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COURSE INFORMATION

The present self learning material “Functional Analysis” has been
designed for M.Sc. (Third Semester ) learners of Uttarkhand Open
University, Haldwani. This course is divided into 14 units of study. This
Self Learning Material is a mixture of Four Block.

The main objective of this course is to introduce the concepts of
Functional Analysis simultaneously this course will provide the learners
an opportunity to learn the basic Concepts and advanced concepts of
Functional Analysis. The first block is Normed and Banach spaces it
contains Basics: Basic definition and result of Metric Space, Basic
definition and result of Vector Space. Normed linear space, Further
properties of Normed space, Extended Real Number System, Holder’s
Inequality for finite sequence, Minkowski’s Inequality for finite
sequences, Holder’s Inequality for infinite sequence, Minkowski’s
Inequality for infinite sequences, Continuous at a point, Cauchy Sequence,
Completeness, Banach Space Finite dimensional Normed Spaces,
Equivalent norms, Compactness, F. Riesz’s Lemma. The second block is
Linear Functional and Linear operator contains Linear operator, bounded
and continuous linear operator, linear functional, linear functional of
finite dimensional spaces, Normed space of operators and dual space.
Third block is Inner product space and Hilbert space which is a mixture of
Inner product spaces, Hilbert spaces and its example, Orthogonality,
Orthonormal sets, Reisz Representation theorem, Legendre and Leguerre
polynomial, Parsevals’s theorem, the conjugate space of Hilbert space.
Hilbert-Adjoint Operator, Self Adjoint, normal and unitary Operator,
projection Operator and the last block is Fundamental Theorems for
Normed and Banach Spaces which present the Zorn’s lemma, Hahn-
Banach theorem and its applications, Adjoint operator, Reflexive spaces,
Category Theorem: Uniform Boundedness Theorem, Strong and Weak
Convergence, Convergence of sequence operators and functional, Open
Mapping Theorem, Closed Linear Operator. Closed Graph Theorem,
Banach Fixed Point Theorem. On successful completion of this course,
learners will be able to Appreciate how functional analysis uses and
unifies ideas from different and diverse area of mathematics, Describe and
apply fundamental theorems from the theory of normed and Banach
spaces, including the Hahn-Banach theorem, parallelogram identity and
Polarization identity and Recognize the role of Zorn's lemma.
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UNIT 1:
NORMED SPACE - |

CONTENTS:

1.1 Introduction
1.2 Objectives
1.3 Basics
1.3.1 Metric Space
1.3.2 Vector Space
Normed Space
1.4.1 Examples
1.4.2 Semi-Norm
1.4.3 Main Results
1.4.4 Important Problem
Summary
Glossary
References
Suggested readings
Terminal questions
1.10  Answers

1.1 INTRODUCTION

Before this unit we are assuming that learners are familiar with the
basics of Real Analysis, Topology, Linear Algebra and Measure Theory.

In functional analysis, a normed space is a vector space with a metric that

Department of Mathematics
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allows the computation of vector length and distance between vectors. The
present unit is devoted to the basic ideas of norm space.

Before this course we have studied about vector space and metric
space. But there is no relation between the algebraic structure and the
metric we cannot expect a useful and applicable theory that combines
algebraic and metric concepts. To guarantee such a relation between
"algebraic” and "geometric” properties of X we define on X a metric d in a
special way as follows. We first introduce an auxiliary concept, the norm
(definition below), which uses the algebraic operations of vector space. A
large number of metric spaces in analysis can be regarded as normed
spaces, so that a normed space is probably the most important kind of
space in functional analysis, at least from the viewpoint of present-day

applications.

1.2 OBJECTIVES

After studying this unit, learner will be able to

i.  Described the concept of normed space.
ii.  Evaluate the normed.

iii.  Problems and examples related to normed space.

1.3 BASICS

We first defined the basic definitions:

1.3.1 METRIC SPACE

Let X + @ be a set. A metric on the set X is essentially just a rule for

calculating the distance between any two elements of X.

Department of Mathematics
Uttarakhand Open University



https://en.wikipedia.org/wiki/Norm_(mathematics)

Metric space:
Let X = @ be a set then the metric on the set X is defined as a function

d: X x X — [0, ) such that the following conditions are satisfied

d(x,y) = 0Vx,y € X (self distance)
d(x,y) = Oifand only if x = yvx,y € X (Positivity)
d(x,y) = d(y,x);Vx,y € X (Symmetry property)

d(x,y) < d(x,z) + d(z,y);Vx,y,z € X (Triangle inequality)

[0, )

Fig.1.3.1. Metric Space

A metric space is an ordered pair (X, d) where X is a nonempty set and d

is a metric on X.

Pseudo-metric:

Let X = @ be a set then thepseudo-metric on the set X is defined as a
function d: X X X — [0, o) such that it satisfies axioms (M1), (M3)and
(M4) of metric space and the axiom

(M*2)d(x,x) =0 for all x.

Every Metric is pseudo-metric but pseudo-metric need not to be metric.

NOTE:
Metric d is also known as distance function.

For a Pseudo-metric x = y = d(x,y) = 0 but converse may not be true.

Department of Mathematics
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Examples:

e Let X be any set and define the functiond : X X X — Rby

d(x,y) ={

Then d is a metric on X and called the discrete metric.

1, x+y
0,x=y

e The set €[0,1] consisting of all real valued continuous functions
defined on [0,1] with function d defined by d(f,g)=

follf(x) — g(x)| dx forall f,g € C[0,1]. 1 a metric space.

Diameter:
Let (X,d) be a metric space and let Y be a non empty subset of X. Then
the diameter of Y, denoted by §(Y) be defined as
§(Y) = sup{d(x,y):x,y € Y}
i.e. diameter is the supremum of the set of all distance between point of Y.

Distance between point and set:
Let Y be a non empty subset of X and p € X then distance between pointp
and Y is defined as
d(p,Y) =inf{d(p,x):xinY}.
Ifp € Ythend(p,Y) =0

Distance between two set:
Let Y;andY, be a non empty subset of X then distance between Y;andY, is
defined as

d(Y,Y,) =inf{d(x,y):xinY; andyinVY,}

NOTE:
d(Y,,Y,) = 0andd(Y,,Y,) = 0if andonly if Y, NY, # @
d(Y,®) = cowhere@ is an empty set.
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Bounded Metric spaces:
Let (X,d) be a metric space. Then X is said to be bounded if there exists
K € R* suchthat d(x,y) < K forall x,y € X.

Unbounded Metric spaces:
Let (X,d) be a metric space. Then X is said to be unbounded if it is not
bounded.

Open Sphere:

Let (X,d) be a metric space and let x, € X. If r be any real number then
the set x € X: d(x, x,) < r is said to be open sphere or open ball.

Here x, is said to be centre of the open sphere and r is called the radius of

the open sphere.

Open sphere of centrex, and radius r is denoted by S(x,, ).

Therefore mathematically S(x,,7) = {x € X:d(x,x,) <}

Open sphere

Closed Sphere:

Let (X, d) be a metric space and let x, € X.Ifr be any real number then the
set S[xo,7) = {x € X:d(x,x,) < r} is said to be closed sphere or closed
ball.

Closed Sphere

Department of Mathematics
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NOTE:
e Sphere or open sphere or open ball or open cell or open disc are

Same.

In the usual metric space R™, the open sphere S(r,x,) is circular

disc |x — xo| <randx, e R*andr > 0

Neighbourhood of a point in metric space:
Let (X,d) be a metric space and x, € X. A subset Y of X is said to be

neighbourhood of a point x,there exists r > 0 such that S(x,,7) € Y.

Open sets in metric space:

Let (X,d) be a metric space. A subset Y of X is said to be open or
d —open in Xif Y is neighbourhood of each of it points.

OR

Let (X,d) be a metric space. A subset Y of X is said to be open or
d —open in Xiff for each x € Y, there exists r > 0 such that S(x,r) € Y.

/ PRPPN \

Open Set

Equivalent Metrics:
Let d and d’ are two metrics on the same set X. Then d and d’ are
equivalent iff every d —open set isd’ —open and every d’' —open is

d —open set .
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Interior point:
Let (X,d) be a metric space and let Y be a subset of X. A point x € X is
called an interior point of Y if there exists an open ball with centre x

contained in Y, i.e.,

x € S(x,r) €Y forsomer > 0

Interior of Set:
The set of all interior points of Y is called the interior of Y and is denoted
by Int (Y)or°.

Int (Y) = {x € Y suchthat € S(x,r) €Y for somer > 0}

Exterior points:
Let (X,d) be a metric space and let Y be a subset of X. A point x € X is
called a exterior point of Y if it is an interior point of the complement of Y

ie. YC.
Exterior of Set:
The set of all exterior points of Y is called the exterior of Y and is denoted

by ext (Y) or Y¢. i.e. ext(A) = int(A°)

Frontier points:

Let (X,d) be a metric space and let Y be a subset of X. A point x € X is

called a frontier point of Y if it is neither interior or nor exterior point of Y.

Frontier of Set:
The set of all frontier points of Y is called the frontier of Y and is denoted
by Fr (Y).
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Boundary point:
Let (X,d) be a metric space and let Y be a subset of X. A point x € X is

called a boundary point of Y if it is frontier point of Y and belong to Y.

Boundary of Set:
The set of all boundary points of Y is called the boundary of Y and is
denoted by b (Y).

Dense set:
Let (X,d) be a metric space and let Y; and Y, be subsets of X. ThenY; is

said to be dense in Y; if Y, € V.

Everywhere Dense:
Let (X, d) be a metric space and let Y; be a subset of X. ThenY; is said to

be dense in Xor everywhere dense if Y; = X.

Separable:
Let (X, d) be a metric space. X is said to be separable if it has a countable

subset which is dense in X.

Nowhere Dense:
Let (X, d) be a metric space and let Y; be a subset of X. ThenY; is said to

be nowhere dense in Xif interior of the closure of Y is empty.

Limit Point:
Let (X,d) be a metric space and let Y be a subset of X. A point x € X is
called a limit point (an accumulation point) if every neighbourhood of x

contains a point of Y distinct from x.
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Derived Set:
The set of all limit points of Y is called the derived set of Y and denoted by
D(Y).

Adherent Point:
Let (X, d) be a metric space and let Y be a subset of X. A point x € X is
called an adherent point of Y if every neighbourhood of x contains a point

of Y (not necessarily distinct from x).

Adherence of Set:
The set of all adherent points of Y is called the adherence of Y. It is
denoted by Adh(Y).

Isolated points:
Let (X,d) be a metric space and let Y be a subset of X.A point x € X is
called a islolated point of Y if x € X but not limit point of Y.

Closed Sets:
Let (X,d) be a metric space. A subset Y of X is said to be closed or d-
closed if the compliment of Y is open.
OR
A subset Y of the metric space (X,d)is said to be closed if it

contains each of its limit points, i.e.,D(Y) € Y.

Isometric mapping, isometric spaces:

Let X = (X,d) and X = (X, d) be metric spaces. Then:

I. A mapping T of X into X is said to be isometric or an isometry

if T preserves distances, that is, if for all x,y € X,
d(Tx,Ty) = d(x,y),

where Tx and Ty are images of x and y, respectively.
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The space X is said to be isometric with the space X if there

exists a bijective isometry of X onto X.The spaces X and X are

then called isometric spaces.

1.3.2 VECTOR SPACE

Definition- Let IV be a nonempty set with two operations
(i) Vector addition: Ifany u,v € Vthenu+v €V
(if) Scalar Multiplication: If any u €V and k € F then
ku eV
Then V is called a vector space (over the field F) if the following axioms
hold for any vectors if the following conditions hold

[S1] (u+v)+w=u+ (v+ w)foranyvectorsu,v,w €V
[S2] there exists a vector denoted by ‘0’ in V, such that, forany u €V,
u+0=0+u=u
Here ‘0’ is called zero vector
for each u € V there exists a vector denoted by ‘ — u’ in V such that
u+(—w)=0=(—uw)+u

Here ‘ — u’ is called additive inverse of vector ‘v’
[Sq] u+v=v+u foranyvectorsu,v eV
[P k(u+v) =ku+ kv, forany u €V and for any scalar k € F

[P2] (ky + ky)u = kqu + kyu, forany u € V and for any scalar k4, k, €
F

[Pa] (kiky)u = kq(k,u), forany u € V and for any scalar k,,k, € F

[P4] 1.u=u, forany u €V and for unit scalar 1 € F

Department of Mathematics
Uttarakhand Open University




The elements of the fiels F are called scalars and the elements of the
vector space V are called vectors.

NOTE:

(i) The conditions [S1]—[S4] concerned with additive structure of V' and
can be summarized by saying that V is a commutative group under
addition.

(i) The vector space V over the field F is denoted by V (F).

1.4 NORMED SPACE

In this section we are defining definition of normed space. We first
introduce subsidiary concept, the norm, which uses the algebraic operations
of vector space. Then we use the norm to obtain a metric d that is of the
desired kind. This idea gives to the concept of a normed space.

Let X be a vector space over scalar field K. A norm on a (real or

complex) vector space X is a real-valued function on X ([|x||: X —» K)

whose value at an x € X is denoted by

[|x]|| (read “norm of x"),
and which has the properties:
(N1) x|l =0vxeX
(N2) lx]l =0 x=0,vx€eX
(N3) [lax|| = |a|llx||V « € K, VxeX
(N4) llx + yll < llxll + llyll vx, yeX
(Triangle inequality);

here x and y are arbitrary vectors in X and « is any scalar.

Department of Mathematics
Uttarakhand Open University




Whenever we are confronted with the problem of verifying
whether given function defines a norm or not, the first three properties will
be more or less obvious, and most of the effort, if any, would go in
verifying this last statement, namely the triangle inequality. So, once a
vector space with a norm would be called a normed linear space. A norm
on X defines a metric d on X which is given by

d,y) = |lx =yl t,y €X) e vee e . (1)
and is called the metric induced by the norm.

The normed space just defined is denoted by (X, ||.||) or simply by X.

e The norm is continuous, that is, x — ||x|| is a continuous mapping
of (X, |.]D) into R.

Fig 1.4.1
The defining properties N1 to N4 of a norm are suggested and
motivated by the length |x|, of a vectorx in elementary vector
algebra, so that in this case we can write ||x|| = |x]|.
The, N1 and N2 state that all vectors have positive lengths except the
zero vector which has length zero.
N3 means that when a vector is multiplied by a scalar, its length is
multiplied by the absolute value of the scalar.
N4 is explained in above figure. It means that the length of one side of

a triangle cannot exceed the sum of the lengths of the two other sides.
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e It is not difficult to conclude from N1 to N4 that (1) does define a
metric.

e Hence normed spaces and Banach spaces are metric spaces.

1.4.1 EXAMPLES AND RESULTS

Example 1: X = R (set of reals). Define ||x|| = |x|, VxeR.
Here|| |:R- R,

VxE€EX,

x| =0.......(0I)

VxeX,VaeR;

lax|| = lax| = |alllx|| = |allx]| ... ... ..... ....(ii

Vx,vyE€ELX,

llx + yll = lxl + |yl = lixll + llyll

Again,

Ixll=0 < [x| =0

o x=0.

Thus (R, ||x|]) is a normed linear space.

Example 2: X = C (set of complex numbers).. x = a + ib € C,

Define ||x|| = Va2 + b% = |a + ib| = |x|.
i. lxll = [[Cey +ix )|l = /212 + x,2 = 0.

Therefore, Vx € C, ||x]|| = 0.

Vxe CandVa € C,

llax|l = [la(xy +ix )l = [l[(axy + iax,)l|

= J(ax))? + (ax,)?
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= lalyx:® + x% = |alllx|l.
Letz,,z, € C.
lzy + 2|17 = |z; + 2,1* = (21 + 2,)(2z; + 2;)
(Since ||z]|? = z.2)
zy + 2|17 = |z + 2,* = (21 + 2,)(Z1 + Z)
[as (z1 + 22) = 71 + 2]
lzy + 2,1 = (2, + 2,)(Z; + 73)
=212y + 212y + 221 + 232,
zy + 2|17 = |z:1? + |z,|* + (2125 + 2,77)
=|z1|% + |2,|*> + 2Re(2,23) (as z; + Z; = 2Rez)
= |z1* + |2,|* + 2|z ||Z; |
= |z1|? + 2|z, 1|z | + 12,]* as |z| = |2
(lz1| + 12,1)?
on, llzy + z; |l < |z1] + |2,
= llzy |l + Nl |l

lzy + zoll < Mzl + llz2l .

iv. ForallzeC |z = llx+iyll| = yx?+y?2 =0 x =
0,y =0 z=0+4i0 = 0 (Triangle inequality holds).

Thus (C, ||lx]|) is a normed linear space.

Example 3: Let C™ be the set of all n —tuples of complex numbers.

For x= (xq,X5, ..., )EC™;  define  ||x|| = /X7 1x;1%2,  then,

(C™ [l 1) isanormed linear space.

Solution:
i. Forall x = (xq, x5, .......x, )EC™,

|x;]=0forall1 <i<n,
or, [x;|* = 0, or, [Ix|l = /X, |x;]2 =0 or, [Ix]| = 0.
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il. For all xeC", for all aeC

lax|l = yXizi(ax;)? = |alllx]l

Therefore, ||ax|| = |a|||x||for all xeC™, Va € C.

Forall x = (X1, X, e oo X ),V = (V1, V2, ver e Y ) €C
x+y= (;+y,% + Vg oo Xy + Y ), €C;

Then,

llx + ylI> = Xiqlx; + yil? = Xl e + il | + il
< Xiqlxg + yil (gl + [y DISince, [x; + y;l < lx| + [y;l]
= Xl + vl [ [+ 20 | + vl 1yl
< Il + Il + llxx + Iy I lx; + yil < llxl + [y ]

= [l + ¥l llxll + Nyl
or, llx + ylI* < llx + ylICllxll + NIyl

or, [[x + yll < |lx|l + [lyll. For [[x + y|| # O.

x|l = X" 0x;]? =0 © x; =0,forall1 <i<n

S x = (xq,xg 0.y ) = (0,00 ... .....0,

Sx=0

1.4.2 PSEUDO NORM

Let X be a vector space over scalar field K (R or C).
A function || || on X into R is said to be a semi — norm or Pseudo —

norm if

(N1) x| =0, VvxeX

(N3) llax|| = |a|llx||, V a € K, VxeX

(N4) llx + Il < llxl + llyll, v, yex
(Triangle inequality);
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**|t means that the in a semi — norm or Pseudo — norm by second
property of norm may fail it implies norm may be zero for vectors other
than the origin. C

llx|l = x| on R2.Vx = (x1,x,,) € R?

If e,, e, is a standard basis on R?, then define ||x|| = |c; + ¢, |

where x € R? has the unique linear combination representation

x = c,;e; + c,e, Where ¢; and ¢, are constant.

The examples are semi - norm or Pseudo — norm. We can show easily.

1.4.3 MAIN RESULTS

1. Proof that every norm is a semi-norm but converse is not necessarily.

Solution: Let (X, || ||) be a normed linear space.

Then,

(N1) x|l > 0vx € X

(N2) x| =0 x=0,Vx€eX

(N3) lax|| = |a|llx||V a € K, VxeX

(N4) llx + yll < llxll + llyll vx, yeX
(Triangle inequality);

As we know that by condition (N1),(N3) and (N4) the function

[lx]l: X = R is a semi — norm.

Consider(R3, || [I) Vx = (xq,%2,%3) € R3, ||x]| = |x1] + |x].

(N1). Vx € R3, x| =0,|x,] =0, |x;| + |x,] =0,s0||lx]|| = 0.
(N3) VaceR,
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llaxll = lla(xy, x2, x3) = llaxy, ax,, axsl|
= |ax;| + |ax,|
= lal(lx.] + [x2]) = lal(lx | + lx,1)
= |a| ||x||Va € R, Vx € R3.

Let x = (x1,%2,%3), ¥ = (V1,Y2,Y3) € R3

x+y= (X1 +y1,%X +y2,x3+Y3)
llx + Il = lxg + y1l + [x2 + y2| < loeq| + [ya] + |x2] + [yl
= (Ixs] + [x2) + Uyal + ly2D) = llx|l + Iyl
or,

llx + yll < llxll + llyll vx, ye € R3.
By, (N1),(N3) and (N4) the function || || on R3 into R is semi-norm.

Now take z = (0,0,1) # 0,z € R3.
But ||z]| = |0] + |0] = 0.
Therefore, z # 0, ||z|] = 0.

Thus || |:R® - R is a not a norm. So, every semi-norm is not a norm.

2. Every normed linear space is a metric space. Converse is not necessary

true.

Solution: Let (X, || [|) be a normed linear space. Let d: X X X — R be a
function defined by d(x,y) = |[x — yl|lvx,y € X.
i. Vx,y €EX,x—y€eX.As|lx—yl|l =0,
so,d(x,y) =|lx—yl[l=20,vx,y €X
dx,y) =0 |lx—yl|l=0=x—-y=0=x=y.
dx,y) = llx =yl = 1D =)l
= |=1lly = x[I=1. lly — x|l = d(y, x).

dix,y) =llx =yl = I(x —2) + =Yl
< llx =zl +llz - yll
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=d(x,z) +d(z,y),Vx,y €X.

Therefore, (X, d) isa metric space.

Conversely, let x = (x, )=y, ¥ = (V)= € CN, where CV is the set of all

sequence of complex numbers.

Define d(x,y) = S M]

i- Lot Li+x-yl
i. VX = (xn)‘;.i)zll y = (y‘n)‘l?:l’
lx; — ;| = OVi

or, = [—'x"_yil > 0.
2 L1+|x;—y;l

Therefore, Y7 1% ['x‘—y‘] > 0. S0, d(x,y) = 0V x,y € CV.

1+|x;—;l

d(x,y) =0

z Clxi =yl
21 1+|xl yll

=3 ] =0

Sx-y=0

= x; =y Vi
Therefore, x =y

dx,y)=0= x=y

d(x,y) = L M] —yn 1 lyi—xil ]:

l 12" 1+|x;—yil 1_12" 1+]|x;—yil

d(y,x)Vx,y€CV.

Let z = (z,)5-, € CV then,

_Zi) + (Zl :VL)l
1+ |x; —

n 1 i
d(x')’) = ZE ll(x
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n n
<zl |x; — z] _I_zi |z; — v
iy 12i 1+ |x; —yil] < 12i 1+ |z, =yl
= =

l

+b b
la+b| < la| |b|

Since < .
1+|a+b| 1+|a+b| 1+|a+b|

d(x,y) <d(x,z) +d(z,y),Vx,y,z€CN,

Therefore (CV, d) is a metric space.

n 1 [laxi—ayl'l]= n 1 [|a||xi_yi|]

Now, d(ax,ay) = Xl = 1
 d(ax, ay) =12t L1+]x;-yl =1t L eyl

— n 1 [_xi—yil
= lal XL, & [1+|xi-yi|] # lald(x, y), where, a # +1.

Where d(x,y) = |ax — ay| = |alllx — y]|.
Therefore, (CV, d) is a metric space but not normed linear space.

So every metric space is not normed linear space.

Remark:

Whenever we are addressed with the problem of verifying whether given
function defines a norm or not, the first three properties will be more or
less obvious, and most of the effort, if any, would go in verifying the
triangle inequality.

So, once a vector space with a norm would be called a normed linear
space. So, given a normed linear space we can define a metric d(x,y) =
lx —yll > 0,vx,y € X It is clear that d(x,y) is non-negative and
d(x,y) = 0 if and only if x = y. Now, by the triangle inequality, we get
d(x,y) < d(x,z) + d(z,y);Vx,y,z € X Therefore, the distance function
d satisfies the usual triangle inequality for a metric; and that is why we
have the same name for these two inequalities.

Therefore, automatically a normed linear space gets a topology defined by
this norm which is a nice metric topology; and that is called the norm

topology of this vector space.
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SOME NORMS

Norm

l1xIl

1/2
O N PACE A A

. (Zf’=1|x]-|p)1/pwhere 1<p<o

lOO

sup]-|x]-| ifp=o0

Cla, b] max,ej|x(t)l

Set of all continuous real

j ()] dt
0

—valued functions on
[0,1]

Note:

Pcltifl<p<p <oo.

Note:
¢ = {x € I°: (x(j)) converges in K}.
co = {x € c: (x(j)) converges to 0 in K}.

Cop = {x € [P all but finetely manyx/sare 0}, 1<p< oo

Note:

For 1 <p < oo, by LP(E), we mean a collection of equivalence classes
[f] for which |f|? is integrable. Thus

f eLP(E) & fElflp < oo0.

Sometimes we denote the collection of such functions by the symbol LP.

Department of Mathematics
Uttarakhand Open University




Note:

A measurable function f on measurable set E is said to be an essentially
bounded function if there exists My > 0 such that

|f (x)| < M for all most all x € E.

We define L*(E) to be the collection equivalence classes [f] for which
f is essentially bounded functions on E.

Therefore f € L*(E) < there exists My > 0 such that |[f(x)| < Myfor
almost all x € E.

Note:

For E a measurable set, 1< p <o, and a function f in LP (E'), we denote

Ifll, = (fEIfI”)l/P, and for p = oo, |Ifllo, = inf {M;>0:

|f(x)| < M,for almost all x € E}.

Note:

For 1< p < oo, LP(E) is a vector space over R.

1.4.4 IMPORTANT EXAMPLE

Problem1: The set S(0;1) = {x € X:||x|| = 1} is known as unit sphere
in norm linear space.

Show that in a vector space X, with different norms S(0;1) can be
different.

Solution: Consider X = R?, with four different norms

AL 2 1Al T o

Under these four norms R?, S(0;1) are different. First consider

(R%11-11)-
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Then for (x,y) € S(0; 1) € (R?%,]|.]|1) gives
||(x,y)||1 =1=xl+lyl=1. . (1)
which represents four line segments simultaneously as follows:
() When x > 0 and y > 0 (i.e. in first quadrant of R? plane)
equation (1) becomes

x+y=1

Fig: 1.4.4.1
(ii)  Whenx < 0andy > 0 (i.e. in second quadrant of R? plane)
equation (1) becomes

—x+y=1

/F\f

(-f, °)

Fig: 1.4.4.2

(iii)  Whenx < 0andy < 0 (i.e. in third quadrant of R? plane)
equation (1) becomes

-x—y=1
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,(a,-i)
Fig: 1.4.4.3

(iv)  Whenx > 0andy < 0 (i.e. in first quadrant of R? plane)
equation (1) becomes

x—y=1.

