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COURSE INFORMATION 

The present self learning material “Functional Analysis” has been 

designed for M.Sc. (Third Semester ) learners of Uttarkhand Open 

University, Haldwani. This course is divided into 14 units of study.  This 

Self Learning Material is a mixture of Four Block.  

The main objective of this course is to introduce the concepts of 

Functional Analysis simultaneously this course will provide the learners 

an opportunity to learn the basic Concepts and advanced concepts of 

Functional Analysis. The first block is Normed and Banach spaces it 

contains Basics: Basic definition and result of Metric Space, Basic 

definition and result of Vector Space. Normed linear space,  Further 

properties of Normed space, Extended Real Number System,  Holder’s 

Inequality for finite sequence, Minkowski’s Inequality for finite 

sequences, Holder’s Inequality for infinite sequence, Minkowski’s 

Inequality for infinite sequences, Continuous at a point, Cauchy Sequence, 

Completeness, Banach Space Finite dimensional Normed Spaces, 

Equivalent norms, Compactness, F. Riesz’s Lemma. The second block is 

Linear Functional and Linear operator contains  Linear operator, bounded 

and continuous linear operator,   linear functional,  linear functional of 

finite dimensional spaces, Normed space of operators and dual space. 

Third block is Inner product space and Hilbert space which is a mixture of 

Inner product spaces, Hilbert spaces and its example, Orthogonality, 

Orthonormal sets, Reisz Representation theorem, Legendre and Leguerre 

polynomial, Parsevals’s theorem, the conjugate space of Hilbert space. 

Hilbert-Adjoint Operator, Self Adjoint, normal and unitary Operator, 

projection Operator and the last block is Fundamental Theorems for 

Normed and Banach Spaces which present the Zorn’s lemma, Hahn-

Banach theorem and its applications, Adjoint operator, Reflexive spaces, 

Category Theorem: Uniform Boundedness Theorem, Strong and Weak 

Convergence, Convergence of sequence operators and functional, Open 

Mapping Theorem, Closed Linear Operator. Closed Graph Theorem, 

Banach Fixed Point Theorem. On successful completion of this course, 

learners will be able to Appreciate how functional analysis uses and 

unifies ideas from different and diverse area of mathematics, Describe and 

apply fundamental theorems from the theory of normed and Banach 

spaces, including the Hahn-Banach theorem, parallelogram identity and 

Polarization identity and Recognize the role of Zorn's lemma. 

 
 

 



Course Name:  Functional Analysis                         Course Code MAT602 

Credit: 4 

Normed and Banach spaces 

Basics: Basic definition and result of Metric Space, Basic definition and result of Vector Space. Normed linear 

space,  Further properties of Normed space, Extended Real Number System,  Holder’s Inequality for finite 

sequence, Minkowski’s Inequality for finite sequences, Holder’s Inequality for infinite sequence, Minkowski’s 

Inequality for infinite sequences, Continuous at a point, Cauchy Sequence, Completeness, Banach Space Finite 

dimensional Normed Spaces, Equivalent norms, Compactness, F. Riesz’s Lemma. 

Linear Functional and Linear operator 

 Linear operator, bounded and continuous linear operator,   linear functional,  linear functional of finite dimensional 

spaces, Normed space of operators and dual space. 

Inner product space and Hilbert space 

Inner product spaces, Hilbert spaces and its example, Orthogonality, Orthonormal sets, Reisz Representation 

theorem, Legendre and Leguerre polynomial, Parsevals’s theorem, the conjugate space of Hilbert space. Hilbert-

Adjoint Operator, Self Adjoint, normal and unitary Operator, projection Operator. 

Fundamental Theorems for Normed and Banach Spaces 

Zorn’s lemma, Hahn-Banach theorem and its applications, Adjoint operator, Reflexive spaces, Category Theorem: 

Uniform Boundedness Theorem, Strong and Weak Convergence, Convergence of sequence operators and 

functional, Open Mapping Theorem, Closed Linear Operator. Closed Graph Theorem, Banach Fixed Point Theorem. 

REFERENCES 

1. E. Kreyszig, (1989), Introductory Functional Analysis with applications, John Wiley and Sons.  

2. Walter Rudin, (1973), Functional Analysis, McGraw-Hill Publishing Co.  

3. George F. Simmons, (1963), Introduction to topology and modern analysis, McGraw Hill Book Company Inc. 

4. B. Chaudhary, S. Nanda, (1989), Functional Analysis with applications, Wiley Eastern Ltd. 

                                              SUGGESTED READINGS 

 

1. H.L. Royden: Real Analysis (4th Edition), (1993), Macmillan Publishing Co. Inc. New York. 

2.  J. B. Conway, (1990). A Course in functional Analysis (4th Edition), Springer.  

3. B. V. Limaye, (2014), Functional Analysis, New age International Private Limited. 

 

 

 

 

 

 



 Functional Analysis  MAT602  Page 1 
 

 

 

 

 

 

 

 

BLOCK I: NORMED, BANACH SPACES 

 

 

 

 

 

 

 

 

 

 

 

 

 



Department of Mathematics  
Uttarakhand Open University Page 2 
 

UNIT 1:  

NORMED SPACE - I 

 

CONTENTS: 

1.1        Introduction 

1.2 Objectives 

1.3 Basics 

1.3.1 Metric Space 

1.3.2 Vector Space 

1.4 Normed Space 

1.4.1 Examples 

1.4.2 Semi-Norm 

1.4.3 Main Results 

1.4.4 Important Problem 

1.5      Summary 

1.6 Glossary 

1.7       References 

1.8      Suggested readings 

1.9       Terminal questions 

1.10  Answers 

1.1 INTRODUCTION 

Before this unit we are assuming that learners are familiar with the 

basics of Real Analysis, Topology, Linear Algebra and Measure Theory.  

In functional analysis, a normed space is a vector space with a metric that 

https://en.wikipedia.org/wiki/Functional_analysis
https://en.wikipedia.org/wiki/Metric_(mathematics)
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allows the computation of vector length and distance between vectors. The 

present unit is devoted to the basic ideas of norm space. 

Before this course we have studied about vector space and metric 

space. But there is no relation between the algebraic structure and the 

metric we cannot expect a useful and applicable theory that combines 

algebraic and metric concepts. To guarantee such a relation between 

"algebraic" and "geometric" properties of 𝑋 we define on 𝑋 a metric 𝑑 in a 

special way as follows. We first introduce an auxiliary concept, the norm 

(definition below), which uses the algebraic operations of vector space. A 

large number of metric spaces in analysis can be regarded as normed 

spaces, so that a normed space is probably the most important kind of 

space in functional analysis, at least from the viewpoint of present-day 

applications.  

1.2  OBJECTIVES 

After studying this unit, learner will be able to  

i. Described the concept of normed space. 

ii. Evaluate the normed. 

iii. Problems and examples related to normed space. 

 

1.3 BASICS 

We first defined the basic definitions: 

 

1.3.1 METRIC SPACE 

Let 𝑋 ≠ ∅ be a set. A metric on the set 𝑋 is essentially just a rule for 

calculating the distance between any two elements of 𝑋. 

 

https://en.wikipedia.org/wiki/Norm_(mathematics)
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Metric space: 

 Let 𝑋 ≠ ∅  be a set then the metric on the set 𝑋 is defined as a function 

𝑑: 𝑋 ×  𝑋 →  [0, ∞) such that the following conditions are satisfied  

 

i. 𝑑(𝑥, 𝑦) ≥ 0 ∀𝑥, 𝑦 ∈ 𝑋  (self distance) 

ii. 𝑑(𝑥, 𝑦)  =  0if and only if 𝑥 =  𝑦∀𝑥, 𝑦 ∈ 𝑋 (Positivity) 

iii. 𝑑(𝑥, 𝑦)  =  𝑑(𝑦, 𝑥); ∀𝑥, 𝑦 ∈ 𝑋 (Symmetry property) 

iv. 𝑑(𝑥, 𝑦) ≤  𝑑(𝑥, 𝑧) +  𝑑(𝑧, 𝑦); ∀𝑥, 𝑦, 𝑧 ∈ 𝑋 (Triangle inequality) 

 

 

A metric space is an ordered pair (𝑋, 𝑑) where 𝑋 is a nonempty set and 𝑑 

is a metric on 𝑋. 

 

 Pseudo-metric: 

 Let 𝑋 ≠ ∅  be a set then thepseudo-metric on the set 𝑋 is defined as a 

function 𝑑: 𝑋 ×  𝑋 →  [0, ∞) such that it satisfies axioms (𝑀1), (𝑀3)and 

(𝑀4) of metric space and the axiom 

(𝑀∗2)𝑑(𝑥, 𝑥) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. 

Every Metric is pseudo-metric but pseudo-metric need not to be metric. 

 

NOTE: 

Metric 𝑑 is also known as distance function. 

For a Pseudo-metric 𝑥 = 𝑦 ⇒ 𝑑(𝑥, 𝑦) = 0 but converse may not be true. 

 

 

 

𝑋 × 𝑋 [0, ∞) 

(𝑥, 𝑦)   𝑑(𝑥, 𝑦) 
𝑑 

Fig.1.3.1. Metric Space 
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Examples: 

 Let 𝑋 be any set and define the function 𝑑 ∶  𝑋 ×  𝑋 →  ℝ by 

𝑑(𝑥, 𝑦) = {
1,   𝑥 ≠ 𝑦
0, 𝑥 = 𝑦

 

Then 𝑑 is a metric on 𝑋 and called the discrete metric. 

 

 The set 𝐶[0,1] consisting of all real valued continuous functions 

defined on [0,1] with function d defined by 𝑑(𝑓, 𝑔) =

∫ |𝑓(𝑥) − 𝑔(𝑥)| 𝑑𝑥  𝑓𝑜𝑟 𝑎𝑙𝑙 
1

0
𝑓 , 𝑔 ∈ 𝐶[0,1]. I a metric space. 

 

Diameter:  

Let (𝑋, 𝑑) be a metric space and let 𝑌 be a non empty subset of 𝑋. Then 

the diameter of  𝑌, denoted by 𝛿(𝑌) be defined as 

𝛿(𝑌) = sup{𝑑(𝑥, 𝑦): 𝑥, 𝑦 ∈ 𝑌} 

i.e. diameter is the supremum of the set of all distance between point of 𝑌. 

 

Distance between point and set:   

Let 𝑌 be a non empty subset of 𝑋 and 𝑝 ∈ 𝑋 then distance between point𝑝 

and 𝑌 is defined as 

𝑑(𝑝, 𝑌) = 𝑖𝑛𝑓 {𝑑(𝑝, 𝑥): 𝑥 𝑖𝑛 𝑌} . 

If 𝑝 ∈ 𝑌 then 𝑑(𝑝, 𝑌) = 0 

 

Distance between two set:  

Let 𝑌1and𝑌2 be a non empty subset of 𝑋 then distance between 𝑌1and𝑌2 is 

defined as 

𝑑(𝑌1, 𝑌2) = 𝑖𝑛𝑓 {𝑑(𝑥, 𝑦): 𝑥 𝑖𝑛 𝑌1  𝑎𝑛𝑑 𝑦 𝑖𝑛 𝑌1} 

 

NOTE:  

𝑑(𝑌1, 𝑌2) ≥ 0and𝑑(𝑌1, 𝑌2) ≥ 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑌1 ∩ 𝑌2 ≠ ∅ 

𝑑(𝑌, ∅) = ∞where∅ is an empty set. 



Department of Mathematics  
Uttarakhand Open University Page 6 
 

Bounded Metric spaces: 

 Let (𝑋, 𝑑) be a metric space. Then 𝑋 is said to be bounded if there exists 

𝐾 ∈ ℝ+ such that 𝑑(𝑥, 𝑦) ≤ 𝐾 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑋. 

 

Unbounded Metric spaces: 

 Let (𝑋, 𝑑) be a metric space. Then 𝑋 is said to be unbounded if it is not 

bounded. 

 

Open Sphere: 

 Let (𝑋, 𝑑) be a metric space and let 𝑥0 ∈ 𝑋. If 𝑟 be any real number then 

the set 𝑥 ∈ 𝑋: 𝑑(𝑥, 𝑥0) < 𝑟 is said to be open sphere or open ball. 

Here 𝑥0  is said to be centre of the open sphere and 𝑟 is called the radius of 

the open sphere. 

Open sphere of centre𝑥0 and radius 𝑟 is denoted by 𝑆(𝑥0, 𝑟). 

Therefore mathematically 𝑆(𝑥0, 𝑟) = {𝑥 ∈ 𝑋: 𝑑(𝑥, 𝑥0) < 𝑟} 

 

 

Closed Sphere:  

Let (𝑋, 𝑑) be a metric space and let 𝑥0 ∈ 𝑋.If𝑟 be any real number then the 

set 𝑆[𝑥0, 𝑟) = {𝑥 ∈ 𝑋: 𝑑(𝑥, 𝑥0) ≤ 𝑟} is said to be closed sphere or closed 

ball. 

 

𝑥0 
𝑟 

Closed Sphere 

𝑥0 
𝑟 

Open sphere 
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NOTE:  

 Sphere or open sphere or open ball or open cell or open disc are 

same. 

 In the usual metric space ℝ𝑛, the open sphere 𝑆(𝑟, 𝑥0) is circular 

disc |𝑥 − 𝑥0| < 𝑟 and 𝑥0 ∈ ℝ𝑛 and 𝑟 > 0 

 

Neighbourhood of a point in metric space:  

Let (𝑋, 𝑑) be a metric space and 𝑥0 ∈ 𝑋. A subset 𝑌 of 𝑋 is said to be 

neighbourhood of a point 𝑥0there exists 𝑟 > 0 such that 𝑆(𝑥0, 𝑟) ⊆ 𝑌. 

 

Open sets in metric space: 

Let (𝑋, 𝑑) be a metric space. A subset 𝑌 of 𝑋 is said to be open or 

𝑑 −open in 𝑋if 𝑌 is neighbourhood of each of it points. 

OR 

Let (𝑋, 𝑑) be a metric space. A subset 𝑌 of 𝑋 is said to be open or 

𝑑 −open in 𝑋iff  for each 𝑥 ∈ 𝑌, there exists 𝑟 > 0 such that 𝑆(𝑥, 𝑟) ⊆ 𝑌. 

 

 

Equivalent Metrics: 

Let 𝑑 and 𝑑′ are two metrics on the same set 𝑋. Then 𝑑 and 𝑑′ are 

equivalent iff every 𝑑 −open set is 𝑑′ −open and every 𝑑′ −open is 

𝑑 −open set . 

 

𝑥0 
𝑟 

Open Set 

𝑌 

𝑋 
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Interior point: 

 Let (𝑋, 𝑑) be a metric space and let 𝑌 be a subset of 𝑋. A point 𝑥 ∈ 𝑋 is 

called an interior point of 𝑌 if there exists an open ball with centre 𝑥 

contained in 𝑌, i.e.,  

 

𝑥 ∈  𝑆(𝑥, 𝑟)  ⊆ 𝑌 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑟 >  0 

 

Interior of Set: 

 The set of all interior points of 𝑌 is called the interior of 𝑌 and is denoted 

by 𝐼𝑛𝑡 (𝑌)or ° . 

 

𝐼𝑛𝑡 (𝑌) = {𝑥 ∈ 𝑌 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∈  𝑆(𝑥, 𝑟)  ⊆ 𝑌 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑟 >  0} 

 

Exterior points:  

Let (𝑋, 𝑑) be a metric space and let 𝑌 be a subset of 𝑋. A point 𝑥 ∈ 𝑋 is 

called a exterior point of 𝑌 if it is an interior point of the complement of 𝑌 

i.e. 𝑌𝑐 . 

 

Exterior of Set: 

 The set of all exterior points of 𝑌 is called the exterior of 𝑌 and is denoted 

by 𝑒𝑥𝑡 (𝑌) or 𝑌𝑒 . i.e. 𝑒𝑥𝑡(𝐴) = 𝑖𝑛𝑡(𝐴𝑐) 

 

Frontier points:  

Let (𝑋, 𝑑) be a metric space and let 𝑌 be a subset of 𝑋. A point 𝑥 ∈ 𝑋 is 

called a frontier point of 𝑌 if it is neither interior or nor exterior point of 𝑌. 

 

Frontier of Set:  

The set of all frontier points of 𝑌 is called the frontier of 𝑌 and is denoted 

by 𝐹𝑟 (𝑌). 
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Boundary point: 

 Let (𝑋, 𝑑) be a metric space and let 𝑌 be a subset of 𝑋. A point 𝑥 ∈ 𝑋 is 

called a boundary point of 𝑌 if it is frontier point of 𝑌 and belong to 𝑌. 

 

Boundary of Set:  

The set of all boundary points of 𝑌 is called the boundary of 𝑌 and is 

denoted by 𝑏 (𝑌). 

 

Dense set:  

Let (𝑋, 𝑑) be a metric space and let 𝑌1 and 𝑌2 be subsets of 𝑋. Then 𝑌1 is 

said to be dense in 𝑌1 if 𝑌2 ⊆ 𝑌1̅. 

 

Everywhere Dense:  

Let (𝑋, 𝑑) be a metric space and let 𝑌1 be a subset of 𝑋. Then𝑌1 is said to 

be dense in 𝑋or everywhere dense if 𝑌1̅ = 𝑋. 

 

Separable: 

 Let (𝑋, 𝑑) be a metric space. 𝑋  is said to be separable if it has a countable 

subset which is dense in 𝑋. 

 

Nowhere Dense:  

Let (𝑋, 𝑑) be a metric space and let 𝑌1 be a subset of 𝑋. Then𝑌1 is said to 

be nowhere dense in 𝑋if interior of the closure of 𝑌 is empty. 

 

Limit Point: 

 Let (𝑋, 𝑑) be a metric space and let 𝑌 be a subset of 𝑋. A point 𝑥 ∈ 𝑋 is 

called a limit point (an accumulation point) if every neighbourhood of 𝑥 

contains a point of 𝑌 distinct from 𝑥. 
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Derived Set:  

The set of all limit points of 𝑌 is called the derived set of 𝑌 and denoted by 

𝐷(𝑌). 

 

Adherent Point:  

Let (𝑋, 𝑑) be a metric space and let 𝑌 be a subset of 𝑋. A point 𝑥 ∈ 𝑋 is 

called an adherent point of 𝑌 if every neighbourhood of 𝑥 contains a point 

of 𝑌(not necessarily distinct from 𝑥). 

 

Adherence of Set:  

The set of all adherent points of 𝑌 is called the adherence of 𝑌. It is 

denoted by 𝐴𝑑ℎ(𝑌). 

 

Isolated points:  

Let (𝑋, 𝑑) be a metric space and let 𝑌 be a subset of 𝑋.A point 𝑥 ∈ 𝑋 is 

called a islolated point of 𝑌 if  𝑥 ∈ 𝑋 but not limit point of 𝑌. 

 

Closed Sets:  

Let (𝑋, 𝑑) be a metric space. A subset 𝑌 of 𝑋 is said to be closed or 𝑑-

closed if the compliment of 𝑌 is open. 

OR 

         A subset 𝑌 of the metric space (𝑋, 𝑑) is said to be closed if it     

contains each of its limit points, i.e.,𝐷(𝑌) ⊆  𝑌. 

 

Isometric mapping, isometric spaces: 

Let 𝑋 = (𝑋, 𝑑) and �̂� =  (�̂�, 𝑑) be metric spaces. Then: 

i. A mapping 𝑇 of 𝑋 into �̂� is said to be isometric or an isometry 

if 𝑇 preserves distances, that is, if for all 𝑥, 𝑦 ∈ 𝑋, 

�̂�(𝑇𝑥, 𝑇𝑦) = 𝑑(𝑥, 𝑦), 

                   where 𝑇𝑥 and 𝑇𝑦 are images of 𝑥 and 𝑦, respectively. 
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ii. The space 𝑋 is said to be isometric with the space �̂� if there 

exists a bijective isometry of 𝑋 onto �̂�.The spaces 𝑋 and �̂� are 

then called isometric spaces. 

 

 

1.3.2 VECTOR SPACE 

 

Definition- Let 𝑉 be a nonempty set with two operations 

(i) Vector addition:  If any  𝑢, 𝑣 ∈ 𝑉 then 𝑢 + 𝑣 ∈ 𝑉 

(ii) Scalar Multiplication: If any  𝑢 ∈ 𝑉 and 𝑘 ∈ 𝐹 then 

𝑘𝑢 ∈ 𝑉 

Then 𝑉 is called a vector space (over the field 𝐹) if the following axioms 

hold for any vectors if the following conditions hold  

[S1]   (𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤) for any vectors 𝑢, 𝑣, 𝑤 ∈ 𝑉 

[S2]   there exists a vector denoted by ‘0’ in 𝑉, such that, for any  𝑢 ∈ 𝑉, 

𝑢 + 0 = 0 + 𝑢 = 𝑢 

           Here ‘0’ is called zero vector 

[S3]   for each 𝑢 ∈ 𝑉 there exists a vector denoted by  ‘ − 𝑢’ in 𝑉 such that 

𝑢 + (−𝑢) = 0 = (−𝑢) + 𝑢 

           Here ‘ − 𝑢’ is called additive inverse of vector  ‘𝑢’ 

[S4]   𝑢 + 𝑣 = 𝑣 + 𝑢  for any vectors 𝑢, 𝑣 ∈ 𝑉 

[P1]   𝑘(𝑢 + 𝑣) = 𝑘𝑢 + 𝑘𝑣, for any  𝑢 ∈ 𝑉 and for any scalar 𝑘 ∈ 𝐹 

[P2]   (𝑘1 + 𝑘2)𝑢 = 𝑘1𝑢 + 𝑘2𝑢, for any  𝑢 ∈ 𝑉 and for any scalar 𝑘1, 𝑘2 ∈

𝐹 

[P3]   (𝑘1𝑘2)𝑢 = 𝑘1(𝑘2𝑢), for any  𝑢 ∈ 𝑉 and for any scalar 𝑘1, 𝑘2 ∈ 𝐹 

[P4]   1. 𝑢 = 𝑢, for any  𝑢 ∈ 𝑉 and for unit scalar  1 ∈ 𝐹 
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The elements of the fiels F are called scalars and the elements of the 

vector space V are called vectors. 

NOTE: 

(i) The conditions [S1]−[S4] concerned with additive structure of 𝑉 and 

can be summarized by saying that 𝑉 is a commutative group under 

addition. 

(ii)  The vector space 𝑉 over the field 𝐹 is denoted by 𝑉(𝐹). 

 

1.4 NORMED SPACE 

In this section we are defining definition of normed space. We first 

introduce subsidiary concept, the norm, which uses the algebraic operations 

of vector space. Then we use the norm to obtain a metric 𝑑 that is of the 

desired kind. This idea gives to the concept of a normed space. 

Let 𝑋  be a vector space over scalar field 𝐾. A norm on a (real or 

complex) vector space 𝑋 is a real-valued function on 𝑋 (‖𝑥‖: 𝑋 → 𝐾) 

whose value at an 𝑥 ∈ 𝑋 is denoted by 

‖𝑥‖ (read “norm of  𝑥"), 

and which has the properties: 

(𝑵𝟏)                                   ‖𝑥‖ ≥ 0∀ 𝑥 ∈ 𝑋 

(𝑵𝟐)                                   ‖𝑥‖ = 0 ⇔ 𝑥 = 0, ∀ 𝑥 ∈ 𝑋 

(𝑵𝟑)                                   ‖𝛼𝑥‖ = |𝛼|‖𝑥‖∀ 𝛼 ∈ 𝐾, ∀𝑥𝜖𝑋 

(𝑵𝟒)                                   ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ ∀𝑥, 𝑦𝜖𝑋  

                                                             (Triangle inequality); 

 

here  𝑥 and 𝑦 are arbitrary vectors in 𝑋 and 𝛼 is any scalar. 
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Whenever we are confronted with the problem of verifying 

whether given function defines a norm or not, the first three properties will 

be more or less obvious, and most of the effort, if any, would go in 

verifying this last statement, namely the triangle inequality. So, once a 

vector space with a norm would be called a normed linear space. A norm 

on 𝑋 defines a metric 𝑑 on 𝑋 which is given by 

𝑑(𝑥, 𝑦) =  ‖𝑥 − 𝑦‖, (𝑥, 𝑦 ∈ 𝑋) … … … … (1) 

and is called the metric induced by the norm.  

 

The normed space just defined is denoted by (𝑋, ‖. ‖) or simply by 𝑋. 

 The norm is continuous, that is, 𝑥 ⟶ ‖𝑥‖ is a continuous mapping 

of (𝑋, ‖. ‖) into ℝ. 

 

 

  

 

Fig 1.4.1 

 The defining properties 𝑵𝟏 to 𝑵𝟒 of a norm are suggested and 

motivated by the length  |𝑥|, of a vector 𝑥 in elementary vector 

algebra, so that in this case we can write ‖𝑥‖ = |𝑥|. 

 The, 𝑵𝟏 and 𝑵𝟐 state that all vectors have positive lengths except the 

zero vector which has length zero. 

  𝑵𝟑 means that when a vector is multiplied by a scalar, its length is 

multiplied by the absolute value of the scalar.  

 𝑵𝟒 is explained in above figure. It means that the length of one side of 

a triangle cannot exceed the sum of the lengths of the two other sides.  
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 It is not difficult to conclude from 𝑵𝟏 to 𝑵𝟒 that (1) does define a 

metric.  

 Hence normed spaces and Banach spaces are metric spaces. 

 

1.4.1 EXAMPLES AND RESULTS 

 

Example 1: 𝑋 =  ℝ (set of reals). Define  ‖𝑥‖ =  |𝑥|, ∀𝑥𝜖ℝ.  

Here ‖ ‖: ℝ →  ℝ,  

∀ 𝑥 ∈ 𝑋, 

 |𝑥| ≥ 0 … … ..(i) 

∀ 𝑥 ∈ 𝑋, ∀ 𝛼 ∈ ℝ ; 

 ‖𝛼𝑥‖ =  |𝛼𝑥| = |𝛼|‖𝑥‖ =  |𝛼||𝑥| … … … … ….(ii) 

∀ 𝑥, 𝑦 ∈ 𝑋,  

 ‖𝑥 + 𝑦‖ =  |𝑥| + |𝑦| =  ‖𝑥‖ +  ‖𝑦‖………………….(iii) 

Again, 

 ‖𝑥‖ = 0 ⇔ |𝑥| = 0 

                  ⇔ 𝑥 = 0. 

Thus (ℝ, ‖𝑥‖) is a normed linear space. 

 

Example 2: 𝑋 =  ℂ (set of complex numbers).. 𝑥 = 𝑎 + 𝑖𝑏 𝜖 ℂ,  

Define  ‖𝑥‖ =  √𝑎2 + 𝑏2 = |𝑎 + 𝑖𝑏| = |𝑥|. 

i. ‖𝑥‖ =  ‖(𝑥1 + 𝑖𝑥2)‖ =  √𝑥1
2 + 𝑥2

2  ≥ 0.  

Therefore, ∀ 𝑥 ∈  ℂ, ‖𝑥‖ ≥ 0. 

 

ii. ∀ 𝑥 ∈  ℂ and ∀ 𝛼 ∈ ℂ,  

‖𝛼𝑥‖ =  ‖𝛼(𝑥1 + 𝑖𝑥2)‖     =   ‖(𝛼𝑥1 + 𝑖𝛼𝑥2)‖ 

                                       =     √(𝛼𝑥1)2 + (𝛼𝑥2)2 
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= |𝛼|√𝑥1
2 + 𝑥2

2 = |𝛼|‖𝑥‖.  

iii. Let 𝑧1, 𝑧2 ∈ ℂ. 

‖𝑧1 + 𝑧2‖2 =  |𝑧1 + 𝑧2|2 =  (𝑧1 + 𝑧2)(𝑧1 + 𝑧2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

(Since ‖𝑧‖2 = 𝑧. 𝑧̅ ) 

‖𝑧1 + 𝑧2‖2 =  |𝑧1 + 𝑧2|2 =  (𝑧1 + 𝑧2)(𝑧1̅ + 𝑧2̅ ) 

                                                                    [ as (𝑧1 + 𝑧2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝑧1̅ + 𝑧2̅] 

‖𝑧1 + 𝑧2‖2 = (𝑧1 + 𝑧2)(𝑧1̅ + 𝑧2̅ )

= 𝑧1𝑧1̅ + 𝑧1𝑧2̅ + 𝑧2𝑧1̅ + 𝑧2𝑧2̅ 

‖𝑧1 + 𝑧2‖2 =  |𝑧1|2 +  |𝑧2|2 + (𝑧1𝑧2̅ + 𝑧2𝑧1̅) 

= |𝑧1|2 +  |𝑧2|2 + 2𝑅𝑒(𝑧1𝑧2̅) (as  𝑧1̅ + 𝑧2 ̅̅ ̅ = 2𝑅𝑒𝑧) 

= |𝑧1|2 +  |𝑧2|2 + 2|𝑧1||𝑧2 ̅̅ ̅| 

= |𝑧1|2 + 2|𝑧1||𝑧2 ̅̅ ̅| +  |𝑧2|2 as |𝑧| = |𝑧̅| 

(|𝑧1| + |𝑧2|)2 

               or, ‖𝑧1 + 𝑧2‖ ≤  |𝑧1| + |𝑧2|, 

                                     = ‖𝑧1‖ + ‖𝑧2‖  

              ‖𝑧1 + 𝑧2‖ ≤   ‖𝑧1‖  +  ‖𝑧2‖ . 

 

iv. For all 𝑧 ∈ ℂ  ‖𝑧‖ = ‖𝑥 + 𝑖𝑦‖ =  √𝑥2 + 𝑦2 = 0 ⇔ 𝑥 =

0, 𝑦 = 0 ⇔ 𝑧 = 0 + 𝑖0 = 0 ( Triangle inequality holds). 

Thus (ℂ , ‖𝑥‖) is a normed linear space. 

 

Example 3: Let ℂ𝑛 be the set of all 𝑛 −tuples of complex numbers. 

For 𝑥 =  (𝑥1, 𝑥2, … … . 𝑥𝑛 )𝜖ℂ𝑛; define ‖𝑥‖ =  √∑ |𝑥𝑖|2𝑛
𝑖=1 , then, 

(ℂ𝑛 , ‖ ‖) is a normed linear space. 

 

Solution:  

i. For all 𝑥 =  (𝑥1, 𝑥2, … … . 𝑥𝑛 )𝜖ℂ𝑛, 

|𝑥𝑖| ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑛, 

                 or, |𝑥𝑖|
2 ≥ 0, or, ‖𝑥‖ =  √∑ |𝑥𝑖|2𝑛

𝑖=1 ≥ 0  or, ‖𝑥‖ ≥ 0. 
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ii. For all 𝑥𝜖ℂ𝑛, for all 𝛼𝜖ℂ 

‖𝛼𝑥‖ = √∑ (𝛼𝑥𝑖)2𝑛
𝑖=1 = |𝛼|‖𝑥‖. 

Therefore, ‖𝛼𝑥‖ = |𝛼|‖𝑥‖for all 𝑥𝜖ℂ𝑛 , ∀𝛼 𝜖 ℂ. 

 

iii. For all 𝑥 =  (𝑥1, 𝑥2, … … . 𝑥𝑛 ), 𝑦 =  (𝑦1, 𝑦2, … … . 𝑦𝑛 ) 𝜖ℂ𝑛; 

𝑥 + 𝑦 =  (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … … . 𝑥𝑛 + 𝑦𝑛 ), 𝜖ℂ𝑛; 

Then, 

 ‖𝑥 + 𝑦‖2 = ∑ |𝑥𝑖 + 𝑦𝑖|2𝑛
𝑖=1 = ∑ |𝑥𝑖 + 𝑦𝑖 |𝑛

𝑖=1 |𝑥𝑖 + 𝑦𝑖| 

                 ≤  ∑ |𝑥𝑖 + 𝑦𝑖|𝑛
𝑖=1 (|𝑥𝑖| + |𝑦𝑖|)[Since, |𝑥𝑖 + 𝑦𝑖| ≤ |𝑥𝑖| + |𝑦𝑖|] 

                    = ∑ |𝑥𝑖 + 𝑦𝑖|𝑛
𝑖=1 |𝑥𝑖|+∑ |𝑥𝑖 + 𝑦𝑖|𝑛

𝑖=1 |𝑦𝑖|  

                 ≤ ‖𝑥 + 𝑦‖‖𝑥‖ + ‖𝑥 + 𝑦‖‖𝑦‖[∑ |𝑥𝑖 + 𝑦𝑖|𝑛
𝑖=1 ≤ ‖𝑥‖ + ‖𝑦‖] 

= ‖𝑥 + 𝑦‖(‖𝑥‖ + ‖𝑦‖) 

or, ‖𝑥 + 𝑦‖2 ≤ ‖𝑥 + 𝑦‖(‖𝑥‖ + ‖𝑦‖) 

or, ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖. For ‖𝑥 + 𝑦‖ ≠ 0. 

 

iv. ‖𝑥‖ = ∑ |𝑥𝑖|
2𝑛

𝑖=1 = 0 ⇔ 𝑥𝑖 = 0, for all 1 ≤ 𝑖 ≤ 𝑛 

⇔ 𝑥 =  (𝑥1, 𝑥2, … … . 𝑥𝑛 ) = (0,0,0 … … . .0, … … 0) = 0 

⇔ 𝑥 = 0 

 

1.4.2 PSEUDO NORM 

Let 𝑋  be a vector space over scalar field 𝐾 (ℝ or ℂ).  

A function  ‖ ‖ on 𝑋 into ℝ is said to be a semi – norm or Pseudo – 

norm if 

 

(𝑵𝟏)                                   ‖𝑥‖ ≥ 0, ∀ 𝑥 ∈ 𝑋 

(𝑵𝟑)                                   ‖𝛼𝑥‖ = |𝛼|‖𝑥‖, ∀ 𝛼 ∈ 𝐾, ∀𝑥𝜖𝑋 

(𝑵𝟒)                                   ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖, ∀𝑥, 𝑦𝜖𝑋  

                                                                 (Triangle inequality); 
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**It means that the in a semi – norm or Pseudo – norm   by second 

property of norm may fail it implies norm may be zero for vectors other 

than the origin. C 

 

 ‖𝑥‖ = |𝑥1| on ℝ2. ∀𝑥 = (𝑥1, 𝑥2, )  ∈ ℝ2 

 If 𝑒1, 𝑒2 is a standard basis on ℝ
2, then define ‖𝑥‖ = |𝑐1 + 𝑐2| 

where 𝑥 ∈ ℝ
2
 has the unique linear combination representation 

𝑥 = 𝑐1𝑒1 + 𝑐2𝑒2 where 𝑐1 and 𝑐2 are constant. 

 

The examples are semi - norm or Pseudo – norm. We can show easily. 

 

1.4.3 MAIN RESULTS 

1. Proof that every norm is a semi-norm but converse is not necessarily. 

 

Solution: Let (𝑋, ‖ ‖) be a normed linear space. 

Then, 

(𝑵𝟏)                                   ‖𝑥‖ ≥ 0∀ 𝑥 ∈ 𝑋 

(𝑵𝟐)                                   ‖𝑥‖ = 0 ⇔ 𝑥 = 0, ∀ 𝑥 ∈ 𝑋 

(𝑵𝟑)                                   ‖𝛼𝑥‖ = |𝛼|‖𝑥‖∀ 𝛼 ∈ 𝐾, ∀𝑥𝜖𝑋 

(𝑵𝟒)                                   ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ ∀𝑥, 𝑦𝜖𝑋  

                                                             (Triangle inequality); 

 

As we know that by condition (𝑁1), (𝑁3) and  (𝑁4) the function 

‖𝑥‖: 𝑋 → ℝ is a semi – norm. 

 

Consider(ℝ3, ‖ ‖)  ∀𝑥 = (𝑥1, 𝑥2, 𝑥3)  ∈ ℝ3, ‖𝒙‖ = |𝒙𝟏| + |𝒙𝟐|. 

 

(𝑵𝟏).       ∀𝑥 ∈ ℝ3, |𝑥1| ≥ 0, |𝑥2| ≥ 0, |𝑥1| + |𝑥2| ≥ 0, so ‖𝑥‖ ≥ 0. 

(𝑵𝟑)          ∀ 𝛼 ∈ ℝ, 
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 ‖𝛼𝑥‖ =  ‖𝛼(𝑥1, 𝑥2, 𝑥3)‖ =  ‖𝛼𝑥1, 𝛼𝑥2, 𝛼𝑥3‖ 

   =  |𝛼𝑥1| + |𝛼𝑥2| 

                                             = |𝛼|(|𝑥1| + |𝑥2|)  = |𝛼|(|𝑥1| + |𝑥2|)  

                                       = |𝛼| ‖𝑥‖∀ 𝛼 ∈ ℝ, ∀𝑥 ∈ ℝ3. 

(𝑵𝟒)       Let 𝑥 = (𝑥1, 𝑥2, 𝑥3),      𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ ℝ3 

 

𝑥 + 𝑦 =  (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, 𝑥3 + 𝑦3) 

 ‖𝑥 + 𝑦‖ =  |𝑥1 + 𝑦1| + |𝑥2 + 𝑦2| ≤ |𝑥1| + |𝑦1| + |𝑥2| + |𝑦2| 

= (|𝑥1| + |𝑥2|) + (|𝑦1| + |𝑦2|) = ‖𝑥‖ + ‖𝑦‖  

or,  

                                  ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ ∀𝑥, 𝑦𝜖 ∈ ℝ3.  

By, (𝑵𝟏), (𝑵𝟑) and (𝑵𝟒) the function ‖ ‖ on ℝ3 into ℝ is semi-norm. 

Now take 𝑧 = (0,0,1) ≠ 0, 𝑧 ∈ ℝ3. 

But ‖𝑧‖ =  |0| + |0| = 0. 

Therefore, 𝑧 ≠ 0, ‖𝑧‖ = 0. 

Thus ‖ ‖: ℝ3 → ℝ is a not a norm. So, every semi-norm is not a norm. 

 

2. Every normed linear space is a metric space. Converse is not necessary 

true. 

 

Solution: Let (𝑋, ‖ ‖) be a normed linear space. Let 𝑑: 𝑋 × 𝑋 ⟶ ℝ be a 

function defined by 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖∀𝑥, 𝑦 ∈ 𝑋. 

i. ∀𝑥, 𝑦 ∈ 𝑋, 𝑥 − 𝑦 ∈ 𝑋. As ‖𝑥 − 𝑦‖ ≥ 0, 

 so, 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ ≥ 0, ∀𝑥, 𝑦 ∈ 𝑋 

ii. 𝑑(𝑥, 𝑦) = 0 ⟺ ‖𝑥 − 𝑦‖ = 0 ⟺ 𝑥 − 𝑦 = 0 ⟺ 𝑥 = 𝑦. 

iii. 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ =  ‖(−1)(𝑦 − 𝑥)‖ 

                                    =  |−1|‖𝑦 − 𝑥‖=1. ‖𝑦 − 𝑥‖ = 𝑑(𝑦, 𝑥). 

 

iv. 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ = ‖(𝑥 − 𝑧) + (𝑧 − 𝑦)‖ 

≤ ‖𝑥 − 𝑧‖ + ‖𝑧 − 𝑦‖ 
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= 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦), ∀𝑥, 𝑦 ∈ 𝑋. 

Therefore, (𝑋, 𝑑)  is a metric space. 

 

Conversely, let 𝑥 = (𝑥𝑛)𝑛=1
∞ , 𝑦 = (𝑦𝑛)𝑛=1

∞ ∈ ℂ𝑁 , where ℂ𝑁 is the set of all 

sequence of complex numbers. 

Define 𝑑(𝑥, 𝑦) = ∑
1

2𝑖  [
|𝑥𝑖−𝑦𝑖|

1+|𝑥𝑖−𝑦𝑖|
]𝑛

𝑖=1  

i. ∀ 𝑥 = (𝑥𝑛)𝑛=1
∞ , 𝑦 = (𝑦𝑛)𝑛=1

∞ , 

|𝑥𝑖 − 𝑦𝑖| ≥ 0∀𝑖 

 or, 
1

2𝑖  [
|𝑥𝑖−𝑦𝑖|

1+|𝑥𝑖−𝑦𝑖|
] ≥ 0. 

Therefore, ∑
1

2𝑖  [
|𝑥𝑖−𝑦𝑖|

1+|𝑥𝑖−𝑦𝑖|
]𝑛

𝑖=1 ≥ 0. So, 𝑑(𝑥, 𝑦) ≥ 0∀ 𝑥, 𝑦 ∈ ℂ𝑁. 

 

ii. 𝑑(𝑥, 𝑦) = 0 

⟺ ∑
1

2𝑖
 [

|𝑥𝑖 − 𝑦𝑖|

1 + |𝑥𝑖 − 𝑦𝑖|
]

𝑛

𝑖=1

= 0 

⟺
1

2𝑖  [
|𝑥𝑖−𝑦𝑖|

1+|𝑥𝑖−𝑦𝑖|
] = 0 

⟺ 𝑥𝑖 − 𝑦𝑖 = 0 

⟺ 𝑥𝑖 = 𝑦𝑖∀𝑖 

Therefore, 𝑥 = 𝑦 

𝑑(𝑥, 𝑦)=0 ⟺  𝑥 = 𝑦 

 

iii. 𝑑(𝑥, 𝑦) = ∑
1

2𝑖  [
|𝑥𝑖−𝑦𝑖|

1+|𝑥𝑖−𝑦𝑖|
]𝑛

𝑖=1 = ∑
1

2𝑖  [
|𝑦𝑖−𝑥𝑖|

1+|𝑥𝑖−𝑦𝑖|
]𝑛

𝑖=1 =

𝑑(𝑦, 𝑥) ∀ 𝑥, 𝑦 ∈ ℂ𝑁 . 

 

iv. Let 𝑧 = (𝑧𝑛)𝑛=1
∞ ∈ ℂ𝑁 then, 

𝑑(𝑥, 𝑦) = ∑
1

2𝑖
 [

|(𝑥𝑖 − 𝑧𝑖) + (𝑧𝑖 − 𝑦𝑖)|

1 + |𝑥𝑖 − 𝑦𝑖|
]

𝑛

𝑖=1
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≤ ∑
1

2𝑖
 [

|𝑥𝑖 − 𝑧𝑖|

1 + |𝑥𝑖 − 𝑦𝑖 |
] + ∑

1

2𝑖
 [

|𝑧𝑖 − 𝑦𝑖 |

1 + |𝑧𝑖 − 𝑦𝑖|
]

𝑛

𝑖=1

𝑛

𝑖=1

 

 

Since 
|𝑎+𝑏|

1+|𝑎+𝑏|
≤

|𝑎|

1+|𝑎+𝑏|
+

|𝑏|

1+|𝑎+𝑏|
. 

𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦), ∀ 𝑥, 𝑦, 𝑧 ∈ ℂ𝑁. 

Therefore (ℂ𝑁, 𝑑) is a metric space. 

Now, 𝑑(𝛼𝑥, 𝛼𝑦) = ∑
1

2𝑖  [
|𝛼𝑥𝑖−𝛼𝑦𝑖|

1+|𝑥𝑖−𝑦𝑖|
]𝑛

𝑖=1 = ∑
1

2𝑖  [
|𝛼||𝑥𝑖−𝑦𝑖|

1+|𝑥𝑖−𝑦𝑖|
]𝑛

𝑖=1   

= |𝛼| ∑
1

2𝑖  [
|𝑥𝑖−𝑦𝑖|

1+|𝑥𝑖−𝑦𝑖|
]𝑛

𝑖=1 ≠ |𝛼|𝑑(𝑥, 𝑦), where,  𝛼 ≠ ±1. 

 

Where 𝑑(𝑥, 𝑦) =  |𝛼𝑥 − 𝛼𝑦| = |𝛼|‖𝑥 − 𝑦‖. 

Therefore, (ℂ𝑁 , 𝑑) is a metric space but not normed linear space. 

So every metric space is not normed linear space. 

 

Remark:  

Whenever we are addressed with the problem of verifying whether given 

function defines a norm or not, the first three properties will be more or 

less obvious, and most of the effort, if any, would go in verifying the 

triangle inequality.  

So, once a vector space with a norm would be called a normed linear 

space. So, given a normed linear space we can define a metric 𝑑(𝑥, 𝑦) =

‖𝑥 − 𝑦‖ ≥ 0, ∀𝑥, 𝑦 ∈ 𝑋 It is clear that 𝑑(𝑥, 𝑦) is non-negative and 

𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦. Now, by the triangle inequality, we get 

𝑑(𝑥, 𝑦) ≤  𝑑(𝑥, 𝑧) +  𝑑(𝑧, 𝑦); ∀𝑥, 𝑦, 𝑧 ∈ 𝑋 Therefore, the distance function 

d satisfies the usual triangle inequality for a metric; and that is why we 

have the same name for these two inequalities.  

Therefore, automatically a normed linear space gets a topology defined by 

this norm which is a nice metric topology; and that is called the norm 

topology of this vector space.   
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SOME NORMS 

S.No. Space Norm  

‖𝒙‖ 

1.  ℝ𝑛 and ℂ𝑛 
(∑ |𝑥𝑗|

2𝑛
𝑗=1 )

1 2⁄

=√|𝑥1|2 + ⋯ |𝑥𝑛|2 

2.  𝑙𝑝 (∑ |𝑥𝑗|
𝑝∞

𝑗=1 )
1 𝑝⁄

where 1 ≤ 𝑝 < ∞ 

3.  𝑙∞ 𝑠𝑢𝑝𝑗|𝑥𝑗| if 𝑝 = ∞ 

4.  𝐶[𝑎, 𝑏] 𝑚𝑎𝑥𝑡∈𝑗|𝑥(𝑡)| 

5.  Set of all continuous real 

–valued functions on 

[0,1] 

∫ |𝑥(𝑡)|
1

0

𝑑𝑡 

 

Note:  

𝑙𝑝 ⊂ 𝑙𝑝′
 if 𝑙 ≤ 𝑝 ≤ 𝑝′ ≤ ∞. 

 

Note:  

𝑐 = {𝑥 ∈ 𝑙∞: (𝑥(𝑗)) converges in 𝕂}. 

𝑐0 = {𝑥 ∈ 𝑐: (𝑥(𝑗)) converges to 0 in 𝕂}. 

𝑐00 = {𝑥 ∈ 𝑙𝑝 𝑎𝑙𝑙 𝑏𝑢𝑡 𝑓𝑖𝑛𝑒𝑡𝑒𝑙𝑦 𝑚𝑎𝑛𝑦𝑥𝑗
′𝑠𝑎𝑟𝑒 0}, 1 ≤ 𝑝 ≤ ∞.  

 

Note: 

For 1 ≤ 𝑝 < ∞, by 𝐿𝑝(𝐸), we mean a collection of equivalence classes 

[𝑓] for which  |𝑓|𝑝 is integrable. Thus  

 𝑓 ∈ 𝐿𝑝(𝐸) ⟺ ∫ |𝑓|𝑝
𝐸

< ∞. 

Sometimes we denote the collection of such functions by the symbol   𝐿𝑝 . 
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Note: 

A measurable function 𝑓 on measurable set 𝐸 is said to be an essentially 

bounded function if there exists 𝑀𝑓 > 0 such that  

|𝑓(𝑥)| ≤ 𝑀𝑓 for all most all 𝑥 ∈ 𝐸. 

We define 𝐿∞(𝐸) to be the collection equivalence classes [𝑓] for which   

𝑓  is essentially bounded functions on   𝐸. 

Therefore 𝑓 ∈ 𝐿∞(𝐸) ⟺ there exists 𝑀𝑓 > 0 such that  |𝑓(𝑥)| ≤ 𝑀𝑓for 

almost all 𝑥 ∈ 𝐸. 

Note:  

For 𝐸 a measurable set, 1≤ 𝑝 <∞, and a function 𝑓 in 𝐿𝑝(𝐸), we denote  

‖𝑓‖p ≔ (∫ |𝑓|𝑝
𝐸

)
1

𝑝⁄ , and for    𝑝 = ∞, ‖𝑓‖∞  =  𝑖𝑛𝑓 {𝑀𝑓 > 0 :  

 |𝑓(𝑥)| ≤ 𝑀𝑓for almost all 𝑥 ∈ 𝐸}. 

Note:   

For 1≤ 𝑝 ≤ ∞, 𝐿𝑝(𝐸) is a vector space over 𝑅. 

 

1.4.4 IMPORTANT EXAMPLE 

 

Problem1: The set  𝑆(0; 1) = {𝑥 ∈ 𝑋: ||𝑥|| = 1} is known as unit sphere 

in norm linear space.  

Show that in a vector space 𝑋, with different norms 𝑆(0; 1) can be 

different. 

 

Solution: Consider 𝑋 = 𝑅2, with four different norms 

:||. ||1 , ||. ||2 , ||. ||4 , ||. ||∞.  

Under these four norms 𝑅2, 𝑆(0; 1) are different. First consider  

(𝑅2, ||. ||1).   
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Then for (𝑥, 𝑦) ∈ 𝑆(0; 1) ⊆ (𝑅2, ||. ||1) gives 

||(𝑥, 𝑦)||
1

= 1 ⇒ |𝑥| + |𝑦| = 1 … … … … … … (1) 

which represents four line segments simultaneously as follows: 

(i) When 𝑥 > 0 and 𝑦 > 0 (i.e. in first quadrant of  𝑅2 plane) 

equation (1) becomes 

𝑥 + 𝑦 = 1. 

 

 

Fig: 1.4.4.1 

(ii) When 𝑥 < 0 and 𝑦 > 0 (i.e. in second quadrant of  𝑅2 plane) 

equation (1) becomes 

−𝑥 + 𝑦 = 1. 

 

 

Fig: 1.4.4.2 

 

(iii) When 𝑥 < 0 and 𝑦 < 0 (i.e. in third quadrant of  𝑅2 plane) 

equation (1) becomes 

−𝑥 − 𝑦 = 1. 
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Fig: 1.4.4.3 

 

(iv) When 𝑥 > 0 and 𝑦 < 0 (i.e. in first quadrant of  𝑅2 plane) 

equation (1) becomes 

𝑥 − 𝑦 = 1. 

 

 

Fig: 1.4.4.4 

 

Combining all of the above four cases the unit sphere 𝑆(0; 1) in 

(𝑅2, ||. ||1) is represented in the following figure: 

 

 

 

Fig: 1.4.4.5 
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Now take(𝑅2, ||. ||2).  Then for (𝑥, 𝑦) ∈ 𝑆(0; 1) ⊆ (𝑅2, ||. ||2) gives 

||(𝑥, 𝑦)||
2

= 1 ⇒ √𝑥2 + 𝑦2 = 1 … … … … … … (2) 

which is a equation of circle with center (0,0) and radius 1. Hence the unit 

sphere 𝑆(0; 1) in (𝑅2, ||. ||2) is represented in the following figure: 

 

 

 

Fig: 1.4.4.6 

 

Now consider(𝑅2, ||. ||∞).  Then for (𝑥, 𝑦) ∈ 𝑆(0; 1) ⊆ (𝑅2, ||. ||∞) gives 

||(𝑥, 𝑦)||
∞

= 1 ⇒ max {|𝑥|, |𝑦|} = 1 … … … … … … (3) 

which represents four line segments simultaneously. By the definition of 

maximum 

max{|𝑥|, |𝑦|} = {
|𝑥|, 𝑖𝑓 |𝑥| ≥ |𝑦|

|𝑦|, |𝑦| < |𝑥|.  
 

And the condition |𝑥| ≥ |𝑦| gives 
|𝑦|

|𝑥|
≤ 1. This implies that |𝑡𝑎𝑛𝜃| ≤ 1, 

where 𝜃 is defined as in the following figure. Which further gives 
−𝜋

4
≤

𝜃 ≤
𝜋

4
 and 

𝜋

2
+

𝜋

4
≤ 𝜃 ≤ 𝜋 +

𝜋

4
. 
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Fig: 1.4.4.7 

 

Hence from equation (3) and by the definition ofmax{|𝑥|, |𝑦|} we get 

max{|𝑥|, |𝑦|} = |𝑥| = 1, when 
−𝜋

4
≤ 𝜃 ≤

𝜋

4
 and 

𝜋

2
+

𝜋

4
≤ 𝜃 ≤ 𝜋 +

𝜋

4
.  These 

conditions gives two line segments, which are represented in following 

figure: 

 

 

 

Fig: 1.4.4.8 

 

Similarlymax{|𝑥|, |𝑦|} = |𝑦| = 1, when |𝑦| < |𝑥| is represented in 

following figure: 
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Fig: 1.4.4.9 

 

Combining above two cases, (𝑥, 𝑦) ∈ 𝑅2 such that max {|𝑥|, |𝑦|} = 1 is 

represented by following figure: 

 

 

Fig: 1.4.4.10 

 

Now consider 𝑅2 with ||. ||4Then for (𝑥, 𝑦) ∈ 𝑆(0; 1) ⊆ (𝑅2, ||. ||4) gives 

||(𝑥, 𝑦)||
4

= 1 

⇒ (|𝑥|4 + |𝑦|4)
1
4 = 1 

⇒ |𝑥|4 + |𝑦|4 = 1 

⇒ |𝑦|4 = 1 − |𝑥|4 

⇒ 𝑦 = ±√1 − |𝑥|44
. 

The above equation is represented in 𝑅2 as in the following figure: 
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Fig: 1.4.4.11 

 

Problem2: In a norm linear space (𝑋, ||. ||), show that closed unit ball 

𝐵(0; 1) = {𝑥 ∈ 𝑋: ||𝑥|| ≤ 1} is a convex set. 

