + 𝑑𝑡2 … (1) 

Consider the transformation 

𝑟 =
𝜌

(1 +
𝜌2

4𝑅2)
 

Then  

𝑟 (1 +
𝜌2

4𝑅2
) = 𝜌 

This obtain 

𝑑𝑟 =
(1 −

𝜌𝑟
2𝑅2)

(1 +
𝜌2

4𝑅2)
𝑑𝜌 

and  

𝑑𝑟2

(1 −
𝑟2

𝑅2)
=

1

(1 −
𝑟2

𝑅2)
[
(1 −

𝜌𝑟
2𝑅2)

(1 +
𝜌2

4𝑅2)
𝑑𝜌]

2

 

Simplifying this we have 

 

𝑑𝑟2

(1 −
𝑟2

𝑅2)
=

𝑑𝜌2

(1 +
𝜌2

4𝑅2)
2 

Now from (1) becomes 
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𝑑𝑠2 = −
1

(1 +
𝜌2

4𝑅2)
2 [𝑑𝜌2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2)] + 𝑑𝑡2 

This can also be transformed into 

𝑑𝑠2 = −
1

(1 +
𝜌2

4𝑅2)
2 [𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2] + 𝑑𝑡2 

Let the second transformation 

𝑧1 = 𝑅 − √(1 −
𝑟2

𝑅2
)  , 𝑧2 = 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙, 𝑧3 = 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙, 𝑧4 = 𝑟𝑐𝑜𝑠𝜃  

Putting these values in (1), we obtain 

𝑑𝑠2 = −(𝑑𝑧1
2 + 𝑑𝑧2

2 + 𝑑𝑧3
2 + 𝑑𝑧4

2) + 𝑑𝑡2 

with  

𝑧1
2 + 𝑧2

2 + 𝑧3
2 + 𝑧4

2 = 𝑅2 

This prove that the physical space of Einstein universe may be embedded 

in a Euclidean space of higher dimensions.  

a. Spherical Space:  By the transformation take (1), we have 

𝑑𝑠2 = −𝑅2(𝑑𝛽2 + 𝑠𝑖𝑛2𝛽(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2) + 𝑑𝑡2 

We already get 0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜙 ≤ 2𝜋 

With the remaining variables 𝜃 & and 𝜙 being arbitrary, we discover that 

this line element (2) stays the same for 𝛽 =  0 and 𝛽 =  𝜋.  this indicates 

that there is a comparable occurrence at 𝛽 =  𝜋 to one at 𝛽 =  0.  In other 

words, there is a mirror image at 𝛽 =  𝜋 that corresponds to an event at 

𝛽 =  0.   According to this interpretation, the Einstein cosmos is spherical.  

The proper volume 𝑉0 of the spherical universe is 

𝑉0 = ∫ ∫ ∫ (𝑅𝑑𝛽)(𝑅𝑠𝑖𝑛𝛽𝑑𝜃)(𝑅 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝛽𝑑𝜙)
2𝜋

𝜙=0

𝜋

𝜃=0

𝛽 = 𝜋

𝛽 = 0

 

= 4𝜋𝑅3 ∫
1

2
(1 − 𝑐𝑜𝑠2𝛽)𝑑𝛽 = 2𝜋𝑅3 [𝛽 −

1

2
𝑠𝑖𝑛2𝛽]

0

𝜋𝜋

0

 

= 2𝜋𝑅3 

and the total distance around the spherical universe is 

𝑙0 = 2 ∫ 𝑅𝑑𝛽
𝜋

0

= 2𝜋𝑅 

Hence the proper volume of the co called spherical universe is 2𝜋𝑅3. 

b. Elliptical Space: The Elliptical space (4) provides the Einstein 

line element. Only when the 𝑟 < 𝑅0  is defined is the element 

provided by (4) real. The statement defines the spatial expansion of 

the physical space in Einstein's  universe is 
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𝑑𝜎2 =
𝑑𝑟2

(1 −
𝑟2

𝑅2)
+ 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2      

The proper volume of Einstein universe is then 

𝑉0 = ∫ ∫ ∫
𝑑𝑟

√(1 −
𝑟2

𝑅2)  

2𝜋

𝜙=0

𝜋

𝜃=0

𝑅0

𝑟=0

, 𝑟𝑑𝜃. 𝑟𝑠𝑖𝑛𝜃𝑑𝜙 = 𝜋𝑅3 

and the total distance around the elliptical universe is 

𝑙0 = 2 ∫
𝑑𝑟

√(1 −
𝑟2

𝑅2)  

𝑅

0

= 2 ∫
𝑅𝑐𝑜𝑠𝜂𝑑𝜂

𝑐𝑜𝑠𝜂  

𝜋/2

0

, 𝑤ℎ𝑒𝑟𝑒
𝑟

𝑅
= 𝑠𝑖𝑛𝜂 = 𝜋𝑅 

 

ii.  Density and pressure of the matter in Einstein universe:  

For the line element is 

𝑑𝑠2 = −𝑒𝜆𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2) + 𝑒𝜈𝑑𝑡2       

Then we have 

                                         8𝜋𝑝0 = 𝑒−𝜆 (
𝑣′

𝑟
+

1

𝑟2) −
1

𝑟2 + Λ         … (3) 

                                    8𝜋𝜌0 = 𝑒−𝜆 (
𝜆′

𝑟
−

1

𝑟2) +
1

𝑟2 − Λ               … (4) 

Where  𝑣′ = 0 = 𝑣, 𝑒−𝜆 = 1 −
𝑟2

𝑅2 so that 𝑒−𝜆 𝜆′

𝑟
=

2

𝑅2  

From (3) becomes 

8𝜋𝑝0 = 0 + (1 −
𝑟2

𝑅2
 )

1

𝑟2
−

1

𝑟2
+ Λ =

1

𝑅2
 + Λ       

                                         8𝜋𝑝0 =  Λ −
1

𝑅2                                       … (5) 

Now from (4),we get 

8𝜋𝜌0 =
2

𝑅2
− (

1

𝑟2
−

1

𝑅2
 ) +

1

𝑟2
− Λ 

                                       8𝜋𝜌0 =
3

𝑅2 − Λ                                          … (6) 

Adding (5) and (6), we have 

 

8𝜋(𝜌0 + 𝑝0) =
2

𝑅2
 

 

                                                     𝜌0 + 𝑝0 =
1

4𝜋𝑅2                           … (7) 

The equation (5) and (6) represent required expressions for density and 

pressure. 

CaseI: Let us consider the universe is filled with fluid consisting of 

incoherent matter exerting no pressure. For example free particles (stars). 
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Then 𝑝0 = 0. 

Now the equation (7), we have 

𝜌0 =
1

4𝜋𝑅2
 

Mass of the spherical universe = 𝑉0𝜌0 = 2𝜋2𝑅2.
1

4𝜋𝑅2 =
𝜋𝑅

2
 

Mass of the elliptical universe = 𝑉0𝜌0 = 𝜋2𝑅3.
1

4𝜋𝑅2 =
𝜋𝑅

4
. 

 

CaseII: When the universe is filled with radiation,𝜌0 = 3𝑝0. 

From(7), we get 

𝑝0 =
1

16𝜋𝑅2
=

𝜌0

3
 

Mass of the spherical universe = 𝑉0𝜌0 = 2𝜋2𝑅3𝜋.
3

16𝜋𝑅2 =
3

8
𝜋𝑅 

Mass of the elliptical  universe =
3

16
𝜋𝑅. 

CaseIII: When the universe is completely empty 

𝜌0 = 0 = 𝑝0 

From (5) and (6), we have 

Λ =
1

𝑅2
, Λ =

3

𝑅2
  

Λ =
1

𝑅2
= 0 

Therefore  

𝑒−𝜆 = 1 −
𝑟2

𝑅2
= 1 

This shows that for flat space time, the Einstein element would degenerate 

into a line element of special relativity type. 

 

     iii. Motion of attest particle in the Einstein Universe: The Einstein 

line element is 

𝑑𝑠2 = − (1 −
𝑟2

𝑅2
)

−1

𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2) + 𝑑𝑡2 … (1) 

The motion of the particle is described by the geodesic equations: 

𝑑2𝑥𝛼

𝑑𝑠2
+ Γ𝑖𝑗

𝛼
𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0 

With  

𝑥1 = 𝑟, 𝑥2 = 𝜃, 𝑥3 = 𝜙, 𝑥4 = 𝑡 

For the sake of simplicity, we assume the particle was initially at rest so 

that velocity components can be calculated as 

                                                  
𝑑𝑟

𝑑𝑠
=

𝑑𝜃

𝑑𝑠
=

𝑑𝜙

𝑑𝑠
= 0                         … (2) 
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From (2), we get 

𝑑2𝑥𝛼

𝑑𝑠2
+ Γ44

𝛼 (
𝑑𝑡

𝑑𝑠
)

2

= 0 

But 

Γ44
𝛼 =

1

2

𝑔44

𝜕𝑥𝛼
= 0   𝑠𝑖𝑛𝑐𝑒 𝑔44 = 1 

Hence 

 

𝑑2𝑟

𝑑𝑠2
=

𝑑2𝜃

𝑑𝑠2
=

𝑑2𝜙

𝑑𝑠2
= 0.  

i.e., the particle has zero acceleration. Hence in Einstein universe a 

particle at rest remains at rest.  

        iv. Shift in Spectral lines (Doppler’s effect in Einstein Universe): 

According to zero acceleration for stationary particles, consider an 

observer at 𝑟 = 0 and a light source, such as a star, at  𝑟 = 𝑟. Both are 

always at rest with regard to spatial coordinates. 

𝑑𝑠 = 𝑑𝜃 = 𝑑𝜙 = 0 

So that from (1), we get 

𝑑𝑟

𝑑𝑡
= ± (1 −

𝑟2

𝑅2
)

1/2

 

At time 𝑡1, let a light pulse exit the star.  The observer would get it at 

time 𝑡2 , which is provided by 

∫ 𝑑𝑡
𝑡2

𝑡1

= − ∫
𝑑𝑟

(1 −
𝑟2

𝑅2)
1/2

0

𝑟1

= ∫
𝑑𝑟

(1 −
𝑟2

𝑅2)
1/2

𝑟1

0

 

𝑡2 − 𝑡1 = 𝑅𝑠𝑖𝑛−1
𝑟1

𝑅
 

𝑡2 = 𝑡1 + 𝑅𝑠𝑖𝑛−1
𝑟1

𝑅
 

Since in Einstein universe particle at rest remain at rest.i.e., 𝑟1 is constant 

so we have 

𝛿𝑡2 − 𝛿𝑡1 = 0 

𝛿𝑡2

𝛿𝑡1
= 1 

 

13.6 DE-SITTER’S LINE ELEMENT:-  

The de-Sitter's line element arises from the possibility 

𝜌0 + 𝑝0 = 0 

Adding (3) and (4), we obtain 
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8𝜋0 = 𝑒−𝜆 (
𝜆′ + 𝑣′

𝑟
)     𝑜𝑟   𝑒−𝜆 (

𝜆′ + 𝑣′

𝑟
) = 0  

𝜆′ + 𝑣′ = 0 

On integration      𝜆 + 𝜈 = 𝐶 

Now the subject to condition 𝜆 = 𝜈 = 0 at 𝑟 = 0, we obtain 

𝐶 = 0 

Hence 

𝜆 + 𝜈 = 𝐶 = 0  𝑜𝑟 𝜆 + 𝜈 = 0  𝑜𝑟  𝜆 = −𝜈 

From (40, we have 

8𝜋𝜌0 = 𝑒−𝜆 (
𝜆′

𝑟
−

1

𝑟2
) +

1

𝑟2
− Λ  

(8𝜋𝜌0 + Λ)𝑟2 − 1 = 𝑒−𝜆(𝜆′𝑟 − 1) 

1 − (8𝜋𝜌0 + Λ)𝑟2 =
𝑑

𝑑𝑟
 (𝑟𝑒−𝜆) 

Integrating 

𝑟𝑒−𝜆 = 𝑟 −
𝑟3

3
(8𝜋𝜌0 + 𝛬) + 𝐶1 

Now the subject to condition 𝜆 = 𝜈 = 0 at 𝑟 = 0, we obtain 

𝐶1 = 0 

Consequently 

𝑟𝑒−𝜆 = 𝑟 −
𝑟3

3
(8𝜋𝜌0 + 𝛬) 

𝑒−𝜆 = 1 −
𝑟2

3
(8𝜋𝜌0 + 𝛬) 

Taking  
1

𝑅2 =
(8𝜋𝜌0+𝛬)

3
, we obtain 𝑒−𝜆 = 1 −

𝑟2

𝑅2 

𝑒𝑣 = 𝑒−𝜆 = 1 −
𝑟2

𝑅2
 

Now from (2), we have 

𝑑𝑠2 = − (1 −
𝑟2

𝑅2
)

−1

𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2) + (1 −
𝑟2

𝑅2
) 𝑑𝑡2 

This line element is called De-Sitter line element for static, isotropic and 

homogeneous universe. 

 

13.7 PROPERTIES OF DE-SITTER’S UNIVERSE:-  

i. Geometry of de-Sitter's universe:   
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𝑑𝑠2 = − (1 −
𝑟2

𝑅2
)

−1

𝑑𝑟2 − 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2) + (1 −
𝑟2

𝑅2
) 𝑑𝑡2 … (1) 

can be written into several forms. We make the transformation 

𝑟

𝑅
= sin 𝛽. 

As a result of which (1) becomes 

𝑑𝑠2 = −𝑅2[𝑑𝛽2 + sin2 𝛽(𝑑𝜃2 + sin2 𝜃𝑑𝜙2)] + cos2 𝛽𝑑𝑡2. (2) 

On applying the transformation 

𝛼 = 𝑟sin 𝜃cos 𝜙, 𝛿 − 𝜀 = Re−𝑡/𝑅/√(1 −
𝑟2

𝑅2
)

𝛽 = 𝑟sin 𝜃sin 𝜙,

𝛾 = 𝑟cos 𝜃, 𝛿 + 𝜀 = Re𝑡/𝑅/ (1 −
𝑟2

𝑅2
)

1/2

 

we find that (1) is reduced to 

𝑑𝑠2 = −[𝑑𝛼2 + 𝑑𝛽2 + 𝑑𝛾2 + 𝑑𝛿2] + 𝑑𝜀2. (3) 

Further taking 𝛼 = 𝑖𝑧1, 𝛽 = 𝑖𝑧2, 𝛾 = 𝑖𝑧3, 𝛿 = 𝑖𝑧4, 𝜀 = 𝑖𝑧5. 

We obtain 𝑑𝑠2 = 𝑑𝑧1
2 + 𝑑𝑧2

2 + 𝑑𝑧3
2 + 𝑑𝑧4

2 + 𝑑𝑧5 

with 𝑧1
2 + 𝑧2

2 + 𝑧3
2 + 𝑧4

2 + 𝑧5
2 = (𝑖𝑅)2 . 

The de-Stitter universe's physical space may be embedded in a higher-

dimensional Euclidean space, according to equation (3). It also 

demonstrates that this universe's geometry is based on a sphere's surface 

embedded in a five-dimensional Euclidean space. Lemaitre Robertson 

transformation 

𝑟′ = −
𝑟𝑒−𝑡/𝑅

√(1 −
𝑟2

𝑅2)

, 𝑡 ′ = 𝑡 + 𝑅log {(1 −
𝑟2

𝑅2
)}

1/2

 

This transformation (1) helps to take the shape 

𝑑𝑠2 = −𝑒2𝑟 ′′𝑅[𝑑𝑟2 + 𝑟′2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2)] + 𝑑𝑡 ′2 
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Dropping dashes, we obtain 

𝑑𝑠2 = −𝑒2𝑡/𝑅[𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃 + 𝑑𝜙2)] + 𝑑𝑡2 

Taking 𝑘 = 1/𝑅, we have 

𝑑𝑠2 = −𝑒2𝑘𝑡[𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2)] + 𝑑𝑡2 

Its Cartesian equivalent is 

𝑑𝑠2 = −𝑒2𝑘𝑡[𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2] + 𝑑𝑡2 

Therefore, we can see that a static line element may be changed into a 

non-static one using this transformation. 

ii. Pressure and density of matter in de-Sitter universe: The de-Sitter 

line element is based on the assumption  

𝜌0 + 𝑝0 = 0                … (4)  

Since 𝜌0 ≥ 0 and therefore we obtain 

𝜌0 = 0 = 𝑝0              … (5)  

This is the only way to solve (4). The de-Sitter universe is implied to be 

entirely empty by equation (5). It is devoid of radiation and substance. 

iii. Motion of a test particle in de-Sitter universe. 

Geodesic equations describe the motion of a test  

particle.

𝑑2𝑥𝛼

𝑑𝑠2 + Γ𝑖𝑗
𝛼 𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0 (6) 

The line element is taken into consideration in the general form 

𝑑𝑠2 = −𝑒𝜆𝑑𝑟2 − 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2) + 𝑒𝜈𝑑𝑡2 (7) 

With𝑒−𝜆 = 𝑒𝜈 = 1 −
𝑟2

𝑅2 

The elements of Christoffel's brackets of the second type that are currently 

disappearing are 
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Γ11
1 = 𝜆′/2, Γ23

3 = cot 𝜃

Γ12
2 = 1/𝑟 = Γ13

3 , Γ33
1 = −𝑟sin2 𝜃𝑒−𝜆

Γ14
4 = 𝑣′/2, Γ33

2 = −sin 𝜃cos 𝜃

Γ22
1 = −𝑟𝑒−𝜆, Γ44

1 = 𝑣′𝑒𝑣−𝜆/2

 

where the dashes indicate the difference with respect to r. 