(o)

Fig: 1.4.4.4

Combining all of the above four cases the unit sphere S(0; 1) in

(R?,1|.1|,) is represented in the following figure:
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Now take(R?, ||.||2). Then for (x,y) € S(0; 1) < (R?,]|.]|,) gives

eI, =1 =2V +y2 =T (2)

which is a equation of circle with center (0,0) and radius 1. Hence the unit

sphere S(0; 1) in (R, |].]|,) is represented in the following figure:

\1

\
b, g
/?\(“q

Fig: 1.4.4.6

Now consider(R?,|].||»). Then for (x,vy) € S(0;1) < (R?,]|.||..) gives
||(x, y)||oo =1 = max{|x|,|lyl}=1. e ... (3)
which represents four line segments simultaneously. By the definition of

maximum

lx],if [x| = |yl
lyl, Iyl < |x|.

max{|x|, |y|} = {

And the condition [x| > |y| gives ||y| < 1. This implies that [tanf| < 1,
where 6 is defined as in the following figure. Which further gives — - S

0<ZandZ+Z<o<n+l
4 2 4 4
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Fig: 1.4.4.7

Hence from equation (3) and by the definition ofmax{|x|, |y|} we get

max{|x|, |y|} = |x| = 1, when%f <0< %and§+§s 0<m +§. These

conditions gives two line segments, which are represented in following
figure:

v

ceo,l)

N 7
(-4°) T e i‘fg 3
o \J‘u‘

e

7

Fig: 1.4.4.8

Similarlymax{|x|, |y|} = |y| = 1, when |y| < |x| is represented in
following figure:
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Fig: 1.4.4.9

Combining above two cases, (x,y) € R? such that max{|x|,|y|} = 1 is

represented by following figure:

N

(o))
—

74

o
\77,5.
Ll e

(o, -L) .

Fig: 1.4.4.10

Now consider R? with ||.||,Then for (x,y) € S(0;1) € (R?,|].||4) gives
||(x,)’)||4 =1

1
= (Ix|* +lyIM3 =1

= |x|*+[yl* =1
= |yl* =1—|x/*

=>y=471—|x|%

The above equation is represented in R? as in the following figure:
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(49

N

i

Fig: 1.4.4.11

Problem2: In a norm linear space (X, ||.||), show that closed unit ball

B(0;1) = {x € X:||x|| < 1} is a convex st.

Solution: Letx,y € B(0;1)and 0 < a < 1. Then
|lax + (1 = @)yl| < [lax]| + [1(1 = )yl
= |al. ||x|| + (1 - a)l. ||y|| T ¢
Since x,y € B(0; 1)and 0 < a < 1, therefore ||x|| = 1 = ||y|| and |a| =
a, |1 —a| = (1 - a) Then inequality (4) becomes
||ax+(1—a)y|| <lal.1+|1-a)|.1=a+1—a=1.
This implies that ax + (1 — a)y € B(0; 1). And hence B(0; 1)is a

convex set in (X, |].|]).

Problem 3:Using the above problem, show that: in R?, the mapping

d(x,y) = (Wx + ﬁ)z, does not define a norm.

Solution: Assume that the mapping ¢ (x,y) = (Vx + ﬁ)z defines a
norm on R2. Then by above problem B(0; 1)is a convex set. Consider
(1,0),(0,1) € B(0; 1) and @« = 1/2. Then
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a(10)+(1—a)(o1)——(1o)+(1—1)(01)—(
=(11)
And ¢ (3,3) = (\f \D ( \E>2_4x—_2 Hence (5,3) =

= (1 0) + (1 — —) (0,1) ¢ B(0;1). Thus a convex combination of

(1,0)&(0,1) does not belongs to B(0; 1). Which contradicts the fact that

B(0; 1)is a convex set. Hence our assumption is wrong, i.e. ¢(x,y) =

(Vx + ,/y)?, does not define a norm on R2.

Bounded Set: A subset M in normed space X is bounded if and only if

there is a positive number ¢ such that ||x|| < c for every x € M.

1.5 SUMMARY

This unit we have start from some basic definitions (metric space,
vector space). After that we have defined the normed space (Let X be a
vector space over scalar field K. A norm on a (real or complex) vector
space X is a real-valued function on X (|[x||: X - K) whose value at an
x € X is denoted by||x|| (read “norm of x"),and which has the four
properties) then Examples defined, after that Semi-Norm(Let X be a
vector space over scalar field K (R or C). A function || || on X into R is
said to be a semi — norm or Pseudo — norm if [|x|| (read “norm of x"),and

which has the three properties) and Main Results defined.
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1.6 GLOSSARY

Set: Any well-defined collection of objects or numbers are

referred to as a set.

Interval: An open interval does not contain its endpoints, and is
indicated with  parentheses. (a,b) =]a,b[= {xeR:a < x <
b}. Aclosed interval is an interval which contain all its limit
points, and is expressed with square brackets. [a,b] = [a,b] =
{xeR:a < x < b}. A half-open interval includes only one of its
endpoints, and is expressed by mixing the notations for open and
closed intervals.(a, b] =]a, b] = {xeR:a < x < b}.[a,b) =
[a,b[= {xeR:a < x < b}.

Ordered Pairs: An ordered pair (a, b) is a set of two elements

for which the order of the elements is of significance. Thus
(a,b) # (b,a)unless a = b. In this respect (a, b) differs from the set
{a, b}.Again (a,b)=(c,d)<a=candb=d.If X and Y are two
sets, then the set of all ordered pairs (X, y), such that x € X and

y €Y is called Cartesian product of X and Y.

Relation: A subset R of X xY is called relation of X on Y. It
gives a correspondence between the elements of X and Y. If (X, y)
be an element of R, then y is called image of x. A relation in which

each element of X has a single image is called a function.
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Function: Let X and Y are two sets and suppose that to each
element x of X corresponds, by some rule, a single element y of Y.
Then the set of all ordered pairs (X, y) is called function.

Variable: A symbol such as x or y, used to represent an arbitrary

element of a set is called a variable.

Metric space: Let X = @ be a set then the metric on the set X is
defined as a function d:X X X — [0,0) such that some

conditions are satisfied.

Vector space: - Let IV be a nonempty set with two operations

0] Vector addition: Ifany w,v € Vthenu+v €V

(i)  Scalar Multiplication: If any u €V and k € F then
ku eV
Then V is called a vector space (over the field F) if the
following axioms hold for any vectors if the some

conditions hold.
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CHECK YOUR PROGRESS
Fill in the Blanks:

1. normon a (real or complex) vector space X is a
2. Thenormis...... that is, x — |[x|| is a continuous mapping of (X, ||.|])

into R.

True/False
3. Proof that every semi -norm is a norm. True/False.
4. Every normed linear space is a metric space. Converse is not necessary
true. True/False.
. Which of the following statements are true?
I I, cl,
ii. l, c ¢
iii. I, cly
. Which of the following is not a linear space over C?
The set of all convergent sequences in C.
The set of all bounded sequences in C.
The set of all sequences in C that converges to 0.

The set of all sequences in C that converges to a real number.

Which of the following denotes the space of all bounded

scalar sequences?

Department of Mathematics
Uttarakhand Open University




If || - [|; and || - || are two norms on a linear space E, then
| - [|1 is stronger than || - |5 if and only if :
(a) 3 C > 0 such that ||z][s < C|x]{, for all x € E.
(b) 3 C > 0 such that ||z||; < C|z||s, for all 2 € .
(c)
(d)

30 < C < 1 such that [|z]s < C||x||y, for all z € E.

30 < C < 1 such that |||y < O], for all » € E.

Let (E. || -]|) be a normed space and let d be the metric
induced by the norm on E. If .y € E and if d(z,y) = r,

then which of the following is false?

d(x + +z)=r, forany z € E.

2

d

ax,ay) = |a|r, for any scalar a.

(x +
d(r,ry) =

(

(

dire +y,ry+ ) = (r — 1)r.

Which of the following linear space is infinite dimensional?

a) R over Q
b) Q over Q
(c¢) C over C
(d) C over R

(
(
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1.9 TERMINAL QUESTIONS

Prove that with d(x,y) = |x — y|, the absolute value of the difference

x -y, foreachx,y € R, (R,d) is a metric space.

Let V = {(Xl,xz):xl,xz € R} For (xl,xZ), (yl,yz) € Sand c € R,
define  (xy,x2) + (v, ¥2) = (g + vy, x, —y,)and  c(xq,x,) =
(cxq,cx,). Prove that S is not a vector space.

Show that (R™, || [) is a normed linear space.

Show that the set of all real numbers, with the usual addition and
multiplication, constitutes a one-dimensional real vector space, and the
set of all complex numbers constitutes a one-dimensional complex

vector space.

Show that if d is a metric on a vector space X # 0 which is obtained
from a norm, and d is defined by d(x,x) = 0,d(x,y) = d(x,y) +

1,x # y show that d cannot be obtained from a norm.

Show that the norm ||x|| of x is the distance from x to 0.
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1.10 ANSWERS

CHECK YOUR PROGRESS

Real-valued function.
Continuous.

False

True

iand ii

d

1.
2.
3.
4.
5.
6.
7.
8.
9.

b
a
d

|
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2.1 INTRODUCTION

In previous unit we have de Described the concept of normed
space, evaluate the normed and describe the problems and examples
related to normed space. In present unit first we are defining extended real
number system. In mathematics, the extended real number system is
obtained from the real number system R by adding
two infinity elements: +oo, and —oo .

The extended real number system is denoted R" = RU{+o, —}.
After this HOlder's inequality defined in a simple manner.
In Mathematics, Holder's inequality, named after Otto Holder, is a
fundamental inequality between integrals and an indispensable tool for
the study of LP spaces. A complete study of Holder’s inequality is
explaining here. After this Minkowski inequality explained here
Minkowski inequality establishes that the LP spaces are normed vector

spaces.

2.2 OBJECTIVES

After studying this unit, learner will be able to

Analyze the concept of extended real number system
Describe the Holder’s Inequality for finite sequence
Defined the concept of Minkowski’s Inequality for
finite sequences

Discuss the Holder’s Inequality for infinite sequence

Explained the detailed concept regarding Continuity in

Normed Linear Space
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2.3 EXTENDED REAL NUMBER SYSTEM

Let R = set of real numbers = {all rationals, all irrationals}
R* = RU{+40c0, —c0}

Then R* is called extended real number system.

Definition:
Let p be an extended real number such that p > 1.

An extended real number q is called conjugate index of p if,
I l+1=1,when1<p<oo
14 q

ii. q=o whenp =1

iii. q=1whenp =

Example:

I. Letp=4,then1+1=1=:>l
14 q q

Letp=3,then1+1=1:>l
14 q q

Letp=3,then1+1=1:>l
14 q q

1<p<oo,%+$=1,then1<q<oo.

By symmetry of definition, if g is the conjugate index of p then
p is also conjugate index of g. Thus, p and g are conjugated

indices of each other.
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Lemmal [Young’s inequality]:

Let p be a +ve real number such that 1 <p < o, and let g be the
conjugate index of p, (1 < q < o).

Let a and b be two positive real numbers, then,

a? b1

Proof: Define, f(t) =t* —at+a —1,Vt = 0.

Therefore, f'(t) = at* ! —a = a[ L _ 1]

-
(Since 1 — a > 0vt = 0).
So, f'(t) = 0vte[0,1]
and f'(t) < 0 Vte(1, ).
So by Lagrange Mean Value Theorem, f(t) is monotonic increasing in
0 <t <1 and monotonic decreasing in [1, o).
Therefore, f(t) < f(1) Vte[0, ).
For all te[0, ), f(1) = 0.
t*—at+a—-1<0
Given result is trivially satisfied if a = 0, or b = 0.

Now, leta #0,b # 0anda ==,t = a/b

1
p’

By (i) (a/b)% - % (a/b) + % -1<0

or, (a/b)% -1 ~(a/b)< 1~ l

1

or, (a/b)v —%(a/b) 2

1 1
as-=1--=
q p
L 1

1
or, (a)P(b) P —a.> < b%,[multiplying by b].

a

o, (@)?(b)1 < °
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Replacing a by a? and b by b? in the above inequality, we have,

aP b1
ab < —+ —.
p q

24 HOLDER’S INEQUALITY FOR FINITE
SEQUENCES

Letx = (x)%,,y = (¥, € C".

Define,l|x|l, = [ n|x; P17, for p > 1.

1 1
Then, 37, lx;y;| < [0, |xiP] /P[22, |y:19] /a.

Let p > 1 and define g by%+% =1 p and q are called conjugate

exponents.

alxyil < lxllplyllg-
Proof: Let x = (xq, %5, ... %), ¥ = (Y1, V) oo V).
Case I: If x = 0ory = 0, then the inequality is trivially satisfied.

Casell: Ifx #0ory 0.

. .4
After using equation (1), a;b; < %p + % a;, b; > 0.

Wil =2y > 19> 1

We take a; = . b;
L [Ixllp L lyllq

[Since%+$=1:>$:1—%=q:1_%>1].

p

Thus, the above inequality becomes,
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EARNA <1|xi|p lbﬁ'lq
lxll, llylly ~ p |Ix||§ q ||)’||Z

or no il il 1 ZEaalP 1 Syl
’ Elixlplivlg — v lxlh " a Iyl

Ol 1yl
p lxlly  q llyll

1 1
= —+—:1
14 q
n lx;| 1yl —
=1 ixlp Iyl

Zizalxil Lyl < llxllpllyllg.

Z?:llxi:)/il < ||X||p||Y||q

2.5 MINKOWSKI’S INEQUALITY FOR FINITE

SEQUENCES

Letx = (x),y =)L, €ellp =1,
o ={(x), € C: X |x;|P < oo}
Then, [[x + yll, < llxIl, + llyll, .

e [ x4 yiP1VYP < (B I P1YP + [y lyi P17, 03]
lx + yll, < llxll, + llyll,

Proof. Forp = 1, X%, |x; + yi| < 3™, (x| + (1v;])
Since [x; + y;| < [x;| + [y |vi

n n

= > il + ) Iyl
i=1 i=1

= llxlly + liylls
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llx +ylly < llxlls + [yl

Hence given result is true for p = 1.
For p > 1, ”X + y”g = ?zllxl- + yilp

=Xl + yil I + yilP7H
n

< D Ul + v I + 7l
i=1

Since |x; + y;| < Ix;| + ly;|vi

n n
= leil loe; + yi P~ + Zlyil lx; + y; P71
i=1 i=1

At first we shall show that

(lox; + y; P D™, e L]

n

n
Z(lxi +y P79 = lei + y;[PT71

=1 i=1

. 1 1
[Since - +-=1=p+q=pq=p=pq—ql
n n

(lx; + yi P71 =Z|xi+)’i|p <oo(vx,y €Ly =x+y€Ly)

1 =1

l

Applying Holder’s inequality in equation [4], we have,

n Yo n Yq
e+ y1I5 < [Zw] [lel- + il
i=1 i=1
n

1/p n
+ Z|Yi|p [Z|xi+3’i|q
i=1 i=1

P/q P/q
= llxll, llx + yIL + Iylipllx + yll,

Yq

Since,

n pq—q
[Zuxi + i) ]

1/q p-1/q p/q

= [i(lxi +yil)
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14 14
on, Ilx + yII% < llxll, Il + y1,/ + Iyl llx + 11,

14
= (llxll, + Iyl )l + yII/
p-P
e +yIl, @ < llxll, + Iy,

- 1 1
[SII’]CE;+E=1ﬁp+q=pq:q=pq—p :1=p_§]

lIx +yll, < lixll, + llyll,

temi=($ 16) [ mate)

where p>1 and 1/p+1/q = 1. This inequality was given by O. Holder

Cauchy — Schwarz Inequality:

If p=2, thengq=2
Equation (4a) gives,

for sums

Z U \/Z | & mizl\‘nmﬁ

It is too early to say much about this case p=q =2 in which p equals
its conjugate g, but we want to make at least the brief remark that this
case will play a particular role in some of our later chapters and lead to
a space (a Hilbert space) which is “‘nicer” than spaces with p# 2.
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2.5.1 SOLVED PROBLEMS

Problem 1: Let C™ is a vector space over C. Let p be a real number such
that 1 < p < oo for x = (x;)7~, € C", define
1
lxll, = [Z%qlx;P] 7P,

show that || is a norm on C™.

Il

Solution:
Q) Vx =) €C x| =0vi,1<i<n
1
Then, lIxll, = [Z%, %P1 /7 > 0.

VYa € C,

n Yo
lcxl, = [mem’]
i=1

1
=[3%, lalP|x|P] o

Y

n p

= lal [va’]
i=1

= lalllxll,.

(i) Vv x=(@)k, €Chy =), €CY
Then, llx + yll, < lIxll, + [lyll,, .[By Minkowski’s inequality]

(iv) llxl[, =01 n|xP1MP = 0.

n
=4 leilp = 0.
i=1

= x;=0vi,1<i<n
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= x=0.

Therefore,(C™, || |l,,)is a normed linear space denoted by

15, (1<p<o)

Problem 2: Let C™ is a vector space over C. for x = (x;)[=; € C", define
llxllco = max{|xyl, [x,1,,..... |21} = maxicicnlx;l,

show that || is a norm on C™.

Il
Solution:
(1) V=)L, €C" x| =20Vi,1<i<n
Then, |lx|lcs = supi<inlx;l = 0.
(i) VaelCvxel
laxllo = supi<icnlax;]
=|alsupy<i<n|x;l
= |alllxllc-
(i) Vv x=(x) €y =i, € C
llx + ylleo = supssisntlxs + 1l 12 + y2l..
lx; + yilseoon |xn + 0}
< supisisa{lxg| + |yl 2] + 1y2 1.
il + 1yils .. |xnl + 1ya1}
llx + yllow < supysicnlxil + supi<icnlyil

or, |lx +yllew < llxll, + [lyll, .[By definition of || [[c]

(iv)  Now, |[x]lec = 0 & sup;<i<nlx;l
& supicisn{lXal %2l - Ixl, o | [} =0
Sx,=0v1<i<n

---0””;0) = 0

(C |l |le) is a normed linear space, denoted L.
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Problem 3: Let C™ is a vector space over C. for x = (x;)[=; € C*, define
lIxll = X324l | = loea| + [ + -

Check that || || isanormon C" or not.

Solution. x =(1,1...1...) EC* = 1)y~ = ©

[ee]

| |l isnotanormon C".

2.6 HOLDER’S INEQUALITY FOR INFINITE
SEQUENCES

Let x = (x;)i2; ELP,(1<p <),y =(y)2; €LI q is the conjugate
index of p, then
(ann):Lc;l € ll

S0 Yo=1lxnyn| < n=1lxn|?] /o] ne1lynl?] /a,
(first prove the finite part and then continue).

Proof:- Let m be any +ve integer.

1 1
Lyl < (Xl PT /P [Z0 1y, 19] /4.
%) 1 0 1
<I n=1|xn|p] /p[ n=1|Yn|q] /a < oo
[as product of two finites is finite].
The m’th Partial sum of the series Y- |x, 5| is0odd vm > 1.

Taking m — oo in [6], we have,

fee) o) 1 0 1
Y|y ynl < Dgeilxn 7] /p[ =1y 9] /a,

Or1 Z‘;.LO=1|xnyn| = ”x”p ||Y||q
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Remark:-
Letx = (x)o-q € rand y = (v, € 1%,
then

(tnyn)ner € U and 35 Xyl < llxllp 11l

Proof:- ||x|l; = X, |x,| < .

lylleo = max |y,| < oo.

(o8] (o8] (o8]
D 1yl = ) bullyal < (maxuslyal} D lxal = 1yl 1l
n=1 n=1 n=1

[o9)
( MaXar Yl = [¥llei D [l = ||x||)
n=1

Or, Xzl ynl < llxllp 1ylloo.

2.7 MINKOWSKI’S INEQUALITY FOR INFINITE
SEQUENCES

Letx = (x)o, €Pandy = (y,)5-, €17, (1 < p < ),

Define,

1
xll, = [Ze, |, [P] 7P,

Then, [lx + yll, < llxll, + llyll, .

n n
lei +yilP < leil + |yl lx; + ;P71
i=1 i=1

n n
< Z|xi| lx; + ;P71 + Z|}’i| lx; + ;P71
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n Y
< [Z:llxiw]l/ ' [;uxi + mp-nq] q

1 1
HER i PT P [E (x + P~ /P
(By Holder’s inequality for infinite sequence)

lx; + yilP = llxll,llc + Y15/ + llyll, llx + 15
1

n

l

e X lx + vl < (llxll, + Nyl llx + y 119

Therefore taking the limit,,_,,, we have,

or, llx + ¥ < (llll, + llyll,)llx + yl5/9.

P—p/q
or, llx + yll, ™ < llxll, + llyll,

or, [lx + yll, < llxll, + [lyll,.

Alternate proof:

(first prove the finite part and then continue).

Let any integer m > 0.
(X lx; + yiPTVYP < [B0 | [P1YP + [X0, |y, |P1/P
...[8]

(by Minkowskian inequality for finite sequence)
Therefore, [X1Lylx; + yil P17 < [E24 P12 + [ 1y [P1/P.
Taking limit as n — oo, we get,

1/

14

n
[Zm +yilP| < lxlly + Il
i=1

lIx + yllp, < llxll, + 1yl

Remark:
Letx = (x)p-; €17 and y = (5= €17, (1 S p < 0),
Define,
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”x”p = maxnzl{lxn + ynl}

< maxpe1{lxa] + ly13(Since |x, + yul < lxnl + |yl
< maxnzl{lxnl} + maxnzl{l:an}

= llxllo + llylle
Then, [lx + yllo < llxlle + [I¥lle -

Example:

X = ()%, = (—

1

2= L

e P — J© 1 3 _ oo 1
n=1|xn| - Zn:l (ﬁ) — 4Ln=1,2 < oo,

3/

1 2 1

& Y—qlxn|T = Z;o=1( z ) = Zp=1, = @
n’/3 n

Therefore, x € I3 > x € [P and x & /2 = x ¢ 19.
So, x € [P it does not implies y ¢ [9. The two different x € [P,y €[4

must be assumed simultaneously when we consider Holder’s inequality.

Example:
x=(X1,X2, 0. Xj e Xp) € C™,
1
lxll, = [Seqlx, P17, 1 < p < oo.
lxlleo = Max;<ien{lx;l}.
x€lF,1<p<oo.

Then llxllo, = Limity_llxll,.

. . . 1
i.e. max{|xq ], 22|, o ooy I3, e | [} = limit oo [ X021 15 |P] /p.

Department of Mathematics
Uttarakhand Open University




Proof. Suppose n = 2, x4, x, are +ve real numbers.

1
I/l = max {xq, %2} < [x7 + 23] P = llxll,.

Let x; = x,. Inthis case,

1 1
limit, Lo llx|l, = limit, ,o[x} + x5] /b = limit, o [x5 + x7] /p

= limitp_,m[ng]l/p = li‘mitp_>00 [Zl/pxz] =2%x, =x,

= |Ix|l
limit, ,.llxll, = llx|le
Let0 <x; <xy.
In this case,

.. .. 1
limit, o llx|l, = limit, ,o[x} +x7] P

. x1\P /v X1
= limit, [(—) + 1] X, =1.x,as — <1
X2 X2

= max {xq, x,}
Therefore

limity, o llxll, = llxllo.

2.7.1 SOLVED PROBLEMS

Problem 1:

Let R[0,1] be a set of all Riemann — integrable functions over [0,1],
ie. f € R[0,1] = [|f(x)] dx < oo.

Define [IfIl = f1f (x)ldx
Verify || || isanormon R[0,1] or not.
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Proof:-
i. VfeR[01][,If@)dx=0= [Ifll > 0.
Let a be a real number,

lafli= [J1(af) )l dx = lal [, 1f (0)ldx = |allIf]
ii. Vf,g€eR[01]

If + gl = f £ GO + g(0)ldx < f FGOldx + j 9(0)l dx

< IfIF+Nlgll

1, x=0
00<x<1

f # 0vx € [0,1]
Butllfll = f]If(x)ldx =050 f #0,[fll = 0.

Therefore || || is not a norm but a semi-norm.

iv.  Define f(x) = {

Problem 2:
Let x,y € X where (X, || ||) isanormed linear space. Then,
Hlxll = llylll < llx — yllvx,y € X.

second triangle inequality.

Proof. Vx,y € X, Letx = (x —y) + y. |lx]| = [|(x — y) + ¥I|
< |lx — yl| + |lyll, by Triangle’s Inequality
Ixll =Nyl < llx —yllve,y €X oo e e (1)
As this is true for all x and y, interchanging x and y in (1), we have
Iyl = x|l < lly — xllvx,y € X

Or —(llxll = llyll) = I=DCx -l

= (=Dllx —yll = llx — yll
By from (1) and (2),

Hxll = llylll < llx — yllvx, y € X.
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Problem 3:
Let (X,[| |) and (Y,|| ||) betwo normed linear space over K (R or C).

Then X X Y is normed linear space.

The normon X X Y can be defined in one of following ways.
a. Ge, )l = llxll + llyll,vx, y € X.

1
1Ge, Wl = AlxllP + 1Iy1IP) /7,1 < p < oo,

Solutions:-
a.
vx € X,|lx]| =0
vy €Y, llyll =0
Therefore, [|(x, ¥)Il, = llx|l + llyll = 0.
Therefore, , |[(x, Y)|l; = 0,Vx,y € X X Y.
ii. Va € K,
Therefore, , lla(x,»)ll; = ll(ax, ay)ll;
= |lex|l + [leyll
= lalllx|l + |a|llyll
= lal(llxll + llyID
= lalll(x, Y)l;
1Cer, y1) + Oz, 2l = 11 (e + 22,710 + ¥2) |l
= Iy + 220l + llyy + 2l
< (Nl ll + llx21D + Clly. |l + llyz D [oy triangle inequality]
=(llex I + My 1D + Cllx 11 + lly2 1D
|Gy, y1) + Cez )l < [1Cep, y) Ml + 11z, y2) 5.
G, Wl =0 < [lx]l + [lyll=0
& |lx||=0and [ly|l=0
< x=0andy =0
< (x,y)=(0,0)=0

It means (X xY,|| |l;) isanormed linear space.
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i. vx€eX, VyevY,l|x||=0,llyll =0
llx]|P > 0,[y|lP = 0,1 < p < oo. Therefore,

1
I W, = {xllP + llylP} 7> - o.
ii. Va € K,V(x,y) E X XY,

MaCe N, = Nl(ax, ay)ll, = {llax||P + llayllP} /e

= {(alllxID? + (alllylD?}7> = lallllxll? + lIylIP] /e
= lalllCx, ¥l
(x1, 1), (x2,y2) EX XY,
1Cer, y1) + Cez, ¥2)ll, = 110G + x5, 1 + y2)lp
< {Ullxea I+ N 112+ [llya Il + Hly2 111732
Clleo I, My 1D+ Cllez L Ly 1D 11,
Gy, 1) + (2, ¥2)
< Nl I My D1, + W C2 L Ly 1D 1,

(By Minkowski’s Inequality in C?)