 

Solution: Let 𝑥, 𝑦 ∈ 𝐵(0; 1) and 0 ≤ 𝛼 ≤ 1. Then 

||𝛼𝑥 + (1 − 𝛼)𝑦|| ≤ ||𝛼𝑥|| + ||(1 − 𝛼)𝑦||

= |𝛼|. ||𝑥|| + |(1 − 𝛼)|. ||𝑦|| … … … … … . (4) 

Since 𝑥, 𝑦 ∈ 𝐵(0; 1)and 0 ≤ 𝛼 ≤ 1, therefore ||𝑥|| = 1 = ||𝑦|| and |𝛼| =

𝛼, |1 − 𝛼| = (1 − 𝛼)  Then inequality (4) becomes 

||𝛼𝑥 + (1 − 𝛼)𝑦|| ≤ |𝛼|. 1 + |(1 − 𝛼)|. 1 = 𝛼 + 1 − 𝛼 = 1. 

This implies that 𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝐵(0; 1). And hence 𝐵(0; 1)is  a 

convex set in (𝑋, ||. ||). 

 

Problem 3:Using the above problem, show that: in 𝑅2, the mapping 

𝜙(𝑥, 𝑦) = (√𝑥 + √𝑦)2, does not define a norm. 

 

Solution: Assume that the mapping 𝜙(𝑥, 𝑦) = (√𝑥 + √𝑦)2 defines a 

norm on 𝑅2. Then by above problem 𝐵(0; 1)is  a convex set. Consider 

(1,0), (0,1) ∈ 𝐵(0; 1) and 𝛼 = 1/2. Then 
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𝛼. (1,0) + (1 − 𝛼). (0,1) =
1

2
. (1,0) + (1 −

1

2
) . (0,1) = (

1

2
, 0) + (0,

1

2
)

= (
1

2
,
1

2
). 

And 𝜙 (
1

2
,

1

2
) = (√

1

2
+ √

1

2
)

2

= (2 × √
1

2
)

2

= 4 ×
1

2
= 2.  Hence (

1

2
,

1

2
) =

1

2
. (1,0) + (1 −

1

2
) . (0,1) ∉  𝐵(0; 1). Thus a convex combination of 

(1,0)&(0,1) does not belongs to 𝐵(0; 1). Which contradicts the fact that 

𝐵(0; 1)is  a convex set. Hence our assumption is wrong, i.e. 𝜙(𝑥, 𝑦) =

(√𝑥 + √𝑦)2, does not define a norm on 𝑅2. 

 

Bounded Set: A subset 𝑀 in  normed space 𝑋 is bounded if and only if 

there is a positive number 𝑐 such that ‖𝑥‖ ≤ 𝑐 for every 𝑥 ∈ 𝑀. 

 

1.5 SUMMARY 

This unit we have start from some basic definitions (metric space, 

vector space). After that we have defined the normed space (Let 𝑋  be a 

vector space over scalar field 𝐾. A norm on a (real or complex) vector 

space 𝑋 is a real-valued function on 𝑋 (‖𝑥‖: 𝑋 → 𝐾) whose value at an 

𝑥 ∈ 𝑋 is denoted by‖𝑥‖ (read “norm of  𝑥"),and which has the four 

properties)  then Examples defined, after that Semi-Norm(Let 𝑋  be a 

vector space over scalar field 𝐾 (ℝ or ℂ). A function  ‖ ‖ on 𝑋 into ℝ is 

said to be a semi – norm or Pseudo – norm if ‖𝑥‖ (read “norm of  𝑥"),and 

which has the three properties)   and Main Results defined. 
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1.6   GLOSSARY 

 

i. Set: Any well-defined collection of  objects or numbers are 

referred to as a set.  

 

ii. Interval: An open interval does not contain its endpoints, and is 

indicated with parentheses. (𝑎, 𝑏) =]𝑎, 𝑏[= {𝑥𝜖ℝ: 𝑎 < 𝑥 <

𝑏}. A closed interval is an interval which contain all its limit 

points, and is expressed with square brackets. [𝑎, 𝑏] = [𝑎, 𝑏] =

{𝑥𝜖ℝ: 𝑎 ≤ 𝑥 ≤ 𝑏}. A half-open interval includes only one of its 

endpoints, and is expressed by mixing the notations for open and 

closed intervals.(𝑎, 𝑏] =]𝑎, 𝑏] = {𝑥𝜖ℝ: 𝑎 < 𝑥 ≤ 𝑏}. [𝑎, 𝑏) =

[𝑎, 𝑏[= {𝑥𝜖ℝ: 𝑎 ≤ 𝑥 < 𝑏}. 

 

iii. Ordered Pairs: An ordered pair (a, b) is a set of two elements 

for which the order of the elements is of significance. Thus 

),(),( abba  unless a = b. In this respect (a, b) differs from the set 

{a, b}.Again dbcadcba   and),(),( .If X and Y are two 

sets, then the set of all ordered pairs (x, y), such that Xx and 

Yy is called Cartesian product of X and Y.  

 

iv. Relation: A subset R of YX   is called relation of X on Y. It 

gives a correspondence between the elements of X and Y. If (x, y) 

be an element of R, then y is called image of x. A relation in which 

each element of X has a single image is called a function. 



Department of Mathematics  
Uttarakhand Open University Page 31 
 

v. Function: Let X and Y are two sets and suppose that to each 

element x of X corresponds, by some rule, a single element y of Y. 

Then the set of all ordered pairs (x, y) is called function.  

 

vi. Variable: A symbol such as x or y, used to represent an arbitrary 

element of a set is called a variable.  

 

vii. Metric space: Let 𝑋 ≠ ∅  be a set then the metric on the set 𝑋 is 

defined as a function 𝑑: 𝑋 ×  𝑋 →  [0, ∞) such that some 

conditions are satisfied.  

 

viii. Vector space: - Let 𝑉 be a nonempty set with two operations 

(i) Vector addition:  If any  𝑢, 𝑣 ∈ 𝑉 then 𝑢 + 𝑣 ∈ 𝑉 

(ii) Scalar Multiplication: If any  𝑢 ∈ 𝑉 and 𝑘 ∈ 𝐹 then 

𝑘𝑢 ∈ 𝑉 

Then 𝑉 is called a vector space (over the field 𝐹) if the 

following axioms hold for any vectors if the some 

conditions hold. 
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CHECK YOUR PROGRESS 

Fill in the Blanks: 

1. norm on a (real or complex) vector space 𝑋 is a........... on 𝑋. 

2. The norm is...... that is, 𝑥 ⟶ ‖𝑥‖ is a continuous mapping of (𝑋, ‖. ‖) 

into ℝ. 

 

True/False 

3. Proof that every semi -norm is a norm. True/False. 

4. Every normed linear space is a metric space. Converse is not necessary 

true. True/False. 

5. Which of the following statements are true? 

i. 𝑙1 ⊂ 𝑙2  

ii. 𝑙2 ⊂ 𝑐0 

iii. 𝑙2 ⊂ 𝑙1 

6. Which of the following is not a linear space over ℂ? 

i. The set of all convergent sequences in ℂ. 

ii. The set of all bounded sequences in ℂ. 

iii. The set of all sequences in ℂ that converges to 0.  

iv. The set of all sequences in ℂ that converges to a real number. 

7. 
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8.  

 
 

 

9.  

 

 
10.  
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1.9 TERMINAL QUESTIONS 

 

1. Prove that with 𝑑(𝑥, 𝑦) =  |𝑥 − 𝑦|, the absolute value of the difference 

𝑥 –  𝑦, for each 𝑥, 𝑦 ∈  ℝ, (ℝ, 𝑑) is a metric space. 

 

2. Let 𝑉 = {(𝑥1, 𝑥2): 𝑥1, 𝑥2 ∈ ℝ}. For (𝑥1, 𝑥2), (𝑦1, 𝑦2) ∈ 𝑆and 𝑐 ∈ ℝ, 

define (𝑥1, 𝑥2) + (𝑦1, 𝑦2) = (𝑥1 + 𝑦1, 𝑥2 − 𝑦2) and 𝑐(𝑥1, 𝑥2) =

(𝑐𝑥1, 𝑐𝑥2). Prove that 𝑆  is not a vector space. 

 

3. Show that  (ℝ𝑛 , ‖ ‖) is a normed linear space. 

 

4. Show that the set of all real numbers, with the usual addition and 

multiplication, constitutes a one-dimensional real vector space, and the 

set of all complex numbers constitutes a one-dimensional complex 

vector space. 

 

5. Show that if 𝑑 is a metric on a vector space 𝑋 ≠ 0 which is obtained 

from a norm, and �̂� is defined by 𝑑(𝑥, 𝑥) = 0, �̂�(𝑥, 𝑦) = 𝑑(𝑥, 𝑦) +

1, 𝑥 ≠ 𝑦 show that �̂� cannot be obtained from a norm. 

 

6. Show that the norm  ‖𝑥‖ of 𝑥 is the distance from 𝑥 to 0. 
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1.10  ANSWERS 

 

CHECK YOUR PROGRESS 

1. Real-valued function. 

2. Continuous. 

3. False 

4. True 

5. i and ii 

6. d 

7. b 

8. a 

9. d 

10.  a 
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UNIT 2:  
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2.1 INTRODUCTION 

In previous unit we have de Described the concept of normed 

space, evaluate the normed and describe the problems and examples 

related to normed space. In present unit first we are defining extended real 

number system . In mathematics, the extended real number system is 

obtained from the real number system  ℝ by adding 

two infinity elements:  +∞,  and −∞ . 

The extended real number system is denoted   ℝ
∗ =  ℝ⋃{+∞, −∞}. 

After this Hölder's inequality defined in a simple manner. 

In Mathematics, Hölder's inequality, named after  Otto Hölder, is a 

fundamental inequality  between integrals and an indispensable tool for 

the study of 𝐿𝑝  spaces. A complete study of Hölder’s inequality is 

explaining here. After this Minkowski inequality explained here 

Minkowski inequality establishes that the 𝐿𝑝  spaces are normed vector 

spaces. 

 

2.2 OBJECTIVES 

 

After studying this unit, learner will be able to  

i.  Analyze the concept of extended real number system 

ii. Describe the Holder’s Inequality for finite sequence 

iii. Defined the concept of Minkowski’s Inequality for  

        finite sequences 

iv.  Discuss the Holder’s Inequality for infinite sequence 

v.  Explained the detailed concept regarding Continuity in  

      Normed Linear Space 

 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Infinity
https://en.wikipedia.org/wiki/Otto_H%C3%B6lder
https://en.wikipedia.org/wiki/Inequality_(mathematics)
https://en.wikipedia.org/wiki/Lebesgue_integration
https://en.wikipedia.org/wiki/Lp_space
https://en.wikipedia.org/wiki/Lp_space
https://en.wikipedia.org/wiki/Normed_vector_space
https://en.wikipedia.org/wiki/Normed_vector_space


Department of Mathematics 
Uttarakhand Open University Page 39 
 

 

2.3  EXTENDED REAL NUMBER SYSTEM 

Let ℝ =  set of real numbers = {all rationals, all irrationals} 

ℝ∗ =  ℝ⋃{+∞, −∞} 

Then ℝ∗ is called extended real number system. 

 

Definition:  

Let 𝑝 be an extended real number such that 𝑝 ≥ 1.  

An extended real number 𝑞 is called conjugate index of 𝑝 if, 

i. 
1

𝑝
+

1

𝑞
= 1, when 1 < 𝑝 < ∞ 

ii. 𝑞 = ∞  when 𝑝 = 1 

iii. 𝑞 = 1 when 𝑝 = ∞ 

 

 Example: 

i. Let 𝑝 = 4, then 
1

𝑝
+

1

𝑞
= 1 ⇒

1

𝑞
= 1 −

1

𝑝
= 1 −

1

4
=

3

4
. 

𝑞 =
4

3
 

ii. Let 𝑝 = 3, then 
1

𝑝
+

1

𝑞
= 1 ⇒

1

𝑞
= 1 −

1

𝑝
= 1 −

1

3
=

2

3
 

𝑞 =
3

2
 

iii. Let 𝑝 = 3, then 
1

𝑝
+

1

𝑞
= 1 ⇒

1

𝑞
= 1 −

1

𝑝
= 1 −

1

2
=

1

2
 

𝑞 =
2

1
 

Remark: 

i. 1 < 𝑝 < ∞,
1

𝑝
+

1

𝑞
= 1, then 1 < 𝑞 < ∞. 

ii. By symmetry of definition, if 𝑞 is the conjugate index of 𝑝 then 

𝑝 is also conjugate index of 𝑞. Thus, 𝑝 and 𝑞 are conjugated 

indices of each other. 
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Lemma1 [Young’s inequality]:  

Let  𝑝 be a +𝑣𝑒 real number such that  1 < 𝑝 < ∞, and let  𝑞 be the 

conjugate index of  𝑝, (1 < 𝑞 < ∞).  

Let 𝑎 and 𝑏 be two positive real numbers, then,  

𝑎𝑏 ≤
𝑎𝑝

𝑝
+

𝑏𝑞

𝑞
 

                                                      ……………………..[1] 

 

Proof: Define, 𝑓(𝑡) = 𝑡𝛼 − 𝛼𝑡 + 𝛼 − 1, ∀𝑡 ≥ 0. 

Therefore, 𝑓′(𝑡) = 𝛼𝑡𝛼−1 − 𝛼 = 𝛼 [
1

𝑡1−𝛼 − 1] 

(Since 1 −  𝛼 > 0∀𝑡 ≥ 0). 

So, 𝑓′(𝑡) ≥ 0∀𝑡𝜖[0,1]  

and 𝑓′(𝑡) ≤ 0 ∀𝑡𝜖(1, ∞).  

So by Lagrange Mean Value Theorem, 𝑓(𝑡) is monotonic increasing in 

0 ≤ 𝑡 ≤ 1 and monotonic decreasing in [1, ∞). 

Therefore,  𝑓(𝑡) ≤ 𝑓(1) ∀𝑡𝜖[0, ∞). 

For all 𝑡𝜖[0, ∞), 𝑓(1) = 0. 

𝑡𝛼 − 𝛼𝑡 + 𝛼 − 1 ≤ 0 … … … (𝒊) 

Given result is trivially satisfied if 𝑎 = 0, or 𝑏 = 0. 

Now, let 𝑎 ≠ 0, 𝑏 ≠ 0 and 𝛼 =
1

𝑝
, 𝑡 =  𝑎 𝑏⁄   

By (i) (𝑎 𝑏⁄ )
1

𝑝 −
1

𝑝
(𝑎 𝑏⁄ ) +

1

𝑝
− 1 ≤ 0 

or, (𝑎 𝑏⁄ )
1

𝑝 −
1

𝑝
(𝑎 𝑏⁄ ) ≤ 1 −

1

𝑝
 

or, (𝑎 𝑏⁄ )
1

𝑝 −
1

𝑝
(𝑎 𝑏⁄ )  ≤

1

𝑞
, as 

1

𝑞
= 1 −

1

𝑝
 

or, (𝑎)
1

𝑝(𝑏)
1−

1

𝑝 − 𝑎.
1

𝑝
≤  𝑏.

1

𝑞
,[multiplying by 𝑏]. 

or, (𝑎)
1

𝑝(𝑏)
1

𝑞 ≤
𝑎

𝑝
+

𝑏

𝑞
. 
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Replacing 𝑎 by 𝑎𝑝 and 𝑏 by 𝑏𝑞  in the above inequality, we have,  

 

𝑎𝑏 ≤
𝑎𝑝

𝑝
+

𝑏𝑞

𝑞
. 

 

2.4 HOLDER’S INEQUALITY FOR FINITE 

SEQUENCES  

Let 𝑥 = (𝑥𝑖)𝑖=1
𝑛 , 𝑦 = (𝑦𝑖)𝑖=1

𝑛 ∈ ℂ
𝑛 .   

Define,‖𝒙‖𝑝 =  [∑ |𝑥𝑖|
𝑝𝑛

𝑖=1 ]1 𝑝⁄ , for 𝑝 > 1.  

Then, ∑ |𝑥𝑖𝑦𝑖| ≤ [∑ |𝑥𝑖|
𝑝𝑛

𝑖=1 ]
1

𝑝⁄ [∑ |𝑦𝑖|𝑞𝑛
𝑖=1 ]

1
𝑞⁄ .𝑛

𝑖=1  

                                           ………………………………………. [2] 

Let 𝑝 > 1 and define 𝑞 by 
1

𝑝
+

1

𝑞
= 1 𝑝 and 𝑞 are  called  conjugate 

exponents. 

∑ |𝑥𝑖𝑦𝑖| 𝑛
𝑖=1 ≤ ‖𝑥‖𝑝‖𝑦‖𝑞. 

 

Proof: Let 𝑥 = (𝑥1, 𝑥2, … 𝑥𝑛), 𝑦 = (𝑦1, 𝑦, … 𝑦𝑛).  

 

Case I:  If  𝑥 = 0 or 𝑦 = 0, then the inequality is trivially satisfied. 

 

Case II: If 𝑥 ≠ 0 or 𝑦 ≠ 0. 

After using equation (1), 𝑎𝑖𝑏𝑖 ≤
𝑎𝑖

𝑝

𝑝
+

𝑏𝑖
𝑞

𝑞
, 𝑎𝑖, 𝑏𝑖 > 0. 

 We take 𝑎𝑖 =
|𝑥𝑖|

‖𝑥‖𝑝
, 𝑏𝑖 =

|𝑦𝑖|

‖𝑦‖𝑞
, 𝑝 > 1, 𝑞 > 1    

[ Since 
1

𝑝
+

1

𝑞
= 1 ⟹

1

𝑞
= 1 −

1

𝑝
⟹ 𝑞 =

1

1−
1

𝑝

> 1]. 

Thus, the above inequality becomes, 
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|𝑥𝑖|

‖𝑥‖𝑝

|𝑦𝑖|

‖𝑦‖𝑞
≤

1

𝑝

|𝑥𝑖|
𝑝

‖𝑥‖𝑝
𝑝 +

1

𝑞

|𝑦𝑖|𝑞

‖𝑦‖𝑞
𝑞 

                 or,     ∑
|𝑥𝑖|

‖𝑥‖𝑝

|𝑦𝑖|

‖𝑦‖𝑞

𝑛
𝑖=1 ≤

1

𝑝
 
∑ |𝑥𝑖|𝑝𝑛

𝑖=1

‖𝑥‖𝑝
𝑝 +

1

𝑞
 

∑ |𝑦𝑖|𝑞𝑛
𝑖=1

‖𝑦‖𝑞
𝑞  

=
1

𝑝
 
‖𝑥‖𝑝

𝑝

‖𝑥‖𝑝
𝑝 +

1

𝑞
 
‖𝑦‖𝑞

𝑞

‖𝑦‖𝑞
𝑞 

=  
1

𝑝
+

1

𝑞
=1 

∑
|𝑥𝑖|

‖𝑥‖𝑝

|𝑦𝑖|

‖𝑦‖𝑞

𝑛
𝑖=1 = 1. 

 

Or,                                        ∑ |𝑥𝑖| |𝑦𝑖|
𝑛
𝑖=1   ≤  ‖𝑥‖𝑝‖𝑦‖𝑞. 

 

Or,                                         ∑ |𝑥𝑖𝑦𝑖| 𝑛
𝑖=1 ≤ ‖𝑥‖𝑝‖𝑦‖𝑞 . 

 

2.5 MINKOWSKI’S INEQUALITY FOR FINITE 

SEQUENCES  

Let 𝑥 = (𝑥𝑖)𝑖=1
𝑛 , 𝑦 = (𝑦𝑖)𝑖=1

𝑛 ∈ 𝑙𝑝
𝑛; 𝑝 ≥ 1,   

𝑙𝑝
𝑛 = {(𝑥𝑖)𝑖=1

𝑛 ∈ ℂ
𝑛: ∑ |𝑥𝑖|

𝑝𝑛
𝑖=1 < ∞}. 

Then, ‖𝒙 + 𝒚‖𝑝 ≤ ‖𝒙‖𝑝 + ‖𝒚‖𝑝 . 

i.e. [∑ |𝑥𝑖 + 𝑦𝑖|𝑝𝑛
𝑖=1 ]1 𝑝⁄ ≤ [∑ |𝑥𝑖|

𝑝𝑛
𝑖=1 ]1 𝑝⁄ +  [∑ |𝑦𝑖|𝑝𝑛

𝑖=1 ]1 𝑝⁄ …..[3] 

 

‖𝒙 + 𝒚‖𝑝 ≤ ‖𝒙‖𝑝 + ‖𝒚‖𝑝 

 

Proof. For 𝑝 = 1, ∑ |𝑥𝑖 + 𝑦𝑖|𝑛
𝑖=1 ≤ ∑ (|𝑥𝑖| + (|𝑦𝑖|𝑛

𝑖=1 ) 

                                                            Since |𝑥𝑖 + 𝑦𝑖| ≤ |𝑥𝑖| + |𝑦𝑖|∀𝑖 

= ∑|𝑥𝑖| + ∑|𝑦𝑖|

𝑛

𝑖=1

𝑛

𝑖=1

 

                                            = ‖𝑥‖1 +  ‖𝑦‖1 



Department of Mathematics 
Uttarakhand Open University Page 43 
 

‖𝑥 + 𝑦‖1 ≤ ‖𝑥‖1 +  ‖𝑦‖1.  

Hence given result is true for 𝑝 = 1. 

For 𝑝 > 1, ‖𝑥 + 𝑦‖𝑝
𝑝

= ∑ |𝑥𝑖 + 𝑦𝑖|𝑛
𝑖=1

𝑝
 

                                   =∑ |𝑥𝑖 + 𝑦𝑖|𝑛
𝑖=1 |𝑥𝑖 + 𝑦𝑖|𝑝−1 

≤ ∑(|𝑥𝑖| + |𝑦𝑖|)

𝑛

𝑖=1

|𝑥𝑖 + 𝑦𝑖|𝑝−1 

                                                            Since |𝑥𝑖 + 𝑦𝑖| ≤ |𝑥𝑖| + |𝑦𝑖|∀𝑖 

= ∑|𝑥𝑖|

𝑛

𝑖=1

|𝑥𝑖 + 𝑦𝑖|𝑝−1 + ∑|𝑦𝑖|

𝑛

𝑖=1

|𝑥𝑖 + 𝑦𝑖|𝑝−1 

                                                         ………………………..[4] 

At first we shall show that  

(|𝑥𝑖 + 𝑦𝑖|𝑝−1)𝑖=1
𝑛 ∈ 𝐿𝑛

𝑞
 

∑(|𝑥𝑖 + 𝑦𝑖 |𝑝−1)𝑞 = ∑|𝑥𝑖 + 𝑦𝑖|𝑝𝑞−𝑞

𝑛

𝑖=1

𝑛

𝑖=1

 

 

[ Since 
1

𝑝
+

1

𝑞
= 1 ⟹ 𝑝 + 𝑞 = 𝑝𝑞 ⟹ 𝑝 = 𝑝𝑞 − 𝑞]. 

∑(|𝑥𝑖 + 𝑦𝑖|𝑝−1)𝑞 = ∑|𝑥𝑖 + 𝑦𝑖|𝑝

𝑛

𝑖=1

𝑛

𝑖=1

< ∞(∵ 𝑥, 𝑦 ∈ 𝐿𝑛
𝑝

⟹ 𝑥 + 𝑦 ∈ 𝐿𝑛
𝑝

) 

Applying Holder’s inequality in equation [4], we have, 

‖𝑥 + 𝑦‖𝑝
𝑝

≤ [∑|𝑥𝑖|
𝑝

𝑛

𝑖=1

]

1
𝑝⁄

[∑|𝑥𝑖 + 𝑦𝑖|𝑞

𝑛

𝑖=1

]

1
𝑞⁄

+  [∑|𝑦𝑖|𝑝

𝑛

𝑖=1

]

1
𝑝⁄

[∑|𝑥𝑖 + 𝑦𝑖|𝑞

𝑛

𝑖=1

]

1
𝑞⁄

 

= ‖𝒙‖𝑝‖𝑥 + 𝑦‖
𝑝

𝑝
𝑞⁄

+ ‖𝒚‖𝑝‖𝑥 + 𝑦‖
𝑝

𝑝
𝑞⁄
 

Since, 

[∑(|𝑥𝑖 + 𝑦𝑖|)

𝑛

𝑖=1

𝑝𝑞−𝑞

]

1 𝑞⁄

=  [∑(|𝑥𝑖 + 𝑦𝑖|)

𝑛

𝑖=1

𝑝

]

1 𝑞⁄

= [∑(|𝑥𝑖 + 𝑦𝑖|)

𝑛

𝑖=1

]

𝑝 𝑞⁄
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Or, ‖𝑥 + 𝑦‖𝑝
𝑝

≤ ‖𝒙‖𝑝‖𝑥 + 𝑦‖
𝑝

𝑝
𝑞⁄

+ ‖𝒚‖𝑝‖𝑥 + 𝑦‖
𝑝

𝑝
𝑞⁄
 

= (‖𝒙‖𝑝 + ‖𝒚‖𝑝)‖𝑥 + 𝑦‖
𝑝

𝑝
𝑞⁄
 

‖𝑥 + 𝑦‖
𝑝

𝑝−
𝑝
𝑞

≤ ‖𝒙‖𝑝 + ‖𝒚‖𝑝 

[ Since 
1

𝑝
+

1

𝑞
= 1 ⟹ 𝑝 + 𝑞 = 𝑝𝑞 ⟹ 𝑞 = 𝑝𝑞 − 𝑝 ⟹ 1 = 𝑝 −

𝑝

𝑞
] 

 

‖𝒙 + 𝒚‖𝑝 ≤ ‖𝒙‖𝑝 + ‖𝒚‖𝑝 

 

**** 

 

………………………………………….(4a) 

 

Cauchy – Schwarz Inequality: 

 

 

Equation (4a) gives, 
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2.5.1 SOLVED PROBLEMS 

 

Problem 1: Let ℂ𝑛 is a vector space over ℂ. Let 𝑝 be a real number such 

that 1 ≤ 𝑝 < ∞ for 𝑥 = (𝑥𝑖)𝑖=1
𝑛 ∈ ℂ𝑛 , define 

‖𝒙‖𝑝 = [∑ |𝑥𝑖|
𝑝𝑛

𝑖=1 ]
1

𝑝⁄ , 

show that ‖ ‖𝑝  is a norm on ℂ𝑛 . 

 

Solution: 

(i) ∀ 𝑥 = (𝑥𝑖)𝑖=1
𝑛 ∈ ℂ𝑛 , |𝑥𝑖| ≥ 0∀𝑖, 1 ≤ 𝑖 ≤ 𝑛.   

Then, ‖𝒙‖𝑝 = [∑ |𝑥𝑖|
𝑝𝑛

𝑖=1 ]
1

𝑝⁄ ≥ 0. 

(ii) ∀𝛼 ∈ ℂ, 

‖𝛼𝒙‖𝑝 = [∑|𝛼𝑥𝑖|
𝑝

𝑛

𝑖=1

]

1
𝑝⁄

 

                                                 =[∑ |𝛼|𝑝|𝑥𝑖|
𝑝𝑛

𝑖=1 ]
1

𝑝⁄  

= |𝛼| [∑|𝑥𝑖|
𝑝

𝑛

𝑖=1

]

1
𝑝⁄

 

= |𝛼|‖𝒙‖𝑝. 

 

(iii) ∀  𝑥 = (𝑥𝑖)𝑖=1
𝑛 ∈ ℂ𝑛 , 𝑦 = (𝑦𝑖)𝑖=1

𝑛 ∈ ℂ𝑛 ,   

Then, ‖𝒙 + 𝒚‖𝑝 ≤ ‖𝒙‖𝑝 + ‖𝒚‖𝑝 .[By Minkowski’s inequality] 

 

(iv) ‖𝒙‖𝑝 = 0 ⟺ [∑ |𝑥𝑖|
𝑝𝑛

𝑖=1 ]1 𝑝⁄ = 0. 

⟺ ∑|𝑥𝑖|
𝑝

𝑛

𝑖=1

= 0. 

⟺ 𝑥𝑖 = 0∀𝑖, 1 ≤ 𝑖 ≤ 𝑛. 

⟺ 𝑥 = (𝑥1, 𝑥2, … … 𝑥𝑛) = (0,0, … … .0) 
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⟺ 𝑥 = 0. 

Therefore,(ℂ𝑛 , ‖ ‖𝑝)is a normed linear space denoted by 

 𝐿𝑛
𝑝

, (1 ≤ 𝑝 < ∞ ) 

 

Problem 2: Let ℂ𝑛 is a vector space over ℂ. for 𝑥 = (𝑥𝑖)𝑖=1
𝑛 ∈ ℂ𝑛 ,   define  

‖𝑥‖∞ = max {|𝑥1|, |𝑥2|,,….. |𝑥𝑛|} = 𝑚𝑎𝑥1≤𝑖≤𝑛 |𝑥𝑖|, 

show that ‖ ‖𝑝  is a norm on ℂ𝑛 . 

 

Solution: 

(i) ∀ 𝑥 = (𝑥𝑖)𝑖=1
𝑛 ∈ ℂ𝑛 , |𝑥𝑖| ≥ 0∀𝑖, 1 ≤ 𝑖 ≤ 𝑛.   

Then, ‖𝑥‖∞ = 𝑠𝑢𝑝1≤𝑖≤𝑛|𝑥𝑖| ≥ 0. 

(ii) ∀𝛼 ∈ ℂ, ∀ 𝑥 ∈ ℂ𝑛 

‖𝛼𝒙‖∞ = 𝑠𝑢𝑝1≤𝑖≤𝑛|𝛼𝑥𝑖| 

                                                 =|𝛼|𝑠𝑢𝑝1≤𝑖≤𝑛|𝑥𝑖| 

= |𝛼|‖𝒙‖∞. 

(iii) ∀  𝑥 = (𝑥𝑖)𝑖=1
𝑛 ∈ ℂ𝑛 , 𝑦 = (𝑦𝑖)𝑖=1

𝑛 ∈ ℂ𝑛 ,   

‖𝑥 + 𝑦‖∞ = 𝑠𝑢𝑝1≤𝑖≤𝑛{|𝑥1 + 𝑦1|, |𝑥2 + 𝑦2|,. 

                                                          |𝑥𝑖 +  𝑦𝑖|,…. |𝑥𝑛 + 𝑦𝑛|} 

≤ 𝑠𝑢𝑝1≤𝑖≤𝑛{|𝑥1| + |𝑦1|, |𝑥2| + |𝑦2|,. 

                                                         |𝑥𝑖| + |𝑦𝑖|,…. |𝑥𝑛| + |𝑦𝑛|} 

‖𝑥 + 𝑦‖∞ ≤ 𝑠𝑢𝑝1≤𝑖≤𝑛|𝑥𝑖| +  𝑠𝑢𝑝1≤𝑖≤𝑛|𝑦𝑖| 

or,  ‖𝑥 + 𝑦‖∞ ≤ ‖𝑥‖𝑝 + ‖𝑦‖𝑝 .[By definition of ‖ ‖∞] 

 

(iv) Now, ‖𝑥‖∞ = 0 ⟺ 𝑠𝑢𝑝1≤𝑖≤𝑛|𝑥𝑖| 

⟺ 𝑠𝑢𝑝1≤𝑖≤𝑛{|𝑥1|, |𝑥2|, . |𝑥𝑖|,…. |𝑥𝑛|} = 0 

⟺ 𝑥𝑖 = 0∀1 ≤ 𝑖 ≤ 𝑛 

⟺ 𝑥 = (𝑥1, … . 𝑥𝑖 … … 𝑥𝑛) = (0, … . .0, , , , ,0) = 0 

 

(ℂ𝑛 , ‖ ‖∞) is a normed linear space, denoted 𝐿𝑛
∞. 
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Problem 3: Let ℂ𝑛 is a vector space over ℂ. for 𝑥 = (𝑥𝑖)𝑖=1
𝑛 ∈ ℂ𝑛 ,   define  

‖𝑥‖ = ∑ |𝑥𝑖|
∞
𝑖=1 = |𝑥1| + |𝑥2| + ⋯ . |𝑥𝑛| + …… 

 Check that ‖ ‖   is a norm on ℂ𝑛 or not. 

 

Solution.  𝑥 = (1,1 … .1 … ) ∈ ℂ𝑛 = (1)𝑛=1
∞ = ∞ 

∑(𝟏)

∞

𝒏=𝟏

= ∞ 

‖ ‖   is not a norm on ℂ𝑛 . 

 

 

2.6 HOLDER’S INEQUALITY FOR INFINITE 

SEQUENCES  

Let 𝑥 = (𝑥𝑖)𝑖=1
∞ ∈ 𝐿𝑝 , (1 < 𝑝 < ∞), 𝑦 = (𝑦𝑖)𝑖=1

∞ ∈ 𝐿𝑞,  𝑞 is the conjugate 

index of 𝑝, then 

(𝑥𝑛𝑦𝑛)𝑛=1
∞ ∈ 𝑙1 

So ∑ |𝑥𝑛𝑦𝑛| ≤ [∑ |𝑥𝑛|𝑝∞
𝑛=1 ]

1
𝑝⁄ [∑ |𝑦𝑛|𝑞∞

𝑛=1 ]
1

𝑞⁄ .∞
𝑛=1  

                                           ………………………………………. [5] 

(first prove the finite part and then continue). 

 

Proof:- Let 𝑚 be any +𝑣𝑒 integer. 

∑ |𝑥𝑛𝑦𝑛| 𝑚
𝑛=1 ≤ [∑ |𝑥𝑛|𝑝𝑚

𝑛=1 ]
1

𝑝⁄ [∑ |𝑦𝑛|𝑞𝑚
𝑛=1 ]

1
𝑞⁄ . 

                    ≤ [∑ |𝑥𝑛|𝑝∞
𝑛=1 ]

1
𝑝⁄ [∑ |𝑦𝑛|𝑞∞

𝑛=1 ]
1

𝑞⁄ < ∞ ………….[6] 

                    [as product of two finites is finite]. 

The m’th Partial sum of the series ∑ |𝑥𝑛𝑦𝑛| ∞
𝑛=1  is odd ∀𝑚 ≥ 1.  

Taking 𝑚 ⟶ ∞ in [6], we have, 

∑ |𝑥𝑛𝑦𝑛| ∞
𝑛=1 ≤ [∑ |𝑥𝑛|𝑝∞

𝑛=1 ]
1

𝑝⁄ [∑ |𝑦𝑛|𝑞∞
𝑛=1 ]

1
𝑞⁄ . 

Or, ∑ |𝑥𝑛𝑦𝑛| ≤ ‖𝑥‖𝑝 ‖𝑦‖𝑞
∞
𝑛=1 . 
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Remark:-  

Let 𝑥 = (𝑥𝑖)𝑛=1
∞ ∈ 𝑙1 and 𝑦 = (𝑦𝑛)𝑛=1

∞ ∈ 𝑙∞,   

then  

(𝑥𝑛𝑦𝑛)𝑛=1
∞ ∈ 𝑙1 and ∑ |𝑥𝑛𝑦𝑛| ≤ ‖𝑥‖𝑝 ‖𝑦‖∞

∞
𝑛=1 . 

 

Proof:- ‖𝑥‖1 = ∑ |𝑥𝑛|∞
𝑛=1 < ∞. 

‖𝑦‖∞ = 𝑚𝑎𝑥 |𝑦𝑛| < ∞. 

∑|𝑥𝑛𝑦𝑛| = ∑|𝑥𝑛||𝑦𝑛| ≤ {𝑚𝑎𝑥𝑛≥1|𝑦𝑛|} ∑|𝑥𝑛| = ‖𝑦‖∞

∞

𝑛=1

∞

𝑛=1

∞

𝑛=1

‖𝑥‖1 

(∵ 𝑚𝑎𝑥𝑛≥1|𝑦𝑛| =  ‖𝑦‖∞; ∑|𝑥𝑛|

∞

𝑛=1

= ‖𝑥‖ ) 

Or, ∑ |𝑥𝑛𝑦𝑛| ≤∞
𝑛=1 ‖𝑥‖𝑝 ‖𝑦‖∞. 

 

2.7  MINKOWSKI’S  INEQUALITY FOR INFINITE 

SEQUENCES  

Let 𝑥 = (𝑥𝑖)𝑛=1
∞ ∈ 𝑙𝑃 and 𝑦 = (𝑦𝑛)𝑛=1

∞ ∈ 𝑙𝑃,  ((1 ≤ 𝑝 < ∞), 

Define, 

‖𝒙‖𝑝 = [∑ |𝑥𝑛|𝑝∞
𝑛=1 ]

1
𝑝⁄ . 

Then, ‖𝒙 + 𝒚‖𝑝 ≤ ‖𝒙‖𝑝 + ‖𝒚‖𝑝 . 

                                             ………………..[7] 

 

Proof. 

∑|𝑥𝑖 + 𝑦𝑖|𝑝

𝑛

𝑖=1

≤ ∑|𝑥𝑖| + |𝑦𝑖|

𝑛

𝑖=1

|𝑥𝑖 + 𝑦𝑖|𝑝−1 

≤ ∑|𝑥𝑖|

𝑛

𝑖=1

|𝑥𝑖 + 𝑦𝑖|𝑝−1 + ∑|𝑦𝑖|

𝑛

𝑖=1

|𝑥𝑖 + 𝑦𝑖|𝑝−1 
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≤ [∑ |𝑥𝑖|
𝑝

𝑛

𝑖=1
]

1
𝑝⁄

[∑(|𝑥𝑖 + 𝑦𝑖|𝑝−1)𝑞

𝑛

𝑖=1

]

1
𝑞⁄

 

                                      +[∑ |𝑦𝑖|𝑝𝑛
𝑖=1 ]

1
𝑝⁄ [∑ (|𝑥𝑖 + 𝑦𝑖|𝑝−1)𝑞𝑛

𝑖=1 ]
1

𝑝⁄  

(By Holder’s inequality for infinite sequence) 

∑|𝑥𝑖 + 𝑦𝑖|𝑝

𝑛

𝑖=1

= ‖𝒙‖𝑝‖𝑥 + 𝑦‖𝑝
𝑝 𝑞⁄

+ ‖𝒚‖𝑝‖𝑥 + 𝑦‖𝑝
𝑝 𝑞⁄

 

i.e. ∑ |𝑥𝑖 + 𝑦𝑖|𝑝𝑛
𝑖=1 ≤ (‖𝒙‖𝑝 + ‖𝒚‖𝑝)‖𝑥 + 𝑦‖𝑝

𝑝 𝑞⁄
. 

Therefore taking the 𝑙𝑖𝑚𝑖𝑡𝑛→∞, we have, 

or, ‖𝑥 + 𝑦‖𝑝
𝑝

≤ (‖𝒙‖𝑝 + ‖𝒚‖𝑝)‖𝑥 + 𝑦‖𝑝
𝑝 𝑞⁄

. 

or, ‖𝑥 + 𝑦‖
𝑝

𝑝−
𝑝

𝑞⁄
≤ ‖𝒙‖𝑝 + ‖𝒚‖𝑝 

or, ‖𝒙 + 𝒚‖𝑝 ≤ ‖𝒙‖𝑝 + ‖𝒚‖𝑝. 

 

Alternate proof: 

(first prove the finite part and then continue). 

 

Let any integer 𝑚 ≥ 0. 

 [∑ |𝑥𝑖 + 𝑦𝑖|𝑝𝑛
𝑖=1 ]1 𝑝⁄ ≤ [∑ |𝑥𝑖|

𝑝𝑛
𝑖=1 ]1 𝑝⁄ + [∑ |𝑦𝑖|𝑝𝑛

𝑖=1 ]1 𝑝⁄  

                                                                             …..[8] 

(by Minkowskian inequality for finite sequence) 

Therefore, [∑ |𝑥𝑖 + 𝑦𝑖|𝑝𝑛
𝑖=1 ]1 𝑝⁄ ≤ [∑ |𝑥𝑖|

𝑝∞
𝑖=1 ]1 𝑝⁄ +  [∑ |𝑦𝑖|𝑝∞

𝑖=1 ]1 𝑝⁄ . 

Taking limit as  𝑛 → ∞, we get, 

[∑|𝑥𝑖 + 𝑦𝑖|𝑝

𝑛

𝑖=1

]

1
𝑝⁄

≤ ‖𝑥‖𝑝 + ‖𝑦‖𝑝 

or,                                   ‖𝑥 + 𝑦‖𝑝 ≤ ‖𝑥‖𝑝 + ‖𝑦‖𝑝. 

 

Remark: 

Let 𝑥 = (𝑥𝑖)𝑛=1
∞ ∈ 𝑙𝑃 and 𝑦 = (𝑦𝑛)𝑛=1

∞ ∈ 𝑙𝑃,  ((1 ≤ 𝑝 < ∞), 

Define, 
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‖𝒙‖𝑝 = 𝑚𝑎𝑥𝑛≥1{|𝑥𝑛 + 𝑦𝑛|}. 

          ≤ 𝑚𝑎𝑥𝑛≥1{|𝑥𝑛| + |𝑦𝑛|},(Since |𝑥𝑛 + 𝑦𝑛| ≤ |𝑥𝑛| + |𝑦𝑛|) 

 

≤ 𝑚𝑎𝑥𝑛≥1{|𝑥𝑛|} + 𝑚𝑎𝑥𝑛≥1{|𝑦𝑛|} 

= ‖𝑥‖∞ + ‖𝑦‖∞ 

Then, ‖𝒙 + 𝒚‖∞ ≤ ‖𝒙‖∞ + ‖𝒚‖∞ . 

                                             ………………..[9] 

 

Example:  

𝑥 = (𝑥𝑖)𝑛=1
∞ = (

1

𝑛
2

3⁄
)

𝑛=1

∞

; 𝑝 = 3, 𝑞 =
3

2
, 

 
1

3
+

1

3 2⁄
= 1; 

 
1

𝑝
+

1

𝑞
= 1. 

∑ |𝒙𝒏|𝒑∞
𝒏=𝟏 = ∑ (

1

𝑛
2

3⁄
)

𝟑

= ∑
𝟏

𝑛2
∞
𝒏=𝟏

∞
𝒏=𝟏 < ∞.  

& ∑ |𝒙𝒏|𝒒∞
𝒏=𝟏 = ∑ (

1

𝑛
2

3⁄
)

𝟑
𝟐⁄

= ∑
𝟏

𝑛

∞
𝒏=𝟏

∞
𝒏=𝟏 = ∞ 

Therefore, 𝑥 ∈ 𝑙3 ⇒ 𝑥 ∈ 𝑙𝑝 and 𝑥 ∉ 𝑙
3

2⁄ ⇒ 𝑥 ∉ 𝑙𝑞. 

So, 𝑥 ∈ 𝑙𝑝 it does not implies 𝑦 ∉ 𝑙𝑞.  The two different 𝑥 ∈ 𝑙𝑝, 𝑦 ∈ 𝑙𝑞 

must be assumed simultaneously when we consider Holder’s inequality. 

 

Example: 

𝒙 = (𝒙𝟏, 𝒙𝟐, … . . 𝒙𝒊 … … . 𝒙𝒏) ∈ ℂ𝒏. 

‖𝒙‖𝑝 = [∑ |𝑥𝑛|𝑝∞
𝑛=1 ]

1
𝑝⁄ , 1 ≤ 𝑝 < ∞. 

‖𝒙‖∞ = 𝑀𝑎𝑥1≤𝑖≤𝑛{|𝑥𝑖|}. 

𝑥 ∈ 𝑙𝑛
𝑝

, 1 ≤ 𝑝 < ∞. 

Then  ‖𝒙‖∞ = 𝑙𝑖𝑚𝑖𝑡𝑝⟶∞‖𝑥‖𝑝. 

i.e. max{|𝑥1|, |𝑥2| , … … . , |𝑥𝑖|, … … . |𝑥𝑛|} = 𝑙𝑖𝑚𝑖𝑡 𝑝⟶∞[∑ |𝑥𝑛|𝑝∞
𝑛=1 ]

1
𝑝⁄ . 
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Proof. Suppose 𝑛 = 2, 𝑥1, 𝑥2 are +𝑣𝑒 real numbers. 

‖𝒙‖∞ = max {𝒙𝟏, 𝒙𝟐} ≤  [𝑥1
𝑝

+ 𝑥2
𝑝]

1
𝑝⁄

=  ‖𝑥‖𝑝. 

Let 𝑥1 =  𝑥2. In this case, 

𝑙𝑖𝑚𝑖𝑡𝑝⟶∞‖𝑥‖𝑝 =  𝑙𝑖𝑚𝑖𝑡𝑝⟶∞[𝑥1
𝑝

+ 𝑥2
𝑝]

1
𝑝⁄

= 𝑙𝑖𝑚𝑖𝑡𝑝⟶∞[𝑥2
𝑝

+ 𝑥2
𝑝]

1
𝑝⁄

= 𝑙𝑖𝑚𝑖𝑡𝑝⟶∞[2𝑥2
𝑝]

1
𝑝⁄

= 𝑙𝑖𝑚𝑖𝑡𝑝⟶∞ [2
1

𝑝⁄ 𝑥2] = 20 𝑥2 = 𝑥2

=  ‖𝑥‖∞ 

𝑙𝑖𝑚𝑖𝑡𝑝⟶∞‖𝑥‖𝑝 =  ‖𝑥‖∞ 

Let 0 < 𝑥1  < 𝑥2.  

In this case, 

𝑙𝑖𝑚𝑖𝑡𝑝⟶∞‖𝑥‖𝑝 = 𝑙𝑖𝑚𝑖𝑡𝑝⟶∞[𝑥1
𝑝

+ 𝑥2
𝑝]

1
𝑝⁄

= 𝑙𝑖𝑚𝑖𝑡𝑝⟶∞ [(
𝑥1

𝑥2
)

𝑝

+ 1]

1
𝑝⁄

. 𝑥2 = 1. 𝑥2, 𝑎𝑠 
𝑥1

𝑥2
< 1 

= max {𝒙𝟏, 𝒙𝟐} 

Therefore  

𝑙𝑖𝑚𝑖𝑡𝑝⟶∞‖𝑥‖𝑝 =  ‖𝑥‖∞. 

 

 

2.7.1 SOLVED PROBLEMS 

 

Problem 1: 

 Let ℛ[0,1] be a set of all Riemann – integrable functions over [0,1],  

i.e. 𝑓 ∈ ℝ[0,1] ⇒ ∫ |𝑓(𝑥)|
1

0
𝑑𝑥 < ∞. 

Define ‖𝑓‖ = ∫ |𝑓(𝑥)|𝑑𝑥
1

0
 

Verify ‖ ‖ is a norm on ℛ[0,1] or not. 
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Proof:- 

i. ∀ 𝑓 ∈ ℝ[0,1], ∫ |𝑓(𝑥)|
1

0
𝑑𝑥 ≥ 0 ⟹ ‖𝑓‖ ≥ 0. 

ii. Let 𝛼 be a real number, 

‖𝛼𝑓‖= ∫ |(𝛼𝑓)(𝑥)|
1

0
𝑑𝑥 = |𝛼| ∫ |𝑓(𝑥)|𝑑𝑥 = |𝛼|‖𝑓‖

1

0
 

iii. ∀ 𝑓, 𝑔 ∈ ℝ[0,1] 

‖𝑓 + 𝑔‖ = ∫ |𝑓(𝑥) + 𝑔(𝑥)|𝑑𝑥
1

0

≤ ∫ |𝑓(𝑥)|𝑑𝑥 + ∫ |𝑔(𝑥)|
1

0

𝑑𝑥 
1

0

 

≤ ‖𝑓‖ + ‖𝑔‖ 

iv. Define 𝑓(𝑥) = {
1,        𝑥 = 0
0,0 < 𝑥 ≤ 1

 

𝑓 ≠ 0∀𝑥 ∈ [0,1] 

But ‖𝑓‖ =  ∫ |𝑓(𝑥)|𝑑𝑥
1

0
= 0 so 𝑓 ≠ 0, ‖𝑓‖ = 0. 

Therefore ‖ ‖ is not a norm  but a semi-norm. 

 

Problem 2: 

 Let 𝑥, 𝑦 ∈ 𝑋 where (𝑋, ‖ ‖) is a normed linear space. Then, 

|‖𝑥‖ − ‖𝑦‖| ≤ ‖𝑥 − 𝑦‖∀𝑥, 𝑦 ∈ 𝑋. 

………………………………………………..second triangle inequality. 

 

Proof. ∀𝑥, 𝑦 ∈ 𝑋, Let 𝑥 = (𝑥 − 𝑦) + 𝑦. ‖𝑥‖ = ‖(𝑥 − 𝑦) + 𝑦‖ 

                                                       ≤ ‖𝑥 − 𝑦‖ + ‖𝑦‖, by Triangle’s Inequality 

 ‖𝑥‖ − ‖𝑦‖ ≤ ‖𝑥 − 𝑦‖∀𝑥, 𝑦 ∈ 𝑋 … … … … . (1) 

As this is true for all 𝑥 and 𝑦, interchanging 𝑥 and 𝑦 in (1), we have 

‖𝑦‖ − ‖𝑥‖ ≤ ‖𝑦 − 𝑥‖∀𝑥, 𝑦 ∈ 𝑋 

Or −(‖𝑥‖ − ‖𝑦‖)  ≤ ‖(−1)(𝑥 − 𝑦)‖ 

                               = (−1)‖𝑥 − 𝑦‖ = ‖𝑥 − 𝑦‖…………..(2) 

By from (1) and (2), 

|‖𝑥‖ − ‖𝑦‖| ≤ ‖𝑥 − 𝑦‖∀𝑥, 𝑦 ∈ 𝑋. 
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Problem 3:  

Let (𝑋, ‖ ‖)  and (𝑌, ‖ ‖)  be two normed linear space over 𝐾(ℝ or ℂ).  

Then 𝑋 × 𝑌 is normed linear space. 

The norm on 𝑋 × 𝑌 can be defined in one of following ways. 

a. ‖(𝑥, 𝑦)‖1 = ‖𝑥‖ + ‖𝑦‖,∀𝑥, 𝑦 ∈ 𝑋. 

b. ‖(𝑥, 𝑦)‖𝑝 = (‖𝑥‖𝑝 + ‖𝑦‖𝑝)
1

𝑝⁄ , 1 ≤ 𝑝 < ∞. 

 

Solutions:- 

a.  

i. ∀𝑥 ∈ 𝑋, ‖𝑥‖ ≥ 0 

∀𝑦 ∈ 𝑌, ‖𝑦‖ ≥ 0 

Therefore, ‖(𝑥, 𝑦)‖1 = ‖𝑥‖ + ‖𝑦‖ ≥ 0. 

Therefore, , ‖(𝑥, 𝑦)‖1 ≥ 0,∀𝑥, 𝑦 ∈ 𝑋 × 𝑌. 

ii. ∀𝛼 ∈ 𝐾, 

Therefore, , ‖𝛼(𝑥, 𝑦)‖1 = ‖(𝛼𝑥, 𝛼𝑦)‖1 

= ‖𝛼𝑥‖ + ‖𝛼𝑦‖ 

= |𝛼|‖𝑥‖ + |𝛼|‖𝑦‖ 

= |𝛼|(‖𝑥‖ + ‖𝑦‖) 

= |𝛼|‖(𝑥, 𝑦)‖1 

iii. ‖(𝑥1, 𝑦1) + (𝑥2, 𝑦2)‖1 = ‖(𝑥1 + 𝑥2, 𝑦1 + 𝑦2)‖1 

=          ‖𝑥1 + 𝑥2‖ + ‖𝑦1 + 𝑦2‖ 

≤ (‖𝑥1‖ + ‖𝑥2‖) + (‖𝑦1‖ + ‖𝑦2‖)[by triangle inequality] 

=(‖𝑥1‖ + ‖𝑦1‖) + (‖𝑥2‖ + ‖𝑦2‖) 

‖(𝑥1, 𝑦1) + (𝑥2, 𝑦2)‖1 ≤ ‖(𝑥1, 𝑦1)‖1 + ‖(𝑥2, 𝑦2)‖1. 

iv. ‖(𝑥, 𝑦)‖1 = 0 ⟺ ‖𝑥‖ + ‖𝑦‖=0 

                   ⟺ ‖𝑥‖= 0 and ‖𝑦‖=0 

                   ⟺ 𝑥= 0 and 𝑦 = 0 

                   ⟺ (𝑥, 𝑦) = (0,0) = 0 

It means (𝑋 × 𝑌, ‖ ‖1) is a normed linear space. 
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b.  

i. ∀𝑥 ∈ 𝑋, ∀𝑦 ∈ 𝑌, ‖𝑥‖ ≥ 0, ‖𝑦‖ ≥ 0 

‖𝒙‖𝒑 ≥ 0, ‖𝒚‖𝒑 ≥ 0, 1 ≤ 𝑝 < ∞. Therefore, 

 ‖(𝑥, 𝑦)‖𝑝 =  {‖𝑥‖𝑝 +  ‖𝑦‖𝑝}
1

𝑝⁄ → 0. 

ii. ∀𝛼 ∈ 𝐾, ∀(𝑥, 𝑦) ∈ 𝑋 × 𝑌, 

, ‖𝛼(𝑥, 𝑦)‖𝑝 =   ‖(𝛼𝑥, 𝛼𝑦)‖𝑝 = {‖𝛼𝑥‖𝑝 +  ‖𝛼𝑦‖𝑝}
1

𝑝⁄   

= {(|𝛼|‖𝑥‖)𝑝 +  (|𝛼|‖𝑦‖)𝑝}
1

𝑝⁄ = |𝛼|[‖𝑥‖𝑝 + ‖𝑦‖𝑝]
1

𝑝⁄

= |𝛼|‖(𝑥, 𝑦)‖𝑝. 

iii. (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝑋 × 𝑌. 

‖(𝑥1, 𝑦1) + (𝑥2, 𝑦2)‖𝑝 =  ‖(𝑥1 + 𝑥2, 𝑦1 + 𝑦2)‖𝑝 

                            ≤ {[‖𝑥1‖ + ‖𝑥2‖]𝑝 + [‖𝑦1‖ + ‖𝑦2‖]𝑝}1 𝑝⁄ . 