For𝛼 = 2                      ,
𝑑2𝑥2

𝑑𝑠2 + Γ𝑖𝑗
2 𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0 

or, 

𝑑2𝑥2

𝑑𝑠2
+ Γ12

2 𝑑𝑥1

𝑑𝑠

𝑑𝑥2

𝑑𝑠
+ Γ21

2 𝑑𝑥2

𝑑𝑠

𝑑𝑥1

𝑑𝑠
+ Γ33

2 𝑑𝑥3

𝑑𝑠

𝑑𝑥3

𝑑𝑠
= 0 

or, 

𝑑2𝜃

𝑑𝑠2
+

2

𝑟

𝑑𝑟

𝑑𝑠

𝑑𝜃

𝑑𝑠
− sin 𝜃cos 𝜃 (

𝑑𝜙

𝑑𝑠
)

2

= 0 (8) 

For 𝛼 = 3,                          
𝑑2𝑥3

𝑑𝑠2 + Γ𝑖𝑗
3 𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0 

or, 

𝑑2𝑥3

𝑑𝑠2
+ 2Γ13

3 𝑑𝑥1

𝑑𝑠

𝑑𝑥2

𝑑𝑠
+ 2Γ23

3 𝑑𝑥2

𝑑𝑠

𝑑𝑥3

𝑑𝑠
= 0 

or, 

𝑑2𝜙

𝑑𝑠2
+

2

𝑟

𝑑𝑟

𝑑𝑠

𝑑𝜙

𝑑𝑠
+ 2cot 𝜃

𝑑𝜃

𝑑𝑠

𝑑𝜙

𝑑𝑠
= 0 (9) 

For 𝛼 = 4,                          
𝑑2𝑥4

𝑑𝑠2 + Γ𝑖𝑗
4 𝑑𝑥

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0 

or, 

𝑑2𝑥4

𝑑𝑠2
+ 2Γ14

4 𝑑𝑥1

𝑑𝑠

𝑑𝑥4

𝑑𝑠
= 0 (10) 

or, 
𝑑2𝑡

𝑑𝑠2 + 𝑣′ 𝑑𝑟

𝑑𝑠
⋅

𝑑𝑡

𝑑𝑠
= 0 

Let 𝜃 =
𝜋

2
 initially, then sin 𝜃 = 1, cos 𝜃 = 0 =

𝑑𝜃

𝑑𝑠
 

Substituting these values in (8), (9) and (10), we obtain 
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𝑑2𝜃

𝑑𝑠2
= 0

𝑑2𝜙

𝑑𝑠2
+

2

𝑟

𝑑𝑟

𝑑𝑠

𝑑𝜙

𝑑𝑠
= 0

 

or, 

𝑑2𝑡

𝑑𝑠2
+ 𝑣′

𝑑𝑟

𝑑𝑠

𝑑𝑡

𝑑𝑠
= 0  

A particle that begins moving in the plane 𝜃 =
𝜋

2
 will continue to move in the 

same plane, as demonstrated by the equation (8'). 

From (9'),  

𝑟2
𝑑2𝜙

𝑑𝑠2
+ 2𝑟

𝑑𝑟

𝑑𝑠

𝑑𝜙

𝑑𝑠
= 0 

or, 
𝑑

𝑑𝑠
(𝑟2 𝑑𝜙

𝑑𝑠
) = 0 

 

This provides a solution 

𝑟2
𝑑𝜙

𝑑𝑠
= ℎ 

ℎ being a constant of integration. 

From (10′) 

𝑒𝜈
𝑑2𝑡

𝑑𝑠2
+ 𝑣′𝑒𝜈

𝑑𝑟

𝑑𝑠

𝑑𝑡

𝑑𝑠
= 0 

or, 

𝑑

𝑑𝑠
(𝑒𝜈

𝑑𝑡

𝑑𝑠
) = 0 

Upon integration, 𝑒𝜈 𝑑𝑡

𝑑𝑠
= 𝑘, 𝑘 being a constant of integration Instead of 

taking 𝛼 = 1, we shall consider the line element (7). For 𝜃 =
𝜋

2
, (7) 

becomes, 𝑑𝑠2 = −𝑒𝜆𝑑𝑟2 − 𝑟2𝑑𝜙2 + 𝑒𝜈𝑑𝑡2 

or, 
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𝑒𝜆 (
𝑑𝑟

𝑑𝑠
)

2

+ 𝑟2 (
𝑑𝜙

𝑑𝑠
)

2

− 𝑒𝜈 (
𝑑𝑡

𝑑𝑠
)

2

+ 1 = 0 

Substituting expressions for 

𝑑𝜙

𝑑𝑠
 and 

𝑑𝑡

𝑑𝑠
 

we get 

𝑒𝜆 (
𝑑𝑟

𝑑𝑠
)

2

+ 𝑟2 ⋅
ℎ2

𝑟4
− 𝑒𝑣 ⋅ 𝑘2𝑒−2𝑣 + 1 = 0 

or, 𝑒𝜈+𝜆 (
𝑑𝑟

𝑑𝑠
)

2

+
ℎ2𝑒𝜈

𝑟2 − 𝑘2 + 𝑒𝑣 = 0 

or. (
𝑑𝑟

𝑑𝑠
)

2

+
ℎ2

𝑟2 (1 −
𝑟2

𝑅2) − 𝑘2 + (1 −
𝑟2

𝑅2) = 0. For 𝜆 + 𝑣′′ 

or 

(
𝑑𝑟

𝑑𝑠
)

2

= 𝑘2 − 1 +
𝑟2

𝑅2
−

ℎ2

𝑟2
+

ℎ2

𝑅2
 

Taking positive square root. 

𝑑𝑟

𝑑𝑠
= (𝑘2 − 1 +

𝑟2

𝑅2
−

ℎ2

𝑟2
+

ℎ2

𝑅2
)

1/2

 

𝑑𝑟

𝑑𝑡
=

𝑑𝑟

𝑑𝑠
⋅

𝑑𝑠

𝑑𝑡
=

𝑒𝑣

𝑘

𝑑𝑟

𝑑𝑠
.  For 𝑒𝑣 𝑑𝑡

𝑑𝑠
= 𝑘 

=
1

𝑘
(1 −

𝑟2

𝑅2
)

𝑑𝑟

𝑑𝑠
(11) 

or,
𝑑𝑟

𝑑𝑡
=

1

𝑘
(1 −

𝑟2

𝑅2) (𝑘2 − 1 +
𝑟2

𝑅2 −
ℎ2

𝑟2 +
ℎ2

𝑅2)
1/2

 

Differentiating with respect to 𝑡, we get 

𝑑2𝑟

𝑑𝑡2
=

1

𝑘
(−

2𝑟

𝑅2
)

𝑑𝑟

𝑑𝑡
(𝑘2 − 1 +

𝑟2

𝑅2
−

ℎ2

𝑟2
+

ℎ2

𝑅2
)

1/2

+
1

𝑘
(1 −

𝑟2

𝑅2
)

1

2
(𝑘2 − 1 +

𝑟2

𝑅2
−

ℎ2

𝑟2
+

ℎ2

𝑅2
)

−1/2

(
2𝑟

𝑅2
+

2ℎ2

𝑟3
)

𝑑𝑟

𝑑𝑡

= (−
2𝑟

𝑅2
) ⋅ (

𝑑𝑟

𝑑𝑡
)

2

⋅
1

(1 − 𝑟2/𝑅2)
+

1

𝑘2
(1 −

𝑟2

𝑅2
)

2

⋅
1

(𝑑𝑟/𝑑𝑡)
⋅ (

𝑟

𝑅2
+

ℎ2

𝑟3
)

𝑑𝑟

𝑑𝑡
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or, 
𝑑𝜙

𝑑𝑡
=

ℎ

𝑘
(

1

𝑟2 −
1

𝑅2) 

Putting 
𝑑𝑟

𝑑𝑡
= 0 in (12), 

𝑑2𝑟

𝑑𝑡2
= (

1 − 𝑟2/𝑅2

𝑘
)

2

(
𝑟

𝑅2
+

ℎ2

𝑟3
) 

This indicates that for 
𝑑𝑟

𝑑𝑡
= 0, 

𝑑2𝑟

𝑑𝑡2 > 0. It indicates that a particle will 

never return to the perihelion after it has reached it and begun to travel 

away from it at 𝑡0. 

Substituting 
𝑑𝑟

𝑑𝑡
= 0 in (11), we obtain 

𝑘2 − 1 +
𝑟2

𝑅2
−

ℎ2

𝑟2
+

ℎ2

𝑅2
= 0 

This obtain the value of 𝑟 at perihelion.Fo 𝑟 = 𝑅, (11) and (13) are 

reduced to 

𝑑𝑟

𝑑𝑡
= 0 =

𝑑𝜙

𝑑𝑡
 

This illustrates that all motion will cease inside a radius R. The perceived 

horizon of the cosmos is the name given to this radius. 

For a particle at rest at origin with ℎ = 0 we find that 
𝑑2𝑥𝛼

𝑑𝑠2 = 0, (𝛼 =

1,2,3). This demonstrates that the particle's acceleration is zero. It means 

that in de-Sitter world a particle at rest at origin with ℎ = 0  remains at 

rest. 

Step IV. Shift in spectral lines.  

When a light beam from a far-off star travels in a radial path in the 

direction of the origin, 

or, 

𝑑𝑠, 𝑑𝜃, 𝑑𝜙 = 0 

 Consequently 0 = − (1 −
𝑟2

𝑅2
)

−1

𝑑𝑟2 + (1 −
𝑟2

𝑅2
) 𝑑𝑡2 

𝑑𝑟

𝑑𝑡
= ± (1 −

𝑟2

𝑅2
) 
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The required path is obtained by 

𝑑𝑡 = −
𝑑𝑟

(1 −
𝑟2

𝑅2)
 

If 𝑡 is the amount of time it takes for a light beam to move from  𝑟 =

0010𝑟 = 𝑅, then 

𝑡 = ∫  
𝑅

0

 
𝑑𝑟

(1 −
𝑟2

𝑅2)

= ∫  
𝜋/2

0

 
𝑅cos 𝜓𝑑𝜓

cos2 𝜓
,
𝑟

𝑅
= sin 𝜓

= 𝑅 ∫  
𝜋/2

0

 sec 𝜓𝑑𝜓

= 𝑅[log (sec 𝜓 + tan 𝜓)]0
𝜋/2

= 𝑅[∞ − 0] = ∞

= ∞

 

It implies that a light beam would travel between the origin and the 

horizon in an indefinite amount of time as observed by an observer at the 

origin; in other words, the observer would never be aware of what was 

happening at the horizon. 

Let 𝛿𝑡1 be the separation between two consecutive wavecrests that are 

emitted from a far-off star, and 𝛿𝑡2  be the corresponding time that an 

observer at rest at the origin receives them, so that 

𝛿𝑡2
0 = 𝛿𝑡2

∫  
𝑡2

𝑡1

 𝑑𝑡 = ∫  
0

𝑟

 −
𝑑𝑟

(1 − 𝑟2/𝑅2)
 

From which,                               𝑡2 − 𝑡1 = ∫  
𝑟

0

𝑑𝑟

(1−𝑟2/𝑅2)
. 

Differentiating w.r.t. 𝑡1 ,              
𝛿𝑡2

𝛿𝑡1
− 1 =

𝑑𝑟/𝑑𝑡

1−𝑟2/𝑅2 

where 
𝑑𝑟

𝑑𝑡
 denotes the radial velocity at 𝑡 = 𝑡1. 

Thus
𝛿𝑡2

𝛿𝑡1
= 1 +

𝑑𝑟/𝑑𝑡

1−𝑟2/𝑅2 
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where
𝑑𝑟

𝑑𝑡
= (

𝑑𝑟

𝑑𝑡
)

𝑡=𝑡1

 

We obtain 𝑒𝜈 𝑑𝑡

𝑑𝑠
= 𝑘. 

∴ (1 −
𝑟2

𝑅2
) 𝑑𝑡 = 𝑘𝑑𝑠 

From which, (1 −
𝑟2

𝑅2) 𝛿𝑡1 = 𝑘𝛿𝑡1
0 

or 

𝛿𝑡1
0 =

1

𝑘
(1 −

𝑟2

𝑅2
) = 𝛿𝑡1 

Also we have seen 𝛿𝑡2
0 = 𝛿𝑡2.Dividing, 

𝛿𝑡1
0

𝛿𝑡2
0 =

1

𝑘
(1 − 𝑟2/𝑅2) ⋅

𝛿𝑡1

𝛿𝑡2
 

or 

𝛿𝑡2
0

𝛿𝑡1
0=

𝛿𝑡2

𝛿𝑡1
⋅

𝑘

(1 − 𝑟2/𝑅2)

𝛿𝑡2
0

𝛿𝑡1
0=

𝑘

1 − 𝑟2/𝑅2
+

𝑘(𝑑𝑟/𝑑𝑡)

(1 − 𝑟2/𝑅2)2

 

or 

Since 𝑘 > 0 and 1 −
𝑟2

𝑅2 > 0. 

It means that the sign of 
𝛿𝑡1

0

𝛿𝑡2
0 depends upon the sign of 𝑑𝑟/𝑑𝑡, which is 

radial velocity at time 𝑡 = 𝑡1. 

When 
𝑑𝑟

𝑑𝑡
> 0, then 

𝛿𝑡2
0

𝛿𝑡1
0 > 0, meaning thereby there exists red shift. 

If 
𝑑𝑟

𝑑𝑡
< 0, then 

𝛿𝑡2
0

𝛿𝑡1
0 < 0, showing thereby there exists violet shift. For 

𝑑𝑟

𝑑𝑡
 is 

so large that it makes the R.H.S. of (15) to be negative if 
𝑑𝑟

𝑑𝑡
< 0. 

Thus we see that there is a possibility of both red and void shifts. But the 

possibility of red shift is more prominent. 

0655510
log 9 

Let 𝜆0 and 𝜆0 + 𝛿𝜆0 be the wave lengths of waves noresponding to the 

time 𝛿𝑡1
0
 and 𝛿𝑡2

0
. 
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Then 
𝛿𝑡2

0

𝛿𝑡1
0 =

𝑐𝛿𝑡2
0

𝑐𝛿𝑡1
0 =

𝜆0+𝛿𝜆0

𝜆0
= 1 +

𝛿𝜆0

𝜆0
 

II, 
𝛿𝑡2

0

𝛿𝑡1
0 = 1 +

𝛿𝜆0

𝜆0
 

Consider an alternate form of de-Sitter line element given by 

𝑑𝑠2 = −𝑒2𝑡/𝑅[𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2)] + 𝑑𝑡2 

Here we find that 

𝛿𝑡2
0

𝛿𝑡1
0 = 𝑒(𝑡2−𝑡1)/𝑅 = 𝑒𝑟/𝑅 = 1 +

𝑟

𝑅
 upto first approximation. 

For distance travelled in time 𝑡2 − 𝑡1 is 𝑟. 

or, 

1 +
𝑟

𝑅
=

𝛿𝑡2
0

𝛿𝑡1
0 = 1 +

𝛿𝜆0

𝜆0

𝛿𝜆0

𝜆0
=

𝑟

𝑅

 

If we assume 𝑐 = 1, this demonstrates that red shift is proportionate to the 

distance measured from the origin.  It also confirms Weyl's theory, which 

states that nebulae are moving away from us at a speed proportional to 

their distance.  As a result, we may observe that de-Sitter forecasts nebula 

recession despite being entirely empty. 

Problem 1. To show that Einstein universe is not an Einstein space 

where as de-Sitter's universe is 

Solution. The characteristic is what defines an Einstein space  

𝑅𝑖𝑗 =
1

𝑛
𝑅𝑔𝑖𝑗 ,                               … (1) 

where 𝑛 stands for dimension of the space.(i) To examine Einstein 

universe. 

Einstein line element is obtain by 

𝑑𝑠2 = − (1 −
𝑟2

𝑅2
)

−1

𝑑𝑟2 − 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2) + 𝑑𝑡2 

Here we have  
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𝑅𝜇𝜇 = −
2

𝑅2
𝑔𝜇𝜇 

𝑅44 = 0, 𝑅𝜇𝜈 = 0 for 𝜇 ≠ 𝜈. where 𝜇 = 1,2,3.

𝑅 = 𝑔𝜇𝑣𝑅𝜇𝜈 = ∑  

4

𝜇=1

 𝑔𝜇𝜇𝑅𝜇𝜇 = ∑  

4

𝜇=1

 
𝑅𝜇𝜇

𝑔𝜇𝜇

 =
𝑅11

𝑔11
+

𝑅22

𝑔22
+

𝑅33

𝑔33
+

𝑅44

𝑔44
= −

2

𝑅2
(1 + 1 + 1 + 0). by (2).

𝑅

3
= −

2

𝑅2
.

 

This means that 𝑅𝜇𝜇 =
𝑅

3
𝑔𝜇𝜇  in (2). Additionally, for 𝜇 ≠ 𝜈,  𝑅44 =

0, 𝑔44 ≠ 0, and 𝑅𝜇𝜈 = 0. According to these facts, 𝑅𝜇𝜈 ≠
1

4
𝑅𝑔𝜇𝜈 . Einstein 

μ niverse is not an Einstein space, according to this. 

 (ii) We now examine de-Sitter's universe, de-Sitter's line element is 

obtaind by 

𝑑𝑠2 = − (1 −
𝑟2

𝑅2)
−1

𝑑𝑟2 − 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜃2) + (1 −
𝑟2

𝑅2) 𝑑𝑡2. 

Here we have 𝑅𝜇𝜇 =
3

𝑅2 𝑔𝜇𝜈 

where 𝜇 = 1,2,3,4. 

𝑅𝜇𝜈 = 0 for 𝜇 ≠ 𝜈 

Then 𝑅 = 𝑔𝜇′′𝑅𝜇𝜈 = 𝑔11𝑅11 + 𝑔22𝑅22 + 𝑔23𝑅33 + 𝑔44𝑅44 

=
𝑅11

𝑔11
+

𝑅22

𝑔22
+

𝑅33

𝑔33
+

𝑅44

𝑔44
=

3

𝑅2
(1 + 1 + 1 + 1), by (3)

∴
𝑅

4
=

3

𝑅2
(3)

 

Now (3) is reduced to 

𝑅𝜇𝜇 =
𝑅

4
𝑔𝜇𝜇 

Also 

𝑅𝜇𝜈 = 0  for 𝜇 ≠ 𝑣, 𝑔𝜇𝜈 = 0 for 𝜇 ≠ 𝑣 

Hence we can write  

𝑅𝜇𝜇 =
𝑅

4
𝑔𝜇𝜇 
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13.8 COMPARISON OF EINSTEIN MODEL WITH 

ACTUAL UNIVERSE:-  

To conclude our brief discussion of the properties of the Einstein universe 

we must now make some comparison with the properties of the actual 

universe. 

 

The Einstein model's agreement with a cosmos that might in reality 

contain a finite concentration of uniformly distributed matter is its most 

satisfying aspect. It provides us with a cosmology that is better than the 

de-Sitter model in this regard. This benefit is only obtained by adding the 

extra cosmological term Aguy to Einstein's original field equations. This is 

a mechanism that is comparable to the change made to Poisson's equation 

to allow for a uniform static distribution of matter in flat space according 

to Newtonian theory. 

The fact that there is no basis for expecting any consistent shift in the 

wave length of light from distant objects is the most unsatisfying aspect of 

the Einstein model as a foundation for the cosmology of the real universe. 

However, Hubble and Humason's research in the real cosmos reveals a 

clear red shift in the nebulae's light that gets stronger with distance. 

Naturally, this is the primary factor in favoring non-static universe 

theories as the foundation for real cosmology. 

 

13.9 COMPARISON OF DE-SITTER MODEL 

WITH ACTUAL UNIVERSE:-  

The linear relationship between red shift and distance that Hubble and 

Humason found for the light from nebulae in the real universe is provided 

by the de-Sitter model, which includes the distribution of moving 

particles. In this situation, the cosmological constant A is significantly 

higher in the de-Sitter universe than in the Einstein universe. 