= || Cer, yIlp + 1 Cez, ¥l
since (Il ll, ly1 Dy = Ulxa P + Ny lIP3? =[Gy, y) Il

1Ceq, y1) + Cez, ¥l < MG, vl + 11Cez, y2) .

Therefore, [|(x, M, = 0 < {llxlI” + llylI’}*/? =0,
1<p<om.

& [lx[IP + llyllP =0

& |[lx[IP =0,llyllP=0

o lxll = 0, Ilyll=0
=x=0,y=0

& (x,y)=(0,00=0
& (x,y) =0.

It means (X x Y, || |l,) isanormed linear space.
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2.8 SUMMARY

Present unit is presentation of the topic Extended Real
Number System, Holder’s Inequality for finite sequence,
Minkowski’s Inequality for finite sequences and then Solved
Problems discussed on above mentioned topic. Then Holder’s
Inequality for infinite sequence, Minkowski’s Inequality for

infinite sequences and Solved Problems discussed here.

2.9 GLOSSARY

Set: Any well-defined collection of objects or numbers are

referred to as a set.

Interval: An open interval does not contain its endpoints, and is

indicated with  parentheses. (a,b) =]a,b[= {xeR:a < x <
b}. A closed interval is an interval which contain all its limit
points, and is expressed with square brackets. [a,b] = [a,b] =
{xeR: a < x < b}. A half-open interval includes only one of its
endpoints, and is expressed by mixing the notations for open and
closed intervals.(a, b] =]a, b] = {xeR:a < x < b}.[a,b) =

[a,b[= {xeR:a < x < b}.
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Ordered Pairs: An ordered pair (a, b) is a set of two elements
for which the order of the elements is of significance. Thus
(a,b) # (b,a)unless a = b. In this respect (a, b) differs from the set
{a, b}.Again (a,b)=(c,d)<a=candb=d.If X and Y are two
sets, then the set of all ordered pairs (X, y), such that x € X and

y e Y is called Cartesian product of X and Y.

Relation: A subset R of X xY is called relation of X on Y. It

gives a correspondence between the elements of X and Y. If (X, y)
be an element of R, then y is called image of x. A relation in which
each element of X has a single image is called a function.

Function: Let X and Y are two sets and suppose that to each
element x of X corresponds, by some rule, a single element y of Y.

Then the set of all ordered pairs (x, y) is called function.

Variable: A symbol such as x or y, used to represent an arbitrary

element of a set is called a variable.

Metric space: Let X # @ be a set then the metric on the set X is
defined as a function d:X X X — [0,00) such that some

conditions are satisfied.

Vector space: - Let IV be a nonempty set with two operations

0] Vector addition: Ifany w,v € Vthenu+v €V
(i)  Scalar Multiplication: If any u €V and k € F then
ku eV
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Then V is called a vector space (over the field F) if the
following axioms hold for any vectors if the some
conditions hold.

CHECK YOUR PROGRESS

Young’s inequality is

Holder’s Inequality For Finite Sequences is
Minkowski’s Inequality For Finite Sequences
Holder’s Inequality For Infinite Sequences

Minkowski’s Inequality For Infinite Sequences

2.10 REFERENCES

1. E. Kreyszig, (1989), Introductory Functional Analysis with
applications, John Wiley and Sons.

. Walter Rudin, (1973), Functional Analysis, McGraw-Hill Publishing
Co.

. George F. Simmons, (1963), Introduction to topology and modern
analysis, McGraw Hill Book Company Inc.
B. Chaudhary, S. Nanda, (1989), Functional Analysis with
applications, Wiley Eastern Ltd.

2.11 SUGGESTED READINGS

1. H.L. Royden: Real Analysis (4" Edition), (1993), Macmillan
Publishing Co. Inc. New York.

2. J. B. Conway, (1990). A Course in functional Analysis (4" Edition),
Springer.

3. B. V. Limaye, (2014), Functional Analysis, New age International

Private Limited.

Department of Mathematics
Uttarakhand Open University




2.12 TERMINAL QUESTIONS

Let (X[l |) and (Y,|| |) betwo normed linear space over
K(Ror ©). lI(x, ¥l = max{llxll, [lyll}vx,y € X.
Then (X XY, || |lo)is normed linear space.
Let (X1, II.1l;) and (X5, |I.1l) be n normed linear space and
X =X, XX, X..x X,, show that,

Ceys ) ey )y = Ml lly + [l2lly + ool

V (X1, X0, eevn, Xp) € X1 X Xp X0 X X, .
I Gey, x2s e X0 ) lloo = max{llxeg lly, llxc Mg, ool Il 3
Gy, x5, e 2l = (a1l + Ml Il + - IIxnIInp}l/p

arenormsonX = X; X X, X..X X,,.

Let [P be the p — summable sequence of complex numbers

(1 <p<o)forxell definel |, =][ ;‘lelxnlp]l/l’. Verify

that || ||, is anorm.
Let [ be the vector space of all complex valued odd sequence for

x €1, define || |, = suppsqlx,| Verify that || || is anorm.

2.13 ANSWERS

CHECK YOUR PROGRESS

aP b4
ab < —+—
14 q

Ll < llxlipllyllg.
lx + yll, < llxll, + llyll,
=1l Xnyal < llxlly lyllg

lx + yll, < llxll, + llyll, .
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UNIT 3:
BANACH SPACE

CONTENTS:

3.1 Introduction
3.2 Objectives

3.3 Continuous at a point

3.4  Cauchy Sequence
3.5  Completeness
3.6  Banach Space
3.7  Examples
Glossary
References
Suggested readings
Terminal questions

Answers

3.1 INTRODUCTION

Before this unit we are completely familiar with normed space. In
present unit we are explaining about Banach space. Now In continuation
Banach space is a vector space with a metric that allows the computation
of vector length and distance between vectors and is complete in the sense
that a Cauchy sequence of vectors always converges to a well-

defined limit that is within the space.
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https://en.wikipedia.org/wiki/Metric_(mathematics)
https://en.wikipedia.org/wiki/Norm_(mathematics)
https://en.wikipedia.org/wiki/Cauchy_sequence
https://en.wikipedia.org/wiki/Limit_of_a_sequence

Polish mathematician Stefan Banach, who introduced the concept
of Banach space and studied it systematically in 1920-1922. Discovery of
this concept Hans Hahn and Eduard Helly also helped to Stefan Banach.

Maurice René Fréchet was the first to use the term "Banach
space" and Banach in turn then coined the term "Fréchet space" Banach

spaces for the  function spaces studied by Hilbert, Fréchet,

and Riesz earlier in the century. Banach spaces play a main role in
functional analysis. In other areas of analysis, the spaces under study are

often Banach spaces.

Ref: https://en.wikipedia.org/
Fig 3.1
(Stefan Banach 30 March 1892 — 31 August 1945)

3.2 OBJECTIVES

After studying this unit, learner will be able to
i.  Defined the concept of Banach space
ii.  Describe the concept of completeness.
iii.  Problems, Theorems and examples related to normed space and

Banach space.
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https://en.wikipedia.org/wiki/Stefan_Banach
https://en.wikipedia.org/wiki/Hans_Hahn_(mathematician)
https://en.wikipedia.org/wiki/Eduard_Helly
https://en.wikipedia.org/wiki/Stefan_Banach
https://en.wikipedia.org/wiki/Maurice_Ren%C3%A9_Fr%C3%A9chet
https://en.wikipedia.org/wiki/Fr%C3%A9chet_space
https://en.wikipedia.org/wiki/Function_space
https://en.wikipedia.org/wiki/David_Hilbert
https://en.wikipedia.org/wiki/Maurice_Ren%C3%A9_Fr%C3%A9chet
https://en.wikipedia.org/wiki/Frigyes_Riesz
https://en.wikipedia.org/wiki/Analysis_(mathematics)
https://en.wikipedia.org/

3.3 CONTINUOUS AT A POINT

Continuity at a point:
Let (X,d) and (Y, d") be two metric spaces and let f: X — Y be a function
of X into Y. F is continuous at a point [ € X if for every € > 0, there exists
& > 0 such that

d*(f(x), f()) <& whenever 0 < d(x, 1) <é.

Continuous map:
A function f of a metric space (X, d) into another metric space (Y,d*) is

said to be continuous if it is continuous at every point of X.

Proposition:

Norm is a continuous function in a normed linear space.

Proof: Let (X,]|| |I) be a normed linear space.

Define 6: X — R be a function defined by 6(x) = ||x|| Vx € X.
Letd(x,y) = |lx — yllvx,y € X.

p(a,B) = la —BIVa,B € R

Now, x, x, € X,

p(6(x),6(x0)) = pllxll, llxoll) = [llxll = llxolll < llx = xoll,

by second triangle inequality,

p(@(x),@(xo)) = d(x, x,) <€, whenever d(x, x,) < § =€,

or, p(8(x),0(xy)) <€, whenever d(x,x,) < § =€,
Norm is continuous at x, € X. Since x, is an arbitrary member of X,

therefore norm is continuous on X.
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Proposition:

Addition is a continuous function in a normed linear space.
Proof. Let (X,|| ||) be a normed linear space.

Define 6: X X X — X be a function defined by
O(x,y)=x+yVx,y€X XX.
le.
0: (X xX,d) - (X, p).
Let d(Cx,y), (x', ) = 1(x,y) — (', y)ll4
= llx=x'll + lly = ¥'ll <€
(as llx, ylly = lxlly + vl
Let p(8(x,y), 8(xo, ¥o)) = llx — yll, soforall (xg,y,) € X X X,
p(0(x,¥),0(x0,¥0)) = p(x +¥,%0 + yo) = [[(x +y) — (xo + ¥l
= IGx = x0) + (v — yo)ll
By triangle inequality of norm
= [1(x, )1 = (o, yo) Il = d((x, ), (x0,¥0)) <E,
(whenever d((x,y), (xo,¥0)) <E)

It proves that the sum functions is continuous in a normed linear space.

Remark:

Let (X,]|| |I) be anormed linear space be a normed linear space over
K = (R or C).

KxX={(a,x):a € K,x € X}.
K x X is a vector space under following operations over K.
i (ax)+@By)=(@+px+y)
ii. Bla,x)=(Ba,px).

Defineanorm|| |, on K x X by ||(a, x)|l; = || + [|x]].
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Va € K, |a] = 0;Vx € X, ||x]|>0.
(e, 2)|l; =0,V(a,x)eK X X.
VB € K
18, )y = l|(Ba, Bx) Iy = |Bal + [|Bxl
= |Bllal + 1Al
= |BI[lal + llxII]
18 (e, ), = [B1lI(a, x) Iy

(e, x) + 7, Wl = lla+y,x+yll =la+yl+llx +yll
< lal+ Iyl +llxll + Iyl
= (lal + llxID) + Cyl + llylD = (e, )l + [, Iy
l(a, x) + (v, 2)l1 = (e, ) l1 + 1y, )l
la,xll; =0 < |a| + llx]l =0
e lal=0,|lx|| =0
Sa=0x=0
< (a,x)=(000)=0
< (a,x)=(000)=0

< (a,x)=0

(Kx X, || |l,) isanormed linear space.

NOte: d((an'xn)' (QO'xO)) = ”(an:xn) - (a01x0)||

= ||(ap, — xp, %0 — xp) 1=y, — x0] + 125, — %0l

Definition of convergence:

From above, it follows that, ((a,, x,))n=q IN K X X converges to (a,, o)
in K x X iff

la,, — x| = 0asn — oo iff (a,);=, CONVerges to x, in X.

Or

X, = x if||x,, — x0]| > 0asn — o
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Proposition:-

The scalar multiplication is continuous in a normed linear space.

Proof:
Let (X,|| |I) be a normed linear space be a normed linear space over
K = (R or C).
Then, (K x X,|| |l,) is a normed linear space.
Refine 6 by 6(a,x) = a.xV (a,x) € KX X.
Let ((an, Xn) )neq be a convergent sequence in K x X, and this sequence
((@n, Xn) )=y CONverges to (e, x) in K x X.
We need to show that the sequence ( 8(a,, x;,) )meq COnverges to 6(a, x),
For this,

d(6(an, xn), 0(a, x)) = 10 (ay, %) — 6(@, X)ly = llay, %, — axlly

(as 6 (a,x)) =a,xV (a,x) € KxX)
= [(an = @)xy + alx, — 0y < @y — xully + llale, — )4
= (la, — alllx,ll) + (alllx, = x4 v vee e e (1)
Since (x, )p=q In xin X.
Therefore (x,, )n=, IS bounded.
There exists a real number M > 0 such ||x,|| < MVvn > 1.
Then by (1),
d(@(an,xn),e(a,x)) < Mla, —al; + |alllx, — xll; oo e . (2)

Again (x, )a=, converges to x in X, then, for > 0,therefore, 3 a positive

integer N; > 0 such that
_ &

Also, (ay, )o=, In K converges to a in K for S/ZM > 0,

There exists a positive integer N, > 0 such that

lan —al <&/5p VN2 Nyoo oo e (4)
Choose N = max {N;, N, }.
By (2), (3) and (4), we have,
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€
16 (e, %) — 0(at, )|l < M o= + ||

&
————Vn=>=N
2M 20+ ]ah) =

<§+§.1=e vn>N.

Therefore ,

0 (an, xn )m=q converges to 6(a, x ). Hence the function 6 is continuous.
3.4CAUCHY SEQUENCE

Cauchy sequence:

Let d be a metric on a set X.

A sequence {x,} in the set X is said to be a Cauchy sequence if, for every
e > 0, there exists n, € N such that

d(x,, x,) < € whenever n,m = n,

Example
The sequence {x,} wherex, =1+ % + § + 4 % does not satisfy

Cauchy’s criterion of convergence. Indeed,

1

Xon — Xpl| = + +
1Xon = Xl n+1l n+2

1 1
< —+——+-+
2n n
n

2
n
2

So, |x, — x| is not tends to 0.
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Theorem 1.

A convergent sequence in a metric space is a Cauchy sequence.
Proof.

Let {x,} be a sequence in a set X with metric d.

Let x be an element of X such that lim x, = x.

n—oo

Given any ¢ > 0, there exists some natural number m such that

£
d(x,,x) < 5= 2whenever n > m.

Assume any natural numbers n and n’ such that n > m and n’ > m.

Then d(x,, x) <> and d(x,,x) <-.

Hence

d(xn'xn’) < d(xn,X) + d(XnI,X) < %-I— % = €.

Remark: The converse of the above result is not necessarily true.

Proof: Let X = (0,1].
Define a metric d on X by

d(x,y) = |x — ylvx,y € X. (X,d) is metric space.

Consider the sequence (a,)p=q1 = (%) .
n=1

For 0 <e< 1, choose a +ve integer N > é

Mathematically, we choose, N = E] + 1.

Therefore d(a,,, a,) = |la,, — a,|,m,n >N

1 1 1 1
= ———|,m,n>NS—+—
m n m n

<E+E' >N(-- >2 >2>—
2 2,lf,m,n Tmegnoe)TE

d(ay,, a,) <evm,n = N.

1\® . , .
and () pe1 = <;)n—1' is a Cauchy’s sequence in X.
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The sequence (%) does not converge in X = (0, 1], because, 0 is not a
n=1

member of X.
A sequence {x,} in a normed space X is said to be a Cauchy
sequence if, for every € > 0, there exists n, € N such that
|y, — x,ll < &,Vn,m= n,
IfS, =x; +x,+ -+ x,, wheren = 1,2,3 ... If (s,,) is convergent, say
s, — s, thatis ||s, — s|| = 0,

Then the infinite series or, briefly, series

[ee)

ZXR=X1+XZ+“'

k=1

is said to converge or to be convergent, s called the sum of the series and

S = Ype1 Xk = X1 + X5 + -+ (A)

If ||x, || 4 |l || + ---converges, the series (A) is said to be absolutely
convergent.

If a normed space X contains a sequence (e,,) with the property that for
every x € X there is a unique sequence of scalars (a,,) such that

Ix — (@184 + -+ aze )l >0 (asn— o).

Then (e,,) is called a Schauder basis (or basis) for X.

The series,

k=1 A€

which has the sum x is then called the expansion of x with respect to (e,,),

and we write,
X = Xi=1 ke,
17"has a Schauder basis, namely (e,,), where e, = (8,,;), that is, e,, is the
sequence whose nth term 1 and all other terms are zero; thus
e; = (1,0,0,0..)
e, = (0,1,0,0..)
e; = (0,0,1,0..)
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If a normed space X has a Schauder basis, then X is separable.
e LetX = (X,]|.]]) be anormed space. Then there is a Banach space
X and an isometry A from X onto a subspace W of X which is

dense in X. The space X is unique, expect for isometries.

3.5 COMPLETENESS

Complete metric space: A metric space (X,d) is said to be complete if

every Cauchy sequence in X is convergent.

Example:
d(x,y) = |x —y| for x,y € R; iscomplete metric space.

d(z,w) = |z, — z,|for z; — z, € Cis complete metric space.

1

n 2
dx,y) = (Z(xi - yJZ)
i=1

and x = (xq,x3,....,x,) and y = (yy,¥5,....,¥,) INR" is complete

metric space.

Subsequence: Let {x,} be a given sequence in a metric space (X,d) and
let {n,},>, be a sequence of positive integers such that n; < n, < n; <.,

Then the sequence {x,, } is called a subsequence of {x,,}.

Sub sequential limit: If {x,, } converges, its limit is called a sub

sequential limit of {x,}.
NOTE: A sequence {x,} in X converges to x if and only if every

subsequence of it converges to x.

Department of Mathematics
Uttarakhand Open University




Theorem2. If a Cauchy sequence of points in a metric space (X,d)
contains a convergent subsequence, then the sequence converges to the

same limit as the subsequence.

Proof. Let {x,,} be a Cauchy sequence in (X, d).
Then for every positive number & there exists an integer m(¢) such that

d(x,, x,7) < € Wwhenever n,n’ > m(e)

Let{x,, Jbe a convergent subsequence of {x,,} and its limit by x.

It implies that d(xnn,,xn) < & whenever n,n’ = m(¢)

As {n;} is a strictly increasing sequence of positive integers.

Now,

d(x,x,) <d (x, xnn,) +d (xnn,,xn) <d (x, xnn,) + ¢).
whenever n,n’ = m(e)

Taking n" — oo we get

d(x, x,) < €.

whenever n,n’ > m(e).

Therefore, the sequence {x,} converges to x.
3.6 BANACH SPACE

A normed linear space (X,|| ||) is said to be a Banach space if X is

complete metric space under a metric d induced by the norm on X. Here,

d(x,y) = llx —yllvx,y € X.
In other words, a complete normed linear space (X, || ||) is a Banach
space.
A complete normed linear space is called a Banach space; i.e., we have

a vector space on which we have defined a norm that gives you a metric
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topology called the norm topology, and if this topology is complete then
the normed linear space is called a Banach space.

Examples:
(1) (R,| |) isaBanach space, where | | = absolute value.

(2) (C,| ) isaBanach space, where | | = absolute value.

3.7 EXAMPLES

1. The linear space R and C of of real and complex numbers are Banach

spaces under the norm |[|x|| = |x|,Vx € R or C as the case may be.

Solution:
R is a normed linear space, since:
i Since each ||x|| = 0 implies that |x| = 0 Vx € R.
ii. lx]l=0 ©|x|=0 ©@x=0,Vx €R
i, lx+yll =lx+yl <Ix[+ Iyl = llxll + llyll, vx,y € R
iv. ||ax|| = lax| = |a|||x]||, « being real or complex.
Similarly C is a normed linear space, since:
i Since each ||x|| = 0 implies that |x| > 0 Vx € C.
ii. lx]l =0 ©|x|=0 ©@x=0,VvxeC
iii. Vx,y € C and X, y being their conjugates ( complex),
We have

lx+yl1>=@+y)(x+y)
=x+y)x+y)=xx+yy+xy+xy

< |x|?> + |y|* + 2|x¥| [By properties of complex quantities]
= |x|*> + lyl* + 2|x|ly| as|y] = |yl
= (lx| + [yD?.
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Giving |x + y| < llx|l + Iyl

iv. [lax|| = |ax| = |ax| = |a||lx||, @ being real or complex.

Since every convergent sequence in a normed linear space being a
Cauchy sequence, the real R and C normed linear space is complete and

hence a Banach space.

. The linear space R™ and C™ of all n —tuples (xq, x5, ...., x,) of real

and complex numbers are Banach spaces under the norm

n 1/2
il = lZIinZ}
i=1

[ Usually called Euclidean and unitary spaces respectively].

Solution:

i Since each |x;| = 0 we have ||x|| = 0 and

n
[lx]l =0 @Zle-IZ =0 ©x;=0,foralll1<i<n
i=1

S x = (x, x5 0. Xy ) = (0,00 ... .....0,
ox=0
x= (X1, %0 e X ), ¥ = (V1, V2 eev e . ¥ ) €C™* (07 R™);
x+y= (1 +y,%+ Vo, oo e Xpp + Y, ), €C™;
Then,
llx + ylI? = X lx; + yil? = Xieqlx + yil lx; + vl
< Xieilx + yil (x| + lyiDISince, [x; + yil < |l + 4]
= Xisqlxg + il [ [+ 20 % + yil 1yl
< llx + yllllxll + llx + ylly X lx; + vl < llxll + [lyll]
= llx + yllllxIl + Nyl
or, [lx + yII* < llx + yllllxll + Myl
or, [lx + yll < llx[l + llyll. For llx + yIl # 0.
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iii. For all xeC", for all aeC

lax|l = /X" lax; 2 = |al{Zk %1232 = |alllx]l.

Therefore, ||ax|| = |a|||x||for all xeC™, Va € C.
This proves that R™ or C™ are normed linear space.

Now, we show that the completeness of R™ or C™.
Let < x4,x,,....,x, > beaCauchy sequence in R™ or C™.

Since x,, is an n — tuple of complex (or real ) numbers, we shall write,

Xy = (xfn),xgm), eI )

So that x"™ is the k" coordinate of x,,,.
Let > 0 be given, since < x,, > is a Cauchy sequence, there exists a
positive integer m,, such that,

Im=my=|lx, —xll <e

it implies that, ||x,,, — x;[|? < &2

n
= Z|xl-(m) —x; 0| < &2
i=1

= ™ —x, V| <e? (i=12,....,n)
= ™ —x O] < e
Hence (x;~™)s_, is a Cauchy sequence of complex (or real) numbers for
each fixed but arbitrary i.
Since C(or R) is complete, each of these sequences converges to a point,

say z; in C(or R) so that,

lim xl-(m) =z ({=12..n)

m-—oo
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Now, we show that the Cauchy sequence < x,, > converges to the point

Z = (21,23, e .- Zp) € C™ Or R™.

To prove this let [ = oo in [1]. Then, by [2] we have,
|oc; ™) — zl-|2 < g?
> |lx,, — 2|2 < €2
> |lx, —zll < €
It follows that the Cauchy sequence < x,, > converges to the point z €
C™or R™.
Hence, C™ or R™ are complete spaces and consequently they are Banach

spaces.

Example 3:
Let p be a real number such that 1 < p < c. Show that the space 1} of all

n —tuples of scalars with the norm defined by:

1
t P
Ixll, = lxl?
i=1

is a Banach space.

Solution:
Let x = (x4, %5, ... xy,) and y = (v, V5, ..... y,,) and let a be any scalar.
Then it is understood here that [} is a linear space with respect to the

operations,

x _|_y = (xl -|—y1, S +yn)
and

ax = (axq, ax,, ....ax,).
We now show that 13} is a normed linear space.

(i) llx|l,, = 0, obvious since |x;| > 0 for each .
1
(i) lxll, =0 ZLixlPlr =0
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ox=0i=12
S x = (X1,X2, o xpy) = 0.
(i) llx +yll, < llxll, + llyll,, by Minkowski’s inequality.

(iv)  llaxll, = llalxy, xz, .. )l = l(axy, ax,, ... axy)l,

1

1 1
- P I P - P
= D laxirt =1 lalP iy = el Yl

= lalllxll,

Thus 137 is a normed linear space.

Again to show that [} is complete.
Let < x,, >, be a Cauchy sequence in .
Since, each x,,, is an n —tuple of scalars,

X = (T x Tt o x).

Let € > 0 be given.

Since < x,, >;—, is a Cauchy sequence, there exists a positive integer m,
such that,

Ilm=2my = |lx,—xll,<e

= |lx,,, — xlllg < EP e

p

n
= Z|xi(m) - xl.(l)| <
i=1

- |xi(m) —xl.(l)l <E&g

This shows that for fixed but arbitrary i, the sequence < xi(m) >>_,isa

Cauchy sequence in C or R so that,

(m
i

lim x™ = z,(=12...,1) e cev e et

m-—oo
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It will now be shown that the Cauchy sequence < x,, > converges to the
point x = (zy, 25, .....2,) € [,
To prove this, we let [ - oo in [3].

Then by [4], for m = m,. We obtain,
n p

S <

i=1
= lxym — zll) <P
= ||x,, — zl| < &.

It follows that the Cauchy sequence < x,,, > converges to z € 1.

Hence [} is complete therefore it is a Banach spaces.

Example 4: Consider the linear space of all n— tuples x =
(x4, x5, .....x,) Of scalars and define the norm by

lIxllo =max {Ix], [xz] , ... lxnl3.
This space is denoted by the symbol [%. Show that (I%, ||. ||.) is a Banach

space.
Solution : We first prove that [ is a normed linear space.

Q) |x|lo = 0, obvious since |x,,| = 0 for each n.
Ixllee = 0 & max {Ixq], [x2], ... [x,|} =0
S x| =0,|x, =0, |x,| =0
=x;=0x,=0,....x, =0
S x = (X1, X9, .. Xy) = 0.
= x=0.