‖(‖𝑥1‖, ‖𝑦1‖) +  (‖𝑥2‖, ‖𝑦2‖) ‖𝑝 

‖(𝑥1, 𝑦1) + (𝑥2, 𝑦2)‖𝑝

≤ ‖(‖𝑥1‖, ‖𝑦1‖)‖𝑝 + ‖(‖𝑥2‖, ‖𝑦2‖)‖𝑝 

(By Minkowski’s Inequality in ℂ2) 

= ‖(𝑥1, 𝑦1)‖𝑝 + ‖(𝑥2, 𝑦2)‖𝑝 

Since (‖𝑥1‖, ‖𝑦1‖)𝑝 = {‖𝑥1‖𝑝 + ‖𝑦‖𝑝}1 𝑝⁄ =  ‖(𝑥1, 𝑦1)‖𝑝  

‖(𝑥1, 𝑦1) + (𝑥2, 𝑦2)‖𝑝 ≤ ‖(𝑥1, 𝑦1)‖𝑝 + ‖(𝑥2, 𝑦2)‖𝑝. 

 

iv. Therefore, ‖(𝑥, 𝑦)‖𝑝 = 0 ⟺ {‖𝑥‖𝑝 + ‖𝑦‖𝑝}1 𝑝⁄ = 0,  

1 ≤ 𝑝 < ∞. 

⟺ ‖𝑥‖𝑝 + ‖𝑦‖𝑝 = 0 

⟺  ‖𝑥‖𝑝 = 0, ‖𝑦‖𝑝=0 

⟺  ‖𝑥‖ = 0, ‖𝑦‖=0 

⟺ 𝑥 = 0, 𝑦 = 0 

⟺ (𝑥, 𝑦) = (0,0) = 0 

⟺ (𝑥, 𝑦) = 0. 

It means (𝑋 × 𝑌, ‖ ‖𝑝) is a normed linear space. 
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2.8 SUMMARY 

 

Present unit is presentation of the topic Extended Real 

Number System, Holder’s Inequality for finite sequence, 

Minkowski’s Inequality for finite sequences and then Solved 

Problems discussed on above mentioned topic. Then Holder’s 

Inequality for infinite sequence, Minkowski’s Inequality for 

infinite sequences and Solved Problems discussed here. 

 

2.9  GLOSSARY 

 

i. Set: Any well-defined collection of objects or numbers are 

referred to as a set.  

 

ii. Interval: An open interval does not contain its endpoints, and is 

indicated with parentheses. (𝑎, 𝑏) =]𝑎, 𝑏[= {𝑥𝜖ℝ: 𝑎 < 𝑥 <

𝑏}. A closed interval is an interval which contain all its limit 

points, and is expressed with square brackets. [𝑎, 𝑏] = [𝑎, 𝑏] =

{𝑥𝜖ℝ: 𝑎 ≤ 𝑥 ≤ 𝑏}. A half-open interval includes only one of its 

endpoints, and is expressed by mixing the notations for open and 

closed intervals.(𝑎, 𝑏] =]𝑎, 𝑏] = {𝑥𝜖ℝ: 𝑎 < 𝑥 ≤ 𝑏}. [𝑎, 𝑏) =

[𝑎, 𝑏[= {𝑥𝜖ℝ: 𝑎 ≤ 𝑥 < 𝑏}. 

 



Department of Mathematics 
Uttarakhand Open University Page 56 
 

iii. Ordered Pairs: An ordered pair (a, b) is a set of two elements 

for which the order of the elements is of significance. Thus 

),(),( abba  unless a = b. In this respect (a, b) differs from the set 

{a, b}.Again dbcadcba   and),(),( .If X and Y are two 

sets, then the set of all ordered pairs (x, y), such that Xx and 

Yy is called Cartesian product of X and Y.  

 

iv. Relation: A subset R of YX   is called relation of X on Y. It 

gives a correspondence between the elements of X and Y. If (x, y) 

be an element of R, then y is called image of x. A relation in which 

each element of X has a single image is called a function. 

v. Function: Let X and Y are two sets and suppose that to each 

element x of X corresponds, by some rule, a single element y of Y. 

Then the set of all ordered pairs (x, y) is called function.  

 

vi. Variable: A symbol such as x or y, used to represent an arbitrary 

element of a set is called a variable.  

 

vii. Metric space: Let 𝑋 ≠ ∅  be a set then the metric on the set 𝑋 is 

defined as a function 𝑑: 𝑋 ×  𝑋 →  [0, ∞) such that some 

conditions are satisfied.  

 

viii. Vector space: - Let 𝑉 be a nonempty set with two operations 

(i) Vector addition:  If any  𝑢, 𝑣 ∈ 𝑉 then 𝑢 + 𝑣 ∈ 𝑉 

(ii) Scalar Multiplication: If any  𝑢 ∈ 𝑉 and 𝑘 ∈ 𝐹 then 

𝑘𝑢 ∈ 𝑉 
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Then 𝑉 is called a vector space (over the field 𝐹) if the 

following axioms hold for any vectors if the some 

conditions hold. 

CHECK YOUR PROGRESS 

1. Young’s inequality is …………………………… 

2. Holder’s Inequality For Finite Sequences is…………………… 

3. Minkowski’s Inequality For Finite Sequences………………… 

4. Holder’s Inequality For Infinite Sequences…………………… 

5. Minkowski’s  Inequality For Infinite Sequences……………… 
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2.12 TERMINAL QUESTIONS 

1. Let (𝑋, ‖ ‖)  and (𝑌, ‖ ‖)  be two normed linear space over  

𝐾(ℝ or   ℂ).  ‖(𝑥, 𝑦)‖∞ = max {‖𝑥‖, ‖𝑦‖}∀𝑥, 𝑦 ∈ 𝑋.  

Then (𝑋 × 𝑌, ‖ ‖∞.) is   normed linear space. 

2. Let (𝑋1, ‖. ‖1)  and (𝑋2, ‖. ‖2) be 𝑛 normed linear space and 

𝑋 = 𝑋1 × 𝑋2 ×. .× 𝑋𝑛  show that, 

a. ‖(𝑥1, 𝑥2, … . . , 𝑥𝑛)‖1 = ‖𝑥1‖1 + ‖𝑥2‖1 + ⋯ . . ‖𝑥𝑛‖𝑛, 

∀(𝑥1, 𝑥2, … . . , 𝑥𝑛) ∈ 𝑋1 × 𝑋2 ×. .× 𝑋𝑛 . 

b. ‖(𝑥1, 𝑥2, … . . , 𝑥𝑛)‖∞ = max {‖𝑥1‖1, ‖𝑥2‖1, … . ‖𝑥𝑛‖𝑛} 

c. ‖(𝑥1, 𝑥2, … . . , 𝑥𝑛)‖𝑝 = {‖𝑥1‖1
𝑝

+  ‖𝑥2‖2
𝑝

+ ⋯ ‖𝑥𝑛‖𝑛
𝑝

}
1

𝑝⁄
 

are norms on 𝑋 = 𝑋1 × 𝑋2 ×. .× 𝑋𝑛. 

3. Let 𝑙𝑝 be the 𝑝 − summable sequence of complex numbers 

((1 ≤ 𝑝 < ∞) for 𝑥 ∈ 𝑙𝑝, define ‖ ‖𝑝 = [∑ |𝑥𝑛|∞
𝑛=1

𝑝
]

1
𝑝⁄ . Verify 

that ‖ ‖𝑝 is a norm. 

4. Let 𝑙∞ be the vector space of all complex valued odd sequence for   

𝑥 ∈ 𝑙∞, define ‖ ‖𝑝 =  𝑠𝑢𝑝𝑛≥1|𝑥𝑛| Verify that ‖ ‖∞ is a norm. 

 

2.13 ANSWERS 

CHECK YOUR PROGRESS 

1. 𝑎𝑏 ≤
𝑎𝑝

𝑝
+

𝑏𝑞

𝑞
 

2.  ∑ |𝑥𝑖𝑦𝑖| 𝑛
𝑖=1 ≤ ‖𝑥‖𝑝‖𝑦‖𝑞 . 

3. ‖𝒙 + 𝒚‖𝑝 ≤ ‖𝒙‖𝑝 + ‖𝒚‖𝑝 

4.  ∑ |𝑥𝑛𝑦𝑛| ≤ ‖𝑥‖𝑝 ‖𝑦‖𝑞
∞
𝑛=1  

5.  ‖𝒙 + 𝒚‖𝑝 ≤ ‖𝒙‖𝑝 + ‖𝒚‖𝑝 . 
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UNIT 3:  

 BANACH SPACE 

 

CONTENTS: 

3.1 Introduction 

3.2 Objectives 

3.3 Continuous at a point 

3.4 Cauchy Sequence 

3.5 Completeness  

3.6 Banach Space 

3.7 Examples  

3.8 Glossary 

3.9  References 

3.10 Suggested readings 

3.11 Terminal questions 

3.12 Answers 

 

3.1  INTRODUCTION 

 

Before this unit we are completely familiar with normed space. In 

present unit we are explaining about Banach space. Now In continuation 

Banach space is a vector space with a metric that allows the computation 

of vector length and distance between vectors and is complete in the sense 

that a Cauchy sequence of vectors always converges to a well-

defined limit that is within the space. 

https://en.wikipedia.org/wiki/Metric_(mathematics)
https://en.wikipedia.org/wiki/Norm_(mathematics)
https://en.wikipedia.org/wiki/Cauchy_sequence
https://en.wikipedia.org/wiki/Limit_of_a_sequence
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 Polish mathematician Stefan Banach, who introduced the concept 

of Banach space and studied it systematically in 1920–1922. Discovery of 

this concept Hans Hahn and Eduard Helly also helped to Stefan Banach. 

  Maurice René Fréchet  was the first to use the term "Banach 

space" and Banach in turn then coined the term "Fréchet space" Banach 

spaces for the  function spaces  studied by Hilbert, Fréchet, 

and Riesz earlier in the century. Banach spaces play a main role in 

functional analysis. In other areas of analysis, the spaces under study are 

often Banach spaces. 

                         

           Ref: https://en.wikipedia.org/ 

                             Fig 3.1  

(Stefan Banach 30 March 1892 – 31 August 1945) 

 

3.2  OBJECTIVES 

 

After studying this unit, learner will be able to  

i. Defined the concept of Banach space 

ii. Describe the concept of completeness. 

iii. Problems, Theorems and examples related to normed space and 

Banach space. 

 

https://en.wikipedia.org/wiki/Stefan_Banach
https://en.wikipedia.org/wiki/Hans_Hahn_(mathematician)
https://en.wikipedia.org/wiki/Eduard_Helly
https://en.wikipedia.org/wiki/Stefan_Banach
https://en.wikipedia.org/wiki/Maurice_Ren%C3%A9_Fr%C3%A9chet
https://en.wikipedia.org/wiki/Fr%C3%A9chet_space
https://en.wikipedia.org/wiki/Function_space
https://en.wikipedia.org/wiki/David_Hilbert
https://en.wikipedia.org/wiki/Maurice_Ren%C3%A9_Fr%C3%A9chet
https://en.wikipedia.org/wiki/Frigyes_Riesz
https://en.wikipedia.org/wiki/Analysis_(mathematics)
https://en.wikipedia.org/
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3.3  CONTINUOUS AT A POINT 

 

Continuity at a point:  

Let (𝑋, 𝑑) and (𝑌, 𝑑∗) be two metric spaces and let 𝑓: 𝑋 → 𝑌 be a function 

of 𝑋 into 𝑌. F is continuous at a point 𝑙 ∈ 𝑋 if for every 𝜀 > 0, there exists 

𝛿 > 0 such that 

𝑑∗(𝑓(𝑥), 𝑓(𝑙)) < 𝜀     whenever 0 < 𝑑(𝑥, 𝑙) < 𝛿. 

 

Continuous map: 

 A function 𝑓 of a metric space (𝑋, 𝑑) into another metric space (𝑌, 𝑑∗) is 

said to be continuous if it is continuous at every point of 𝑋. 

 

Proposition:  

Norm is a continuous function in a normed linear space. 

 

Proof: Let  (𝑋, ‖ ‖) be a normed linear space. 

Define 𝜃: 𝑋 → ℝ be a function defined by 𝜃(𝑥) = ‖𝑥‖ ∀𝑥 ∈ 𝑋. 

Let𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖∀𝑥, 𝑦 ∈ 𝑋. 

𝜌(𝛼, 𝛽) =  |𝛼 − 𝛽|∀𝛼, 𝛽 ∈ ℝ. 

Now, 𝑥, 𝑥0 ∈ 𝑋, 

𝜌(𝜃(𝑥), 𝜃(𝑥0)) = 𝜌(‖𝑥‖, ‖𝑥0‖) =  |‖𝑥‖ − ‖𝑥0‖| ≤ ‖𝑥 − 𝑥0‖,  

                                                               by second triangle inequality, 

𝜌(𝜃(𝑥), 𝜃(𝑥0)) = 𝑑(𝑥, 𝑥0) <∈,  whenever 𝑑(𝑥, 𝑥0) < 𝛿 = ∈,   

or, 𝜌(𝜃(𝑥), 𝜃(𝑥0)) <∈,  whenever 𝑑(𝑥, 𝑥0) < 𝛿 = ∈,   

Norm is continuous at 𝑥0 ∈ 𝑋. Since 𝑥0 is an arbitrary member of 𝑋, 

therefore norm is continuous on 𝑋. 
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Proposition:  

Addition is a continuous function in a normed linear space. 

 

Proof. Let  (𝑋, ‖ ‖) be a normed linear space. 

 

Define 𝜃: 𝑋 × 𝑋 → 𝑋 be a function defined by 

 𝜃(𝑥, 𝑦) = 𝑥 + 𝑦 ∀𝑥, 𝑦 ∈ 𝑋 × 𝑋. 

i.e.  

𝜃: (𝑋 × 𝑋, 𝑑) → (𝑋, 𝜌). 

Let 𝑑((𝑥, 𝑦), (𝑥′, 𝑦′)) = ‖(𝑥, 𝑦) − (𝑥′, 𝑦′)‖1 

                                         =  ‖𝑥 − 𝑥′‖ + ‖𝑦 − 𝑦′‖ <∈   

(𝑎𝑠 ‖𝑥, 𝑦‖1 =  ‖𝑥‖1 + ‖𝑦‖1). 

Let 𝜌(𝜃(𝑥, 𝑦), 𝜃(𝑥0, 𝑦0)) = ‖𝑥 − 𝑦‖,  so for all (𝑥0, 𝑦0) ∈ 𝑋 × 𝑋, 

𝜌(𝜃(𝑥, 𝑦), 𝜃(𝑥0, 𝑦0)) = 𝜌(𝑥 + 𝑦, 𝑥0 + 𝑦0) = ‖(𝑥 + 𝑦) − (𝑥0 + 𝑦0)‖

= ‖(𝑥 − 𝑥0) + (𝑦 − 𝑦0)‖ 

By triangle inequality of norm 

= ‖(𝑥, 𝑦)1 − (𝑥0, 𝑦0)‖ = 𝑑((𝑥, 𝑦), (𝑥0, 𝑦0)) <∈, 

                                                             (whenever 𝑑((𝑥, 𝑦), (𝑥0, 𝑦0)) <∈) 

It proves that the sum functions is continuous in a normed linear space. 

 

Remark: 

Let  (𝑋, ‖ ‖) be a normed linear space be a normed linear space over 

𝕂 = (ℝ 𝑜𝑟 ℂ). 

𝕂 × 𝑋 = {(𝛼, 𝑥): 𝛼 ∈ 𝕂, 𝑥 ∈ 𝑋}. 

𝕂 × 𝑋 is a vector space under following operations over  𝕂. 

i. (𝛼, 𝑥) + (𝛽, 𝑦) = (𝛼 + 𝛽, 𝑥 + 𝑦) 

ii. 𝛽(𝛼, 𝑥) = (𝛽𝛼, 𝛽𝑥). 

 

Define a norm ‖ ‖1 on 𝕂 × 𝑋 by  ‖(𝛼, 𝑥)‖1 = |𝛼| + ‖𝑥‖. 
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i. ∀𝛼 ∈  𝕂, |𝛼| = 0; ∀𝑥 ∈ 𝑋, ‖𝑥‖≥0. 

‖(𝛼, 𝑥)‖1  ≥ 0, ∀(𝛼, 𝑥)𝜖𝕂 × 𝑋. 

ii. ∀𝛽 ∈  𝕂, 

‖𝛽(𝛼, 𝑥)‖1 = ‖(𝛽𝛼, 𝛽𝑥)‖1 = |𝛽𝛼| + ‖𝛽𝑥‖ 

= |𝛽||𝛼| + |𝛽|‖𝑥‖ 

= |𝛽|[|𝛼| + ‖𝑥‖] 

‖𝛽(𝛼, 𝑥)‖1 = |𝛽|‖(𝛼, 𝑥)‖1 

 

iii. ‖(𝛼, 𝑥) + (𝛾, 𝑦)‖1 =  ‖𝛼 + 𝛾, 𝑥 + 𝑦‖ = |𝛼 + 𝛾| + ‖𝑥 + 𝑦‖ 

                                ≤ |𝛼| + |𝛾| + ‖𝑥‖ + ‖𝑦‖ 

= (|𝛼| + ‖𝑥‖) + (|𝛾| + ‖𝑦‖) = ‖(𝛼, 𝑥)‖1 + ‖(𝛾, 𝑦)‖1 

‖(𝛼, 𝑥) + (𝛾, 𝑦)‖1 = ‖(𝛼, 𝑥)‖1 + ‖(𝛾, 𝑦)‖1 

iv. ‖𝛼, 𝑥‖1 = 0 ⇔ |𝛼| + ‖𝑥‖ = 0 

⇔ |𝛼| = 0, ‖𝑥‖ = 0 

⇔ 𝛼 = 0, 𝑥 = 0 

⇔ (𝛼, 𝑥) = (0,0) = 0 

⇔ (𝛼, 𝑥) = (0,0) = 0 

⇔ (𝛼, 𝑥) = 0 

 

(𝕂 × 𝑋,  ‖ ‖1) is a normed linear space. 

Note: 𝑑((𝛼𝑛 , 𝑥𝑛), (𝛼0, 𝑥0)) = ‖(𝛼𝑛 , 𝑥𝑛) − (𝛼0, 𝑥0)‖ 

               = ‖(𝛼𝑛 − 𝑥𝑛 , 𝑥𝑛 − 𝑥0)‖1=|𝛼𝑛 − 𝑥𝑛| + ‖𝑥𝑛 − 𝑥0‖. 

 

Definition of convergence: 

From above, it follows that, ((𝛼𝑛 , 𝑥𝑛))𝑛=1
∞  in 𝕂 × 𝑋 converges to (𝛼0, 𝑥0) 

in 𝕂 × 𝑋 iff 

|𝛼𝑛 − 𝑥𝑛| → 0 as 𝑛 ⟶ ∞ iff (𝛼𝑛)𝑛=1
∞  converges to 𝑥0 in 𝑋. 

Or 

𝑥𝑛 → 𝑥 if ‖𝑥𝑛 − 𝑥0‖ → 0 as 𝑛 ⟶ ∞ 

 



Department of Mathematics Page 64 

Uttarakhand Open University 

 

Proposition:-  

The scalar multiplication is continuous in a normed linear space. 

 

Proof: 

Let  (𝑋, ‖ ‖) be a normed linear space be a normed linear space over 

𝕂 = (ℝ 𝑜𝑟 ℂ). 

 Then, (𝕂 × 𝑋, ‖ ‖1) is a normed linear space. 

 Refine 𝜃 by 𝜃(𝛼, 𝑥) =  𝛼. 𝑥 ∀ (𝛼, 𝑥) ∈ 𝕂 × 𝑋. 

Let ((𝛼𝑛 , 𝑥𝑛) )𝑛=1
∞  be a convergent  sequence in 𝕂 × 𝑋, and this sequence 

((𝛼𝑛 , 𝑥𝑛) )𝑛=1
∞  converges to (𝛼, 𝑥) in 𝕂 × 𝑋. 

We need to show that the sequence ( 𝜃(𝛼𝑛 , 𝑥𝑛) )𝑛=1
∞  converges to 𝜃(𝛼, 𝑥), 

For this, 

𝑑(𝜃(𝛼𝑛 , 𝑥𝑛), 𝜃(𝛼, 𝑥)) = ‖𝜃(𝛼𝑛 , 𝑥𝑛) − 𝜃(𝛼, 𝑥)‖1 = ‖𝛼𝑛 , 𝑥𝑛 −  𝛼𝑥‖1 

(𝑎𝑠 𝜃 (𝛼, 𝑥)) = 𝛼, 𝑥 ∀ (𝛼, 𝑥) ∈  𝕂 × 𝑋) 

= ‖(𝛼𝑛 −  𝛼)𝑥𝑛 + 𝛼(𝑥𝑛 − 𝑥)‖1 ≤ ‖(𝛼𝑛 −  𝛼)𝑥𝑛‖1 + ‖𝛼(𝑥𝑛 − 𝑥)‖1 

= (|𝛼𝑛 − 𝛼|‖𝑥𝑛‖1) + (|𝛼|‖𝑥𝑛 − 𝑥‖1) … … … … . (1) 

Since (𝑥𝑛 )𝑛=1
∞  in  𝑥 in 𝑋. 

Therefore (𝑥𝑛 )𝑛=1
∞  is bounded. 

There exists a real number 𝑀 ≥ 0 such ‖𝑥𝑛‖ ≤ 𝑀 ∀ 𝑛 ≥ 1. 

Then by (1), 

𝑑(𝜃(𝛼𝑛 , 𝑥𝑛), 𝜃(𝛼, 𝑥)) ≤ 𝑀|𝛼𝑛 − 𝛼|1 + |𝛼|‖𝑥𝑛 − 𝑥‖1 … … … . (2)  

Again (𝑥𝑛 )𝑛=1
∞  converges to 𝑥 in 𝑋, then, for ∈> 0,therefore, ∃  a positive 

integer 𝑁1 > 0 such that  

‖𝑥𝑛 − 𝑥‖ < 𝜀
2(1 + |𝛼|)⁄ , ∀ 𝑛 ≥ 𝑁1 … … . . (3) 

Also, (𝛼𝑛 )𝑛=1
∞  in  𝕂 converges to 𝛼 in 𝕂 for  𝜀 2𝑀⁄ > 0, 

There exists a positive integer 𝑁2 > 0 such that 

|𝛼𝑛 − 𝛼| < 𝜀
2𝑀⁄ ∀ 𝑛 ≥ 𝑁2 … … … … . (4) 

Choose 𝑁 = max {𝑁1, 𝑁2 }. 

By (2), (3) and (4), we have, 
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‖𝜃(𝛼𝑛 , 𝑥𝑛) − 𝜃(𝛼, 𝑥)‖ ≤ 𝑀
𝜀

2𝑀
+ |𝛼|

𝜀

2(1 + |𝛼|)
∀ 𝑛 ≥ 𝑁 

                                                        <
𝜀

2
+

𝜀

2
. 1 = 𝜀                ∀ 𝑛 ≥ 𝑁. 

 

Therefore , 

𝜃(𝛼𝑛 , 𝑥𝑛 )𝑛=1
∞   converges to 𝜃(𝛼, 𝑥 ). Hence the function 𝜃 is continuous. 

 

3.4 CAUCHY SEQUENCE 

 

Cauchy sequence:  

Let 𝑑 be a metric on a set 𝑋.  

A sequence {𝑥𝑛} in the set 𝑋 is said to be a Cauchy sequence if, for every 

𝜀 >  0, there exists 𝑛0  ∈ ℕ such that 

𝑑(𝑥𝑛, 𝑥𝑚) <  𝜀 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝑛, 𝑚 ≥  𝑛0 

 

Example  

The sequence {𝑥𝑛} where𝑥𝑛 = 1 +
1

2
+

1

3
+ ⋯ +

1

𝑛
, does not satisfy 

Cauchy’s criterion of convergence. Indeed, 

|𝑥2𝑛 − 𝑥𝑛| =
1

𝑛 + 1
+

1

𝑛 + 2
+ ⋯ +

1

2𝑛
 

                     ≤
1

2𝑛
+

1

2𝑛
+ ⋯ +

1

2𝑛
 

                    =
𝑛

2𝑛
=

1

2
 

So,  |𝑥𝑛 − 𝑥𝑚| 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑒𝑛𝑑𝑠 𝑡𝑜 0. 
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Theorem 1.  

A convergent sequence in a metric space is a Cauchy sequence.  

Proof.  

Let {𝑥𝑛} be a sequence in a set 𝑋 with metric 𝑑. 

Let 𝑥 be an element of 𝑋 such that lim
𝑛→∞

𝑥𝑛 = 𝑥.  

       Given any 𝜀 >  0, there exists some natural number 𝑚 such that 

𝑑(𝑥𝑛 , 𝑥) <
𝜀

2
= 2𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝑛 ≥ 𝑚. 

 Assume any natural numbers 𝑛 and 𝑛′ such that 𝑛 ≥ 𝑚 and 𝑛′ ≥ 𝑚. 

Then 𝑑(𝑥𝑛, 𝑥) <
𝜀

2
 and 𝑑(𝑥𝑛′ , 𝑥)  <

𝜀

2
. 

 

Hence 

𝑑(𝑥𝑛 , 𝑥𝑛′) ≤  𝑑(𝑥𝑛, 𝑥) +  𝑑(𝑥𝑛′, 𝑥) <
𝜀

2
+

𝜀

2
= 𝜀. 

 

Remark: The converse of the above result is not necessarily true. 

 

Proof: Let 𝑋 = (0, 1]. 

Define a metric 𝑑 on 𝑋 by 

 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|∀𝑥, 𝑦 ∈ 𝑋. (𝑋, 𝑑) is metric space.  

Consider the sequence (𝛼𝑛)𝑛=1
∞ = (

1

𝑛
)

𝑛=1

∞

.  

For 0 <∈< 1, choose a +𝑣𝑒 integer 𝑁 >
2

∈
.  

Mathematically, we choose,  𝑁 = [
2

∈
] + 1. 

Therefore 𝑑(𝛼𝑚 , 𝛼𝑛) = |𝛼𝑚 − 𝛼𝑛|, 𝑚, 𝑛 > 𝑁 

= |
1

𝑚
−

1

𝑛
| , 𝑚, 𝑛 > 𝑁 ≤

1

𝑚
+

1

𝑛
 

<
∈

2
+

∈

2
, 𝑖𝑓 , 𝑚, 𝑛 > 𝑁 (∵ 𝑚 >

2

∈
, 𝑛 >

2

∈
) = 𝜖 

𝑑(𝛼𝑚 , 𝛼𝑛) < 𝜖∀𝑚, 𝑛 ≥ 𝑁. 

and (𝛼𝑛)𝑛=1
∞ = (

1

𝑛
)

𝑛=1

∞

, is a Cauchy’s sequence in 𝑋. 
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The sequence (
1

𝑛
)

𝑛=1

∞

 does not converge in 𝑋 = (0, 1], because, 0 is not a 

member of 𝑋. 

             A sequence {𝑥𝑛} in a normed space 𝑋 is said to be a Cauchy 

sequence if, for every 𝜀 >  0, there exists 𝑛0  ∈ ℕ such that 

‖𝑥𝑚 − 𝑥𝑛‖ < 𝜀 , ∀𝑛, 𝑚 ≥  𝑛0 

If 𝑆𝑛 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛, where 𝑛 = 1,2,3 … If (𝑠𝑛) is convergent, say 

𝑠𝑛 → 𝑠, that is ‖𝑠𝑛 − 𝑠‖ → 0, 

Then the infinite series or, briefly, series 

∑ 𝑥𝑘 = 𝑥1

∞

𝑘=1

+ 𝑥2 + ⋯ 

is said to converge or to be convergent, 𝑠 called the sum of the series and 

𝑠 = ∑ 𝑥𝑘 = 𝑥1
∞
𝑘=1 + 𝑥2 + ⋯ (A) 

If ‖𝑥1‖ + ‖𝑥2‖ + ⋯converges, the series (A) is said to be absolutely 

convergent. 

If a normed space 𝑋 contains a sequence (𝑒𝑛) with the property that for 

every 𝑥 ∈ 𝑋 there is a unique sequence of scalars (𝛼𝑛) such that 

‖𝑥 − (𝛼1𝑒1 + ⋯ + 𝛼𝑛𝑒𝑛)‖ → 0       (as 𝑛 ⟶ ∞). 

Then (𝑒𝑛) is called a Schauder basis (or basis) for 𝑋. 

The series, 

∑ 𝛼𝑘𝑒𝑘
∞
𝑘=1 , 

which has the sum 𝑥 is then called the expansion of 𝑥 with respect to (𝑒𝑛), 

and we write, 

𝑥 = ∑ 𝛼𝑘𝑒𝑘
∞
𝑘=1 , 

 

𝑙𝑝 has a Schauder basis, namely (𝑒𝑛), where 𝑒𝑛 = (𝛿𝑛𝑗), that is, 𝑒𝑛 is the 

sequence whose 𝑛𝑡ℎ term 1 and all other terms are zero; thus 

𝑒1 = (1,0,0,0. . ) 

𝑒2 = (0,1,0,0. . ) 

𝑒3 = (0,0,1,0. . ) 
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If a normed space 𝑋 has a Schauder basis, then 𝑋 is separable.  

 Let 𝑋 = (𝑋, ‖. ‖) be a normed space. Then there is a Banach space 

�̂� and an isometry 𝐴 from 𝑋 onto a subspace 𝑊 of  �̂� which is 

dense in �̂�. The space �̂� is unique, expect for isometries. 

 

3.5  COMPLETENESS 

 

Complete metric space: A metric space (𝑋, 𝑑) is said to be complete if 

every Cauchy sequence in 𝑋 is convergent. 

 

Example: 

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| 𝑓𝑜𝑟 𝑥, 𝑦 ∈  ℝ; is complete metric space. 

𝑑(𝑧, 𝑤) = |𝑧1 − 𝑧2|𝑓𝑜𝑟 𝑧1 − 𝑧2  ∈  ℂ is complete metric space. 

𝑑(𝑥, 𝑦) = (∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

)

1
2

 

 and 𝑥 = (𝑥1, 𝑥2, … . , 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, … . , 𝑦𝑛) in ℝn is complete 

metric space. 

 

Subsequence: Let {𝑥𝑛} be a given sequence in a metric space (𝑋, 𝑑) and 

let {𝑛𝑘}𝑘≥1 be a sequence of positive integers such that 𝑛1 < 𝑛2 < 𝑛3 <.. 

Then the sequence {𝑥𝑛𝑘
 } is called a subsequence of  {𝑥𝑛}.  

 

Sub sequential limit: If {𝑥𝑛𝑘
 }  converges, its limit is called a sub 

sequential limit of  {𝑥𝑛}.  

 

NOTE: A sequence {𝑥𝑛} in 𝑋 converges to x if and only if every 

subsequence of it converges to 𝑥. 
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Theorem2. If a Cauchy sequence of points in a metric space (𝑋, 𝑑) 

contains a convergent subsequence, then the sequence converges to the 

same limit as the subsequence.  

 

Proof. Let {𝑥𝑛}  be a Cauchy sequence in (𝑋, 𝑑). 

Then for every positive number 𝜀 there exists an integer 𝑚(𝜀) such that 

𝑑(𝑥𝑛 , 𝑥𝑛′)  <  𝜀 whenever 𝑛, 𝑛′ ≥ 𝑚(𝜀) 

Let{𝑥𝑛𝑘
}be a convergent subsequence of {𝑥𝑛} and its limit by 𝑥.  

It implies that  𝑑(𝑥𝑛
𝑛′ , 𝑥𝑛)  <  𝜀 whenever 𝑛, 𝑛′ ≥ 𝑚(𝜀) 

As {𝑛𝑘}  is a strictly increasing sequence of positive integers. 

Now, 

 𝑑(𝑥, 𝑥𝑛) ≤ 𝑑 (𝑥, 𝑥𝑛
𝑛′ ) + 𝑑 (𝑥𝑛

𝑛′ , 𝑥𝑛) < 𝑑 (𝑥, 𝑥𝑛
𝑛′ ) + 𝜀).  

whenever 𝑛, 𝑛′ ≥ 𝑚(𝜀) 

Taking 𝑛′ → ∞ we get 

𝑑(𝑥, 𝑥𝑛) < 𝜀. 

whenever 𝑛, 𝑛′ ≥ 𝑚(𝜀). 

Therefore, the sequence {𝑥𝑛} converges to 𝑥. 

 

3.6  BANACH SPACE 

 

A normed linear space (𝑋, ‖ ‖) is said to be a Banach space if 𝑋 is 

complete metric space under a metric 𝑑 induced by the norm on 𝑋. Here, 

 

𝑑(𝑥, 𝑦) =  ‖𝑥 − 𝑦‖∀𝑥, 𝑦 ∈ 𝑋. 

In other words, a complete normed linear space (𝑋, ‖ ‖) is a Banach 

space. 

A complete normed linear space is called a Banach space; i.e., we have 

a vector space on which we have defined a norm that gives you a metric 
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topology called the norm topology, and if this topology is complete then 

the normed linear space is called a Banach space. 

 

Examples: 

(1) (𝑅, | |) is a Banach space, where | | = absolute value. 

(2) (ℂ, | |) is a Banach space, where | | = absolute value. 

 

 

3.7   EXAMPLES  

 

1. The linear space ℝ and 𝐶 of of real and complex numbers are Banach 

spaces under the norm ‖𝑥‖ = |𝑥|, ∀𝑥 ∈ ℝ or 𝐶 as the case may be. 

 

Solution: 

ℝ is a normed linear space, since: 

i. Since each ‖𝑥‖ ≥ 0 implies that  |𝑥| ≥ 0 ∀𝑥 ∈ ℝ. 

ii. ‖𝑥‖ = 0  ⇔ |𝑥| = 0 ⇔ 𝑥 = 0, ∀𝑥 ∈ ℝ 

iii. ‖𝑥 + 𝑦‖ = |𝑥 + 𝑦| ≤ |𝑥| + |𝑦| = ‖𝑥‖ + ‖𝑦‖, ∀𝑥, 𝑦 ∈ ℝ  

iv. ‖𝛼𝑥‖ = |𝛼𝑥| = |𝛼|‖𝑥‖, 𝛼 being real or complex. 

 Similarly 𝐶 is a normed linear space, since: 

i. Since each ‖𝑥‖ ≥ 0 implies that  |𝑥| ≥ 0 ∀𝑥 ∈ 𝐶. 

ii. ‖𝑥‖ = 0  ⇔ |𝑥| = 0 ⇔ 𝑥 = 0, ∀𝑥 ∈ 𝐶 

iii. ∀𝑥, 𝑦 ∈ 𝐶 and �̅�, �̅� being their conjugates ( complex), 

We have 

|𝑥 + 𝑦|2 = (𝑥 + 𝑦)(𝑥 + 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

                                            = (𝑥 + 𝑦)(�̅� + �̅�) = 𝑥�̅� + 𝑦�̅� + 𝑥�̅� + �̅�𝑦 

                  ≤ |𝑥|2 + |𝑦|2 + 2|𝑥�̅�| [By properties of complex quantities] 

= |𝑥|2 + |𝑦|2 + 2|𝑥||𝑦|  as |�̅�| =  |𝑦| 

= (|𝑥| + |𝑦|)2. 
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Giving |𝑥 + 𝑦|  ≤ ‖𝑥‖ + ‖𝑦‖ 

iv. ‖𝛼𝑥‖ = |𝛼𝑥| = |𝛼𝑥| = |𝛼|‖𝑥‖, 𝛼  being real or complex.  

 

Since every convergent sequence in a normed linear space being a 

Cauchy sequence, the real ℝ and 𝐶 normed linear space is complete and 

hence a Banach space.  

 

 

2. The linear space ℝ𝑛 and 𝐶𝑛 of all 𝑛 −tuples (𝑥1, 𝑥2, … . , 𝑥𝑛) of real 

and complex numbers are Banach spaces under the norm 

‖𝑥‖ = {∑|𝑥𝑖|
2

𝑛

𝑖=1

}

1 2⁄

 

[ Usually called Euclidean and unitary spaces respectively]. 

 

Solution: 

i. Since each |𝑥𝑖| ≥ 0 we have  ‖𝑥‖ ≥ 0 and 

‖𝑥‖ = 0  ⇔ ∑|𝑥𝑖|
2

𝑛

𝑖=1

= 0 ⇔ 𝑥𝑖 = 0, for all 1 ≤ 𝑖 ≤ 𝑛 

⇔ 𝑥 =  (𝑥1, 𝑥2, … … . 𝑥𝑛 ) = (0,0,0 … … . .0, … … 0) = 0 

⇔ 𝑥 = 0 

ii.  𝑥 =  (𝑥1, 𝑥2, … … . 𝑥𝑛 ), 𝑦 =  (𝑦1, 𝑦2, … … . 𝑦𝑛 ) 𝜖ℂ𝑛(𝑜𝑟 ℝ𝑛); 

𝑥 + 𝑦 =  (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … … . 𝑥𝑛 + 𝑦𝑛 ), 𝜖ℂ𝑛; 

Then, 

 ‖𝑥 + 𝑦‖2 = ∑ |𝑥𝑖 + 𝑦𝑖|2𝑛
𝑖=1 = ∑ |𝑥𝑖 + 𝑦𝑖 |𝑛

𝑖=1 |𝑥𝑖 + 𝑦𝑖| 

                 ≤  ∑ |𝑥𝑖 + 𝑦𝑖|𝑛
𝑖=1 (|𝑥𝑖| + |𝑦𝑖|)[Since, |𝑥𝑖 + 𝑦𝑖| ≤ |𝑥𝑖| + |𝑦𝑖|] 

                    = ∑ |𝑥𝑖 + 𝑦𝑖|𝑛
𝑖=1 |𝑥𝑖|+∑ |𝑥𝑖 + 𝑦𝑖|𝑛

𝑖=1 |𝑦𝑖|  

                 ≤ ‖𝑥 + 𝑦‖‖𝑥‖ + ‖𝑥 + 𝑦‖‖𝑦‖[∑ |𝑥𝑖 + 𝑦𝑖|𝑛
𝑖=1 ≤ ‖𝑥‖ + ‖𝑦‖] 

= ‖𝑥 + 𝑦‖(‖𝑥‖ + ‖𝑦‖) 

or, ‖𝑥 + 𝑦‖2 ≤ ‖𝑥 + 𝑦‖(‖𝑥‖ + ‖𝑦‖) 

or, ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖. For ‖𝑥 + 𝑦‖ ≠ 0. 



Department of Mathematics Page 72 

Uttarakhand Open University 

 

 

iii. For all 𝑥𝜖ℂ𝑛, for all 𝛼𝜖ℂ 

‖𝛼𝑥‖ = √∑ |𝛼𝑥𝑖|2𝑛
𝑖=1 = |𝛼|{∑ |𝑥𝑖|

2𝑛
𝑖=1 }1 2⁄ = |𝛼|‖𝑥‖. 

Therefore, ‖𝛼𝑥‖ = |𝛼|‖𝑥‖for all 𝑥𝜖ℂ𝑛 , ∀𝛼 𝜖 ℂ. 

 

This proves that  ℝ𝑛 or 𝐶𝑛 are normed linear space. 

 

Now, we show that the completeness of ℝ𝑛 or 𝐶𝑛 .  

Let   < 𝑥1, 𝑥2, … . , 𝑥𝑛 > be a Cauchy sequence in ℝ𝑛 or 𝐶𝑛 .  

Since 𝑥𝑚 is an 𝑛 − tuple of complex (or real ) numbers, we shall write, 

 

𝑥𝑚 =  (𝑥1
(𝑚)

, 𝑥2
(𝑚)

, … … . 𝑥𝑛
(𝑚)

 ). 

So that 𝑥𝑘
(𝑚)

 is the 𝑘𝑡ℎ coordinate of 𝑥𝑚 . 

Let ∈> 0 be given, since < 𝑥𝑚 > is a Cauchy sequence, there exists a 

positive integer 𝑚0, such that, 

𝑙, 𝑚 ≥ 𝑚0 ⇒ ‖𝑥𝑚 − 𝑥𝑙‖ < 𝜀 

it implies that, ‖𝑥𝑚 − 𝑥𝑙‖
2 < 𝜀2 

⇒ ∑|𝑥𝑖
(𝑚) − 𝑥𝑖

(𝑙)|

𝑛

𝑖=1

< 𝜀2 

                                                              ………………………..[1] 

⇒ |𝑥𝑖
(𝑚) − 𝑥𝑖

(𝑙)| < 𝜀2 (𝑖 = 1,2, … . . , 𝑛) 

⇒ |𝑥𝑖
(𝑚) − 𝑥𝑖

(𝑙)| < 𝜀 

Hence 〈𝑥𝑖
<𝑚>〉𝑚=1

∞  is a Cauchy sequence of complex (or real) numbers for 

each fixed but arbitrary 𝑖. 

Since 𝐶(or ℝ) is complete, each of these sequences converges to a point, 

say 𝑧𝑖  in 𝐶(or ℝ) so that, 

 

lim
𝑚→∞

𝑥𝑖
(𝑚) = 𝑧𝑖 (𝑖 = 1,2, … 𝑛) 

                                                                ………………………….[2] 
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Now, we show that the Cauchy sequence  < 𝑥𝑚 > converges to the point 

𝑧 = (𝑧1, 𝑧2, … … . . 𝑧𝑛) ∈ 𝐶𝑛 or ℝ𝑛 . 

 

To prove this let 𝑙 → ∞ in [1]. Then, by [2] we have, 

|𝑥𝑖
(𝑚) − 𝑧𝑖|

2
< 𝜀2 

⇒ ‖𝑥𝑚 − 𝑧‖2 < 𝜀2 

⇒ ‖𝑥𝑚 − 𝑧‖ < 𝜀 

It follows that the Cauchy sequence < 𝑥𝑚 > converges to the point 𝑧 ∈

𝐶𝑛 or ℝ𝑛 . 

Hence, 𝐶𝑛 or ℝ𝑛 are complete spaces and consequently they are Banach 

spaces. 

 

Example 3: 

Let 𝑝 be a real number such that 1 ≤ 𝑝 < ∞. Show that the space 𝑙𝑝
𝑛 of all 

𝑛 −tuples of scalars with the norm defined by: 

‖𝑥‖𝑝 = {∑|𝑥𝑖|
𝑝

𝑛

𝑖=1

}

1
𝑝

 

is a Banach space. 

 

Solution: 

Let 𝑥 = (𝑥1, 𝑥2, … . . 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, … . . 𝑦𝑛) and let 𝛼 be any scalar.  

Then it is understood here that 𝑙𝑝
𝑛 is a linear space with respect to the 

operations, 

𝑥 + 𝑦 =  (𝑥1 + 𝑦1, … … . . 𝑥𝑛 + 𝑦𝑛) 

and 

 𝛼𝑥 = ( 𝛼𝑥1,  𝛼𝑥2, … . . 𝛼𝑥𝑛). 

We now show that 𝑙𝑝
𝑛 is a normed linear space. 

(i) ‖𝑥‖𝑝 ≥ 0, obvious since |𝑥𝑖| ≥ 0 for each 𝑖. 

(ii) ‖𝑥‖𝑝 = 0 ⟺ {∑ |𝑥𝑖|
𝑝𝑛

𝑖=1 }
1

𝑝 = 0 
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⟺ ∑|𝑥𝑖|
𝑝

𝑛

𝑖=1

= 0 ⟺ |𝑥𝑖| = 0(𝑖 = 1,2, … … 𝑛) 

⟺ 𝑥𝑖 = 0, 𝑖 = 1,2, … … , 𝑛 

⟺ 𝑥 = (𝑥1, 𝑥2, … . . 𝑥𝑛) = 0. 

(iii) ‖𝑥 + 𝑦‖𝑝 ≤ ‖𝑥‖𝑝 + ‖𝑦‖𝑝, by Minkowski’s inequality. 

(iv) ‖𝛼𝑥‖𝑝 = ‖𝛼(𝑥1, 𝑥2, … . . 𝑥𝑛)‖𝑝 = ‖(𝛼𝑥1, 𝛼𝑥2, … . . 𝛼𝑥𝑛)‖𝑝 

=  {∑|𝛼𝑥𝑖|
𝑝

𝑛

𝑖=1

}

1
𝑝

=  {∑|𝛼|𝑝

𝑛

𝑖=1

|𝑥𝑖|
𝑝}

1
𝑝

= {|𝛼|𝑝 ∑|𝑥𝑖|
𝑝

𝑛

𝑖=1

}

1
𝑝

= |𝛼|‖𝑥‖𝑝 

Thus 𝑙𝑝
𝑛 is a normed linear space. 

 

Again to show that 𝑙𝑝
𝑛 is complete. 

Let < 𝑥𝑚 >𝑚=1
∞  be a Cauchy sequence in 𝑙𝑝

𝑛 .  

Since, each 𝑥𝑚 is an 𝑛 −tuple of scalars, 

𝑥𝑚 = (𝑥1
𝑚 , 𝑥2

𝑚 … . . 𝑥𝑛
𝑚). 

 

Let 𝜀 > 0 be given.  

Since < 𝑥𝑚 >𝑚=1
∞  is a Cauchy sequence, there exists a positive integer 𝑚0 

such that, 

𝑙, 𝑚 ≥ 𝑚0       ⟹ ‖𝑥𝑚 − 𝑥𝑙‖𝑝 < 𝜀 

     ⟹ ‖𝑥𝑚 − 𝑥𝑙‖𝑝
𝑝

< 𝜀𝑝 … … … … … … … … … … [3] 

⟹ ∑|𝑥𝑖
(𝑚)

− 𝑥𝑖
(𝑙)|

𝑛

𝑖=1

𝑝

< 𝜀𝑝 (𝑖 = 1,2, … … 𝑛) 

⟹ |𝑥𝑖
(𝑚)

− 𝑥𝑖
(𝑙)

| < 𝜀 

This shows that for fixed but arbitrary 𝑖, the sequence < 𝑥𝑖
(𝑚)

>𝑚=1
∞  is a 

Cauchy sequence in 𝐶 or ℝ so that, 

 

lim
𝑚→∞

𝑥𝑖
(𝑚)

= 𝑧𝑖 , (𝑖 = 1,2 … . , 𝑛) … … … … . . [4] 



Department of Mathematics Page 75 

Uttarakhand Open University 

 

It will now be shown that the Cauchy sequence < 𝑥𝑚 > converges to the 

point 𝑥 = (𝑧1, 𝑧2, … . . 𝑧𝑛) ∈ 𝑙𝑝
𝑛 . 

To prove this, we let 𝑙 → ∞ in [3].  

Then by [4], for 𝑚 ≥ 𝑚0.  We obtain, 

∑|𝑥𝑖
(𝑚)

− 𝑧𝑖|

𝑛

𝑖=1

𝑝

< 𝜀𝑝 

⟹ ‖𝑥𝑚 − 𝑧‖𝑝
𝑝

< 𝜀𝑝 

⟹ ‖𝑥𝑚 − 𝑧‖ < 𝜀. 

It follows that the Cauchy sequence < 𝑥𝑚 > converges to 𝑧 ∈ 𝑙𝑝
𝑛.  

Hence 𝑙𝑝
𝑛 is complete therefore it is a Banach spaces. 

 

 

Example 4: Consider the linear space of all 𝑛 − tuples 𝑥 =

(𝑥1, 𝑥2, … . . 𝑥𝑛) of scalars and define the norm by  

‖𝑥‖∞ =max {|𝑥1|, |𝑥2| , … |𝑥𝑛|}. 

This space is denoted by the symbol 𝑙∞
𝑛 .  Show that (𝑙∞

𝑛 , ‖. ‖∞) is a Banach 

space. 

 

Solution : We first prove that 𝑙∞
𝑛  is a normed linear space. 

 

(i) ‖𝑥‖∞ ≥ 0, obvious since |𝑥𝑛| ≥ 0 for each 𝑛. 

(ii) ‖𝑥‖∞ = 0 ⟺ max {|𝑥1|, |𝑥2| , … |𝑥𝑛|} = 0 

⟺ |𝑥1| = 0, |𝑥2| = 0, … … . |𝑥𝑛| = 0 

⟺ 𝑥1 = 0, 𝑥2 = 0, … . . 𝑥𝑛 = 0 

⟺ 𝑥 = (𝑥1, 𝑥2, … . . 𝑥𝑛) = 0. 

⟺ 𝑥 = 0. 

(iii) Let 𝑥 = (𝑥1, 𝑥2, … . . 𝑥𝑛), 𝑦 = (𝑦1, 𝑦2, … . . 𝑦𝑛) 

Then ‖𝑥 + 𝑦‖∞ = max{|𝑥1 + 𝑦1|, |𝑥2 + 𝑦2| , … |𝑥𝑛 + 𝑦𝑛|} 

≤max{|𝑥1| + |𝑦1|, |𝑥2| + |𝑦2| , … |𝑥𝑛| + |𝑦𝑛|} 

≤max{|𝑥1|, |𝑥2|, … . . |𝑥𝑛|} + max{|𝑥1|, |𝑥2|, … . . |𝑥𝑛|} 
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≤max{|𝑥1|, |𝑥2|  … |𝑥𝑛|} + max{|𝑦1|, |𝑦2|  … |𝑦𝑛|} 

= ‖𝑥‖∞ + ‖𝑦‖∞ 

(iv) ‖𝛼𝑥‖∞ = max {|𝛼𝑥1|, |𝛼𝑥2|, … . . |𝛼𝑥𝑛|} 

= max {|𝛼||𝑥1|, |𝛼||𝑥2|, … . . |𝛼||𝑥𝑛|} 

= |𝛼|max {|𝑥1|, |𝑥2|, … . . |𝑥𝑛|} 

= |𝛼|‖𝑥‖∞. 

Hence 𝑙∞
𝑛  is a normed linear space. 

We now show that it is a complete space. 

 

Let < 𝑥𝑚 >𝑚=1
∞  be a Cauchy sequence in 𝑙∞

𝑛 .  

Since, each 𝑥𝑚 is an 𝑛 −tuple of scalars, 

𝑥𝑚 = (𝑥1
𝑚 , 𝑥2

𝑚 … . . 𝑥𝑛
𝑚). 

Let 𝜀 > 0 be given.  

Then there exists a positive integer 𝑚0 such that, 

𝑙, 𝑚 ≥ 𝑚0       ⟹ ‖𝑥𝑚 − 𝑥𝑙‖𝑝 < 𝜀 

⟹max {|𝑥1
(𝑚)

− 𝑥1
(𝑙)

|, |𝑥2
(𝑚)

− 𝑥2
(𝑙)

| , … |𝑥𝑛
(𝑚)

− 𝑥𝑛
(𝑙)

|} < 𝜀…………..[5] 

     ⟹ |𝑥𝑖
(𝑚)

− 𝑥𝑖
(𝑙)

| < 𝜀, 𝑖 = 1,2, … … … , 𝑛. 

This shows that for fixed but 𝑖, the sequence < 𝑥𝑖
(𝑚)

>𝑚=1
∞  is a Cauchy 

sequence of complex or real numbers.  

Since 𝐶 or ℝ  is complete, it must converges to some 𝑧𝑖 ∈ 𝐶 or ℝ . 

We assert that the Cauchy sequence < 𝑥𝑛 > converges to the point 𝑧 =

(𝑧1, 𝑧2, … . . 𝑧𝑛). 

To prove this, we let 𝑙 → ∞ in [5].  

Then, for 𝑚 ≥ 𝑚0.   

We obtain ‖𝑥𝑚 − 𝑧‖ < 𝜀. 

Thus it follows that the Cauchy sequence < 𝑥𝑚 > converges to 𝑧 ∈ 𝑙∞
𝑛 .  

Hence 𝑙∞
𝑛  is complete. 

Therefore 𝑙∞
𝑛  is a Banach space. 
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Example 5: If 𝐶(𝑋) be a linear space of all bounded continuous scalar 

valued function defined on a topological space 𝑋. Then show that 𝐶(𝑋) is 

a Banach space under the norm 

 

‖𝑓‖ = sup {|𝑓(𝑥)|: 𝑥 ∈ 𝑋}, 𝑓 ∈ 𝐶(𝑋). 

 

Solution:  Given that 𝐶(𝑋) is a linear space, means 𝐶(𝑋) is linear under 

the operations of vector addition and scalar multiplication i.e.,  

𝑓, 𝑔 ∈ 𝐶(𝑋) and 𝛼 being a scalar, we  knows that, 

 

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) +  𝑔(𝑥), 

(𝛼𝑓)(𝑥) = 𝛼𝑓(𝑥). 

We now show that 𝐶(𝑋) is normed linear space. 

 

Solution. 

(i) Since |𝑓(𝑥)| ≥ 0∀𝑥 ∈ 𝑋,  

‖𝑓(𝑥)‖ ≥ 0 

(ii) ‖𝑓‖ = 0 ⟺ sup {|𝑓(𝑥)|: 𝑥 ∈ 𝑋} = 0 

⟺ |𝑓(𝑥)| = 0∀𝑥 ∈ 𝑋 

⟺ 𝑓(𝑥) = 0 

                     ⟺ 𝑓 is a zero function. 

(iii) Then‖𝑓‖ = sup {|(𝑓 + 𝑔)(𝑥)|: 𝑥 ∈ 𝑋} 

= sup{|𝑓(𝑥) + 𝑔(𝑥)|: 𝑥 ∈ 𝑋} 

≤ sup{|𝑓(𝑥)| + |𝑔(𝑥)|: 𝑥 ∈ 𝑋} 

≤ sup{|𝑓(𝑥)|: 𝑥 ∈ 𝑋} + sup{|𝑔(𝑥)|: 𝑥 ∈ 𝑋} 

= ‖𝑓‖ + ‖𝑔‖ 

 

(iv) ‖𝛼𝑓‖ = sup{|(𝛼𝑓)(𝑥)| : 𝑥 ∈ 𝑋} 

= sup{|𝛼𝑓(𝑥)| : 𝑥 ∈ 𝑋} = sup{|𝛼||𝑓(𝑥)| : 𝑥 ∈ 𝑋}

= |𝛼|sup{|𝑓(𝑥)| : 𝑥 ∈ 𝑋} = |𝛼| ‖𝑓‖. 
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Hence 𝐶(𝑋) is normed linear space. 