The line element, when strictly interpreted, corresponds to a completely 

empty university that contains neither matter nor radiations, which is the 

most disappointing aspect of the de-Sitter model as a foundation for the 

cosmology of the actual universe. The successful and poor aspects of the 

two initial static models can be concluded in the final section. The 

Einstein model accounts for any red shift in the light from far-off particles, 

but it does not account for the universe's limited matter concentration. The 
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observed finite concentration of the real cosmos is not supported by the 

model, which only allows for a red shift in the light from distant particles. 

 

SELF CHECK QUESTIONS 

1. What is meant by a “static universe”? 

2.  What is the main reason the Einstein model is considered outdated 

today? 

3. What does a redshift in the light from a galaxy tell us? 

4. What role does general relativity play in cosmological models? 

13.10 SUMMARY:-  

In this unit, we explored the fundamental cosmological models used to 

describe the structure and evolution of the universe. We examined the 

Einstein line element and the associated Einstein universe, which assumes 

a static, closed cosmos with uniformly distributed matter and a 

cosmological constant to counterbalance gravity. We also studied the de 

Sitter line element, which describes an empty, expanding universe driven 

purely by the cosmological constant. The properties of the Einstein 

universe highlighted its attempt to maintain a static cosmos, though it fails 

to explain the observed redshift of distant galaxies. In contrast, the 

properties of the de Sitter universe allow for expansion and redshift but 

lack realistic matter content. We compared both models with the actual 

universe, finding that while the Einstein model is outdated due to its static 

nature, the de Sitter model offers better agreement with observational 

evidence such as Hubble's redshift–distance relation. These comparisons 

emphasize the need for non-static, dynamic models, paving the way 

toward more accurate representations like the FLRW and ΛCDM models 

used in modern cosmology. 

 

13.11GLOSSARY:-  

 Einstein Universe: A static, closed model of the universe 

proposed by Albert Einstein in 1917, where the universe is filled 

with uniformly distributed matter and maintained in a stable, 

unchanging state by a cosmological constant. 

 Cosmological Constant (Λ): A term introduced by Einstein in his 

field equations of General Relativity to counteract gravity, 
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enabling a static universe. Later, it became associated with dark 

energy, which is responsible for the accelerated expansion of the 

universe. 

 de Sitter Universe: A model of the universe proposed by Willem 

de Sitter in 1917, describing an empty, expanding universe with a 

large cosmological constant but no matter. It explains the redshift 

of distant galaxies but lacks the presence of matter. 

 Friedmann-Lemaître-Robertson-Walker (FLRW) Model: A 

family of solutions to Einstein's field equations that assumes a 

homogeneous, isotropic universe. These models describe an 

expanding or contracting universe filled with matter and energy, 

and they serve as the basis for modern cosmological models like 

the ΛCDM model. 

 Redshift: The phenomenon where light from distant objects in the 

universe appears shifted toward longer wavelengths due to the 

expansion of the universe. The redshift increases with the distance 

of the object, as observed by Hubble. 

 Hubble’s Law: A key observation that the velocity of galaxies 

moving away from us is proportional to their distance, indicating 

the expansion of the universe. 

 Expansion of the Universe: The concept that space itself is 

stretching, causing galaxies to move farther apart over time. This 

phenomenon is supported by observations of the redshift in light 

from distant galaxies. 

 Static Universe: A universe that remains unchanged over time, 

neither expanding nor contracting. The Einstein static universe was 

an early attempt to model this idea, though it was later discarded 

due to the discovery of the expanding universe. 

 Dark Energy: A form of energy associated with the cosmological 

constant (Λ), which is responsible for the accelerated expansion of 

the universe. It makes up a significant portion of the universe’s 

total energy content. 

 Cold Dark Matter (CDM): A form of matter that does not emit, 

absorb, or reflect light, making it undetectable by electromagnetic 

radiation. It interacts with regular matter through gravity and is 

believed to be responsible for the formation of large-scale 

structures in the universe. 

 ΛCDM Model: The standard model of cosmology that includes 

dark energy (Λ), cold dark matter (CDM), and normal matter. It 
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explains the large-scale structure of the universe and its accelerated 

expansion. 

 Line Element: A mathematical expression that describes the 

geometry of space-time. In cosmology, the line element is used to 

express the distances between points in a universe model, such as 

the Einstein line element or the de Sitter line element. 

 Isotropy: The property of the universe where it looks the same in 

every direction. This assumption is fundamental in the FLRW 

model. 

 Homogeneity: The property of the universe where the same 

physical properties are present everywhere on a large scale. It is 

another assumption in the FLRW model. 

 Curvature of Space: Refers to the bending of space-time caused 

by the presence of mass and energy, described by general 

relativity. A universe can have positive curvature (closed), zero 

curvature (flat), or negative curvature (open). 

 

13.12 REFERENCES:-  

  Edward J. Corbelli, et al.(2019),  “Observational Tests of the 
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Modified Gravity: Theories, Applications, and Observations" 

Springer Briefs in Physics”. 
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 Farook Rahman (2021), The General Theory of Relativity: A 

Mathematical Approach 

 Satya Prakash,Revised by K.P.Gupta, Ninteenth Edition (2019), 

Relativistic Mechanics. 

 Dr. J.K.Goyal & Dr.K.P.Gupta (2018), Theory of Relaivity. 

13.14 TERMINAL QUESTIONS: 

(TQ-1) Describe Einstein's model of universe. Show that Einstein's 

universe is neither an Einstein space nor a constant curvatur. 

(TQ-2) Discuss Einstein's model of universe and compare it w actual 

universe. 

https://books.google.co.in/books?id=-3AjEAAAQBAJ&printsec=frontcover&dq=Theory+of+relativity&hl=en&newbks=1&newbks_redir=1&sa=X&ved=2ahUKEwi8-pacisWLAxVLUGwGHT5QMmQQ6AF6BAgGEAM
https://books.google.co.in/books?id=-3AjEAAAQBAJ&printsec=frontcover&dq=Theory+of+relativity&hl=en&newbks=1&newbks_redir=1&sa=X&ved=2ahUKEwi8-pacisWLAxVLUGwGHT5QMmQQ6AF6BAgGEAM
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(TQ-3) Write an essay on static cosmological models. 

(TQ-4) Describe the three possibilities of a static model of universe and 

bring out the similarity and difference be them. 

(TQ-5) Obtain the equations of the geodesics from a varia principle. 

(TQ-6) Discuss the three crucial tests of general relativity. 

(TQ-7) Show how the general relativity modifies the equation d 

planetary orbit and explain the advance of the perihelion. 

(TQ-8) Derive de-Sitter's model of the universe and discuss physical 

properties. 

(TQ-9)  Derive Einstein's model of the universe and discuss properties. 

(TQ-10) Describe the salient features of Einstein's the de-Sitter 

cosmological models, and discuss the inadequancy of static models. 

(TQ-11) Write short notes on 'cosmological models'. 

(TQ-12)  Show that in de-Sitter's universe there may be both red violet 

shift, but the tendency of red shift is more prominent. 

(TQ-13)Obtain the line element for Einstein's universe and discuss its 

properties. 

(TQ-14)Discuss the physical properties of de-Sitter universe and 

compare it with those of the actual universe. 

(TQ-15)Obtain the line elements for Einstein and de-Sitter's 

cosmological models. 

(TQ-16) Obtain the line element for de-Sitter's cosmological model and 

discuss fully the motion of a particle in this universe by investigating the 

shape of its orbit, and its velocity and acceleration in the orbit. 

(TQ-17) Compare and contrast de-Sitter's world with Einstein's world. 

(TQ-18) Deduce an expression for the Einstein line element for a static 

universe, stating the assumptions made, and find the total mass of 

universe. 

(TQ-19)Obtain the line element for Einstein's and de Sitter's 

compological models. 

(TQ-20)Indicate the unsatisfactory features of Einstein's model as 

compared with actual universe. 

(TQ-21)Show that de-Sitter's model corresponds to a completely empty 

universe without matter or radiation. 
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13.15 ANSWERS: 

 

SELF CHECK ANSWERS 

 

1. A static universe is one in which the overall size and geometry do 

not change over time neither expanding nor contracting. 

2. Because it fails to explain the redshift of distant galaxies and does 

not account for the expansion of the universe, which has been 

clearly observed. 

3. It tells us that the galaxy is moving away from us, indicating that 

the universe is expanding. 

4.  General relativity provides the mathematical framework for 

modeling the universe's structure and evolution, forming the basis 

for solutions like the Einstein, de Sitter, and FLRW models. 
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UNIT 14:-Electrodynamics  

CONTENTS: 
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14.2      Objectives 

14.3      Gauge Transformation 

14.4      Transformation equations for differential operators  

14.5      Lorentz Force on a Moving Charge 

14.6      Energy and momentum of the electro-magnetic field  

14.7      Electromagnetic stress  

14.8      Gravitational field due to an electron  

14.9    Comparison of de-sitter with actual universe 

14.10     Summary 

14.11     Glossary 

14.12     References 

14.13     Suggested Reading 

14.14     Terminal questions  

 

14.1 INTRODUCTION: -  

Electrodynamics, from a mathematical perspective, is the study of how 

electric and magnetic fields interact and evolve in space and time, 

governed by Maxwell's equations, which are a set of four coupled partial 

differential equations. These equations expressed using vector calculus 

describe how electric fields (�⃗� )  and magnetic fields (�⃗� )  , arise from 

charge distributions (𝜌) and currents (𝐽 ) , and how they propagate as 

electromagnetic waves in free space or media. The mathematics of 

electrodynamics involves solving these equations using tools like gradient, 

divergence, curl, and Laplacian operators, often within the framework of 

boundary conditions and gauge choices. This rigorous formulation 

provides the foundation for understanding phenomena such as wave 

propagation, radiation, and the behavior of circuits and materials under 

electromagnetic fields. 

14.2 OBJECTIVES: -  

After studying this unit, the lernear’s will be able to  

 To understand the behavior of electric and magnetic fields in space 

and time, and how they influence each other. 

 To develop and solve Maxwell’s equations in various physical 

situations, using vector calculus and boundary conditions. 
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 To understanding the Electromagnetic Problems with the help 

mathematical techniques. 

14.3 THEOREMS: -  

Theorem 1. To show that a charge in motion is accompanied by a 

magnetic field. 

Or 

To show that an electromagnetic field is produced by an electric Field. 

Proof: Orested observed that an ordinary electric current of density J 

might generate a magnetic field of strength H. Maxwell proposed that 

shifting electric displacement may create a magnetic field. For unoccupied 

space, the Morcover electric displacement is linearly proportional to the 

electric field strength E. It indicates that magnetic fields are produced by 

electric fields. 

“A long straight stationary wire carrying a current sets a magnetic field.” 

Assume a system S contains electric charges.  Assume that a system S is 

traveling along the X-axis with velocity u in relation to S.  In such case, an 

observer in S will only see electric fields; in contrast, an observer in S will 

see both magnetic and electric fields.  Thus, the electric field in system S 

generates an electromagnetic field in system S'. Lorentz transformation 

𝐸𝑥 = 𝐸𝑥
′ , 𝐸𝑦= 𝛽(𝐸𝑦

′ + 𝑢𝐻𝑧
′), 𝐸𝑧 = 𝛽(𝐸𝑧

′ − 𝑢𝐻𝑦
′ )

𝐻𝑥 = 𝐻𝑥
′ , 𝐻𝑦= 𝛽(𝐻𝑦

′ − 𝑢𝐸𝑧
′), 𝐻𝑧 = 𝛽(𝐻𝑧

′ + 𝑢𝐸𝑦
′ )

𝛽= √{(1 −
𝑢2

𝑐2
)}

 

As a result, the Lorentz-transformation makes it possible to understand 

that magnetic and electric fields cannot be changed independently. This 

amount to saying that a change in motion is accompanied by a magnetic 

field. 

Theorem 2. To prove the existence of vector potential A and scalar 

potential 𝝓With the help of Maxwell Lorentz equations. 

Proof. Maxwell's electromagnetic field equations for unoccupied space 

are provided by 

                                          div E = 4𝜋𝜌                                     . . (1) 

                                                  div H = 0                                … (2)                  

                                           𝑐𝑢𝑟𝑙 𝐸 =  
1

𝑐

𝜕𝑯

𝜕𝑡
                                … (3)  

                                           𝑐𝑢𝑟𝑙 𝑯 =
1

𝑐

𝜕𝑬

𝜕𝑡
 +

4𝜋

𝑐
𝑗                    … (4)          
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where 𝐸,𝐻, and 𝐽 stand for current density, magnetic field intensity, and 

electric field intensity, respectively.  Additionally, if an electric charge 

with a density of ρ moves with velocity 𝑢,  𝐽 = 𝜌𝑢  (2)  implies the 

existence of a vector 𝐴,  also known as a vector potential, such that 

                                                    𝐇 = curl 𝐀                           … (5)                                               

For div 𝑐𝑢𝑟𝑙 ≡ 0. 

                                                 (□2 = ∇2 −
1

𝑐2
𝜕2

𝜕𝑡2
) 

Now (3) becomes curl 𝐸 = −
1

𝑐

𝜕

𝜕𝑡
curl𝐴 

curl (−
1

𝑐
⋅
𝜕𝐀

𝜕𝑡
− 𝐄) = 0. 

This implies that there exists a scalar potential 𝜙 such that 

                                      𝑔𝑟𝑎𝑑𝜙 = − 1/𝑐  𝜕𝑨/𝜕𝑡 − 𝑬.       … (6) 

To prove  

                                                  □2𝐀 = −
4𝜋𝜌𝐮

𝑐
                     … (7)                                   

                                                □2𝜙 = −4𝜋𝜌,                      . . . (8) 

4𝜋

𝑐
𝜌𝐮 = curl𝐇 −

1

𝑐

𝜕𝐄

𝜕𝑡
, by (4) 

= curl curl𝐀 −
1

𝑐

𝜕𝐄

𝜕𝑡
 

= 𝑐𝑢𝑟𝑙 𝑐𝑢𝑟𝑙𝑨 +
1

𝑐

𝜕

𝜕𝑡
(
1

𝑐

𝜕𝑨

𝜕𝑡
+ 𝑔𝑟𝑎𝑑𝜙)      by (6)  

= 𝑐𝑢𝑟𝑙 𝑐𝑢𝑟𝑙𝑨 +
1

𝑐2
𝜕2𝑨

𝜕𝑡2
+ 𝑔𝑟𝑎𝑑 (

1

𝑐

𝜕𝜙

𝜕𝑡
). 

Utilizing the vector calculus formula, 

                                  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣𝒂 − 𝛻2𝒂 =  𝑐𝑢𝑟𝑙 𝑐𝑢𝑟𝑙 𝒂        … (∗) 

we obtain 

4𝜋

𝑐
𝜌𝒖 grad divA -𝛻2A +

1

𝑐2
𝜕2𝑨

𝜕𝑡2
+ 𝑔𝑟𝑎𝑑 (

1

𝑐

𝜕𝜙

𝜕𝑡
) 

=  𝑔𝑟𝑎𝑑 (div 𝐀 +
1

𝑐

𝜕𝜙

𝜕𝑡
) − (∇2 −

1

𝑐2
𝜕2

𝜕𝑡2
)A 

=𝑔𝑟𝑎𝑑 (𝑑𝑖𝑣 𝑨 +
1

𝑐

𝜕𝜙

𝜕𝑡
)□2 - □2𝑨. 

Choosing 𝜙 such that 

          𝑑𝑖𝑣 𝑨 + (
1

𝑐

𝜕𝜙

𝜕𝑡
)  = 0                  … (9) 

we obtain                                  
4𝜋

𝑐
𝜌𝑢 = □2𝐴  
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□2𝐀 =
4𝜋

𝑐
𝜌𝐮  

Thus, the equation (7) is proved. 

From (6),𝛻𝛻∅  =  𝛻. (− 
1

𝑐

𝜕𝑨

𝜕𝑡
) − 𝐸  

(
1

𝑐

𝜕

𝜕𝑡
) ∇A − ∇𝐄 = (

1

𝑐

𝜕

𝜕𝑡
) (−

 1

𝑐

𝜕𝜙

𝜕𝑡
) − 4𝜋𝜌, by (1) and (9), 

∇2∅ −
1

𝑐2
𝜕2

𝜕𝑡2
= 4𝜋𝜌 

 

Or                                                  □2∅ =-4𝜋𝜌 

Consequently, equation (8) is proved. 

14.3 GAUGE TRANSFORMATION:-  

The vector potential A and scalar potential 𝜙 solutions for E and H are as 

follows: 

         𝐻 =  𝑐𝑢𝑟𝑙 𝐴         … (1) 

      𝐸 =
1

𝑐

𝜕𝐀

𝜕𝑡
− 𝑔𝑟𝑎𝑑 𝜙        … (2) 

are not unique as any scalar function 𝑠 gradient can be added to 𝐴 and 

defined 

𝐴′ =  𝐴 +  𝑔𝑟𝑎𝑑 𝑠                    … (3) 

Then the new vector 𝐻′ =  𝑐𝑢𝑟𝑙 𝐴′ =  𝑐𝑢𝑟𝑙 (𝐴 + 𝑔𝑟𝑎𝑑 𝑠) 

𝐻′ =  𝑐𝑢𝑟𝑙 𝐴 +  𝑐𝑢𝑟𝑙 𝑔𝑟𝑎𝑑 𝑠 =  𝑐𝑢𝑟𝑙 𝐴 =  𝐻 as 𝑐𝑢𝑟𝑙 𝑔𝑟𝑎𝑑 𝑠 = 0  

So                                                      𝐻′ = 𝐻 

In the previous calculation, 𝜙 must be replaced by a new function if we 

further demand that the new electric field intensity 𝐸′ stay constant when 

𝐴 is substituted by 𝐴′. 

                               𝜙′ s.t. 𝜙′ = 𝜙 −
1

𝑐

𝜕𝑆

𝜕𝑡
                  … (4) 

Hence ⋅ 𝐄′ = −
1

𝑐

𝜕𝐀′

𝜕𝑡
− grad𝜙′ according to (2), 

= −
1

𝑐

𝜕

𝜕𝑡
(𝐀 + grad𝑠) − grad (𝜙 −

1

𝑐

𝜕𝑠

𝜕𝑡
), 
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By (3) and (4) 

𝐄′= (−
1

𝑐

𝜕𝐀

𝜕𝑡
− grad𝜙) − grad (−

1

𝑐

𝜕𝑠

𝜕𝑡
+
1

𝑐

𝜕𝑠

𝜕𝑡
)

= 𝐄 − grad(0) = 𝐄.
 

As a result, we can observe that 𝐸 and 𝐻  do not change despite the 

changes. 