Letx = (g, X0, e e X)),V = (Y1, Vo eee e e V)
Then [Ix + ylle = max{lx; + y1l, lxz + 21, o [x5 + Y1}
<max{[xi| + [y1 ], [x2] + |yo |, o |xp] + |y [}

<max{|x;|, |xz], oo .. [xn |} + max{[xq], |22, oo [0 1}
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<max{lx,|, xz| ... [xn [} + max{ly, |, ly2] ... [y}
= [Ixlleo + IYlleo
|ax|l = max{|ax,|, |ax,|, ..... |ax,|}
= max{|al|x.], lallxa], ... [a||x, [}
= |almax{|x,], |x;], ..... |xn 1}
= |a]llx|lc-
Hence (7, is a normed linear space.

We now show that it is a complete space.

Let < x,,, >m=1 be a Cauchy sequence in 7.
Since, each x,,, is an n —tuple of scalars,

X = (T Xt o X,
Let € > 0 be given.
Then there exists a positive integer m, such that,

Ilm=2my = |lx,—xll,<e¢

o [ — 2O [ — 2], O]} < 6

= |xl.(m) — xl.(l)| <gli=1,2,

This shows that for fixed but i, the sequence < xl.(m) >>_, is a Cauchy
sequence of complex or real numbers.

Since C or R is complete, it must converges to some z; € C or R.

We assert that the Cauchy sequence < x,, > converges to the point z =
(21,25, v Zy).

To prove this, we let [ - oo in [5].

Then, for m > m,,.

We obtain ||x,, — z|| < e.

Thus it follows that the Cauchy sequence < x,,, > converges to z € [%.
Hence (7, is complete.

Therefore [ is a Banach space.
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Example 5: If C(X) be a linear space of all bounded continuous scalar
valued function defined on a topological space X. Then show that C(X) is
a Banach space under the norm

IfIl = sup {If C)l:x € X3, f € C(X).

Solution: Given that C(X) is a linear space, means C(X) is linear under
the operations of vector addition and scalar multiplication i.e.,

f,g € C(X) and a being a scalar, we knows that,

fF+9x) =fl)+ glx),
(af)(x) = af (x).

We now show that € (X) is normed linear space.

Solution.
(i) Since |f(x)| = 0Vx € X,
lf ol =0
Ifll =0 < sup {|f(x)|:x € X} =0
o |f(x)=0vxeX
& fx)=0
& f is a zero function.
Thenllfll = sup {I(f + g)(¥)|: x € X}
= sup{|f(x) + g(x)|: x € X}
< sup{lf ()| + [g(x)]:x € X}
< sup{lf(x)|: x € X} + sup{lg(x)|:x € X}
=[£Il + llgll

llafll = sup{|(af) ()| : x € X}
= sup{laf(x)|:x € X} = sup{|a||f(x)]:x € X}
= |alsup{lf ()| : x € X} = |a| lIf]I.
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Hence C(X) is normed linear space.

Now for proving C(X) is complete..

Let < f,, >, be a Cauchy sequence in C(X).
Then for given € > 0,

Then there exists a positive integer n such that,

m,n =m, ﬁ“fm_fn”p<€

= sup{lfn(x) — fu()|:x € X} <e
= {|fn(x) — ()]} < eVx € X.
But this is the Cauchy condition for uniform convergence of the

sequence of bounded continuous scalar valued function.
Hence the sequence < f,, > must converge to bounded continuous
function f on X.

It implies that C(X) is complete and hence it is a Banach space.

3.8 SUMMARY

Present unit is presentation of the topic Continuous at a point, Cauchy
Sequence, Completeness and Banach Space. The main focus is in this unit
on Banach Space. The above concepts discussed with the help of

Examples and Main Results.

3.9 GLOSSARY

Metric space: Let X #= @ be a set then the metric on the set
X is defined as a function d: X x X — [0, o) such that some

conditions are satisfied.

ii. Vector space: - Let VV be a nonempty set with two operations
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Vector addition: Ifany u,v € Vthenu+v eV

Scalar Multiplication: If any u €V and k € F then
ku eV

Then V is called a vector space (over the field F) if the
following axioms hold for any vectors if the some

conditions hold.

Normed space:- Let X be a vector space over scalar field K. A
norm on a (real or complex) vector space X is a real-valued
function on X (J|lx|l: X » K) whose value at an x € X is
denoted by ||x|| and which has the four properties here x and y

are arbitrary vectors in X and « is any scalar.

CHECK YOUR PROGRESS

Let V be a Banach space. Define
X =C([0,1]:V) = {f:[0,1] — V|f is continuous}.
Define, for f € X,

Il = SUD]IIf(t)IIv

tefo,1

Which of the following statements are true?

a) This defines a norm on X.
b) We have ||f|l = sup [If(®)ll,
tef0,1]

C) X is a Banach space with this norm.
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2.
Let C'la, b] be the space of all complex valued continuous
functions on [a,b]. Under which of the following norms,

C'la, b] is a Banach space?
() Il = ([ |f(t)[2dt) />

() £l = [ 1£(®)dt

() IL£l = (J) £ (t)[Pde)1/?

(d)

None of these.

3.

A complete normed space 1s known as a :

a) Hilbert space

c) Banach space

(a)
(b) Compact space
(c)

)

(d

Euclidean space
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Which of the following is a Banach space?
(a) Space of all polynomial functions on [a,b] with the
supremum norm

(b) Space of all continuous functions on [a,b] with the
supremum norm
(c¢) Space of all polynomial functions on [a,b] with the

p-norm

(d) Space of all continuous functions on [a,b] with the

p-1orm

5.

Which of the following subspaces of £ is not a Banach

space?
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6.
Which of the following is not a Banach space?
Linear space of all n-tuples = = (ay, aa, ..., a,) with
||| = max |a;|.
T
Linear space of all 2-summable sequences o = (ay, as, ...

o0 ) P
with [|z]| = (3 |a?)Y2.
i=1

Linear space of all bounded sequences = = (ay, as, ...)

with [[z]] = sup |a,|.
i

Linear space of all continuous functions on [0, 1] with

LIl = fy 1f(t)]dt.

7.

Consider the statements:
(1) Every normed space is complete.
(i1) Every normed space can be identified as a dense sub-

space of a complete normed space.
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3.11 TERMINAL QUESTIONS

1. What is meant by Banach space?
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. What is the difference between complete space and Banach

. Show that the space C(vector space of all convergent

sequence of complex number) is a Banach space?

. Show that the (Cy |l |l.) (the space of all sequences

converging to zero, with sup norm) is a Banach space?

5. Show that the (Cy, Il Il,) where Cyo = {(x,):x, =

0, all but finitely many n} is not a Banach space?

3.12 ANSWERS

CHECK YOUR PROGRESS
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4.1 INTRODUCTION

In previous units we have studied about Metric Space, Vector
Space, Normed Space and Banach Space. Now we are familiar with
functional analysis. For continuation of the study of functional analysis we
need more study. In this unit we are explaining about quotient spaces,
subspace of a normed space, subspace of a Banach space and finite
dimensional normed space.

Since we know that a linear space X is said to be finite dimensional
space if there is a finite basis for X. A linear space which is not a finite

dimensional space is called an infinite dimensional space.

We begin with some questions.
e What is the dimension of vector space C over R?

Solution. C is a vector space over R. Since every complex number
is uniquely expressible in the form a + bi with a, b € R we see that

(1, 1) is a basis for C over R. Thus the dimension is two.
e What is the dimension of vector space F[x] of all
polynomials over a field F?

Solution. Infinite

4.2 OBJECTIVES

After studying this unit, learner will be able to

Described the concept of quotient space.
Defined the concept of subspace of a normed and Banach
space.

iii. Explained the topic of finite dimensional normed space.
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4.3 QUOTIENT (FACTOR) SPACES

If M be a subspace of a vector space N, then their exists an
equivalence relation between any two vectors
X,y € Ni.e.,x~y iff x —y € M, since this relation is:
Reflexive i.e.,, x~yasx —y =0 € M.
Symmetric i.e., x~y=>y~xasx—y € M.
s>as(x—y)=y—x €M.
Transitive i.e., x~y,y~z = x~z as
x—y €EMandy—-z EM=>x—-y+y—z=x—2z€ M.
Therefore vectors x, y being equivalent under '~' = x — y € M.

Thus N is divided into mutually disjoint equivalence classes.

We denote the set of all such equivalence classes by %
Let [x] denote the equivalence class which contains the element x. Thus,

[x] ={y:y~x} = {y:y —x € M}
={y:y—x=mforsomemeM
={y:y=x+mforsomemeM}={x+m:me M}

Thus [x] is the set of all sums of x and element of M.
The set [x] is called the coset of M determined by x and is usually written

asx+ M.

In % we define addition and scalar multiplication by,

x+M)+ y+M)=(x+y)+M;x,yEN
a(x + M) = (ax) + M,a € F over which N is defined.

Here % is a vector (linear) space with respect to addition and scalar

multiplication.

Department of Mathematics
Uttarakhand Open University




Also N is a normed linear space and exhibits’ a norm for % The zero
element of% is0+M =M.

. N .
The set of all such equivalence classes {x + m: m € M} referred as o 1S

known as the Factor space or Quotient space of N with respect to N.
4.3.1 THEOREM

Theorem: If M be a closed subspace of a normed linear space N and if

the norm of a coset x + M is the quotient space% is defined by

llx + M|| = inf{||x + m||: m € M}
Then % is a normed linear space. Also if N is complex (Banach space),

. N
then so is —.
M

Proof.

N . .
Now for L normed linear space,

Since ||x + m|| is non-negative real number and every set of
non-negative real numbers is bounded below, it follows that
inf{||x + m||: m € M} exists and is non-negative, that is

[lx + m|]| = OVx € N.

Letx+M =M (the zero element of%). Then x € M.

Hence ||x + M|| = inf{||x + m||:m € M, x € M}
=inf{llyl:y e M} =0
[ M being a subspace contains zero vector whose norm

is real number 0]
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Thusx+m =M = ||x + M|| = 0.
Conversely, we have
llx + M|| = inf{||lx + m|:me M} =0
=there exists a sequence < my, >p_; in M.
Such that ||lx + my|| = 0 as k — oo.

= lim m; = —x.

n—oo
= -xEM
[ Since M is closed and < m;, > is sequence in M converging to - x]

= x € M [ Since M is a subspace].
= x + M = M [ the zero element of %].

Thus we have shown that
lx + M|| = 0= x+ M = M(the zero element of N/M).

Letx + M, y+Me%,then

ICx + M)+ v+ M)l = lIGx +y) + Ml
(by definition of addition of coset)
=inf{llx +y+m|:meM}......(1)
=inf{llx+y+m|imeMm eM}......(2)
(Since M is a subspace, the sets in (1) and (2) are the same).
=inf{||(x +m) + (y + m")|:m,m' e M }
<inf{llx + m|| + |ly + m'[:m,m’' € M}
[Using iii for N, since x + m,y + m’' € N]
=inf{llx + m|imeM}+ inf{{lx + m'||:m' e M }
= [lx + Mll+[ly + MIl.

la(x + M)|| = inf{||ax + m||:m € M}

(since a(x + M) = ax + M in%)
= inf{|lax + m||:m € M} if « # 0.
= |a| inf{]|x + m||: m € M}
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= |alllx + M.

For ¢ = 0, the results is obvious.

N . .
Hence, o sa normed linear space.
. . . N
We now prove that if N is complete, then so is "

Suppose that < x,, + M > is a Cauchy sequence in %

Then to show that < x,, + M > is convergent, it is sufficient to prove that
this sequence has convergent subsequence.
We can easily find a subsequence of the original Cauchy sequence for a

fixed n such that,

Ges + M) — Gz 4 M)l <

1
lGx + M) — (x3 + M)|| < 52

1
Gt + M) = Gonoa + M < 3

We prove that this sequence is convergent in %
We begin by choosing any vector y; in x; + M, and we select y, in x, +
M such that [y, — y,|| < ;

We next select a wvector y; in  x3+ M. Such that

1
lyn — ynall < o

Thus for m < n, we have

“ym - yn” = “(ym - ym+1) + (:Vm+1 - ym+2) + (yn—l - yn)”

< “ym - ym+1” + ”ym+1 - :Vm+2”+- . +”:Vn—1 - yn”

1 1 1

< om + om+1 + o on-1
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[ 1 1

_Zn—m m_1—>0asm—>00,

= 2m—1

1=3

which follows that (y,,) is a Cauchy sequence in N.
Since N is complete, there exists a vector y in N such that y,, — y.
It now follows from

O + M) —y + Ml < lly, —yll » 0asn — oo,

that y, + M — y + M it means y,, + M convergesto y + M in %

N .
Hence — is complete.

4.4 SUBSPACE

4.4.1 SUBSPACE OF A NORMED SPACE

A subspace Y of a normed space X is a subspace of X considered
as a vector space, with the norm obtained by restricting the norm on X to
the subset Y. This norm on Y is said to be induced by the normon X. If Y

is closed in X, then Y is called a closed subspace of X.
4.4.2 SUBSPACE OF A BANACH SPACE

A subspace Y of a Banach space X is a subspace of X considered

as a normed Space.
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4.5. FINITE DIMENSIONAL NORMED SPACES

451 LEMMA

Let {x,,..x,} be a linearly independent set of vectors in a
normed space X (of any dimension), then there is a number ¢ > 0
such that for every choice of scalar a4, a, we have,

gy + o e e+ x|l 2 c(aq| + - |y ])

Proof. We write s = || + -+ |a,].

Ifs =0,

all a; are zero, so that (2) holds for any c.
Lets > 0.

Then (2) is equivalent to the inequality which we obtain from (2) by

dividing by s and writing 8; = ﬁ that is,

1B + vt Brxnll Z ¢ (ZJy]Bi] = 1)

Hence it satisfy to prove the existence of a ¢ > 0 such that (2) holds

for every n —tuple of scalars B ...... ... ... ..., B With X7 |B;] = 1.
Suppose that this is false.

Then there exists a sequence (y,,,) of vectors,

Y = BIVxs e B2 (E2]BT] = 1)

Such that ||y, || = 0 asm — oo.

Now we reason as follows.

Since ¥7_,|8™| = 1, we have |8™| < 1.

Hence for each fixed j the sequence
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(B™) = (™, p{™, ... ....) is bounded.

Consequently, by the Bolzano — Weierstrass theorem, (,Bj(m)) has a

convergent subsequence.

Let 8, denote the limit of that subsequence, and let , (y,,,) has a

subsequence of (Yz,m) for which the corresponding subsequence of

scalars 8, converges.

(m)
2
Let 3, denote the limit.

Continuing in this way, after n steps we obtain a subsequence

(Vnm) = n1 Ynz ) Of () Whose terms are of the form.
Yam = Ziea v x (E0 )y ™| = D),

with scalars yj(m) satisfying yj(m) — Bjasm - oo,

Hence, asm — 0.y, ,, — y = Y71 B;%;.

Where ¥|;| = 1, so that not all 8; can be zero.

Since {x,, ... x,,} be a linearly independent set of vectors we thus have
y # 0.

On the other hand, y,, ,, — v implies ||| = ll¥Il, by the
continuity of the norm.

Since ||y, |l = 0.

Hence ||y|| = 0. So that y = 0. (Second property of norm)

This contradicts y # 0, and the lemma is proved.

45.2 THEOREMS

Theorem 1: Every finite dimensional subspace Y of a normed space X is
complete. In particular, every finite dimensional normed space is

complete.
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Proof. Consider an arbitrary Cauchy sequence (y,,) in Y and
show that it is convergent in Y;

the limit will be denoted by y.

LetdimY =nand {e;, ...e,} any basis for Y.

Then each y,, has a unique representation of the form

VYm = aim)el F o ...a,gm)en.

Since (y,,,) is a Cauchy sequence, for every € > 0 there is N such
that,

v — Il < ewhenm,r > N.
Therefore from the above condition and using the lemma 4.5.1 we have

some ¢ > 0,

n

n
e> ||y, -yl = Z(a].("” ~aM)|| 2 CZ|“J'(m) ~a),
j=1

j=1

when m,r > N. Division by when ¢ > 0 gives
n
&
|a](-m) — a](-r) < Z |a](.m) — a](.r) < —,(m,r > N).
c
j=1

This shows that each of the n sequences,
(“j(m)) = (“j(l)' aJ'(Z)’
is Cauchy in R or C.
Hence it converges;
let a; denote the limit.
Using these n limits a4, ... ..... a,, we define,
y=a.e +- -+ a,e,.
Itisclearthaty €Y.

Now,
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j=1

n
ym =yl = [ (@™ =) £ > |a™ = e el
j=1

Since 0{( )

lym — yll = 0.
It implies y,, — v.
This shows that (y,,,) was an arbitrary Cauchy sequence in Y.

This proves that Y is complete.

Theorem 2: Every finite dimensional subspace Y of a normed space X is

closed in X.

Question:

Infinite dimensional subspace Y of a normed space X is closed in X?

Answer: Need not to be closed.
Example:
Let X = C[0,1] and Y =span {x,, x4, } where x;(t) = t, so

that Y is the set of all polynomials. Y is not closed in X.

¢ In finite dimensional vector space X is that all norms on X lead to

the same topology for X.

4.6. EQUIVALENT NORMS

A norm ||.|| on a vector space X is said to be equivalent to a norm

|I. 1l on X if there are positive numbers a and b such that for all x €
X

We have
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allxllo = x|l = bllxllo
e Equivalent norms on X define the same topology for X.

e Any two norms on a finite — dimensional space are equivalent but

this does not extend to infinite-dimensional spaces.
4.6.1 THEOREM

On a finite — dimensional vector space X, any norm ||. || is equivalent to

any other norm ||. ||,.

Proof.
Let X =n.
Consider {e,, e,, ... e, } any basis for X.

Then every x € X has a unique representation.

X =ae + - +aue,.
Since from above Lemma,
[Let {x,,...x,} be a linearly independent set of vectors in a normed
space X (of any dimension), then there is a humber ¢ > 0 such
that for every choice of scalar «a;, a, we have,
larxy + e F oy |l 2 c(aq| + - |, D]
there is a positive constant ¢ such that,
lIxll = c(lay| + - [, D.

The triangle inequality gives,

n n
Ixllo = ) eyl legll, < kDl
j=1 j=1

where k = maxj”ej”O.
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Together, allx|ly < llx]l,

Where a = ¢/k > 0.
The other inequality in [E.N] is now obtained by an interchange of
the roles of ||. || and ||. ||, in the preceding element.

This theorem is of considerable practical importance. For instance,
it implies that convergence or divergence of a sequence in a finite
dimensional vector space does not depend on the particular choice of a

norm on that space.

CHECK YOUR PROGRESS

Write True and False :

. Dimension of C" as a linear space over R is 2n True/False.
If E is finite dimensional linear space of dimension n, and
F is a subset of E with m elements, where m < n, then
F can be a basis of E. True/False.
. Every finite dimensional normed space has a unique norm.
True/False.
. Every finite dimensional normed linear space is a Banach
Space. True/False.
If E is finite dimensional linear space of dimension n, and
F is a subset of E with m elements, where m < n, then F cannot
be a basis of E. True/False.
. Every complete subspace of a normed space is closed. True/False.
. Let M be a closed subspace of a normed space N. Then
the quotient space N/M is a Banach space if and only if: N isa
Banach space. True/False.
. For x,y inanormed space X, ||lx + yll = llx = yIl| =2 [lyll.

True/False.
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9. All norms are equivalent on finite dimensional vector spaces.
True/False

10.The norms ||f||, and ||f||, are not equivalent in C[0,1].
True/False

4.8 SUMMARY

Present unit is presentation of the concepts quotient spaces,
subspace of a normed space, subspace of a Banach space and finite

dimensional normed space. These concepts have been explained

with the help of definitions, examples and theorems. The learners

can understand the concepts in easy manner.

4.9 GLOSSARY

Metric space: Let X # @ be a set then the metric on the set X is
defined as a function d:X X X — [0,00) such that some

conditions are satisfied.

Vector space: - Let IV be a nonempty set with two operations

0] Vector addition: Ifany w,v € Vthenu+v €V

(i)  Scalar Multiplication: If any u €V and k € F then
ku eV
Then V is called a vector space (over the field F) if the
following axioms hold for any vectors if the some

conditions hold.
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Normed space:- Let X be a vector space over scalar field K. A
norm on a (real or complex) vector space X is a real-valued
function on X (||lx]l: X - K) whose value at an x € X is denoted
by ||x|| and which has the four properties here x and y are

arbitrary vectors in X and « is any scalar.

Banach space:- A complete normed linear space is called a

Banach space.
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iv. https://www.youtube.com/watch?v=0w3g1A19hdY

4.12 TERMINAL QUESTIONS

. What is quotient space with example?
. What is a subspace of a Banach space?

. Isanormed linear space complete? .........ccocvniviiiieiinccnne.

4.13 ANSWERS

CHECK YOUR PROGRESS
True.
False.
False.
True.
True.
True.
True.

False.

© © N o g~ w D PE

True
10.True.
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5.1 INTRODUCTION

In previous units we have studied the concepts: quotient spaces,
subspace of a normed space, subspace of a Banach space and finite
dimensional normed space. These concepts have been explained with the

help of definitions, examples and theorems. Compactness is one of the
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most fundamental mathematical notions. Because of that, after more than a
century from its formal introduction, it still attracts great interest of
researchers. Compactness is so widespread that it seems nigh to
impossible to even briefly mention all the theories where it plays a crucial

role.

5.2 OBJECTIVES

After studying this unit, learner will be able to

Described the concept of Compactness

Explained the topic of F. Riesz’s Lemma.

5.3 COMPACTNESS

First we recall the definition of cover and subcover.

Open cover of set: Let (X,d) be a metric space and G be a collection of
open sets in X.If for each x € X there is a member G; S G such that x €
G;, then G is called an opencover of X.

Subcover of set: A subcollection of G which is itself an open cover ofX is
called a subcover (or subcovering).

Now we define compact set as

Compact Set: A metric space (X, d) is said to be compact if every open
covering G of X has a finite subcovering, i.e., there is a finite subcollection
{G,,G;,...,G,} € Gsuchthat X =U72, G;.

NOTE:

» A nonempty subset Y of X is said to be compact if it is a compact

metric space with the metric induced on it by d.
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» A nonempty subset Y is compact if every covering G of Y by relatively
open sets of Y has a finite subcovering.
A metric space X is said to be compact if every sequence in X has

a convergent subsequence.

A subset M of X is said to be compact if M is compact considered
as a subspace of X, that is, if every sequence in M has a convergent
subsequence whose limit is an element of M.

Example:
» The interval (0,1) in the metric space (RR,d), where d denotes the
usual metric, is not compact. Now we will try to find an open covering

such that given cover has no subcover.Consider the open covering

{(% 1) n= 2,3,.. } of (0,1) . We observed there is no subcover for

open cover. Mathematically Uy_, S (0,1 - %) 2 5(0,1). But no finite

subcollection of {S (0,1 — %) n=23,... } covers open ball S(0,1).

Let Y be a finite subset of a metric space (X, d).ThenY is compact.

Local Compactness:
A metric space X is said to be locally compact at every point of X has a

compact neighbourhood.
e R™and C™ are locally compact.

Relatively Compact:
A subset A of a metric space X is relatively compact if and only if
every sequence of points in A has a cluster point in X. A space is
compact if it is relatively compact in itself. An alternative definition is
that A is relatively compact in X if and only if every open cover of X

contains a finite subcover of A.
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Theorem 1.Closed subsets of compact sets are compact.

Proof. Let Y be compact subset of metric space X.

Let A C Y closed relative to Y and closed relative to X.

Now we will try to prove that A is compact

Let G = {G;: A € A} be an oper cover of A.

Then the collection

M = {G;: 1 € A} U {X — A}forms an open cover of Y.

Yis compact=there is a finite sub-collection M* of M which covers Y.
Therefore it also covers A.

If X— A is a member of M*,so we can remove it from M* and it still
remain open cover of A.

Thus Finite subcollection of G covers A.

Therefore A is compact.

Finite intersection property (F.1.P): .A collection F of sets in X is said
to have the finite intersection property if every finite subcollection of F

has a nonempty intersection.

Theorem2. Let (Y,d*) be a subspace of metric space (X, d). Prove that Y
is compact w.r.t metric d* iff Y is compact w.r.t metricd on X.

Proof. Let F, is d* — open cover of Y.

=Y CU, F,.

Again F; is d* — open cover

=there exists d-open G; suchthat F; = G, NY < G,

=there exists d-open G; such that U, F; CU; G;

ButY cu; F;and Y cu; G;

={G;} is d-open cover of Y.
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It is compact and therefore the cover G; must have finite reducible
subcover.
Let {Gy,: k = 1,2,3, .. } be subcover of G;.
=Y CUjiL, Gy,
where
ynycvyn(ni, G)=ni, (AnG,)=UF,,
=Y C F, isad" — open cover of A
=F is d* —compact.
Converse
Let (Y,d") is a subspace of (X,d) and Y is d* —compact
Now we prove that Y is d-compact.
Let G, is d — open cover of Y=Y CuU, G;.
ThereforeY nY € Y n (U, Gy)
It implies that Y cu (Y N G;)
Let i, =G,NnYthenY CuU G,
=G, isd —open =G, = G, NY isd* —open.
Therefore F, is a d* —open cover of Y but F;is d* — compact.
Hence given cover is reducible to finite subcover. i.e.{Fy,: 1 < k < n}

=Y gU’};Lzl F)Lk :U;c1=1 (F/lk N Y)

=Y Ul (Gy, NY) =UR_, Gy,

=@, is finite subcover of the cover G;.

Therefore Y is d —compact.

BolzannoWeierstrass property (BWP): A space X is said to have
Bolzanno weierstrass property(BWP) if every finite set in X has a limit

point.

NOTE:

A space with BWP is also said to be Frechet compact.
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Countably compact spaces: A metric space X is said to be countably
compact if every countable open cover of X has a finite subcover.

Sequentially compact spaces: A metric space (X,d) is known as
sequentially compact if every sequence on X has a convergent
subsequence.

e A metric space X is sequentially compact iff it has a B.W.P.

& —net: Let (X, d) be a metric space and € be an arbitrary positive number.
Then a subset A € X is said to be an ¢ —net for X,for any given x € X,
there exists a point y € A such that d(x,y) < e, i.e., A is an € —net for
XifX =U {S(y,e):y € A}.

Finite £ —net:A finite subset of X that is an e-net for X is called a finite
& —net for X.

Lebesgue number for covers: Let (X,d) be a metric space and let G =
{G;: A € A} be an open cover of X. A real number! > 0is said to be
lebesgue number for G iff every subset of X with diameter less than [ is
contained in atleast one of G,.
e Every open cover of sequentially compact metric space has a
lebesgue number.