Now for proving 𝐶(𝑋) is complete.. 

 

Let < 𝑓𝑛 >𝑛=1
∞  be a Cauchy sequence in 𝐶(𝑋).  

Then for given 𝜀 > 0, 

Then there exists a positive integer 𝑛 such that, 

𝑚, 𝑛 ≥ 𝑚0       ⟹ ‖𝑓𝑚 − 𝑓𝑛‖𝑝 < 𝜀 

⟹ sup{|𝑓𝑚(𝑥) − 𝑓𝑛(𝑥)| : 𝑥 ∈ 𝑋} < 𝜀…………..[6] 

     ⟹ {|𝑓𝑚(𝑥) − 𝑓𝑛(𝑥)|} < 𝜀 ∀𝑥 ∈ 𝑋. 

But this is the Cauchy condition for uniform convergence of the 

sequence of bounded continuous scalar valued function. 

Hence the sequence < 𝑓𝑛 > must converge to bounded continuous 

function 𝑓 on 𝑋. 

It implies that 𝐶(𝑋) is complete and hence it is a Banach space. 

 

3.8  SUMMARY 

 

Present unit is presentation of the topic Continuous at a point, Cauchy 

Sequence, Completeness and Banach Space. The main focus is in this unit 

on Banach Space. The above concepts discussed with the help of 

Examples and Main Results. 

 

3.9  GLOSSARY 

 

i. Metric space: Let 𝑋 ≠ ∅  be a set then the metric on the set 

𝑋 is defined as a function 𝑑: 𝑋 ×  𝑋 →  [0, ∞) such that some 

conditions are satisfied.  

ii. Vector space: - Let 𝑉 be a nonempty set with two operations 
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(i) Vector addition:  If any  𝑢, 𝑣 ∈ 𝑉 then 𝑢 + 𝑣 ∈ 𝑉 

 

(ii) Scalar Multiplication: If any  𝑢 ∈ 𝑉 and 𝑘 ∈ 𝐹 then 

𝑘𝑢 ∈ 𝑉 

 

Then 𝑉 is called a vector space (over the field 𝐹) if the 

following axioms hold for any vectors if the some 

conditions hold. 

 

iii. Normed space:- Let 𝑋  be a vector space over scalar field 𝐾. A 

norm on a (real or complex) vector space 𝑋 is a real-valued 

function on 𝑋 (‖𝑥‖: 𝑋 → 𝐾) whose value at an  𝑥 ∈ 𝑋 is 

denoted by ‖𝑥‖ and which has the four properties here  𝑥 and 𝑦 

are arbitrary vectors in 𝑋 and 𝛼 is any scalar. 

 

 

CHECK YOUR PROGRESS 

 

1. Let 𝑉 be a Banach space. Define 

𝑋 = 𝐶([0,1]: 𝑉) =  {𝑓: [0,1] ⟶ 𝑉|𝑓 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠}. 

Define, for 𝑓 ∈ 𝑋, 

‖𝑓‖ = sup
𝑡∈[0,1]

‖𝑓(𝑡)‖𝑉 

Which of the following statements are true? 

a) This defines a norm on 𝑋. 

b) We have ‖𝑓‖ = sup
𝑡∈[0,1]

‖𝑓(𝑡)‖𝑉 

c) 𝑋 is a Banach space with this norm. 
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2.  

 

 

 

 

3. 
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4.  

 

 

 

5.  
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6.  

 

 

7.  
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3.11 TERMINAL QUESTIONS 

 

1. What is meant by Banach space? 

………………………………………………………….. 
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2. What is the difference between complete space and Banach 

space? 

…………………………………………………………. 

3. Show that the space 𝒞(vector space of all convergent 

sequence of complex number) is a Banach space? 

…………………………………………………………. 

4. Show that the (𝒞0, ‖ ‖∞ ) (the space of all sequences 

converging to zero, with  sup norm) is a Banach space? 

……………………………………………………………… 

5. Show that the (𝒞00,  ‖ ‖𝑝 ) where 𝒞00 = {(𝑥𝑛): 𝑥𝑛 =

0, 𝑎𝑙𝑙 𝑏𝑢𝑡 𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑚𝑎𝑛𝑦 𝑛}  is not a Banach space? 

 

3.12 ANSWERS 

 

CHECK YOUR PROGRESS 

1. c 

2. d 

3. c 

4. b 

5. c 

6. d 

7. b 
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4.1 INTRODUCTION 

 

In previous units we have studied about Metric Space, Vector 

Space, Normed Space and Banach Space. Now we are familiar with 

functional analysis. For continuation of the study of functional analysis we 

need more study. In this unit we are explaining about quotient spaces, 

subspace of a normed space, subspace of a Banach space and finite 

dimensional normed space. 

Since we know that a linear space 𝑋 is said to be finite dimensional 

space if there is a finite basis for 𝑋. A linear space which is not a finite 

dimensional space is called an infinite dimensional space. 

 

We begin with some questions. 

 What is the dimension of vector space ℂ over ℝ? 

Solution.  ℂ is a vector space over ℝ. Since every complex number 

is uniquely expressible in the form a + bi with a, b ∈ R we see that 

(1, i) is a basis for ℂ over ℝ. Thus the dimension is two.   

 What is the dimension of vector space 𝐹[𝑥]  of all 

polynomials over a field 𝐹? 

Solution. Infinite 

 

4.2 OBJECTIVES 

 

After studying this unit, learner will be able to  

i. Described the concept of quotient space. 

ii. Defined the concept of subspace of a normed and Banach 

space. 

iii. Explained the topic of finite dimensional normed space. 
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4.3 QUOTIENT (FACTOR) SPACES 

 

If 𝑀 be a subspace of a vector space 𝑁, then their exists an 

equivalence relation between any two vectors 

𝑥, 𝑦 ∈ 𝑁 𝑖. 𝑒. , 𝑥~𝑦 iff 𝑥 − 𝑦 ∈ 𝑀, since this relation is: 

Reflexive i.e., 𝑥~𝑦 as 𝑥 − 𝑦 = 0 ∈ 𝑀. 

Symmetric i.e., 𝑥~𝑦 ⇒ 𝑦 ∼ 𝑥 as 𝑥 − 𝑦 ∈ 𝑀. 

⇒ as (𝑥 − 𝑦) = 𝑦 − 𝑥 ∈ 𝑀. 

Transitive i.e., 𝑥~𝑦, 𝑦~𝑧 ⇒ 𝑥~𝑧  as 

𝑥 − 𝑦 ∈ 𝑀 and 𝑦 − 𝑧 ∈ 𝑀 ⇒ 𝑥 − 𝑦 + 𝑦 − 𝑧 = 𝑥 − 𝑧 ∈ 𝑀. 

Therefore vectors 𝑥, 𝑦 being equivalent under ′~′ ⇒ 𝑥 − 𝑦 ∈ 𝑀. 

Thus 𝑁 is divided into mutually disjoint equivalence classes.  

We denote the set of all such equivalence classes by 
𝑁

𝑀
. 

 

Let [𝑥] denote the equivalence class which contains the element 𝑥. Thus, 

 

[𝑥] = {𝑦: 𝑦~𝑥} =  {𝑦: 𝑦 − 𝑥 ∈ 𝑀} 

= {𝑦: 𝑦 − 𝑥 = 𝑚 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑚 ∈ 𝑀 

= {𝑦: 𝑦 = 𝑥 + 𝑚 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑚 ∈ 𝑀 } = {𝑥 + 𝑚: 𝑚 ∈ 𝑀}.  

Thus [𝑥] is the set of all sums of 𝑥 and element of 𝑀.   

The set [𝑥] is called the coset of 𝑀 determined by 𝑥 and is usually written 

as 𝑥 + 𝑀.  

In  
𝑁

𝑀
, we define addition and scalar multiplication by, 

(𝑥 + 𝑀) +  (𝑦 + 𝑀) = (𝑥 + 𝑦) + 𝑀; 𝑥, 𝑦 ∈ 𝑁 

𝛼(𝑥 + 𝑀) =  (𝛼𝑥) + 𝑀, 𝛼 ∈ 𝐹 over which 𝑁 is defined. 

Here 
𝑁

𝑀
 is a vector (linear) space with respect to addition and scalar 

multiplication.  
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Also 𝑁 is a normed linear space and exhibits’ a norm for 
𝑁

𝑀
. The zero 

element of 
𝑁

𝑀
 is 0 + 𝑀 = 𝑀. 

The set of all such equivalence classes {𝑥 + 𝑚: 𝑚 ∈ 𝑀} referred as 
𝑁

𝑀
 is 

known as the Factor space or Quotient space of 𝑁 with respect to 𝑁. 

 

4.3.1 THEOREM 

 

Theorem:  If 𝑀 be a closed subspace of a normed linear space 𝑁 and if 

the norm of a coset 𝑥 + 𝑀 is the quotient space 
𝑁

𝑀
 is defined by 

 

‖𝑥 + 𝑀‖ = inf{‖𝑥 + 𝑚‖: 𝑚 ∈ 𝑀}……..(1) 

Then 
𝑁

𝑀
 is a normed linear space. Also if 𝑁 is complex (Banach space), 

then so is 
𝑁

𝑀
. 

 

Proof.  

Now for 
𝑁

𝑀
 is a normed linear space, 

 

i. Since ‖𝑥 + 𝑚‖ is non-negative real number and every set of 

non-negative real numbers is bounded below, it follows that 

inf{‖𝑥 + 𝑚‖: 𝑚 ∈ 𝑀} exists and is non-negative, that is 

‖𝑥 + 𝑚‖ ≥ 0∀𝑥 ∈ 𝑁. 

 

ii. Let 𝑥 + 𝑀 = 𝑀 (𝑡ℎ𝑒 𝑧𝑒𝑟𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓
𝑁

𝑀
 ). Then 𝑥 ∈ 𝑀. 

Hence ‖𝑥 + 𝑀‖ = inf{‖𝑥 + 𝑚‖: 𝑚 ∈ 𝑀, 𝑥 ∈ 𝑀} 

= 𝑖𝑛𝑓{‖𝑦‖: 𝑦 ∈ 𝑀} = 0 

[∵ 𝑀 𝑏𝑒𝑖𝑛𝑔 𝑎 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑧𝑒𝑟𝑜 𝑣𝑒𝑐𝑡𝑜𝑟 𝑤ℎ𝑜𝑠𝑒 𝑛𝑜𝑟𝑚 

𝑖𝑠 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 0]  
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Thus 𝑥 + 𝑚 = 𝑀 ⇒ ‖𝑥 + 𝑀‖ = 0. 

Conversely, we have 

‖𝑥 + 𝑀‖ = inf{‖𝑥 + 𝑚‖: 𝑚 ∈ 𝑀} = 0 

⟹there exists a sequence < 𝑚𝑘 >𝑘=1
∞  in 𝑀. 

Such that ‖𝑥 + 𝑚𝑘‖ → 0 as 𝑘 ⟶ ∞. 

⟹ lim
𝑛→∞

𝑚𝑘 = −𝑥. 

⟹ −𝑥 ∈ 𝑀  

        [ Since 𝑀 is closed and < 𝑚𝑘 > is sequence in 𝑀 converging to – 𝑥] 

⟹ 𝑥 ∈ 𝑀 [ Since 𝑀 is a subspace]. 

⟹ 𝑥 + 𝑀 = 𝑀 [ the zero element of 
𝑁

𝑀
]. 

Thus we have shown that 

‖𝑥 + 𝑀‖ = 0 ⇒ 𝑥 + 𝑀 = 𝑀(𝑡ℎ𝑒 𝑧𝑒𝑟𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑁 𝑀⁄ ). 

 

iii. Let 𝑥 + 𝑀, 𝑦 + 𝑀 ∈
𝑁

𝑀
, then 

‖(𝑥 + 𝑀) + (𝑦 + 𝑀)‖ = ‖(𝑥 + 𝑦) + 𝑀‖  

                                      (by definition of addition of coset) 

= inf{‖𝑥 + 𝑦 + 𝑚‖: 𝑚 ∈ 𝑀} … … . . (1) 

= inf{‖𝑥 + 𝑦 + 𝑚‖: 𝑚 ∈ 𝑀, 𝑚′ ∈ 𝑀 } … … . . (2) 

     (Since 𝑀 is a subspace, the sets in (1) and (2) are the same). 

= inf{‖(𝑥 + 𝑚) + (𝑦 + 𝑚′)‖: 𝑚, 𝑚′ ∈ 𝑀 } 

≤inf {‖𝑥 + 𝑚‖ + ‖𝑦 + 𝑚′‖: 𝑚, 𝑚′ ∈ 𝑀} 

      [Using iii for 𝑁, since 𝑥 + 𝑚, 𝑦 + 𝑚′ ∈ 𝑁] 

= inf{‖𝑥 + 𝑚‖: 𝑚 ∈ 𝑀 } +  inf{‖𝑥 + 𝑚′‖: 𝑚′ ∈ 𝑀 } 

= ‖𝑥 + 𝑀‖+‖𝑦 + 𝑀‖. 

 

iv. ‖𝛼(𝑥 + 𝑀)‖ = inf{‖𝛼𝑥 + 𝑚‖: 𝑚 ∈ 𝑀}  

                                    (since 𝛼(𝑥 + 𝑀) = 𝛼𝑥 + 𝑀 in 
𝑁

𝑀
 ) 

= inf{‖𝛼𝑥 + 𝑚‖: 𝑚 ∈ 𝑀} if 𝛼 ≠ 0. 

= |𝛼| inf{‖𝑥 + 𝑚‖: 𝑚 ∈ 𝑀} 
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= |𝛼|‖𝑥 + 𝑀‖. 

 

For 𝛼 = 0, the results is obvious. 

Hence, 
𝑁

𝑀
  is a normed linear space. 

We now prove that if 𝑁 is complete, then so is 
𝑁

𝑀
.  

Suppose that < 𝑥𝑛 + 𝑀 > is a Cauchy sequence in 
𝑁

𝑀
.   

Then to show that < 𝑥𝑛 + 𝑀 > is convergent, it is sufficient to prove that 

this sequence has convergent subsequence. 

We can easily find a subsequence of the original Cauchy sequence for a 

fixed 𝑛 such that, 

‖(𝑥1 + 𝑀) − (𝑥2 + 𝑀)‖ <
1

2
 

‖(𝑥2 + 𝑀) − (𝑥3 + 𝑀)‖ <
1

22
 

………………………………. 

………………………………………. 

………………………………………….. 

‖(𝑥𝑛 + 𝑀) − (𝑥𝑛−1 + 𝑀)‖ <
1

2𝑛
 

We prove that this sequence is convergent in 
𝑁

𝑀
.  

We begin by choosing any vector 𝑦1 in 𝑥1 + 𝑀, and we select 𝑦2 in 𝑥2 +

𝑀 such that ‖𝑦1 − 𝑦2‖ <
1

2
. 

We next select a vector 𝑦3 in 𝑥3 + 𝑀. Such that  

‖𝑦𝑛 − 𝑦𝑛+1‖ <
1

2𝑛
. 

Thus for 𝑚 < 𝑛, we have 

‖𝑦𝑚 − 𝑦𝑛‖ = ‖(𝑦𝑚 − 𝑦𝑚+1) + (𝑦𝑚+1 − 𝑦𝑚+2) + ⋯ (𝑦𝑛−1 − 𝑦𝑛)‖ 

≤ ‖𝑦𝑚 − 𝑦𝑚+1‖ + ‖𝑦𝑚+1 − 𝑦𝑚+2‖+. . +‖𝑦𝑛−1 − 𝑦𝑛‖ 

<
1

2𝑚
+

1

2𝑚+1
+ ⋯

1

2𝑛−1
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=
1

2𝑚
[1 +

1

2
+. . +

1

2𝑛−𝑚−1
] 

=
1

2𝑚
[
1 − (

1
2)

𝑛−𝑚

1 −
1
2

] =
1

2𝑚−1
[1 −

1

2𝑛−𝑚
] <

1

2𝑚−1
→ 0 𝑎𝑠 𝑚 ⟶ ∞, 

which follows that 〈𝑦𝑛〉 is a Cauchy sequence in 𝑁. 

Since 𝑁 is complete, there exists a vector 𝑦 in 𝑁 such that 𝑦𝑛 ⟶ 𝑦. 

It now follows from  

‖(𝑦𝑛 + 𝑀) − 𝑦 + 𝑀)‖ ≤ ‖𝑦𝑛 − 𝑦‖ ⇢ 0 as 𝑛 ⟶ ∞, 

that 𝑦𝑛 + 𝑀 ⟶ 𝑦 + 𝑀 it means 𝑦𝑛 + 𝑀 converges to 𝑦 + 𝑀 in 
𝑁

𝑀
. 

Hence 
𝑁

𝑀
 is complete. 

 

4.4 SUBSPACE 

 

4.4.1 SUBSPACE OF A NORMED SPACE 

 

A subspace 𝑌 of a normed space 𝑋 is a subspace of 𝑋 considered 

as a vector space, with the norm obtained by restricting the norm on 𝑋 to 

the subset 𝑌. This norm on 𝑌 is said to be induced by the norm on 𝑋. If 𝑌 

is closed in 𝑋, then 𝑌 is called a closed subspace of 𝑋. 

 

4.4.2 SUBSPACE OF A BANACH SPACE 

 

A subspace 𝑌 of a Banach space 𝑋 is a subspace of 𝑋 considered 

as a normed space. 
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4.5. FINITE DIMENSIONAL NORMED SPACES 

 

4.5.1 LEMMA 

 

Let {𝑥1, … 𝑥𝑛} be a linearly independent set of vectors in a 

normed space 𝑋 (𝑜𝑓 𝑎𝑛𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛), then there is a number 𝑐 > 0 

such that for every choice of scalar  𝛼1, … … … 𝛼𝑛 we have, 

‖𝛼1𝑥1 + ⋯ … … … … + 𝛼𝑛𝑥𝑛‖ ≧ 𝑐(|𝛼1| + ⋯ |𝛼𝑛|)………..(2) 

 

Proof. We write 𝑠 = |𝛼1| + ⋯ |𝛼𝑛|. 

If 𝑠 = 0,   

all 𝛼𝑗  are zero, so that (2) holds for any 𝑐. 

Let 𝑠 > 0. 

Then (2) is equivalent to the inequality which we obtain from (2) by 

dividing by 𝑠 and writing 𝛽𝑗 =
𝛼𝑗

𝑠
, that is, 

‖𝛽1𝑥1 + ⋯ … … … … + 𝛽𝑛𝑥𝑛‖ ≧ 𝑐    ( ∑ |𝛽𝑗|𝑛
𝑗=1 = 1) 

Hence it satisfy to prove the existence of a 𝑐 > 0 such that (2) holds 

for every 𝑛 −tuple of scalars 𝛽1 … … … … … , 𝛽𝑛 with ∑ |𝛽𝑗|𝑛
𝑗=1 = 1. 

Suppose that this is false. 

Then there exists a sequence (𝑦𝑚) of vectors, 

𝑦𝑚 = 𝛽1
(𝑚)

𝑥1 + ⋯ … … … … 𝛽𝑛
(𝑚)

𝑥𝑛   ( ∑ |𝛽𝑗
(𝑚)

|𝑛
𝑗=1 = 1). 

Such that ‖𝑦𝑚‖ → 0 as 𝑚 ⟶ ∞. 

Now we reason as follows. 

Since ∑ |𝛽𝑗
(𝑚)

|𝑛
𝑗=1 = 1, we have |𝛽𝑗

(𝑚)
| ≦ 1. 

Hence for each fixed 𝑗 the sequence 
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(𝛽𝑗
(𝑚)

) = (𝛽1
(𝑚)

, 𝛽2
(𝑚)

, … … . . )  is bounded. 

Consequently, by the Bolzano – Weierstrass theorem, (𝛽𝑗
(𝑚)

) has a 

convergent subsequence. 

Let 𝛽1 denote the limit of that subsequence, and let , (𝑦1,𝑚) has a 

subsequence of (𝑦2,𝑚) for which the corresponding subsequence of 

scalars 𝛽2
(𝑚)

 converges. 

Let 𝛽2 denote the limit. 

Continuing in this way, after  𝑛  steps we obtain a subsequence 

(𝑦𝑛,𝑚) = (𝑦𝑛,1, 𝑦𝑛,2 … . )  of (𝑦𝑚) whose terms are of the form. 

𝑦𝑛,𝑚 = ∑ 𝛾𝑗
(𝑚)

𝑥𝑗
𝑛
𝑖=1 ( ∑ |𝛾𝑗

(𝑚)
|𝑛

𝑗=1 = 1), 

with scalars 𝛾𝑗
(𝑚)

 satisfying 𝛾𝑗
(𝑚)

⟶ 𝛽𝑗 as 𝑚 → ∞. 

Hence, as 𝑚 → ∞. 𝑦𝑛,𝑚 ⟶ 𝑦 = ∑ 𝛽𝑗𝑥𝑗
𝑛
𝑗=1 . 

Where ∑|𝛽𝑗| = 1, so that not all 𝛽𝑗 can be zero. 

Since {𝑥1, … 𝑥𝑛} be a linearly independent set of vectors we thus have 

𝑦 ≠ 0. 

On the other hand, 𝑦𝑛,𝑚 ⟶ 𝑦 implies ‖𝑦𝑛,𝑚‖ → ‖𝑦‖, by the 

continuity of the norm. 

Since ‖𝑦𝑚‖ → 0. 

Hence ‖𝑦‖ = 0. So that 𝑦 = 0. (Second property of norm) 

This contradicts 𝑦 ≠ 0, and the lemma is proved. 

 

4.5.2 THEOREMS 

 

Theorem 1: Every finite dimensional subspace 𝑌 of a normed space 𝑋 is 

complete. In particular, every finite dimensional normed space is 

complete. 
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Proof.  Consider an arbitrary Cauchy sequence (𝑦𝑚) in 𝑌 and 

show that it is convergent in 𝑌; 

the limit will be denoted by 𝑦. 

Let dim 𝑌 = 𝑛 and  {𝑒1, … 𝑒𝑛} any basis for 𝑌. 

Then each 𝑦𝑚 has a unique representation of the form 

𝑦𝑚 = 𝛼1
(𝑚)

𝑒1 + ⋯ … … … … 𝛼𝑛
(𝑚)

𝑒𝑛. 

Since (𝑦𝑚) is a Cauchy sequence, for every 𝜀 > 0 there is 𝑁 such 

that, 

‖𝑦𝑚 − 𝑦𝑟‖ < 𝜀 when 𝑚, 𝑟 > 𝑁. 

Therefore from the above condition and using the lemma 4.5.1 we have 

some  𝑐 > 0, 

𝜀 > ‖𝑦
𝑚

− 𝑦
𝑟
‖ = ‖∑(𝛼𝑗

(𝑚)
− 𝛼𝑗

(𝑟)
)

𝒏

𝒋=𝟏

‖ ≧ 𝒄 ∑|𝛼𝑗
(𝑚)

− 𝛼𝑗
(𝑟)

|

𝒏

𝒋=𝟏

,   

when 𝑚, 𝑟 > 𝑁. Division by when 𝑐 > 0 gives 

|𝛼𝑗
(𝑚) − 𝛼𝑗

(𝑟)| ≤ ∑ |𝛼𝑗
(𝑚) − 𝛼𝑗

(𝑟)|

𝒏

𝒋=𝟏

<
𝜺

𝒄
, (𝑚, 𝑟 > 𝑁). 

This shows that each of the 𝑛 sequences, 

(𝛼𝑗
(𝑚)

) = (𝛼𝑗
(1)

, 𝛼𝑗
(2)

, … … )                           𝑗 = 1, … … … , 𝑛 

is Cauchy in ℝ or ℂ. 

Hence it converges; 

 let 𝛼𝑗  denote the limit. 

Using these 𝑛 limits 𝛼1, … … . . 𝛼𝑛 , we define, 

𝑦 = 𝛼1𝑒1 + ⋯ + 𝛼𝑛𝑒𝑛 . 

It is clear that 𝑦 ∈ 𝑌. 

Now, 
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‖𝑦𝑚 − 𝑦‖ =  ‖∑ (𝛼𝑗
(𝑚) − 𝛼𝑗

(𝑟)
)

𝒏

𝒋=𝟏

‖ ≦ ∑ |𝛼𝑗
(𝑚) − 𝛼𝑗|

𝒏

𝒋=𝟏

‖𝒆𝒋‖. 

Since 𝛼𝑗
(𝑚)

→ 𝛼𝑗 . 

‖𝑦𝑚 − 𝑦‖ → 0. 

It implies 𝑦𝑚 → 𝑦. 

This shows that (𝑦𝑚) was an arbitrary Cauchy sequence in 𝑌. 

This proves that 𝑌 is complete. 

 

Theorem 2: Every finite dimensional subspace 𝑌 of a normed space 𝑋 is 

closed in 𝑋. 

 

Question: 

 Infinite dimensional subspace 𝑌 of a normed space 𝑋 is closed in 𝑋? 

 

Answer: Need not to be closed. 

Example: 

Let 𝑋 = 𝐶[0,1] and 𝑌 =span {𝑥0, 𝑥1, … … } where 𝑥𝑖(𝑡) = 𝑡𝑖, so 

that 𝑌 is the set of all polynomials. 𝑌 is not closed in 𝑋. 

 

 In finite dimensional vector space 𝑋 is that all norms on 𝑋 lead to 

the same topology for 𝑋. 

 

4.6. EQUIVALENT NORMS 

 

A norm ‖. ‖ on a vector space 𝑋 is said to be equivalent to a norm 

‖. ‖0 on 𝑋 if there are positive numbers 𝑎 and 𝑏 such that for all 𝑥 ∈

𝑋 

We have  
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𝑎‖𝑥‖0 ≦ ‖𝑥‖ ≦ 𝑏‖𝑥‖0………………..[E.N] 

 Equivalent norms on 𝑋 define the same topology for 𝑋. 

 Any two norms on a finite – dimensional space are equivalent but 

this does not extend to infinite-dimensional spaces. 

 

4.6.1 THEOREM 

 

On a finite – dimensional vector space 𝑋, any norm ‖. ‖ is equivalent to 

any other norm ‖. ‖0. 

 

Proof.  

Let  𝑋 = 𝑛 . 

Consider {𝑒1, 𝑒2, … . 𝑒𝑛} any basis for 𝑋. 

Then every 𝑥 ∈ 𝑋 has a unique representation. 

 

𝑥 = 𝛼1𝑒1 + ⋯    + 𝛼𝑛𝑒𝑛 .   

Since from above Lemma,  

[Let {𝑥1, … 𝑥𝑛} be a linearly independent set of vectors in a normed 

space 𝑋 (𝑜𝑓 𝑎𝑛𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛), then there is a number 𝑐 > 0 such 

that for every choice of scalar  𝛼1, … … … 𝛼𝑛 we have, 

‖𝛼1𝑥1 + ⋯ … … … … + 𝛼𝑛𝑥𝑛‖ ≧ 𝑐(|𝛼1| + ⋯ |𝛼𝑛|)] 

there is a positive constant 𝑐 such that, 

‖𝑥‖ ≧ 𝑐(|𝛼1| + ⋯ |𝛼𝑛|). 

The triangle inequality gives, 

‖𝑥‖0 ≦ ∑|𝛼𝑗|

𝑛

𝑗=1

‖𝑒𝑗‖
0

≤ 𝑘 ∑|𝛼𝑗|,    

𝑛

𝑗=1

 

where 𝑘 =  𝑚𝑎𝑥𝑗‖𝑒𝑗‖
0

. 
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Together, 𝑎‖𝑥‖0 ≤ ‖𝑥‖, 

Where 𝑎 = 𝑐 𝑘 > 0.⁄  

The other inequality in [E.N] is now obtained by an interchange of 

the roles of ‖. ‖ and ‖. ‖0 in the preceding element. 

This theorem is of considerable practical importance. For instance, 

it implies that convergence or divergence of a sequence in a finite 

dimensional vector space does not depend on the particular choice of a 

norm on that space. 

 

CHECK YOUR PROGRESS 

 

Write True and False : 

 

1. Dimension of ℂ
𝑛

 as a linear space over ℝ  is  2𝑛 True/False. 

2. If E is finite dimensional linear space of dimension n, and 

F is a subset of E with m elements, where m < n, then 

F can be a basis of E. True/False. 

3. Every finite dimensional normed space has a unique norm. 

True/False. 

4. Every finite dimensional normed linear space is a Banach 

Space. True/False. 

5.  If 𝐸 is finite dimensional linear space of dimension 𝑛, and 

𝐹 is a subset of 𝐸 with 𝑚 elements, where 𝑚 <  𝑛, then 𝐹 cannot 

be a basis of 𝐸. True/False. 

6. Every complete subspace of a normed space is closed. True/False. 

7. Let 𝑀 be a closed subspace of a normed space 𝑁. Then 

the quotient space 𝑁/𝑀 is a Banach space if and only if: 𝑁 is a 

Banach space. True/False. 

8. For 𝑥, 𝑦 in a normed space 𝑋, |‖𝑥 + 𝑦‖ − ‖𝑥 − 𝑦‖| ≥2 ‖𝑦‖. 

True/False. 
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9. All norms are equivalent on finite dimensional vector spaces. 

True/False 

10. The norms ‖𝑓‖1 and ‖𝑓‖2 are not equivalent in 𝐶[0,1]. 

True/False 

 

4.8 SUMMARY 

 

Present unit is presentation of the concepts quotient spaces, 

subspace of a normed space, subspace of a Banach space and finite 

dimensional normed space. These concepts have been explained 

with the help of definitions, examples and theorems. The learners 

can understand the concepts in easy manner. 

 

4.9 GLOSSARY 

 

i. Metric space: Let 𝑋 ≠ ∅  be a set then the metric on the set 𝑋 is 

defined as a function 𝑑: 𝑋 ×  𝑋 →  [0, ∞) such that some 

conditions are satisfied.  

 

ii. Vector space: - Let 𝑉 be a nonempty set with two operations 

(i) Vector addition:  If any  𝑢, 𝑣 ∈ 𝑉 then 𝑢 + 𝑣 ∈ 𝑉 

(ii) Scalar Multiplication: If any  𝑢 ∈ 𝑉 and 𝑘 ∈ 𝐹 then 

𝑘𝑢 ∈ 𝑉 

Then 𝑉 is called a vector space (over the field 𝐹) if the 

following axioms hold for any vectors if the some 

conditions hold. 
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iii. Normed space:- Let 𝑋  be a vector space over scalar field 𝐾. A 

norm on a (real or complex) vector space 𝑋 is a real-valued 

function on 𝑋 (‖𝑥‖: 𝑋 → 𝐾) whose value at an  𝑥 ∈ 𝑋 is denoted 

by ‖𝑥‖ and which has the four properties here  𝑥 and 𝑦 are 

arbitrary vectors in 𝑋 and 𝛼 is any scalar. 

 

iv. Banach space:- A complete normed linear space is called a 

Banach space. 
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iv. https://www.youtube.com/watch?v=Ow3q1A19hdY 

 

4.12  TERMINAL QUESTIONS 

 

1. What is quotient space with example? 

2. What is a subspace of a Banach space? 

3. Is a normed linear space complete? .......................................... 

............................................................................................. 

4. What are the characteristics of a Banach space? 

................................................................... 

 

 

4.13 ANSWERS 

 

 

CHECK YOUR PROGRESS 

1. True. 

2. False. 

3. False. 

4. True. 

5. True. 

6. True. 

7. True. 

8. False. 

9. True 

10. True. 

https://www.youtube.com/watch?v=Ow3q1A19hdY
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UNIT 5:  

COMPACTNESS AND FINITE DIMENSION 

 

CONTENTS: 

5.1        Introduction 

5.2        Objectives 

5.3       Compactness 

5.3.1 Lemma 

5.3.2 Theorem 

5.4       F. Riesz’s Lemma 

5.5       Theorems 

5.5.1   Corollary 

5.6        Summary 

5.7        Glossary 

5.8        References 

5.9        Suggested readings 

5.10 Terminal questions 

5.11 Answers 

 

 

5.1 INTRODUCTION 

 

In previous units we have studied the concepts: quotient spaces, 

subspace of a normed space, subspace of a Banach space and finite 

dimensional normed space. These concepts have been explained with the 

help of definitions, examples and theorems. Compactness is one of the 
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most fundamental mathematical notions. Because of that, after more than a 

century from its formal introduction, it still attracts great interest of 

researchers. Compactness is so widespread that it seems nigh to 

impossible to even briefly mention all the theories where it plays a crucial 

role. 

 

 

5.2 OBJECTIVES 

 

After studying this unit, learner will be able to  

i. Described the concept of Compactness 

ii. Explained the topic of F. Riesz’s Lemma. 

 

5.3 COMPACTNESS 

 

First we recall the definition of cover and subcover. 

Open cover of set: Let (𝑋, 𝑑) be a metric space and 𝐺 be a collection of 

open sets in 𝑋.If for each 𝑥 ∈  𝑋 there is a member 𝐺𝑖  ⊆  𝐺 such that 𝑥 ∈

 𝐺𝑖, then 𝐺 is called an opencover of 𝑋.  

Subcover of set: A subcollection of 𝐺 which is itself an open cover of𝑋 is 

called a subcover (or subcovering). 

Now we define compact set as 

Compact Set: A metric space (𝑋, 𝑑) is said to be compact if every open 

covering 𝐺 of 𝑋 has a finite subcovering, i.e., there is a finite subcollection 

{𝐺1, 𝐺2, . . . , 𝐺𝑛}  ∈  𝐺 such that 𝑋 =∪𝑖=1
∞ 𝐺𝑖. 

NOTE:  

 A nonempty subset 𝑌 of 𝑋 is said to be compact if it is a compact 

metric space with the metric induced on it by 𝑑. 
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 A nonempty subset 𝑌 is compact if every covering 𝐺 of 𝑌 by relatively 

open sets of 𝑌 has a finite subcovering. 

A metric space 𝑋 is said to be compact if every sequence in 𝑋 has 

a convergent subsequence. 

 

A subset 𝑀 of 𝑋 is said to be compact if  𝑀 is compact considered 

as a subspace of 𝑋, that is, if every sequence in 𝑀 has a convergent 

subsequence whose limit is an element of 𝑀. 

Example: 

 The interval (0,1) in the metric space (ℝ, 𝑑), where 𝑑 denotes the 

usual metric, is not compact. Now we will try to find an open covering 

such that given cover has no subcover.Consider the open covering 

{(
1

𝑛
, 1) : 𝑛 =  2, 3, . . . } of (0,1) . We observed there is no subcover for 

open cover. Mathematically ∪𝑛=2
∞ 𝑆 (0,1 −

1

𝑛
) ⊇ 𝑆(0,1). But no finite 

subcollection of {𝑆 (0,1 −
1

𝑛
) : 𝑛 = 2,3, … . . } covers open ball 𝑆(0,1). 

 Let 𝑌 be a finite subset of a metric space (𝑋, 𝑑).Then𝑌 is compact. 

 

Local Compactness: 

A metric space 𝑋 is said to be locally compact at every point of 𝑋 has a 

compact neighbourhood. 

 

 ℝ𝑛 and ℂ𝑛 are locally compact. 

 

Relatively Compact: 

A subset 𝐴 of a metric space 𝑋 is relatively compact if and only if 

every sequence of points in 𝐴 has a cluster point in 𝑋. A space is 

compact if it is relatively compact in itself. An alternative definition is 

that 𝐴 is relatively compact in 𝑋 if and only if every open cover of 𝑋 

contains a finite subcover of  𝐴. 
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Theorem 1.Closed subsets of compact sets are compact. 

 

Proof. Let 𝑌 be compact subset of metric space 𝑋. 

Let 𝐴 ⊆ 𝑌 closed relative to Y and closed relative to 𝑋. 

Now we will try to prove that 𝐴 is compact 

Let 𝐺 = {𝐺𝜆: 𝜆 ∈ 𝛬} be an oper cover of A.  

Then the collection 

𝑀 = {𝐺𝜆: 𝜆 ∈ 𝛬} ∪ {𝑋 − 𝐴}forms an open cover of 𝑌. 

𝑌is compact⇒there is a finite sub-collection 𝑀∗ of M which covers 𝑌. 

Therefore it also covers 𝐴. 

If 𝑋 − 𝐴 is a member of 𝑀∗, so we can remove it from 𝑀∗ and it still 

remain open cover of 𝐴. 

Thus Finite subcollection of 𝐺 covers 𝐴. 

Therefore 𝐴 is compact. 

 

Finite intersection property (F.I.P): .A collection 𝐹 of sets in 𝑋 is said 

to have the finite intersection property if every finite subcollection of 𝐹 

has a nonempty intersection.  

 

Theorem2. Let (𝑌, 𝑑∗)  be a subspace of metric space (𝑋, 𝑑). Prove that 𝑌 

is compact w.r.t metric 𝑑∗ iff 𝑌 is compact w.r.t  metric𝑑 on 𝑋. 

Proof. Let 𝐹𝜆 is 𝑑∗ − open cover of 𝑌. 

⇒𝑌 ⊆∪𝜆 𝐹𝜆. 

Again 𝐹𝜆 is 𝑑∗ − open cover 

⇒there exists  d-open 𝐺𝜆 such that 𝐹𝜆 = 𝐺𝜆 ∩ 𝑌 ⊆ 𝐺𝜆 

⇒there exists  d-open 𝐺𝜆 such that ∪𝜆 𝐹𝜆 ⊆∪𝜆 𝐺𝜆 

But 𝑌 ⊆∪𝑖 𝐹𝑖 and 𝑌 ⊆∪𝑖 𝐺𝑖 

⇒{𝐺𝑖} is d-open cover of Y. 
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It is compact and therefore the cover 𝐺𝑖 must have finite reducible 

subcover. 

Let {𝐺𝜆𝑘
: 𝑘 = 1,2,3, … } be subcover of 𝐺𝜆. 

⇒𝑌 ⊆∪𝜆=1
𝑛 𝐺𝜆𝑘

 

where 

𝑌 ∩ 𝑌 ⊆ 𝑌 ∩ (∩𝑘=1
𝑛 𝐺𝜆) =∩𝑘=1

𝑛 (𝐴 ∩ 𝐺𝜆𝑟
) =∪ 𝐹𝜆𝑘

 

⇒ 𝑌 ⊆ 𝐹𝜆𝑘
 is a𝑑∗ − open cover of A 

⇒F is 𝑑∗ −compact. 

Converse 

Let (𝑌, 𝑑∗) is a subspace of (X,d) and Y is 𝑑∗ −compact 

Now we prove that Y is d-compact. 

Let 𝐺𝜆 is 𝑑 − open cover of 𝑌⇒𝑌 ⊆∪𝜆 𝐺𝜆. 

Therefore 𝑌 ∩ 𝑌 ⊆ 𝑌 ∩ (∪𝜆 𝐺𝜆) 

It implies that 𝑌 ⊆∪ (𝑌 ∩ 𝐺𝜆) 

Let 𝐹𝜆 = 𝐺𝜆 ∩ 𝑌 then 𝑌 ⊆∪ 𝐺𝜆 

⇒𝐺𝜆 is 𝑑 −open ⇒𝐺𝜆 = 𝐺𝜆 ∩ 𝑌 is 𝑑∗ −open. 

Therefore 𝐹𝜆 is a 𝑑∗ −open cover of Y but 𝐹𝜆is  𝑑∗ − compact. 

Hence given cover is reducible to finite subcover. i.e.{𝐹𝜆𝑘
: 1 ≤ 𝑘 ≤ 𝑛} 

⇒𝑌 ⊆∪𝑘=1
𝑛 𝐹𝜆𝑘

=∪𝑘=1
𝑛 (𝐹𝜆𝑘

∩ 𝑌) 

⇒𝑌 ⊆∪𝑘=1
𝑛 (𝐺𝜆𝑘

∩ 𝑌) =∪𝑘=1
𝑛 𝐺𝜆𝑘

 

⇒𝑌 ⊆∪𝑘=1
𝑛 𝐺𝜆 

⇒𝐺𝜆 is finite subcover of the cover 𝐺𝜆. 

Therefore 𝑌 is 𝑑 −compact. 

 

BolzannoWeierstrass property (BWP): A space 𝑋 is said to have 

Bolzanno weierstrass property(BWP) if every finite set in 𝑋 has a limit 

point. 

 

NOTE: 

A space with BWP is also said to be Frechet compact. 
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Countably compact spaces: A metric space 𝑋 is said to be countably 

compact if every countable open cover of 𝑋 has a finite subcover. 

 

Sequentially compact spaces: A metric space (𝑋, 𝑑) is known as 

sequentially compact if every sequence on X has a convergent 

subsequence. 

 

 A metric space 𝑋 is sequentially compact iff it has a B.W.P. 

 

𝜺 –net: Let (𝑋, 𝑑) be a metric space and 𝜀 be an arbitrary positive number. 

Then a subset 𝐴 ⊆  𝑋 is said to be an 𝜀 −net for 𝑋,for  any given 𝑥 ∈ 𝑋, 

there exists a point 𝑦 ∈ 𝐴 such that 𝑑(𝑥, 𝑦)  <  𝜀, i.e., 𝐴 is an 𝜀 −net for 

𝑋 if 𝑋 =∪  {𝑆(𝑦, 𝜀): 𝑦 ∈ 𝐴}. 

 

Finite 𝜺 –net:A finite subset of X that is an e-net for X is called a finite 

𝜀 −net for 𝑋. 

 

Lebesgue number for covers: Let (𝑋, 𝑑) be a metric space and let 𝐺 =

{𝐺𝜆: 𝜆 ∈ 𝛬} be an open cover of 𝑋. A real number 𝑙 > 0 is said to be 

lebesgue number for 𝐺 iff every subset of 𝑋 with diameter less than 𝑙 is 

contained in atleast one of 𝐺𝜆. 

 Every open cover of sequentially compact metric space has a 

lebesgue number. 

Totally bounded: The metric space (𝑋, 𝑑) is said to be totally bounded if, 

for any𝜺 >  0, there exists a finite 𝜺 −net for (𝑋, 𝑑). 

 A nonempty subset Y of 𝑋 is said to betotally bounded if the subspace 𝑌 

is totally bounded. 

Example: 

A bounded interval in ℝ is a totally bounded metric space. Let the 

endpoints of the interval be 𝑎 and 𝑏 (𝑎 <  𝑏) and 𝜀 be an arbitrary 

positive number. Take an integer 𝑛 >
𝑏−𝑎

𝜀
 and divide the interval into 𝑛 

equal subintervals each of length 
𝑏− 𝑎

𝑛
. 

The points 
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{𝑎 +
(𝑘−1)(𝑏−𝑎)

𝑛
∶  𝑘 =  2, . . . , 𝑛}contain the required 𝜀-net for the interval 

with endpoints 𝑎 and 𝑏. 

Let 𝑥be any point in the interval. Then 𝑎 ≤  𝑥 ≤  𝑏. 

Then there exists an integer 𝜆 ∈  {1, 2, . . . , 𝑛} such that 

𝑎 +
(𝜆 − 1)(𝑏 − 𝑎)

𝑛
≤ 𝑥 ≤ 𝑎 ≤ 𝑎 +

𝜆(𝑏 − 𝑎)

𝑛
 

Accordingly, the distance of 𝑥 from each of the endpoints of the interval 

[𝑎 +
(𝜆 − 1)(𝑏 − 𝑎)

𝑛
, 𝑎 +

𝜆(𝑏 − 𝑎)

𝑛
] 

is less than or equal to 
𝑏−𝑎

𝑛
, which is strictly less than 𝜀 in view of the way 

in which 𝑛 has been selected.  

⇒any set containing at least one endpoint of each of the preceding  

subintervals, 𝑘 =  1, 2, . . . , 𝑛, forms an 𝜀 –net, the collection of points 

constitute the  set. 

 

 Every sequentially compact metric space (𝑋, 𝑑) is totally bounded. 

 A metric space 𝑋 is compact if and only if it is sequentially 

compact. 

 Every compact metric space is complete.  

 A metric space is compact if and only if it is complete and totally 

bounded.  

5.3.1   LEMMA 

 

A compact subset 𝑀 of a metric space is closed and bounded. 

 

Proof.  For every 𝑥 ∈ �̅� there is a sequence 〈𝑥𝑛〉 in 𝑀 such that  

𝑥𝑛 → 𝑥; 

Since 𝑀 is compact, 𝑥 ∈ 𝑀. 

Hence 𝑀 is closed because 𝑥 ∈ �̅� was arbitrary. 
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We prove that 𝑀 is bounded. 

If 𝑀 were unbounded, it would contain an unbounded sequence 〈𝑦𝑛〉 such 

that, 

𝑑(𝑦𝑛 , 𝑏) > 𝑛, where 𝑏 is any fixed element. 

This sequence could not have a convergent subsequence since a 

convergent subsequence must be bounded [using previous result of metric 

space]. 

 

 The converse of this lemma is general false. 

Consider the sequence < 𝑒𝑛 > in 𝑙2, where 𝑒𝑛 = (𝛿𝑛𝑗) has the 𝑛𝑡ℎ 

term  and all other terms 0; 

(𝑒𝑛) is called a Schauder basis (or basis) for 𝑋. 

𝑒1 = (1, 0, 0, 0 … . ) 

𝑒2 = (0, 1, 0, 0 … . ) 

𝑒3 = (0, 0, 1, 0 … . ) 

This sequence 𝑀 is bounded since ‖𝑒𝑛‖ = 1. 

It’s terms constitute a point set which is closed because it has no 

point of accumulation. Therefore,  𝑀 is not compact because we 

cannot produce a convergent subsequence of 𝑀. 

 

 

5.3.2 THEOREMS 

 

Theorem 3. In a finite dimensional normed space 𝑋, any subset 𝑀 ⊂ 𝑋 is 

compact if and if 𝑀 is closed and bounded. 

 

Proof.  Since compact subset 𝑀 of a metric space is closed and bounded. 

Let 𝑀 be closed and bounded. 

Let dim 𝑋 = 𝑛 and  {𝑒1, 𝑒2 , … … . 𝑒𝑛} a basis for 𝑋.  
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Consider any sequence {𝑥𝑚} in 𝑀. 

Then each 𝑥𝑚 = 𝜉1
(𝑚)𝑒1 +  … … … 𝜉𝑛

(𝑚)𝑒𝑛 .  

Since 𝑀 is bounded, so is {𝑥𝑚}. 

‖𝑥𝑚‖ ≤ 𝑘 for all 𝑚. 

By lemma in previous unit, 

𝑘 ≥ ‖𝑥𝑚‖ = ‖∑ 𝜉𝑗
(𝑚)

𝑒𝑗
𝑛
𝑗=1 ‖ ≥ 𝑐 ∑ 𝜉𝑗

(𝑚)𝑛
𝑗=1 . 

Where 𝑐 > 0. 

Hence the sequence of numbers 𝜉𝑗
(𝑚)

(𝑗 𝑓𝑖𝑥𝑒𝑑) is bounded and by the 

Bolzano-Weierstrass theorem, has a point of accumulation 𝜉𝑗; here 1 ≤

𝑗 ≤ 𝑛. Now, we can conclude that  {𝑥𝑚}  has a subsequence {𝑧𝑚} which   

converges  𝑧 = ∑ 𝜉𝑗 𝑒𝑗.(using lemma of previous unit). 

Since 𝑀 is closed, 𝑧 ∈ 𝑀. This shows that the arbitrary sequence {𝑥𝑚}   in  

𝑀 has a subsequence which converges in 𝑀. Hence 𝑀 is compact. 

 

5.4 F. RIESZ’S LEMMA 

 

Let 𝑌 and 𝑍 be subspaces of a normed space 𝑋(of any dimension), 

and  suppose that 𝑌 is closed and is a proper subset of 𝑍. Then for every  

real number 𝜃 in the interval (0,1) there is a 𝑧 ∈ 𝑍 such that, 

‖𝑧‖ = 1, ‖𝑧 − 𝑦‖ ≥ 𝜃 for all 𝑦 ∈ 𝑌. 

 

Proof. Consider  any 𝑣 ∈ 𝑍 − 𝑌 and denote its distance from 𝑌 by 𝑎. 

𝑎 = lim
𝑦∈𝑌

‖𝑣 − 𝑦‖. 

Since 𝑌 is closed then 𝑎 > 0. We now take any 𝜃 ∈ (0,1). 

By the definition of an infimum there is a 𝑦0 ∈ 𝑌 such that, 

𝑎 ≦ ‖𝑣 − 𝑦0‖ ≦
𝑎

𝜃
………..(1) 

( Note that 
𝑎

𝜃
> 𝑎 since 0 < 𝜃 < 1).  
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Let, 𝑧 = 𝑐(𝑣 − 𝑦0) where 𝑐 =
1

‖𝑣−𝑦0‖
.  

We have, 

‖𝑧 − 𝑦‖ = ‖𝑐(𝑣 − 𝑦0) − 𝑦‖ 

= 𝑐‖𝑣 − 𝑦0 − 𝑐−1𝑦‖ 

= 𝑐‖𝑣 − 𝑦1‖ 

 

 

Then, ‖𝑧‖ = 1, and we show that ‖𝑧 − 𝑦‖ ≥ 𝜃 for every 𝑦 ∈ 𝑌. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where  𝑦1 = 𝑦0 + 𝑐−1𝑦. 

The form of 𝑦1 shows that 𝑦1 ∈ 𝑌. 

 

 

     

 

 

𝑦0 

v 

Y 

Z 

X 

              Fig.5.4.1 

a 
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Hence ‖𝑣 − 𝑦1‖ ≥ 𝑎, by the definition of 𝑎.  

Writing 𝑐 out and using (1), we obtain 

‖𝑧 − 𝑦‖ =  𝑐‖𝑣 − 𝑦1‖ ≥ 𝑐𝑎 =
𝑎

‖𝑣 − 𝑦0‖
≥

𝑎

𝑎 𝜃⁄
= 𝜃. 

Since 𝑦 ∈ 𝑌 was arbitrary, this completes the proof. 

 

 

5.5 THEOREMS 

 

Theorem 4. If a normed space 𝑋 has the property that the closed unit ball 

𝑀 = {𝑥|‖𝑥‖ ≦ 1} is compact, then 𝑋 is finite dimensional. 

 

Proof. For proving this theorem assume that 𝑀 is compact but  

dim 𝑋 = ∞. 

We choose any 𝑥1 of norm 1. 

This generates a one dimensional subspace 𝑋1 of 𝑋, which is closed and is 

a proper subspace of 𝑋. 

Since dim 𝑋 = ∞.  

By Riesz’s lemma there is an 𝑥2 ∈ 𝑋 of norm 1 such that 

‖𝑥2 − 𝑥1‖ ≥ 𝜃 =
1

2
. 

The elements 𝑥1, 𝑥2 generate a two dimensional proper closed space 𝑋2 of 

𝑋.  

By Riesz’s lemma there is an 𝑥3 ∈ 𝑋 of norm 1 such that 

‖𝑥3 − 𝑥2‖ ≥ 𝜃 =
1

2
. 

In particular                                  ‖𝑥3 − 𝑥2‖ ≥
1

2
. 

Proceeding by induction, we obtain a sequence < 𝑥𝑛 > of elements 𝑥𝑛 

Such that, 

‖𝑥𝑚 − 𝑥𝑛‖ ≥
1

2
 (where 𝑚 ≠ 𝑛). 
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It implies that < 𝑥𝑛 > cannot have a convergent subsequence. 

This contradicts the compactness of 𝑀. 

Hence our assumption dim 𝑋 = ∞  is false and dim 𝑋 < ∞. 

 

Theorem 5 (Continuous mapping). 

 Let 𝑋 and 𝑌 be metric spaces and 𝑇: 𝑋 → 𝑌  a continuous mapping. Then 

the image of compact subset 𝑀 of 𝑋 under 𝑇 is compact. 

 

Proof. By the definition of compactness it suffices to show that every 

sequence < 𝑦𝑛 > in the image of 𝑇(𝑀) ⊂ 𝑌 contains a subsequence 

which converges in 𝑇(𝑀). 

Since 𝑦𝑛 ∈ 𝑇(𝑀). 

We have 𝑦𝑛 = 𝑇(𝑥𝑛) for some 𝑥𝑛 ∈ 𝑀. 

Since 𝑀 is compact. 

< 𝑥𝑛 > contains a subsequence < 𝑥𝑛𝑘
> which converges in 𝑀. 

 Because 𝑇: 𝑋 → 𝑌  a continuous mapping. 

The image of < 𝑥𝑛𝑘
> is a subsequence of < 𝑦𝑛 > which converges in 

𝑇(𝑀). 

Hence 𝑇(𝑀) is compact. 

 

5.5.1 COROLLARY 

 

A continuous mapping 𝑇 of a compact subset 𝑀 of a metric space 𝑋 into  

ℝ assumes a maximum and a minimum at some points of 𝑀. 

 

Proof.  Since we know that Let 𝑋 and 𝑌 be metric spaces and 𝑇: 𝑋 → 𝑌  a 

continuous mapping. Then the image of compact subset 𝑀 of 𝑋 under 𝑇 is 

compact and a compact subset 𝑀 of a metric space is closed and bounded. 

So that, 
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𝑖𝑛𝑓𝑇(𝑀) ∈ 𝑇(𝑀), 

𝑠𝑢𝑝 𝑇(𝑀) ∈ 𝑇(𝑀). 

And the inverse images of these two points consist of points  of 𝑀 at 

which 𝑇𝑥 is minimum or maximum, respectively. 

 

5.6 SUMMARY 

Present unit is presentation of the concepts Compactness explained 

the topic of F. Riesz’s   Lemma. These concepts have been explained with 

the help of definitions, examples and theorems. The learners can 

understand the concepts in easy manner. 