𝐀′ = 𝐀 + grad𝑠

𝜙′ = 𝜙 −
1

𝑐

𝜕𝑠

𝜕𝑡

 

These transformations are known as Gauge Transformations. 

Question 1. In case of free space, prove that 

□2𝐄 = 𝟎 = □2𝐇. 

Proof. In case of free space,  𝜌 = 0. 

Now Maxwell's equations for free space are 

                                                div𝐄 = 0                        … (1) 

                                                  div𝐇 = 0                     … (2) 

                                             curl 𝐄 = −
1

𝑐

𝜕𝐇

𝜕𝑡
                 … (3) 

                                                   curl 𝐇 =
1

𝑐

𝜕𝐄

𝜕𝑡
             … (4) 

For 

𝐽 = 𝜌𝑢 = 0𝑢 = 0 

Taking curl in (3), 

 curl curl 𝑬 = −
1

𝑐

𝜕

𝜕𝑡
𝑐𝑢𝑟𝑙 𝑯 = −

1

𝑐

𝜕

𝜕𝑡
(
1

𝑐

𝜕𝑬

𝜕𝑡
) , by (4)  

or,                                         𝑐𝑢𝑟𝑙 𝑐𝑢𝑟𝑙 𝑬 +
1

𝑐2
𝜕2𝐸

𝜕𝑡2
= 0 

But 𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑬 = 𝛻2𝑬 + 𝑐𝑢𝑟𝑙 𝑐𝑢𝑟𝑙 𝑬. Then the last gives 

or, 

∴  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑬 − 𝛻2𝑬+
1

𝑐2
𝜕2𝑬

𝜕𝑡2
= 0. 

or,  𝑔𝑟𝑎𝑑(0) − (𝛻2 −
1

𝑐2
𝜕2

𝜕𝑡2
)𝑬 = 𝟎, by (1). 

0 − □2𝑬= 𝟎 

Taking curl in (4), 𝑐𝑢𝑟𝑙 𝑐𝑢𝑟𝑙 𝑯 =
1

𝑐

𝜕

𝜕𝑡
𝑐𝑢𝑟𝑙 𝑬 = −

1

𝑐2
𝜕2𝑯

𝜕𝑡2
, by (3) 

or, 
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 curl curl 𝑯+
1

𝑐2
𝜕2𝑯

𝜕𝑡2
= 𝟎. 

But 𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑯 = 𝛻𝟐 𝑯 + 𝑐𝑢𝑟𝑙 𝑐𝑢𝑟𝑙𝐻 . 

Henc 

𝑔𝑟𝑎𝑑 𝑑𝑖𝑣𝐻 − 𝛻2𝐻 +
1

𝑐2
𝜕2𝐻

𝜕𝑡2
= 0 

the last gives 

or, 

grad(0) − □2𝐻 = 0.  by (2) 

or, 

0 − □2𝐇 = 𝟎 

or, 

□2𝐇 = 𝟎 (6) 

Combining (5) and (6), 

□2𝐇 = 0 = □2𝐄. 

 

14.4 TRANSFORMATION EQUATIONS FOR 

DIFFERENTIAL OPERATORS: 

Questions2. To prove invariance of 𝑫′  Alembert operator ◻𝟐  with 

respect to Lorentz transformation. 

Or. Prove the invariance of 

𝛁𝟐𝝍−
𝟏

𝒄𝟐
𝝏𝟐𝝍

𝝏𝒕𝟐
 

Proof. Examine at two systems, 𝑆 and 𝑆 ′, where 𝑆 ′, ' is moving relative to 

𝑆 with velocity 𝑣 in the positive direction of the X-axis. Assume that the 

coordinates of an event in 𝑆 and 𝑆 ′are Let (𝑥, 𝑦, 𝑧, 𝑡) and ( 𝑥′, 𝑦′, 𝑧′, 𝑡′  ) 
respectively. 

D' Alembertain operator in 𝑆 = □2 =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
−

1

𝑐2
𝜕2

𝜕𝑡2
 

D' Alembertain operator in 𝑆′ = □′2 =
𝜕2

𝜕𝑥′2
+

𝜕2

𝜕𝑦′2
+

𝜕2

𝜕𝑧′2
 −

1

𝑐2
𝜕2

𝜕𝑡′2
 

Lorentz Transformation are  

𝑥′ = 𝛽(𝑥 − 𝑣𝑡), 𝑦′ = 𝑦, 𝑧′ = 𝑧, 𝑡′ = 𝛽 (𝑡 −
𝑣𝑥

𝑐2
) , 𝛽 = 1/√(1 −

𝑣2

𝑐2
) 
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Lorentz inverse Transformation are  

𝑥 = 𝛽(𝑥′ − 𝑣𝑡′), y = 𝑦′, z = 𝑧′, t = 𝛽 (𝑡 −
𝑣𝑥

𝑐2
) , 𝛽 = (t′ +

𝑣𝑥′

𝑐2
) 

𝜕

𝜕𝑥′
= 
 𝜕𝑥

𝜕𝑥′

𝜕

𝜕𝑥
+

𝜕𝑦

𝜕𝑥′

𝜕

𝜕𝑦
+

𝜕𝑧

𝜕𝑥′

𝜕

𝜕𝑧
+

𝜕𝑡

𝜕𝑥′
⋅
𝜕

𝜕𝑡
 

                             = 𝛽
𝜕

𝜕𝑥
+ 0

𝜕

𝜕𝑦
+ 0

𝜕

𝜕𝑧
+ 𝛽 ⋅

v

𝑐2
𝜕

𝜕𝑡
 =𝛽 (

𝜕

𝜕𝑥
+

𝑣

𝑐2
𝜕

𝜕𝑡
)or 

𝜕

𝜕𝑥′
= 𝛽 (

𝜕

𝜕𝑥
+
𝑣

𝑐2
𝜕

𝜕𝑡
) 

𝜕

𝜕𝑦′
=
𝜕𝑥

𝜕𝑦′
𝜕

𝜕𝑥
+
𝜕𝑦

𝜕𝑦′
𝜕

𝜕𝑦
+
𝜕𝑧

𝜕𝑦′
𝜕

𝜕𝑧
+
𝜕𝑡

𝜕𝑦′
⋅
𝜕

𝜕𝑡
 

= 0
𝜕

𝜕𝑥
+ 1 ⋅

𝜕

𝜕𝑦
+ 0

𝜕

𝜕𝑧
+ 0

𝜕

𝜕𝑡
=
𝜕

𝜕𝑦
 

𝜕

𝜕𝑦′
=
𝜕

𝜕𝑦
.  

Similarly 
𝜕

𝜕𝑧′
=
𝜕

𝜕𝑧
 

𝜕

𝜕𝑡′
=
𝜕𝑥

𝜕𝑡′
⋅
𝜕

𝜕𝑥
+
𝜕𝑦

𝜕𝑡′
⋅
𝜕

𝜕𝑦
+
𝜕𝑧

𝜕𝑡′
⋅
𝜕

𝜕𝑧
+
𝜕𝑡

𝜕𝑡′
⋅
𝜕

𝜕𝑡
 

= 𝜈𝛽
𝜕

𝜕𝑥
+ 0

𝜕

𝜕𝑦
+ 0

𝜕

𝜕𝑧
+ 𝛽

𝜕

𝜕𝑡
= 𝛽 (𝑣

𝜕

𝜕𝑥
+
𝜕

𝜕𝑡
) 

Thus, 
𝜕

𝜕𝑥′
= 𝛽 (

𝜕

𝜕𝑥
+
𝑣

𝑐2
𝜕

𝜕𝑡
) ,

𝜕

𝜕𝑦′
=
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧′
=
𝜕

𝜕𝑧
, 

𝜕

𝜕𝑡′
= 𝛽 ⋅ (𝑣

𝜕

𝜕𝑥
+
𝜕

𝜕𝑡
) 

𝜕

𝜕𝑥′2
=

𝜕

𝜕𝑥′
𝜕

𝜕𝑥′
= 𝛽2 (

𝜕

𝜕𝑥
+
𝑣

𝑐2
𝜕

𝜕𝑡
) (

𝜕

𝜕𝑥
+
𝑣

𝑐2
𝜕

𝜕𝑡
) 

𝜕2

𝜕𝑦′2
=

𝜕

𝜕𝑦′
𝜕

𝜕𝑦′
=
𝜕

𝜕𝑦

𝜕

𝜕𝑦
=
𝜕2

𝜕𝑦2
. 

Similarly 
𝜕2

𝜕𝑧′2
=
𝜕2

𝜕𝑧2
 

𝜕

𝜕𝑡′2
=

𝜕

𝜕𝑡′
𝜕

𝜕𝑡′
= 𝛽2 (𝑣

𝜕

𝜕𝑥
+
𝜕

𝜕𝑡
) (𝑣

𝜕

𝜕𝑥
+
𝜕

𝜕𝑡
) 

= 𝛽2 [𝑣2
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑡2
+ 2𝑣

𝜕2

𝜕𝑥𝜕𝑡
] 
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∴
1

𝑐2
𝜕2

𝜕𝑡′2
= 𝛽2 [

𝑣2

𝑐2
𝜕2

𝜕𝑥2
+
1

𝑐2
𝜕2

𝜕𝑡2
+
2𝑣

𝑐2
⋅
𝜕2

𝜕𝑥𝜕𝑡
] 

◻′2=
𝜕2

𝑥′2
+

𝜕2

𝜕𝑦′2
+
𝜕3

𝜕𝑧′2
−
1

𝑐2
𝜕2

𝜕𝑡′2
 

= 𝛽2 [
𝜕2

𝜕𝑥2
+
𝑣2

𝑐4
𝜕2

𝜕𝑡2
+
2𝑣

𝑐2
𝜕2

𝜕𝑥𝜕𝑡
] +

𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
 

−𝛽2 [
𝑣2

𝑐2
𝜕2

𝜕𝑥2
+
1

𝑐2
𝜕2

𝜕𝑡2
+
2𝑣

𝑐2
𝜕2

𝜕𝑥𝜕𝑡
] 

= 𝛽2 (1 −
𝑣2

𝑐2
)
𝜕2

𝜕𝑥2
−
𝛽2

𝑐2
(1 −

𝑣2

𝑐2
)
𝜕2

𝜕𝑡2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
 

=
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
−
1

𝑐2
𝜕2

𝜕𝑡2
. For 𝛽2 (1 −

𝑣2

𝑐2
) = 1. 

= □2 

∴  □′2 = □2 

This proves that □2  is invariant under Lorentz transformation. 

 

Question3. Prove that 𝛁𝟐 =
𝝏𝟐

𝝏𝒙𝟐
+

𝝏𝟐

𝝏𝒚𝟐
+

𝝏𝟐

𝝏𝒛𝟐
 is not invariant under 

Lorentz transformation. 

Solution. Adding (1), (2) and (3) of Theorem 3, we get 

𝜕2

∂′𝑥2
+

𝜕2

𝜕′𝑦2
+

𝜕2

𝜕′𝑧2
 

 

= 𝛽2 [
𝜕2

𝜕𝑥2
+
𝑣2

𝑐4
𝜕2

𝜕𝑡2
+
2𝑣

𝑐2
𝜕2

𝜕𝑥𝜕𝑡
] +

𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
 

This proves that ∇2  is not invariant under Lorentz transformation. 

 

Theorem 1. To find Lorentz transformations of electric field 𝑬 and 

magnetic Field component H.   

Proof. Let 𝑆 and 𝑆 ′be two systems, where 𝑆 ′ is moving with velocity 𝑣 𝑖n 

the X-axis's positive direction with respect to 𝑆. In the S system, let 𝐴𝑥, 

𝐴𝑦, 𝐴𝑧  be components of 𝐴,  and in the 𝑆 ′ system, let 𝐴𝑥
′ , 𝐴𝑦

′ , 𝐴𝑧
′   be 

components of 𝐴. Lorentz transformations state 
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𝐴𝑥
′ = 𝛽 (𝐴𝑥 −

𝑣

𝑐
𝜙) , 𝐴𝑦

′ = 𝐴𝑦, 𝐴𝑧
′ = 𝐴𝑧 , 𝜙

′ = 𝛽 (𝜙 −
𝑣

𝑐
𝐴𝑥) ,

 where 𝛽 = 1/√(1 −
𝑣2

𝑐2
) .

 

A being electromagnetic vector potential and 𝜙 scalar potential. 

We obtain 

grad𝜙 = −𝐄 −
1

𝑐

𝜕𝐀

𝜕𝑡
 

𝐇 = curl𝐀 = ||

𝐢 𝐣 𝐤
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐴𝑥 𝐴𝑦 𝐴𝑧

|| (2) 

Lorentz inverse transformations 

𝑥 = 𝛽(𝑥′ + 𝑣𝑡′), 𝑦 = 𝑦′, 𝑧 = 𝑧′, 𝑡 = 𝛽 (𝑡′ +
𝑣

𝑐2
𝑥′) 

𝛽 = 1/√(1 −
𝑣2

𝑐2
) 

Then 

𝜕

𝜕𝑥′
= 𝛽 (

𝜕

𝜕𝑥
+
𝑣

𝑐2
𝜕

𝜕𝑡
) ,

𝜄

𝜕𝑡′
= 𝛽 (

𝜕

𝜕𝑡
+ 𝑣

𝜕

𝜕𝑥
) 

From (1), we have 

grad′𝜙′ = −𝐄′ −
1

𝑐

𝜕𝐀′

𝜕𝜄′
 

or, 

𝐄′ = −
1

𝑐

𝜕𝐀′

𝜕𝒕′
− grad′𝜙                      … (1′) 

From which 𝐸𝑥
′ = −

1

𝑐

𝜕𝐴𝑥
′

𝜕𝑡′
−

𝜕𝜙′

𝜕𝑥′
    or  

𝐸𝑥
′ = −

𝛽

𝑐
(
𝜕

𝜕𝑡
+
𝑣𝜕

𝜕𝑥
)𝛽 (𝐴𝑥 −

𝑣𝜙

𝑐
) 

−𝛽 (
𝜕

𝜕𝑥
+
𝑣

𝑐2
𝜕

𝜕𝑡
) 𝛽 (𝜙 −

𝑣

𝑐
𝐴𝑥) 
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= −𝛽2 [
1

𝑐
(
𝜕𝐴𝑥
𝜕𝑡

+
𝑣𝜕𝐴𝑥
𝜕𝑥

−
𝑣

𝑐

𝜕𝜙

𝜕𝑡
−
𝑣2

𝑐

𝜕𝜙

𝜕𝑥
)
+(

𝜕𝜙

𝜕𝑥
−
𝑣

𝑐

𝜕𝐴𝑥
𝜕𝑥

+
𝑣

𝑐2
𝜕𝜙

𝜕𝑡

−
𝑣2

𝑐3
𝜕𝐴𝑥
𝜕𝑡
)] 

= −𝛽2 [
1

𝑐
(1 −

𝑣2

𝑐2
)
𝜕𝐴𝑥
𝜕𝑡

+ (1 −
𝑣2

𝑐2
)
𝜕𝜙

𝜕𝑥
] 

= −
1

𝑐

𝜕𝐴𝑥
𝜕𝑡

−
𝜕𝜙

𝜕𝑥
= 𝐸𝑥  

From (1’) 𝐸𝑦
′ = −

1

𝑐

𝜕𝐴𝑦
′

𝜕𝑡′
−

𝜕𝜙′

𝜕𝑦′
  or 

𝐸𝑦
′= −

𝛽

𝑐
(
𝜕

𝜕𝑡
+ 𝑣

𝜕

𝜕𝑥
)𝐴𝑦 −

𝜕

𝜕𝑦
𝛽 (𝜙 −

𝑣𝐴𝑥
𝑐
)

= −𝛽 [(
1

𝑐

𝜕𝐴𝑦
𝜕𝑡

+
𝜕𝜙

𝜕𝑦
) +

𝑣

𝑐
(
𝜕𝐴𝑦
𝜕𝑥

−
𝜕𝐴𝑥
𝜕𝑦

)]

= 𝛽 (𝐸𝑦 −
𝑣

𝑐
𝐻𝑧) , by (1) and (2). 

𝐸𝑧
′= −

1

𝑐

𝜕𝐴𝑧
′

𝜕𝑡′
−
𝜕𝜙′

𝜕𝑧′
, by (1′)

= −
𝛽

𝑐
(
𝜕

𝜕𝑡
+ 𝑣

𝜕

𝜕𝑥
)𝐴𝑧 −

𝜕

𝜕𝑧
𝛽 (𝜙 −

𝑣

𝑐
𝐴𝑥)

= 𝛽 [(−
1

𝑐

𝜕𝐴𝑧
𝜕𝑡

−
𝜕𝜙

𝜕𝑧
) +

𝑣

𝑐
(−

𝜕𝐴𝑧
𝜕𝑥

+
𝜕𝐴𝑥
𝜕𝑧

)]

= 𝛽 [𝐸𝑧 +
𝑣

𝑐
𝐻𝑦′]

 

From (2), 𝐻𝑥
′ = (

𝜕𝐴𝑧
′

𝜕𝑦′
−

𝜕𝐴𝑦
′

𝜕𝑧′
) =

𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
= 𝐻𝜒, 

𝐻𝑦′
′ = −

𝜕𝐴𝑧
′

𝜕𝑥′
+
𝜕𝐴𝑥

′

𝜕𝑧′
= −𝛽 (

𝜕

𝜕𝑥
+
𝑣

𝑐2
𝜕

𝜕𝑡
)𝐴𝑧 +

𝜕

𝜕𝑧
𝛽 (𝐴𝑥 −

𝑣𝜙

𝑐
)

= 𝛽 [(−
𝜕𝐴𝑧
𝜕𝑥

+
𝜕𝐴𝑥
𝜕𝑧

) +
𝑣

𝑐
(−

1

𝑐

𝜕𝐴𝑧
𝜕𝑡

−
𝜕𝜙

𝜕𝑧
)] = 𝛽 [𝐻𝑦 +

𝑣

𝑐
𝐸𝑧]

𝐻𝑧
′=

𝜕𝐴𝑦
′

𝜕𝑥′
−
𝜕𝐴𝑥

′

𝜕𝑦′
= 𝛽 (

𝜕

𝜕𝑥
+
𝑣

𝑐2
𝜕

𝜕𝑡
)𝐴𝑦 −

𝜕

𝜕𝑦
𝛽 (𝐴𝑥 −

𝑣𝜙

𝑐
)

= 𝛽 (
𝜕𝐴𝑦
𝜕𝑥

−
𝜕𝐴𝑥
𝜕𝑦

) +
𝑣

𝑐
(
1

𝑐

𝜕𝐴𝑦
𝜕𝑡

+
𝜕𝜙

𝜕𝑦
) = 𝛽 [𝐻𝑧 −

𝑣

𝑐
𝐸𝑦]

 

Thus the transformation equations are 
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𝐸𝑥
′ = 𝐸𝑥 , 𝐸𝑦

′ = 𝛽 (𝐸𝑦 −
𝑣

𝑐
𝐻𝑧) , 𝐸𝑧

′ = 𝛽 [𝐸𝑧 +
𝑣

𝑐
𝐻𝑦]

𝐻𝑥
′ = 𝐻𝑥 , 𝐻𝑦

′ = 𝛽 [𝐻𝑦 +
𝑣

𝑐
𝐸𝑧] , 𝐻𝑧

′ = 𝛽 [𝐻𝑧 −
𝑣

𝑐
𝐸𝑦]

 

The inverse transformations are 

𝐸𝑥 = 𝐸𝑥
′ , 𝐸𝑦 = 𝛽 (𝐸𝑦

′ +
𝑣

𝑐
𝐻𝑧
′) , 𝐸𝑧 = 𝛽 (𝐸𝑧

′ −
𝑣

𝑐
𝐻𝑦
′ )

𝐻𝑥 = 𝐻𝑥
′ , 𝐻𝑦 = 𝛽 [𝐻𝑦

′ −
𝑣

𝑐
𝐸𝑧
′) ,𝐻𝑧 = 𝛽 [𝐻𝑧

′ +
𝑣

𝑐
𝐸𝑦
′ ] .