Totally bounded: The metric space (X, d) is said to be totally bounded if,
for anye > 0, there exists a finite € —net for (X, d).

A nonempty subset Y of X is said to betotally bounded if the subspace Y
is totally bounded.

Example:

A bounded interval in R is a totally bounded metric space. Let the
endpoints of the interval be a and b (a < b) and & be an arbitrary

positive number. Take an integer n > D_Ta and divide the interval into n

equal subintervals each of length b;—a

The points
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{a + W s k= 2,...,n}contain the required e-net for the interval

with endpoints a and b.
Let xbe any point in the interval. Thena < x < b.
Then there exists an integer 1 € {1, 2,...,n} such that

A—1)(b— A(b —
a+( )n( a>£x£a£a+—(na)

Accordingly, the distance of x from each of the endpoints of the interval

a+(/1—1)(b—a),a+l(b—a)
n n

is less than or equal to b;—a, which is strictly less than ¢ in view of the way
in which n has been selected.
=any set containing at least one endpoint of each of the preceding

subintervals, k = 1,2,...,n, forms an & —net, the collection of points
constitute the set.

Every sequentially compact metric space (X, d) is totally bounded.
A metric space X is compact if and only if it is sequentially
compact.

Every compact metric space is complete.

A metric space is compact if and only if it is complete and totally
bounded.

531 LEMMA

A compact subset M of a metric space is closed and bounded.

Proof. For every x € M there is a sequence {x,,) in M such that
Xn = X;
Since M is compact, x € M.

Hence M is closed because x € M was arbitrary.

Department of Mathematics
Uttarakhand Open University




We prove that M is bounded.

If M were unbounded, it would contain an unbounded sequence (y,,) such
that,

d(y,,b) > n, where b is any fixed element.

This sequence could not have a convergent subsequence since a
convergent subsequence must be bounded [using previous result of metric

space].

= The converse of this lemma is general false.

Consider the sequence < e, > in [2, where e, = (8,;) has the n"

term and all other terms 0;
(e,,) is called a Schauder basis (or basis) for X.
e; =(1,0,0,0....)
e, =(0,1,0,0....)
e; =(0,0,1,0....)
This sequence M is bounded since ||e,,|| = 1.
It’s terms constitute a point set which is closed because it has no
point of accumulation. Therefore, M is not compact because we

cannot produce a convergent subsequence of M.

5.3.2 THEOREMS

Theorem 3. In a finite dimensional normed space X, any subset M c X is

compact if and if M is closed and bounded.

Proof. Since compact subset M of a metric space is closed and bounded.
Let M be closed and bounded.

LetdimX =nand {e,,e,,.......e,} abasis for X.
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Consider any sequence {x,,} in M.

Then each x,, = & ™e, +

Since M is bounded, so is {x,,}.
I, || < k for all m.

By lemma in previous unit,

k2 lmll = |20 66| 2 e i, 6™

Where ¢ > 0.

Hence the sequence of numbers f}m)(j fixed) is bounded and by the
Bolzano-Weierstrass theorem, has a point of accumulation &;; here 1 <
j < n. Now, we can conclude that {x,,} has a subsequence {z,,} which
converges z = ), ¢; e;.(using lemma of previous unit).

Since M is closed, z € M. This shows that the arbitrary sequence {x,,} in

M has a subsequence which converges in M. Hence M is compact.

5.4 F. RIESZ’S LEMMA

Let Y and Z be subspaces of a normed space X(of any dimension),
and suppose that Y is closed and is a proper subset of Z. Then for every
real number @ in the interval (0,1) there is a z € Z such that,

Izl =1,[[z—yl| =6 forall y e Y.

Proof. Consider any v € Z — Y and denote its distance from Y by a.

a = lim||lv — y|.
limflv — v

Since Y is closed then a > 0. We now take any 6 € (0,1).

By the definition of an infimum there isa y, € Y such that,
(Note that = > a since 0 < 6 < 1).
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Let, z = c(v — y,) where ¢ = T

We have,
Iz =yll = llc(v = yo) = ¥l
=cllv =y, —c1yll

=cllv =yl

Then, ||z|| = 1, and we show that ||z — y|| > 8 for every y € Y.

<
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Hence ||lv — v, || = a, by the definition of a.

Writing ¢ out and using (1), we obtain

a a
lv = ¥l =a/
Since y € Y was arbitrary, this completes the proof.

lz=yll = cllv =yl = ca= 9=9.

5.5 THEOREMS

Theorem 4. If a normed space X has the property that the closed unit ball

M = {x|||x]| = 1} is compact, then X is finite dimensional.

Proof. For proving this theorem assume that M is compact but
dimX = co.
We choose any x; of norm 1.
This generates a one dimensional subspace X, of X, which is closed and is
a proper subspace of X.
Since dim X = oo.

By Riesz’s lemma there is an x, € X of norm 1 such that

- =>0=c.
e, =l = 6 = 3

The elements x,, x, generate a two dimensional proper closed space X, of
X.

By Riesz’s lemma there is an x3 € X of norm 1 such that

— >0 =-
||x3 xz” = 2

In particular I3 — x|l = %

Proceeding by induction, we obtain a sequence < x,, > of elements x,,
Such that,

|, — x| = % (where m # n).
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It implies that < x,, > cannot have a convergent subsequence.
This contradicts the compactness of M.

Hence our assumption dim X = oo is false and dim X < co.

Theorem 5 (Continuous mapping).
Let X and Y be metric spaces and T: X — Y a continuous mapping. Then

the image of compact subset M of X under T is compact.

Proof. By the definition of compactness it suffices to show that every
sequence < y, > in the image of T(M) c Y contains a subsequence
which converges in T(M).

Since y,, € T(M).

We have y,, = T(x,) for some x,, € M.

Since M is compact.

< x,, > contains a subsequence < x,, > which converges in M.
Because T: X — Y a continuous mapping.

The image of < x,, > is a subsequence of < y,, > which converges in
T(M).

Hence T(M) is compact.

5.5.1 COROLLARY

A continuous mapping T of a compact subset M of a metric space X into

R assumes a maximum and a minimum at some points of M.

Proof. Since we know that Let X and Y be metric spacesand T: X - Y a
continuous mapping. Then the image of compact subset M of X under T is
compact and a compact subset M of a metric space is closed and bounded.
So that,
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infT(M) € T(M),
sup T(M) € T(M).
And the inverse images of these two points consist of points of M at

which Tx is minimum or maximum, respectively.

5.6 SUMMARY

Present unit is presentation of the concepts Compactness explained
the topic of F. Riesz’s Lemma. These concepts have been explained with
the help of definitions, examples and theorems. The learners can

understand the concepts in easy manner.

5.7 GLOSSARY

Metric space: Let X # @ be a set then the metric on the set X is
defined as a function d:X X X — [0,00) such that some

conditions are satisfied.
Vector space: - Let IV be a nonempty set with two operations

0] Vector addition: Ifany w,v € Vthenu+v €V

(i)  Scalar Multiplication: If any u €V and k € F then
ku eV
Then V is called a vector space (over the field F) if the
following axioms hold for any vectors if the some

conditions hold.

Normed space:- Let X be a vector space over scalar field K. A
norm on a (real or complex) vector space X is a real-valued

function on X (||x||: X - K) whose value at an x € X is denoted
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by ||x|| and which has the four properties here x and y are

arbitrary vectors in X and « is any scalar.

Banach space:- A complete normed linear space is called a
Banach space.

Quotient Spaces

Subspace

Finite dimensional Normed Spaces

Equivalent norms
CHECK YOUR PROGRESS
1. Any bounded subset in R™is :

a) compact
b) relatively compact
c) open
d) closed
2. Consider the statements:
(1) Every compact operator is bounded.
(i) Every bounded operator is compact. Then:
(@) Only (i) is true.
(b) Only (ii) is true.
(c) Both (i) and (ii) are true.
(d) Neither (i) nor (ii) is true.
3. A metric space X is said to be compact if every sequence in X has a

convergent subsequence. True/False.

4. A compact subset M of a metric space is not closed and bounded.

True/False.
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5.10 TERMINAL QUESTIONS

1. What is a finite dimensional?
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https://www.youtube.com/watch?v=Ow3q1A19hdY

3. What is an example of a finite-dimensional?

5.11 ANSWERS

CHECK YOUR PROGRESS

1) b.
2) a.
3) True.
4) False.
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6.1 INTRODUCTION

In previous units we have studied about Normed Space, Banach
Space, Finite dimensional Spaces and Compactness and Finite Dimension.
In present unit is a presentation of concepts of linear operator. An operator
in mathematics is typically a mapping or function that modifies one
space's components to create another space's elements. Although the term
"operator” has no universal definition, it is frequently used in place of
"function™ when the domain is a collection of functions or other organized
objects. Furthermore, it might be challenging to clearly define an
operator's domain because it can be expanded to function on related
objects. Acting on vector spaces, linear maps are the most fundamental

operators. Linear operators are linear maps with the same space, for

example from R™ to R" serving as both the domain and the range. These

operators frequently maintain characteristics like continuity.

We are using the following notations:

D(T) = domain of T.
R(T) =range of T.
N(T) = null space of T.

In this unit we shall elaborate somewhat on the theory of operators.
In so doing, we will define several important types of operators, and we

will also prove some important theorems.
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6.2 OBJECTIVES

After studying this unit, learner will be able to

Described the concept of Linear operator
Explained the topic of Bounded and Continuous Linear
Operators.

iii.  Defined the concept of Integral operator.

6.3 LINEAR OPERATOR

A linear operator T is an operator such that
i The domain D(T) of T is a vector space and the range
R(T) lies in a vector space over the same field.
for all x,y € D(T) and scalar «a,
T(x+y)= Tx+Ty,
T(ax) = aTx.
(1)
By definition, the null space of T is the set of all x € D(T) such that
Tx =0.
e \We can use another word for null space is “kernel”.
e Equation (1) shows that the linear operator ‘T’ is a
homomorphism from one vector space to another vector space,

that is T save two operations on the vector space.

Range Space: The range space of an operator T : X — Y, denoted Z(T),
is the set of all vectors y; € Y such that for every y; € &(T) there exists
an x eX suchthat Tx = y;.
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Null Space: The null space of operator T, denoted V' (T) is the set of all
vectors x; € X such that T(x;) = 0:

e For a linear operator T, the Null Space N'(T) is a subspace of X .
Furthermore, if T is continuous (in a normed space X ), then
N(T)is closed
A linear operator on a normed space X (to a normed space Y) is
continuous at every point X if it is continuous at a single point in
X

Definition: A linear transformation is a function T from U into V (

where U(F) and V (F) be two vector spaces) such that for all «, in U

and forall a,beF.T(a+ B) = T(a) + T(B),T(aa) = aTa.
Or T(aa+bp)=aT(a)+bT(B)

A linear operator T is a mapping from same vector space to same vector
space. The field will be same in vector space. Linear transformation T is a
mapping from one vector space to another vector space. The field are
same in both the cases.

6.3.1 EXAMPLES

Example 1: The identity operator Iy: X — X is defined by Iyx = x

for all x € X. If write I in place of I. Thus, Ix = x.

Example 2: The zero operator 0:X — Y is defined by 0x = x for

all x € X.
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Example 3: Let X be the vector space of all polynomial on [a, b].
We may define a linear operator T on X by setting,

Tx(t) = x'(t)
for every x € X, where the prime denotes differentiation with respect to ¢.

This operator T maps X onto itself.

Example 4: A linear operator T from C[a,b] into itself can be

defined as Tx(t) = fot x(t) dt and also Tx(t) = tx(t) where t €

[a, b].

Example 5: A real matrix 4 = (a;) with r rows and n columns defines
an operator T:R™ > R™ by means of y = Ax where x = (§;) has n

components and y = (n;) has » components and both vectors are written
as column vectors because of the wusual convention of matrix

multiplication; writing y = Ax out, we have

T
If A were complex, it would define a linear operator operator from C™

into C".

Note: In above example the dimension of domain is n and dimension of

range is r.
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Example 6: The function T :V,;(R) -V, (R)

Defined by T(a,b,c)=(a,b)va,beR is a linear transformation from
V,(R) into V,(R).

Let o =(a;,b,,¢;), B=(a,,b,,C,) €V4(R)

If a,beR, then

T(aa+bp) =T[a(a,,b.c,) +b(a,.b,,c,)]
—T(aa, +ba,,ab, +bb,,cc, +bc,)

— (aa, +bay,, ab; +bb,) [by def. of T ]
— (aa,,ab,) + (ba,, bb,)
=a(a,,b)+b(a,,b,)

=a(a;,b,c) +b(a,,b,,c,)

= aT (a)+bT(B).

Hence T is a linear transformation from V,(R) into V, (R)

Example 7: Show that the mapping T :V,(R) =V, (R) defined as
T(a,,a,,8;) =(3a, —2a, +a,,a, —3a, —2a,) is a linear transformation
from V,(R) to V,(R)

Proof: Let o =(a,,8,,a,), S =(b,,b,,b,) eV,;(R).

Then T(a) =T(a,,a,,3,) =(3a, —2a, +a,,a, —3a, —2a,)
And T(fB)=T(b,b,,b,)=(3b, —2b, +b,,b, —3b, —2Db,).
Let a,be R. Then aa +bg eV,(R). We have

T(aa +bp) =T[a(a,,a,,a,) +b(b,,b,,b,)]

=T (aa, +bb,,aa, +bb,,aa, +bb,)
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= (3(3aa, +bb,) —2(aa, +bb,) + aa, +bb,, aa, +bb, —3(aa, +bb,) —2(aa, +bb,))

= (a(3a, —2a, +a,) +b(3b, —2b, +b,),a(a, —3a, —2a,) +b(b, —3b, —2b,)
=a(3a, —2a, +a,,a —3a, —2a,) +b(3b, — 2b, +b,,b, —3b, —2b,)
=aT (a)+bT(B)

Example 8: Show that the mapping T :V,(R) — V,(R) defined as
T(a,b)=(a+b,a—b,b)
is a linear transformation from V, (R) into V,(R).

Solution: Let the vectors « =(a,,b,), #=(a,,b,) eV, (R).
Then T(a) =T(a,.by) = (& +b,,a —b,by) and
T(p)=(a, +b,,a, —b,,b,).

Also let a,b e R. Then aa +bpg eV, (R) and

T(aa +bp) =T[a(a,b) +b(a,,b,)]

=T (aa, +ba,,ab, +bb,)

= (aa, +ba, +ab, +bb,,aa +ba, —ab, —bb,,ab, +bb,)
=a(a, +b,a —b,b)+b(a, +b,,a, —b,,b,)

=aTl (a)+bT(p)

. T is a linear transformation from V, (R) into V,(R).

6.4 THEOREM

Theorem 1: Let T be a linear operator. Then:
a. Therange R(T) is a vector space.
b. 1fdimD(T) = n < oo, then dim R(T) = n.

c. The null space V' (T) is a vector space.

Proof. a. We take y,,y, € R(T).
We have to show that ay, + By, € R(T) for any scalars «a, .

Since y;,y, € R(T).
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We have y; = Tx;, vy, = Txy,
for some x;,x, € D(T) and ax; + Bx, € D(T).
Because D(T) is a vector space.
The linearity of T gives,
T(ax, + Bx;) = aTx, + BTx, = ay; + By,.
Hence ay, + By, € R(T).
Since y,,y, € R(T) were arbitrary and a, 8 are the any scalars.

This proves that R(T) is a vector space.

b. We choose n + 1 elements y;, y,, Yn+1 Of R(T) in arbitrary
manner.
Then, we have y; = Txy, y, = Txy, , Yn+1 = T'xp4q fOr some
X1y eee eee wee ey Xppp IND(T).
Since dim D(T) = n.
The set {x4, ... ... ..., Xn41 } Must be linearly dependent.
Hence,
A1X1 F oo e s A1 X = 0.
For some scalars aj, ... ....., a1 notall zero.
Since T is linear and T(0) = 0.
Application of T on both sides gives,
T(a1x1 F oo e e e e e F A1 X 1)
= Y1t o T A1 V1 = 0.
This shows that {y;, v,, Yn+11} is a linearly dependent set because
ai’s are not all zero.
Since this subset of R(T) was chosen in arbitrary manner.
We conclude that R(T) has no linearly independent subsets of n + 1 or
more elements.

By the definition this means that dim R(T) = n.

c. We take any x4, x, € N (T).
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Then Tx1 = sz == O.

Since T is linear, for any scalars «a, 8, we have

T(ax, + Bx,) = aTx; + BTx, = 0.
This shows that aTx; + BTx, € N (T).

The null space V' (T) is a vector space.

e Second part meaning that linear operator preserve linear

dependence.

6.5 INVERSEOF T

A mapping T: D(T) - Y is said to be injective or one —to-one if different
points in the domain have different images, that is, if for any x;, x, €
D(T),

X1 #F X =2 Txy #TXxy5 e iee v . (2)
It is also equivalent,

Txy =Tx, > x4 = Xy
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In this case there exists the mapping
T Y R(T) - D(D),
Yo P Xo (Vo = Txo)

which maps every y, € R(T) onto that x, € D(T) for which
Txo - yo.

The mapping T1 is called the inverse of T.

From (4) it is clear that,
T 1Tx = x forall x € D(T).
TT 'y =y forally € R(T).

Note: The inverse of a linear operator exists if and only if the null space

of the operator consists of the zero vector only.

6.6 THEOREM AND LEMMA

Theorem 2: Let X and Y be vector spaces both real or complex. Let
T:D(T) - Y be a linear operator with domain D(T) c X and R(T) c Y.
Then:
a) Theinverse T™1: R(T) —» D(T) exists if and only if
Tx =x=x=0.
b) If T~1 exists, it is a linear operator.
¢) IfdimD(T) =n < oo and T~1 exists,

then dim R(T) = dim D(T).
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Proof. a) Suppose that Tx = 0 implies x = 0. Let Tx; = Tx,. Since T
is linear,

T(xy—2x3) =Tx; —Tx, =0,
so that x; — x, = 0 by the hypothesis. Hence Tx; = Tx, implies x; =
x, and T ™1 exists, then (3) satisfy. From (3) with x, = 0.
Since T0 = 0. We obtain,

Tx;=T0=0=x, =0.

This completes the proof of a).

b) We consider that T~ exists and show that T~ is linear.

The domain of T~ is R(T) and is a vector space by Theorem 1(a).
We are assuming for any x,,x, € D(T) and their images

y; = Tx; and y, = Tx,.

Thenx; =T 1y, and x, = T 1y,.

T is linear, so that for any scalars a and 8 we have,

ay, + By, = aTx, + BTx, = T(ax; + Bx,).

Since x; = T~ 1y;, this implies

T_l(ayl + .3)’2) = ax; + Bx, = aT 'y, + BT 1y,

and proves that T~1 is linear.

We have dim R(T) = dim D(T) by Theorem 1(b), and dim D(T)
< dim R(T) by the same theorem applied to T 1.
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Inverse of the composite of linear operators:

Lemma 1: Let T:X - Y and S:Y — Z be bijective linear operators,
where X, Y, Z are vector spaces. Then the (ST)_l: Z — X of the product
( the composite) ST exists, and (ST) ™' = 771572

—

s
Fig 6.6.1

Proof. The operator ST: X — Z is bijective, so that (ST) " exists.

ST(ST) ' = I,
where I, is the identity operator on Z.
Applying St and using S~1S = I, (the identity operator on Y), we
obtain,
STIST(ST) ' =T(ST) 1 =51, =571,
Applying Tt and using T~1T = I, , we obtain the desired result
T (STt =(T) 1 =T"151,

This completes the proof.
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Check Your Progress

1. Which of the following is true?

(a) If A, B are invertible linear operators on X, then A+
B is invertible.
(b) If A, B are invertible linear operators on X, then A —

B is invertible.

(c¢) If A, B are invertible linear operators on X, then AB
is invertible.
(d) If A is invertible linear operator on X, and £ is any

scalar. then £A is invertible.

6.7 BOUNDED AND CONTINUOUS LINEAR

OPERATORS

Let X and Y be normed spaces. Let T:D(T) — Y be a linear
operator with domain D(T) c X . The operator T is said to be bounded
if there is a real number ¢ such that for all x € D(T),

ITx|| < cllx]]. .......... (a)
The value of ¢ must be at least as big as the supremum of the

expression on the left taken over D(T) — {0}. Let T:D(T) — {0} » Y

be a linear operator with domain D(T) — {0} c X then, ||T|| = sup Tl

xen(r) IIxll
x#0

If D(T) = {0}. Then ||T|| = 0. In this case T = 0. The operator T is said
to be bounded if there is a real number ¢ such that for all x € D(T).
When ¢ = ||T|| is
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Tl < ITNx]| -..........(b)
Let T: D(T) — Y be a bounded linear operator then ,
IT|| = sup ||Tx] ..........(c)

x€D(T)
llxl[=1

Example 1: The identity operator Iy: X — X is defined by Iyx = x

for all x € X. If write I in place of I. Thus, Ix = x.

Example 2: The zero operator 0:X — Y is defined by Ox = x for

all x € X.

6.8 CONTINUITY OF OPERATOR

Let T: D(T) — Y be any operator not necessarily linear, where D(T) c X
and X and Y are normed spaces.

The operator T is continuous at an x, € D(T) if for every £ > 0 there is
& > 0 such that,

ITx — Tx,|| < & forall x € D(T)satisfying ||x — x,|| < 6.

T is continuous if T is continuous at every x € D(T).

6.9 THEOREMS

Theorem 3. If a normed space X is finite dimensional, then every

linear operator on X is bounded.

Proof. Letdim X = n and {e,, e, } a basis for X.

We take x = X &; e; and consider any linear operator T on X.
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Since, T is linear,

Il = || > &7e|
<> lgllirel

< max|[7e;]| D ¢
(summations from 1 to n).
To the last sum we are applying the following result:
Let {x,,..x,} be a linearly independent set of vectors in a
normed space X (of any dimension), then there is a number ¢ > 0
such that for every choice of scalar a4, a, we have,

gy + e ve o+ x|l 2 c(ayq| + -+ |y, ) (from unit 4).

a; = &;and x; = e;. Then we obtain,

Sl =] gre| =2l

Together,

172l < yllx|l where y = ~max||Te||

Since ||Tx|| < cl|x]|.

Using the above condition we can say that T is bounded.

Theorem 4. Let T:D(T) - Y be a linear operator, where D(T) c X
and X and Y are normed spaces. Then:
i. T iscontinuous if and only if T is bounded.
ii. If T is continuous at a single point, it is continuous.
Proof.
I. ForT = 0.
The statement is trivial.

Let T # 0.
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Then, ||T]|| # 0.
We assume T to be bounded and consider any x, € D(T).
Let any € > 0 be given.

Then, since T is linear, for every x € D(T) such that,

£
ITII

lx — x,l| < & where § =
We obtain ||Tx — Tx,|| = ||IT(x — xp)|
< ITHIx = xoll
<|IT||6 = &

Since, x, € D(T) was arbitrary, this shows that T' is continuous.
Conversely, assume that T is continuous at an arbitrary x, € D(T).
Then, given any € > 0, there isa § > 0 such that,

|ITx — Tx,|| < eforall x € D(T)

satisfying ||x — x,|| < &
We now take any y # 0 in D(T) and set

)
X =xy+7—"Y.
Ivll

_ 9
YRS

Hence, ||x — x,|| = &, so that we are using (d).

Then x — x,

Since T is linear, we have

5 )
I7x = Txoll = |7 (=) | = oo

Iyl Iyl

And (d) implies,

o
— Tyl < e
Iyl

1) €
Thus, ”T(m)y” = iyl
This implies ||Ty|| < c [|Ty||. Where ¢ = %, and shows that T is

bounded.
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Continuity of T at a point implies boundedness of T by the
second part of the proof of (i), which is turn implies

continuous of T by (i).

Corollary: Let T be a bounded linear operator. Then:
(@) x, — x [where x,, x € D(T)] implies Tx,, — Tx.

(b) The null space N(T) is closed.

Check Your Progress

If X and Y are normed spaces, and if T': X — Y is a

linear operator, then 7" is bounded if and only if:

(a) T maps bounded subsets of X into bounded subsets

of Y.
(b) T maps open subsets of X into open subsets of Y.
(¢) T maps closed subsets of X into closed subsets of Y.

(d) T is invertible.

For any bounded linear operator A : X — Y, kerA is:

a closed subspace of Y.
an open subspace of Y.

a closed subspace of X.

(d) an open subspace of X.
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Equal operator:
Two operators T; and T, are defined to be equal, written
T, =T,

if they have the same domain 9(T;)=%(T) and if T;x = T,x for all
xeW(T)=a(T>).

Restriction of an operator:

The restriction of an operator T: 2(T)—Y to a subset
B < %(T) is denoted by

T|s
and is the operator defined by

Tlg: B—Y, T|gx = Tx for all x € B.

Extension in operator:

An extension of T to a set M 29%(T) is an operator

~

T: M—'Y such that Tem =T,

that is, Tx = Tx for all x € @(T).

[Hence T is the restriction of T to W(T).]

Theorem (Bounded linear extension). Let
T: (T)—> Y

be a bounded linear operator, where %(T) lies in a normed space X and
Y is a Banach space. Then T has an extension

T: %(T)— Y

where T is a bounded linear operator of norm

Il =T1.
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6.10 SUMMARY

In this unit we explain the concept of Linear operator:
Definition, Examples, Theorem and Inverse of T: Theorem and
Lemma. We also present the concept of Bounded and Continuous
Linear Operator and Continuity of Linear Operator. At the end of the

unit learner will be able to understand the basic concepts of operator

theory.

6.11 GLOSSARY

Metric space: Let X #+ @ be a set then the metric on the set X is
defined as a function d:X X X — [0,0) such that some

conditions are satisfied.
Vector space: - Let IV be a nonempty set with two operations

0] Vector addition: Ifany w,v € Vthenu+v €V
(i)  Scalar Multiplication: If any u €V and k € F then
ku eV
Then V is called a vector space (over the field F) if the
following axioms hold for any vectors if the some
conditions hold.
Normed space:- Let X be a vector space over scalar field K. A
norm on a (real or complex) vector space X is a real-valued
function on X (||x||: X - K) whose value at an x € X is denoted
by |lx|| and which has the four properties here x and y are

arbitrary vectors in X and « is any scalar.
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Banach space:- A complete normed linear space is called a

Banach space.

Quotient Spaces

Subspace

Finite dimensional Normed Spaces

Equivalent norms

CHECK YOUR PROGRESS
4.

Consider the statements:
(1) Every compact operator is bounded.

(i1) Every bounded operator is compact. Then:

5.