 

5.7 GLOSSARY 

 

i. Metric space: Let 𝑋 ≠ ∅  be a set then the metric on the set 𝑋 is 

defined as a function 𝑑: 𝑋 ×  𝑋 →  [0, ∞) such that some 

conditions are satisfied.  

ii. Vector space: - Let 𝑉 be a nonempty set with two operations 

(i) Vector addition:  If any  𝑢, 𝑣 ∈ 𝑉 then 𝑢 + 𝑣 ∈ 𝑉 

(ii) Scalar Multiplication: If any  𝑢 ∈ 𝑉 and 𝑘 ∈ 𝐹 then 

𝑘𝑢 ∈ 𝑉 

Then 𝑉 is called a vector space (over the field 𝐹) if the 

following axioms hold for any vectors if the some 

conditions hold. 

 

iii. Normed space:- Let 𝑋  be a vector space over scalar field 𝐾. A 

norm on a (real or complex) vector space 𝑋 is a real-valued 

function on 𝑋 (‖𝑥‖: 𝑋 → 𝐾) whose value at an  𝑥 ∈ 𝑋 is denoted 
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by ‖𝑥‖ and which has the four properties here  𝑥 and 𝑦 are 

arbitrary vectors in 𝑋 and 𝛼 is any scalar. 

 

iv. Banach space:- A complete normed linear space is called a 

Banach space. 

 

v. Quotient Spaces 

 

vi. Subspace 

 

vii. Finite dimensional Normed Spaces 

 

viii. Equivalent norms 

CHECK YOUR PROGRESS 

1. Any bounded subset in ℝ
𝑛

is : 

a) compact 

b) relatively compact 

c) open 

d) closed 

2. Consider the statements: 

(i) Every compact operator is bounded. 

(ii) Every bounded operator is compact. Then: 

(a) Only (i) is true. 

(b) Only (ii) is true. 

(c) Both (i) and (ii) are true. 

(d) Neither (i) nor (ii) is true. 

3. A metric space 𝑋 is said to be compact if every sequence in 𝑋 has a  

    convergent subsequence. True/False. 

 

4. A compact subset 𝑀 of a metric space is not closed and bounded.    

      True/False. 
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5.10 TERMINAL QUESTIONS 

 

1. What is a finite dimensional? 

…………………………………………………………… 

2. What is compactness in Banach space? 

………………………………………………………………. 

https://www.youtube.com/watch?v=Ow3q1A19hdY
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3. What is an example of a finite-dimensional? 

………………………………………………………………. 

4. State and Prove is the Riesz Lemma? 

…………………………………………………………….. 

 

5.11 ANSWERS 

 

 

CHECK YOUR PROGRESS 

 

1) b.  

2) a. 

3) True. 

4) False. 
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6.1 INTRODUCTION 

  

In previous units we have studied about Normed Space, Banach 

Space, Finite dimensional Spaces and Compactness and Finite Dimension. 

In present unit is a presentation of concepts of linear operator. An operator 

in mathematics is typically a mapping or function that modifies one 

space's components to create another space's elements. Although the term 

"operator" has no universal definition, it is frequently used in place of 

"function" when the domain is a collection of functions or other organized 

objects. Furthermore, it might be challenging to clearly define an 

operator's domain because it can be expanded to function on related 

objects. Acting on vector spaces, linear maps are the most fundamental 

operators. Linear operators are linear maps with the same space, for 

example from  ℝ
𝒏
 to ℝ𝐧 serving as both the domain and the range. These 

operators frequently maintain characteristics like continuity. 

 

We are using the following notations: 

 

i. 𝒟(𝑇) = domain of  𝑇. 

ii. ℛ(𝑇) = range of  𝑇. 

iii. 𝒩(𝑇) = null space of  𝑇. 

 

In this unit we shall elaborate somewhat on the theory of operators. 

In so doing, we will define several important types of operators, and we 

will also prove some important  theorems. 
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6.2 OBJECTIVES 

 

After studying this unit, learner will be able to  

i. Described the concept of Linear operator 

ii. Explained the topic of Bounded and Continuous Linear 

Operators. 

iii. Defined the concept of Integral operator. 

 

6.3 LINEAR OPERATOR 

 

A   linear operator  𝑇 is an operator such that 

i. The domain 𝒟(𝑇) of 𝑇 is a vector space and the range 

ℛ(𝑇) lies in a vector space over the same field. 

ii. for all 𝑥, 𝑦 ∈ 𝒟(𝑇) and scalar 𝛼, 

𝑇(𝑥 + 𝑦) =  𝑇𝑥 + 𝑇𝑦, 

𝑇(𝛼𝑥) = 𝛼𝑇𝑥. 

………………………(1) 

 By definition, the null space of  𝑇 is the set of all  𝑥 ∈ 𝒟(𝑇) such that 

𝑇𝑥 = 0. 

 We can use another word for null space is “kernel”. 

 Equation (1) shows that the linear operator ‘𝑇′  is  a  

homomorphism from one vector space  to another vector space, 

      that is T save two operations on the vector space. 

 

Range Space: The range space of an operator 𝑇 : 𝑋 → 𝑌 , denoted ℛ(𝑇), 

is the set of all vectors 𝑦𝑖 ∈ 𝑌 such that for every 𝑦𝑖 ∈ ℛ(𝑇) there exists 

an x X such that  𝑇𝑥 = 𝑦𝑖 . 
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Null Space: The null space of operator 𝑇, denoted 𝒩(𝑇) is the set of all 

vectors 𝑥𝑖 ∈ 𝑋 such that  𝑇(𝑥𝑖) = 0: 

𝒩(𝑇) = {𝑥𝑖 ∈ 𝑋 | 𝑇𝑥𝑖 = 0}. 

 

 For a linear operator 𝑇, the Null Space  𝒩(𝑇) is a subspace of 𝑋 . 

Furthermore, if 𝑇 is continuous (in a normed space  𝑋 ), then 

𝒩(𝑇)is closed 

 A linear operator on a normed space 𝑋 (to a normed space 𝑌) is 

continuous at every point  𝑋 if it is continuous at a single point in 

X 

Definition: A   linear transformation  is a function  𝑇 from 𝑈 into 𝑉 ( 

where 𝑈(𝐹) and 𝑉(𝐹) be two vector spaces) such that for all  , in U

and for all Fba , . 𝑇(𝛼 + 𝛽) =  𝑇(𝛼) + 𝑇(𝛽), 𝑇(𝑎𝛼) = 𝑎𝑇𝛼. 

 Or       )()()(  bTaTbaT  . 

 A linear operator  𝑇 is a mapping from same vector space to same vector 

space. The field will be same in vector space. Linear transformation 𝑇 is a 

mapping from one vector space to another vector space. The field are 

same in both the cases. 

 

6.3.1 EXAMPLES 

 

Example 1: The identity operator 𝐼𝑋: 𝑋 → 𝑋 is defined by 𝐼𝑋𝑥 = 𝑥 

for all 𝑥 ∈ 𝑋. If write 𝐼 in place of 𝐼𝑋. Thus,  𝐼𝑥 = 𝑥. 

 

Example 2: The zero operator  0: 𝑋 → 𝑌 is defined by 0𝑥 = 𝑥 for 

all 𝑥 ∈ 𝑋. 
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Example 3:  Let 𝑋 be the vector space of all polynomial on [𝑎, 𝑏]. 

We may define a linear operator 𝑇 on 𝑋 by setting, 

𝑇𝑥(𝑡) =  𝑥′(𝑡) 

for every 𝑥 ∈ 𝑋, where the prime denotes differentiation with respect to 𝑡. 

This operator 𝑇 maps 𝑋 onto itself. 

 

Example 4: A linear operator 𝑇 from 𝐶[𝑎, 𝑏] into itself can be 

defined as 𝑇𝑥(𝑡) = ∫ 𝑥(𝜏)
𝑡

0
𝑑𝜏 and also 𝑇𝑥(𝑡) = 𝑡𝑥(𝑡) where 𝑡 ∈

[𝑎, 𝑏]. 

 

Example 5:  A real matrix  𝐴 = (𝛼𝑗𝑘) with 𝑟 rows and 𝑛 columns defines 

an operator 𝑇:ℝ𝑛 → ℝ𝑟 by means of  𝑦 = 𝐴𝑥 where 𝑥 = (𝜉𝑗) has 𝑛 

components and 𝑦 = (𝜂𝑖) has 𝑟 components and both vectors are written 

as column vectors because of the usual convention of matrix 

multiplication; writing 𝑦 = 𝐴𝑥 out, we have  

 

 

[
 
 
 
 
𝜂

1

𝜂
2
..
.
𝜂

𝑟]
 
 
 
 

=  

[
 
 
 
 
𝛼11 𝛼12 …
𝛼21 𝛼22 …
. . … 
. . …

𝛼𝑟1 𝛼𝑟2 …

𝛼1𝑛

𝛼2𝑛

.

.
𝛼𝑟𝑛]

 
 
 
 

[
 
 
 
 
 
𝜉
1

𝜉
2
..
.

𝜉
𝑛]
 
 
 
 
 

 

𝑇 

If 𝐴 were complex, it would define a linear operator operator from  ℂ𝑛 

into ℂ𝑟 . 

 

Note:  In above example the dimension of domain is 𝑛 and dimension of 

range is 𝑟. 
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Example 6: The function )()(: 23 RVRVT   

Defined by RbabacbaT  ,),(),,(  is a linear transformation from 

)(3 RV  into )(2 RV . 

Let )(),,(),,,( 3222111 RVcbacba    

If Rba , , then  

)],,(),,([)( 222111 cbabcbaaTbaT    

),,( 212121 bcccbbabbaaaT   

),( 2121 bbabbaaa              [by def. of T ] 

),(),( 2211 bbbaabaa   

),(),( 2211 babbaa   

),,(),,( 222111 cbabcbaa   

)()(  bTaT  . 

Hence T is a linear transformation from )(3 RV  into )(2 RV  

 

Example 7: Show that the mapping )()(: 23 RVRVT   defined as  

)23,23(),,( 321321321 aaaaaaaaaT   is a linear transformation 

from )(3 RV to )(2 RV  

 

Proof: Let )(),,(),,,( 3321321 RVbbbaaa   .  

Then )23,23(),,()( 321321321 aaaaaaaaaTT   

And )23,23(),,()( 321321321 bbbbbbbbbTT  . 

Let Rba , . Then )(3 RVba   . We have  

)],,(),,([)( 321321 bbbbaaaaTbaT    

),,( 332211 bbaabbaabbaaT   
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))(2)(3,)(2)3(3( 332211332211 bbaabbaabbaabbaabbaabbaa 

 

)23()23(),23()23(( 321321321321 bbbbaaaabbbbaaaa   

)23,23()23,23( 321321321321 bbbbbbbaaaaaaa   

)()(  bTaT   

 

Example 8: Show that the mapping )()(: 32 RVRVT   defined as 

),,(),( bbababaT   

is a linear transformation from )(2 RV  into )(3 RV . 

 

Solution: Let the vectors )(),(),,( 22211 RVbaba   . 

Then ),,(),()( 1111111 bbababaTT   and 

).,,()( 22222 bbabaT   

Also let Rba , . Then )(2 RVba    and 

)],(),([)( 2211 babbaaTbaT    

),( 2121 bbabbaaaT   

),,( 2121212121 bbabbbabbaaabbabbaaa   

),,(),,( 2222211111 bbababbbabaa   

)()(  bTaT   

T is a linear transformation from )(2 RV  into )(3 RV . 

 

 

6.4 THEOREM 

 

Theorem 1: Let  𝑇 be a linear operator. Then: 

a. The range ℛ(𝑇) is a vector space. 

b. If dim 𝒟(𝑇) = 𝑛 < ∞, then dim ℛ(𝑇) ≦ 𝑛. 

c. The null space 𝒩(𝑇) is a vector space. 

 

Proof. a. We take  𝑦1, 𝑦2 ∈ ℛ(𝑇). 

We have to show  that 𝛼𝑦1 + 𝛽𝑦2 ∈  ℛ(𝑇) for any scalars 𝛼, 𝛽. 

Since 𝑦1, 𝑦2 ∈  ℛ(𝑇). 
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We have 𝑦1 = 𝑇𝑥1,  𝑦2 = 𝑇𝑥2,  

for some 𝑥1, 𝑥2 ∈  𝒟(𝑇) and 𝛼𝑥1 + 𝛽𝑥2 ∈  𝒟(𝑇). 

Because 𝒟(𝑇) is a vector space. 

The linearity of 𝑇 gives, 

𝑇( 𝛼𝑥1 + 𝛽𝑥2) =  𝛼𝑇𝑥1 +  𝛽𝑇𝑥2 =  𝛼𝑦1 +  𝛽𝑦2. 

Hence 𝛼𝑦1 +  𝛽𝑦2 ∈  ℛ(𝑇). 

Since 𝑦1, 𝑦2 ∈ ℛ(𝑇) were arbitrary  and 𝛼, 𝛽 are the any scalars. 

This proves that ℛ(𝑇) is a vector space. 

 

b. We choose 𝑛 + 1 elements 𝑦1, 𝑦2, ………𝑦𝑛+1 of  ℛ(𝑇) in arbitrary 

manner. 

Then, we have 𝑦1 = 𝑇𝑥1,  𝑦2 = 𝑇𝑥2, ……,  𝑦𝑛+1 = 𝑇𝑥𝑛+1 for some  

𝑥1, ……… . , 𝑥𝑛+1 in 𝒟(𝑇). 

Since dim 𝒟(𝑇) = 𝑛. 

The set {𝑥1, ……… . , 𝑥𝑛+1} must be linearly dependent. 

Hence, 

𝛼1𝑥1 + ……………………… .+𝛼𝑛+1𝑥𝑛+1 = 0. 

For some scalars 𝛼1, …… . . , 𝛼𝑛+1, not all zero. 

Since 𝑇 is linear and 𝑇(0) =  0. 

Application of 𝑇 on both sides gives, 

𝑇(𝛼1𝑥1 + ……………………… .+𝛼𝑛+1𝑥𝑛+1)

=  𝛼1𝑦1 + ……………………… .+𝛼𝑛+1𝑦𝑛+1 = 0.  

This shows that {𝑦1, 𝑦2, ………𝑦𝑛+1} is a linearly dependent set because 

ai’s are not all zero. 

Since this subset of  ℛ(𝑇) was chosen in arbitrary manner. 

We conclude that ℛ(𝑇) has no linearly independent subsets of 𝑛 + 1 or 

more elements. 

By the definition this means that dim ℛ(𝑇) ≦ 𝑛. 

 

c. We take any 𝑥1, 𝑥2 ∈ 𝒩(𝑇). 
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Then 𝑇𝑥1 =  𝑇𝑥2 = 0. 

Since 𝑇 is linear, for any scalars 𝛼, 𝛽, we have 

 

𝑇( 𝛼𝑥1 + 𝛽𝑥2) =  𝛼𝑇𝑥1 +  𝛽𝑇𝑥2 = 0. 

This shows that 𝛼𝑇𝑥1 +  𝛽𝑇𝑥2 ∈ 𝒩(𝑇). 

The null space 𝒩(𝑇) is a vector space. 

 

 Second part  meaning that linear operator preserve linear 

dependence. 

 

6.5 INVERSE OF  𝑻 

 

A mapping 𝑇:𝒟(𝑇) → 𝑌 is said to be injective or one –to-one if different 

points in the domain have different images, that is, if for any 𝑥1, 𝑥2 ∈ 

𝒟(𝑇), 

𝑥1 ≠ 𝑥2 ⇒ 𝑇𝑥1 ≠ 𝑇𝑥2; ……… …(2) 

It is also equivalent, 

𝑇𝑥1 = 𝑇𝑥2 ⇒ 𝑥1 = 𝑥2  …………….(3) 

 

𝒟(𝑇) 

𝑥0 

X 

𝑦0

= 𝑇𝑥0 

Y 

ℛ(𝑇) 

                           Fig.6.5.1 
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In this case there exists the mapping 

𝑇−1: ℛ(𝑇) →  𝒟(𝑇), 

𝑦0 ↦ 𝑥0 (𝑦0 = 𝑇𝑥0) 

……………………………………..(4) 

which maps every 𝑦0 ∈  ℛ(𝑇) onto that 𝑥0 ∈  𝒟(𝑇) for which 

𝑇𝑥0 = 𝑦0.  

The mapping 𝑇−1 is called the inverse of 𝑇. 

From (4) it is clear that, 

 𝑇−1𝑇𝑥 = 𝑥  for all 𝑥 ∈  𝒟(𝑇). 

𝑇𝑇−1𝑦 = 𝑦  for all 𝑦 ∈  ℛ(𝑇). 

 

Note:  The inverse of a linear operator exists if and only if the null space 

of the operator consists of the zero vector only. 

 

 

6.6 THEOREM AND LEMMA 

 

Theorem 2: Let 𝑋 and  𝑌 be vector spaces both real or complex. Let 

𝑇: 𝒟(𝑇) → 𝑌 be a linear operator with domain 𝒟(𝑇) ⊂ 𝑋 and ℛ(𝑇) ⊂ 𝑌.  

Then: 

a) The inverse 𝑇−1:ℛ(𝑇) →  𝒟(𝑇) exists if and only if 

𝑇𝑥 = 𝑥 ⟹ 𝑥 = 0. 

b) If  𝑇−1 exists, it is a linear operator. 

c) If dim 𝒟(𝑇) = 𝑛 < ∞ and 𝑇−1 exists,  

then dim ℛ(𝑇) = dim 𝒟(𝑇). 
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Proof. a)  Suppose that 𝑇𝑥 = 0 implies 𝑥 = 0. Let  𝑇𝑥1 = 𝑇𝑥2. Since  𝑇 

is linear,  

𝑇(𝑥1 − 𝑥2)  = 𝑇𝑥1 − 𝑇𝑥2 = 0, 

so that 𝑥1 − 𝑥2 = 0 by the hypothesis. Hence  𝑇𝑥1 = 𝑇𝑥2 implies  𝑥1 =

𝑥2 and 𝑇−1 exists, then (3) satisfy. From (3) with 𝑥2 = 0. 

Since 𝑇0 = 0. We obtain, 

𝑇𝑥1 = 𝑇0 = 0 ⇒ 𝑥1 = 0. 

This completes the proof of a). 

 

b) We  consider that 𝑇−1 exists and show that 𝑇−1  is linear. 

The domain of 𝑇−1 is ℛ(𝑇) and is a vector space by Theorem 1(a). 

We are assuming for any 𝑥1, 𝑥2 ∈ 𝒟(𝑇) and their images 

𝑦1 =  𝑇𝑥1 and 𝑦2 = 𝑇𝑥2. 

Then 𝑥1 = 𝑇−1𝑦1  and  𝑥2 = 𝑇−1𝑦2. 

𝑇 is linear, so that for any scalars 𝛼 and 𝛽 we have, 

𝛼𝑦1 + 𝛽𝑦2 =  𝛼𝑇𝑥1 +  𝛽𝑇𝑥2 =  𝑇(𝛼𝑥1 +  𝛽𝑥2). 

Since 𝑥𝑖 = 𝑇−1𝑦𝑖 , this implies 

𝑇−1(𝛼𝑦
1
+ 𝛽𝑦

2
) =  𝛼𝑥1 + 𝛽𝑥2 = 𝛼𝑇−1𝑦1 + 𝛽𝑇−1𝑦2 

and proves that 𝑇−1 is linear. 

 

c) We have dim ℛ(𝑇) ≦ dim 𝒟(𝑇) by Theorem 1(b), and  dim 𝒟(𝑇) 

≦ dim ℛ(𝑇) by the same theorem applied to 𝑇−1. 
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Inverse of the composite of linear operators: 

 

Lemma 1:  Let 𝑇: 𝑋 → 𝑌 and 𝑆:𝑌 → 𝑍 be bijective linear operators, 

where 𝑋, 𝑌, 𝑍 are vector spaces. Then the (𝑆𝑇)
−1

: 𝑍 ⟶ 𝑋 of the product 

( the composite)  𝑆𝑇 exists, and (𝑆𝑇)−1 = 𝑇−1𝑆−1. 

 

 

Proof. The operator 𝑆𝑇: 𝑋 → 𝑍 is bijective, so that (𝑆𝑇)−1
exists. 

𝑆𝑇(𝑆𝑇)−1 = 𝐼𝑍 

where 𝐼𝑍 is the identity operator on 𝑍. 

Applying 𝑆−1 and using 𝑆−1𝑆 =  𝐼𝑌 (the identity operator on 𝑌), we 

obtain, 

𝑆−1𝑆𝑇(𝑆𝑇)−1 = 𝑇(𝑆𝑇)−1 = 𝑆−1𝐼𝑍 = 𝑆−1. 

Applying 𝑇−1 and using 𝑇−1𝑇 =  𝐼𝑋 , we obtain the desired result 

𝑇−1𝑇(𝑆𝑇)−1 = (𝑆𝑇)−1 = 𝑇−1𝑆−1. 

This completes the proof. 

 

 

ST 

X 

T 

Y 

S 

Z 

(𝑆𝑇)−1
 

                       Fig 6.6.1 
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Check Your Progress  

 

1. Which of the following is true? 

 

 

 

 

6.7 BOUNDED  AND  CONTINUOUS  LINEAR 

OPERATORS 

 

Let 𝑋 and  𝑌 be normed spaces. Let 𝑇:𝒟(𝑇) → 𝑌 be a linear 

operator with domain 𝒟(𝑇) ⊂ 𝑋 .  The operator 𝑇 is said to be bounded 

if there is a real number 𝑐 such that for all 𝑥 ∈ 𝒟(𝑇), 

‖𝑇𝑥‖ ≤ 𝑐‖𝑥‖. ……….(a) 

The value of 𝑐  must be at least as big as the supremum of the 

expression on the left taken over 𝒟(𝑇) − {0}. Let 𝑇: 𝒟(𝑇) − {0} → 𝑌 

be a linear operator with domain 𝒟(𝑇) − {0} ⊂ 𝑋 then, ‖𝑇‖ = sup
𝑥∈𝒟(𝑇)
𝑥≠0

‖𝑇𝑥‖

‖𝑥‖
. 

If 𝒟(𝑇) = {0}. Then ‖𝑇‖ = 0.  In this case 𝑇 = 0. The operator 𝑇 is said 

to be bounded if there is a real number 𝑐 such that for all 𝑥 ∈ 𝒟(𝑇). 

When 𝑐 = ‖𝑇‖ is  
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‖𝑇𝑥‖ ≤ ‖𝑇‖‖𝑥‖………..(b) 

Let 𝑇:𝒟(𝑇) → 𝑌 be a bounded linear operator then , 

‖𝑇‖ = sup
𝑥∈𝒟(𝑇)
‖𝑥‖=1

‖𝑇𝑥‖……….(c) 

 

Example 1: The identity operator 𝐼𝑋: 𝑋 → 𝑋 is defined by 𝐼𝑋𝑥 = 𝑥 

for all 𝑥 ∈ 𝑋. If write 𝐼 in place of 𝐼𝑋. Thus,  𝐼𝑥 = 𝑥. 

 

Example 2: The zero operator  0: 𝑋 → 𝑌 is defined by 0𝑥 = 𝑥 for 

all 𝑥 ∈ 𝑋. 

 

6.8 CONTINUITY OF  OPERATOR 

 

Let 𝑇:𝒟(𝑇) → 𝑌 be any operator not necessarily linear, where 𝒟(𝑇) ⊂ 𝑋 

and 𝑋 and 𝑌 are normed spaces. 

The operator 𝑇 is continuous at an 𝑥0 ∈  𝒟(𝑇) if for every 𝜀 > 0 there is 

𝛿 > 0 such that, 

‖𝑇𝑥 − 𝑇𝑥0‖ < 𝜀 for all 𝑥 ∈  𝒟(𝑇)satisfying ‖𝑥 − 𝑥0‖ < 𝛿. 

𝑇 is continuous if 𝑇 is continuous at every 𝑥 ∈  𝒟(𝑇). 

 

6.9 THEOREMS 

 

Theorem 3. If a normed space 𝑋 is finite dimensional, then every 

linear operator on 𝑋 is bounded. 

 

Proof. Let dim 𝑋 = 𝑛 and {𝑒1, …… 𝑒𝑛} a basis for 𝑋. 

We take 𝑥 =  ∑ 𝜉𝑗 𝑒𝑗  and consider any linear operator 𝑇 on 𝑋. 
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Since, 𝑇 is linear, 

‖𝑇𝑥‖ = ‖∑ 𝜉𝑗𝑇𝑒𝑗‖ 

≤ ∑|𝜉𝑗| ‖𝑇𝑒𝑗‖ 

≤ max
𝑘

‖𝑇𝑒𝑗‖∑|𝜉𝑗| 

(summations from 1 to 𝑛). 

To the last sum we are applying the following result: 

Let {𝑥1, … 𝑥𝑛} be a linearly independent set of vectors in a 

normed space 𝑋 (𝑜𝑓 𝑎𝑛𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛), then there is a number 𝑐 > 0 

such that for every choice of scalar  𝛼1, ………𝛼𝑛 we have, 

‖𝛼1𝑥1 + ⋯ …………+ 𝛼𝑛𝑥𝑛‖ ≧ 𝑐(|𝛼1| + ⋯ |𝛼𝑛|)(from unit 4). 

 

𝛼𝑗 = 𝜉𝑗 and 𝑥𝑗 = 𝑒𝑗. Then we obtain, 

∑|𝜉𝑗| ≤
1

𝑐
‖∑𝜉𝑗𝑇𝑒𝑗‖ =

1

𝑐
‖𝑥‖. 

Together, 

‖𝑇𝑥‖ ≤ 𝛾‖𝑥‖ where 𝛾 = 
1

𝑐
max

𝑘
‖𝑇𝑒𝑘‖ 

Since ‖𝑇𝑥‖ ≤ 𝑐‖𝑥‖. 

Using the above condition we can say that 𝑇 is bounded. 

 

Theorem 4. Let  𝑇:𝒟(𝑇) → 𝑌 be  a linear operator, where 𝒟(𝑇) ⊂ 𝑋 

and 𝑋 and 𝑌 are normed spaces. Then: 

i.   𝑇  is continuous if and only if 𝑇 is bounded. 

ii. If 𝑇 is continuous at a single point, it is continuous. 

Proof. 

i. For 𝑇 = 0. 

The statement is trivial. 

Let 𝑇 ≠ 0. 
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Then, ‖𝑇‖ ≠ 0. 

We assume 𝑇 to be bounded and consider any 𝑥0 ∈  𝒟(𝑇). 

Let any 𝜀 > 0 be given. 

Then, since 𝑇 is linear, for every 𝑥 ∈  𝒟(𝑇) such that, 

‖𝑥 − 𝑥0‖ < 𝛿 where 𝛿 =
𝜀

‖𝑇‖
. 

We obtain ‖𝑇𝑥 − 𝑇𝑥0‖ = ‖𝑇(𝑥 − 𝑥0)‖ 

≤ ‖𝑇‖‖𝑥 − 𝑥0‖ 

< ‖𝑇‖𝛿 = 𝜀. 

Since, 𝑥0 ∈  𝒟(𝑇) was arbitrary, this shows that 𝑇 is continuous. 

Conversely, assume that 𝑇 is continuous at an arbitrary 𝑥0 ∈  𝒟(𝑇). 

Then, given any 𝜀 > 0, there is a 𝛿 > 0 such that, 

‖𝑇𝑥 − 𝑇𝑥0‖ ≤ 𝜀 for all 𝑥 ∈  𝒟(𝑇) 

 satisfying ‖𝑥 − 𝑥0‖ ≤  𝛿..................................(d) 

We now take any 𝑦 ≠ 0 in 𝒟(𝑇) and set 

𝑥 = 𝑥0 +
𝛿

‖𝑦‖
𝑦. 

Then 𝑥 − 𝑥0 =
𝛿

‖𝑦‖
𝑦. 

Hence, ‖𝑥 − 𝑥0‖ =  𝛿, so that  we are using (d). 

Since 𝑇 is linear, we have 

 

‖𝑇𝑥 − 𝑇𝑥0‖ = ‖𝑇 (
𝛿

‖𝑦‖
)𝑦‖ =  

𝛿

‖𝑦‖
‖𝑇𝑦‖ . 

And (d) implies, 

𝛿

‖𝑦‖
‖𝑇𝑦‖ ≤ 𝜀. 

Thus, ‖𝑇 (
𝛿

‖𝑦‖
) 𝑦‖ =  

𝜀

𝛿
‖𝑇𝑦‖. 

This implies ‖𝑇𝑦‖ ≤ 𝑐 ‖𝑇𝑦‖. Where 𝑐 =  
𝜀

𝛿
, and shows that 𝑇 is 

bounded. 
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ii. Continuity of 𝑇 at a point implies boundedness  of 𝑇 by the 

second part of  the proof of (𝑖), which is turn implies 

continuous of 𝑇 by (𝑖). 

 

Corollary: Let 𝑇 be a bounded linear operator. Then: 

 

 

Check Your Progress 

2.  

 

3.  
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Equal operator: 

 

Restriction of an operator: 

 

 

Extension in operator: 

  

  

Theorem (Bounded linear extension).  Let 
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6.10 SUMMARY 

In this unit we explain the concept of Linear operator: 

Definition, Examples, Theorem and Inverse of 𝑇: Theorem and 

Lemma. We also present the concept of Bounded and Continuous 

Linear Operator and Continuity of Linear Operator. At the end of the 

unit learner will be able to understand the basic concepts of operator 

theory. 

 

6.11 GLOSSARY 

 

i. Metric space: Let 𝑋 ≠ ∅  be a set then the metric on the set 𝑋 is 

defined as a function 𝑑: 𝑋 ×  𝑋 →  [0,∞) such that some 

conditions are satisfied.  

ii. Vector space: - Let 𝑉 be a nonempty set with two operations 

(i) Vector addition:  If any  𝑢, 𝑣 ∈ 𝑉 then 𝑢 + 𝑣 ∈ 𝑉 

(ii) Scalar Multiplication: If any  𝑢 ∈ 𝑉 and 𝑘 ∈ 𝐹 then 

𝑘𝑢 ∈ 𝑉 

Then 𝑉 is called a vector space (over the field 𝐹) if the 

following axioms hold for any vectors if the some 

conditions hold. 

iii. Normed space:- Let 𝑋  be a vector space over scalar field 𝐾. A 

norm on a (real or complex) vector space 𝑋 is a real-valued 

function on 𝑋 (‖𝑥‖: 𝑋 → 𝐾) whose value at an  𝑥 ∈ 𝑋 is denoted 

by ‖𝑥‖ and which has the four properties here  𝑥 and 𝑦 are 

arbitrary vectors in 𝑋 and 𝛼 is any scalar. 
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iv. Banach space:- A complete normed linear space is called a 

Banach space. 

v. Quotient Spaces 

vi. Subspace 

vii. Finite dimensional Normed Spaces 

viii. Equivalent norms 

 

CHECK YOUR PROGRESS 

4. 

 

5. 

 

6. 
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7. 

 

8. 
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6.13 TERMINAL QUESTIONS 

 

1. 

 

2.  

 

    3. 

      Defined Linear operator………………………………… 

    4. 

   Defined Bounded and Continuous Linear Operator………… 

 

  

 

 

https://www.youtube.com/watch?v=Ow3q1A19hdY
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6.14  ANSWERS 

 

 

CHECK YOUR PROGRESS 

1. c 

2. a 

3. c 

4. a 

5. a 

6. b 

7. a 

8. a 
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UNIT 7:  

LINEAR FUNCTIONAL 
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Department of Mathematics Page 142 
Uttarakhand Open University 
 

7.1 INTRODUCTION 

 

In previous unit we have studied about linear operator. In this unit 

we are studying about linear functional. The aim of this unit is to present 

the basic facts of linear functional analysis related to applications to some 

fundamental aspects of mathematical analysis. In functional analysis, 

individual functions satisfying specific equations are replaced by classes 

of functions and transforms which are determined by each particular 

problem. The objects of functional analysis are spaces and operators 

acting between them which, after systematic studies intertwining linear 

and topological or metric structures, appear to be behind classical 

problems in a kind of cleaning process. 

In mathematics, a linear form (also known as a linear 

functional, a one-form, or a covector) is a linear map from a vector 

space to its field of scalars (often, the real numbers or the complex 

numbers). 

A functional is an operator whose range lies on the real line ℝ or in 

the complex plane ℂ. And functional analysis was initially the analysis of 

functionals. The latter appear so frequently that special notations are used. 

We denote functionals by lowercase letters 𝑓, 𝑔, ℎ, … … … the domain of 𝑓 

by 𝒟(𝑓), the range of 𝑓  by ℛ(𝑓) and the value of 𝑓 at an  𝑥 ∈ 𝒟(𝑓) 

by 𝑓(𝑥) with parentheses. Functionals are operators, so that previous 

definitions apply. 

 

7.2 OBJECTIVES 

 

After studying this unit, learner will be able to  

i. Described the concept of Linear functional 

ii. Explained the topic of Bounded linear functional 
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iii. Proved the theorem and solve the examples based on linear 

functional. 

 

7.3 LINEAR FUNCTIONAL 

Definition:  

  

  

   

 

 

7.4  BOUNDED LINEAR FUNCTIONAL  

 

A bounded linear functional f is a bounded linear operator ( 

definition in previous unit)  with range in the scalar field of the normed 

space X in which the domain 𝒟(f) lies. Thus there exists a real number c 

such that for all x ∈ 𝒟(f). 

…………….……….( 1) 

In continuation norm is defined in a way 

……………..(2) 

Similarly, 

……………………(3) 
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………………………(4) 

Theorem : A linear functional, with domain 𝒟(𝑓)  in a normed space    

is continuous if and only if  𝑓  is bounded. 

 

7. 5 EXAMPLES 

 

Example 1: 

 

 

Example 2: 

 

 

 

 

Example 3: 

The constant zero function, mapping every vector to zero, is trivially a 

linear functional. Every other linear functional (such as the ones below) 

is surjective,  (that is, its range is all of k). 

 

Example 4: 
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Example 5: 

Sampling with a kernel  can be considered a one-form, where the 

one-form is the kernel shifted to the appropriate location. 

Example 6: 

Linear functionals in ℝ
𝒏
: 

Suppose that vectors in the real coordinate space ℝ
𝒏

 are represented as 

column vectors 

 

, 

 

 

and each linear functional can be expressed in this form. 

This can be interpreted as either the matrix product or the dot 

product of the row vector  𝑎 and the column vector 𝑥: 

 

 

Example 7:  

The definite integral is a number if we consider it for a single function, as 

we do in calculus most of the time. However, the situation changes 

completely if we consider that integral for all functions in a certain 
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function space. Then the integral becomes a functional on that space, call 

it   𝑓 . As a space let us choose 𝐶[𝑎, 𝑏]. Then 𝑓 is defined by, 

 

 

 

 

Where , 

 

 

 

We are taking 𝐽 = [𝑎, 𝑏]and remembering the norm on 𝐶[𝑎, 𝑏],we obtain 

 

                     

                                    
 

 

 

we obtain, 

 

 

For getting, 

 

We are choosing  

. 

Since, 
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7.6 DUAL SPACE 

 

7.6.1 ALGEBRAIC DUAL SPACE 

The set of all linear functional defined on a vector space 𝑋 can 

itself be made into a vector space. This space is denoted by 𝑋∗ and is 

called the algebraic dual space of  𝑋. Its algebraic operations of vector 

space are defined in a natural way as follows. 

 

 

 

   

 

 

7.6.2 SECOND ALGEBRAIC DUAL SPACE 
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Consider the algebraic dual (𝑋∗)∗ of 𝑋∗, whose elements are the 

linear functionals defined on 𝑋∗. We denote (𝑋∗)∗  by 𝑋∗∗and call it the 

second algebraic dual space of 𝑋. 

We choose the notations: 

 

 

 

 

 

………………………………………………………(5) 

The subscript, 𝑥 is a little reminder that we got 𝑔 by the use of a 

certain 𝑥 ∈ 𝑋. 

From equation (5), 

    

 

 

 

7.6.3 CANONOCAL MAPPING 
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7.6.4 ISOMPRPHISM 
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7.7 LINEAR OPERATORS AND FUNCTIONAL 

ON FINITE DIMENSIONAL SPACES 

Matrices become the most important tools for studying linear 

operators in the finite dimensional case. In this connection we should also 

remember Theorem : If a normed space 𝑋 is finite dimensional, then every 
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linear operator on 𝑋 is bounded. To understand the full significance of our 

present consideration. 

 

 

 

……………………………..(6) 

 

 

…………………………………………………..(7) 

Since the representation (6) is unique, we have our first result: 

 

 

…………………..(8) 

 

 

………………………..(9) 

Substitution into (7) gives, 
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……………………………………………………………..(10) 

 

(10). The coefficients in (10) form a matrix. 

 

 write (10) in matrix notation: 

……………………….(11) 

Similarly (09) can also be written- in matrix notation, 

………………(12) 
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………………………………………………..(13) 

Where, 

 

………………………………………….(14) 

 

 

. , 
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By (13) and (14), 

 

 

…………………………………………..(15). 

 

 

 

7.7.1 THEOREMS 

Theorem 1: 

 

Equation (15) is a basis for the algebraic dual 𝑋∗ of 𝑋, and 𝑑𝑖𝑚𝑋∗ =

𝑑𝑖𝑚𝑋 = 𝑛. 
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Proof. 

 

…………………………………………………..(16). 

 

  So that all the 𝛽𝑘
,𝑠   (16) are zero. We show that every 𝑓 ∈ 𝑋∗ can be 

 represented as a linear combination of the elements of 𝐹 in a unique way.  

 

By using (13) and (14), 

……………………..(17) 

.  
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Lemma 1: 

                       

 

 

From (13) and (14), 

 

 

 

Theorem 2: 

 

 

 

 

 

previous , Hence from Theorem 2 of unit -6 it follows that the mapping 𝐶 

has an inverse ,

 

 

From previous theorem, 
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dimension less than dim X**,[We are using the theorem: let X be an 

n dimensional vector space. Then any proper subspace Y of X has 

dimension less than n]. By the definition, this proves algebraic reflexivity. 

 

7.8 NORMED SPACES OF OPERATORS. DUAL 

SPACE 

 

We take any two normed spaces 𝑋 and 𝑌 (both real or both complex) 

and consider the set 𝐵(𝑋, 𝑌), consisting of all bounded linear operators 

from 𝑋 into 𝑌, that is, each such operator is defined on all of 𝑋 and its 

range lies in 𝑌. 

 

Theorem 3:  

 

…………………………………………………..(18) 

Theorem 4: 
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……………………………………………………………….(19) 

 

 

Then from (19), 

 

 

 

  

[ Using the equation (19)] 

 

equation (19), 

 

 

………………………………………………………………………(20) 
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Furthermore, if in (20) we take the supremum over all 𝑥 of norm 1, we 

obtain, 

 

 

 

  

which is called the dual space of X and is denoted by X ′. 

 

Theorem 4. 

 

 

 

 

 

 If a normed space X is finite dimensional, then every linear  

operator on X is bounded. This result using also equation (13) and 

(14) are using. ………………………(a) 
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Examples: 

1.  Space  ℝ𝑛: The dual space of ℝ𝒏 is ℝ𝒏. 

 

Using above result (a), 

 

 

 

 

 

 

 

 

2. Space 𝒍𝟏: The dual space of 𝑙1 is 𝑙∞. 

 

 

………………………………………………….(21) 



 

Department of Mathematics Page 161 
Uttarakhand Open University 
 

 

.....................................................................(22) 

 

...........................................................(23) 

 

 

 

 

From (22) we have 

 

From this and (23),  
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.....................(24) 

 

 

  3. 

 

 

...............................................................................(25) 

 

.......................................................................................(26) 

 

....(27) 

By substituting this into (26) we obtain 

 

We also have, using (27) and   (𝑞 − 1)𝑝 =  𝑞, 
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............................................................(28). 
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Using Holder inequality and from equation (26), 

 

From (27) we see that the equality sign must hold, that is, 

.............................(29) 

 

         from (29) we see that it is norm preserving, so that it is an    

         

        isomorphism. 

 

 

7.9 SUMMARY 

 

           We explained in this unit the concept of Linear Functional,  Linear 

Operators, Functional on Finite Dimensional Spaces, Normed Spaces of 

Operators and Dual Space. 

 

 



 

Department of Mathematics Page 165 
Uttarakhand Open University 
 

6.11 GLOSSARY 

 

i. Metric space: Let 𝑋 ≠ ∅  be a set then the metric on the set 𝑋 is 

defined as a function 𝑑: 𝑋 ×  𝑋 →  [0, ∞) such that some 

conditions are satisfied.  

ii. Vector space: - Let 𝑉 be a nonempty set with two operations 

(i) Vector addition:  If any  𝑢, 𝑣 ∈ 𝑉 then 𝑢 + 𝑣 ∈ 𝑉 

(ii) Scalar Multiplication: If any  𝑢 ∈ 𝑉 and 𝑘 ∈ 𝐹 then 

𝑘𝑢 ∈ 𝑉 

Then 𝑉 is called a vector space (over the field 𝐹) if the 

following axioms hold for any vectors if the some 

conditions hold. 

iii. Normed space:- Let 𝑋  be a vector space over scalar field 𝐾. A 

norm on a (real or complex) vector space 𝑋 is a real-valued 

function on 𝑋 (‖𝑥‖: 𝑋 → 𝐾) whose value at an  𝑥 ∈ 𝑋 is denoted 

by ‖𝑥‖ and which has the four properties here  𝑥 and 𝑦 are 

arbitrary vectors in 𝑋 and 𝛼 is any scalar. 

iv. Banach space:- A complete normed linear space is called a 

Banach space. 

v. Linear operator:- A   linear operator  𝑇 is an operator such that 

i. The domain 𝒟(𝑇) of 𝑇 is a vector space and the range 

ℛ(𝑇) lies in a vector space over the same field. 

ii. for all 𝑥, 𝑦 ∈ 𝒟(𝑇) and scalar 𝛼, 

𝑇(𝑥 + 𝑦) =  𝑇𝑥 + 𝑇𝑦, 

𝑇(𝛼𝑥) = 𝛼𝑇𝑥. 

vi. Bounded linear operator:- Let 𝑋 and  𝑌 be normed spaces. 

Let 𝑇: 𝒟(𝑇) → 𝑌 be a linear operator with domain 𝒟(𝑇) ⊂ 𝑋 .  
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The operator 𝑇 is said to be bounded if there is a real number 𝑐 

such that for all 𝑥 ∈ 𝒟(𝑇), 

‖𝑇𝑥‖ ≤ 𝑐‖𝑥‖.  

vii. Quotient Spaces 

viii. Subspace 

ix. Finite dimensional Normed Spaces 

x. Equivalent norms 

CHECK YOUR PROGRESS 

1.  

……………………… 

2. ……………………… 

 

3. ……………………. 

4.  

 

5.  
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6.13 TERMINAL QUESTIONS 

 

Q.1.  

 

 

 

Q.2. 

 

 

Q.3 Define linear functional………………………………………. 

Q.4 Define the difference between linear operator and linear functional….. 

 

6.14  ANSWERS 

CHECK YOUR PROGRESS 

1.  

2.  

3. . 

4. (c) 

5. (d) 
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8.1 INTRODUCTION 

In the preceding units, we discussed normed linear spaces and 

Banach spaces. These spaces have linear properties as well as metric 

properties. Although the norm on a linear space generalizes the elementary 

concept of the length of a vector, but the main geometric concept other 

than the length of a vector is the angle between two vectors, In this unit, 

we take the opportunity to study linear spaces having an inner product, a 

generalization of the usual dot product on finite dimensional linear spaces. 

The concept of an inner product in a linear space leads to an inner product 

space and a complete inner product space which is called a Hilbert space. 

The theory of Hilbert Spaces does not deal with angles in general. Most 

interestingly, it helps us to introduce an idea of perpendicularity for two 

vectors and the geometry deals in various fundamental aspects with 

Euclidean geometry.  

The basic of the theory of Hilbert spaces was given by in 1912 by 

the work of German mathematician D. Hilbert (1862 -1943) on integral 

equations. However, an axiomatic basis of the theory was given by famous 

mathematician J. Von Neumann (1903 -1957). However, Hilbert spaces 

are the simplest type of infinite dimensional Banach spaces to tackle a 

remarkable role in functional analysis. 

8.2  OBJECTIVES 

After studying this unit, learner will be able to  

i. Described the concept of InnerProduct space. 

ii. Described the concept of Hilbert space. 

iii. Problems and examples related to InnerProduct space and Hilbert 

space. 
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8.3 BASICS 

We first defined the basic orientations: 

 

8.3.1 INNER PRODUCT SPACE AND HILBERT 

SPACE 

An inner product space X is a vector space with an inner product 〈𝑥, 𝑦〉 

defined on it. The latter generalizes the dot product of vectors in three 

dimensional space and is used to define 

I. A norm ‖. ‖by‖𝑥‖ = 〈𝑥, 𝑥〉
1

2⁄ ,  

II. Orthogonality by 〈𝑥, 𝑦〉 = 0.  

A Hilbert space H is a complete inner product space. The theory of inner 

product and Hilbert spaces is richer than that of general normed and 

Banach spaces. Distinguishing features are  

i. Representations of H as a direct sum of a closed subspace and 

its orthogonal complement. 

ii. Orthonormal sets and sequences and corresponding 

representations of elements of H. 

iii. The Riesz representation of bounded linear functional by inner 

products. 

iv. The Hilbert-adjoint operator T* of a bounded linear operator T.  

 

Orthonormal sets and sequences are truly interesting only if they are total. 

Hilbert-adjoint operators can be used to define classes of operators which 

are of great importance in applications. 
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8.3.2 INNER PRODUCT SPACE, HILBERT 

SPACE 

 

Definition (Inner product space, Hilbert space) -An inner product space 

(or pre-Hilbert space) is a vector space X with an inner product defined on 

X. A Hilbert space is a complete inner product space (complete in the 

metric defined by the inner product). Here, an inner product on X is a 

mapping of 𝑋 × 𝑋 into the scalar field K of X; that is, with every pair of 

vectors x and y there is associated a scalar which is written〈𝑥, 𝑦〉 and is 

called the inner product of x and y, such that for all vectors x, y, z and 

scalars 𝛼 we have 

(lPl)〈𝑥 + 𝑦, 𝑧〉 = 〈𝑥, 𝑧〉 + 〈𝑦, 𝑧〉 

(lP2)〈𝛼𝑥, 𝑦〉 =  𝛼〈𝑥, 𝑦〉 

(IP3)〈𝑥, 𝑦〉 =  〈𝑦, 𝑥〉̅̅ ̅̅ ̅̅ ̅, 〈𝑥, 𝑥〉 ≥ 0 

(IP4)〈𝑥, 𝑥〉 = 0  ⟺   𝑥 = 0. 

 

An inner product on X defines a norm on X given by 

 

(1)‖𝑥‖ = 〈𝑥, 𝑥〉
1

2⁄       (≥ 0) 

and a metric onX given by  

 

(2)𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ =  √〈𝑥 − 𝑦, 𝑥 − 𝑦〉 

Hence inner product spaces are normed spaces, and Hilbert spaces  

are Banach spaces.  

 

In (IP3), the bar denotes complex conjugation. Consequently, if X  

is a real vector space, we simply have  

〈𝑥, 𝑦〉 =  〈𝑦, 𝑥〉 (Symmetry).  
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From (IP1) to (IP3) we obtain the formula  

 

(3)  (a)  〈𝛼𝑥 + 𝛽𝑦, 𝑧〉 =  𝛼〈𝑥, 𝑧〉 +  𝛽〈𝑦, 𝑧〉 

(b)  〈𝑥, 𝛼𝑦〉 =  𝛼 ̅〈𝑥, 𝑦〉 

(c )〈𝑥, 𝛼𝑦 + 𝛽𝑧〉 =  𝛼 ̅〈𝑥, 𝑦〉 + �̅�〈𝑥, 𝑧〉 

 

which we shall use quite often. (3a) shows that the inner product is linear 

in the first factor. Since in (3c) we have complex conjugates 𝛼 ̅  and  �̅� on 

the right, we say that the inner product is conjugate linear in the second 

factor. Expressing both properties together, we say that the inner product 

is sesquilinear. This means "1
1

2
 times linear" and is motivated by the fact 

that "conjugate linear" is also known as "semilinear" (meaning 

"halftinear"), a less suggestive term which we shall not use. The reader 

may show by a simple straightforward calculation that a norm on an inner 

product space satisfies the important parallelogram equality 

 

(4)‖𝒙 + 𝒚‖𝟐 +  ‖𝒙 − 𝒚‖𝟐 = 𝟐(‖𝒙‖𝟐 + ‖𝒚‖𝟐). 

 

This name is suggested by elementary geometry, as we see from Fig. 23 if 

we remember that the norm generalizes the elementary concept of the 

length of a vector . It is quite remarkable that such an equation continues 

to hold in our present much more general setting. We conclude that if a 

norm does not satisfy (4), it cannot be obtained from an inner product by 

the use of (1). Such norms do exist; examples will be given below. 

Without risking misunderstandings we may thus say: 

 

Not all normed spaces are inner product spaces. 
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Before we consider examples, let us define the concept of orthogonality, 

which is basic in the whole theory. We know that if the dot product of two 

vectors in three dimensional spaces is· zero, the vectors are orthogonal, 

that is, they are perpendicular or at least one of them is the zero vector. 

This suggests and motivates the following 

 

 

Fig.8.3.2 

 

8.3.3 ORTHOGONALITY 

An element x of an inner product space X is said to be orthogonal 

to an element 𝑦 ∈ 𝑋if  

〈𝑥, 𝑦〉 = 0. 

We also say that x and y are orthogonal, and we write 𝑥 ⊥ 𝑦. Similarly, 

for subsets 𝐴, 𝐵 ⊂ 𝑋we write𝑥 ⊥ 𝐴 if 𝑥 ⊥ 𝑎for all 𝑎 ∈ 𝐴, and 𝐴 ⊥ 𝐵 if 

𝑎 ⊥ 𝑏for all 𝑎 ∈ 𝐴 and all 𝑏 ∈ 𝐵. 

 

8.4.0 RESULTSANDEXAMPLES 

 

8.4.1 RESULTS 
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Theorem 8.4.1: Every inner product function is a continuous function. 

(Equivalently, if 𝑓 ∶  𝑋 ×  𝑋 →  ℂ defined by 𝑓(𝑥, 𝑦) = ⟨𝑥, 𝑦⟩, ∀ 𝑥, 𝑦 ∈

 𝑋 𝑡ℎ𝑒𝑛 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠). 

 

Proof: Let 𝑋 be an inner product space. Define 𝑓 ∶  𝑋 ×  𝑋 →  ℂ by  

𝑓(𝑥, 𝑦) = ⟨𝑥, 𝑦⟩, ∀ 𝑥, 𝑦 ∈  𝑋. Now take {𝑥𝑛} and {𝑦𝑛} be a sequence 

in 𝑋 such that 𝑥𝑛  →  𝑥 as 𝑛 →  ∞ and 𝑦𝑛  →  𝑦 as 𝑛 →  ∞. 

So, ||𝑥𝑛  −  𝑥||  →  0 as 𝑛 →  ∞ and ||𝑦
𝑛

 −  𝑦||  →  0 as 𝑛 →  ∞. As, 𝑥𝑛  →  𝑥 

as 𝑛 →  ∞ then, ||𝑥𝑛||  →  ||𝑥|| as 𝑛 →  ∞. So, {||𝑥𝑛||} are bounded. So, there 

exists a constant 𝑀 >  0 such that ||𝑥𝑛||  ≤  𝑀, ∀ 𝑛.  

 

Now,           |⟨𝑥𝑛, 𝑦
𝑛

⟩ − ⟨𝑥, 𝑦⟩| 

=  |⟨𝑥𝑛, 𝑦
𝑛

⟩ − ⟨𝑥𝑛, 𝑦⟩ + ⟨𝑥𝑛, 𝑦⟩ − ⟨𝑥, 𝑦⟩| 

=  |⟨𝑥𝑛, 𝑦
𝑛

−  𝑦⟩ + ⟨𝑥𝑛 −  𝑥, 𝑦⟩|  ≤  |⟨𝑥𝑛, 𝑦
𝑛

−  𝑦⟩|  + |⟨𝑥𝑛 −  𝑥, 𝑦⟩ 

≤  ||𝑥𝑛|| ||𝑦
𝑛

 −  𝑦||  + ||𝑥𝑛  −  𝑥|| ||𝑦|| [By C-S inequality ] 

≤  𝑀 ||𝑦
𝑛

–  𝑦|| +  ||𝑥𝑛–  𝑥||||𝑦|| 

 →  0as𝑛 →  ∞ 

i.𝑒 ⟨𝑥𝑛, 𝑦
𝑛

⟩ → ⟨𝑥, 𝑦⟩ 𝑎𝑠 𝑛 → ∞, implying that 𝑓(𝑥𝑛, 𝑦
𝑛

)  →  𝑓(𝑥, 𝑦) as  

𝑛 → ∞. So, 𝑓 is continuous.  