 

Remark. Take 𝑣 = (𝑣, 0,0). Then the above transformations can be but in 

vector form as 

𝐄′ = 𝛽𝐄 + (1 − 𝛽)
v

𝑣2
(v ⋅ 𝐄) +

𝛽

𝑐
(v × 𝐇)

𝐇′ = 𝛽𝐇 + (1 − 𝛽)
𝐯

𝑣2
(𝐯 ⋅ 𝐇) −

𝛽

𝑐
(v × 𝐄)

 

and the inverse transformations are 

𝐄 = 𝛽𝐄′ + (1 − 𝛽)
𝐯

𝑣2
(v ⋅ 𝐄′) −

𝛽

𝑐
(v × 𝐇′)

𝐇 = 𝛽𝐇′ + (1 − 𝛽)
v

𝑣2
(v ⋅ 𝐇) +

𝛽

𝑐
(v × 𝔼′)

 

Theorem 2 : To prove that 𝑱𝝁𝝆 = 𝝆𝟎𝝂
𝝁 

Proof. Suppose a charge of density 𝜌 moving with velocity 𝑣 produces a 

current of density 𝐽.Let a current of density J be produced by a charge of 

density 𝜌 which is moving with velocity v. 

Then 𝐽 = 𝜌𝑣.  Let 𝑢𝑖 + 𝑣𝑗 + 𝑤𝑘 = 𝑣. 

𝐽𝑥 = 𝜌𝑢, 𝐽𝑦 = 𝜌𝑣, 𝐽𝑧 = 𝜌𝑤. 

We define 

𝐽𝜇 = (𝐽𝑥 , 𝐽𝑦 , 𝐽𝑧 , 𝜌) = (𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝜌)

= 𝜌(𝑢, 𝑣,𝑤, 1) = 𝜌 (
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
, 1)

= 𝜌
𝑑𝑠

𝑑𝑡
(
𝑑𝑥

𝑑𝑠
,
𝑑𝑦

𝑑𝑠
,
𝑑𝑧

𝑑𝑠
,
𝑑𝑡

𝑑𝑠
)

= 𝜌
𝑑𝑠

𝑑𝑡
(
𝑑𝑥1

𝑑𝑠
,
𝑑𝑥2

𝑑𝑠
,
𝑑𝑥3

𝑑𝑠
,
𝑑𝑥4

𝑑𝑠
)

 

Taking 𝜌0 = 𝜌
𝑑𝑠

𝑑𝑡
=  proper density of electric charge, we have 

or 

𝐽𝜇 = 𝜌0 (
𝑑𝑥1

𝑑𝑠
,
𝑑𝑥2

𝑑𝑠
,
𝑑𝑥3

𝑑𝑠
,
𝑑𝑥4

𝑑𝑠
) = 𝜌0𝜈

𝜇 
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𝐽𝜇 = 𝜌0𝜈
𝜇 and 𝜈𝜇  stands for four-dimensional velocity. 

Theorem 3. To prove Maxwell's equations are invaria, (covariant) 

under Lorentz transformations. 

 

Proof. Step I. We will first identify the transformation equations for 𝐄 and 

𝐇. 

 Thus 
𝜕

𝜕𝑥′
= 𝛽 (

𝜕

𝜕𝑥
+
𝑣

𝑐2
𝜕

𝑑𝑡
) ,

𝜕

𝜕𝑦′
=
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧′
=
𝜕

𝜕𝑧
,

𝐸𝑥
′ = 𝐸𝑥 , 𝐸𝑦

′ = 𝛽 (𝐸𝑦 −
𝜕

𝑐
𝐻𝑧) , 𝐸𝑧

′ = 𝛽 (
𝜕

𝜕𝑡′
+
𝑣

𝜕𝑡
+
𝑣

𝑐
𝐻𝑦) ,

𝐻𝑥
′ = 𝐻𝑥 , 𝐻𝑦

′ = 𝛽 (𝐻𝑦 +
𝑣

𝑐
𝐸𝑧) ,𝐻𝑧

′ = 𝛽 (𝐻𝑧 −
𝑣

𝑐
𝐸𝑦) .

 

𝜕

𝜕𝑥
= 𝛽 (

𝜕

𝜕𝑥′
−
𝑣

𝑐2
𝜕

𝜕𝑡′
) ,
𝜕

𝜕𝑦
=

𝜕

𝜕𝑦′
,
𝜕

𝜕𝑧
=

𝜕

𝜕𝑧′
,
𝜕

𝜕𝑡
= 𝛽 (

𝜕

𝜕𝑡′
− 𝑣

𝜕

𝜕𝑥′
)

𝐸𝑥 = 𝐸𝑥
′ , 𝐸𝑦 = 𝛽 (𝐸𝑦

′ +
𝑣

𝑐
𝐻𝑧
′) , 𝐸𝑧 = 𝛽 (𝐸𝑧

′ −
𝑣

𝑐
𝐻𝑦
′ ) ,

𝐻𝑥 = 𝐻𝑥
′ , 𝐻𝑦 = 𝛽 (𝐻𝑦

′ −
𝑣

𝑐
𝐸𝑧′
′ ) , 𝐻𝑧 = 𝛽 (𝐻𝑧

′ +
𝑣

𝑐
⋅ 𝐸𝑦

′ ) .

 

 

Step II. To prove Maxwell's equations are invariant under Lorentz 

transformations. 

𝑑𝑖𝑣𝐸 = 4𝜋𝜌                            … (1) 
𝑑𝑖𝑣 𝐻 = 0                                … (2) 

                                  curl E =  
1

𝑐

𝜕𝐇

𝜕𝑡
                         … (3) 

                                  curl 𝐇 =
1

𝑐

𝜕𝐄

𝜕𝑡
 +

4𝜋

𝑐
𝑗             … (4) 

Cartesian equivalent of these equations are 

 
𝜕𝐸𝑥
𝜕𝑥

+
𝜕𝐸𝑦
𝜕𝑦

+
𝜕𝐸𝑧
𝜕𝑧

= 4𝜋𝜌             . . (1′) 

𝜕𝐻𝑥
𝜕𝑥

+
𝜕𝐻𝑦
𝜕𝑦

+
𝜕𝐻𝑧
𝜕𝑧

= 0.             . . . (2′) 

     |

𝒊 𝒋 𝒌
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐸𝑥 𝐸𝑦 𝐸𝑧

| = −
1

𝑐

𝜕

𝜕𝑡
(𝒊𝐻𝑥 + 𝒋𝐻𝑦 + 𝒌𝐻𝑧)      . . . (3′) 

 |

𝒊 𝒋 𝒌
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐻𝑥 𝐻𝑦 𝐻𝑧

| =
1

𝑐

𝜕

𝜕𝑡
(𝒊𝐸𝑥 + 𝒋𝐸𝑦 + 𝒌𝐸𝑧) +

4𝜋

𝑐
𝑱     . . . (4′) 

                                                                                                                                       

Substituting values in (2'), 

𝛽 (
𝜕

𝜕𝑥′
−
𝑣

𝑐2
𝜕

𝜕𝑡′
)𝐻𝑥

′ +
𝜕

𝜕𝑦′ (𝐻𝑦′ −
𝑣
𝑐 𝐸𝑧

′)

𝛽

+
𝜕

𝜕𝑧′
(𝐻𝑧

′ +
𝑣

𝑐
𝐸𝑦
′ ) 𝛽 = 0
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Taking                                𝑃 =
𝜕𝐻′𝑥

𝜕𝑥′
+

𝜕𝐻𝑦
′

𝜕𝑦′
+

𝜕𝐻𝑧
′

𝜕𝑧′
 

𝑄 =
1

𝑐
⋅
𝜕𝐻𝑥

′

𝜕𝑡′
+
𝜕𝐸𝑧

′

𝜕𝑦′
−
𝜕𝐸𝑦

′

𝜕𝑧′
 

We get 𝛽 [𝑃 −
𝑣

𝑐
𝑄] = 0 

Dividing by 𝛽, we obtain 𝑃 =
𝜈

𝑐
𝑄                    … (5′)                                  

 

From (3'), 
𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
+

1

𝑐

𝜕𝐻𝑥

𝜕𝑡
= 0                  … (3′a′)      

Substituting values of 𝐸𝑧 , 𝐸𝑦 , 𝐻𝑥  etc., 

𝜕

𝜕𝑦′
𝛽(𝐸𝑧

′ −
𝑣

𝑐
𝐻𝑦
′ )

−
𝜕

𝜕𝑧′
𝛽 (𝐸𝑦

′′ +
𝑣

𝑐
𝐻𝑧
′) +

1

𝑐
𝛽 (

𝜕

𝜕𝑡′
− 𝑣

𝜕

𝜕𝑥′
)𝐻𝑥

′ = 0

 

or, 

𝛽 [𝑄 −
𝑣

𝑐
𝑃] = 0 

or, 

𝑄 =
𝑣

𝑐
𝑃. 

Using (5), we have 

𝑄 =
𝑣

𝑐

𝑣

𝑐
𝑄 

 

or,  

(1 −
𝑣2

𝑐2
)𝑄 = 0 

or 

𝑄 = 0,  For 1 −
𝑣2

𝑐2
≠ 0 

Using this in (5), 𝑃 =  0. 

Thus 

𝑃 = 0 = 𝑄 
i.e., 

𝜕𝐻𝑥
′

𝜕𝑥′
+
𝜕𝐻𝑦

′

𝜕𝑦′
+
𝜕𝐻𝑧

′

𝜕𝑧′
= 0                    . . . (2′′) 

𝜕𝐸𝑧
′

𝜕𝑦′
−
𝜕𝐸𝑦

′

𝜕𝑧′
= −

1

𝑐
⋅
𝜕𝐻𝑥

′

𝜕𝑡′
                    . . . (3′𝑎′′) 

When combined, the equations (2′) and ( 2′′ ) suggest that equation (2) is 

invariant with respect to the Lorentz transformation. Equation (3)  is 

invariant with respect to Lorentz transformation because the equations 

( 3′𝑎′ ) and ( 3′𝑎′′ )  taken together imply the equation ( 3′𝑎′ )  and 

consequently ( 3′). As a result, we have demonstrated that the Lorentz 

transformation does not affect equations (2) and (3). Likewise, we can 
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demonstrate that equations (1) and (4), the other two are likewise Lorentz 

invariant. 

Theorem 4. To prove that the Maxwell equations for empty space are 

represented by the two equations 

𝑱𝝁 = 𝑭,𝝁
𝝁𝝂

𝑭𝝁𝝂,𝝈 + 𝑭𝝂𝝈,𝒗 + 𝑬𝝈𝝁,𝒗 = 𝟎
 

To derive "Maxwell’s equation in tensor form. 

Proof. A framework for explaining Maxwell's equations in a manner that 

complies with physics' principles is offered by the special theory of 

relativity. Special relativity describes the behavior of electromagnetic 

fields in spacetime, but it does not take into account interactions between 

spacetime and electrodynamics in the sense of altering the geometry of 

spacetime. The framework used to describe Maxwell's equations is 

𝑑𝑠2 = −𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2 + 𝑑𝑡2 
Holds so that Γ𝑘𝑖𝑗 = 0 = Γ𝑖𝑗,𝑘 

Maxwell's equations for empty space are 

                                           div𝐄 = 𝜌                              … (1) 
                                           div𝐇 = 0                              … (2) 

                                    curl𝐄 = −
𝜕𝐇

𝜕𝑡
                               … (3) 

                                     curl𝐇 = −
𝜕𝐄

𝜕𝑡
+ 𝐉,                     … (4) 

 

 

Assuming that the speed of light is one. Here, the component 4π is 

eliminated from the equations above by using the Heavy Lorentz unit of 

change. 

 Set 𝐽 = (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧), 𝐽
𝜇 = (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧 , 𝜌) 

where 𝜌  stands for charge density and 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧  denote components of 

current density. 

There are scalar potential 𝜙 and electromagnetic potential 𝐀 such that 

𝐇 = curl𝐀, grad𝜙 = −
𝜕𝐀

𝜕𝑡
− 𝐸 

i.e., 

                                𝐢𝐻𝑥 + 𝐣𝐻𝑦 + 𝐤𝐻𝑧 = |

𝐢 𝐣 𝐤
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐴𝑥 𝐴𝑦 𝐴𝑧

|         … (5) 

                      ∇𝜙 = −
𝜕(𝐢𝐴𝑥+𝐣𝐴𝑦+𝐤𝐴𝑧)

𝜕𝑡
− (𝐢𝐸𝑥 + 𝐣𝐸𝑦 + 𝐤𝐸𝑧)    … (6) 

 

Cartesian equivalent of (3) and (4) are 

||

𝐢 𝐣 𝐤
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐸𝑥 𝐸𝑦 𝐸𝑧

|| = −
𝜕

𝜕𝑡
(𝐢𝐻𝑥 + 𝐣𝐻𝑦 + 𝐤𝐻𝑧)  
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||

𝐢 𝐣 𝐤
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐻𝑥 𝐻𝑦 𝐻𝑧

|| = −
𝜕

𝜕𝑡
(𝐢𝐸𝑥 + 𝐣𝐸𝑦 + 𝐤𝐸𝑧) + (𝐢𝜎𝑥 + 𝐣𝜎𝑦 + 𝐤𝜎𝑧)     … (4′) 

We define generalized potential 𝑘′′ as 

   𝑘′′ = (𝐴𝑥 , 𝐴𝑦, 𝐴𝑧 , 𝜙) 

in terms of ordinary electromagnetic potential 𝐴 and scalar potential 𝜙. 

The associate covariant vector 𝑘𝜇 of 𝑘𝜇 is defined as 

𝑘𝜇 = 𝑔𝜇𝑙𝑘
𝑙 = 𝑔𝜇𝜇𝑘

𝜇 . For 𝑔𝑖𝑗 = 0 for 𝑖 ≠ 𝑗

∴  𝑘𝜇 = 𝑔𝜇𝜇𝑘
𝜇 .

 This ⇒ 𝑘1 = 𝑔11𝑘
1 = −𝑘1, 𝑘2 = −𝑘

2, 𝑘3 = −𝑘
3

𝑘4 = 𝑔44𝑘
4 = 𝑘4

 

Therefore, we must have 

𝑘𝜇 = (−𝐴𝑥 , −𝐴𝑦 , −𝐴𝑧 , 𝜙)                 … (7) 

We define an electromagnetic tensor 𝐹𝑖𝑗 as 

𝐹𝑖𝑗 = 𝑘𝑖,𝑗 − 𝑘𝑗,𝑖 

This is equivalent to 

𝐹𝑖𝑗 =
𝜕𝑘𝑖
𝜕𝑥𝑗

−
𝜕𝑘𝑗
𝜕𝑥𝑖

⋅  For Γ𝑖𝑗
𝑘 = 0 ∀𝑖, 𝑗 and 𝑘. 

 This ⇒ 𝐹𝑖𝑗 = −𝐹𝑗𝑖, 𝐹𝑖𝑖 = 0 so that 𝐹𝑖𝑖 = 0. 

𝐹14 =
𝜕𝑘1
𝜕𝑥4

−
𝜕𝑘4
𝜕𝑥1

= −
𝜕𝐴𝑥
𝜕𝑡

−
𝜕𝜙

𝜕𝑥
= 𝐸𝑥 , by (6). 

𝐹24 =
𝜕𝑘2
𝜕𝑥4

−
𝜕𝑘4
𝜕𝑥2

= −
𝜕𝐴𝑦
𝜕𝑡

−
𝜕𝜙

𝜕𝑦
= 𝐸𝑦, by (6).  

𝐹34 =
𝜕𝑘3
𝜕𝑥4

−
𝜕𝑘4
𝜕𝑥3

= −
𝜕𝐴𝑧
𝜕𝑡

−
𝜕𝜙

𝜕𝑧
= 𝐸𝑧 , by (6).  

𝐹23 =
𝜕𝑘2
𝜕𝑥3

−
𝜕𝑘3
𝜕𝑥2

= −
𝜕𝐴𝑦
𝜕𝑧

+
𝜕𝐴𝑧
𝜕𝑦

= 𝐻𝑥 , by (5). 

𝐹31 =
𝜕𝑘3
𝑖𝑥1

−
𝜕𝑘1
1.3

=
𝜕(−𝐴2)

𝜕𝑥
−
𝜕(−𝐴𝑥)

𝜕𝑧
= 𝐻𝑦 , by (5) 

Similarly F12 = H2. 

Thus, we have proved that 

𝐹14 = 𝐸𝑥 , 𝐹24 = 𝐸𝑦 , 𝐹34 = 𝐸𝑧
𝐹23 = 𝐻𝑥 , 𝐹31 = 𝐻𝑦 , 𝐹12 = 𝐻𝑧

 

Consider the tensor equations 
𝐹𝑖𝑗,𝑘 + 𝐹𝑗𝑘,𝑖 + 𝐹𝑘𝑖,𝑗 = 0                    … (8)  

𝐹,𝑗
𝑖𝑗
= 𝐽𝑖                                                 … (9)  

In our frame work, these equations become 

                                        𝐽𝑖 =
𝜕𝐹𝑖𝑗

𝜕𝑥𝑗
                                 … (8′) 

𝜕𝐹𝑖𝑗
𝜕𝑥𝑘

+
𝜕𝐹𝑗𝑘
𝜕𝑥𝑖

+
𝜕𝐹𝑘𝑖
𝜕𝑥𝑗

= 0                    … (9′) 
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𝐹12 = 𝑔1𝛼𝐹𝛼𝛽𝑔
𝛽2 = 𝑔11𝑔22𝐹12 = (−1)(−1)𝐹12 = 𝐹12 

𝐹14 = 𝑔1𝛼𝑔4𝛽𝐹𝛼𝛽 = 𝑔11𝑔44𝐹14 = (−1)(1)𝐹14 = −𝐹14. 