Every bounded operator of finite rank is :

a) compact

(¢) has a non zero adjoint.

(a)

(b) open
)

(d)

d) None of these.

Rank of a linear operator A equals:

(a) dim(kerA)
(b
(c
(

)
)
)
d)

(
dim(ImA)

(

(

|
|
dim(ImA*)
dim(kerA4)

Department of Mathematics
Uttarakhand Open University

Page 137




It T is a bounded linear operator, then:

[T < [T - [[|
[Tz = |[7°[] - |
[T = |70 - []|
None of these.

8.

Let E be a normed space and A, B be bounded linear

operators on E. Then which of the following is true?

[AB[| < || Al - [|B]

(a)
(b) [[AB|| = [|All - || B]]
)
)

b

(¢

(d) None of these.

[AB] = [lA[l - [[B]]
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iv. https://www.youtube.com/watch?v=0w3g1A19hdY

6.13 TERMINAL QUESTIONS

1.

Let X and Y be normed spaces. Show that a linear operator
T: X——Y is bounded if and only if T°maps bounded sets in X into
bounded sets in Y.

2.

If T#0 is a bounded linear operator, show that for any x € %(T) such
that ||x||<1 we have the strict inequality || Tx|/<||T].

3.
Defined Linear operator

4.

Defined Bounded and Continuous Linear Operator
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https://www.youtube.com/watch?v=Ow3q1A19hdY

6.14 ANSWERS

CHECK YOUR PROGRESS
1.
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7.1 INTRODUCTION

In previous unit we have studied about linear operator. In this unit
we are studying about linear functional. The aim of this unit is to present
the basic facts of linear functional analysis related to applications to some
fundamental aspects of mathematical analysis. In functional analysis,
individual functions satisfying specific equations are replaced by classes
of functions and transforms which are determined by each particular
problem. The objects of functional analysis are spaces and operators
acting between them which, after systematic studies intertwining linear
and topological or metric structures, appear to be behind classical
problems in a kind of cleaning process.

In mathematics, alinear form(also known as alinear
functional, a one-form, or acovector) is alinear map from a vector
space to its field of scalars (often, the real numbersor the complex
numbers).

A functional is an operator whose range lies on the real line R or in
the complex plane C. And functional analysis was initially the analysis of
functionals. The latter appear so frequently that special notations are used.
We denote functionals by lowercase letters f, g, h, the domain of f
by D(f), the range of f by R(f) and the value of f at an x € D(f)
by f(x) with parentheses. Functionals are operators, so that previous

definitions apply.

7.2 OBJECTIVES

After studying this unit, learner will be able to

I.  Described the concept of Linear functional

Ii.  Explained the topic of Bounded linear functional
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lii.  Proved the theorem and solve the examples based on linear
functional.

7.3 LINEAR FUNCTIONAL

Definition:
A linear functional f is a linear operator with domain

in a vector space X and range in the scalar field
K of X; thus, f: 9(f)— K,

where K =R if X is real and K =C if X is complex.

7.4 BOUNDED LINEAR FUNCTIONAL

A bounded linear functional f is a bounded linear operator (
definition in previous unit) with range in the scalar field of the normed

space X in which the domain D(f) lies. Thus there exists a real number ¢
such that for all x € D(f).

[f(x)[=cllx].

In continuation norm is defined in a way

Ifl= sup L2

x€D(f) ||x||

Ifll= sup [f(x)l.

xeD(f)
Ixll=1
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IFCOI= £ 11l

Theorem : A linear functional, with domain D(f) in a normed space

is continuous if and only if f is bounded.
7.5 EXAMPLES

Example 1:

Norm. The norm ||-|: X —— R on a normed space (X, |-||) is a
functional on X which is not linear.

Example 2:

Dot product. The familiar dot product with one factor kept

fixed defines a functional f: R*—— R by means of
fx)=x-a=&ay+Lar+ Eas,

where a = (o;) e R? is fixed.

Example 3:
The constant zero function, mapping every vector to zero, is trivially a
linear functional. Every other linear functional (such as the ones below)

is surjective, (that is, its range is all of k).

Example 4:

The mean element of an n-vector is given by the one-form
[1/n,1/n,...,1/n].Thatis
mean(v) = [1/n,1/n,...,1/n] v
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Example 5:

Sampling with a kernel can be considered a one-form, where the
one-form is the kernel shifted to the appropriate location.
Example 6:

Linear functionals in R":
Suppose that vectors in the real coordinate space R™ are represented as

column vectors

1

Tn

Foreachrowvectora = [ay -+ ay,|

there is a linear functional f, defined by

fa(xX) = ar12y + -+ + a2,
and each linear functional can be expressed in this form.
This can be interpreted as either the matrix product or the dot
product of the row vector a and the column vector X:
(A |

fa(x)=a-x=[a; -+ an]

Example 7:
The definite integral is a number if we consider it for a single function, as
we do in calculus most of the time. However, the situation changes

completely if we consider that integral for all functions in a certain
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function space. Then the integral becomes a functional on that space, call

it f.Asaspace let us choose C[a, b]. Then f is defined by,

b

f(x)= J x(t) dt

a

Where ,
x € ([a, b].

f is linear. We prove that f is bounded and has norm |f|=b— a.

We are taking / = [a, b]and remembering the norm on C|[a, b],we obtain
b

[f()| = j:ﬂﬂdt:

a

=(b—-a) max lx ()]

=(b—a) ||x]|.

Taking the supremum over all x of norm 1,

we obtain,

Ifll=b-a.

For getting,
Iflzb—a,
We are choosing

x =Xxo=1, note that ||xo|=1

Since,
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[FOO=]IfI| ],
|f(x0)|

”xo“

=|f(x0)|

Ifll=

b
=J dt=b—a.

7.6 DUAL SPACE

7.6.1 ALGEBRAIC DUAL SPACE

The set of all linear functional defined on a vector space X can
itself be made into a vector space. This space is denoted by X* and is
called the algebraic dual space of X. Its algebraic operations of vector

space are defined in a natural way as follows.
The sum f, + f, of two functionals f; and f, is the functional

s whose value at every x € X is

s(x) = (fu +£2)(x) = f(x) + f2(x);

the product af of a scalar @ and a functional f is the functional p
whose value at xe X is

p(x) = (af)(x) = af(x).

7.6.2 SECOND ALGEBRAIC DUAL SPACE
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Consider the algebraic dual (X*)* of X*, whose elements are the
linear functionals defined on X*. We denote (X*)* by X**and call it the
second algebraic dual space of X.

We choose the notations:

Space | General element | Value at a point

; -
f f(x)
X** g g(f)

We can obtain a ge X**, which is a linear functional defined on X*,

by choosing a fixed x € X and setting

g(f) =g () =f(x) (x € X fixed, fe€ X* variable).

The subscript, x is a little reminder that we got g by the use of a
certain x € X.
From equation (5),

g is linear. This can be seen from

gdafy + Bf2) = (afy + Bf2)(x) = afi(x) + Bf2(x) = ag.(fi) + Bg.(f>).

Hence g, is an element of X™*, by the definition of X**,

7.6.3 CANONOCAL MAPPING

To each x € X there corresponds a g, € X**. This defines a map-
ping
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C: X — X**
X —> g,

C is called the canonical mapping of X into X™**.

C is linear since its domain is a vector space and we have
(Clax + ByN() = ax+py(f)

= flax + By)

= af (x) + Bf(y)

= ag.(f)+ Bgy(f)

= a(Cx)(f)+ B(Cy)(f).

C is also called the canonical embedding of X into X™*.

7.6.4 ISOMPRPHISM

By definition, this is a bijective mapping of X onto X which preserves
the structure.

Accordingly, an isomorphism T of a metric space X = (X, d) onto a
metric space X =(X, d) is a bijective mapping which preserves dis-
tance, that is, for all x, y € X,

d(Tx, Ty)=d(x, y).

X is then called isomorphic with X.

An isomorphism T of a vector space X onto a vector space X over
the same field is a bijective mapping which preserves the two algebraic
operations of vector space; thus, for all x, ye X and scalars «,

T(x+y)=Tx+ Ty, T(ax)=aTx,
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that is, T: X —— X is a bijective linear operator. X is then called
isomorphic with X, and X and X are called isomorphic vector spaces.

If X is isomorphic with a subspace of a vector space Y, we say that
X is embeddable in Y. Hence X is embeddable in X**, and C is also
called the canonical embedding of X into X**,

If C is surjective (hence I;ijective), so that R(C) = X™* then X is

said to be algebraically reflexive.
(Null space) The. null space N(M™) of a set M*  X* is defined to be

the set of all x € X such that f(x)=0 for all fe M*.

(Hyperplane) If Y is a subspace of a vector space X and codim Y =1

then every element of X/Y is called a

hyperplane parallel to Y.

(Half space) Let f#0 be a bounded linear functional on a real
normed space X. Then for any scalar ¢ we have a hyperplane
H,={xe X | f(x)=c}, and H, determines the two half spaces

Xa={x|f)=c}  and  Xo={x|f(x)=ch

7.7 LINEAR OPERATORS AND FUNCTIONAL
ON FINITE DIMENSIONAL SPACES

Matrices become the most important tools for studying linear
operators in the finite dimensional case. In this connection we should also

remember Theorem : If a normed space X is finite dimensional, then every
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linear operator on X is bounded. To understand the full significance of our

present consideration.

Let X and Y be finite dimensional vector spaces over the same
field and T: X——Y a linear operator. We choose a basis
{E ={e,, " - -, en}for X and abasis B ={b,, - - -, b,} for Y, with the vectors
arranged in a definite order which we keep fixed. Then every x € X has
a unique representation

X =€1€1+ t +§nen.

Since T is linear, x has the image

y=1Tx ='T( ), &)= ), &Te..
k=1 k=1

Since the representation (6) is unique, we have our first result:

T is uniquely determined if the images vy = Te, of the n basis vectors
ey, ", e, are prescribed.

Since y and yx = Te, are in Y, they have unique representations of
the form

Tek = Z Tjkb'-

j=1

Substitution into (7) gives,
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y= 2, mib= kzl & Te = kz=:1 & Z Tih; = Z ( Z ”'jkfk)bf-

j=1 i=1 i=1 k=1

Since the b;’s form a linearly independent set, the coefficients of each b;
on the left and on the right must be the same, that is,

This yields our next result:

The image y=Tx= Y. n;b; of x= 2 &y can be obtained from

(10). The coefficients in (10) form a matrix.

with r rows and n columns. If a basis E for X and a basis B for Y are
given, with the elements of E and B arranged in some definite order
(which is arbitrary but fixed), then the matrix Tgp is uniquely deter-
mined by the linear operator T. We say that the matrix Tgp represents
the operator T with respect to those bases.

By introducing the column vectors X = (&) and § =(n;) we can
write (10) in matrix notation:

where Te is the column vector with components Tey, * - -, Te, (which
are themselves vectors) and b is the column vector with components

b1, - - -, b, and we have to use the transpose Tes' of Tes
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Our consideration shows that a linear operator T determines a
unige matrix representing T with respect to a given basis for X and a
given basis for Y, where the vectors of each of the bases are assumed
to be arranged in a fixed order. Conversely, any matrix with r rows and
n columns determines a linear operator which it represents with

respect to given bases for X and Y.

Let us now turn to linear functionals on X, where dim X =n and
{e1, - - -, e} is a basis for X, as before. These functionals constitute the
algebraic dual space X™* of X, as we know from the previous section
For every such functional f and every x =} &e; € X we have

n

fx)=f Z gei)= 2, &f(ej)z'g &

i=1

and f is uniquely determined by its values a; at the n basis vectors of
X.

Conversely, every n-tuple of scalars a;, -+, @, determines a

linear functional on X _In particular, let us take the n-tuples
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By (13) and (14),

this gives n functionals, which we denote by fi, - -, f,, with

0

that is, fi has the value 1 at the kth basis vector and O at the n—1
other basis vectors. 8 is called the Kronecker delta. {fi, -, f.} is

called the dual basis of the basis {e1, - - -, e,.} for X.

7.7.1 THEOREMS

Theorem 1:

Theorem (Dimension of X*). Let X be an n-dimensional vector
space and E ={e,, - - -, e,} a basis for X. Then F={f,,- - -, f.} given by

Equation (15) is a basis for the algebraic dual X* of X, and dimX* =

dimX = n.
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Proof.

F is a linearly independent set since

L Bufelx) =0

with x = ¢; gives

n n
Z Bifi(e;) = Z Bidi. = B,=0,
k=1 k=1
So that all the S,’s (16) are zero. We show that every f € X* can be
represented as a linear combination of the elements of F in a unique way.
We write f(¢;)=q;

By using (13) and (14),

fo)= 2 &y

for every x e X.

fi)=fi(brert: - +&en) =&

Together,

n

f(x)= _Zl afi(x).

Hence the unique representation of the arbitrary linear functional f on
X in terms of the functionals fy,- - -, f, is

f=a1f1+- ’ -+a,,fn.
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Lemma 1:
Let X be a finite dimensional vector space.
If xo€ X has the property that f(x,) =0 for all fe X*, then x,=0.

Proof. Let{e;, - -, e,} be a basis for X and xo =) &ye;.

From (13) and (14),

f(xo) = ;1 ngaj-

By assumption this is zero for every fe X™, that is, for every choice of

oy, +, a,. Hence all &; must be zero.

Theorem 2:
Theorem (Algebraic reflexivity). A finite dimensional vector

space is algebraically reflexive.

Proof. The canonital mapping C: X — X** considered in the
previous section is linear. Cx,=0 means that for all fe X* we
have

(Cxo)(f) = 8x(f) = f(x0) =0,

by the definition of C. This implies x,=0 by Lemma

previous , Hence from Theorem 2 of unit -6 it follows that the mapping C
has an inverse ,

C™': ®(C)—X, where ®R(C) is the rangé ‘of C. We also have
dim ®(C)=dim X by the same theorem.

From previous theorem,

dim X** =dim X*=dim X.
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Together, dim & (C) =dim X**. Hence R(C) = X™* because R(C) is a
vector space and a proper subspace of X™* has

dimension less than dim X**[We are using the theorem: let X be an
n dimensional vector space. Then any proper subspaceY of X has

dimension less than n]. By the definition, this proves algebraic reflexivity.

7.8 NORMED SPACES OF OPERATORS. DUAL
SPACE

We take any two normed spaces X and Y (both real or both complex)
and consider the set B(X,Y), consisting of all bounded linear operators
from X into Y, that is, each such operator is defined on all of X and its

range liesinY.

Theorem 3:

The vector space B(X,Y) of all
hounded linear operaiors from a normed space X into a normed space Y
is itself a normed space with norm defined by

| Tx|

1T = sup ===
xeX |II|| xeX
x30

= sup || Tx|\.

Theorem 4:

If Y is a Banach space, then
B(X, Y) is a Banach space.
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Proof. We consider an arbitrary Cauchy sequence (T,) in
B(X, Y) and show that (T,) converges to an operator T€ B(X, Y).

Since (T,,) is Cauchy, for every &£ >0 there is an N such that
”Tn—Tm“<S (m: n>N)-
For all x € X and m, n> N we thus obtain

ITax = Touxl| = (T = T ) x| S| T = T [1x]| < £l x]]

Now for any fixed x and given £ we may choose &=¢, so that
& x| < &.

Then from (19),

we have ||T,x — T,.x||< € and see that (T,x) is

Cauchy in Y. Since Y is complete, (T,x) converges, say, T, x —> y.
Clearly, the limit y € Y depends on the choice of x € X, This defines an
operator T: X — Y, where y = Tx. The operator T is linear since

lim T,,(ax + Bz)=1lim (aT,x + BT,z) = a lim T,x + B lim T,z.

We prove that T is bounded and T, — T, that is, || T,, — T||—0.
for every m>N and T,x — Tx, we may let

[ Using the equation (19)]
m —— o, Using the continuity of the norm, we then obtain from
equation (19),

for every n> N and all xe X

| Tux — Tx|| = Tux — lim Tynx||= lim. || T, x — T,ux||= €| x|.

This shows that (T, —T) with n> N is a bounded linear operator.
Since T, is bounded, T=T,—(T,—T) is bounded, that is,

TeB(X,Y).
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Furthermore, if in (20) we take the supremum over all x of norm 1, we

obtain,

IT.-T|=e (n>N).

Hence | T, — T||— 0.

Definition (Dual space X'). Let X be a normed space. Then
the set of all bounded linear functionals on X constitutes a normed

space with norm defined by

If ||‘Sup l’;I( “) - sup (€3]

x#=0 [lx[l=1

which is called the dual space of X and is denoted by X .

Theorem 4.

The dual space X' of a normed space
X is a Banach space (whether or not X is).

An isomorphism of a normed space X onto a normed space X is a
bijective linear operator T: X —— X which preserves the norm, that

is, for all x € X,

1T = |l

(Hence T is isometric.) X is then called isomorphic with X, and X and
X are called isomorphic normed spaces—From an abstract point of
view, X and X are then identical, the isomorphism merely amounting
to renaming of the elements (attaching a “tag” T to each point).

e Ifanormed space X is finite dimensional, then every linear
operator on X is bounded. This result using also equation (13) and

(14) are using. ........ccoevveniinannnn. (a)
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Examples:
1. Space R™: The dual space of R™ is R™.

Proof. We have R"' =R"* by

Using above result (a),

flx) =2, &m e = flex)

(sum from 1 to n). By the Cauchy-Schwarz inequality
l=Ylani=(2) (Zw) =1 (Zw)

Taking the supremum over all x of norm 1 we obtain

ir=(Z %)

However, since for x = (71, * - *, ¥») equality is achieved in the Cauchy-
Schwarz inequality, we must in fact have

ri=( % )"

This proves that the norm of f is the Euclidean norm, and [f|=|lc|,
where ¢ = (y)€R" Hence the mapping of R™ onto R" defined by
f—— ¢ =(w), v = f(ex), is norm preserving and, since it is linear and
bijective, it is an isomorphism.

2. Space I1: The dual space of I* is [,

Proof. A Schauder basis for I' is (ey), where e, = ()
has 1 in the kth place and zeros otherwise. Then every x<!' has a
unique representation
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We consider any fel", where 1" is the dual space of I'. Since f is
linear and bounded,

fx)= 2. & Yo = fle)

where the numbers v, =f(ex) are uniquely determined by f. Also
llell =1 and

lvicl = If (e )| = If [l el = [I£1 sup |y = f]|

Hence (y) e l”.

On the other hand, for every b= (B;)el” we can obtain a corre-
sponding bounded linear functional g on I'. In fact, we may define g on
I' by

gx)= Y &P«
k=1

where x = (&)el'. Then g is linear, and boundedness follows from

|8(x)|= X, |&Be| = sup || X 1&] =IIx]| sup |8

(sum from 1 to «). Hence geI".

We finally show that the norm of f is the norm on the space [”.

From (22) we have

101 = % &n | = sup byl K16 =l sup .

Taking the supremum over all x of norm 1, we see that

Ifll=sup |l.
]
From this and (23),
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£l = sup |wl,
]

whichis the norm on I”. Hence this formula can be written |f|| = ||c||, where
¢ =(v;)el”. It shows that the bijective linear mapping of I'" onto {*

defined by f—c =(y;) is an isomorphism.

Space I°. The dual space of I” is 1% here, 1 <p <+ce
conjugate of p, that is, 1/p+1/q=1. )l

Proof. A Schauder basis for [” is (ex), where e, =(8;) as in the
preceding example. Then every x € I” has a unique representation

We consider any fel”’, where [”' is the dual space of I”. Since f is
linear and bounded,

£x) =Z Eove Ve = flew).

Let q be the conjugate of p and consider x, = (&™) with

g(n) _ I‘Yqu/‘Yk lf k =n and ‘Yk;éo,
k=

0 if k>nor v =0. 27)

By substituting this into (26) we obtain

f)= L &%= 2 Inl"
k=1 k=1

We also have, using (27)and (¢ —1)p = q,
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FO) =1 x| = ||f||(z | gg.)lp)up
=|fl (Z |Ykl(q—1h’)1’p
“IAI( X bwle)

(sum from 1 to n). Together,
1/p
fe) =Xl <A E )

Dividing by the last factor and using 1—1/p =1/q, we get

(5 ) ™" =( 8 ble) " <l

Since n is arbitrary, letting n — o, we obtain

(3 i) =i

Hence (y)e l4

Conversely, for any b=(B;)el? we can get a corresponding
bounded linear functional g on [°. In fact, we may define g on I* by
setting

g(x)= kgl &Bi

where x = (&) € l’. Then g is linear, and boundedness follows from the
Holder inequality Hence gel”".
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We ﬁn;lll‘_f ﬁrm-n: that the norm of f is the norm on the space [°.

for-Zeni=(zir) (2nr)

O\ 1/q
(% 1)

Using Holder inequality and from equation (26),

(sum from 1 to »); hence by taking the supremum over all x of norm 1
we obtain

1= (Z bnd)

From (27) we see that the equality sign must hold, that is,

q

s ] 1/
IFl={ 2 Inlt) -
k=1

This can be written ||f]|=|lcll;, where ¢ =(w)€l? and v = f(ex). The
mapping of [*’ onto [ defined by f—— c is linear and bijective, and

from (29) we see that it is norm preserving, so that it is an

isomorphism.

7.9 SUMMARY

We explained in this unit the concept of Linear Functional, Linear
Operators, Functional on Finite Dimensional Spaces, Normed Spaces of

Operators and Dual Space.
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6.11 GLOSSARY

Metric space: Let X #= @ be a set then the metric on the set X is
defined as a function d:X X X — [0,0) such that some
conditions are satisfied.

Vector space: - Let IV be a nonempty set with two operations

() Vector addition: Ifany uw,v € Vthenu+v €V
(i)  Scalar Multiplication: If any u €V and k € F then
ku eV
Then V is called a vector space (over the field F) if the
following axioms hold for any vectors if the some
conditions hold.
Normed space:- Let X be a vector space over scalar field K. A
norm on a (real or complex) vector space X is a real-valued
function on X (|lx||: X = K) whose value at an x € X is denoted
by |lx|| and which has the four properties here x and y are
arbitrary vectors in X and « is any scalar.
Banach space:- A complete normed linear space is called a
Banach space.
Linear operator:-_ A linear operator T is an operator such that
i The domain D(T) of T is a vector space and the range
R(T) lies in a vector space over the same field.
ii. for all x,y € D(T) and scalar a,
T(x+y)= Tx+Ty,
T(ax) = aTx.
Bounded linear operator:- Let X and Y be normed spaces.

Let T:D(T) -» Y be a linear operator with domain D(T) c X .
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The operator T is said to be bounded if there is a real number ¢
such that for all x € D(T),

17|l < cllx]l.

Quotient Spaces

Subspace

Finite dimensional Normed Spaces

Equivalent norms

CHECK YOUR PROGRESS

The dual space of ¢ is

The dual space of (7 is

here 1 < p < oc and % L é = 1.

The dual space of ¢y is

closed in X.
dense in X.
either closed or dense in X.

None of these.

Let X be a normed space and f be a bounded, non-zero
linear functional on X. Then, which of the following is not

true?

(a) f is onto.
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(b) f is continuous.
(c) kerf is a closed subspace of X.

(d) fis an open map.
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https://www.youtube.com/watch?v=Ow3q1A19hdY

6.13 TERMINAL QUESTIONS

Q.1.

Let X be a normed space and f,q are

nonzero linear functionals on X. Show

that

ker(f) = ker(g) <= f = cg for some nonzero scalar c.

Q.2.
Let X be a normed space and f are nonzero

linear functional on X. Show that

f is continuous if and only if ker(f) is closed.

Q.3 Define linear functional

Q.4 Define the difference between linear operator and linear functional.....

6.14 ANSWERS

CHECK YOUR PROGRESS
.

1,

fl

. ()

1.
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INNER PRODUCT SPACE AND HILBERT
SPACE

CONTENTS:

8.1.  Introduction
8.2.  Objectives
8.3.  Basics
8.3.1 Inner Product Space and Hilbert Space(Basic)

8.3.2 Inner Product Space and Hilbert Space
8.3.3 Orthogonality
Results and Examples
8.4.1 Main Results
8.4.2 Examples
Summary
Glossary
References
Suggested readings
Terminal questions

Answers

Department of Mathematics Page 170
Uttarakhand Open University




8.1 INTRODUCTION

In the preceding units, we discussed normed linear spaces and
Banach spaces. These spaces have linear properties as well as metric
properties. Although the norm on a linear space generalizes the elementary
concept of the length of a vector, but the main geometric concept other
than the length of a vector is the angle between two vectors, In this unit,
we take the opportunity to study linear spaces having an inner product, a
generalization of the usual dot product on finite dimensional linear spaces.
The concept of an inner product in a linear space leads to an inner product
space and a complete inner product space which is called a Hilbert space.
The theory of Hilbert Spaces does not deal with angles in general. Most
interestingly, it helps us to introduce an idea of perpendicularity for two
vectors and the geometry deals in various fundamental aspects with

Euclidean geometry.

The basic of the theory of Hilbert spaces was given by in 1912 by
the work of German mathematician D. Hilbert (1862 -1943) on integral
equations. However, an axiomatic basis of the theory was given by famous
mathematician J. Von Neumann (1903 -1957). However, Hilbert spaces
are the simplest type of infinite dimensional Banach spaces to tackle a

remarkable role in functional analysis.

8.2 OBJECTIVES

After studying this unit, learner will be able to

Described the concept of InnerProduct space.
Described the concept of Hilbert space.
Problems and examples related to InnerProduct space and Hilbert

space.
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8.3 BASICS

We first defined the basic orientations:

8.3.1 INNER PRODUCT SPACE AND HILBERT
SPACE

An inner product space X is a vector space with an inner product (x, y)
defined on it. The latter generalizes the dot product of vectors in three

dimensional space and is used to define

I A norm ||. [Ibyllx]| = (x, x)"2,

1. Orthogonality by (x,y) = 0.
A Hilbert space H is a complete inner product space. The theory of inner
product and Hilbert spaces is richer than that of general normed and
Banach spaces. Distinguishing features are
I Representations of H as a direct sum of a closed subspace and
its orthogonal complement.
Orthonormal sets and sequences and corresponding
representations of elements of H.
The Riesz representation of bounded linear functional by inner
products.

The Hilbert-adjoint operator T* of a bounded linear operator T.