 

Theorem 8.4.2 (Parallelogram Law): Let X be an inner product space 

and let x, y ∈ X. Then,  

||𝑥 +  𝑦||
2

 + ||𝑥 −  𝑦||
2

= 2(||𝑥||
2

+ ||𝑦||
2

) 

 

Proof: ||𝑥 +  𝑦||
2

=  ⟨𝑥 +  𝑦, 𝑥 +  𝑦⟩ =  ⟨𝑥, 𝑥⟩ + ⟨𝑥, 𝑦⟩ + ⟨𝑦, 𝑥⟩ +  ⟨𝑦, 𝑦⟩ 

=  ||𝑥||
2

 +  ||𝑦|2|  + ⟨𝑥, 𝑦⟩  + ⟨𝑦, 𝑥⟩(8.4.3) 𝑎𝑛𝑑||𝑥 −  𝑦||
2

 =  ⟨𝑥 −  𝑦, 𝑥 −  𝑦⟩ 

=  ⟨𝑥, 𝑥⟩ +  ⟨𝑥, −𝑦⟩ +  ⟨−𝑦, 𝑥⟩ + ⟨−𝑦, −𝑦⟩ 

=  ||𝑥||
2

 +  ||𝑦||
2

− ⟨𝑥, 𝑦⟩ − ⟨𝑦, 𝑥⟩(8.4.4)  
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Adding (8.4.3) and (8.4.4) we get 

||𝑥 +  𝑦||2  +  ‖𝑥 − 𝑦‖2 =  2( ||𝑥||2 + ||𝑦||2) 

 

Theorem 8.4.5(Polarization Identity): Let 𝑋 be an inner product space, let 

𝑥, 𝑦 ∈  𝑋 then, 

⟨𝑥, 𝑦⟩ =  
1

4
[‖𝑥 + 𝑦‖2 − ‖𝑥 − 𝑦‖2 + 𝑖 ‖𝑥 + 𝑖𝑦‖2 − ‖𝑥 − 𝑖𝑦‖2] 

 

Proof: Now,||𝑥 +  𝑦||2 =  ||𝑥||
2

 + ||𝑦||
2

 +  ⟨𝑥, 𝑦⟩  + ⟨𝑦, 𝑥⟩ (8.4.6) 

‖𝑥 − 𝑦‖2  =  ||𝑥||2 + ||𝑦||2  − ⟨𝑥, 𝑦⟩ − ⟨𝑦, 𝑥⟩(8.4.7) 

Replacing 𝑦 by 𝑖𝑦 in (8.4.6) and (8.4.7) 

‖𝑥 + 𝑖𝑦‖2 = ||𝑥||2 + ||𝑖𝑦||2 + ⟨𝑥, 𝑖𝑦⟩  + ⟨𝑖𝑦, 𝑥⟩ 

 = ||𝑥||2  + ||𝑦||2 −  𝑖⟨𝑥, 𝑦⟩  +  𝑖⟨𝑦, 𝑥⟩(8.4.8) 

‖𝑥 − 𝑖𝑦‖2 =  ||𝑥||2  + ||𝑖𝑦||2 −  ⟨𝑥, 𝑖𝑦⟩ − ⟨𝑖𝑦, 𝑥) 

  =  ||𝑥||2  + ||𝑦||2  +  𝑖⟨𝑥, 𝑦⟩ −  𝑖⟨𝑦, 𝑥⟩(8.4.9) 

(8.4.6) − (8.4.7) + 𝑖(8.4.8) −𝑖(8.4.9), we get the required result. 

 

8.4.2 EXAMPLES 

 

Example 1: The Euclidean space ℝ𝑛 is a Hilbert space.  

 

Solutions:-Euclidean space ℝ𝒏- The space ℝ𝑛 is a Hilbert space with 

inner product defined by 

 (5) 〈𝑥, 𝑦〉 =  𝜉1𝜂1 + ⋯ … 𝜉𝑛𝜂𝑛 

Where𝑥 =  (𝜉𝑗) =  (𝜉1, … … . 𝜉𝑛)and 𝑦 =  𝜂𝑗 =  (𝜂1, … … . . 𝜂𝑛).  

In fact, from (5) we obtain  

‖𝑥‖ =  〈𝑥, 𝑥〉
1

2⁄ = (𝜉1
2 + ⋯ … … +  𝜉𝑛

2)
1

2⁄
 

And from this the Euclidean metric defined by  
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𝑑(𝑥, 𝑦) =  ‖𝑥 − 𝑦‖ =  〈𝑥 − 𝑦, 𝑥 − 𝑦〉
1

2⁄

=  [(𝜉1 − 𝜂1)2 + ⋯ … (𝜉𝑛 − 𝜂𝑛)2]
1

2⁄  

If n = 3, formula (5) gives the usual dot product  

〈𝑥, 𝑦〉 = 𝑥 ∙ 𝑦 =  𝜉1𝜂1 + 𝜉2𝜂2 + 𝜉3𝜂3 

Of  𝑥 = (𝜉1𝜉2𝜉3)and  𝑦 =  (𝜂1𝜂2𝜂3), and the orthogonality 

〈𝑥, 𝑦〉 = 𝑥 ∙ 𝑦 = 0 

agrees with the elementary concept of perpendicularity. 

 

Example 2:- The Euclidean space ℂn is a Hilbert space. 

 

Solution: -Unitary space ℂ𝒏 - The space ℂ𝒏 is a Hilbert space with inner 

product given by 

     (6)               〈𝑥, 𝑦〉 =  𝜉1𝜂1̅̅̅  +…….𝜉𝑛𝜂𝑛̅̅ ̅ 

In fact, from (6) we obtain the norm defined by 

‖𝑥‖ = (𝜉1𝜉1̅ + ⋯ . . . 𝜉𝑛𝜉𝑛
̅̅ ̅)

1
2⁄

=  (|𝜉1|2 + ⋯ . . |𝜉𝑛|2)
1

2⁄  

 

Here we also see why we have to take complex conjugates 𝜂�̅�in (6); this 

entails〈𝑦, 𝑥〉 = 〈𝑥, 𝑦〉̅̅ ̅̅ ̅̅ ̅, which is (IP3) , so that 〈𝑥, 𝑥〉is real. 

 

Example 3: The space 𝐿2[𝑎, 𝑏] is a Hilbert space 

 

Solutions:-Space 𝐋𝟐[a, b]. The norm is defined by 

 

and can be obtained from the inner product defined by 

(7)                              

In connection with certain applications it is advantageous to remove that 

restriction and consider complex-valued functions (keeping 𝑡 ∈  [𝑎, 𝑏] 
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real, as before). These functions form a complex vector space, which 

becomes an inner product space if we define 

(7*)     

Here the bar denotes the complex conjugate. It has the effect that (IP3) 

holds, so that 〈𝑥, 𝑥〉 is still real. This property is again needed in 

connection with the norm, which is now defined by 

 

Because x(𝑡)𝑥(𝑡)̅̅ ̅̅ ̅= |𝑥(𝑡)|2. 

The completion of the metric space corresponding to (7) is the real space 

𝐿2[𝑎, 𝑏]. Similarly, the completion of the metric space corresponding to 

(7*) is called the complex space𝐿2[𝑎, 𝑏]. We shall see in the next section 

that the inner product can be extended from an inner product space to its 

completion. Together with our present discussion this implies that 

𝐿2[𝑎, 𝑏]is a Hilbert space. 

 

Example 4:Hilbert Sequence Space 𝒍𝟐.The space 𝒍𝟐 is a Hilbert space with 

inner product defined by 

(8)                 

Convergence of this series follows from the Cauchy-Schwarz inequality 

and the fact that 𝑥, 𝑦 ∈ 𝑙2, by assumption. We see that (8) generalizes (6). 

The norm is defined by 

 

Completeness of 𝐥𝐩 - The space lpis complete.( with p=2) 

 

Proof- Let (𝑥𝑛) be any Cauchy sequence in the space 𝑙p, where 
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𝑥𝑚 =  (𝜉1
(𝑚), 𝜉2

(𝑚), … . ) . Then for every 𝜖 ≥ 0  there is an N such that 

for all 𝑚, 𝑛 > 𝑁, 

(9)     

It follows that for every 𝑗 =  1, 2, . ..we have 

(10)  

 

We choose a 𝑓𝑖𝑥𝑒𝑑 𝑗. From (10) we see that (𝜉1
(1), 𝜉2

(2), … . ) is a Cauchy 

sequence of numbers. It converges since ℝ and ℂ are complete, say, 

𝜉1
(𝑚) → 𝜉1as 𝑚 → ∞. Using these limits, we define 𝑥 = (𝜉1, 𝜉2,….) and 

show that  and 𝑥 ∈ 𝑙𝑝 and 𝑥𝑚  → 𝑥. 

From (9) we have for all 𝑚, 𝑛 >  𝑁 

 

(11)  

This shows that xm  − x =  (ξj
(m) → ξj) ∈ lp. Since xm  ∈ lp it follows by 

means of the Minkowski inequality, that 

 

Furthermore, the series in (11) represent[d(xm, x)]p, so that (11) implies 

that xm  →  x. Since (xm) was an arbitrary Cauchy sequence in lp , this 

proves completeness of lp, where p = 2 and also 1 ≤ p < +∞. 
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𝑙2is the prototype of a Hilbert space. It was introduced and investigated by 

D. Hilbert (1912) in his work on integral equations. An axiomatic 

definition of Hilbert space was not given until much later, by J. von 

Neumann (1927), in a paper on the mathematical foundation of quantum 

mechanics. Cf. also J. von Neumann (1929- 30), and M. H. Stone (1932). 

That definition included separability, a condition which was later dropped 

from the definition when H. LOwig (1934), F. Rellich (1934) and F. Riesz 

(1934) showed that for most parts of the theory that condition was an 

unnecessary restriction. 

 

Example 5: For 1 ≤  𝑝 <  ∞, 𝑙𝑝 (𝑝 ≠ 2) is not an inner product space 

and hence not a Hilbert space 

 

Solutions:-Our statement means that the norm 𝑙𝑝 of with cannot be 

obtained from an inner product. We prove this by showing that the norm 

does not satisfy the parallelogram equality (4). In fact, let us take  

𝑥 =  (1,1,0,0, … ) ∈ 𝑙𝑝lP and 𝑦 =  (1, −1, 0, 0, … ) ∈ 𝑙𝑝 and calculate  

‖𝑥‖ = ‖𝑦‖ =  2
1

𝑝⁄ ,    ‖𝑥 + 𝑦‖ =  ‖𝑥 − 𝑦‖ = 2 

We now see that (4) is not satisfied if ≠ 2.  

𝑙𝑝is complete. Hence 𝑙𝑝 with𝑝 ≠ 2 is a Banach space which is not a 

Hilbert space. The same holds for the space in the next example. 

 

Example 6:The space C[a, b] is not an inner product space, hence not a 

Hilbert space. 

 

Solution:-. We show that the norm defined by.  

. 

cannot be obtained from an inner product since this norm does not satisfy 

the parallelogram equality (4). Indeed, if we take 𝑥(𝑡) =  1 and  
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𝑦(𝑡)  =  (𝑡 −  𝑎)/(𝑏 −  𝑎), we have ‖𝑥‖  =  1, ‖𝑦‖ =  1 and 

𝑥(𝑡) + 𝑦(𝑡) = 1 +  
(𝑡 −  𝑎)

(𝑏 −  𝑎)
 

𝑥(𝑡) − 𝑦(𝑡) = 1 −  
(𝑡 −  𝑎)

(𝑏 −  𝑎)
 

Hence ‖𝑥 + 𝑦‖ = 2 𝑎𝑛𝑑 ‖𝑥 − 𝑦‖ = 1  

‖𝑥 + 𝑦‖2 +  ‖𝑥 − 𝑦‖2 = 5but2(‖𝑥‖2 +  ‖𝑦‖2) = 4 

This completes the proof. 

It is remarkable that, conversely, we can "rediscover" the inner product 

from the corresponding norm. In fact, the reader may verify by 

straightforward calculation that for a real inner product space we have 

(12)                            〈𝑥, 𝑦〉 =  
1

4
(‖𝑥 + 𝑦‖2 − ‖𝑥 − 𝑦‖2) 

and for a complex inner product space we ha 

(13)                      𝑅𝑒〈𝑥, 𝑦〉 =  
1

4
(‖𝑥 + 𝑦‖2 − ‖𝑥 − 𝑦‖2) 

𝐼𝑚〈𝑥, 𝑦〉 =  
1

4
(‖𝑥 + 𝑖𝑦‖2 − ‖𝑥 − 𝑖𝑦‖2) 

Formula (13) is sometimes called the polarization identity. 

 

Example 7: The space 𝐿2[𝑎, 𝑏], the space of all square integrable 

functions over [𝑎, 𝑏] is a Hilbert space. 

 

Solutions:-Define the inner product on 𝐿2[𝑎, 𝑏] by ⟨𝑥, 𝑦⟩  =

 ∫ |𝑥(𝑡)𝑦(𝑡)̅̅ ̅̅ ̅̅ |
𝑏

𝑎
 𝑑𝑡, ∀ 𝑥, 𝑦 ∈ 𝐿2[𝑎, 𝑏] and the norm on 𝐿2[𝑎, 𝑏]is given by ||𝑥||  =

 √∫ |𝑥(𝑡)|2𝑏

𝑧
𝑑𝑡. Also with respect to this norm it can be shown that 𝐿2[𝑎, 𝑏] is 

complete with respect to a metric defined by 

𝑑(𝑥, 𝑦)  =  [∫ |𝑥(𝑡) − 𝑦(𝑡)|2𝑏

𝑎
]

1
2⁄

So 𝐿2[𝑎, 𝑏]] is a Hilbert space. 
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Remark: 

Whenever we are addressed with the problem of verifying whether given 

function defines a norm or not, the first three properties will be more or 

less obvious, and most of the effort, if any, would go in verifying the 

triangle inequality.  

So, once a vector space with a norm would be called a normed linear 

space. So, given a normed linear space we can define a metric 𝑑(𝑥, 𝑦) =

‖𝑥 − 𝑦‖ ≥ 0, ∀𝑥, 𝑦 ∈ 𝑋 It is clear that 𝑑(𝑥, 𝑦)is non-negative and 

𝑑(𝑥, 𝑦) = 0if andonly if 𝑥 = 𝑦. Now, by the triangle inequality, we get 

𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) +  𝑑(𝑧, 𝑦); ∀𝑥, 𝑦, 𝑧 ∈ 𝑋Therefore, the distancefunction d 

satisfies the usual triangle inequality for a metric; and that is why we have 

the same name for these two inequalities.  

Therefore, automatically a normed linear space gets a topology defined by 

this norm which is a nice metric topology; and that is called the norm 

topology of this vector space.   

 

SOME NORMS 

S.No. Space Norm  

‖𝒙‖ 

1.  ℝ𝑛 and ℂ𝑛 
(∑ |𝑥𝑗|

2𝑛
𝑗=1 )

1 2⁄

=√|𝑥1|2 + ⋯ |𝑥𝑛|2 

2.  𝑙𝑝 (∑ |𝑥𝑗|
𝑝∞

𝑗=1 )
1 𝑝⁄

where 1 ≤ 𝑝 < ∞ 

3.  𝑙∞ 𝑠𝑢𝑝𝑗|𝑥𝑗| if 𝑝 = ∞ 

4.  𝐶[𝑎, 𝑏] 𝑚𝑎𝑥𝑡∈𝑗|𝑥(𝑡)| 

5.  Set of all continuous real 

–valued functions on 

[0,1] 

∫ |𝑥(𝑡)|
1

0

𝑑𝑡 
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Note:  

𝑙𝑝 ⊂ 𝑙𝑝′
if 𝑙 ≤ 𝑝 ≤ 𝑝′ ≤ ∞. 

Note:  

𝑐 = {𝑥 ∈ 𝑙∞: (𝑥(𝑗))converges in 𝕂}. 

𝑐0 = {𝑥 ∈ 𝑐: (𝑥(𝑗))converges to 0 in 𝕂}. 

𝑐00 = {𝑥 ∈ 𝑙𝑝 𝑎𝑙𝑙 𝑏𝑢𝑡 𝑓𝑖𝑛𝑒𝑡𝑒𝑙𝑦 𝑚𝑎𝑛𝑦𝑥𝑗
′𝑠𝑎𝑟𝑒 0}, 1 ≤ 𝑝 ≤ ∞. 

Note: 

For 1 ≤ 𝑝 < ∞,by 𝐿𝑝(𝐸), we mean a collection of equivalence classes [𝑓] 

for which  |𝑓|𝑝 is integrable. Thus  

 𝑓 ∈ 𝐿𝑝(𝐸) ⟺ ∫ |𝑓|𝑝
𝐸

< ∞. 

Sometimes we denote the collection of such functions by the symbol   𝐿𝑝 . 

Note: 

A measurable function 𝑓 on measurable set 𝐸 is said to be an essentially 

bounded function if there exists 𝑀𝑓 > 0 such that  

|𝑓(𝑥)| ≤ 𝑀𝑓for all most all 𝑥 ∈ 𝐸. 

We define 𝐿∞(𝐸)to be the collection equivalence classes [𝑓] for which   

𝑓is essentially bounded functions on   𝐸. 

Therefore 𝑓 ∈ 𝐿∞(𝐸) ⟺ there exists 𝑀𝑓 > 0 such that  |𝑓(𝑥)| ≤ 𝑀𝑓for 

almost all 𝑥 ∈ 𝐸. 

Note: 

For 𝐸 a measurable set, 1≤ 𝑝 <∞, and a function 𝑓 in 𝐿𝑝(𝐸), we denote  

‖𝑓‖p ≔ (∫ |𝑓|𝑝
𝐸

)
1

𝑝⁄ , and for    𝑝 = ∞, ‖𝑓‖∞  =  𝑖𝑛𝑓 {𝑀𝑓 > 0 :  

|𝑓(𝑥)| ≤ 𝑀𝑓for almost all 𝑥 ∈ 𝐸}. 

Note: 

For 1≤ 𝑝 ≤ ∞, 𝐿𝑝(𝐸) is a vector space over𝑅. 
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8.5 SUMMARY 

This unit we have start from some basic definitions (inner product 

space, Hilbert space). After that we have defined these spacesthe 

properties then result and examples defined. 

 

8.6 GLOSSARY 

i. Inner Product Space: A function⟨⋅,⋅⟩that maps pairs of vectors to 

real or complex numbers, satisfying conjugate symmetry, linearity, 

and positivity. 

ii. Norm: A function ∥⋅∥ derived from the inner product, defined as∥

𝑥 ∥= ⟨𝑥, 𝑥⟩representing the length or magnitude of a vector. 

iii. Orthogonality: A condition where two vectors x, y are orthogonal 

if 〈𝑥, 𝑦〉 = 0 

iv. Hilbert Space: A complete inner product space, meaning every 

Cauchy sequence converges to a limit within the space. 

v. Completeness: A property of a space where every Cauchy 

sequence has a limit that is also within the space.  

vi. Cauchy Sequence: A sequence {𝑥𝑛}𝑤ℎ𝑒𝑟𝑒 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝜖 > 0, 

there exists an𝑁 such that for all 𝑚, 𝑛 > 𝑁, ∥ 𝑥𝑚 − 𝑥𝑛 ∥< 𝜖. 

vii. Orthonormal Set: A set of vectors that are orthogonal to each 

other and each have unit norm(∥ 𝑥 ∥= 1) 

viii. Orthonormal Basis: A basis consisting of orthonormal vectors, 

which allows for straightforward vector decomposition and 

reconstruction. 

ix. Cauchy-Schwarz Inequality:An inequality stating 

∣ ⟨𝑥, 𝑦⟩ ∣≤∥ 𝑥 ∥∥ 𝑦 ∥ |for all vectors 𝑥 and 𝑦. 
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x. Triangle Inequality:An inequality stating 

∥ 𝑥 + 𝑦 ∥≤∥ 𝑥 ∥ +∥ 𝑦 ∥for all vectors 𝑥 and y. 

xi.  𝑳𝟐 Space: The space of square-integrable functions, where the 

inner product is defined by ⟨𝑓, 𝑔⟩ = ∫ 𝑓(𝑥)𝑔(𝑥)̅̅ ̅̅ ̅̅  𝑑𝑥. 

xii. Finite-Dimensional Hilbert Space: Any finite-dimensional inner 

product space, which is automatically complete and thus a Hilbert 

space. 

 

CHECK YOUR PROGRESS 

Fill in the Blanks: 

1. A vector space equipped with an inner product is called an 

__________ 

2. A __________ is a complete inner product space. 

3. In an inner product space, two vectors are said to be __________ if 

their inner product is zero. 

4. The inner product of a vector with itself is always __________ and is 

zero if and only if the vector is the __________ vector. 

5. In a Hilbert space, every __________ sequence converges to a limit 

within the space. 

6. The __________-Schwarz inequality is a fundamental property of 

inner product spaces. 

7. The space of square-integrable functions, denoted by __________, is 

an example of a Hilbert space. 

True/False 

8. Every Hilbert space is an inner product space..True/False. 

9. Every inner product space is a Hilbert space. True/False. 

10. In a Hilbert space, every Cauchy sequence converges to a limit within 

the space.True/False. 
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11. The norm defined by an inner product always satisfies the triangle 

inequality.True/False. 

12. Orthogonal vectors in an inner product space always have an inner 

product of zero.True/False. 

13. All finite-dimensional inner product spaces are Hilbert 

spaces.True/False. 

14. The inner product of two vectors in an inner product space is always a 

real number. True/False. 

15. A complete normed space is known as a : Hilbert space  

i.  Compact space  

ii.  Banach space  

iii.  Euclidean space 

iv. Hilbert space 

16.The term Hilbert space stands for a : 

i. Complete inner product space 

ii. Compact linear space 

iii. Complete normed space 

iv. Complete metric space 

17. Which of the following is Cauchy-Schwartz inequality? 

 

18. The distance between any two orthonormal vectors in an inner product 

space is: 

a) 1 

b) √2 

c) 1 

d) 2 
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19.Which of the following is known as the parallelogram law? 

 

20.  Two vectors 𝑥, 𝑦 in an inner product space are orthogonal if :

 

21. If two vectors 𝑥, 𝑦 in an inner product space are orthogonal, then: 
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8.9  TERMINAL QUESTIONS 

 

1. If an inner product space 𝑋 is real, show that the condition 

‖𝑥‖ = ‖𝑦‖implies〈𝑥 + 𝑦, 𝑥 − 𝑦〉 = 0. 

What does this mean geometrically if 𝑋 =  ℝ2? What does the 

condition imply if 𝑋 is complex? 

What is an inner product space, and how is it defined. 

2. Explain the concept of a Hilbert space. What makes a Hilbert space 

different from a general inner product space? 

3. What is orthogonality in the context of inner product spaces? 

Provide an example. 

4. Provide an example of a Hilbert space that is not finite-

dimensional. 
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8.10  ANSWERS 

 

CHECK YOUR PROGRESS 

a. Inner product space. 

b. Hilbert space 

c. Orthogonal 

d. Non-negative, Zero 

e. Cauchy 

f. Cauchy 

g. 𝐿2 

h. True 

i. False 

j. True 

k. True 

l. True 

m. True 

n. False 

o. (ii) 

p. (i) 

q. (a) 

r.  (b) 

s. (c) 

t. (a) 

u. (b) 
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UNIT 9:  

PRPERTIES OF INNER PRODUCT SPACE 

 

CONTENTS: 

9.1 Introduction  

9.2 Objectives 

9.3 Lemma and Theorem 

9.4 Isomorphism of an inner product space 

9.5 Theorem 

9.6 Orthogonal Complements and Direct Sums 

9.6.1 Segment and Convex Set 

9.6.2 Direct Sum 

9.6.3 Orthogonal complement 

9.6.4 Lemma and Theorem 

9.7 Orthonormal Sets and Sequence 

9.8 Summary 

9.9 Glossary 

9.10 References 

9.11 Suggested readings 

9.12 Terminal questions 

9.13 Answers 

 

 

 

 

 



Department of Mathematics Page 192 

Uttarakhand Open University 
 

9.1 INTRODUCTION 

 

After completion of previous unit the learner are familiar about 

inner product space. Now in the present unit we are explaining the 

properties of inner product space.   

 

9.2 OBJECTIVES 

 

 

After studying this unit, learner will be able to  

i. Described the concept of Isomorphism of an inner product 

space. 

ii. Explained the Orthogonal Complements and Direct Sums. 

iii. Describe the idea of an Orthonormal Sets and Sequence. 

 

9.3 LEMMA AND THEOREM 

 

Lemma 1 (Schwarz inequality, triangle inequality). 

 

An inner product and the corresponding norm satisfy the Schwarz 

inequality and the triangle inequality as follows. 

(a) |< 𝑥, 𝑦 >| ≤ ‖𝑥‖‖𝑦‖ (Schwarz inequality) 

...................................................(1) 

where the equality sign holds if and only if {𝑥, 𝑦} is a linearly dependent 

set. 

(b) That norm also satisfies 

‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ (Triangle inequality). 
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..................................................(2) 

Where the equality sign holds if and only if  𝑦 = 0 or 𝑥 = 𝑐𝑦 (𝑐 real and 

≥ 0). 

 

Proof.  

(a) If  𝑦 = 0, then (1) holds since < 𝑥, 0 ≥ 0. 

Let 𝑦 ≠ 0. 

For every scalar 𝛼 we have, 

 

 

We observe that the expression in the brackets [……..] is zero if we 

choose, 

 

The remaining inequality is, 

 

 

We are using here 

 

Multiplying by ‖𝑦‖2, transferring the last term to the left and taking 

square roots, we obtain (1). 

Equality holds in this derivation if and only if 𝑦 = 0 𝑜𝑟 0 =  ‖𝑥 − 𝛼𝑦‖2 

hence 𝑥 − 𝛼𝑦 = 0, so that 𝑥 = 𝛼𝑦, which shows linear dependence. 
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(b) We prove (2). We have, 

 

By the Schwarz inequality, 

 

By the triangle inequality for numbers we thus obtain, 

 

Taking square roots on both sides, we have (2). Equality holds in this 

derivation if and only if, 

 

The left-hand side is 2𝑅𝑒 < 𝑥, 𝑦 >,  where 𝑅𝑒 denotes the real part. From 

this and (1), 

 

Since the real part of a complex number cannot exceed the absolute value, 

we must have equality, which implies linear dependence by part (𝑎), say 

𝑦 = 0 𝑜𝑟 𝑥 = 𝑐𝑦. We show that 𝑐 is real and ≥ 0. From (3) with the 

equality sign we have  

 

But if the real part of a complex number equals the absolute value, the 

imaginary part must be zero. 
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Lemma 2.(Continuity of inner product). 

 

If in an inner product space , 

 

Proof. Subtracting and adding a term, using the triangle inequality for 

numbers and, finally, the Schwarz inequality, we obtain 

 

Since, 

 

 

9.4 ISOMORPHISM OF AN INNER PRODUCT  

SPACE 

 

An isomorphism 𝑇 of an inner product space 𝑋 onto an inner product 

space �̂� over the same field is a bijective linear operator 𝑇: 𝑋 → �̂� 

Which preserves the inner product, that is, for all 𝑥, 𝑦 ∈ 𝑋, 

< 𝑇𝑥, 𝑇𝑦 >= < 𝑥, 𝑦 >, 
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where  we denoted inner products on 𝑋 and �̂� by the same symbol, for 

simplicity. �̂� is then called isomorphic with 𝑋 and 𝑋  and  �̂�  are called 

isomorphic inner product spaces. 

 

9.5 THEOREM 

 

Theorem 3. For any inner product space 𝑋 there exists a Hilbert space 𝐻 

and an isomorphism 𝐴 from 𝑋 onto a dense subspace ⊂ 𝐻 . The space 𝐻 is 

unique except for isomorphisms 

 

Proof. Since we know the result, if  X = (X, ‖. ‖) be a normed space. Then 

there is a Banach space X̂ and an isometry A from X onto a subspace 𝑊 of 

X which is dense in X̂. The space X̂ is unique, except for isometries.  

For reasons of continuity, under such an isometry, sums and scalar 

multiples of elements in X and 𝑊 correspond to each other, so that A is 

even an isomorphism of X onto 𝑊, both regarded as normed spaces. 

Lemma 2 shows that we can define an inner product on 𝐻 by 

setting, 

 
The 〈𝑥𝑛〉 and (𝑦𝑛) are representatives of �̂� ∈ 𝐻 and �̂� ∈ 𝐻, respectively. 

 

 From previous unit we see that 𝐴 is an isomorphism of X onto 𝑊, both 

regarded as inner product spaces. In starting lines we also explain the 

guarantees that 𝐻 is unique except for isometries, that is, two completions 

𝐻 and �̂� of 𝑋 are related by an isometry 𝑇: 𝐻 ⟶ �̂�. Reasoning as in the 

case of 𝐴, we conclude that 𝑇 must be an isomorphism of the Hilbert space 

𝐻 onto the Hilbert space �̂�.  
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Subspace of an inner product space: 

A subspace 𝑌 of an inner product space 𝑋 is defined to be a vector  

subspace of 𝑋 taken with the inner product on 𝑋 restricted to 𝑌 × 𝑌. 

Similarly, a subspace 𝑌 of a Hilbert space 𝐻 is defined to be a subspace of 

𝐻, regarded as an inner product space. Note that 𝑌 need not be a Hilbert 

space because Y may not be complete. 

 

Theorem 4: 

 

 

9.6 ORTHOGONAL COMPLEMENTS AND 

DIRECT SUMS 

 

 

 

 

 



Department of Mathematics Page 198 

Uttarakhand Open University 
 

 

 

 

 

 

where,                                 

.  

 

Fig.9.5.1 

 

 

Fig 9.5.2 

 

The above figure  illustrates that even in a very simple space such as the 

Euclidean plane  𝑅2 there may be no y satisfying (2) or precisely one 

such 𝑦, or more than one 𝑦.  

And we may expect that other spaces, in particular infinite 

dimensional ones, will be much more complicated in that respect. For 

general normed spaces this is the case but for Hilbert spaces the situation 

remains relatively simple. This fact is surprising and has various 
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theoretical and practical consequences. It is one of the main reasons why 

the theory of Hilbert spaces is simpler than that of general Banach spaces. 

9.6.1 SEGMENT AND CONVEX SET 

 

To consider that existence and uniqueness problem for Hilbert 

spaces and to formulate the  below results,   we need two related concepts, 

which are of general interest, as follows. 

The segment joining two given elements 𝑥 and 𝑦 of a vector space 𝑋 is 

defined to be the set of all 𝑧 ∈ 𝑋 of the form 

 

 

A subset 𝑀 of 𝑋 is said to be convex if for every 𝑥, 𝑦 ∈ 𝑀the segment 

joining  𝑥 and 𝑦 is contained in 𝑀. 

For instance, every subspace  Y of 𝑋 is convex, and the intersection of 

convex sets is a convex set. 

 

Fig.9.5.1 

Segment in a convex set 
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9.6.2 DIRECT SUM 

 

 

 

Then 𝑍 is called an algebraic complement of 𝑌in 𝑋 and vice versa, and 𝑌, 

𝑍 is called a complementary pair of subspaces in X. 

 

 

 

which is the set of all vectors orthogonal to 𝑌. 
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9.6.3 LEMMA AND THEOREM 

 

Theorem 5: 

 

 

 

 

 

 

Also by (4), 
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In from above theorem following lemma can be proved. 

Lemma 3. 
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Theorem 6: 

 

 

Lemma 4: 
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Lemma 5: 

 

Lemma 6: 

 

 

9.7 ORTHONORMAL SETS AND SEQUENCES 
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Fig.9.7.1 
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Lemma 7: An orthonormal set is linearly independent. 
 

 

 
and proves linear independence for any finite orthonormal set. This also 

implies linear independence if the given orthonormal set is infinite, by the 

definition of linear independence. 

 

9.8 SUMMARY 

 

In starting of the unit we have given some Lemma and Theorem 

then Isomorphism of an inner product space is defined. After that 

Orthogonal Complements and Direct Sums: Segment and Convex Set, 

Direct Sum, Orthogonal complement and Orthonormal Sets and Sequence 

defined in a  simple manner. 
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9.9 GLOSSARY 

 

i. Metric space: Let 𝑋 ≠ ∅  be a set then the metric on the set 𝑋 is 

defined as a function 𝑑: 𝑋 ×  𝑋 →  [0, ∞) such that some 

conditions are satisfied.  

 

ii. Vector space: - Let 𝑉 be a nonempty set with two operations 

(i) Vector addition:  If any  𝑢, 𝑣 ∈ 𝑉 then 𝑢 + 𝑣 ∈ 𝑉 

(ii) Scalar Multiplication: If any  𝑢 ∈ 𝑉 and 𝑘 ∈ 𝐹 then 

𝑘𝑢 ∈ 𝑉 

Then 𝑉 is called a vector space (over the field 𝐹) if the 

following axioms hold for any vectors if the some 

conditions hold. 

 

iii. Normed space:- Let 𝑋  be a vector space over scalar field 𝐾. A 

norm on a (real or complex) vector space 𝑋 is a real-valued 

function on 𝑋 (‖𝑥‖: 𝑋 → 𝐾) whose value at an  𝑥 ∈ 𝑋 is denoted 

by ‖𝑥‖ and which has the four properties here  𝑥 and 𝑦 are 

arbitrary vectors in 𝑋 and 𝛼 is any scalar. 

 

iv. Banach space:- A complete normed linear space is called a 

Banach space. 

 

v. Inner product space. 

 

vi. Hilbert space. 
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CHECK YOUR PROGRESS 

Fill in the blanks 

1. If in an ...................., 

 

2. A subset 𝑀 of 𝑋 is said to be ..............if for every 𝑥, 𝑦 ∈ 𝑀the 

segment joining  𝑥 and 𝑦 is contained in 𝑀. 

 

3.  

 ................................................ 

 

4. An isomorphism 𝑇 of an inner product space 𝑋 onto an inner 

product space �̂� over the same field is a bijective linear operator 

𝑇: 𝑋 → �̂� Which preserves the .............. 

 

5.  For any inner product space 𝑋 there exists a Hilbert space 𝐻 and 

an isomorphism 𝐴 from 𝑋 onto a.............. The space 𝐻 is unique 

except for isomorphisms 
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9.12 TERMINAL QUESTIONS 

 

1.  

 

2.  

 

3.  

 

4. Give examples of representations of ℝ
3
 as a direct sum (i) of a 

subspace and its orthogonal complement, (ii) of any 

complementary pair of subspaces. 

 

 

 

https://www.youtube.com/watch?v=Ow3q1A19hdY
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9.13 ANSWERS 

 

 

CHECK YOUR PROGRESS 

 

1. inner product space 

2. convex 

3.  

4. inner product 

5. dense subspace ⊂ 𝐻 
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UNIT 10: HILBERT ADJOINT OPERATOR 

AND OTHER OPERATORS 

 

CONTENTS: 

10.1 Introduction 

10.2 Properties of Hilbert adjoint operator 

10.3 Self adjoint, normal and unitary operators 

10.4 Important theorems on elf adjoint, normal and unitary operators 

10.5 Solved Examples 

10.6 Summary  

10.7 Glossary  

10.8 Terminal questions 

10.9 Answers to terminal questions 

 

 

10.1 INTRODUCTION 

 

Definition10.1.1. Let 𝑇: 𝐻1 →  𝐻2 be a bounded linear operator, where 

𝐻1and𝐻2 are Hilbert spaces. Thenthe Hilbert-adjoint operator 𝑇∗ of 𝑇 is 

the operatorsuch thatfor all 𝑥 ∈  𝐻1 and 𝑦 ∈  𝐻2, 

〈𝑇𝑥, 𝑦〉 = 〈𝑥, 𝑇∗𝑦〉 

We should show that this definition makes sense, that is, for a given 𝑇, 𝑇∗ 

does exist and it is unique. Before this, consider the following example 

and a remark: 

 

Example 10.1.1. Consider: 𝐻1 = 𝐻2 = 𝑅4, 𝑥 = (𝑥1, 𝑥2, 𝑥3,𝑥4,),  

𝑦 = (𝑦1, 𝑦2, 𝑦3,𝑦4,) and𝑇: 𝑅4 → 𝑅4 is defined as 
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𝑇(𝑥1, 𝑥2, 𝑥3,𝑥4,)   =  (𝑥2, 𝑥3, 𝑥4,, 0). 

Then,   

〈𝑥, 𝑇∗𝑦〉 = 〈𝑇𝑥, 𝑦〉 

⇒ 〈𝑥, 𝑇∗𝑦〉 = 〈𝑇(𝑥1, 𝑥2, 𝑥3,𝑥4,), (𝑦1, 𝑦2, 𝑦3,𝑦4,)〉 

= 〈(𝑥2, 𝑥3, 𝑥4,, 0), (𝑦1, 𝑦2, 𝑦3,𝑦4,)〉 

       = 𝑥2𝑦1 + 𝑥3𝑦2 + 𝑥4𝑦3 

                               = 〈(𝑥1, 𝑥2, 𝑥3,𝑥4,), (0, 𝑦1, 𝑦2, 𝑦3)〉 

Therefore, 𝑇∗𝑦 (=  𝑇∗(𝑦1, 𝑦2, 𝑦3,𝑦4,)) = (0, 𝑦1, 𝑦2, 𝑦3). 

 

Remark 10.1.1.Fora bounded linear operator𝑇: 𝐻1 →  𝐻2, its double 

Hilbert adjoint is same as 𝑇, i.e. 𝑇∗∗ = 𝑇. 

 

Proof: For each 𝑥 ∈  𝐻1 and 𝑦 ∈  𝐻2, 〈𝑇𝑥, 𝑦〉 = 〈𝑥, 𝑇∗𝑦〉 = 〈𝑇∗𝑦, 𝑥〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

〈𝑦, 𝑇∗∗𝑥〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 〈𝑇∗∗𝑥, 𝑦〉. Thus, 𝑇 = 𝑇∗∗. 

 

 

Theorem 10.1.1 The Hilbert adjoint operator 𝑇∗ of a bounded linear 

operator 𝑇 exists, unique and is bounded linear operator with norm ||𝑇|| =

||𝑇∗||. 

 

Proof: For given 𝑦 ∈ 𝐻2,  ℎ𝑦(𝑥) = 〈𝑇𝑥, 𝑦〉 , for each 𝑥 ∈ 𝐻1 ,defines a 

linear functional on𝐻1. This can be seen as follows: 

ℎ𝑦(𝛼𝑥 + 𝛽𝑧) = 〈𝑇(𝛼𝑥 + 𝛽𝑧), 𝑦〉 

= 〈𝛼𝑇𝑥 + 𝛽𝑇𝑧, 𝑦〉 

= 〈𝛼𝑇𝑥, 𝑦〉 + 〈𝛽𝑇𝑧, 𝑦〉 

= 𝛼〈𝑇𝑥, 𝑦〉 + 𝛽〈𝑇𝑧, 𝑦〉 

= 𝛼ℎ𝑦(𝑥) + 𝛽ℎ𝑦(𝑧). 

Thus, ℎ𝑦(𝑥) is a linear functional in first quadrant. Now by the Schwarz 

inequality 
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|ℎ𝑦(𝑥)| = |𝑇𝑥, 𝑦| ≤ ||𝑇𝑥|| × ||𝑦|| ≤ ||𝑇|| × ||𝑥|| × ||𝑦||. 

Hence, ||ℎ𝑦|| ≤ ||𝑇|| × ||𝑦||. 

Now, by Reisz representation theorem there exists a unique 𝑦0 ∈ 𝐻1 such 

that  

ℎ𝑦(𝑥) = 〈𝑥, 𝑦0〉 and ||ℎ𝑦|| = ||𝑦0||. 

This implies that 〈𝑇𝑥, 𝑦〉 = 〈𝑥, 𝑦0〉. 

Define, 𝑇∗: 𝐻2 →  𝐻1 as 𝑇∗𝑦 = 𝑦0. Hence for the operator 𝑇, its Hilbert 

adjoint exists and it is unique. 

Also, ||𝑇∗𝑦|| = ||𝑦0|| = ||ℎ𝑦|| ≤ ||𝑇|| × ||𝑦||. 

This implies that ||𝑇∗|| ≤ ||𝑇||.  And, since 𝑇∗∗ = 𝑇,  therefore ||𝑇∗∗|| ≤

||𝑇∗||i.e.  ||𝑇|| ≤ ||𝑇∗||. Hence ||𝑇∗|| = ||𝑇||. 

 

Proposition 10.1.1 Let 𝑿 and 𝒀 be inner product spaces and 𝑺: 𝑿 → 𝒀 

be a bounded linear operator. Then: 

a) 𝑆 = 0 if and only if 〈𝑆𝑥, 𝑦〉 = 0 for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌. 

b) If 𝑆: 𝑋 → 𝑋, where 𝑋 is over complex field, then 〈𝑆𝑥, 𝑥〉 = 0for all 

𝑥 ∈ 𝑋 if and only if 𝑆 = 0. 

 

Proof: (a) If 𝑆 = 0, then 𝑆𝑥 = 0 for all 𝑥 ∈ 𝑋. And hence 〈𝑆𝑥, 𝑦〉 = 0 for 

all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌.  

Conversely, assume that 〈𝑆𝑥, 𝑦〉 = 0 for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌. Then 

putting 𝑦 = 𝑆𝑥, we have 〈𝑆𝑥, 𝑆𝑥〉 = 0 for all 𝑥 ∈ 𝑋.  This implies that 

||𝑆𝑥||
2

= 0, for all 𝑥 ∈ 𝑋. Consequently, 𝑆𝑥 = 0, for all 𝑥 ∈ 𝑋. 

(b) It is very obvious that if 𝑆 = 0, then 〈𝑆𝑥, 𝑥〉 = 0for all 𝑥 ∈ 𝑋. 

Conversely, assume that if 〈𝑆𝑥, 𝑥〉 = 0for all 𝑥 ∈ 𝑋,  then by polarization 

identity 〈𝑆𝑥, 𝑦〉 = 0, for all 𝑥, 𝑦 ∈ 𝑋. And thus by part (a) 𝑆 = 0. 

 

Remark 10.1.2. Note that, in the statement (b) of above proposition 𝑋 is 

over complex field is essential. In case of, 𝑋 is over real field, this result 
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may not be true. For e.g. take 𝑋 = 𝑅2 and 𝑆: 𝑅2 →  𝑅2 defined as 

𝑆(𝑥1, 𝑥2) = (−𝑥2, 𝑥1). Then in this case 〈𝑆𝑥, 𝑥〉 = 0, whereas 𝑆 ≠ 0. 

 

10.2PROPERTIES OF HILBERT ADJOINT    

      OPERATOR 

 

Theorem 10.2.1  Let 𝐻1, 𝐻2be Hilbert spaces,  𝑆: 𝐻1 →  𝐻2  and 𝑇: 𝐻1 →

𝐻2 bounded linear operators and ∝ be any scalar. Then we have 

a) 〈𝑇∗𝑦, 𝑥〉 = 〈𝑦, 𝑇𝑥〉 

b) (𝑆 + 𝑇)∗ = 𝑆∗  +  𝑇∗ 

c) (∝ 𝑇)∗ =   ∝̅ 𝑇∗ 

d) (𝑇∗)∗ =    𝑇 

e) ‖𝑇∗𝑇‖ =  ‖𝑇𝑇∗‖ = ‖𝑇‖2 

f) 𝑇∗𝑇 = 0       if and only if     𝑇 = 0 

g) (𝑆𝑇)∗ =  𝑇∗𝑆∗(𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝐻2 = 𝐻1), and hence(𝑇𝑛)∗ = (𝑇∗)𝑛 

 

Proof.       (a)For all 𝑥 ∈  𝐻1 and 𝑦 ∈  𝐻2, 

〈𝑇∗𝑦, 𝑥〉 = 〈𝑥, 𝑇∗𝑦〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 〈𝑇𝑥, 𝑦〉̅̅ ̅̅ ̅̅ ̅̅ ̅ = 〈𝑦, 𝑇𝑥〉. 

 

(b)   For all 𝑥 ∈  𝐻1 and 𝑦 ∈  𝐻2, 

〈𝑥, (𝑆 + 𝑇)∗𝑦〉 = 〈(𝑆 + 𝑇)𝑥, 𝑦〉 

= 〈𝑆𝑥, 𝑦〉 +〈𝑇𝑥, 𝑦〉 

=  〈𝑥, 𝑆∗𝑦〉 + 〈𝑥, 𝑇∗𝑦〉 

=〈𝑥, (𝑆∗ + 𝑇∗)𝑦〉. 

Hence (𝑆 + 𝑇)∗𝑦 = (𝑆∗ + 𝑇∗)𝑦  for all 𝑦 ∈  𝐻2.  And hence (𝑆 + 𝑇)∗ =

𝑆∗  +  𝑇∗. 

(c) 〈(𝑎𝑇)∗𝑦, 𝑥〉 = 〈𝑦, (𝑎𝑇)𝑥〉 

= 〈𝑦, 𝑎(𝑇𝑥)〉 
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= �̅�〈𝑦, 𝑇𝑥〉 

= �̅�〈𝑇∗𝑦, 𝑥〉 

= 〈�̅�𝑇∗𝑦, 𝑥〉 

(d)This part is already done in the remark. 

(e) The operators𝑇∗𝑇:  𝐻1 →  𝐻1, but 𝑇𝑇∗𝐻2 →  𝐻2, By the Schwarz 

inequality. 

‖𝑇𝑥‖2 = 〈𝑇𝑥, 𝑇𝑥〉 = 〈𝑇∗𝑇𝑥, 𝑥〉 ≤ ‖𝑇∗𝑇𝑥‖‖𝑥‖ ≤ ‖𝑇∗𝑇‖‖𝑥‖2. 

 Taking the supremum over all 𝑥, we obtain ‖𝑇‖2 ≤ ‖𝑇∗𝑇‖. 

And   

‖𝑇∗𝑇‖ ≤ ‖𝑇∗‖‖𝑇‖ = ‖𝑇‖2. 

Hence ‖𝑇∗𝑇‖ = ‖𝑇‖2. Replacing 𝑇 by 𝑇∗in previous equation we get  

‖𝑇𝑇∗‖ = ‖𝑇‖2. 

 (f)  Using the above result (e) ‖𝑇∗𝑇‖ =  ‖𝑇𝑇∗‖ = ‖𝑇‖2, we get 

𝑇∗𝑇 = 0       if and only if     𝑇 = 0 if and only if     𝑇𝑇∗ = 0. 

 (g) Assume that, 𝐻2 = 𝐻1 = 𝐻, Since, For all 𝑥 ∈  𝐻 and 𝑦 ∈  𝐻, 

 〈𝑥, (𝑆𝑇)∗𝑦〉 = 〈(𝑆𝑇)𝑥, 𝑦〉 = 〈𝑇𝑥, 𝑆∗𝑦〉 = 〈𝑥, 𝑇∗𝑆∗𝑦〉. 

Hence(𝑆𝑇)∗ =  𝑇∗𝑆∗. 

 

 

 

10.3 SELF-ADJOINT, NORMAL AND UNITARY 

OPERATOR 

 

Definition 10.3.1.  A bounded linear operator 𝑇: 𝐻 → 𝐻 on a Hilbert 

space 𝐻 is said to beself adjoint if 𝑇*= 𝑇. 

Definition 10.3.2.  A bounded linear operator 𝑇: 𝐻 → 𝐻 on a Hilbert 

space 𝐻 is said to benormal  if 𝑇𝑇∗ = 𝑇∗𝑇.  
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Definition 10.3.3.  A bounded linear operator 𝑇: 𝐻 → 𝐻 on a Hilbert 

space 𝐻 is said to beunitary if𝐼 is bijective and 𝑇*= 𝑇−1, i.e. 𝑇𝑇∗ =

𝑇∗𝑇 = 𝐼. 

Remark 10.3.1: The Hilbert-adjoint operator  𝑇* of 𝑇 is defined 

by,〈𝑇𝑥, 𝑦〉 = 〈𝑥, 𝑇 ∗ 𝑦〉. Then: 

i. If 𝑇 is self-adjoint, we see that the formula become〈𝑇𝑥, 𝑦〉 =

〈𝑥, 𝑇𝑦〉. 

ii. If 𝑇 is self-adjoint, then 𝑇 is normal. 

iii. If 𝑇 is unitary, then 𝑇 is normal. 

 

Exercise 10.3.1: Give an example of an operator 𝑇 such that: 

i. 𝑇 is normal, but not unitary. 

ii. 𝑇 is normal, but not self adjoint. 

iii. 𝑇 is self adjoint, but not unitary. 

 

Theorem 10.3.1 (Self-adjointness).   Let 𝑇: 𝐻 → 𝐻  be a bounded 

linearoperator on a Hilbert space H. Then: 

a. If   𝑇  is self-adjoint, 〈𝑇𝑥, 𝑥〉 is real for all 𝑥 ∈  𝐻. 

b. If 𝐻 is over complex field and 〈𝑇𝑥, 𝑥〉 is real for all 𝑥 ∈  𝐻, the 

operator T is self-adjoint. 

 

Proof.   (a)If𝑇  is self-adjoint, then for all 𝑥,  

〈𝑇𝑥, 𝑥〉̅̅ ̅̅ ̅̅ ̅̅ ̅ = 〈𝑥, 𝑇𝑥〉 = 〈𝑇𝑥, 𝑥〉, 

Hence〈𝑇𝑥, 𝑥〉 is equal to its complex conjugate, so that it is real. 

(b)  if 〈𝑇𝑥, 𝑥〉 is real for all 𝑥, then 

〈𝑇𝑥, 𝑥〉 = 〈𝑇𝑥, 𝑥〉̅̅ ̅̅ ̅̅ ̅̅ ̅ = 〈𝑥𝑇∗, 𝑥〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 〈𝑇∗𝑥, 𝑥〉. 

Hence, 

0 = 〈𝑇𝑥, 𝑥〉 − 〈𝑇∗𝑥, 𝑥〉 = 〈(𝑇 − 𝑇∗)𝑥, 𝑥〉 

Andsince H  is over complex field, therefore𝑇 − 𝑇∗ = 0. And thus 𝑇 =

𝑇∗, i.e. 𝑇 is self adjoint. 
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Remark 10.3.2: (i) In the statement (b) of the above theorem it is essential 

that H  is over complex field. This is very clear that this statement may not 

be true if H  is overreal field.Since for a real H  the inner product is real-

valued, which makes 〈𝑇𝑥, 𝑥〉 real always, regardless 𝑇 is zero operator or 

not. 

 (ii) Products (composites) of self-adjoint operators appear quite 

often in applications, so that the following theorem will be useful. 

 

10.4 IMPORTANT THEOREMS ON SELF-

ADJOINT, NORMAL AND UNITARY OPERATOR 

 

 

Theorem 10.4.1 (Self-adjointness of product).  The product of two 

bounded self-adjoint linear operators S and T  on a Hilbert space  𝐻 is self-

adjoint if and only if the operators commute. 

𝑆𝑇 = 𝑇𝑆. 

Proof. We have already proven that, 

(𝑆𝑇)∗ =  𝑇∗𝑆∗  = 𝑇𝑆. 

Hence, from the above equation   𝑆𝑇 = (𝑆𝑇)∗is true if and only if     𝑆𝑇 =

𝑇𝑆.  

 

Proposition 10.4.1: (i) If 𝑇 is a self adjoint operator on a Hilbert space 

𝐻 then 𝑇𝑛 is also self adjoint for every 𝑛 ≥ 1. 

(ii) If 𝑇 is a self adjoint operatoron a Hilbert space 𝐻, then ||𝑇𝑛|| =

||𝑇||
𝑛

 for every 𝑛 ≥ 1. 

Proof: (i)We know that (𝑇𝑛)∗ = (𝑇∗)𝑛, and given that 𝑇 = 𝑇∗. 

Therefore, (𝑇𝑛)∗ = 𝑇𝑛 . Hence,  𝑇𝑛 is self adjoint for every 𝑛 ≥ 1. 
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(ii) We know that for any bounded linear operator 𝑇, ||𝑇||
2

= ||𝑇𝑇∗||. 

And if 𝑇 is self adjoint, then ||𝑇||
2

= ||𝑇2||.  

Also ||𝑇4|| = ||𝑇2||
2

= ||𝑇||
4
. Similarly for any 2𝑘, 𝑘 ≥ 1, we 

have||𝑇2𝑘
|| = ||𝑇2𝑘−1

||
2

= ||𝑇2𝑘−2
||

4

= ⋯ = ||𝑇4||
2𝑘−2

= ||𝑇2||
2𝑘−1

=

||𝑇||
2𝑘

.  Thus, ||𝑇2𝑘
|| = ||𝑇||

2𝑘

for any 2𝑘 , 𝑘 ≥ 1. 

Now,   for any 1 ≤ 𝑛 ≤ 2𝑘,  

||𝑇2𝑘
|| = ||𝑇𝑛𝑇2𝑘−𝑛|| ≤ ||𝑇𝑛|| × ||𝑇2𝑘−𝑛|| ≤ ||𝑇𝑛|| × ||𝑇||

2𝑘−𝑛

≤ ||𝑇||
𝑛

× ||𝑇||
2𝑘−𝑛

= ||𝑇||
2𝑘

. 

In the above inequality the first and last term are equal therefore all 

the term in between are also equal.  

Thus, 4th and 5th term are also equal, and this gives ||𝑇𝑛|| = ||𝑇||
𝑛

 for 

every 𝑛 ≥ 1. 

 

Theorem 10.4.2:  Let H be a Hilbert space over complex field. Then 

every bounded linear operator 𝑇 on  𝐻 can be represented as 𝑇 =

 𝑇1 + 𝑖𝑇2, where 𝑇1and𝑇2 are self adjoint operator. And this 

representation is unique. 

 

Proof:Define𝑇1 =
1

2
(𝑇 + 𝑇∗) and 𝑇2 = −

1

2
𝑖(𝑇 − 𝑇∗). Then 𝑇1

∗ =
1

2
(𝑇∗ +

𝑇) and 𝑇2
∗ =

1

2
𝑖(𝑇∗ − 𝑇). Therefore  𝑇1

∗ = 𝑇1 and 𝑇2
∗ = 𝑇2. Hence 

𝑇1and𝑇2 are self adjoint operator. Also from the definition of 𝑇1and𝑇2,  

𝑇1 + 𝑖𝑇2 = 𝑇. 

Uniqueness: Let 𝑇 =  𝑆1 + 𝑖𝑆2 be another representation such that 

𝑆1and 𝑆2 are self-adjoint. Then  

𝑇1 + 𝑖𝑇2 = 𝑆1 + 𝑖𝑆2. 