The final result is  

𝐹12 = 𝐹12 = 𝐻𝑧 = −𝐹21, 𝐹
23 = 𝐹23 = 𝐻𝑥 = −𝐹32, 

𝐹31 = 𝐹31 = 𝐴𝑦 = −𝐹13 

𝐹14 = −𝐹14 = −𝐸𝑥 = 𝐹41, 𝐹
24 = −𝐹24 = −𝐸𝑦 = 𝐹2 

𝐹34 = −−34= −𝐸𝑧 = 𝐹43 

I. Putting i=1 in (8′) 

𝐽1 =
𝜕𝐹1𝑗

𝜕𝑥𝑗
=
𝜕𝐹11

𝜕𝑥1
+
𝜕𝐹12

𝜕𝑥2
+
𝜕𝐹13

𝑐𝑡𝑗
+
𝜕𝐹14

𝜕𝑥4
 

0 + 
𝜕𝐻𝑧
𝜕𝑦

−
𝜕𝐻𝑦
𝜕𝑧

 −
𝜕𝐸𝑥
𝜕𝑡

= 𝜎𝑥 . 

𝜕𝐻𝑧
𝜕𝑦

−
𝜕𝐻𝑦
𝜕𝑧

 =
𝜕𝐸𝑥
𝜕𝑡

+ 𝜎𝑥 

For i =2, (8′)gives 

 

𝜕𝐹2𝑗

𝜕𝑥𝑗
= 𝐽2 

𝜕𝐹21

𝜕𝑥1
+
𝜕𝐹22

𝜕𝑥2
+
𝜕𝐹23

𝜕𝑥3
+
𝜕𝐹24

𝜕𝑥4
= 𝜎𝑦 

or, 

−
𝜕𝐻𝑧
𝜕𝑥

+ 0 +
𝜕𝐻𝑥
𝜕𝑧

−
𝜕𝐸𝑦
𝜕𝑡

= 𝜎𝑦 

or, 
𝜕𝐻𝑥
𝜕𝑧

−
𝜕𝐻𝑧
𝜕𝑥

=
𝜕𝐸𝑦
𝜕𝑡

+ 𝜎𝑦.  

or, 

 For 𝑖 = 3,.  
𝜕𝐹3𝑗

𝜕𝑥𝑗
= 𝐽3 

𝜕𝐹31

𝜕𝑥1
+
𝜕𝐹32

𝜕𝑥2
+
𝜕𝐹33

𝜕𝑥3
+
𝜕𝐹34

𝜕𝑥4
= 𝐽3 

𝜕𝐻𝑦
𝜕𝑥

−
𝜕𝐻𝑥
𝜕𝑦

+ 0 −
𝜕𝐸𝑧
𝜕𝑡

= 𝜎𝑧 

or, 
𝜕𝐻𝑦
𝜕𝑥

−
𝜕𝐻𝑥
𝜕𝑦

=
𝜕𝐸𝑧
𝜕𝑡

+ 𝜎𝑧 .  

or, 

For 𝑖 = 4, (8′) gives 

𝜕𝐹4𝑗

𝜕𝑥𝑗
= 𝐽4 

𝜕𝐹41

𝜕𝑥1
+
𝜕𝐹42

𝜕𝑥2
+
𝜕𝐹43

𝜕𝑥3
+
𝜕𝐹44

𝜕𝑥4
= 𝜌, 
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or, 
𝜕𝐸𝑥
𝜕𝑥

+
𝜕𝐸𝑦
𝜕𝑦

+
𝜕𝐸𝑧
𝜕𝑧

+ 0 = 𝜌.                          . . . (1′)  

Together, the equations ( 4′′ ), ( 4′′′) and (4′′′′) yield (4^'). For the equation 

(4). Equation (1) is reflected in equation (1'). 

As a result, equation (8) represents equations (1) and (4). 

Taking 𝑖 = 1, 𝑗 = 2, 𝑘 = 3 𝑖𝑛 (9′), we get 
𝜕𝐹12
𝜕𝑥3

+
𝜕𝐹23
𝜕𝑥1

+
𝜕𝐹31
𝜕𝑥2

= 0 

𝜕𝐻𝑧
𝜕𝑧

+
𝜕𝐻𝑥
𝜕𝑥

+
𝜕𝐻𝑦
𝜕𝑦

= 0 

𝐷𝑖𝑣 𝐻 = 0, which is the equation (2),  

Taking 𝑖 = 1, 𝑗 = 2, 𝑘 = 4 𝑖𝑛 (9′), we obtained 

𝜕𝐹12

𝜕𝑥4
+
𝜕𝐹24
𝜕𝑥1

+
𝜕𝐹41
𝜕𝑥2

= 0 

or, 
𝜕𝐻𝑧
𝜕𝑡

+
𝜕𝐸𝑦
𝜕𝑥

−
𝜕𝐸𝑥
𝜕𝑦

= 0 

or, 
𝜕𝐸𝑦
𝜕𝑥

−
𝜕𝐸𝑥
𝜕𝑦

= −
𝜕𝐻𝑧
𝜕𝑡

 

Taking 𝑖 =  2, 𝑗 = 3, 𝑘 = 4 𝑖𝑛 (9’),we have 
𝜕𝐹23
𝜕𝑥4

+
𝜕𝐹34
𝜕𝑥2

+
𝜕𝐹42
𝜕𝑥3

= 0 

𝜕𝐻𝑥
𝜕𝑡

+
𝜕𝐸𝑧
𝜕𝑦

−
𝜕𝐸𝑦
𝜕𝑧

= 0 

𝜕𝐸𝑧
𝜕𝑦

−
𝜕𝐸𝑦
𝜕𝑧

= −
𝜕𝐻𝑧
𝜕𝑡

.  

Taking 𝑖 =  1, 𝑗 =  3, 𝑘 = 4, we have 
𝜕𝐹13
𝜕𝑥4

+
𝜕𝐹34
𝜕𝑥1

+
𝜕𝐹41
𝜕𝑥3

= 0 

−
𝜕𝐻𝑦
𝜕𝑡

+
𝜕𝐸𝑧
𝜕𝑥

−
𝜕𝐸𝑥
𝜕𝑧

= 0 

or, 
𝜕𝐸𝑥
𝜕𝑧

−
𝜕𝐸𝑧
𝜕𝑥

= −
𝜕𝐻𝑦
𝜕𝑡

 

 

The equation ( 3′  ), or (3), is represented by the sum of the equations 
(3′′), (3′′′),  and(3′′′) . 
As a result, (9), represents equations (2) and (3).  

Consequently, the Maxwell equations are represented by 

𝐽𝜇 = 𝐹,𝜈
𝜇𝜈

𝐹𝜇𝜈,𝜎 + 𝐹𝜈𝜎,𝜇 + 𝐹𝜎𝜇,𝜈 = 0
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14.5LORENTZ FORCE ON A MOVING CHARGE:-  
 

Question 4.If 𝐸  and 𝐇  are the electric and magnetic field intensities 

respectively of an electromagnetic field, show that the electromagnetic 

force 𝐟 experienced by a single charged particle carrying a electric charge 

e moving with instantaneous velocity 𝑉 is given by 

𝐟 = 𝑒 [𝐸 +
1

𝑐
(𝐕 × 𝐇)] 

Proof. Let an observer 𝑆′ be moving with velocity 𝑣 along 𝑋-axis w.r.t. an 

observer 𝑆. Let a particle carrying an electric charge 𝑒 be moving with the 

same velocity 𝑣 along 𝑋-axis relative tothe observer 𝑆 so that 

𝑢𝑥 = 𝑣, 𝑢𝑦 = 0, 𝑢𝑧 = 0 

For the observer 𝑆 ′, the same particle seems to be at rest.  

𝑢𝑥
′ = 0, 𝑢𝑦

′ = 0, 𝑢𝑧
′ = 0. 

As a result, the field in 𝑆′ will be entirely electrostatic. therefore 

�̇�𝑥
′ = 0,𝐻𝑦

′ = 0, 𝐻𝑧
′ = 0 

The charge and electric field strength 𝐸′(𝐸𝑥
′ , 𝐸𝑦

′ , 𝐸𝑧
′)  will be multiplied to 

determine the force 𝐅′(𝐹𝑥
′, 𝐹𝑦

′, 𝐹𝑧
′) acting on the charge e in relation to the 

cbserver 𝑆′.So that 

𝐹𝑥
′ = 𝑒′𝐸𝑥

′ , 𝐹𝑦
′ = 𝑒′𝐸𝑦

′ , 𝐹𝑧
′ = 𝑒′𝐸𝑧

′  

Because the charge e is not affected by the Lorentz translation, 

𝑒′ = 𝑒. 

Consequently 

𝐹𝑥
′ = 𝑐𝐸𝑥

′ , 𝐹𝑦
′ = 𝑐𝐸𝑦

′ , 𝐹𝑧
′ = 𝑐𝐸𝑧

′ . 

In system S, the same field seems to be electromagnetic in nature. In 

relation to S, the force components are provided by 

𝐹𝑥 = 𝐹𝑥
′, 𝐹𝑦 = √(1 −

𝑣2

𝑐2
)𝐹𝑦

′, 𝐹𝑧 = 𝐹𝑧
′√(1 −

𝑣2

𝑐2
) 

[This follows from Lorentz transformation for a force]. 
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𝐹𝑥 = 𝑐𝐸𝑥
′ , 𝐹𝑦 = 𝑐𝐸𝑦

′√(1 −
𝑣2

𝑐2
) , 𝐹𝑧 = 𝑐𝐸𝑧

′√(1 −
𝑣2

𝑐2
) 

or, 𝐹𝑥 = 𝑒𝐸𝑥
′ , 𝐹𝑦 =

𝑒

𝛽
𝐸𝑦
′ , 𝐹𝑧 =

𝑒

𝛽
𝐸𝑧
′  

or, 𝐹𝑥 = 𝑒𝐸𝑥 , 𝐹𝑦 =
𝑒𝛽

𝛽
(𝐸𝑦 −

𝑣

𝑐
𝐻𝑧) , 𝐹𝑧 =

𝑒

𝛽
𝛽 (𝐸𝑧 +

𝑣

𝑐
𝐻𝑦).  

or, 𝐹𝑥 = 𝑒𝐸𝑥 , 𝐹𝑦 = 𝑒 (𝐸𝑦 −
𝑢𝑥𝐻𝑧

𝑐
) , 𝐹𝑧 = 𝑒 (𝐸𝑧 +

𝑢𝑥𝐻𝑦

𝑐
). 

In general, the force components are provided by 

𝐅 = 𝑒 [𝐸 +
1

𝑐
(𝐮 × 𝐇)] 

where the velocity of the charge is denoted by 𝐮(𝑢𝑥 , 𝑢𝑦, 𝑢𝑧) rather than 𝑣  

According to the specified issue, we obtain 

𝐅 = 𝐟, 𝐮 = 𝐕 

so that the last obtains 

𝐟 = 𝑒 [𝐄 +
1

𝑐
(𝐕 × 𝐇)] 

This is the required result. 

Note. The force 𝔽 per unit volume is obtained by 

𝐅 = 𝜌 [𝐄 +
1

𝑐
(𝐮 × 𝐇)] = 𝜌𝐄 +

𝜌

𝑐
(𝐮 × 𝐇) 

Taking the velocity of light to be unity, 

𝐅 = 𝜌𝐄 + 𝜌(𝐮 × 𝐇) 

𝐢𝐹𝑥 + 𝐣𝐹𝑦 + 𝐤𝐹𝑧 = 𝜌(𝐢𝐸𝑥 + 𝐣𝐸𝑦 + 𝐤𝐸𝑧) + 𝜌 |

𝐢 𝐣 𝐤
𝑢𝑥 𝑢𝑦 𝑢𝑧
𝐻𝑥 𝐻𝑦 𝐻𝑧

|

 Since 𝜎𝑥 = 𝜌𝑢𝑥 , 𝜎𝑦 = 𝜌𝑢𝑦 etc. 

 

The last one is therefore equal to the following series of equations:  

𝐹𝑥= 𝜌𝐸𝑥 + (𝜎𝑦𝐻𝑧 − 𝜎𝑧𝐻𝑦)

𝐹𝑦= 𝜌𝐸𝑦 + (𝜎𝑧𝐻𝑥 − 𝜎𝑥𝐻𝑧)

𝐹𝑧= 𝜌𝐸𝑧 + (𝜎𝑥𝐻𝑦 − 𝜎𝑦𝐻𝑥)
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The rate at which work is being done, let's assume W, is provided by 𝑖. 𝑒., 

𝑊=
 Force ×  distance 

 time 
=  Force ×  velocity 

= 𝜌𝐸𝑥𝑢𝑥 + 𝜌𝐸𝑦𝑢𝑦 + 𝜌𝐸𝑧𝑢𝑧

𝑊= 𝜌(𝐸𝑥𝑢𝑥 + 𝐸𝑦𝑢𝑦 + 𝐸𝑧 ⋅ 𝑢𝑧)

 

Because it acts perpendicular to the direction of the current, the magnetic 

component of the force is ineffective. 

Define  

ℎ𝜇 = 𝐹𝜇𝜈𝐽
𝜈 . 

Then                                           ℎ1 = 𝐹1𝑣𝐽
′′ 

= 𝐹11𝐽
1 + 𝐹12𝐽

2 + 𝐹13𝐽
3 + 𝐹14𝐽

4

= 0. 𝜎𝑥 + 𝐻𝑧𝜎𝑦 + (−𝐻𝑦𝜎𝑧) + 𝐸𝑥𝜌

= 𝜌𝐸𝑥 + (𝐻𝑧𝜎𝑦 −𝐻𝑦𝜎𝑧) = 𝐹𝑥

 

Similarly,ℎ2 = 𝐹𝑦, ℎ3 = 𝐹𝑧 

ℎ4 = 𝐹4𝑣𝐽
𝜈= 𝐹41𝐽

1 + 𝐹42𝐽
2 + 𝐹43𝐽

3 + 𝐹44𝐽
4

= −𝐸𝑥 ⋅ 𝜎𝑥 + (−𝐸𝑦)𝜎𝑧 + (−𝐸𝑧𝑖)𝜎𝑧 + 0. 𝜌

= −(𝐸𝑥 ⋅ 𝜎𝑥 + 𝐸𝑦 ⋅ 𝜎𝑦 + 𝜎𝑧 ⋅ 𝐸𝑧)

= −𝜌(𝐸𝑥 ⋅ 𝑢𝑥 + 𝐸𝑦 ⋅ 𝑢𝑦 + 𝐸𝑧 ⋅ 𝑢𝑧) = −𝑊

 

It is obvious from what has been done that 

ℎ𝜇 = 𝐹𝜇𝜈𝐽
𝜈 = (𝐹𝑥 , 𝐹𝑦, 𝐹𝑧 , −𝑊) 

14.6ELECTROMAGNETIC ENERGY 

MOMENTUM TENSOR:- 

Question 5.To prove 𝑬𝒋
𝒊 = −𝑭𝒊𝒌𝑭𝒋𝒌 +

𝟏

𝟒
𝒇𝒋
𝒊𝑭𝒌𝒋𝑭

𝒌𝒊 

or 

𝑻𝒊
𝒋
= −𝑭𝒋𝒌𝑭𝒊𝒌 +

𝟏

𝟒
𝜹𝒍
𝒋
𝑭𝜶𝜷𝑭𝜶𝜷 

Proof. The line element is taken into consideration here. 

𝑑𝑠2 = −𝜒2 − 𝑑𝑦2 − 𝑑𝑧2 + 𝑑𝑡2 
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In order for each covariant derivative to decrease to its matching partial 

derivative. 

The following relations must be used in order to explicitly calculate the 

value of the electromagnetic energy momentum tensor 𝑇𝜈
𝜇
: 

𝐾𝜇 = 𝐴𝑥 , 𝐴𝑦, 𝐴𝑧 , 𝜙                        … (1) 

:where 𝐀 and 𝜙 are vector potential and scalar potential 

                                  𝐹𝑖𝑗 = 𝐾𝑖,𝑗 − 𝐾𝑗,𝑖                       … (2) 

 where 𝐹𝑖𝑗 is field tensor and is antisymmetric 

                                      𝐽𝑖 = 𝐹,𝑗
𝑖𝑗
=

𝜕𝐹𝑖𝑗

𝜕𝑥𝑖
                    … (3)  

where 𝐽𝑖 is current vector. 

     𝐹𝑖𝑗,𝑘 + 𝐹𝑗𝑘,𝑖 + 𝐹𝑘𝑖,𝑗 =
𝜕𝐹𝑖𝑗

𝜕𝑥𝑘
+

𝜕𝐹𝑗𝑘

𝜕𝑥𝑖
+

𝜕𝐹𝑘𝑖

𝜕𝑥𝑗
= 0  … (4) 

                            ℎ𝜇 = 𝐹𝜇𝜈𝑣
′                                   … (5) 

By( 3)and (5), ℎ𝜇 = 𝐹𝜇𝜈𝐽
𝜈 = 𝐹𝜇𝜈𝐹,𝜎

𝜈𝜎 = 𝐹𝜇𝜈
𝜕𝐹𝜈𝜎

𝜕𝑥𝜎
. 

The electromagnetic energy momentum tensor is defined.                                                 

𝑇𝜈
𝜇

 as ℎ𝜇 = 𝑇𝜇,𝜈
𝜈                          … (6) 

                                    𝑇𝜇,𝜈
𝜈 = 𝐹𝜇𝜈

𝜕𝐹𝜈𝜎

𝜕𝑥𝜎
                    … (7) 

This differential equation's solution is 

                       𝑇𝜇
𝜈 = −𝐹𝜈𝜎𝐹𝜇𝜎 +

1

4
𝛿𝜇
𝜈𝐹𝛼𝛽𝐹𝛼𝛽         … (8) 

To verify this, we take into account the divergence of both sides, taking 

into account that covariant differentiation obeys the normal distributive 

law and that 𝛿𝜇
𝜈 is current.  