Orthonormal sets and sequences are truly interesting only if they are total.
Hilbert-adjoint operators can be used to define classes of operators which

are of great importance in applications.
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8.3.2INNER PRODUCT SPACE, HILBERT
SPACE

Definition (Inner product space, Hilbert space) -An inner product space
(or pre-Hilbert space) is a vector space X with an inner product defined on
X. A Hilbert space is a complete inner product space (complete in the
metric defined by the inner product). Here, an inner product on X is a
mapping of X X X into the scalar field K of X; that is, with every pair of
vectors x and y there is associated a scalar which is written(x, y) and is
called the inner product of x and y, such that for all vectors x, y, z and
scalars a we have

(IP)(x +y, z) = (x, z) +(y,2)

(IP2)(ax, y) = alx, y)

(IP3){x, y) = (y,x), {(x,x) =0

(IP4A){x,x) =0 & x=0.

An inner product on X defines a norm on X given by

Wllxll = (x,x)2 (= 0)

and a metric onX given by

)dxy) =llx—yll= Jlx—y, x—y)
Hence inner product spaces are normed spaces, and Hilbert spaces

are Banach spaces.

In (IP3), the bar denotes complex conjugation. Consequently, if X

is a real vector space, we simply have

(x,y) = (y,x) (Symmetry).
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From (IP1) to (IP3) we obtain the formula

(3) (a) (ax + By, z) = alx,z) + By, z)
(b) (x,ay) = @{x,y)
(€ )x, ay + Bz) = @ (x,y) +px, z)

which we shall use quite often. (3a) shows that the inner product is linear
in the first factor. Since in (3c) we have complex conjugates @ and S on
the right, we say that the inner product is conjugate linear in the second

factor. Expressing both properties together, we say that the inner product

is sesquilinear. This means "1% times linear” and is motivated by the fact

that "conjugate linear" is also known as “semilinear" (meaning
"halftinear”), a less suggestive term which we shall not use. The reader
may show by a simple straightforward calculation that a norm on an inner

product space satisfies the important parallelogram equality

@llx +ylI* + lle = ylI* = 2(lxl* + 1yl1?).

This name is suggested by elementary geometry, as we see from Fig. 23 if
we remember that the norm generalizes the elementary concept of the
length of a vector . It is quite remarkable that such an equation continues
to hold in our present much more general setting. We conclude that if a
norm does not satisfy (4), it cannot be obtained from an inner product by
the use of (1). Such norms do exist; examples will be given below.

Without risking misunderstandings we may thus say:

Not all normed spaces are inner product spaces.
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Before we consider examples, let us define the concept of orthogonality,
which is basic in the whole theory. We know that if the dot product of two
vectors in three dimensional spaces is- zero, the vectors are orthogonal,
that is, they are perpendicular or at least one of them is the zero vector.
This suggests and motivates the following

Parallelogram with sides x and y in the plane

Fig.8.3.2

8.3.3 ORTHOGONALITY

An element x of an inner product space X is said to be orthogonal
to an element y € Xif

(x,y)=0.
We also say that x and y are orthogonal, and we write x L y. Similarly,
for subsets A,B < Xwe writex L A if x L aforall a € A, and A L B if
a 1 bforalla € Aand all b € B.

8.4.0 RESULTSANDEXAMPLES

8.4.1 RESULTS
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Theorem 8.4.1: Every inner product function is a continuous function.
(Equivalently, if f: X x X — C defined by f(x,y) = (x,y),Vx,y €

X then f is continuous).

Proof: Let X be an inner product space. Define f : X X X — Cby
fl,y) ={(x,y),Vx,y € X. Now take {x,} and {y,} be a sequence
inXsuchthatx, - xasn - oandy, » yasn - oo.

So, [[Xp — x[| » 0asn —» cand [y, — y|| » Oasn — . As, x, = x
asn — oo then, ||x,|| = ||x|| asn — oo. So, {||x,]||} are bounded. So, there

exists a constant M > 0 such that ||x,|| < M,V n.

Now, |<xn,yn) - (x,y)|
= (%0 y,) = (X0 ¥) + (X, ) — (x,7)]
= [y, = ¥) + = 2,0 < (XY, = V) + Xn— x,¥)
< lxll Hly,, = Il + llxn = x| [yl [By C-Sinequality ]

< M||yn— y|| + |l x| 1yl

- QOasn —» o
i.e (Xp,y,) > (x,y)asn — co,implying that f(x,,y,) = f(x,y)as

n — 0. So, f is continuous.

Theorem 8.4.2 (Parallelogram Law): Let X be an inner product space

and let x, y € X. Then,

lx + yI|* +lx = yII* = 2q1=l)” + Iyl

Proof: [Ix + yl|" = (x + y,x + y) = (X1 + (Y + 3,0+ (3,Y)
[lxl|* + 1yl + (y) + (x)@43)and|lx — ¥l = (x — y,x = )
= (0 + (=) + (=3, + (~y,—y)
l1xl) + [Iyl]” = (x2) — (v, x)(8.4.4)
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Adding (8.4.3) and (8.4.4) we get
lx + yI1? + llx =yl = 2(11x|1* + [ly1I?)

Theorem 8.4.5(Polarization Identity): Let X be an inner product space, let
x,y € Xthen,

(x,yy = Zllx + Y12 = e = ylI2 + i llx + iyll? = llx — iyll?)

Proof: Now,[lx + yII? = |IxI|* + |lyl]" + () + (7,%) (8:4.6)

lx = ylI2 = [lx|1> + [IYII* = (x,¥) = (¥, %)(8.4.7)
Replacing y by iy in (8.4.6) and (8.4.7)
llx + iyll? = ||x[]? + [|iy]|* + (x, iy) + (iy,x)
= |1x|1? +1l¥II* = ix,y) + i(y,x)(8.4.8)
llac — iylI? = J1xl* +11iyll* = (x i) = (i, %)
= |lx|1* +[l¥II* + i{x,y) — i(y,x)(8.4.9)
(8.4.6) - (8.4.7) + i(8.4.8) -i(8.4.9), we get the required result.

8.4.2 EXAMPLES

Example 1: The Euclidean space R™ is a Hilbert space.

Solutions:-Euclidean space R™- The space R™ is a Hilbert space with

inner product defined by
(5) <x: y) = 51771 + ---fnnn
Wherex = (Ej) = e &andy = ;= (Mg, e e 1),
In fact, from (5) we obtain
lIxll = ¢x,x) /2 = (&% + -

And from this the Euclidean metric defined by
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dixy) = lx =yl = (x—y,x —y)'2
= [ = nD? + o (G — )] 2
If n = 3, formula (5) gives the usual dot product
(yy=x-y=&n +&n, +&m;
Of x = (&:.€,&3)and y = (n11m.n3), and the orthogonality
(x,y)=x-y=0
agrees with the elementary concept of perpendicularity.

Example 2:- The Euclidean space C" is a Hilbert space.

Solution: -Unitary space C™ - The space C" is a Hilbert space with inner
product given by

(6) (xx,y) = &y +
In fact, from (6) we obtain the norm defined by

lxll = (86 + . 8050) 72 = (6,12 + . |62

Here we also see why we have to take complex conjugates 7,in (6); this

entails(y, x) = (x,y), which is (IP3), so that (x, x)is real.
Example 3: The space L?[a, b] is a Hilbert space

Solutions:-Space L?[a, b]. The norm is defined by

x| = ( be(:)2 dr)m

and can be obtained from the inner product defined by
b

(x, y>=j. x(0)y(t) dt.
a
(7)
In connection with certain applications it is advantageous to remove that

restriction and consider complex-valued functions (keeping t € [a, b]
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real, as before). These functions form a complex vector space, which

becomes an inner product space if we define

b
(x, y)= J x(8)y (1) dt.

(7)
Here the bar denotes the complex conjugate. It has the effect that (IP3)
holds, so that (x, x) is still real. This property is again needed in

connection with the norm, which is now defined by

= ([ becor @)™

Because x(t)x(t)= |x(t)|2.

The completion of the metric space corresponding to (7) is the real space
L?[a, b]. Similarly, the completion of the metric space corresponding to
(7*) is called the complex spaceL?[a, b]. We shall see in the next section
that the inner product can be extended from an inner product space to its
completion. Together with our present discussion this implies that

L?[a, b]is a Hilbert space.

Example 4:Hilbert Sequence Space I?.The space I? is a Hilbert space with

inner product defined by

(x,y)= ), &
(8) =1
Convergence of this series follows from the Cauchy-Schwarz inequality

and the fact that x, y € 12, by assumption. We see that (8) generalizes (6).
The norm is defined by

= (x, x)2 = (z ;g,.r)”_

Completeness of IP - The space 1Pis complete.( with p=2)

Proof- Let (x,) be any Cauchy sequence in the space [P, where
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X = (E,™,&,™,...) . Then for every e > 0 there is an N such that

forallm,n > N,

> 1/p
o= ( 3 16 g) " <
©) -

It follows that for every j = 1, 2,...we have
(10)

& =& < (m, n> N).

We choose a fixed j. From (10) we see that (&;V,&,, ....) is a Cauchy
sequence of numbers. It converges since R and C are complete, say,

&™) - &asm — oo. Using these limits, we define x = (&, ,,....) and
show that and x € [P and x,,, — x.

From (9) we have forall m,n > N

k
Z | }m]_g}n)lp <P
1=1

Letting n — %, we obtain for m> N
{m) p P
| i 5}' =e
i=1

We may now let k — oc; then for m >N

e =]

Y lE™m—glP=en.
ap 7
This shows that x,, —x = (§™ - &) € IP. Since x,, € I? it follows by
means of the Minkowski inequality, that
X=Xnm+(x—x,)€l"
Furthermore, the series in (11) represent[d(x,,, x)]P, so that (11) implies

that x,, — x. Since (x,,) was an arbitrary Cauchy sequence in 1P , this

proves completeness of 1P, wherep = 2 and also 1 < p < +4oo.
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[2is the prototype of a Hilbert space. It was introduced and investigated by
D. Hilbert (1912) in his work on integral equations. An axiomatic
definition of Hilbert space was not given until much later, by J. von
Neumann (1927), in a paper on the mathematical foundation of quantum
mechanics. Cf. also J. von Neumann (1929- 30), and M. H. Stone (1932).
That definition included separability, a condition which was later dropped
from the definition when H. LOwig (1934), F. Rellich (1934) and F. Riesz
(1934) showed that for most parts of the theory that condition was an

unnecessary restriction.

Example 5: For 1 < p < oo,IP (p # 2) is not an inner product space
and hence not a Hilbert space

Solutions:-Our statement means that the norm [P of with cannot be

obtained from an inner product. We prove this by showing that the norm

does not satisfy the parallelogram equality (4). In fact, let us take

x = (1,1,0,0,...) elPIPandy = (1,-1,0,0,...) € [P and calculate
llxll = llyll = 2", llx+yll = llx -yl =2

We now see that (4) is not satisfied if # 2.

[Pis complete. Hence [P withp # 2 is a Banach space which is not a

Hilbert space. The same holds for the space in the next example.

Example 6:The space C[a, b] is not an inner product space, hence not a

Hilbert space.

Solution:-. We show that the norm defined by.
]| = max [x(e)]

V]

J=[a,b]

cannot be obtained from an inner product since this norm does not satisfy

the parallelogram equality (4). Indeed, if we take x(t) = 1 and
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y(®) = (t— a)/(b — a), wehave |lxl| = 1, llyll = 1 and
(t - a)
b - a)
(t - a)
b - a)

x(®)+y) =1+

x(t)—y)=1-

Hence [lx + yll = 2 and [lx — y|| = 1

llx +ylI? + llx — ylI* = Sbut2(llx|1* + llyll*) = 4

This completes the proof.

It is remarkable that, conversely, we can "rediscover” the inner product
from the corresponding norm. In fact, the reader may verify by

straightforward calculation that for a real inner product space we have

(12) () = 3+l = llx =yl

and for a complex inner product space we ha

(13) Re(x,y) =  (Ilx +yII? = Ilx - yII?)

1
Im(x,y) = —(llx + iyll* = llx — iyll*)
4

Formula (13) is sometimes called the polarization identity.

Example 7: The space L?[a,b], the space of all square integrable

functions over [a, b] is a Hilbert space.

Solutions:-Define  the inner product on L2%[a,b] by (xy) =

f:|x(t)y(t)| dt,vx,y € Lz[a, b] and the norm on L?[a, blis given by ||x|| =

/ f:lx(t)l2 dt. Also with respect to this norm it can be shown that L?[a, b] is

complete with respect to a metric defined by

1
d(x,y) = [f:lx(t) - y(t)lz] /250 L?[a, b]]is a Hilbert space.
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Remark:

Whenever we are addressed with the problem of verifying whether given
function defines a norm or not, the first three properties will be more or
less obvious, and most of the effort, if any, would go in verifying the
triangle inequality.

So, once a vector space with a norm would be called a normed linear
space. So, given a normed linear space we can define a metric d(x,y) =
lx —yll > 0,vx,y € X It is clear that d(x,y)is non-negative and
d(x,y) = 0if andonly if x = y. Now, by the triangle inequality, we get
d(x,v) <d(x,z) + d(z,y);Vx,y,z € XTherefore, the distancefunction d
satisfies the usual triangle inequality for a metric; and that is why we have
the same name for these two inequalities.

Therefore, automatically a normed linear space gets a topology defined by

this norm which is a nice metric topology; and that is called the norm

topology of this vector space.

SOME NORMS

Norm

l1xIl

1/2
(Zalol’) =P+ Tl

P (Z;?"=1|xj|p)1/pwhere 1<p<ow

lOO

supj|xj| if p=o0

Cla, b] maxe;1x(0)]

Set of all continuous real

fo (ol dt

—valued functions on
[0,1]
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Note:
PclPifl<p<p <o,
Note:
¢ = {x € I°: (x(j))converges in K}.
co = {x € c: (x(j))converges to 0 in K.
Cop = {x € [P all but finetely manyx/sare 0}, 1<p< oo

Note:

For 1 < p < oo,by LP(E), we mean a collection of equivalence classes [f]
for which |f|? is integrable. Thus

f €LP(E) & [IfIP < oo.
Sometimes we denote the collection of such functions by the symbol L?.
Note:

A measurable function f on measurable set E is said to be an essentially
bounded function if there exists My > 0 such that

|f (x)| < Mgfor all most all x € E.

We define L*(E)to be the collection equivalence classes [f] for which
fis essentially bounded functions on E.

Therefore f € L*(E) < there exists My > 0 such that |f(x)| < Mfor
almost all x € E.

Note:

For E a measurable set, 1< p <o, and a function f in LP (E'), we denote

Iflly = (I f1P)/p,and for p = o, lIfllee = inf (M, >0

|f (x)| < Mgfor almost all x € E}.
Note:

For 1< p < oo, LP(E) is a vector space overR.
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8.5 SUMMARY

This unit we have start from some basic definitions (inner product

space, Hilbert space). After that we have defined these spacesthe

properties then result and examples defined.

8.6 GLOSSARY

Inner Product Space: A function(,-)that maps pairs of vectors to
real or complex numbers, satisfying conjugate symmetry, linearity,
and positivity.

Norm: A function |I-|| derived from the inner product, defined asl|
x |l= (x, x)representing the length or magnitude of a vector.
Orthogonality: A condition where two vectors x, y are orthogonal
if (x,y)=0

Hilbert Space: A complete inner product space, meaning every
Cauchy sequence converges to a limit within the space.
Completeness: A property of a space where every Cauchy
sequence has a limit that is also within the space.

Cauchy Sequence: A sequence {x,}where for everye >0,
there exists anN such that for all m,n > N, || x,,, — x,, I< €.
Orthonormal Set: A set of vectors that are orthogonal to each
other and each have unit norm(]l x ll= 1)

Orthonormal Basis: A basis consisting of orthonormal vectors,
which allows for straightforward vector decomposition and
reconstruction.

Cauchy-Schwarz Inequality: An inequality stating

| (x,y) I<Il x Illl y Il |for all vectors x and y.
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Triangle Inequality:An inequality stating

Il x+y II<ll x | +I y lifor all vectors x and y.
L? Space: The space of square-integrable functions, where the
inner product is defined by (f, g) = [ f(x)g(x) dx.
Finite-Dimensional Hilbert Space: Any finite-dimensional inner
product space, which is automatically complete and thus a Hilbert
space.

CHECK YOUR PROGRESS
Fill in the Blanks:

1. A vector space equipped with an inner product is called an

A is a complete inner product space.
In an inner product space, two vectors are said to be
their inner product is zero.
. The inner product of a vector with itself is always and is
zero if and only if the vector is the vector.
In a Hilbert space, every sequence converges to a limit
within the space.
. The -Schwarz inequality is a fundamental property of
inner product spaces.
. The space of square-integrable functions, denoted by
an example of a Hilbert space.
True/False
8. Every Hilbert space is an inner product space..True/False.
9. Every inner product space is a Hilbert space. True/False.
10. In a Hilbert space, every Cauchy sequence converges to a limit within

the space. True/False.
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. The norm defined by an inner product always satisfies the triangle
inequality. True/False.

. Orthogonal vectors in an inner product space always have an inner
product of zero.True/False.

. All finite-dimensional inner product spaces are Hilbert
spaces. True/False.

. The inner product of two vectors in an inner product space is always a
real number. True/False.

. A complete normed space is known as a : Hilbert space
I Compact space
ii. Banach space

iii. Euclidean space

iv.  Hilbert space

16.The term Hilbert space stands for a :

i.  Complete inner product space

ii.  Compact linear space

iii.  Complete normed space

iv.  Complete metric space

17. Which of the following is Cauchy-Schwartz inequality?

v1/2

(a) |(z.v)] < {z,x)1/2 - (y, y)
[]}:' |'::,i"_. Y . . ':I.' 2 ::u U::J—:'
(c) [{z,y}| < 2.y, a2

I

(d) [{z, ) < (z,2) - (y,y)
18. The distance between any two orthonormal vectors in an inner product
space is:
a) 1
b) V2
c) 1
d) 2
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19.Which of the following is known as the parallelogram law?

(a) [lz + ylI2 = 2ll|? + 2]ly|?

(b) ||z + y||* + ||z — yl* = 2||=|I* + |lv]I?

(e) [l +yl* + ll= — ylI* = 2(ll=I* + |l¥]I*)
(d) llz +ylI* = llz — ylI* = 2/l=|I* + |y
20. Two vectors x, y in an inner product space are orthogonal if :
(a) (z,y) =0
(b) llz]l = llv]l =1
(¢) {z,y} #0
(d) None of these.
21. If two vectors x, y in an inner product space are orthogonal, then:
(a) [l +yl* = 2|z|* + 2|yl
(b) llz+yl* = [l=]|* + [lylI®
(c) lz+y||=0

(d) None of these.
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8.9 TERMINAL QUESTIONS

1. Ifaninner product space X is real, show that the condition
llxll = llyllimplies(x + y,x — y) = 0.

What does this mean geometrically if X = R2? What does the
condition imply if X is complex?
What is an inner product space, and how is it defined.
Explain the concept of a Hilbert space. What makes a Hilbert space
different from a general inner product space?

. What is orthogonality in the context of inner product spaces?
Provide an example.
Provide an example of a Hilbert space that is not finite-

dimensional.
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8.10 ANSWERS

CHECK YOUR PROGRESS

Inner product space.
. Hilbert space
. Orthogonal
. Non-negative, Zero
Cauchy
Cauchy
. L2
. True
False
True
. True
True
. True
. False
. (i)
. (i)
. (@
(b)
(c)
(a)
. (b
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9.1 INTRODUCTION

After completion of previous unit the learner are familiar about
inner product space. Now in the present unit we are explaining the

properties of inner product space.

9.2 OBJECTIVES

After studying this unit, learner will be able to

Described the concept of Isomorphism of an inner product
space.

ii. Explained the Orthogonal Complements and Direct Sums.

iii.  Describe the idea of an Orthonormal Sets and Sequence.

9.3 LEMMA AND THEOREM

Lemma 1 (Schwarz inequality, triangle inequality).

An inner product and the corresponding norm satisfy the Schwarz
inequality and the triangle inequality as follows.

@) [<x,y >| < llxllllyll (Schwarz inequality)

where the equality sign holds if and only if {x, y} is a linearly dependent
set.
(b) That norm also satisfies
llx + ¥l < llxIl + llyll (Triangle inequality).
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Where the equality sign holds if and only if y = 0 or x = cy (c real and
> 0).

Proof.
(@) If y =0, then (1) holds since < x,0 = 0.
Lety # 0.

For every scalar a we have,

0=|x—ay|f ={(x—ay, x—ay)
=(x, x)—a(x, y)—a[{y, x)—a(y, ).

We observe that the expression in the brackets [ ] is zero if we

choose,
a =y, x)/(y, y)-

The remaining inequality is,

0={(x, x)_.w<x, y)znxl'z_l(x’ )| )

(y, y) Iyl

We are using here

(y, x)=(x, y).

Multiplying by [|y||?, transferring the last term to the left and taking
square roots, we obtain (1).
Equality holds in this derivation if and only if y = 0 07 0 = ||x — ay||?

hence x — ay = 0, so that x = ay, which shows linear dependence.
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(b) We prove (2). We have,

Ix + yIP = (x+y, x +y) = x| +{x, y) +(y, x)+ |yl

By the Schwarz inequality,

[Cx, ) =Ky, x) =|x[ ]l
By the triangle inequality for numbers we thus obtain,
lx + yIP = [x[*+2 Kx, y) +lyIP

=[P +2 el Iyl + 1P
= (lei+ 1)

Taking square roots on both sides, we have (2). Equality holds in this

derivation if and only if,

(x, V) +{y, x)=2x[ Iyl

The left-hand side is 2Re < x,y >, where Re denotes the real part. From
this and (1),

(3) Re (x, y)= x| [lyll= Kx, y)-

Since the real part of a complex number cannot exceed the absolute value,

we must have equality, which implies linear dependence by part (a), say
y =0o0rx=cy. We show that c is real and > 0. From (3) with the

equality sign we have
Re (x, y)=[(x, y)-

But if the real part of a complex number equals the absolute value, the

imaginary part must be zero.
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Hence (x, y)=Re{x, y)=0 by (3), and ¢ =0 follows from

0=(x, y)={(cy, y)=c|ly|’.

Lemma 2.(Continuity of inner product).

If in an inner product space ,
X, — x and y, —> v, then (x,, y.)—> (X, y).

Proof. Subtracting and adding a term, using the triangle inequality for

numbers and, finally, the Schwarz inequality, we obtain
KX Y = (%, Y = Ky Yd = (X, Y3+ (X, Y2 —(x, ¥))
=[(%n, Yo = )+ [0 — x, Y|

= [xall llyn = yll+ Il = [ 1yl

Since,

Vo—y—>0and x,—x——> 0 as n ——> o,

9.4 ISOMORPHISM OF AN INNER PRODUCT
SPACE

An isomorphism T of an inner product space X onto an inner product
space X over the same field is a bijective linear operator T: X — X
Which preserves the inner product, that is, for all x,y € X,

<Tx,Ty>=<x,y >,
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where we denoted inner products on X and X by the same symbol, for
simplicity. X is then called isomorphic with X and X and X are called
isomorphic inner product spaces.

9.5 THEOREM

Theorem 3. For any inner product space X there exists a Hilbert space H
and an isomorphism A from X onto a dense subspace c H . The space H is

unique except for isomorphisms

Proof. Since we know the result, if X = (X, ||.||) be a normed space. Then
there is a Banach space X and an isometry A from X onto a subspace W of
X which is dense in X. The space X is unique, except for isometries.

For reasons of continuity, under such an isometry, sums and scalar
multiples of elements in X and W correspond to each other, so that A is
even an isomorphism of X onto W, both regarded as normed spaces.

Lemma 2 shows that we can define an inner product on H by
setting,

(%, §)= Tim (o ya),

The (x,,) and (y,,) are representatives of X € H and § € H, respectively.

From previous unit we see that A is an isomorphism of X onto W, both
regarded as inner product spaces. In starting lines we also explain the
guarantees that H is unique except for isometries, that is, two completions
H and H of X are related by an isometry T: H — H. Reasoning as in the
case of A, we conclude that T must be an isomorphism of the Hilbert space

H onto the Hilbert space H.
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Subspace of an inner product space:

A subspace Y of an inner product space X is defined to be a vector
subspace of X taken with the inner product on X restrictedto Y X Y.
Similarly, a subspace Y of a Hilbert space H is defined to be a subspace of
H, regarded as an inner product space. Note that Y need not be a Hilbert

space because Y may not be complete.

Theorem 4:

Let Y be a subspace of a Hilbert space H.
Then:

(@) Y is complete if and only if Y is closed in H.
(b) If Y is finite dimensional, then Y is complete.

(¢) If H is separable, so is Y. More generally, every subset of a
separable inner product space is separable.

9.6 ORTHOGONAL COMPLEMENTS AND
DIRECT SUMS

In a metric space X, the distance 8 from an element x€ X to a
nonempty subset M < X is defined to be

&= inf d(x, §) (M# Q).

yeEM

In a normed space this becomes

(1) 8= inf |x -7
yEM

(2) &=[x-yl,
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Fig.9.5.1
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(No y) (A unique y) (Infinitely many y's)
(a) (b) (c)

Fig 9.5.2

Existence and uniqueness of points y € M satisfying (2), where the given M < R’
is an open segment [in (a) and (b)] and a circular arc [in (c)]

The above figure illustrates that even in a very simple space such as the
Euclidean plane R? there may be no y satisfying (2) or precisely one
such y, or more than one y.

And we may expect that other spaces, in particular infinite
dimensional ones, will be much more complicated in that respect. For
general normed spaces this is the case but for Hilbert spaces the situation

remains relatively simple. This fact is surprising and has various
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theoretical and practical consequences. It is one of the main reasons why
the theory of Hilbert spaces is simpler than that of general Banach spaces.

9.6.1 SEGMENT AND CONVEX SET

To consider that existence and uniqueness problem for Hilbert
spaces and to formulate the below results, we need two related concepts,
which are of general interest, as follows.

The segment joining two given elements x and y of a vector space X is

defined to be the set of all z € X of the form

z=ax+(1—a)y (aeR,0=a=1).

A subset M of X is said to be convex if for every x, y € Mthe segment
joining x and y is contained in M.
For instance, every subspace Y of X is convex, and the intersection of

convex sets is a convex set.

Fig.9.5.1

Segment in a convex set
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9.6.2 DIRECT SUM

A vector space X is said to be the
direct sum of two subspaces Y and Z of X, written

X=Y®Z,
if each x € X has a unique representation
x=y+z

veY, ze Z.

Then Z is called an algebraic complement of Yin X and vice versa, and Y,

Z is called a complementary pair of subspaces in X.