This implies that 
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(𝑇1 − 𝑆1) + 𝑖(𝑇2 − 𝑆2) = 0. 

Also, zero operator is self adjoint operator, therefore 

[(𝑇1 − 𝑆1) + 𝑖(𝑇2 − 𝑆2)] = [(𝑇1 − 𝑆1) + 𝑖(𝑇2 − 𝑆2)]∗

= (𝑇1 − 𝑆1)∗  − 𝑖(𝑇2 − 𝑆2)∗ = (𝑇1 − 𝑆1) − 𝑖(𝑇2 − 𝑆2). 

This gives 𝑇2 − 𝑆2 = 0, i.e. 𝑇2 = 𝑆2. Consequently using the second last 

equation, we get 𝑇1 = 𝑆1.  Hence, representation is unique. 

 

Theorem 10.4.3.  Let 𝐻 be Hilbert space over complex field and 𝑇 be a 

bounded linear operator, then 

(a)    𝑇 is normal iff ‖𝑇𝑥‖ = ‖𝑇∗𝑥‖ for all 𝑥 ∈  𝐻. 

(b)    If 𝑇 is normal then𝐾(𝑇) =  𝐾(𝑇∗) 

(c)    If 𝑇 is normal then ‖𝑇𝑛‖ = ‖𝑇‖𝑛  for every 𝑛 ≥ 1. 

 

Proof.  (a) Clearly, 

‖𝑇𝑥‖2 − ‖𝑇∗𝑥‖2 = 0 

⇔ 〈𝑇𝑥, 𝑇𝑥〉 − 〈𝑇∗𝑥, 𝑇∗𝑥〉 = 0 

⇔ 〈𝑇∗𝑇𝑥, 𝑥〉 − 〈𝑇𝑇∗𝑥, 𝑥〉 = 0 

⇔ 〈(𝑇∗𝑇 − 𝑇𝑇∗)𝑥, 𝑥〉 = 0 

Since 𝐻 is over complex field, therefore 𝑇∗𝑇 − 𝑇𝑇∗ = 0if and only if 

〈(𝑇∗𝑇 − 𝑇𝑇∗)𝑥, 𝑥〉 = 0 for every 𝑥 ∈ 𝐻. 

(b) If 𝑇 is normal then, by (a)‖𝑇𝑥‖ = ‖𝑇∗𝑥‖. This gives,  𝑇𝑥 = 0 if and 

only if 𝑇∗𝑥 = 0. Hence If 𝑇 is normal then,𝐾(𝑇) =  𝐾(𝑇∗). 

 

(c) Remember the property (e) of Hilbert adjoint operator which is 

||𝑇||
2

= ||𝑇∗𝑇||. Also, it is easy to check that for any operator 𝑇, 𝑇∗𝑇 is 

self adjoint, therefore,  

||(𝑇∗𝑇)𝑛|| = ||𝑇𝑇∗||
𝑛

. 

 

Now, consider𝑇 is normal then(𝑇∗𝑇)𝑛 = (𝑇∗)𝑛𝑇𝑛. Then using these facts, 

we have the following: 
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||𝑇||
2𝑛

= ||𝑇∗𝑇||
𝑛

= ||(𝑇∗𝑇)𝑛|| = ||(𝑇∗)𝑛𝑇𝑛|| 

                                                                            ≤ ||(𝑇∗)𝑛|| × ||𝑇𝑛|| 

                                                                            ≤ ||𝑇∗||
𝑛

× ||𝑇𝑛|| 

                                                                           ≤ ||𝑇∗||
𝑛

× ||𝑇||
𝑛
 

                                                                          = ||𝑇||
𝑛

× ||𝑇||
𝑛
 

                                                       = ||𝑇||
2𝑛

. 

In the above inequalities first and last term are same, therefore all the in 

between terms are equal. Therefore, ‖𝑇𝑛‖ = ‖𝑇‖𝑛   for every 𝑛 ≥ 1. 

 

Theorem 10.4.4Let𝐻 be a Hilbert space and the operators 𝑈:   𝐻 → 𝐻 and 

𝑉:  𝐻 → 𝐻 be unitary. Then: 

(a) 𝑈 is isometric,  thus ‖𝑈𝑥‖ = ‖𝑥‖  for all 𝑥 ∈ 𝐻 

(b) ‖𝑈‖ = 1, provided𝐻 ≠ 0, 

(c) 𝑈−1(= 𝑈∗) is unitary, 

(d) 𝑈𝑉  is unitary, 

(e) 𝑈 is normal. 

 

 

Furthermore: 

(a) A bounded linear operator 𝑇 on a complex Hilbert space 𝐻 is 

unitary if and only if 𝑇 is isometric and surjective. 

 

Proof.  (a) For 𝑥 ∈ 𝐻,  

‖𝑈𝑥‖2 = 〈𝑈𝑥, 𝑈𝑥〉 = 〈𝑥, 𝑈∗𝑈𝑥〉 = 〈𝑥, 𝐼𝑥〉 = ‖𝑥‖2. 

This implies that 𝑈 is an isometry. 

 

(b)  Since, 𝑈 is unitary, therefore ||𝑈𝑥|| = ||𝑥||. This immediately follows 

that ‖𝑈‖ = 1. 
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(c)Since 𝑈 is bijective, so is 𝑈−1, and by 𝑈−1 = 𝑈∗, we have  

(𝑈−1)∗ = 𝑈∗∗ = 𝑈. 

Therefore(𝑈−1)∗𝑈−1 = 𝑈𝑈−1 = 𝐼 = 𝑈−1𝑈 = 𝑈−1(𝑈−1)∗. This follows 

that 𝑈−1is also unitary. 

   (d)       Since 𝑈 and  𝑉 are bijective, therefore  𝑈𝑉is bijective, and  

(𝑈𝑉)∗ = 𝑉∗𝑈∗ = 𝑉−1𝑈−1 = (𝑈𝑉)−1. 

 This implies that 𝑈𝑉  is unitary. 

(e)    Follows from definition. 

(f)      Suppose that 𝑇 is isometric and surjective. Isometry implies 𝑇 is 

one-one, so that 𝑇  is bijective.  We show that 𝑇∗ = 𝑇−1.  By the isometry, 

〈𝑇∗𝑇𝑥, 𝑥〉 = 〈𝑇𝑥, 𝑇𝑥〉 = 〈𝑥, 𝑥〉 = 〈𝐼𝑥, 𝑥〉. 

Hence 

〈(𝑇∗𝑇 − 𝐼)𝑥, 𝑥〉 = 0 

and  𝑇∗𝑇 − 𝐼 = 0(𝐻 isover complex field), so that 𝑇∗𝑇 = 𝐼. From this, 

𝑇𝑇∗ = 𝑇𝑇∗(𝑇𝑇−1) = 𝑇(𝑇∗𝑇)𝑇−1 = 𝑇𝐼𝑇−1 = 𝐼. 

 Together, 𝑇∗𝑇 = 𝑇𝑇∗ = 𝐼. Hence 𝑇∗ = 𝑇−1, so that 𝑇 is unitary. 

Conversely, suppose that 𝑇 is isometric and surjective, therefore  by 

definition𝑇 is unitary. 

 

Remark 10.4.1Note that an isometric operator need not be unitary since it 

may fail to be surjective. An example is the right shift operator 𝑇:  𝑙2 → 𝑙2  

given by 

𝑇(𝑥1, 𝑥2, 𝑥3, … . . )   =  (0, 𝑥1, 𝑥2, … . . ) 

where (𝑥1, 𝑥2, 𝑥3, … . . ) ∈ 𝑙2. This operator is isometry but not unitary. 
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10. 5SOLVED EXAMPLES 

 

Question 10.5.1: Show that (a) 0∗ = 0 and (b)𝐼∗ = 𝐼. 

Solution: 

a. 〈𝑥, 0∗𝑦〉 = 〈0𝑥, 𝑦〉 

                             = 〈0, 𝑦〉 = 0 

                         = 〈𝑥, 0𝑦〉 

This implies that 0∗ = 0. 

b. 〈𝑥, 𝐼∗𝑦〉 = 〈𝐼𝑥, 𝑦〉 

= 〈𝑥, 𝑦〉 

= 〈𝑥, 𝐼𝑦〉 

This implies that 𝐼∗ = 𝐼. 

 

 

Question 10.5.2: Suppose 𝜆 is a eigen value of 𝑇. Is it true that�̅� is an 

eigen value for 𝑇∗. 

 

Solution: Not true. Consider 𝑇: 𝑙2 → 𝑙2 as 

𝑇(𝑥1, 𝑥2, 𝑥3, … . . )   =  (𝑥2, 𝑥3, … . . ) 

Let 𝜆 be eigen value of 𝑇, Then : 

𝑇(𝑥1, 𝑥2, 𝑥3, … . . )   = 𝜆(𝑥1, 𝑥2, 𝑥3, … . . ) 

⇒ (𝑥2, 𝑥3, … . . )   = (𝜆𝑥1, 𝜆𝑥2, 𝜆𝑥3, … . . ) 

𝜆 = 0 is a eigen value for 𝑇, and its corresponding eigen vector is 

(𝑥1, 0,0,0,0 … . . ). 

For non-zero 𝜆:  𝑥2 = 𝜆𝑥3, 𝑥3 = 𝜆𝑥4, 𝑥4 = 𝜆𝑥5, 𝑥5 = 𝜆𝑥6,  and so on. 

Eigen vector must be non-zero, therefore 𝑥𝑖 ≠ 0, for all 𝑖, because if 
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𝑥𝑖 = 0, for some 𝑖, then 𝑥𝑖+1 = 0 = 𝑥𝑖+2 = ⋯ and also 𝑥𝑖−1 = 0 =

𝑥𝑖−2 = ⋯ = 𝑥1. 

Since 𝑇(𝑥1, 𝑥2, 𝑥3, … . . ) ∈ 𝑙2, therefore in this case 

(𝜆𝑥1, 𝜆𝑥2, 𝜆𝑥3, … . . ) ∈ 𝑙2. 

⇒ (𝜆𝑥1, 𝜆2𝑥1, 𝜆3𝑥1, … . . ) ∈ 𝑙2 

⇒ ∑|𝜆𝑖𝑥1|
2

∞

𝑖=1

<  ∞ 

⇒ |𝑥1|2 ∑|𝜆𝑖|
2

∞

𝑖=1

<  ∞ 

⇒ ∑|𝜆𝑖|
2

∞

𝑖=1

<  ∞ 

⇒ |𝜆|2 < 1 

⇒ |𝜆| < 1 

Thus eigenvalue for 𝑇 is {𝜆: |𝜆| < 1}. Now it is easy to see that Hilbert 

adjoint of  𝑇 is 

𝑇∗(𝑥1, 𝑥2, 𝑥3, … . . )   = (0, 𝑥1, 𝑥2, … . . ) 

For eigen value 𝜆 of 𝑇∗:  

𝑇∗(𝑥1, 𝑥2, 𝑥3, … . . )   = 𝜆(𝑥1, 𝑥2, … . . ) 

⇒ (0, 𝑥1, 𝑥2, … . . )   = (𝜆𝑥1, 𝜆𝑥2, 𝜆𝑥3, … . . ) 

This implies that, 𝜆𝑥1 = 0, 𝜆𝑥2 = 𝑥1, 𝜆𝑥3 = 𝑥2, … .. and so on. If 𝜆 = 0, 

then 𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 0, … . And if 𝜆 ≠ 0, then   

𝜆𝑥1 = 0 ⇒ 𝑥1 = 0, 

𝜆𝑥2 = 𝑥1 ⇒ 𝑥2 = 0, 

similarly 𝑥3 = 0 = 𝑥4 = ⋯. Thus 𝑇∗ has no eigen value. 

 

 

Question 10.5.3:  If 𝑇 is self adjoint operator, then all eigen values are 

real. 
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Solution: Let 𝜆 be eigen value and 𝑥 ≠ 0 be corresponding eigen 

vector. Then 

〈𝑇𝑥, 𝑥〉 = 〈𝑥, 𝑇∗𝑥〉 

⇒ 〈𝜆𝑥, 𝑥〉 = 〈𝑥, 𝑇𝑥〉 

               = 〈𝑥, 𝜆𝑥〉 

⇒ 𝜆〈𝑥, 𝑥〉 = �̅�〈𝑥, 𝑥〉 

⇒ 𝜆 = �̅�. 

Hence 𝜆 is real. 

 

Question 10.5.4:Give an example of an operator 𝑇 such that 𝑇∗𝑇 is 

identity operator but 𝑇𝑇∗ is not an identity operator.  

 

Solution: Consider the right shift operator 𝑇:  𝑙2 → 𝑙2  given by 

𝑇(𝑥1, 𝑥2, 𝑥3, … . . )   =  (0, 𝑥1, 𝑥2, … . . ) 

 Its adjoint operator is 

 

𝑇∗(𝑥1, 𝑥2, 𝑥3, … . . )   =  (𝑥2, 𝑥3, 𝑥4 … . . ). 

Then  

𝑇∗𝑇(𝑥1, 𝑥2, 𝑥3, … . . )   =  (𝑥1, 𝑥2, 𝑥3, … . . ) 

Whereas,  

𝑇𝑇∗(𝑥1, 𝑥2, 𝑥3, … . . )   =  (0, 𝑥2, 𝑥3, 𝑥4 … . . ). 

 

10.6 SUMMARY 

 

After the learning of this unit, the students are able to: 

i. Understand the concept of Hilbert adjoint operator 

ii. Analyse a relation  between kernel of 𝑇 and range of 𝑇∗. 

iii. Analyse the idea of self adjoint operator 

iv. Analyse the idea of normal operator 
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v. Analyse the idea of unitary operator. 

 

 

10.7  GLOSSARY 

 

i.Hilbert adjoint operator 

ii.Kernel of 𝑇 

iii.Kernel of 𝑇∗ 

iv.Range of 𝑇 

v.Range of  𝑇∗ 

vi.Self adjoint operator 

vii.Normal Operator 

viii.Unitary Operator 

 

10.8 TERMINAL QUESTIONS 

 

TQ 10.8.1 If 𝑇:  𝐻 → 𝐻 is bounded linear operator, then show 

that𝑅(𝑇)̅̅ ̅̅ ̅̅ ̅ = 𝐾(𝑇∗)⊥, where, 𝑅(𝑇) is range of 𝑇 and 𝐾(𝑇) is kernel of 𝑇. 

 

TQ 10.8.2 If 𝑇:  𝐻 → 𝐻 is bounded linear operator, then show that 

𝐾(𝑇) = 𝑅(𝑇∗)⊥, where, 𝑅(𝑇) is range of 𝑇 and 𝐾(𝑇) is kernel of 𝑇. 

 

TQ 10.8.3 Let 𝐻 be a Hilbert space and let 𝑈 be a bounded linear operator 

such that  𝑅(𝑈) = 𝐻. Then show that the following are equivalent: 

(a) 𝑈  is unitary. 

(b) 𝑈  is an isometry: ‖𝑈𝑥‖ = ‖𝑥‖for every 𝑥 ∈ 𝐻; 

(c) 𝑈  preserves the inner product: 〈𝑈𝑥, 𝑈𝑦〉 = 〈𝑇𝑥, 𝑇𝑥〉 for all 𝑥, 𝑦 ∈ 𝐻. 
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TQ 10.8.4 Let  𝐻 be a Hilbert space and 𝑇:  𝐻 → 𝐻be a bijective bounded 

linear operator whose inverse is bounded. Show that (𝑇∗)−1exists and   

(𝑇∗)−1 = (𝑇−1)∗. 

 

 

10.9ANSWER TO TERMINAL QUESTION 

 

TQ 10.8.1Let 𝑦 ∈ 𝑅(𝑇). Then, there exists  𝑥 ∈ 𝐻 such that 𝑇𝑥 = 𝑦. 

Then, for any 𝑧 ∈ 𝐾(𝑇∗),〈𝑦, 𝑧〉 = 〈𝑇𝑥, 𝑧〉 = 〈𝑥, 𝑇∗𝑧〉 = 0. This implies that 

𝑦 ∈ 𝐾(𝑇∗)⊥. 𝑅(𝑇) ⊆ 𝐾(𝑇∗)⊥. 

Now, let 𝑥 ∈  𝑅(𝑇)⊥. Then for all 𝑦 ∈ 𝐻, 〈𝑇𝑦, 𝑥〉 = 0 = 〈𝑦, 𝑇∗𝑥〉. This 

implies that 𝑇∗𝑥 = 0. And hence, 𝑥 ∈ 𝐾(𝑇∗). Therefore, 𝑅(𝑇)⊥ ⊆ 𝐾(𝑇∗). 

This further implies that 𝐾(𝑇∗)⊥ ⊆  𝑅(𝑇)⊥⊥ = 𝑅(𝑇)̅̅ ̅̅ ̅̅ ̅. Hence𝑅(𝑇)̅̅ ̅̅ ̅̅ ̅ =

𝐾(𝑇∗)⊥. 

TQ 10.8.2Since, 𝑇∗∗ = 𝑇 and using TQ 10.8.1 on 𝑇∗ instead of 𝑇, we have 

𝑅(𝑇∗)̅̅ ̅̅ ̅̅ ̅̅ ⊥ = 𝐾(𝑇∗∗)⊥⊥.  This implies that  𝐾(𝑇) = 𝑅(𝑇∗)⊥. 

TQ 10.8.3 : See theorem 10.4.4 

TQ 10.8.4See the definition of self-adjoint operator and use the 

concept of bijectivity. 
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11.1 INTRODUCTION 

 

The Hahn-Banach theorem is a cornerstone of functional analysis, 

a branch of mathematical analysis that studies vector spaces endowed with 

a topology, typically infinite-dimensional. Named after Hans Hahn and 

Stefan Banach, who independently formulated the theorem in the early 

20th century, this result has profound implications in both pure and 

applied mathematics.The development of the Hahn-Banach theorem marks 

a pivotal moment in the evolution of functional analysis. During the early 

1900s, mathematicians were focused on generalizing classical results from 

finite-dimensional vector spaces to infinite-dimensional contexts. The 

theorem's origin can be traced back to Hahn's work in 1927, which was 

later extended by Banach in 1929. 

The Hahn Banach theorem is a central tool in functional analysis. 

It allows the extension of bounded linear functionals defined a vector 

subspace of some vector space to the whole space, and it also shows that 

there are "enough"continuous linear functionals defined on every normed 

vector space to make the study of the dual space "interesting". Another 

version of the Hahn–Banach theorem is known as the Hahn–Banach 

separation theorem or the hyperplane separation theorem and has 

numerous uses in convex geometry.The Hahn–Banach theorem arose from 

attempts to solve infinite systems of linear equations. This is needed to 

solve problems such as the moment problem, whereby given all the 

potential moment of a function one must determine if a function having 

these moments exists, and, if so, find it in terms of those moments. 

Another such problem is the Fourier cosine series problem, whereby given 

all the potential Fourier cosine coefficients one must determine if a 

function having those coefficients exists, and, again, find it if so. 
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11.2 OBJECTIVES 

 

After studying this unit, learner will be able to  

 

i. Understand the Statement and Proof Comprehend the formal 

statement of the Hahn-Banach Theorem and its proof, including 

the key concepts and techniques used. 

 

ii. Extend Linear Functionals: Apply the Hahn-Banach Theorem to 

extend linear functionals from a subspace of a vector space to the 

whole space while preserving their norm. 

 

iii. Dual Spaces: Understand the concept of dual spaces and how the 

Hahn-Banach Theorem ensures the richness of the dual space by 

guaranteeing the existence of many continuous linear functionals. 

 

iv. Functional Analysis Applications: Apply the theorem in various 

problems and proofs in functional analysis, including in the study 

of weak topologies, reflexivity, and the representation of dual 

spaces. 

 

v. Problem Solving: Solve advanced problems in functional analysis 

and related fields using the Hahn-Banach Theorem as a tool. 
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11.3 BASICS 

 

We first defined the basic definitions: 

 

11.3.1 PARTIAL ORDER SET 

 

Partial Order Set: Let X be a non-empty set a relation R on X is said to 

be a partial order if 

i. R is reflexive (i.e. x R x, ∀ x ∈ X.) 

ii.  R is anti-symmetric i.e. x R y, y R x, ⟹ x =  𝑦, ∀ x, y ∈ X. 

iii.  R is transitive i.e. x R y, y R z ⟹ x R z, ∀ x, y, z ∈ X. 

 

Note: 

 Let R be partial order relation on X and (x, y) ∈ R. Then we write 

x ≤ y. 

  A non-empty set X with a partial order relation  ≤ defined on X 

i.e. (X, ≤ ) is called a partial order set. 

 

Definition: Let (X, ≤ ) be a partial order set then  

i. An element a ∈ X is said to be an upper bound of X if x ≤ a, 

∀ x ∈ X. 

ii.  An element 𝛼 ∈ X is said to be a least upper bound of X if 𝛼 is 

an upper bound of X and a is an upper bound of X then 𝛼 ≤ a. 

iii. An element x ∈ X is said to be a maximal element of X if x ≤ 

y, y ∈ X ⟹ x=y. 

iv. Let A be a subset of X. Then set A is said to be linearly order 

set or chain if x, y ∈ A, ⟹ x ≤  𝑦 𝑜𝑟 y ≤ x. 

 



Department of Mathematics Page 232 
Uttarakhand Open University 
 

 

Example  

i. Let N be a natural number and n ≤ m if 
𝑛

𝑚
, A = {2, 4, 5} them 

L.U.B. = 20. 

ii. N = {1, 2, 3, …, 50, 51, …, 100} and m ≥ n if 
𝑛

𝑚
 , then 

maximal elements are 51, 52, 53,…,100. 

 

11.3.2 ZORN’S LEMMA 

 

Zorn’s Lemma- If every chain in a partial order set (X, ≤) has an upper 

bound then there is a maximal element in X. 

 

Sub linear functional: Let X be a vector space over a filed R. A function 

p on X into R is said to be sub linear function if  

i.  p(x+y) ≤ p(x) + p(y) ,∀ x, y ∈ X. 

ii. P(𝛼x) = 𝛼 p(x), 𝛼 ∈ R, x ∈ X. 

 

Exercise: Let X be a vector space over a filed R and Y be a proper linear 

subspace of X, let g be a linear functional on Y. let x0∈ X \ Y, define a 

function G on Y ⊕ [x0] by 

G(y + 𝛼x0) = g(y) + 𝛼 C   ∀  y + 𝛼x0 ∈Y ⊕ [x0], Where C is fixed. Then G 

is a linear functional on Y ⊕ [x0] 
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11.4 HAHN BANACH THEOREM FOR REAL 

VECTOR SPACE 

 

Hahn-Banach Theorem for real vector space- Let X be a vector space 

over the field of real line and p be a sub linear functional on X defined as  

                     p(x+y) ≤ p(x) + p(y) ,∀ x, y ∈ X. 

                         P(𝛼x) = 𝛼 p(x), 𝛼 ∈ R, x ∈ X. 

Let M be a linear sub space of X, let f be a linear functional on M such 

that  

                         f(x) ≤ p(x)   ∀ x ∈ M. 

Then there is a linear functional F on X such that  

                         F(x) = f(x) 

                         F(x) ≤ p(x) ∀ x ∈ X.  

For the proof of this theorem, a lemma is required. 

 

Lemma: Let X be a vector space over a field R and p be a sub linear 

functional on X. Let Y be a proper subspace of X, let g be a linear 

functional on Y such that  

                                g(y) ≤ p(y)  ∀ y ∈ Y. 

Let x0 ∈X \ Y. Then there is a linear functional G on Y ⊕ [x0] into R such 

that  

                                G(y) = g(y)  ∀ y ∈ Y,  

                                 G(y + 𝛼x0) ≤ p(y + 𝛼x0)  ∀ y + 𝛼x0∈ Y ⊕ [x] 

 

Proof of Hahn Banach theorem: Proof is an application of Zorn’s 

lemma. Let Ƒ be a collection of linear functional g from X into R such that 

i.  M ⊆ D(g)  

ii. g(x) = f(x)  ∀ x ∈ M 

iii.  g(x) ≤ p(x) ∀ x ∈ M 
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And G(y + 𝛼x0) ≤ p(y + 𝛼x0)  ∀𝛼 ∈ R, for g, h ∈ Ƒ if  

           D(g) ⊆ D(h)  

           g(x) = h(x) ∀ x ∈ D(g). 

It is easy to see that ≤ is a partial order relation on Ƒ. Then (Ƒ, ≤ ) is a 

partial order set. Let  

C = {𝑔𝛼: 𝛼 ∈ ∆} be a chain in Ƒ. Let = ∪α ∈ ∆ D(𝑔𝛼)  

Since C = {𝑔𝛼: 𝛼 ∈ ∆} be a chain in Ƒ, let 𝑔𝛼, 𝑔β ∈ C, therefore either 

𝑔𝛼 ≤ 𝑔β or 𝑔𝛼 ≥ 𝑔β that implies that 𝐷(𝑔𝛼) ⊆  D(𝑔β) or 𝐷(𝑔𝛼) ⊇

𝐷(𝑔β), let x ∈ D and x belong to 𝐷(𝑔𝛼) as well as D(𝑔β) then 

𝑔𝛼(x) = 𝑔β(x) for such x  

It follows that D is a linear subspace of X, define g on D into R by 

                   g(x) = 𝑔𝛼(x) ∀ x ∈ D(𝑔𝛼). 

Then g is well defined on D, and g is linear, also M ⊆ D(g) = ∪α ∈ ∆ D(𝑔𝛼) 

= D  

             (x)  =  𝑔𝛼(x) = f(x) ∀ x ∈M  ( C ⊆ Ƒ )  

              g(x) =   𝑔𝛼(x) ≤ p(x) ∀ x ∈∪α ∈ ∆D(𝑔𝛼) = D  then  g ∈ Ƒ 

Next 𝑔𝛼 ≤ g ∀𝛼 ∈ ∆, ( 𝐷(𝑔𝛼) ⊆ D(g) = ∪α ∈ ∆D(𝑔𝛼) = D  

Since g is upper bound of the chain C in Ƒ. Then by Zorn’s lemma (Ƒ , ≤ ) 

has a maximal element in Ƒ. Let F be the maximal element in (Ƒ , ≤ ). 

Now we claim that D(F) = X proof by contradiction, suppose D(F) ≠ X, 

let x0∈ X \ D(F). Then by using the Lamma, there exists a linear functional 

G on D(F) ⊕ [x0] into R, defined by  

                        G(x) = F(x) ∀ x ∈ D(F) 

And                 G(x) ≤ p(x) ∀ x ∈ D(F) ⊕ [x0] 

Clearly            M ⊆ D(G)         ( D(F) ⊆ D(F) ⊕ [x0]) 

                        G(x) = F(x) = f(x) ∀ x ∈ M 

                        G(x) = F(x) ≤ p(x)   ∀ x ∈ D(G) 

Then G ∈ Ƒ and F ≤ G   (D(F) ⊆  D(G)) 

Also F ≠ G  
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This is a contradiction the maximal of F, F is the required extension of f  

                   F(x) = f(x) ∀ x ∈ M 

And             F(x) ≤ p(x)  ∀ x ∈ X. 

 

Corollary:  

Let X be a vector space over a field K(R). Let p be a semi-norm on X, let 

M be a linear subspace of X. Let f be linear functional on M into R such 

that |f(x)| ≤ p(x) ∀ x ∈ M. Then there is a linear functional F on X into R 

such that 

i. F(x) = f(x)   ∀ x ∈ M 

ii. |f(x)| ≤ p(x)  ∀ x ∈ X. 

Proof.  

We need that a semi norm in a sub linear functional then  

             f(x) ≤ |f(x)| ≤ p(x)  ∀ x ∈ M, then f(x) ≤ p(x)  ∀ x ∈ M. By Hahn 

Banach theorem, for real vector space, there exists a linear functional F on 

X into R such that  

                         F(x) = f(x) ∀ x ∈ M 

And                   F(x) ≤ p(x)  ∀ x ∈ X 

Since F(x) ≤ p(x)  ∀ x ∈ X and F is a linear functional on X  

     F(-x) ≤ p((-1)x)   ∀ x ∈ X 

            -F(x) ≤ |-1| p(x)   ∀ x ∈ X 

            -F(x) ≤ p(x)  ∀ x ∈ X 

              |F(x)| ≤ p(x)  ∀ x ∈ X. 
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11.4.1 HAHN BANACH THEOREM FOR 

COMPLEX VECTOR SPACE 

 

Hahn Banach theorem for Complex vector spaces:  

Let X be vector space over a field of complex number and p a semi norm 

on X. Let M be a linear subspace of X. Let f be linear functional on M into 

C such that  

                           |f(x)| ≤ p(x)  ∀ x ∈ M.  

Then there is a linear functional f on X into C such that 

                           F(x) = f(x)   ∀ x ∈ M. 

                           |F(x)| ≤ p(x)  ∀ x ∈ X. 

Proof. Define u on M into R by  

                                 u(x) = Real part (f(x))  ∀ x ∈ M 

Then                          u(x+y) = Re (f(x + iy)  

                                  u(x+y) = Re (f(x) + f(y))    (since f is linear) 

                                  u(x+y) = Re (f(x)) + Re f(y)) 

                                  u(x+y) = u(x) + u(y)  ∀ x, y  ∈ M 

and 𝛼 ∈R,                u(𝛼x) = Re (f(𝛼(x)) 

                                  u(𝛼x) = Re 𝛼f((x)     (since f is linear) 

                                  u(𝛼x) =  𝛼 Re f(𝑥) = 𝛼 u(x). 

Since u : M → R is a real linear functional, Also |u(x)| = Re (f(x)) ≤ |f(x)| 

∀ x ∈ M 

 This implies that |u(x)| ≤ p(x) ∀ x ∈ M. Now by Hahn Banach theorem 

for real vector space there exists a real linear functional Ʋ on X into r such 

that 

                                     Ʋ(x) = u(x) ∀ x ∈ M 

                                     Ʋ(x) ≤ p(x) ∀ x ∈ M 

                                     Ʋ(x) = u(x) ∀ x ∈ M 

Define  F : X → C by  
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                                      F(x) = Ʋ(-i2(x+y)) – iƲ(i(x + y)) 

                                      F(x) = Ʋ(-i2x + -i2y) – i Ʋ(ix + iy) 

                                      F(x) = Ʋ (x+y) – i Ʋ (ix + iy)  

                                     F(x) = Ʋ(x) + Ʋ(y) – i(Ʋ(ix) + Ʋ(iy))  (Ʋ is linear) 

                                     F(x) = F(x) + F(y)  

For all 𝛼 ∈R,               F(𝛼x) = Ʋ((𝛼x) – iƲ(i𝛼 x) 

                                           F(𝛼x) = 𝛼Ʋ(x) – i𝛼Ʋ(ix) 

                                           F (𝛼 x) = 𝛼 (Ʋ(x) – i Ʋ(ix) 

F(𝛼 x) = 𝛼 F(x)  For all 𝛼 ∈ R, x ∈ X. 

Also                               F(ix) = Ʋ(ix) – i Ʋ (i2 x) 

                                       F(ix) = Ʋ(ix) – i Ʋ(-x) 

                                      F(ix) = Ʋ(ix) + iƲ(x) 

                                       F(ix) = iF(x)    For all x ∈ X. 

Let C = 𝛼 + i𝛽, 𝛼, 𝛽 ∈ R  

                                       F(c(x)) = F((𝛼 + i𝛽)x) 

                                                   = F(𝛼x + i𝛽x) = F(𝛼 x) + F(i𝛽x) 

                                                   = 𝛼 F(x) + 𝛽F(ix) = 𝛼 F(x) +  i𝛽F(x) 

                                                   = (𝛼 + i𝛽) F(x) = c F(x) 

                                       F(c(x)) = c F(x) 

F : X(C) → C is a linear functional now  

                                       F(x) = Ʋ(x) – iƲ(ix) 

                                       F(x) = Re(f(x)) – iRe(f(ix))  Far all x ∈ M 

                                       F(x) = Re(f(x)) – iRe(if(x))  Far all x ∈ M 

                                       F(x) = Re(f(x)) + iIm(f(x)) Far all x ∈ M 

                                       F(x) = f(x) Far all x ∈ M 

It is remained to show that |f(x)| ≤ p(x) Far all x ∈X 

                                       F(x) = |F(x)| 𝑒i𝜃,  θ is real 

                                            |F(x)| = F(x) 𝑒−i𝜃 

                                             |F(x)| = F(x 𝑒−i𝜃) 

                                            |F(x)| = | Ʋ (x 𝑒−i𝜃) | 
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( since |F(x)| is real number ≥ 0 ) 

                                      |F(x)| ≤ p (x 𝑒−i𝜃)                 ( |Ʋ(x)| ≤ p(x)  For 

all x ∈ X) 

                                      |F(x)| ≤ | 𝑒−i𝜃| p(x)               { p is semi linear} 

                                      |F(x)| ≤ p(x)     For all x ∈ X. 

 

11.4.2 HAHN BANACH THEOREM FOR NORMED 

LINEAR SPACE 

 

Hahn Banach theorem for Normed linear space: Let (X, ||  ||) be a 

normed linear space over a filed K (=R or C) and M be a linear subspace 

of X. Let f be a bounded linear functional on M. Then there is a bounded 

linear functional F on X such that  

i. F(x) = f(x)  ∀ x ∈ M 

ii.  ||F|| = ||f|| 

Proof. Define p : X → R by  

                                          P(x) = ||f|| ||x||   ∀ x ∈ X 

It is easy to see that p is semi norm on X  

                                          |f(x)| ≤ ||f|| ||x||       ∀ x ∈ M 

                                          |f(x)| ≤ p(x)      ∀ x ∈ M                        

By Hahn Banach theorem , there is a linear functional F on X such that  

                                          F(x) = f(x)  ∀ x ∈ M 

    And                              |F(x)| ≤ p(x)     ∀ x ∈ X 

                                         |F(x)| ≤ ||f|| ||x||       ∀ x ∈ X 

                                          ||F|| ≤ ||f|| 

Next                                 ||f|| = 𝑠𝑢𝑝x ∈ M
|𝑓(𝑥)|

||𝑥||
 

                                          ||f|| = 𝑠𝑢𝑝x ∈ M
|𝐹(𝑥)|

||𝑥||
   ( F(x) = f(x) ∀ x ∈ M) 

                                          ||f|| ≤ 𝑠𝑢𝑝x ∈ M
|𝐹(𝑥)|

||𝑥||
   = ||F|| 
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                                           ||f|| ≤ ||F|| 

Hence ||F|| = ||f||. 

 

11.4.3 APPLICATION OF HAHN BANACH THEOREM 

 

1.  Let (X, ||   ||) be a normed linear space over a filed K (=R or C). Let X 

be a non-zero vector in x. then there is a bounded linear functional F on X 

such that 

i.  F(x) = ||x|| 

ii. ||F|| = 1. 

 

Proof Given x ∈X and x ≠ 0, Let M = [x] = {𝛼 x : 𝛼 ∈ K}  

Define  f : M → K by  

                 f(𝛼x) = 𝛼 ||x||     ∀𝛼 ∈ K 

     Let x ∈ M and 𝛼1, 𝛼2∈ K 

f(𝛼1x + 𝛼2x) = f((𝛼1+𝛼2)x) = 𝛼1+𝛼2 ||x|| 

f(𝛼1x + 𝛼2x) = 𝛼1 ||x|| + 𝛼2 ||x|| 

                                        = f(𝛼1x) + f(𝛼2x) 

For all 𝛽 ∈K,      f(𝛽(𝛼x)) = f(𝛽𝛼x) = 𝛼𝛽 ||x|| 

                             f(𝛽(𝛼x)) = 𝛽(𝛼 ||x||) 

                             f(𝛽(𝛼x)) =  𝛽 f(𝛼x)  

Since f in linear functional on M then f(𝛼x) = 𝛼 ||x||    ∀𝑥 ∈ K 

Let 𝛼 = 1 then               F(x) = ||x|| 

                                       f(𝛼x) = 𝛼 ||x||    ∀𝑥 ∈ K 

                                        ||f(𝛼x)|| = |𝛼| ||x|| = ||𝛼 x|| 

 Hence                             || f || ≤ 1 

f is a bounded linear functional on M then  

                                        || f || = 𝑠𝑢𝑝α ∈ K
|𝑓(𝛼𝑥)|

|| 𝛼𝑥 ||
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                                         || f || = 𝑠𝑢𝑝α ∈ K
|α| ||x||

|𝛼| || 𝑥 ||
 = 1 

Hence                               || f || =1. 

By Hahn Banach theorem there is a bounded linear functional F on X such 

that  

F(𝛼 x) = f(𝛼 x) ∀𝑥 ∈ K 

And                               || F || = || f || = 1 

In particular taking 𝛼 = 1 then 

                                       F(x) = f(x) = || x ||  

And                                 || F || = || f || =1 

Hence                              F(x) = ||x|| and ||F|| = 1. 

 

2. Let (X, ||   ||) be a normed linear space over a field K (=R or C). Let x1 

and x2 be two vectors in X such that x1≠ x2. Then there is a bounded linear 

functional F on X such that  

F(x1 ) ≠  𝐹( x2 ). 

 

Proof. Given thatx1≠ x2 

                             x = x1- x2≠ 0, i.e., || x || =|| x1- x2 || ≠ 0 

Then there is a bounded linear functional F on X such that  

                             F(x) = F(x1- x2) = || x1- x2 || ≠ 0   ( F is linear) 

F(x1 ) - 𝐹( x2 )≠ 0 

F(x1 ) ≠  𝐹( x2 ). 

(3). Let X be a normed linear space over a field K (=R or C) and M be a 

closed subspace of X. Let x ∈ X \ M then there is a bounded linear 

functional F on X such that  

                i.  F(M) = 0  ∀ m ∈ M 

                ii    F(x) = Dist. (x, M) 

                iii  || F || =1. 
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11.5 EXAMPLES   

 

Example 1:Define F on:𝑅2(𝑅) → R by F (x, y) = ax + by ∀ x, y ∈ R2(R) 

Where a and b are fixed real number  

                              || (x, y) || = |x| +|y|  ∀ x, y ∈ R2(R) 

                              || x || = | x | ∀ x ∈ R2(R) 

Then F is a linear functional. Find || F ||. 

 

Solution. For all (x1, y1), (x2, y2)∈ R2(R) 

             F ((x1, y1), (x2, y2)) = F (x1 + x2, y1 + y2)  

                                            = a (x1 + x2) + b (y1 + y2) 

                                            = (ax1 + by1) + (ax2 + by2) 

F ((x1, y1), (x2, y2)) = F (x1, y1) + F (x2, y2)  

For all c ∈ R, ∀ x, y ∈ R2(R) then  

               F (c(x, y)) = F (cx, cy) = a (cx) + b(cy) 

                                = c (ax + by)  

F (c(x, y))  = c F (x, y) 

Hence F is linear functional on R2(R) 

             F (x, y) = ax + by 

             | F (x, y)| = | ax + by | 

| F (x, y)|≤ | a | | x | + | b | | y | 

≤ max. { | a |, | b |} ( | x | + | y |) 

                            = max.{ | a |, | b |} || (x, y) ||1 

Hence F is bounded linear functional on R2(R) 

           F (1, 0) = a, | F(1, 0) | = | a | and 
|𝐹(1,0)|

|(1,0)|
 = | a | 

    Therefore || F || ≥ | a | 

 



Department of Mathematics Page 242 
Uttarakhand Open University 
 

F (1, 0) = b, | F(1, 0) | = | b | and 
|𝐹(1,0)|

|(1,0)|
 = | b | 

 Therefore || F || ≥ | b | 

Hence        || F || ≥ Max. {| a |, |b|} 

                   || F || = Max. {| a |, |b|} 

 

11.5.1 PROBLEMS   

 

Problem1:Let R2(R) be a normed linear space over R and  

              ||   ||1 :𝑅2(𝑅) → R is defined by  

                      || (x, y) ||1 = | x | + | y | ∀ x, y ∈R2(R) 

Let M = {(x, 0) : x ∈ R }. Then proof that M = { (x, 0) : x ∈ R } is a linear 

subspace of R2(R). 

 

Problem 2: If N is a normed linear space and x0 is a non-empty vector in 

N, then there exists a functional f0 in N* such that  

                 f0(x0) = || x0 || and || f0 || = 1. 

 

Problem 3: If M is a closed linear subspace of normed linear space N and 

x0 is a vector not in M, then there exists a functional f0 in N* such that 

                F0(M) = 0 and f0(x0) ≠ 0. 

 

 

11.6 SUMMARY 

 

The Hahn-Banach Theorem is a fundamental result in functional 

analysis, a branch of mathematics. It has several equivalent forms and 

important implications in various areas of mathematics. Here's a summary 

of the theorem and its significance. 
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Hahn Banach theorem for Normed linear space: 

 Let (X, ||  ||) be a normed linear space over a filed K (=R or C) and M be a 

linear subspace of X. Let f be a bounded linear functional on M. Then 

there is a bounded linear functional F on X such that  

(i). F(x) = f(x)  ∀ x ∈ M 

(ii). ||F|| = ||f|| 

Significance 

1. Extension of Linera Functionals: The theorem ensures that any 

bounded linear functional defined on a subspace of a vector space 

can be extended to the whole space without increasing its norm. 

2. Separation of Convex Sets: It provides a way to separate disjoint 

convex sets by a hyperplane, which is crucial in convex analysis 

and optimization. 

3. Duality Theory: It forms the basis for duality in optimization 

problems, particularly in the context of linear programming and 

convex optimization. 

4. Functional Analysis: It is a cornerstone in the study of Banach 

spaces and their duals, leading to the development of various 

results in functional analysis, such as the existence of continuous 

linear functionals with specific properties. 

5. Applications: The theorem has numerous applications in areas 

such as economics (e.g., utility theory), engineering (e.g., signal 

processing), and physics (e.g., quantum mechanics), where the 

extension of functionals and the separation of sets play a key role. 

The Hahn-Banach Theorem is celebrated for its generality and 

thepowerful tools it provides for analysis and problem-solving in 

mathematics. 
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11.7  GLOSSARY 

 

i. Set: Any well-defined collection of objects or numbers are 

referred to as a set.  

 

ii. Interval: An open interval does not contain its endpoints, and is 

indicated with parentheses. (𝑎, 𝑏) =]𝑎, 𝑏[= {𝑥𝜖ℝ: 𝑎 < 𝑥 <

𝑏}. A closed interval is an interval which contain all its limit 

points, and is expressed with square brackets. [𝑎, 𝑏] = [𝑎, 𝑏] =

{𝑥𝜖ℝ: 𝑎 ≤ 𝑥 ≤ 𝑏}. A half-open interval includes only one of its 

endpoints, and is expressed by mixing the notations for open and 

closed intervals.(𝑎, 𝑏] =]𝑎, 𝑏] = {𝑥𝜖ℝ: 𝑎 < 𝑥 ≤ 𝑏}. [𝑎, 𝑏) =

[𝑎, 𝑏[= {𝑥𝜖ℝ: 𝑎 ≤ 𝑥 < 𝑏}. 

 

iii. Ordered Pairs: An ordered pair (a, b) is a set of two elements 

for which the order of the elements is of significance. Thus 

),(),( abba  unless a = b. In this respect (a, b) differs from the set 

{a, b}.Again dbcadcba   and),(),( .If X and Y are two 

sets, then the set of all ordered pairs (x, y), such that Xx and 

Yy is called Cartesian product of X and Y.  

 

iv. Relation: A subset R of YX   is called relation of X on Y. It 

gives a correspondence between the elements of X and Y. If (x, y) 

be an element of R, then y is called image of x.A relation in which 

each element of X has a single image is called a function. 
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v. Function: Let X and Y are two sets and suppose that to each 

element x of X corresponds, by some rule, a single element y of Y. 

Then the set of all ordered pairs (x, y) is called function. 

 

vi. Variable: A symbol such as x or y, used to represent an arbitrary 

element of a set is called a variable.  

 

vii. Metric space: Let 𝑋 ≠ ∅  be a set then the metric on the set 𝑋 is 

defined as a function 𝑑: 𝑋 ×  𝑋 →  [0, ∞) such that some 

conditions are satisfied. 

 

viii. Vector space: - Let 𝑉 be a nonempty set with two operations 

(i) Vector addition:  If any  𝑢, 𝑣 ∈ 𝑉 then 𝑢 + 𝑣 ∈ 𝑉 

(ii) Scalar Multiplication: If any  𝑢 ∈ 𝑉 and 𝑘 ∈ 𝐹 then 

𝑘𝑢 ∈ 𝑉 

Then 𝑉 is called a vector space (over the field 𝐹) if the 

following axioms hold for any vectors if the some 

conditions hold. 

 

CHECK YOUR PROGRESS 

 

Fill in the Blanks: 

1. A minimal element of a partially ordered set M is an x ∈ M such that y 

∼ x impels………….  

2. Norm on a vector space X is a ………….. functional on X. 

 

True/False 
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3. Is the Hahn Banach theorem being true for Complex vector space. 

True/False. 

4. Every semi-normed linear space is normed linear space. True/False. 

5. Suppose you have a normed vector space (X,∥⋅∥)and a continuous 

linear functional defined on a subspace Y⊆X. Can you extend to the 

whole space X while preserving its norm? (True / False) 

6. Every Vector space have Hamel basis. (True / False) 

7. Finite partial order set A has how many maximal elements. 

i. At most one 

ii. Infinite 

iii. Finite 

8. A Sublinear functional p satisfies the followings. 

i. P (0) = 0 

ii. P(-x) ≥ - P(x). 

iii. Both (i) and (ii). 
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11.10 TERMINAL QUESTIONS 

 

1. If M is a closed linear subspace of normed linear space N and x0 is a 

vector not in M, then there exists a functional f0 in N* such that  F0(M) 

= 0 and f0(x0) ≠ 0. 

2. If N is a normed linear space and x0 is a non-empty vector in N, then 

there exists a functional f0 in N* such that  f0(x0) = || x0 || and || f0 || = 1. 

3. State and proof of Hahn Bacha theorem of real vector space. 

4. Sate and proof of Hahn Banach theorem for normed linear space. 

5. Let X benormed linear space over a field K (=R or C) and M be a 

closed subspace of X. Let x ∈ X \ M then there is a bounded linear 

functional F on X such that 

i. F(M) = 0  ∀ m ∈ M 

ii. F(x) = Dist. (x, M) 

iii.  || F || =1. 
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11.11 ANSWERS 

 

CHECK YOUR PROGRESS 

1. y = x. 

2. Sub linear functional. 

3. True 

4. False 

5. True 

6. True 

7. A 

8. c. 



Department of Mathematics Page 249 

Uttarakhand Open University 

 

UNIT 12:  

CATEGORY THEOREM 

 

CONTENTS: 

12.1 Introduction 

12.2 Objectives 

12.3 Definitions 

12.4 Baire’s Category Theorem 

12.5 Uniform Boundedness Theorem 

12.6 Problems 

12.7 Summary 

12.8 Glossary 

12.9 References 

12.10 Suggested readings 

12.11 Terminal questions 

12.12 Answers 

 

 

 

 

 

 

 

 

 

 



Department of Mathematics Page 250 

Uttarakhand Open University 

 

 

 

12.1. INTRODUCTION          

In the  beginning of this unit, we will study the Baire’s category 

theorem. And then we will see that, this theorem led us to three important 

theorems in functional analysis. More precisely, these theorems are: 

uniform boundedness theorem, open mapping theorem(in the next 

unit),closed graph theorem (in the next unit). Hence in this unit we will 

focus on Baire’s category theorem, uniform boundedness theorem and 

their applications. It is worth noting that Baire's category theorem has 

various other applications in functional analysis. 

We firstly state the concepts needed for Baire's category theorem. 

Such concepts are nowhere dense set, first category set and second 

category set in a metric space. These concept has two names, the students 

must need to know both names. 

12.2 OBJECTIVES 

 

After studying this unit, learner will be able to  

i. Understand the Statement and Proof of the Baire’s Category 

Theorem. 

ii. Explained the Statement and Proof of Uniform Boundedness 

Theorem. 

iii. Functional Analysis Applications: Apply the theorem in various 

problems and proofs in functional analysis. 

iv. Problem Solving: Solve advanced problems in functional analysis 

and related fields using the Baire’s Category Theorem and 

Uniform Boundedness Theorem as a tool. 
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12.3 DEFINITIONS 

 

Definition:  A subset 𝐴of a metric space X is said to be rare (or nowhere 

dense) in X if its closure �̅� has no interior points. i.e. 𝐴 is said to be rare 

set if (�̅�)° = ∅. 

Definition:  A subset 𝐴of a metric space X is said to be meager (or of the 

first category) in X if 𝐴 is the union of countably many sets each of which 

is rare in X. 

i.e. 𝐴 is said to be of first category set if 𝐴 = ⋃ 𝐴𝑘
∞
𝑘=1 , where each 𝐴𝑘 are 

nowhere dense set. 

Definition:  A subset 𝐴of a metric space X is said to be non meager (or of 

the second category) in X if 𝐴 is not of first category in X. i.e. 𝐴 is said to 

be rare set if (�̅�)° = ∅. 

 

12.4 BAIRE’S CATEGORY THEOREM 

 

Statement: If a metric space 𝑋, it is of second category (non meager) in 

itself.  (Hence if 𝑋  is complete and  𝑋 = ⋃ 𝐴𝑘
∞
𝑘=1 , where each 𝐴𝑘 is 

closed, then at least one 𝐴𝑘has non empty interior.) 

Proof.  Let 𝑋 be a complete metric space and𝑋 ≠ ∅ . On the contrary 

suppose that 𝑋 is of first category in itself. Then 

𝑋 = ⋃ 𝐴𝑘

∞

𝑘=1
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with each 𝐴𝑘 are nowhere dense set in 𝑋. Our aim is to construct a Cauchy 

sequence (𝑥𝑘)whose limit 𝑥(which exists by completeness of 𝑋) is in no 

𝐴𝑘, this will give a contradiction. 

By assumption, 𝐴1 is nowhere dense in 𝑋, so that, by definition, �̅�1 

does not contain a nonempty open set, but 𝑋 does (for instance, 𝑋 itself). 

Thisimplies that �̅�1≠ 𝑋.Hence the complement �̅�1
𝑐

= 𝑋 − �̅�1 is not empty 

and open. We may thus choose a point 𝑥1in �̅�1
𝑐
and an openball about it, 

say, 

𝐵1 = 𝐵(𝑥1;  𝜀1) ⊂ �̅�1
𝑐
,𝜀1 <

1

2
. 

Again, by assumption, 𝐴2 is nowhere dense in 𝑋, so that �̅�2 does 

not contain a nonempty open set. Hence it does not contain the open ball 

𝐵(𝑥1;
1

2
𝜀1).This implies that 𝐴2

𝐶̅̅ ̅̅ ̅ ∩ 𝐵(𝑥1;
1

2
𝜀1)is not empty and open, so 

that we may choose a point 𝑥2and an open ball in this set, say, 

𝐵2 = 𝐵(𝑥2;  𝜀2) ⊂ �̅�2
𝑐

∩ 𝐵 (𝑥1;
1

2
𝜀1),𝜀2 <

1

2
𝜀1. 

By induction we thus obtain a sequence of balls𝐵𝑘 =

𝐵(𝑥𝑘; 𝜀𝑘)𝜀𝑘 < 2−𝑘 , such that 𝐵𝑘 ∩ 𝐴𝑘 = ∅and 

𝐵𝑘+1 ⊂ 𝐵 (𝑥𝑘;
1

2
𝜀𝑘) ⊂ 𝐵𝑘, for𝑘 = 1,2, ………… 

since 𝜀𝑘 < 2−𝑘 , the sequence (𝑥𝑘) is Cauchy sequence and converges, say 

converges to 𝑥 ∈ 𝑋 because 𝑋  is complete by assumption. Also, for every 

𝑚 and 𝑛 > 𝑚 we have 𝐵𝑛 ⊂ 𝐵 (𝑥𝑚;
1

2
𝜀𝑚), so that 

𝑑(𝑥𝑚,𝑥) ≤ 𝑑(𝑥𝑚 , 𝑥𝑛) + 𝑑(𝑥𝑛 , 𝑥) 

<
1

2
𝜀𝑚 + 𝑑(𝑥𝑛 , 𝑥) 
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             →  
1

2
𝜀𝑚 

as 𝑛 → ∞. Hence 𝑥 ∈ 𝐵𝑚 for every 𝑚. Since 𝐵𝑚 ⊂ �̅�𝑚
𝑐
we now seethat 

𝑥 ∉  𝐴𝑚 for every 𝑚, so that 𝑥 ∉∪ 𝐴𝑚 = 𝑋. This contradicts the fact that 

𝑥 ∈ 𝑋. 

Remark: Note that there is other form of Baire’s theorem which are as 

follows (without proof): 

1. Let 𝐺1, 𝐺2, …. be a sequence of dense open subsets of a complete 

metric space 𝑋. Then 𝐺 = ⋂ 𝐺𝑛
∞
𝑛=1  is dense in 𝑋. 

2. The complement of a meagre subset of a complete metric space is 

dense. In particular, a complete metric space is of the second category. 

Now we are in the state to obtain the uniform boundedness theorem from 

Baire’s category theorem. This theorem states that if 𝑋 is aBanach space, 

𝑌 is a normed linear space and a sequence of bounded linear operators 

𝑇𝑛 ∈ 𝐵(𝑋, 𝑌) is pointwise bounded at every point 𝑥 ∈ 𝑋, then the 

sequence is uniformly bounded. In other words, pointwise boundedness 

implies boundedness in some stronger sense, namely, uniform 

boundedness. 