𝑇𝜇,𝜈
𝜈 = −(𝐹,𝜈

𝜈𝜎𝐹𝜇𝜎 + 𝐹
𝜈𝜎𝐹𝜇𝜎,𝑣) +

1

4
𝛿𝜇
𝑣(𝐹𝛼𝛽𝐹𝛼𝛽,𝜈 + 𝐹𝛼𝛽𝐹,𝑣

𝛼𝛽
) 

Using the fact 𝐴𝛼𝛽𝐵
𝛼𝛽 = 𝐴𝛼𝛽𝐵𝛼𝛽 , we have 

𝑇𝜇,𝜈
𝜈 = −(𝐹,𝜈

𝜈𝜎𝐹𝜇𝜎 + 𝐹
𝛼𝛽𝐹𝜇𝛽,𝛼) +

1

2
𝛿𝜇
𝑣𝐹𝛼𝛽𝐹𝛼𝛽,𝜈 

= −𝐹,𝜈
𝜈𝜎𝐹𝜇𝜎 −

1

2
𝐹𝛼𝛽𝐹𝜇𝛽,𝛼 −

1

2
𝐹𝛽𝛼𝐹𝜇𝛼,𝛽 +

1

2
𝐹𝛼𝛽,𝜇𝐹

𝛼𝛽 
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=  −𝐹𝜇𝜎𝐹,𝜈
𝜈𝜎 +

1

2
𝐹𝛼𝛽(𝐹𝛼𝛽,𝜇 + 𝐹𝛽𝜇,𝛼 + 𝐹𝜇𝛼,𝛽) 

[ as 𝐹𝛼𝛽 = −𝐹𝛽𝛼 , 𝐹𝜇𝛼 = −𝐹𝛼𝜇] 

= 𝐹𝜇𝜎𝐹,𝑣
𝜎𝜈 + 0, by virtue of (4) 

= 𝐹𝜇𝜎
′𝜎 = ℎ𝜇 , by (3) and (5) 

or, ℎ𝜇 = 𝑇𝜇,𝜈
𝜈  which is true by virtue of (5). 

Hence the solution (8) is a correct solution of (7). 

14.7 LAW OF GRAVITATIONAL IN 

ELECTROMEGNETIC FIELD:- 

Question 6.To derive field equations in electromagnetic field. 

Proof. In terms of the field tensor 𝐹𝑖𝑗 ,  the electromagnetic energy 

momentum tensor is defined as  

with 

𝑇𝑗
𝑖 = −𝐹𝑗𝛼𝐹

𝑖𝛼 +
1

4
𝛿𝑗
𝑖𝐹𝛼𝛽𝐹

𝛼𝛽

𝑇𝑖𝑗 = 𝑔𝛼𝑗𝑇𝛼
𝑖  and 𝑇 = 𝑇𝑖

𝑖
 

Here, some writers substitute the sign𝐸𝑖𝑗for 𝑇𝑖𝑗. 

𝑇= 𝑇𝑖
𝑖 = −𝐹𝑖𝛼𝐹

𝑖𝛼 +
1

4
𝛿𝑖
𝑖𝐹𝛼𝛽𝐹

𝛼𝛽

= −𝐹𝛽𝛼𝐹
𝛽𝛼 +

1

4
4𝐹𝛼𝛽𝐹

𝛼𝛽                       … (1)

𝑇= 0. [𝑖. 𝑒. , Trace of encrgy momentum tensor = 0]

 

The field equations are obtain by 

𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗 = −8𝜋𝑇𝑖𝑗               … (2) 

From which,          𝑔𝑖𝑗𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗𝑔

𝑖𝑗 = −8𝜋𝑇𝑖𝑗𝑔
𝑖𝑗 

or,                                  𝑅 −
1

2
𝑅4 = −8𝜋𝑇 

or,                          −𝑅 = −8𝜋𝑇 = −8𝜋(0) = 0, by (2) 

or,                                   −𝑅 = 0  or 𝑅 = 0. 

Using this in (2),                   𝑅𝑖𝑗 = −8𝜋𝑇𝑖𝑗. 

This is the required formulation for field equations in electrodynamics. 

 

14.8 ENERGY AND MOMENTUM OF THE 

ELECTRO-MAGNETIC FIELD:- 
 

The rate at which forces are performing work W is determined by 



Theory of Relativity  MAT609 

Department of Mathematics      

Uttarakhand Open University Page 303 
 

𝑑𝑊

𝑑𝑡
=

 Force ×  distance 

 time 
=  Force ×  velocity 

= 𝜌𝐸𝑥𝑢𝑥 + 𝜌𝐸𝑦 ⋅ 𝑢𝑦 + 𝜌𝐸𝑧 ⋅ 𝑢𝑧

 

as                            work = Froce × distance 

or, 
𝑑𝑊

𝑑𝑡
= 𝜌𝐄. 𝐮 or, 

𝑑𝑊

𝑑𝑡
= 𝜌𝐮 ⋅ 𝐄 = 𝐉. 𝐄. 

Since the magnetic part of the force does not work as it acts in a direction 

perpendicular to the direction of current. Also, current density 

𝐽 = 𝜌𝐮 
Therefore, the rate of work in a space with a fixed volume is given by 

𝑑𝑊

𝑑𝑡
= ∫J. E𝑑𝜈                      … (1) 

By Maxwell's equations, 

                                       curl 𝐸 = −
1

𝑐

𝜕𝐇

𝜕𝑡
              … (2) 

                               curl 𝐻 =
1

𝑐

𝜕𝐸

𝜕𝑡
+

4𝜋

𝑐
J              … (3) 

 BY (3)                              curl 𝐻 =
1

𝑐

𝜕𝐸

𝜕𝑡
+

4𝜋

𝑐
𝐉 

With the Heavy Lorentz change unit, we obtain 
𝐽

𝑐
=  curl 𝐻 −

1

𝑐

𝜕𝐸

𝜕𝑡
⋅ ( Now the factor 4𝜋 is disappeared ) 

or, 

𝐉 ⋅ 𝐸 = (𝑐curl 𝐻 −
𝜕𝐸

𝜕𝑡
) ⋅ 𝔼 − ℍ ⋅ (curl 𝐸 +

𝜕𝐇

𝜕𝑡
) 

or, 
𝐽

𝑐
=  curl 𝐻 −

1

𝑐

𝜕𝐸

𝜕𝑡
⋅ ( Now the factor 4𝜋 is disappeared ) 

or, 

𝐉 ⋅ 𝐸 = (𝑐curl𝐻 −
𝜕𝐸

𝜕𝑡
) ⋅ 𝐸 − 𝐻 ⋅ (𝑐curl𝔼 +

𝜕𝐇

𝜕𝑡
) 

 
𝐽

𝑐
=  curl 𝐻 −

1

𝑐

𝜕𝔼

𝜕𝑡
⋅ ( Now the factor 4𝜋 is disappeared ) 

or, 

𝐉 ⋅ 𝐸 = (𝑐curl 𝐻 −
𝜕𝐸

𝜕𝑡
) ⋅ 𝐸 − 𝐻 ⋅ (𝑐curl𝐸 +

𝜕𝐇

𝜕𝑡
) 

or, 

 

𝑑𝑊

𝑑𝑡
= −∫

𝜕

𝜕𝑡
(
𝐸2 + 𝐻2

2
)𝑑𝑣 

(𝐇. 𝑐𝑢𝑟𝑙 𝐄 − 𝐄. curl 𝐇)𝑑𝜈 

or, 

𝑑𝑊

𝑑𝑡
= −

𝜕

𝜕𝑡
∫(

𝐸2 + 𝐻2

2
)𝑑𝑣 − 𝑐∫[𝐄 × 𝐇]𝑛𝑑𝑠    … (4) 
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Where 𝑛 denotes outward normal component and [E × H]𝑛 denotes 

normal component of the vector in 𝐄 × 𝐇. 

And  

div(𝐸 × 𝐻) = 𝐇. curl𝐸 − 𝐸. curl 𝐇 

∫div(𝐸 × 𝐻)dV = ∫ 𝑛.ˆ (𝐄 × 𝐇)𝑑𝑠 

The rate of energy change in the electromagnetic field inside the volume 

under consideration is the first term on R.H.S. of (4). The rate at which 

energy flows over this volume's surface is the second term in R.H.S. of 

(4). Consequently, we can take 
1

2
(𝐸2 + 𝐻2)=  density of electromagnetic energy, 

𝑐(𝐸 × 𝐻)=  density of energy flow. 

 

or, We can use 𝑔 = 𝑐 (
𝐄×𝐇

𝑐
) =

𝐄×𝐇

𝑐2
 as the density of momentum and 𝜌 =

1

𝑐2
(
𝐸2+𝐻2

2
)  as the density of electromagnetic mass. 

 

14.9 ELECTROMAGNETIC STRESS:- 
 

We know that the Maxwell's equations are 

div 𝐄 = 𝜌                           … (1) 
                                        div𝐇 = 0                      … (2) 

                             curl 𝐄 = −
1

𝑐

𝜕𝐇

𝜕𝑡
                        … (3) 

                        curl 𝐇 =
1

𝑐

𝜕𝐄

𝜕𝑡
+

𝜌𝐮

𝑐
                        … (4) 

 

In this case, the component 4π is eliminated by using the Heavy Lorentz 

unit of change. The momentum's density 𝑔 is determined by 

                          𝑔 =
1

𝑐
(𝐄 × 𝐇)                               … (5) 

According to the theorem, the Lorentz force F acting on an electric charge 

e moving at velocity 𝑢 is 𝐅 = {𝐄 +
1

𝑐
(𝐮 × 𝐇)} 𝑒. 

The force 𝐅 per unit volume is written by 

𝐅 = 𝜌 {𝐄 +
1

𝑐
(𝐮 × 𝐇)} (6) 

If G is the charged particle's momentum, the rate at which the 

electromagnetic field charges it is determined by 
𝑑𝐆

𝑑𝑡
= ∫𝐅𝑑𝑣 = ∫𝜌 [𝐄 +

1

𝑐
(𝐮 × 𝐇)] 𝑑𝑣 

where the integral is taken over a fixed volume in the space 
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𝑑𝐆

𝑑𝑡
= ∫ [𝜌𝐄 +

1

𝑐
𝜌𝐮 × 𝐇]𝑑𝑣

=∫ [𝐄div𝐄 + (curl𝐇 −
1

𝑐

𝜕𝐄

𝜕𝐭
) × 𝐇]𝑑𝑣

 

[This follows from (1) and (4)] 

or, 
𝑑𝐆

𝑑𝑡
= ∫[{𝐄div𝐄 + (curl𝐇) × 𝐇} −

1

𝑐
{
𝜕

𝜕𝑡
(𝐄 × 𝐇) − 𝐄 ×

𝜕𝐇

𝜕𝐭
}] 𝑑𝜈 

= ∫[{𝐄div𝐄 + (curl𝐇) × 𝐇} −
𝜕𝐠

𝜕𝑡
+
1

𝑐
𝐄 ×

𝜕𝐇

𝜕𝐭
] 𝑑𝑣, by (5)

= ∫[{𝐄div𝐄 + (curl𝐇) × 𝐇} −
𝜕𝐠

𝜕𝑡
− 𝐄 × curl𝐄] 𝑑𝑣, by (5)

 

 

or, 
𝑑𝐆

𝑑𝑡
= ∫[𝐄div𝐄 + {(curl𝐇) × 𝐇 + (curl𝐄) × 𝔼} −

𝜕𝐠

𝜕𝑡
] 𝑑𝜈 … (6) 

Writing the 𝑥-component of this equation, 

𝑑G𝑥

𝑑𝑡
= ∫ [[

1

2

𝜕

𝜕𝑥
(𝐸𝑥

2 − 𝐸𝑦
2 − 𝐸𝑧

2 + 𝐻𝑥
2 − 𝐻𝑦

2 − 𝐻𝑧
2) +

𝜕

𝜕𝑦
(𝐸𝑥 𝐸𝑦 + 𝐻𝑥𝐻𝑦) +

𝜕

𝜕𝑡
(𝐸𝑥 𝐸𝑧 +𝐻𝑥𝐻𝑧) −

𝜕𝑔𝑥

𝜕𝑡
]  𝑑𝑣                                              … (7)                              

If we now categorize the electromagnetic field's stress components as 

𝑝𝑖𝑖 = −
1

2
(𝐸𝑖

2 − 𝐸𝑗
2 − 𝐸𝑘

2 +𝐻𝑖
2 −𝐻𝑗

2 −𝐻𝑘
2) 

𝑝𝑖𝑗 = −(𝐸𝑖𝐸𝑗 +𝐻𝑖𝐻𝑗) 

then (7) can be expressed as 
𝑑𝐺𝑥

𝑑𝑡
 = ∭−(

𝜕𝑝𝑥𝑥

𝜕𝑥
+

𝜕𝑝𝑥𝑦

𝜕𝑦
+

𝜕𝑝𝑥𝑧

𝜕𝑧
) 𝑑𝑥𝑑𝑦𝑑𝑧. 

or,  
𝑑𝐺𝑥

𝑑𝑡
+

𝜕𝑔𝑥

𝜕𝑡
= −∭(−

𝜕𝑝𝑥𝑥

𝜕𝑥
+

𝜕𝑝𝑥𝑦

𝜕𝑦
+

𝜕𝑝𝑥𝑧

𝜕𝑧
) 𝑑𝑥𝑑𝑦𝑑𝑧. 

Question 7:  Calculate 𝑇𝑗
𝑖 in terms of 𝐄 and 𝐇. 

Solution.We know that  

𝑇𝑗
𝑖 = −𝐹𝑗𝛼𝐹

𝑖𝛼 +
1

4
𝛿𝑗
𝑖𝐹𝛼𝛽𝐹

𝛼𝛽            … (1)

𝐹𝛼𝛽 = −𝐹𝛽𝛼 , 𝐹14 = 𝐸𝑥 , 𝐹24 = 𝐸𝑦, 𝐹34 = 𝐸𝑧
𝐹23 = 𝐻𝑥 , 𝐹31 = 𝐻𝑦 , 𝐹12 = 𝐻𝑧

𝐹12 = 𝐹12, 𝐹
13 = 𝐹13, 𝐹

32 = 𝐹23
𝐹14 = −𝐹14, 𝐹

24 = −𝐹24, 𝐹
34 = −𝐹34

 

In accordance with (1), 

                    𝑇𝑗
𝑖 = −𝐹𝑗𝛼𝐹

𝑖𝛼 For 𝑖 ≠ 𝑗         … (2) 

𝑇𝑗
𝑖 = −𝐹𝑗𝛼𝐹

𝑖𝛼 +
1

4
𝐹𝛼𝛽𝐹

𝛼𝛽  for 𝑖 ≠ 𝑗        … (3) 

𝐹𝛼𝛽𝐹
𝛼𝛽 = 2(𝐹12𝐹

12 + 𝐹13𝐹
13 + 𝐹14𝐹

14 + 𝐹23𝐹
23 + 𝐹24𝐹

24 + 𝐹34𝐹34) 

+(𝐹11𝐹
11 + 𝐹22𝐹

22 + 𝐹33𝐹
33 + 𝐹44𝐹

44) 
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= 2(𝐹12𝐹12 + 𝐹13𝐹13 − 𝐹14𝐹14 + 𝐹23𝐹23 − 𝐹24𝐹24 

= 2(𝐻𝑧
2 + 𝐻𝑦

2 − 𝐸𝑥
2 + 𝐻𝑥

2 − 𝐸𝑦
2 − 𝐸𝑧

2)  … (4) 

= 2{(𝐻𝑥
2 + 𝐻𝑦

2 + 𝐻𝑧
2) − (𝐸𝑥

2 + 𝐸𝑦
2 + 𝐸𝑧

2)} 
1

4
𝐹𝛼𝛽𝐹

𝛼𝛽 =
1

2
({𝐻𝑥

2 + 𝐻𝑦
2 + 𝐻𝑧

2) − (𝐸𝑥
2 + 𝐸𝑦

2 + 𝐸𝑧
2)} 

From (3), 𝑇1
1 = −𝐹1𝛼𝐹

1𝛼 +
1

4
𝐹𝛼𝛽𝐹

𝛼𝛽 

𝑇2
2 = −𝐹2𝛼𝐹

2𝛼 +
1

4
𝐹𝛼𝛽𝐹

𝛼𝛽

𝑇3
3 = −𝐹3𝛼𝐹

3𝛼 +
1

4
𝐹𝛼𝛽𝐹

𝛼𝛽

𝑇4
4 = −𝐹4𝛼𝐹

4𝛼 +
1

4
𝐹𝛼𝛽𝐹

𝛼𝛽
}
 
 

 
 

               … (5) 

 

 

𝐹1𝛼𝐹
1𝛼= 𝐹11𝐹

11 + 𝐹12𝐹
2 

= 0 + 𝐹12𝐹12 + 𝐹13𝐹13 − 𝐹14𝐹14 

= 𝐻𝑧
2 + 𝐻𝑦

2 − 𝐸𝑥
2 

𝐹2𝛼𝐹
2𝛼=𝐹21𝐹

21 + 𝐹22𝐹
22 + 𝐹23𝐹

23 + 𝐹24𝐹
24 

= 𝐹21𝐹21 + 0 + 𝐹23𝐹23 − 𝐹24𝐹24 

= 𝐻𝑧
2 + 𝐻𝑥

2 − 𝐸𝑦
2 

𝐹3𝛼𝐹
2𝛼  = 𝐹31𝐹

31 + 𝐹32𝐹
32 + 𝐹33𝐹

33 + 𝐹34𝐹
24 

= 𝐹31𝐹31 + 𝐹32𝐹32 + 0− 𝐹34𝐹34 
 

= 𝐻𝑦
2 +𝐻𝑥

2 − 𝐸𝑧
2 

𝐹4𝛼𝐹
4𝛼 =𝐹41𝐹

41 + 𝐹42𝐹
42 + 𝐹43𝐹

43 + 𝐹44𝐹
44 

= −𝐹41𝐹41 − 𝐹42𝐹42 − 𝐹43𝐸43 + 0 

= −(𝐸𝑥
2 + 𝐸𝑦

2 + 𝐸𝑧
2) 

With these values (5), they become 

𝑇1
1 =( − 𝐻𝑧

2 + 𝐻𝑦
2 − 𝐸𝑥

2) +
1

2
[(𝐻𝑥

2 −𝐻𝑦
2 +𝐻𝑧

2) − (𝐸𝑋
2 + 𝐸𝑌

2 − 𝐸𝑧
2)]   

=  
1

2
(𝐸𝑥

2 + 𝐸𝑦
2 − 𝐸𝑧

2) + (𝐻𝑥
2 −𝐻𝑦

2 −𝐻𝑧
2)  

𝑇2
2 = −𝐹2𝛼𝐹

2𝛼 +
1

4
𝐹𝛼𝛽𝐹

𝛼𝛽  

= −(𝐻𝑧
2 + 𝐻𝑥

2 − 𝐸𝑦
2) +

1

2
{(𝐻𝑥

2 +𝐻𝑦
2 +𝐻𝑧

2) −(𝐸𝑋
2 + 𝐸𝑌

2 − 𝐸𝑧
2)} 

=
1

2
[(𝐸𝑦

2 − 𝐸𝑥
2 − 𝐸𝑧

2) + (𝐻𝑦
2 − 𝐻𝑥

2 − 𝐻𝑧
2)] 