 

12.5 UNIFORM BOUNDEDNESS THEOREM 

 

Statement: Let (𝑇𝑛) be a sequence of bounded linear operators 𝑇𝑛: 𝑋 ⟶

𝑌  from a Banach space 𝑋 into a normed space 𝑌 such that (𝑇𝑛) is 

pointwise bounded i.e for every 𝑥 ∈ 𝑋, there exists a real number𝑀𝑥such 

that 

   ||𝑇𝑛𝑥|| ≦ 𝑀𝑥𝑛 = 1,2, … … .,            …….(**)  
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where 𝑀𝑥 is a real number, the𝑀𝑥 will vary in general with 𝑥, and𝑀𝑥 does 

not depend on n. Then the sequence of the norms ||𝑇𝑛|| is bounded, that is, 

there is a 𝑀 such that||𝑇𝑛|| ≤ 𝑀,𝑛 = 1,2, …. 

Proof.  For every 𝑘 ∈ ℕ, let 𝐴𝑘 ⊂ 𝑋 be the set of all x such that||𝑇𝑛𝑥|| ≤

 𝑘, for all 𝑛. 

𝐴𝑘 is closed. Indeed, for any 𝑥 ∈ �̅�𝑘 there is a sequence (𝑥𝑗) in 

𝐴𝑘converging to x. This means that for every fixed 𝑛 we have ||𝑇𝑛𝑥𝑗|| ≤ 𝑘 

and obtain ||𝑇𝑛𝑥|| ≤ 𝑘 because 𝑇𝑛 is continuous and so is the norm. Hence 

𝑥 ∈ 𝐴𝑘. Thus 𝐴𝑘is closed. 

From the equation (**), each 𝑥 ∈ 𝑋belongs to some 𝐴𝑘 Hence 

𝑋 = ⋃ 𝐴𝑘.

∞

𝑘=1

 

Since 𝑋 is complete, Baire‘s category theorem implies that some 𝐴𝑘 

contains anopen ball, say, 

𝐵0  = 𝐵(𝑥0; 𝑟) ⊂ 𝐴𝑘0
                    … … … … (∗∗ 1) 

 

Let 𝑥 ∈ 𝑋 be arbitrary, not zero. We set𝑧 = 𝑥0 + 𝜆𝑥, 𝜆 =
𝑟

2||𝑥||
.Then 

||𝑧 − 𝑥0|| < 𝑟, so that 𝑧 ∈ 𝐵0. By (∗∗ 1)and from the definition of𝐴𝑘0
we 

thus have ||𝑇𝑛𝑧|| ≤ 𝑘0for all 𝑛. Also ||𝑇𝑛𝑥0|| ≤ 𝑀0, since 𝑥0 ∈ 𝐵0. By the 

definition of 𝑧, we get 

𝑥 =
1

𝜆
 (𝑧 − 𝑥𝑜). 

This gives for all 𝑛 
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||𝑇𝑛𝑥|| =
1

𝜆
||𝑇𝑛(𝑧 − 𝑥0|| ≤ 𝜆(||𝑇𝑛𝑧|| + ||𝑇𝑛𝑋0|| ≤

4

𝑟
||𝑥||𝑀0. 

Hence for all 𝑛, 

||𝑇𝑛|| = 𝑠𝑢𝑝

||𝑥||=1

||𝑇𝑛𝑥|| ≤
4

𝑟
𝑘0, 

Take𝑀 =
4𝑘0

𝑟
, and hence the theorem proved. 

12.6 PROBLEMS 

 

Question 1: Let 𝑋 and  𝑌 be normed spaces, with 𝑋 complete, and let 

𝑇𝑛𝑚 ∈ 𝐵(𝑋, 𝑌),𝑛, 𝑚 = 1,2, … … be such that  lim
𝑚→∞
̅̅ ̅̅ ̅̅ ||𝑇𝑛𝑚|| = ∞, for all 𝑛 ∈

 ℕ.Then show that there is a set 𝑈 ⊂ 𝑋 of the second category in 𝑋 such 

that for 𝑢 ∈ 𝑈, we have lim
𝑚→∞
̅̅ ̅̅ ̅̅ ||𝑇𝑛𝑚(𝑢)|| = ∞, for all 𝑛 ∈  ℕ 

Solution: For a fixed 𝑛, let 𝑉𝑛 ⊂ 𝑋 be the set of vectors 𝑣 such that 

lim
𝑚→∞
̅̅ ̅̅ ̅̅ ||𝑇𝑛𝑚(𝑣)|| < ∞. Then by the uniform boundedness theorem 𝑉𝑛 ⊂ is 

of the first category. Therefore 𝑉 = ⋃ 𝑉𝑛
∞
𝑛=1 , and thus by remark ** the 

set 𝑈 = 𝑋\𝑉 is of the second category. 

Question 2: Show that ℕ is first category in ℝ with usual metric, but 

second category in itself. 

Solution: Since in ℝ, every singleton subset is closed and empty interior 

(in ℝ every singleton set is an isolated point) and ℕ = ⋃ {𝑛}∞
𝑛=1 . Thus ℕ is 

first category in ℝ. Now in ℕ every subset is clopen (closed as well as 

open set), therefore in ℕ itself does not have any nowhere dense set. And 

hence ℕ in itself can not be written as of union of nowhere dense set. 

Thus, ℕ  in itself is of second category. 
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Question 3: Show that any subset of a first category is also first category. 

Solution: Let 𝑋 be a metric space and 𝐴 be first category in 𝑋. Consider 

𝐵 ⊂  𝐴. Since, 𝐴is fist category in 𝑋, therefore 𝐴 = ⋃ 𝐴𝑘
∞
𝑘=1 , where each 

𝐴𝑘are nowhere dense sets in 𝑋. This implies that closure of𝐴𝑘has empty 

interior. Also note that interior of closure of 𝐴𝑘 ∩ 𝐵contain in �̅�𝑘
0
, 

therefore 𝐴𝑘 ∩ 𝐵 is also nowhere dense in 𝑋 with 𝐵 = ⋃ (𝐴𝑘 ∩ 𝐵)∞
𝑘=1 . 

Hence 𝐵 is also a first category in 𝑋. 

Question 4: Countable union of first category sets is again first category. 

Solution: Let 𝑋 be a metric space and for each 𝑛 ∈ ℕ, 𝐴𝑛 be first category 

sets in 𝑋. Therefore for each 𝑛 ∈ ℕ, 𝐴𝑛can be written as 𝐴𝑛 =

⋃ 𝐴𝑛𝑘
∞
𝑘=1 , where each 𝐴𝑛𝑘are nowhere dense sets in 𝑋. This implies that 

⋃ 𝐴𝑛
∞
𝑛=1 = ⋃ ⋃ 𝐴𝑛𝑘

∞
𝑘=1

∞
𝑛=1 , is again a countable union of nowhere dense 

set in 𝑋. Thus, ⋃ 𝐴𝑛
∞
𝑛=1  is of first category in 𝑋. 

Question 5: Give an application of   the uniform boundedness theorem. 

Solution: The normed space 𝑋 of all polynomials is not complete, where 

norm defined by||𝑥|| = max
𝑖

|𝑎𝑖|, (𝑎0, 𝑎1, … … the coefficients 

ofpolynomial 𝑥). To prove this we construct a sequence of bounded linear 

operators on𝑋 which are pointwise bounded but not uniformly bounded, 

so that X cannot be complete. 

We may write a polynomial 𝑥 ≠ 0 of degree 𝑁𝑥 in the form 

𝑥(𝑡) = ∑ 𝑎𝑗𝑡𝑗

∞

𝑗=0

 

(𝑎𝑗 = 0 𝑓𝑜𝑟 𝑗 > 𝑁𝑥). 

As a sequence of operators on 𝑋 wetake the sequence of functionals 𝑇𝑛 =

 𝑓𝑛 defined by 
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 𝑇𝑛0 = 𝑓𝑛(0)  = 0, 𝑇𝑛𝑥 = 𝑓𝑛(𝑥) = 𝑎0 + 𝑎1 + ⋯ + 𝑎𝑛−1. 

By the definition 𝑓𝑛is linear. Also,𝑓𝑛 is bounded. Since |𝑎𝑗| ≤ ‖𝑥‖, 

therefore|𝑓𝑛(𝑥)| ≦ 𝑛‖𝑥‖. Furthermore, for each fixed 𝑥 ∈ 𝑋  the sequence 

(|𝑓𝑛𝑥|) satisfies the pointwise bounded condition, because a polynomial 𝑥 

of degree 𝑁𝑥, has 𝑁𝑥 + 1  coefficient, so that by we have, 

|𝑓𝑛(𝑥)| = |𝑎0 + 𝑎1 + ⋯ + 𝑎𝑛−1| 

≤ |𝑎0| + |𝑎1| + ⋯ + |𝑎𝑛−1| 

                          ≤ |𝑎0| + |𝑎1| + ⋯ + |𝑎𝑛−1| + ⋯ + |𝑎𝑁𝑥
| 

≤ (𝑁𝑥 + 1)𝑚𝑎𝑥
𝑗

|𝑎𝑗| = 𝑀𝑥 

Hence the sequence (|𝑓𝑛𝑥|) satisfies the pointwise bounded condition 

 We now show that (𝑓𝑛) does not satisfy the uniformly bounded 

condition, that is, there is no 𝑀 such that ‖𝑇𝑛‖ = ‖𝑓𝑛‖ ≤ 𝑀 for all 𝑛.  This 

we do by choosing particularly polynomials𝑥0. For 𝑓𝑛 we choose  𝑥 

defined by 

𝑥(𝑡) = 1 + 𝑡 + ⋯ + 𝑡𝑛 . 

Then ‖𝑥‖ = 1 and  

𝑓𝑛(𝑥) = 1 + 1 + ⋯ + 1 = 𝑛 = 𝑛‖𝑥‖. 

Hence ‖𝑓𝑛‖ ≥
|𝑓𝑛(𝑥)|

‖𝑥‖
= 𝑛, so that (‖𝑓𝑛‖)  is unbounded. And hence, the 

normed space 𝑋 is not complete. 
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12.7 SUMMARY 

 

The  Baire’s Category Theorem and Uniform Boundedness 

Theorem are a fundamental results in functional analysis, a branch of 

mathematics. It has several equivalent forms and important implications in 

various areas of mathematics. The statement of both the theorems are as 

follows. 

Baire’s Category Theorem: If a metric space 𝑋, it is of second 

category (non meager) in itself.  (Hence if 𝑋  is complete and  𝑋 =

⋃ 𝐴𝑘
∞
𝑘=1 , where each 𝐴𝑘 is closed, then at least one 𝐴𝑘has non empty 

interior.) 

Uniform Boundedness Theorem: Let (𝑇𝑛) be a sequence of bounded 

linear operators 𝑇𝑛: 𝑋 ⟶ 𝑌  from a Banach space 𝑋 into a normed space 𝑌 

such that (𝑇𝑛) is pointwise bounded i.e for every 𝑥 ∈ 𝑋, there exists a real 

number𝑀𝑥such that 

   ||𝑇𝑛𝑥|| ≦ 𝑀𝑥𝑛 = 1,2, … … .,            …….(**)  

where 𝑀𝑥 is a real number, the𝑀𝑥 will vary in general with 𝑥, and𝑀𝑥 does 

not depend on n. Then the sequence of the norms ||𝑇𝑛|| is bounded, that is, 

there is a 𝑀 such that||𝑇𝑛|| ≤ 𝑀,𝑛 = 1,2, …. 
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12.8  GLOSSARY 

 

1 Set: Any well-defined collection of objects or numbers are referred to 

as a set.  

2 Interval: An open interval does not contain its endpoints, and is 

indicated with parentheses. (𝑎, 𝑏) =]𝑎, 𝑏[= {𝑥𝜖ℝ: 𝑎 < 𝑥 <

𝑏}. A closed interval is an interval which contain all its limit points, 

and is expressed with square brackets. [𝑎, 𝑏] = [𝑎, 𝑏] = {𝑥𝜖ℝ: 𝑎 ≤

𝑥 ≤ 𝑏}. A half-open interval includes only one of its endpoints, and is 

expressed by mixing the notations for open and closed 

intervals.(𝑎, 𝑏] =]𝑎, 𝑏] = {𝑥𝜖ℝ: 𝑎 < 𝑥 ≤ 𝑏}. [𝑎, 𝑏) = [𝑎, 𝑏[=

{𝑥𝜖ℝ: 𝑎 ≤ 𝑥 < 𝑏}. 

3 Ordered Pairs: An ordered pair (a, b) is a set of two elements for 

which the order of the elements is of significance. Thus ),(),( abba 

unless a = b. In this respect (a, b) differs from the set {a, b}.Again 

dbcadcba   and),(),( .If X and Y are two sets, then the set 

of all ordered pairs (x, y), such that Xx and Yy is called Cartesian 

product of X and Y.  

4 Relation: A subset R of YX   is called relation of X on Y. It gives a 

correspondence between the elements of X and Y. If (x, y) be an 

element of R, then y is called image of x.A relation in which each 

element of X has a single image is called a function. 

5 Function: Let X and Y are two sets and suppose that to each element 

x of X corresponds, by some rule, a single element y of Y. Then the set 

of all ordered pairs (x, y) is called function. 

6 Variable: A symbol such as x or y, used to represent an arbitrary 

element of a set is called a variable.  
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7 Metric space: Let 𝑋 ≠ ∅  be a set then the metric on the set 𝑋 is 

defined as a function 𝑑: 𝑋 ×  𝑋 →  [0, ∞) such that some conditions 

are satisfied. 

8 Vector space: - Let 𝑉 be a nonempty set with two operations 

(i) Vector addition:  If any  𝑢, 𝑣 ∈ 𝑉 then 𝑢 + 𝑣 ∈

𝑉 

(ii) Scalar Multiplication: If any  𝑢 ∈ 𝑉 and 𝑘 ∈ 𝐹 

then 𝑘𝑢 ∈ 𝑉 

Then 𝑉 is called a vector space (over the field 𝐹) if the following axioms 

hold for any vectors if the some conditions hold. 

 

CHECK YOUR PROGRESS 

 

CYP 1: A subset 𝐴 is said to be nowhere dense in a metric space 𝑋, if 

………………… 

CYP 2: Let 𝐴bea second category set in a metric space 𝑋. Then : is it true 

that "𝐴𝑐is of first category"? 

CYP 3: True/False:“𝐴has an empty interior in a metric space 𝑋 if and only 

if 𝐴𝑐is dense in 𝑋. 

CYP4: Write the definition for pointwise bounded for a family of 

bounded linear operator. 

CYP5:  Write the definition for uniform bounded for a family of bounded 

linear operators. 

CYP6: True/False: The uniform boundednessof  a family of bounded 

linear operators implies the pointwise boundedness of that family. 
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CYP7: True/False: Let  𝑋 & 𝑌 be normed spaces and {𝑇1, 𝑇2, … , 𝑇𝑛} be 

finite collection of bounded linear operators from 𝑋  to  𝑌. Then 

{𝑇1, 𝑇2, … , 𝑇𝑛}is  pointwise bounded. 

CYP8: True/False: Let  𝑋 & 𝑌 be normed spaces and {𝑇1, 𝑇2, … , 𝑇𝑛} be 

finite collection of bounded linear operators from 𝑋  to  𝑌. Then 

{𝑇1, 𝑇2, … , 𝑇𝑛}is uniformly bounded. 

CYP9: True/False: Let  𝑋 & 𝑌 be normed spaces and {𝑇1, 𝑇2, … , } be 

countablyinfinite collection of bounded linear operators from 𝑋  to  𝑌. 

Then {𝑇1, 𝑇2, … , }is  pointwise bounded. 
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12.11 TERMINAL QUESTIONS 

 

1: If 𝐴 is nowhere dense in a normed linear space 𝑋, and 𝐵 is non-empty 

open set in 𝑋. Then show that 𝐴 is nowhere dense in 𝐺. 

2.  Show that superset of a second category set is itself a second category 

set. 

3. State and prove that the Baire‘s category theorem. 

4. State and prove that the uniform boundedness theorem. 

 

12.12 ANSWERS 

 

CHECK YOUR PROGRESS 

1. (�̅�)° = ∅. 

2.  Not true, for this take example as 𝑋 = ℝ, 𝑨 = [𝟎, ∞). Then 𝐴 is 

of second category, whereas 𝐴𝑐 is of second category too. 

3. True. 

4. Let  𝑋 & 𝑌 be normed spaces and {𝑇𝛼: 𝛼 ∈  ∆} be a family of 

bounded linear operators 𝑇𝛼: 𝑋 ⟶ 𝑌. Then {𝑇𝛼: 𝛼 ∈  ∆}is said to 

be pointwise bounded if for every 𝑥 ∈ 𝑋, there exists a real 

number𝑀𝑥such that for every 𝛼 ∈  ∆ 

   ||𝑇𝛼𝑥|| ≦ 𝑀𝑥. 
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5. Let  𝑋 & 𝑌 be normed spaces and {𝑇𝛼: 𝛼 ∈  ∆} be a family of 

bounded linear operators 𝑇𝛼: 𝑋 ⟶ 𝑌. Then {𝑇𝛼: 𝛼 ∈  ∆}is said to 

be uniformbounded ifthere exists a real number𝑀such that for 

every 𝛼 ∈  ∆ 

   ||𝑇𝛼|| ≦ 𝑀. 

6. True. 

7. True. 

8. True. 

9. May not be true. 
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UNIT 13:  

OPEN MAPPING THEOREM  

AND CLOSED GRAPH THEOREM 

 

CONTENTS: 
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13.2 Objectives 

13.3 Open mapping 

13.4 Open mapping theorem, Bounded Inverse Theorem 

13.4.1 Statement 

13.4.2 Lemma (Open unit ball) 

13.4.3 Proof of the theorem 

13.5 Closed linear operator 

13.6 Closed Graph Theorem 

13.6.1 Theorem (Closed linear operator) 
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13.6.3 Lemma (Closed operator) 
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13.9 References 

13.10 Suggested readings 

13.11 Terminal questions 

13.12 Answers 
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13.1  INTRODUCTION 

 

In previous units Hahn-Banach theorem and Category theorem 

defined in a simple manner. Now, in this unit Open mapping theorem and 

Closed Graph Theorem defined in a systematic manner. 

In functional analysis, the open mapping theorem, also known as 

the Banach – Schauder theorem or the Banach theorem (named 

after Stefan Banach and Juliusz Schauder), is a fundamental result that 

states that if a bounded or continuous linear operator between Banach 

spaces is surjective then it is an open map 

  In functional analysis and topology, the closed graph theorem is a 

output of connecting the continuity of certain kinds of functions to a 

topological property of their curve. Mainly, the theorem gives a linear 

operator between two Banach spaces is continuous if and only if the graph 

of the operator is closed (such an operator is called a closed linear 

operator; see also closed graph property). 

The closed graph theorem has important application throughout 

functional analysis, because it can control whether a partially-

defined linear operator admits continuous extensions. For this cause, it has 

been generalized to many circumstances beyond the elementary 

formulation above. 

We are assuming that the learners are familiar with different 

concept of analysis such as closures, interiors of set, dense set, separable 

metric space, no-where dense set. These concepts are defined in advanced 

real analysis in first semester. 
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13.2  OBJECTIVES 

 

After studying this unit, learner will be able to  

 

i. Describe the statement of open mapping theorem and closed graph 

theorem. 

ii. Explain the proof of  open mapping theorem and closed graph 

theorem. 

iii. Understand the concept of  open mapping and closed linear operator. 

 

13.3  OPEN MAPPING 

 

Let 𝑋 and 𝑌 be metric spaces. Then 𝑇: 𝐷(𝑇) ⟶ 𝑌 with domain 

𝐷(𝑇) ⊂ 𝑋 is called an open mapping if for every open set in 𝐷(𝑇) the 

image is an open set in 𝑌. 

Note that if a mapping is not surjective, one must take care to distinguish 

between the assertions that the mapping is open as a mapping from its 

domain 

a) into Y, 

b)  onto its range. 

 

b) is weaker than a).  For instance, if 𝑋 ⊂ 𝑌, the mapping  𝑥 ↦ 𝑥 of  𝑋 

into 𝑌  is open if and only if X is an open subset of 𝑌, whereas the 

mapping 𝑥 ↦ 𝑥 of 𝑋 onto its range (which is 𝑋) is open in any case. 
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13.4 OPEN MAPPING THEOREM, BOUNDED 

INVERSE THEOREM 

 

We have discussed the Hahn-Banach theorem and the uniform 

boundedness theorem and shall now approach the third "big" theorem in 

this unit, the pen mapping theorem. It will be concerned with open 

mappings. These are mappings such that the image of every open set is an 

open set. Remembering our discussion of the importance of open sets,  we 

understand that open mappings are of general interest. More specifically, 

the open mapping theorem states conditions under which a bounded linear 

operator is an open mapping. As in the uniform boundedness theorem we 

again need completeness, and the present theorem exhibits another reason 

why Banach spaces are more satisfactory than incomplete normed spaces. 

The theorem also gives conditions under which the inverse of a hounded 

linear operator is bounded. The proof of the open mapping theorem will be 

based on Baire's category theorem stated and explained in previous unit. 

 

13.4.1 STATEMENT 

 

A bounded linear operator 𝑇 from a Banach space 𝑋 onto a Banach 

space 𝑌 is an open mapping. Hence if 𝑇 is bijective, 𝑇−1 is continuous and 

thus bounded. 

Or 

in other words every bounded linear transformation from a Banach space 

onto a Banach space is open. 
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13.4.2 LEMMA (OPEN UNIT BALL) 

 

A bounded linear operator 𝑇 from a Banach space 𝑋 onto a Banach 

space 𝑌 has the property that the image 𝑇(𝐵0) of the open unit ball 

𝐵0 = 𝐵(0; 1) ⊂ 𝑋 

contains an open ball about 0 ∈ 𝑌. 

 

Proof.  We prove the lemma by following steps: 

a) The closure of the image of the open ball 𝐵0 = 𝐵 (0;
1

2
) contains an open 

ball 𝐵∗. 

b) 𝑇(𝐵𝑛)̅̅ ̅̅ ̅̅ ̅̅  contains an open ball 𝑉𝑛 about 0 ∈ 𝑌, where  

𝐵𝑛 = 𝐵(0; 2−𝑛) ⊂ 𝑋. 

c) 𝑇(𝐵0) contains an open ball about 0 ∈ 𝑌. 

 

Illustration of formula (1) 

Fig.13.4.2.1 

 

 

Illustration of formula (2) 

Fig.13.4.2.2 



Department of Mathematics Page 269 
Uttarakhand Open University 
 

 

a) In connection with subsets 𝐴 ⊂ 𝑋 we shall write 𝛼𝐴 (𝛼 a scalar) 

and 𝐴 + 𝑤 (𝑤 ∈ 𝑋) to mean 

 

 

 

and similarly for subsets of 𝑌. 

We consider the open ball 𝐵0 = 𝐵(0; 1) ⊂ 𝑋. Any fixed 𝑥 ∈ 𝑋 is in 𝑘𝐵1 

with real 𝑘  sufficiently large (𝑘 > 2‖𝑥‖). 

Hence, 

𝑋 = ⋃ 𝑘𝐵1

∞

𝑘=1

 

Since 𝑇 is surjective and linear. 

 

            Note that by taking closures we did not add further points to the 

union since that union was already the whole space𝑌. Since 𝑌 is complete, 

it is non meager in itself, by Baire's category theorem. 

Hence 𝑘𝑇(𝐵1
̅̅ ̅̅ ̅̅ ̅̅ ) must contain some open ball.  This implies that 𝑇(𝐵1

̅̅ ̅̅ ̅̅ ) also 

contains an open ball, 𝐵∗ = 𝐵(𝑦0; 𝜀) ⊂ 𝑇(𝐵1
̅̅ ̅̅ ̅̅ ). It follows that, 

 

 

 

(b) We prove that  𝐵∗ − 𝑦0 ⊂ 𝑇(𝐵0
̅̅ ̅̅ ̅̅ ̅), where Bo is given in the theorem. 

This we do by showing that 
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Let 𝑦 ∈ 𝑇(𝐵1)̅̅ ̅̅ ̅̅ ̅̅  −𝑦0. 

Then 𝑦 + 𝑦0 ∈ 𝑇(𝐵1)̅̅ ̅̅ ̅̅ ̅̅ ,  and we remember that, 𝑦0 ∈ 𝑇(𝐵1)̅̅ ̅̅ ̅̅ ̅̅ , there are 

 

such that 

                                        

 

such that 

 

Since 𝑤𝑛 , 𝑧𝑛 ∈ 𝐵1 and  𝐵1 has radius 
1

2
, it follows that  

 

So that, 

 

From 

 

We see that, 𝑦 ∈ 𝑇(𝐵0)̅̅ ̅̅ ̅̅ ̅̅  .  

Since 𝑦 ∈ 𝑇(𝐵1)̅̅ ̅̅ ̅̅ ̅̅  −𝑦0 was arbitrary, this proves (5). From (4) we thus 

have, 

 

Let 

 

Since 𝑇 is linear,  
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From (6) we thus obtain (7), 

 
(c) We finally prove that 

 
 By showing that every 𝑦 ∈ 𝑉1 is in 𝑇(𝐵0). So let 𝑦 ∈ 𝑉1. From (7) with n 

= 1 we have, 𝑉1 ⊂ 𝑇(𝐵1).̅̅ ̅̅ ̅̅ ̅̅  

Hence 𝑦 ∈ 𝑇(𝐵1).̅̅ ̅̅ ̅̅ ̅̅  

There must be a 

 

close to 𝑦, say, 

 

Now  

 

implies  𝑣 = 𝑇𝑥1 for some 𝑥1 ∈ 𝐵1, hence, 

 

From this and (7) with n = 2 we see that −𝑇𝑥1 ∈ 𝑉2 ⊂ 𝑇(𝐵2)̅̅ ̅̅ ̅̅ ̅̅  . As 

before we conclude that there is an 𝑥2 ∈ 𝐵2 such that 

 

 

Let 

 

Since 

 

we have 

 

This yields for 𝑛 > 𝑚, 
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as 

 

Hence (𝑧𝑛) is Cauchy. (𝑧𝑛) converges, say, 

 

because  𝑋 is complete. 

Also 𝐵0 has radius 1 and, 

 

 

Since 𝑇 is continuous, 

 

and (8) shows that 

 

Hence, 

 

 

13.4.3 PROOF OF THE THEOREM 

 

We are using above lemma for the proof of the theorem. 

Statement: 

A bounded linear operator 𝑇 from a Banach space 𝑋 onto a Banach 

space 𝑌 is an open mapping. Hence if 𝑇 is bijective, 𝑇−1 is continuous and 

thus bounded. 
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Proof. We prove that for every open set 𝐴 ⊂ 𝑋 the image 𝑇(𝐴) is open in 𝑌.  

This we do by showing that for every  𝑦 = 𝑇𝑥 ∈ 𝑇(𝐴) the set 𝑇(𝐴)  contains an 

open ball about 𝑦 = 𝑇𝑥. 

Let 

𝑦 = 𝑇𝑥 ∈ 𝑇(𝐴). 

 Since  𝐴  is open, it contains an open ball with center 𝑥.  

Hence 𝐴 − 𝑥 contains an open ball with center 0; let the radius of the ball be  𝑟 and 

set 𝑘 =
1

𝑟
, so that 𝑟 =

1

𝑘
. 

Then 𝑘(𝐴 − 𝑥) contains the open unit ball  𝐵(0; 1).  

By previous  lemma implies that 𝑇(𝑘(𝐴 − 𝑥)) = 𝑘[𝑇(𝐴) − 𝑇𝑋] contains an open 

ball about 0, and so does 𝑇(𝐴) − 𝑇𝑥. 

 Hence 𝑇(𝐴)contains an open ball about 𝑇𝑥 = 𝑦.  

Since  𝑦 ∈ 𝑇(𝐴)  was arbitrary, 𝑇(𝐴) is open. 

Finally, if  𝑇−1: 𝑌 → 𝑋 exists, it is continuous  because T is open. Since 𝑇−1is linear 

by it is bounded . (We have read this theorem in previous studies). 

 

13.5 CLOSED LINEAR OPERATOR 

  

Let 𝑋 and 𝑌 be normed spaces and 𝑇: 𝐷(𝑇) ⟶ 𝑌  is a linear 

operator with domain 𝐷(𝑇) ⊂ 𝑋. Then 𝑇 is called a closed linear operator 

if its graph 

 

 

is closed in the normed space 𝑋 × 𝑌, where the two algebraic operations of a vector 

space in 𝑋 × 𝑌 are defined as usual, that is 
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(a a scalar) and the norm on 𝑋 × 𝑌 is defined by, 

 

 

13.6 CLOSED GRAPH THEOREM 

 

Not all linear operators of practical importance are bounded. For 

instance, the differential operator is unbounded, and in quantum 

mechanics and other applications one needs unbounded operators quite 

frequently. However, practically all of the linear operators which the 

analyst is likely to use are so-called closed linear operators. This makes it 

worthwhile to give an introduction to these operators. In this unit we 

define closed linear operators on normed spaces and consider some of 

their properties, in particular in connection with the important closed 

graph theorem which states sufficient conditions under which a closed 

linear operator on a Banach space is bounded. 

 

Statement: Let 𝑋 and 𝑌 be Banach spaces and 𝑇: 𝐷(𝑇) ⟶ 𝑌  a closed 

linear operator, where 𝐷(𝑇) ⊂ 𝑋. Then if  𝐷(𝑇) is closed in 𝑋, the 

operator 𝑇 is bounded. 

 

Proof.  We first show that 𝑋 × 𝑌 with norm defined by (1) is complete. 

Let (𝑧𝑛) be Cauchy in 𝑋 × 𝑌, where 𝑧𝑛 = (𝑥𝑛, 𝑦𝑛). Then for every 𝜀 > 0 

there is an 𝑁 such that, 

 

Hence (𝑥𝑛) and ( 𝑦𝑛) are Cauchy in 𝑋 and 𝑌, respectively, and converge. 

 

and 
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because  𝑋 and 𝑌 are complete. 

This implies that, 

 

since from (2) with 𝑚 → ∞ we have, 

 

for  

 

Since the Cauchy sequence (𝑧𝑛) was arbitrary, 𝑋 × 𝑌  is complete. 

 

 

 

We now consider the mapping: 

 
𝑃 is linear. 𝑃 is bounded because 
 

 
 

 

𝑃  is bijective; in fact the inverse mapping is 

 

 

 
 

we can apply the bounded inverse theorem, 

 

and see that  
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For all 𝑥 ∈ 𝐷(𝑇). 

 

 

 

 

 

 

 

This proves the following useful criterion which expresses a property that 

is often taken as a definition of closedness of a linear operator. 

 

13.6 .1 THEOREM (CLOSED LINEAR OPERATOR) 

 

Let  𝑇: 𝐷(𝑇) ⟶ 𝑌  be a linear operator, where 𝐷(𝑇) ⊂ 𝑋 and 𝑋 and Y are 

normed spaces.  Then   𝑇 is closed if and only if it has the following 

property. 

If 𝑥𝑛 → 𝑥, where 𝑥𝑛 ∈ 𝐷(𝑇) and 𝑇𝑥𝑛 → 𝑦 then 𝑥 ∈ 𝐷(𝑇) and 𝑇𝑥 = 𝑦. 
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13.6 .2 EXAMPLE (DIFFERENTIAL OPERATOR) 

 

 

 

 

We are showing that 𝑻 is not bounded: 
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Using the theorem 13.6 it is implies that 𝑇 is closed. 

 

Remark: Closedness does not imply boundedness of a linear operator. 

Conversely, boundedness does not imply closedness. 

 

Proof. The first statement is illustrated by 13.6 and the second one by the 

following example. 

We are taking 

 

converges to x. 

 

13.6.3  LEMMA(CLOSED OPERATOR) 
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. 

[Using the theorem 13.6.1] 

 

 

13.7 SUMMARY 

 

In this unit we are explaining Open mapping, Open mapping 

theorem, Bounded Inverse Theorem Statement, Lemma related to Open 

unit ball and then the gives Proof of the open mapping theorem. After that 

Closed linear operator defined then Closed Graph Theorem state and 

prove. In continuation theorem  related to Closed linear operator gives 

then Example(Differential operator) defined. After that Lemma  related to 

Closed operator defined in a proper manner. 

 

 

 

 

 

 



Department of Mathematics Page 280 
Uttarakhand Open University 
 

 

13.8 GLOSSARY 

 

i. Set: Any well-defined collection of objects or numbers are 

referred to as a set.  

 

ii. Interval: An open interval does not contain its endpoints, and is 

indicated with parentheses. (𝑎, 𝑏) =]𝑎, 𝑏[= {𝑥𝜖ℝ: 𝑎 < 𝑥 <

𝑏}. A closed interval is an interval which contain all its limit 

points, and is expressed with square brackets. [𝑎, 𝑏] = [𝑎, 𝑏] =

{𝑥𝜖ℝ: 𝑎 ≤ 𝑥 ≤ 𝑏}. A half-open interval includes only one of its 

endpoints, and is expressed by mixing the notations for open and 

closed intervals.(𝑎, 𝑏] =]𝑎, 𝑏] = {𝑥𝜖ℝ: 𝑎 < 𝑥 ≤ 𝑏}. [𝑎, 𝑏) =

[𝑎, 𝑏[= {𝑥𝜖ℝ: 𝑎 ≤ 𝑥 < 𝑏}. 

 

iii. Ordered Pairs: An ordered pair (a, b) is a set of two elements 

for which the order of the elements is of significance. Thus 

),(),( abba  unless a = b. In this respect (a, b) differs from the set 

{a, b}.Again dbcadcba   and),(),( .If X and Y are two 

sets, then the set of all ordered pairs (x, y), such that Xx and 

Yy is called Cartesian product of X and Y.  

 

iv. Relation: A subset R of YX   is called relation of X on Y. It 

gives a correspondence between the elements of X and Y. If (x, y) 

be an element of R, then y is called image of x.A relation in which 

each element of X has a single image is called a function. 
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v. Function: Let X and Y are two sets and suppose that to each 

element x of X corresponds, by some rule, a single element y of Y. 

Then the set of all ordered pairs (x, y) is called function. 

 

vi. Variable: A symbol such as x or y, used to represent an arbitrary 

element of a set is called a variable.  

 

vii. Metric space: Let 𝑋 ≠ ∅  be a set then the metric on the set 𝑋 is 

defined as a function 𝑑: 𝑋 ×  𝑋 →  [0, ∞) such that some 

conditions are satisfied. 

 

viii. Vector space: - Let 𝑉 be a nonempty set with two operations 

(i) Vector addition:  If any  𝑢, 𝑣 ∈ 𝑉 then 𝑢 + 𝑣 ∈ 𝑉 

(ii) Scalar Multiplication: If any  𝑢 ∈ 𝑉 and 𝑘 ∈ 𝐹 then 

𝑘𝑢 ∈ 𝑉 

Then 𝑉 is called a vector space (over the field 𝐹) if the 

following axioms hold for any vectors if the some 

conditions hold. 

Ix  Normed Space 

X Banach Space 

XI        Linear operator 

XII      Linear functional 
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CHECK YOUR PROGRESS 

FILL IN THE BLANKS 

1. A bounded linear operator 𝑇 from a Banach space 𝑋 onto a Banach 

space 𝑌 is an open mapping. Hence if 𝑇 is………, 𝑇−1 is 

continuous and thus bounded. 

2. Let 𝑋 and 𝑌 be Banach spaces and 𝑇: 𝐷(𝑇) ⟶ 𝑌  a closed linear 

operator, where 𝐷(𝑇) ⊂ 𝑋. Then if  𝐷(𝑇) is …….. in 𝑋, the 

operator 𝑇 is bounded. 

CHOOSE THE CORRECT ONE 

3.  

 

4.  
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13.9 TERMINAL QUESTIONS 

 

1. State and prove open mapping theorem. 

……………………………………………………………… 

………………………………………………………………… 

2. State and prove closed graph theorem 

…………………………………………………………………….. 

…………………………………………………………………………

………………………………………………………………………… 
 

13. 10   ANSWERS 

 

 

CHECK YOUR PROGRESS 

 

1. Bijective 

2. Closed 

3. c 

4. a 
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UNIT 14:  

BANACH FIXED POINT THEOREM 
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14.1 INTRODUCTION 

 

Fixed point theory is an important branch of Mathematics. The 

presence or absence of a fixed point is an intrinsic property of a map. 

However, many necessary or sufficient conditions for existence of such 

points involve a mixture of algebraic, order theoretic or topological 

properties of the mappings or its domain.  

 

14.2 OBJECTIVES 

 

After completion of   this unit, learner will be able to 

1. Analyze about fixed point. 

2. Describe the contraction mapping. 

3. Understand the existence of fixed point. 

4. Prove some important fixed point theorems. 

 

14.3 FIXED POINT 

 

 

Definition. 

 Let 𝑋 be a non empty set and 𝑇 ∶  𝑋 →  𝑋 be a map. A point 𝑥0 ∈ 𝑋  is 

called a fixed point of 𝑇 if  𝑇𝑥0 =  𝑥0. 

 

 

 

 

 



Department of Mathematics Page 287 
Uttarakhand Open University 
 

 

Examples: 

 Let α be any non zero real number and Tα : R → R be defined as 

𝑇𝛼(𝑥) =  𝑥 +  𝛼. 

Then  𝑇𝛼 has no fixed point in R.  

 Let T : R → R be defined as T(x) =  𝑥2. Then 0 and 1 are two 

fixed points of T.  

 Let T : 𝑅2 → 𝑅2  be defined as T(x,y) = (x,0). Then T has 

infinitely many fixed points (all points of the x-axis). 

 

14.4 CONTRACTION AND OTHER MAPPINGS 

 

 

 Lipschitzian mapping: A mapping  𝑓 on a metric space 

(𝑋, 𝑑),∀ 𝑥, 𝑦 ∈  𝑋 is a Lipschitzian mapping if there exists a real 

number 𝛼 >  0 such that  

𝑑(𝑇𝑥, 𝑇𝑦) ≤  𝑑(𝑥, 𝑦)…….(a) 

 

 Contraction mapping: A mapping𝑓 on a metric 

space (𝑋, 𝑑), ∀ 𝑥, 𝑦 ∈  𝑋 is a Contraction Mapping if there exists a 

real number𝛼,   0 ≤  𝛼 <  1, such that 

𝑑(𝑇𝑥, 𝑇𝑦) ≤  𝛼 𝑑(𝑥, 𝑦) ….(1) 
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Fig 14.4.1 

 

 Non-expensive mapping: A mapping𝑓 on a metric space 

(𝑋, 𝑑), ∀ 𝑥, 𝑦 ∈  𝑋 is a Non-expensive mapping  if 

𝑑 (𝑇𝑥, 𝑇𝑦) ≤   𝑑(𝑥, 𝑦) ……..(b) 

 

 Contractive Mapping: A mapping 𝑓 on a metric space 

(𝑋, 𝑑), ∀ 𝑥, 𝑦 ∈  𝑋  is a contractive mapping if  

𝑑 (𝑇𝑥, 𝑇𝑦)  <  𝑑(𝑥, 𝑦) ………..(c) 

It is important to note that: 

𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ⇒ 𝑛𝑜𝑛 − 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑣𝑒 ⇒ 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 ⇒  𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒, 

 

While the opposite of what it implies is untrue. 

 

Example: 

 The identity mapping 𝐼: 𝑋 →  𝑋, is non-expansive but not contractive 

as   ∀ 𝑥, 𝑦 ∈  𝑋, 

 𝑑(𝐼𝑥, 𝐼𝑦)  ≤  𝑑(𝑥, 𝑦). 

 

 Mapping 𝑓: 𝑋 →  𝑋 defined by 

𝑓(𝑥) =  𝑥 +
1

𝑥
, ∀ 𝑥 ∈  𝑋 

Is a contractive mapping while 𝑓 is not a contraction.  

 

 Mapping 𝑓: 𝑋 →  𝑋 defined by 

 𝑓(𝑥) = 3𝑥,   

 

T is a Lipschitzian mapping for 𝑀 = 3, while 𝑓 is not a contraction. 
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CHECK YOUR PROGRESS 

 

1. Describe fixed point................................ 

2. 𝑇1 : R → R be defined as 𝑇1(𝑥) =  𝑥 +  1. Then  𝑇1 has 

................ fixed point in R.  

 

 

14.5 BANACH FIXED POINT THEOREM  

( CONTRACTION) 

 

Theorem 1.  Consider a metric space 𝑋 = (𝑋, 𝑑), where 𝑋 ≠ ∅.  Suppose 

that 𝑋 is a complete and let 𝑇: 𝑋 ⟶ 𝑋 be a contraction on 𝑋. Then 𝑇 has 

precisely one (unique) fixed point. 

 

Proof.  Construct a sequence (𝑥𝑛) and show that it is Cauchy, so that it 

converges in the complete space 𝑋, and then we prove that its  𝑙𝑖𝑚𝑖𝑡 𝑥 is a 

fixed point of 𝑇 and 𝑇 has no further fixed points. This is the explanation 

of the proof. 

We choose any 𝑥𝑛 ∈ 𝑋 and define the “iterative sequence” (𝑥𝑛) by 

 

𝑥0, 𝑥1 = 𝑇𝑥0, 𝑥2 = 𝑇𝑥1 = 𝑇2𝑥0, … … 𝑥𝑛 =  𝑇𝑛𝑥0 … ..  ……(2) 

Clearly, this is the sequence of the image of 𝑥0 under repeated application 

of 𝑇. 

We show that (𝑥𝑛) is Cauchy. 

From equation (1) and equation (2), 

𝑑(𝑇𝑥, 𝑇𝑦) = 𝑑(𝑇𝑥𝑚 , 𝑇𝑥𝑚−1) 

                 ≤  𝛼 𝑑(𝑥𝑚 , 𝑥𝑚−1) 
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                        =  𝛼 𝑑(𝑇𝑥𝑚−1, 𝑇𝑥𝑚−2) 

                                                   ≦ 𝛼2 𝑑(𝑥𝑚−1, 𝑥𝑚−2) 

                               ……………≦ 𝛼𝑚  𝑑(𝑥1, 𝑥0)……………(3) 

Hence by triangle inequality and the formula for the sum of a geometric 

progression we obtain for 𝑛 > 𝑚. 

𝑑(𝑥𝑚 , 𝑥𝑛) ≦ 𝑑(𝑥𝑚 , 𝑥𝑚+1) + 𝑑(𝑥𝑚+1, 𝑥𝑚+2) + ⋯ 𝑑(𝑥𝑛−1, 𝑥𝑛) 

                          ≦ (𝛼𝑚 + 𝛼𝑚+1 + ⋯ + 𝛼𝑛−1)𝑑(𝑥0, 𝑥1) =

𝛼𝑚 1−𝛼𝑚−𝑛

1−𝛼
𝑑(𝑥0, 𝑥1). 

Since 0 < 𝛼 < 1, in the numerator we have 1 − 𝛼𝑛−𝑚 < 1. Consequently, 

𝑑(𝑥𝑚 , 𝑥𝑛) ≦
𝛼𝑚

1−𝛼
𝑑(𝑥0,𝑥1)       (𝑛 > 𝑚). 

On the right, 0 < 𝛼 < 1 and  𝑑(𝑥0, 𝑥1) is fixed, so that we can make the 

right-hand side as small as we please by taking 𝑚 sufficiently large ( and 

𝑛 > 𝑚). This proves that (𝑥𝑚) is Cauchy. Since 𝑋 is complete,  (𝑥𝑚) 

converges, say 𝑥𝑚 → 𝑥. We show that this limit 𝑥 is a fixed point of the 

mapping 𝑇. 

 

From the triangle inequality and (1) we have, 

𝑑(𝑥, 𝑇𝑥) ≦ 𝑑(𝑥, 𝑥𝑚) + 𝑑(𝑥𝑚+1, 𝑇𝑥). 

≦ 𝑑(𝑥, 𝑥𝑚) + 𝛼𝑑(𝑥𝑚−1, 𝑥), 

and can make the sum in the second line smaller than any preassigned  ∈>

0 because 𝑥𝑚 → 𝑥. We conclude that 𝑑(𝑥, 𝑇𝑥) = 0, so that 𝑥 = 𝑇𝑥 (By 

second property of metric space).  This shows that 𝑥 is a fixed point of the 

mapping 𝑇. 

𝑥 is the only fixed point of the mapping 𝑇 because 𝑇𝑥 = 𝑥 and 𝑇�̅� = �̅� we 

obtain by (1), 

𝑑(𝑥, �̅�) = 𝑑(𝑇𝑥, 𝑇�̅�) ≦ 𝛼𝑑(𝑥, �̅�),  

which implies 𝑑(𝑥, �̅�) = 0 since 𝛼 < 1. 

Hence 𝑥 = �̅� (By second property of metric space).   

Then it means 𝑇 has precisely one (unique) fixed point. 
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CHECK YOUR PROGRESS 

3. Converse of Banach fixed point theorem is always true 

                                                                     True/False 

14.6.1 COROLLARY (ITERATION, ERROR 

BOUNDS) 

 

Under the condition of previous theorem (Banach contraction 

principle) the iterative sequence (2) with arbitrary 𝑥0 ∈ 𝑋 converges to the 

unique fixed point 𝑥 of 𝑇. Error estimates are the prior estimate  

𝑑(𝑥𝑚 , 𝑥) ≤
𝛼𝑚

1 − 𝛼
𝑑(𝑥0, 𝑥1) 

…………………………………….(5) 

and the posterior estimate 

𝑑(𝑥𝑚, 𝑥) ≤
𝛼

1 − 𝛼
𝑑(𝑥𝑚−1, 𝑥𝑚) 

…………………………………….(6) 

Proof.  The first statement is obvious from the previous proof. Inequality 

(5) follows from (4) by letting 𝑛 → ∞. 

We derive (6). Taking 𝑚 = 1 and the writing 𝑦0 for 𝑥0 and 𝑦1 for 𝑥1, we 

have from (5), 

𝑑(𝑦1, 𝑥) ≤
𝛼

1−𝛼
𝑑(𝑦0, 𝑦1). 

Setting 𝑦0 = 𝑥𝑚−1, we have 𝑦1 = 𝑇𝑦0 = 𝑥𝑚 and obtain (6). 

 

14.6.2 IMPORTANT THEOREMS 
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Theorem 2. Let  𝑇 be a mapping of a complete metric space 𝑋 = (𝑋, 𝑑) 

into itself. Suppose 𝑇 is a contraction on a closed ball  𝑌 =

{𝑥|𝑑(𝑥, 𝑥0) ≦ 𝑟},   

that is, 𝑇 satisfies (1) for all 𝑥, 𝑦 ∈ 𝑌. Moreover, assume that 

 

𝑑(𝑥, 𝑇𝑥0) < (1 − 𝛼)𝑟. 

………………………………………………………………………(7) 

Then the iterative sequence (2) converges to an 𝑥 ∈ 𝑌. This 𝑥 is a fixed 

point of  𝑇 and is the only fixed point of  𝑇 in 𝑌. 

 

Proof . We merely  have to show that all 𝑥𝑚′𝑠 as well as 𝑥 lie in 𝑌. We 

put 𝑚 = 0 in (4), change 𝑛 to 𝑚 and use (7) to get 

 

 

𝑑(𝑥0, 𝑥𝑚) ≤
1

1 − 𝛼
𝑑(𝑥0, 𝑥1) < 𝑟. 

Hence all 𝑥𝑚′𝑠 are in 𝑌. Also 𝑥 ∈ 𝑌 since  

𝑥𝑚 ⟶  𝑥 and 𝑌 is closed. The assertion of the theorem now follows from 

the proof of Banach Theorem. 

 

Theorem 3. Every contraction mapping is continuous 

 

Proof.  

 

 

 

 

 

 

Theorem 4. Every contraction mapping is uniformly continuous. 
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Theorem 5.Brouwer fixed Point Theorem.  Let f: S S be a 

continuous function from a non – empty, compact, convex set nRS    

into itself, then there exists a SX  , such that XXfX )((  is a fixed of 

function f). 

 

Theorem 6. Schauder fixed point theorem.  Let S be a non empty closed 

convex subset of a normed space X. Then every continuous function from 

S into a compact subset of S has a fixed point. 

 

Theorem 7. Markov-Kakutani theorem. Let C be a non empty compact 

convex subset of a normed linear space X; and T a family of a affine 

continuous maps from C to C such that FG = GF for all F,G T. Then the 

family T has a common fixed point in C. 

 

Theorem 8. Browder fixed point theorem. [11] . Let X be a uniformly 

convex Banach space and S be a non empty closed bounded and convex 

subset of X. If T is a family of non expansive maps from S to S such that 

FG = GF for all F; G T; then T has a common fixed point in S. 

 

 

Theorem 9. Let 𝑇 be a continuous mapping of a complete metric space  𝑋, 

into itself such that 𝑇𝑘 is a contraction mapping of  𝑋 for some positive 

integer 𝑘. Then 𝑇 has a unique fixed point. 

 

Proof. Since from theorem 1 we can say that  𝑇𝑘 has a unique fixed point 

𝑢 in 𝑋 and, 

𝑢 = lim
𝑛→∞

(𝑇𝑘)𝑛𝑥0 ∈ 𝑋 . 

Also lim
𝑛→∞

(𝑇𝑘)𝑛(𝐹𝑥0) = 𝑢. Hence, 
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𝑢 =  lim
𝑛→∞

(𝑇𝑘)𝑛(𝐹𝑥0) =  lim
𝑛→∞

𝑇(𝑇𝑘)𝑛𝑥0 = 𝑇 ( lim
𝑛→∞

 (𝑇𝑘)𝑛𝑥0). 

Since each fixed point of 𝑇 is also a fixed point of 𝐹𝑘. The uniqueness of 

the fixed point of 𝑇 follows from the uniqueness of the fixed point of  𝐹𝑘. 

 

Remark : The continuity condition on 𝑇 is not necessary. 

Let 𝑋 = ℝ, 𝑇(𝑥) =  {
1, 𝑥 𝑖𝑠 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙

0, 𝑥 𝑖𝑠 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙.
 

𝑇 is not continuous mapping and hence not a contraction mapping. 

But 𝑇2(𝑥) = {
𝑓(1) = 1, 𝑥 𝑖𝑠 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙

𝑓(0) = 1, 𝑥 𝑖𝑠 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙.
 

𝑇2 is a contraction and 𝑇2 and 𝑇 both have the same fixed point 1. 

 

Theorem 10. Suppose (𝑋, 𝑑) is a complete metric space and suppose    

𝑇: 𝑋 ⟶ 𝑋 is a mapping for which 𝑇𝑁 is a contraction mapping of  𝑋 for 

some positive integer 𝑁. Then 𝑇 has a unique fixed point. 

 

Proof. By Banach contraction  theorem  𝑇𝑁 has a unique fixed point 𝑥. 

However, 

𝑇𝑁+1(𝑥) = 𝑇(𝑇𝑁(𝑥)) = 𝑇(𝑥), 

so  𝑇(𝑥) is a also a fixed point of 𝑇𝑁 . 

Since the fixed point of 𝑇𝑁 is unique, it must be the case that  𝑇(𝑥) = 𝑥. 

Also, if 𝑇(𝑦) = 𝑦 then 𝑇𝑁(𝑦) = 𝑦 proving (again by uniqueness) that 𝑦 =

𝑥. 

 

14.6 EXAMPLES 

 

Example 1. 
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Example 2. 

 

 

Example 3. 

 

 

Example 4. 
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14.7 SUMMARY 

 

This unit is the presentation of the work related to Fixed Point 

theory. In this unit in starting the contraction, contractive and non-

expansive mappings defined in a simple manner. After the important 

Banach contraction fixed point theorem defined in a systematic manner. 

Then different theorems for find the fixed point defined. After that 

examples are defined. 

 

14.8 GLOSSARY 

i. Metric space: Let 𝑋 ≠ ∅  be a set then the metric on the set 𝑋 is 

defined as a function 𝑑: 𝑋 ×  𝑋 →  [0, ∞) such that some 

conditions are satisfied.  

ii. Vector space: - Let 𝑉 be a nonempty set with two operations 

a. Vector addition:  If any  𝑢, 𝑣 ∈ 𝑉 then 𝑢 + 𝑣 ∈ 𝑉 

b. Scalar Multiplication: If any  𝑢 ∈ 𝑉 and 𝑘 ∈ 𝐹 then 𝑘𝑢 ∈ 𝑉 
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Then 𝑉 is called a vector space (over the field 𝐹) if the following 

axioms hold for any vectors if the some conditions hold. 

iii. Normed space:- Let 𝑋  be a vector space over scalar field 𝐾. A 

norm on a (real or complex) vector space 𝑋 is a real-valued 

function on 𝑋 (‖𝑥‖: 𝑋 → 𝐾) whose value at an  𝑥 ∈ 𝑋 is denoted 

by ‖𝑥‖ and which has the four properties here  𝑥 and 𝑦 are 

arbitrary vectors in 𝑋 and 𝛼 is any scalar. 

iv. Banach space:- A complete normed linear space is called a 

Banach space. 

v. Cauchy sequence. 

vi. Convergent sequence. 

vii. Uniqueness. 

viii. Function(mappings). 

CHECK YOUR PROGRESS 

4. The cosine function is continuous in [−1, 1] and maps it into [−1, 1], 

and thus must have a fixed point. True/False 

5. Every contraction map is discontinuous. True/False 
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14.10SUGGESTED READINGS 
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ii.  J. B. Conway, (1990). A Course in functional Analysis (4th Edition), 

Springer.  

iii. B. V. Limaye, (2014), Functional Analysis, New age International 
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iv. https://www.youtube.com/watch?v=Ow3q1A19hdY 

 

 

14.10  TERMINAL QUESTIONS 

 

1. What is an example of a fixed point theory? 

…………………………………………….. 

2. How do you solve for a fixed point? 

………………………………………. 

3. What are the applications of fixed point? 

………………………………………………… 

4. State and proof Banach contraction principle. 

…………………………………………………….. 

 

14.11 ANSWERS 

 

 

https://www.youtube.com/watch?v=Ow3q1A19hdY
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CHECK YOUR PROGRESS 

2.  No 

3. False 

4. True 

5. False 
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