𝑇3
3 = −𝐹3𝛼𝐹

3𝛼 +
1

4
𝐹𝛼𝛽𝐹

𝛼𝛽  

= −(𝐻𝑦
2 +𝐻𝑥

2 − 𝐸𝑧
2) +

1

2
{(𝐻𝑥

2 + 𝐻𝑦
2 + 𝐻𝑧

2) − (𝐸𝑥
2 + 𝐸𝑦

2 + 𝐸𝑧
2)} 

=
1

2
[(𝐸𝑧

2 − 𝐸𝑥
2 − 𝐸𝑦

2) + (𝐻𝑧
2 − 𝐻𝑥

2 − 𝐻𝑦
2)] 
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𝑇4
4 = −𝐹4𝛼𝐹

4𝛼 +
1

4
𝐹𝛼𝛽𝐹

𝛼𝛽

= (𝐸𝑥
2 + 𝐸𝑦

2 + 𝐸𝑧
2)

+
1

2
{(𝐻𝑥

2 + 𝐻𝑦
2 + 𝐻𝑧

2) − (𝐸𝑥
2 + 𝐸𝑦

2 + 𝐸𝑧
2)} 

=
1

2
{(𝐻𝑥

2 +𝐻𝑦
2 +𝐻𝑧

2) − (𝐸𝑥
2 + 𝐸𝑦

2 + 𝐸𝑧
2)} 

 

From (2), 𝑇2
1 = −𝐹2𝛼𝐹

1𝛼 

= −(𝐹21𝐹
11 + 𝐹22𝐹

12 + 𝐹23𝐹
13 + 𝐹24𝐹

14)

= −(0 + 0𝐹12 + 𝐹13𝐹23 − 𝐹24𝐹14)

= −(0 + 0 − 𝐻𝑥𝐻𝑦 − 𝐸𝑦𝐸𝑥) = 𝐻𝑥𝐻𝑦 + 𝐸𝑥𝐸𝑦

 

Similarly, 𝑇1
2 = 𝐻𝑥𝐻𝑦 + 𝐸𝑥𝐸𝑦 

𝑇1
4=−𝐹1𝛼𝐹

4𝛼 = −(𝐹11𝐹
41 + 𝐹12𝐹

42 + 𝐹13𝐹
43 + 𝐹14𝐹

44) 
= −(0 − 𝐹12𝐹42 − 𝐹13𝐹43 + 0) 

= −[𝐻𝑧𝐸𝑦 +𝐻𝑦(−𝐸𝑧)] = 𝐻𝑦𝐸𝑧 − 𝐸𝑦𝐻𝑧 

𝑇4
1=−𝐹4𝛼𝐹

1𝛼 = −[𝐹41𝐹
11 + 𝐹42𝐹

12 + 𝐹43𝐹
13 + 𝐹44𝐹

14] 

= −(0 + 𝐹42𝐹12 + 𝐹43𝐹13 + 0) = −(−𝐸𝑦𝐻𝑧 + 𝐸𝑧𝐻𝑦) 

= 𝐸𝑦𝐻𝑧 − 𝐻𝑦𝐸𝑧 = −𝑇1
4 

Thus 𝑇1
1 =

1

2
[(𝐸𝑥

2 − 𝐸𝑦
2 − 𝐸𝑧

2) + (𝐻𝑥
2 − 𝐻𝑦

2 − 𝐻𝑧
2)] 

𝑇2
2 =

1

2
[(𝐸𝑦

2 − 𝐸𝑧
2 − 𝐸𝑥

2) + (𝐻𝑦
2 − 𝐻𝑧

2 − 𝐻𝑥
2)]

𝑇3
3 =

1

2
[(𝐸𝑧

2 − 𝐸𝑦
2 − 𝐸𝑥

2) + (𝐻𝑧
2 − 𝐻𝑦

2 − 𝐻𝑥
2)]

𝑇4
3 =

1

2
{(𝐸𝑥

2 + 𝐸𝑦
2 + 𝐸𝑧

2) + (𝐻𝑥
2 +𝐻𝑦

2 +𝐻𝑧
2)}

 

𝑇2
1 = 𝑇1

2 = 𝐻𝑥𝐻𝑦 + 𝐸𝑥𝐸𝑦

𝑇4
1 = −𝑇1

4 = 𝐸𝑦𝐻𝑧 −𝐻𝑦𝐸𝑧
 

The electromagnetic field's energy is represented by 𝑇4
𝐴 . Momentum is 

represented by 𝑇4
1.  

The field's stresses are represented by𝑇1
1  and 𝑇2

1 , among others. The 

formulas in each of these situations match those found in the classical 

theory. 

 

14.10 GRAVITATIONAL FIELD DUE TO AN 

ELECTRON OR CHARGED PARTICLE:- 

Theorum 4: To obtain the gravitational field of an electron (on 

charged particle) and show that the gravitational effect of the 

electronic energy is very slight. 
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Proof. Consider a charged particle at rest at its origin, such as an electron. 

It is expected that this electron produces a spherically symmetric field. 

The line element that satisfies the spherical symmetry criterion is provided 

by 

𝑠2 = −𝑒𝜆𝑑𝑟2 − 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2) + 𝑒𝜈𝑑𝑡2                 … (1) 

where 𝜆 and 𝑣 are functions of 𝑟 only such that 

𝜆 = 0 = 𝑣 at 𝑟 = ∞. 

We assume that the field is unquestionably electrostatic. As a result of that 

                                                       𝐻𝑥 , 𝐻𝑦, 𝐻𝑧 = 0.                       … (2) 

Since 

𝐾𝜇 = (−𝐴𝑥 , −𝐴𝑦, −𝐴𝑧 , 𝜙 )

𝐹𝜇𝜈 = 𝐾𝜇,𝜈 −𝐾𝜈,𝜇 =
𝜕𝐾𝜇
𝜕𝑥𝜈

−
𝜕𝐾𝜈
𝜕𝑥𝜇

𝐇 = curl𝐀.

 

In view of this, (2)  

⇒                                                          𝐴𝑥 , 𝐴𝑦, 𝐴𝑧 = 0 . 

For, vanishing electromagnetic vector potential implies vanishing 

magnetic field intensity. 

The aforementioned arguments demonstrate that 𝜙 is just a function of 𝑟, 
that is, 

𝜕𝜙 

𝜕𝜃
= 0 =

𝜕𝜙 

𝜕𝜙

𝐹14 =
𝜕𝐾1
𝜕𝑡

−
𝜕𝐾4
𝜕𝑟

= −
𝜕𝐴𝑥
𝜕𝑡

−
𝜕𝜙 

𝜕𝑟
= 0 −

𝜕𝜙 

𝜕𝑟

𝐹24 =
𝜕𝐾2
𝜕𝑡

−
𝜕𝐾4
𝜕𝜃

= −
𝜕𝐴𝑦
𝜕𝑡

−
𝜕𝜙 

𝜕𝜃
= 0 − 0 = 0

𝐹34 =
𝜕𝐾3
𝜕𝑡

−
𝜕𝐾4
𝜕𝜙

= −
𝜕𝐴𝑧
𝜕𝑡

−
𝜕𝜙 

𝜕𝜙
= 0 − 0 = 0

 

(2) can be expressed  as 

𝐹23, 𝐹31, 𝐹12 = 0 

Thus we have proves that 

𝐹12, 𝐹23, 𝐹31, 𝐹24, 𝐹34 = 0 and 𝐹14 = −𝜕𝜙 /𝜕𝑟. 
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This indicates𝐹14 is the sole non-vanishing component of 𝐹𝑖𝑗 . Give this 

fact the designation (*). 

 

𝐹14 = 𝐹𝛼𝛽𝑔
1𝛼𝑔4𝛽 = 𝑔11𝑔44𝐹14 = −𝑒−𝜆𝑒−𝜈(−𝜕𝜙 /𝜕𝑟) 

= 𝑒−(𝜆+𝜈)
𝜕𝜙 

𝜕𝑟
 

𝑔 = −𝑒𝜆+𝜈 ⋅ 𝑟4sin2 𝜃 = |𝑔𝑖𝑗| = 𝑔11𝑔22𝑔33𝑔44 

√(−𝑔) = 𝑒(𝜆+𝜈)/2𝑟2sin 𝜃.  

𝐽𝜇 = 𝐹𝜇𝜈, 𝑣 =
𝐹𝜇𝜈

𝜕𝑥𝜈
+ 𝐹𝑎𝑣Γ𝑎𝜈

𝜇
+ 𝐹𝜇𝑎Γ𝑎𝜈

𝜈  

= 
𝜕𝐹𝜇𝜈

𝜕𝑥𝜈
+ 0 + 𝐹𝜇𝑎

𝜕

𝜕𝑥𝑎
log √(−𝑔) =

𝜕𝐹𝜇𝜈

𝜕𝑥𝜈
+ 𝐹𝜇𝜈

𝜕

𝜕𝑥𝜈
log √(−𝑔) 

=
𝜕𝐹𝜇𝜈

𝜕𝑥𝜈
+

𝐹𝜇𝜈

√(−𝑔)

𝜕√(−𝑔)

𝜕𝑥𝜈
 

or, 

[
 
 
 
 
𝐹𝑎𝑣Γ𝑎𝑣

𝜇
= −𝐹𝑣𝑎Γ𝑎𝑣.

𝜇
. For 𝐹𝜈𝑎 is antisymmetric. 

= −𝐹𝑣𝑎Γ𝜈𝑎
𝜇
. For Γ𝜈𝑎

𝜇
= Γ𝑎𝑣

𝜇

= −𝐹𝑎𝑣Γ𝑎𝑣
𝜇
, by interchanging 𝑎 and 𝑣.

 or, 2𝐹𝑎𝑣Γ𝑎𝑣
𝜇
= 0, or 𝐹𝑎𝑣Γ𝑎𝑣

𝜇
= 0. ]

 
 
 
 

     … (3) 

From (3), 

√(−𝑔)𝐽4 =
𝜕

𝜕𝑥𝜈
(√(−𝑔)𝐹4𝜈) =

𝜕

𝜕𝑥1
(√(−𝑔)𝐹41) 

or, 

√(−𝑔)𝜌 =
𝜕

𝜕𝑟
(√(−𝑔)𝐹41) 

gives 

to the state when there is no charge or current other than at the origin 

Hence the last gives 

or, 



Theory of Relativity  MAT609 

Department of Mathematics      

Uttarakhand Open University Page 310 
 

𝜕

𝜕𝑟
√(−𝑔)𝐹41) = 0

𝜕

𝜕𝑟
[−𝑒(𝜆+𝜈)/2𝑟2sin 𝜃 ⋅ 𝑒−(𝜆+𝜈)

𝜕𝜙 

𝜕𝑟
] = 0

 

Dividing by −sin 𝜃, 

𝜕

𝜕𝑟
[𝑟2𝑒−(𝜆+𝜈)/2

𝜕𝜙 

𝜕𝑟
] = 0. 

Integrating, we get 𝑒−(𝜈+𝜈)/2 ⋅ 𝑟2 ⋅
𝜕𝜙 

𝜕𝑟
=  const. = 𝜀  (say), 𝜀  being an 

absolute constant. 

Then 

𝜕𝜙 

𝜕𝑟
=
𝜀

𝑟2
𝑒(𝜆+𝑣)/2 

𝐹14 = −
𝜕𝜙 

𝜕𝑟
= −

𝜀𝑒(𝜆+𝜈)/2

𝑟2
 

 This ⇒ 𝐹14 = 𝑒
−(𝜆+𝜈)

𝜕𝜙 
𝜕𝑟

−
𝜀
𝑟2
𝑒−(𝜆+𝜈)/2.

 

At a great distance from the attracting particle, 𝑔44 = 1 +
2𝜓

𝑐2
, where 𝜓 is 

the Newtonian potential, occurs when the field is weak and static. 

This gives 1 −
2𝑚

𝑟
+

4𝜋𝜀2

𝑟2
= 1 + 2𝜓 if 𝑐 = 1 or 𝜓 = −

𝑚

𝑟
+

2𝜋𝜀2

𝑟2
 

force                                                   =
𝜕𝜓

𝜕𝑟
=

𝑚

𝑟2
−

4𝜋𝜀2

𝑟2
 

If 𝑚 = 0, then the last obtains 

= −
4𝜋𝜀2

𝑟3
, i.e., force ∝

1

𝑟3
 

This is not possible. 

Consequently, 𝑚  cannot be zero. In this case, we designate 4𝜋𝜀  as the 

electron's charge and m as its associated mass. 

For an electron of mass 𝑚, 
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𝑚 = −7× 10−56cm.

𝑎 =
2𝜋𝜀2

𝑚
= 1.5 × 10−12cm

 

It is assumed that this number, a, is on the order of the electron's radius 

magnitude. At all locations outside the electron, 
𝑚

𝑟
 is at least 10−40. 

As a result, we may observe that the electrical energy's gravitational 

influence is minimal. 

SELF CHECK QUESTIONS 

1. Write down Maxwell's equations and explain their physical 

significance. 

2.  Derive the electromagnetic wave equation from Maxwell's 

equations. 

3. Discuss the mathematical formulation of electrodynamics, 

including Maxwell's equations and the electromagnetic wave 

equation. 

4. Obtain the gravitational field of a stationary electron in vacuum. 

14.11SUMMARY: -  
In this unit, we discussed several important concepts in electrodynamics, 

including Gauge Transformation, Transformation Equations for 

Differential Operators, Maxwell’s Equations, Lorentz Force on a Moving 

Charge, and the Electromagnetic Energy-Momentum Tensor. A Gauge 

Transformation refers to a change in the scalar and vector potentials that 

leaves the physical electric and magnetic fields unchanged, reflecting a 

fundamental symmetry of electromagnetism. The Transformation 

Equations for Differential Operators explain how mathematical operations 

like gradient, divergence, and curl behave under changes of coordinates, 

which is crucial for expressing physical laws consistently across different 

reference frames. Maxwell’s Equations are a set of four differential 

equations that govern the behavior of electric and magnetic fields, their 

sources, and how they propagate through space. The Lorentz Force 

describes the force experienced by a charged particle when moving in the 

presence of electric and magnetic fields, combining both fields into a 

single expression. Finally, the Electromagnetic Energy-Momentum Tensor 

provides a compact and powerful way to describe the density and flow of 

energy and momentum carried by electromagnetic fields, playing a central 

role in the interaction between fields and matter, especially in the context 

of special relativity. 

 

14.12GLOSSARY:-  
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 Electric fields (�⃗⃗� ): A vector field representing the force per unit 

charge exerted on a stationary test charge. 

 Magnetic fields (�⃗⃗� ) : A vector field representing the force per 

unit charge exerted on a moving charge; it arises due to moving 

charges (currents). 

 Maxwell’s Equations: Four fundamental equations that describe 

how electric and magnetic fields are generated and altered by 

charges and currents. 

 Gauge Transformation: A method of changing the potentials 
(𝜙, 𝐴) without affecting the physical electric and magnetic fields. 

 Lorentz Force: The total force on a charged particle moving 

through electric and magnetic fields, given by 𝐹 = 𝑞(�⃗� + 𝑣 × �⃗� ). 

 Vector Potential (�⃗⃗� )A vector field whose curl gives the magnetic 

field, �⃗� = ∇ × (�⃗⃗� ) . 

 Scalar Potential (𝝓): A scalar field whose negative gradient gives 

the electric field in electrostatics, �⃗� = −∇𝜙 . 

 Transformation Equations for Differential Operators: Rules 

describing how operators like gradient, divergence, and curl 

change under coordinate transformations. 

 Electromagnetic Waves: Oscillating electric and magnetic fields 

that propagate through space, predicted by Maxwell’s equations. 

 Poynting Vector (�⃗⃗� ): A vector representing the directional energy 

flux (the rate of energy transfer per unit area) of an 

electromagnetic field, �⃗⃗� = �⃗⃗� × 
𝑩

𝝁𝟎

⃗⃗  ⃗
. 

 Electromagnetic Energy-Momentum Tensor: A tensor that 

describes the distribution of energy, momentum, and stress in 

electromagnetic fields. 

 Continuity Equation: A mathematical expression of the 

conservation of electric charge. 

 Displacement Current: A term added by Maxwell to Ampère’s 

law, accounting for a changing electric field as a source of the 

magnetic field. 

 Boundary Conditions: Conditions that electric and magnetic 

fields must satisfy at the interface between different materials. 

 Retarded Potentials: Solutions for the potentials that take into 

account the finite speed of light, representing the fields at a point 

due to earlier positions of the sources. 
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 R.K.Pathria (2003), Theory of Relativity. 

14.15 TERMINAL QUESTIONS: - 

(TQ-1). Derive the electromagnetic wave equation from Maxwell's 

equations and explain its physical significance. 

(TQ-2). Discuss the mathematical formulation of electrodynamics, 

including the role of vector calculus and differential equations. 

(TQ-3). Explain how Maxwell's equations describe the behavior of 

electric and magnetic fields. 

(TQ-4). Discuss the application of electrodynamics in the design of 

electrical systems, such as power transmission lines or antennas. 

(TQ-5).Explain how electrodynamics is used in medical imaging 

techniques, such as MRI. 

(TQ-6). Establish the invariance of Maxwell’s field equations inn 

different spaces moving with uniform relative velocity. 

(TQ-7). Derive the gravitational field of an electron. 

(TQ-8). To prove 𝐸𝑗
𝑖 = −𝐹𝑖𝑘𝐹𝑗𝑘 +

1

4
𝑓𝑗
𝑖𝐹𝑘𝑗𝐹

𝑘𝑖 

or 

𝑇𝑖
𝑗
= −𝐹𝑗𝑘𝐹𝑖𝑘 +

1

4
𝛿𝑙
𝑗
𝐹𝛼𝛽𝐹𝛼𝛽 

(TQ-9). To prove that the Maxwell equations for empty space are 

represented by the two equations 

𝐽𝜇 = 𝐹,𝜇
𝜇𝜈

𝐹𝜇𝜈,𝜎 + 𝐹𝜈𝜎,𝑣 + 𝐸𝜎𝜇,𝑣 = 0
 

(TQ-10). Prove Maxwell's equations are invariant under Lorentz 

transformations.  

https://books.google.co.in/books?id=-3AjEAAAQBAJ&printsec=frontcover&dq=Theory+of+relativity&hl=en&newbks=1&newbks_redir=1&sa=X&ved=2ahUKEwi8-pacisWLAxVLUGwGHT5QMmQQ6AF6BAgGEAM
https://books.google.co.in/books?id=-3AjEAAAQBAJ&printsec=frontcover&dq=Theory+of+relativity&hl=en&newbks=1&newbks_redir=1&sa=X&ved=2ahUKEwi8-pacisWLAxVLUGwGHT5QMmQQ6AF6BAgGEAM
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(TQ-11). Prove that ∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 is not invariant under Lorentz 

transformation. 
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