For example, Y=R is a subspace of the Euclidean plane R’

Clearly, Y has infinitely many algebraic complements in R?, each of
which is a real line. But most convenient is a complement that is
perpendicular. We make use of this fact when we choose a Cartesian
coordinate system. In R® the situation is the same in principle.

Similarly, in the case of a general Hilbert space H, the main
interest concerns representations of H as a direct sum of a closed
subspace Y and its orthogonal complement

Y'={zeH|zlY},

which is the set of all vectors orthogonal to Y.
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9.6.3 LEMMA AND THEOREM

Theorem 5:

Let X be an inner product space
and M# & a convex subset which is complete (in the metric induced by
the inner product). Then for every given x € X there exists a unique ye M
such that

(3) 8= inf x—y]=x~yl.
vVEM

Proof. (a) Existence. By the definition of an infimum there isa
sequence (y,) in M such that Jat

(4) 5, —> 8 where 8n =[x — yall-

We show that (y,) is Cauchy. Writing y, — x = v,, we have ||v,||= 8, and

[on + Ol =llyn + Y = 2] = 2 [5(yn + ym) — x| 225

because M is convex, so that %(yn+ym)eM. Furthermore, we have
Yn — ¥m = Un — Um. Hence by the parallelogram equality,

1y = YoulI* = [[on = Vml* = =llvn + Oml* + 2(|val* + | 0m )
=—(26)*+2(8,2+ 6,),

and (4) implies that (y,) is Cauchy. Since M is complete, (y,) con-
verges, say, y. —> Y€ M. Since ye M, we have |x—y|= .

Also by (4),
Ix = yll=lx = yall+lya = yll= 82 +ly. = yll

This shows that ||x —y| = 8.
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(b) Uniqueness. We assume that ye M and y,e M both
satisfy

lx—yl=3 and lx = yoll = 8

and show that then y,=y. By the parallelogram equality,
ly = yol* =ll(y = x) = (yo— x)I

=2ly = xI*+2 [lyo—xI* = |y = %) + (o= %)II

=28%+28%-275(y + yo) — x[*.

On the right, 3(y + yo) € M, so that

[2(y + yo)—x|| = 8.

This implies that the right-hand side is less than or equal to
28%+28>—46”=0. Hence we have the inequality ||y — yo||=0. Clearly,
ly = yoll=0, so that we must have equality, and yo=y.

In from above theorem following lemma can be proved.

Lemma 3.

) let M be a com-
plete subspace Y and x € X fixed. Then z=x—Yy is orthogonal to Y.

Proof. If z1Y were false, there would be a y, € Y such that

(5) _<Z, y1)=B#O

Clearly, y; # 0 since otherwise (z, y;)= 0. Furthermore, for any scalar a,
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"z—aym2=(z—ayhz—wqh)

=(z, z)— a(z, y1)— al{y1, 2) —alyi, y»]
=(z, z)—ap —al[B—aly, yi)l.

The expression in the brackets [- - -] is zero if we choose
B
(y1, y1)

&:—.

From (3) we have |z||=||x — y||= 8, so that our equation now yields

2
|B| <52.

2 2
z— =|z|"—
==y =1z~

But this 1s impossible because we have

Z—ay;=x—y; where y2=yt+ay €Y,
so that ||z —ay;||= & by the definition of 8. Hence (5) cannot hold, and
the lemma is proved.

Theorem 6:

Let Y be any closed subspace of a
Hilbert space H. Then

(6) H=Y®Z Z=Y"

Lemma 4:

The orthogonal complement Y of a
closed subspace Y of a Hilbert space H is the null space N(P) of the
orthogonal projection P of H onio Y.

Department of Mathematics Page 203
Uttarakhand Open University




An orthogonal complement is a special annihilator, where, by
definition, the annihilator M* of a set M# (J in an inner product space
X is the set

M*={xeX|x.LM}.

Thus, x € M* if and only if (x, v)=0 for all ve M.

« 4 ~

(M*)* is written M**, etc. In general we have l
(8%) Mc M

Lemma 5:

If Y is a closed subspace of a
Hilbert space H, then

8) Y=Y"

Lemma 6:

For any subset M# & of a Hilbert space
H, the span of M is dense in H if and only if M*={0}.

9.7 ORTHONORMAL SETS AND SEQUENCES

An orthogonal
set M in an inner product space X is a subset M = X whose elements
are pairwise orthogonal. An orthonormal set M < X is an orthogonal
set in X whose elements have norm 1, that is, for all x, ye M,

if x#y
if x=y.

) (x, y) = {?
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If an orthogonal or orthonormal set M is countable, we can

arrange it in a sequence (x,) and call it an orthogonal or orthonormal
sequence, respectively.

More generally, an indexed set, or family, (x.), a€l, is called
orthogonal if x,1lxg for all @, Bel, a#B. The family is called
orthonormal if it is orthogonal and all x, have norm 1, so that for all
a, Bel we have

@) O

Here, 8, is the Kronecker delta

In particular, we may take
the family defined by the natural injection of M into X, that is, the
restriction to M of the identity mapping x+—— x on X.

For orthogonal elements x, y we have (x, y) =0, so that we readily
obtain the Pythagorean relation

3) -+ y I =[xl + [yl

x +y

Il

Fig.9.7.1
Pythagorean relation (3) in R?
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More generally, if {x,- - -, x,}
is an orthogonal set, then

(4) [n el =l o

In fact, (x;, x¢) =0 if j# k; consequently,

DE R OFSEAED D RSRE) X N,

i

Lemma 7: An orthonormal set is linearly independent.

Proof. Let {ey, - -, e} be orthonormal and consider the equa-
tion
a.e;+- - '+anen=0.

Multiplication by a fixed e; gives

<Z o8y, ej> = Z ak(ek, ej) = a}'(eja ej) =o; = 0
k k

and proves linear independence for any finite orthonormal set. This also
implies linear independence if the given orthonormal set is infinite, by the

definition of linear independence.

9.8 SUMMARY

In starting of the unit we have given some Lemma and Theorem
then Isomorphism of an inner product space is defined. After that
Orthogonal Complements and Direct Sums: Segment and Convex Set,
Direct Sum, Orthogonal complement and Orthonormal Sets and Sequence

defined in a simple manner.
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9.9 GLOSSARY

Metric space: Let X #= @ be a set then the metric on the set X is
defined as a function d:X X X — [0,00) such that some
conditions are satisfied.

Vector space: - Let IV be a nonempty set with two operations

() Vector addition: Ifany uw,v € Vthenu+v €V

(i)  Scalar Multiplication: If any u €V and k € F then
ku eV
Then V is called a vector space (over the field F) if the
following axioms hold for any vectors if the some

conditions hold.

Normed space:- Let X be a vector space over scalar field K. A

norm on a (real or complex) vector space X is a real-valued

function on X (||lx|l: X - K) whose value at an x € X is denoted

by |lx|| and which has the four properties here x and y are

arbitrary vectors in X and « is any scalar.

Banach space:- A complete normed linear space is called a

Banach space.

Inner product space.

Hilbert space.
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CHECK YOUR PROGRESS
Fill in the blanks
1. Ifinan

X, — x and y, —> v, then (x,, y.)—> {x, y).

. Asubset M of X is said to be if for every x, y € Mthe

segment joining x and y is contained in M.

For any subset M £ 0 of a Hilbert space

H, the span of M is dense in H

. An isomorphism T of an inner product space X onto an inner
product space X over the same field is a bijective linear operator
T:X — X Which preserves the

For any inner product space X there exists a Hilbert space H and
an isomorphism A from X onto a The space H is unique

except for isomorphisms
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9.12 TERMINAL QUESTIONS

What is the Schwarz inequality in R* or R*? Give another proof of it in
these cases.

Give examples of subspaces of I°.

Show that in an inner product space, x Ly if and only if [|x + ay||=||x|
for all scalars a.

4. Give examples of representations of R> as a direct sum (i) of a

subspace and its orthogonal complement, (ii) of any

complementary pair of subspaces.
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https://www.youtube.com/watch?v=Ow3q1A19hdY

9.13 ANSWERS

CHECK YOUR PROGRESS

. inner product space

. convex
if and only if M* ={0}.

. inner product

. dense subspace c H
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UNIT 10: HILBERT ADJOINT OPERATOR
AND OTHER OPERATORS

CONTENTS:
10.1 Introduction

10.2  Properties of Hilbert adjoint operator

10.3  Self adjoint, normal and unitary operators

10.4  Important theorems on elf adjoint, normal and unitary operators
10.5 Solved Examples

10.6  Summary

10.7  Glossary

10.8  Terminal questions

10.9  Answers to terminal questions

10.1 INTRODUCTION

Definition10.1.1. Let T: H; — H, be a bounded linear operator, where
H,andH, are Hilbert spaces. Thenthe Hilbert-adjoint operator T* of T is
the operatorsuch thatfor all x € H, and y € H,,

(Tx,y)=(x,T"y)
We should show that this definition makes sense, that is, for a given T, T*
does exist and it is unique. Before this, consider the following example

and a remark:

Example 10.1.1. Consider: H; = H, = R*,x = (1, %5, X3.%, ),

y = (Y1, Y2, y3,ys ) andT: R* - R* is defined as
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T(xl,xz,x3,x4,) = (xz,x3,x4,, 0).
Then,
(x,T"y) = (Tx,y)
= (x, T*y) = (T(xy, %5, x3%4), (¥1, V2, ¥3.Y1.))

= <(x2' X3, x4,' 0), (le Y2, y3,Y4,)>
= X2Y1 + X3V T X4Y3
= ((XIJXZJX3,X4,>J (0, Y1, Y2, y3))

Therefore, T"y (= T*(yl,ywa,n,)) = (0,y1,52,¥3)-

Remark 10.1.1.Fora bounded linear operatorT: H; — H,, its double

Hilbert adjoint issame as T, i.e. T*™* = T.

Proof: For each x € H, and y € H,, (Tx,y) = (x,T*y) =(T*y,x) =
(y,T**x) =(T**x,y). Thus, T = T**.

Theorem 10.1.1 The Hilbert adjoint operator T* of a bounded linear
operator T exists, unique and is bounded linear operator with norm ||T|| =

17|

Proof: For given y € H,, hy,(x) =(Tx,y) , for each x € H, ,defines a
linear functional onH;. This can be seen as follows:
hy(ax + Bz) =(T(ax + fz),y)
=(aTx + BTz, y)

= (aTx,y) + (BTz,y)

= a(Tx,y) + p(Tzy)

= ahy,(x) + Bhy(2).
Thus, h,(x) is a linear functional in first quadrant. Now by the Schwarz

inequality
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|hy )| = 1Tx, yI < [ITxI| x [Iyl] < [ITI] x [1x[] x [Iyl].

Hence, ||hy|| < ITl] % [Iyl]-

Now, by Reisz representation theorem there exists a unique y, € H; such
that

hy () = (x, yo) and ||y || = [Iyol.
This implies that (Tx, y) = {x, y,)-
Define, T*: H, - H, as T"y = y,. Hence for the operator T, its Hilbert

adjoint exists and it is unique.

Also, [ITy1| = [lyol| = |Inyl| < IT1] x [Iy1].

This implies that [|T*]| < |ITI|. And, since T =T, therefore ||T**|| <
[IT*1|i.e. [ITI| < |IT*I|. Hence |IT*|| = [ITI|.

Proposition 10.1.1 Let X and Y be inner product spaces and $: X - Y
be a bounded linear operator. Then:
a) S=0ifandonlyif (Sx,y)=0forallxe Xandy €Y.
b) If S: X — X, where X is over complex field, then (Sx, x) = Ofor all
x € Xifandonly if S = 0.

Proof: (a) If S = 0, then Sx = 0 for all x € X. And hence (Sx,y) = 0 for
alx e Xand y €Y.

Conversely, assume that (Sx,y) =0 for all x € X and y € Y. Then
putting y = Sx, we have (Sx,Sx) =0 for all x € X. This implies that

||Sx||2 = 0, for all x € X. Consequently, Sx = 0, forall x € X.
(b) It is very obvious that if S =0, then (Sx,x) = Ofor all x € X.
Conversely, assume that if (Sx,x) = Ofor all x € X, then by polarization

identity (Sx, y) = 0, for all x, y € X. And thus by part (a) S = 0.

Remark 10.1.2. Note that, in the statement (b) of above proposition X is
over complex field is essential. In case of, X is over real field, this result
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may not be true. For e.g. take X = R? and S:R? —» R? defined as

S(xq,x,) = (—x,,x1). Then in this case (Sx,x) = 0, whereas S # 0.

10.2PROPERTIES OF HILBERT ADJOINT
OPERATOR

Theorem 10.2.1 Let H,, H,be Hilbert spaces, S:H, - H, and T: H, —
H, bounded linear operators and o be any scalar. Then we have

a) (T*y,x) = (y,Tx)

b) S+T) =5 +T*

C) (xT)'= XT*

d T)y=T

e) IT*Tll = ITT*Il = ITII?

f) T*'T=0 ifandonlyif T =0

g) (ST)* = T*S*(assuming H, = H;),and hence(T™)* = (T*)"

Proof. (@)Forall x € H; andy € H,,
Ty, x) =(x,T*y) =(Tx,y) = (y,Tx).

(b) Forallx € H, andy € H,,
(x,(S+T)y)=((S+T)x,y)
= (Sx,y) H(Tx,y)
= (x,S"y) +{x,T"y)

=(x, (S* + T")y).
Hence (S+ T)'y = (§*+T*)y forally € H,. Andhence (S+T)* =
ST+ T
(c) ((aT)"y, x) = (y, (aT)x)

= (y,a(Tx))
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= a(y, Tx)
= a(T"y, x)
= (aT"y,x)
(d) This part is already done in the remark.
(e) The operatorsT*T: H, —» H; but TT*H, — H,, By the Schwarz
inequality.
ITx|I? = (Tx, Tx) = (T"Tx,x) < IT*Txllllxll < IT*TIlllx]I*.
Taking the supremum over all x, we obtain ||T||? < ||T*T]|.
And
ITTI < IT*ITI = ITII?.
Hence ||T*T|| = ||IT||%. Replacing T by T*in previous equation we get
ITT*|| = |ITII>.
(f) Using the above result (e) |IT*T|| = [ITT*|| = ||T]|?, we get
T*'T =0 ifandonlyif T =0ifandonlyif TT*=0.
(g) Assume that, H, = H; = H, Since, Forall x € Handy € H,
(x, (ST)"y) = ((ST)x,y) = (Tx,S"y) = {x, T"S"y).
Hence(ST)* = T*S™.

10.3 SELF-ADJOINT, NORMAL AND UNITARY
OPERATOR

Definition 10.3.1. A bounded linear operator T: H - H on a Hilbert
space H is said to beself adjoint if T*=T.
Definition 10.3.2. A bounded linear operator T: H —» H on a Hilbert

space H is said to benormal if TT* = T*T.
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Definition 10.3.3. A bounded linear operator T: H - H on a Hilbert
space H is said to beunitary ifl is bijective and T*=T"1,ie. TT* =
T*T = 1.
Remark 10.3.1: The Hilbert-adjoint operator T* of T is defined
by,(Tx,y) = (x, T * y). Then:
i. If T is self-adjoint, we see that the formula become(Tx,y) =
(x, Ty).
If T is self-adjoint, then T is normal.

If T is unitary, then T is normal.

Exercise 10.3.1: Give an example of an operator T such that:
I. T is normal, but not unitary.
T is normal, but not self adjoint.

T is self adjoint, but not unitary.

Theorem 10.3.1 (Self-adjointness). LetT: H — H be a bounded
linearoperator on a Hilbert space H. Then:

a. If T isself-adjoint, (Tx, x) is real for all x € H.

b. If H is over complex field and (Tx, x) is real for all x € H, the

operator T is self-adjoint.

Proof. (@)IfT is self-adjoint, then for all x,

(Tx,x) = (x,Tx) = (Tx,x),
Hence(Tx, x) is equal to its complex conjugate, so that it is real.
(b) if (Tx, x) is real for all x, then

(Tx,x) =(Tx,x) = (xT*, x) = (T"x, x).
Hence,
0=(Tx,x) —(T"x,x) =((T — T")x, x)
Andsince H is over complex field, thereforeT — T* = 0. And thus T =

T, i.e. T is self adjoint.
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Remark 10.3.2: (i) In the statement (b) of the above theorem it is essential
that H is over complex field. This is very clear that this statement may not
be true if H is overreal field.Since for a real H the inner product is real-
valued, which makes (Tx, x) real always, regardless T is zero operator or
not.

(1) Products (composites) of self-adjoint operators appear quite
often in applications, so that the following theorem will be useful.

10.4 IMPORTANT THEOREMS ON SELF-
ADJOINT, NORMAL AND UNITARY OPERATOR

Theorem 10.4.1 (Self-adjointness of product). The product of two
bounded self-adjoint linear operators S and T on a Hilbert space H is self-
adjoint if and only if the operators commute.
ST =TS.

Proof. We have already proven that,

(ST)* = T*S* =TS.
Hence, from the above equation ST = (ST)"is true if and only if ST =
TS.

Proposition 10.4.1: (i) If T is a self adjoint operator on a Hilbert space

H then T™ is also self adjoint for every n > 1.

(ii) If T is a self adjoint operatoron a Hilbert space H, then |IT”I| =

||T||n for everyn > 1.

Proof: (i)We know that (T™)* = (T*)", and given that T =T".

Therefore, (T™)* = T™. Hence, T™ is self adjoint for every n > 1.
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(ii) We know that for any bounded linear operator T, ||T]| |2 = |ITT~|.
And if T is self adjoint, then ||T||2 = [IT?]].

Also ||T4||=||T2||2=||T||4. Similarly for any 2%k>1, we

have |T2k| = HTzk_l i = ||T2k—2 * e — ||T4||2k—2 _ ||T2||2k—1 _

||T||2k. Thus, |T2k| = ||T||2kfor any 2K,k > 1.
Now, forany1 <n < 2%,
[[72(| = {772 < rwil x [[r===]| < D711 < i

2k_n

< Iiri[* i1 = i)™

In the above inequality the first and last term are equal therefore all
the term in between are also equal.

Thus, 4t and 5% term are also equal, and this gives ||T"|| = [|T||" for

everyn = 1.

Theorem 10.4.2: Let H be a Hilbert space over complex field. Then
every bounded linear operator T on H can be represented as T =
T, +iT,, where T;andT, are self adjoint operator. And this

representation is unique.

Proof:DefineT; = - (T +T*) and T, = —~i(T — T*). Then T} = - (T* +
T) and T, = %i(T* —T). Therefore T; =T, and T, =T,. Hence
TiandT, are self adjoint operator. Also from the definition of T;andT,,
T, +iT, =T.
Uniqueness: Let T = S; +iS, be another representation such that
Siand S, are self-adjoint. Then

T, +iT, = §; + iS5.
This implies that
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(T =S +i(T, = 52) = 0.
Also, zero operator is self adjoint operator, therefore
[(Ty — S1) +i(T, = S2)] = [(Ty — S1) + (T, = ST
=1 —5)" —i(T=S8)" = (T1 = $1) —i(T, = S$2).
This gives T, — S, = 0,i.e. T, = §,. Consequently using the second last

equation, we get T; = S;. Hence, representation is unique.

Theorem 10.4.3. Let H be Hilbert space over complex field and T be a
bounded linear operator, then

(@ Tisnormaliff ||Tx|| = ||T*x]|| forall x € H.

(b) IfT isnormal thenK(T) = K(T™)

(c) IfT is normal then ||IT™|| = ||T||™ for everyn > 1.

Proof. (a) Clearly,
ITxII? = IT*x||> = 0
S (Tx, Tx)—(T*x, T*x) =0
S(T'Tx,x)—(TT*x,x) =0
S ((T'T—-TT")x,x) =0

Since H is over complex field, therefore T*T — TT* = 0if and only if
((T*T — TT*)x,x) = 0 for every x € H.
(b) If T is normal then, by (a)||Tx|| = [|T*x||. This gives, Tx = 0 if and
only if T*x = 0. Hence If T is normal then,K (T) = K(T*).

(c) Remember the property (e) of Hilbert adjoint operator which is

||T||2 = [IT*T||. Also, it is easy to check that for any operator T, T*T is

self adjoint, therefore,

n

[T ™| = |ITT*|

Now, considerT is normal then(T*T)™ = (T*)™T™. Then using these facts,

we have the following:
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I = i7" = [T myn| = [|yrT|
< [leTym| x It
< |IT*1|" x |IT™]
<|iT1|" x |IT1]"

= [IT1]" = |i71[”

_ ||T||2n.

In the above inequalities first and last term are same, therefore all the in

between terms are equal. Therefore, ||T"|| = ||T||™ for everyn > 1.

Theorem 10.4.4LetH be a Hilbert space and the operators U: H — H and
V: H — H be unitary. Then:

(@) U is isometric, thus ||Ux|| = ||x|| forall x € H

(b) ||U|| = 1, providedH # 0,

(c) U=1(= U™) is unitary,

(d) UV is unitary,

(e) U is normal.

Furthermore:
() A bounded linear operator T on a complex Hilbert space H is

unitary if and only if T is isometric and surjective.

Proof. (a) Forx € H,
lUx||> = (Ux, Ux) = (x,U*Ux) = (x, Ix) = ||x]|*.

This implies that U is an isometry.

(b) Since, U is unitary, therefore ||Ux|| = ||x||. This immediately follows

that |[U]| = 1.
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(c)Since U is bijective, so is U™, and by U™ = U*, we have
(U‘l)* = U™ =U.
Therefore(U™H)*U' =00 '=1=U"U=U"1Y(UYH)* This follows
that U ~tis also unitary.
(d)  Since U and V are bijective, therefore UVis bijective, and
UV =vUr=v-u-t = (Uv) .
This implies that UV is unitary.
(e) Follows from definition.

()] Suppose that T is isometric and surjective. Isometry implies T is
one-one, so that T is bijective. We show that T* = T~1. By the isometry,
(T*Tx,x) =(Tx,Tx) = {x,x) = {Ix, x).

Hence
(T*T—-Dx,x)=0
and T*T — I = O(H isover complex field), so that T*T = I. From this,
TT* =TT*(TT™Y) =T(T*T)T*=TIT ' =1.
Together, T*T = TT* = I. Hence T* = T~1, so that T is unitary.
Conversely, suppose that T is isometric and surjective, therefore by

definitionT is unitary.

Remark 10.4.1Note that an isometric operator need not be unitary since it
may fail to be surjective. An example is the right shift operator T: 12 — [?
given by

T(xl,xz,x& ) = (0,%1,%5, cue..)

where (xl,xz,x& - ) € [2. This operator is isometry but not unitary.
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10. 5SOLVED EXAMPLES

Question 10.5.1: Show that (a) 0* = 0 and (b)/* = 1.
Solution:
a. (x,0%y) =(0x,y)
=(0,y)=0
= (x,0y)
This implies that 0* = 0.
b. (x,I"y) = (Ix,y)

This implies that I* = 1.

Question 10.5.2: Suppose A is a eigen value of T. Is it true thatA is an

eigen value for T".

Solution: Not true. Consider T: 12 — [? as
T(x1, %2 %5 ) = (X2, X3, e

Let A be eigen value of T, Then :

T(x1, %2, %5 n) = A(X1, %3, X3, ore. )

= (X, X3, .. ) = (Axq, A%y, AX3, ..e..)
A =0 is a eigen value for T, and its corresponding eigen vector is
(x4,0,0,0,0.....).
For non-zero A: x, = Ax3, X3 = Axy, x4 = AXxg, x5 = Axg, and so on.

Eigen vector must be non-zero, therefore x; # 0, for all i, because if
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x; =0, for some i, then x;,; =0 =1x;,, = and also x;_; =0 =
Xj—p = " = Xq1.

Since T(xy, X, X5 .....) € [?, therefore i this case
(Axq, Axy, Axs, ....) € I

= (Axq, A%xq, A3x4,.....) € I?
. 2
=>Z|/1‘x1| < ©
i=1
(o]

R |x1IZZ|Ai|2 < o

=1

L
(o]
= Z|/1i|2 < ©
=1

= 12< 1
=1 <1
Thus eigenvalue for T is {A: |1] < 1}. Now it is easy to see that Hilbert
adjoint of T is
T*(xl,xz,x& ) = (0,x1,%3, ...
For eigen value A of T™:
T*(x1, X, X3, evn ) = A(X1, Xg, e
= (0,x1, %5, 0e..) = (Axg, Axy, AX3, ... )
This implies that, Ax; = 0,Ax, = x4, Ax3 = X5, ..... and so on. If 1 =0,
thenx; = 0,x, = 0,x3 =0,.... And if 1 # 0, then
Ay =0=>x, =0,
Axy, =x1 = x, =0,

similarly x; = 0 = x4, = ---. Thus T has no eigen value.

Question 10.5.3: If T is self adjoint operator, then all eigen values are

real.
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Solution: Let A be eigen value and x # 0 be corresponding eigen
vector. Then
(Tx,x) = {(x,T*x)
= (Ax, x) = (x, Tx)
= (x, Ax)
= Ax, x) = Ax, x)

=>1=A

Hence A is real.

Question 10.5.4:Give an example of an operator T such that T*T is

identity operator but TT" is not an identity operator.

Solution: Consider the right shift operator T: 12 — [? given by

T(Xl,xz,x&.....) = (O,X1,XZ, )

Its adjoint operator is

T*(x1, X2, X3, ) = (X, X3, X4 o)

Then

T*T(x1, %5 X5 .. ) = (x1,%2,%5 n..)

Whereas,

TT*(x1, %2, X5 .. ) = (0,%5,X3,%4 .....).

10.6 SUMMARY

After the learning of this unit, the students are able to:
i.  Understand the concept of Hilbert adjoint operator
ii.  Analyse arelation between kernel of T and range of T*.
iii.  Analyse the idea of self adjoint operator

iv.  Analyse the idea of normal operator
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v.  Analyse the idea of unitary operator.

10.7 GLOSSARY

i.Hilbert adjoint operator

ii.Kernel of T

iii.Kernel of T*

iv.Range of T

v.Range of T~

vi.Self adjoint operator
vii.Normal Operator
viii.Unitary Operator

10.8 TERMINAL QUESTIONS

TQ 108.1 If T: H—> H is bounded linear operator, then show
thatR(T) = K(T*)*+, where, R(T) is range of T and K (T) is kernel of T.

TQ 10.8.2 If T: H — H is bounded linear operator, then show that
K(T) = R(T*)*, where, R(T) is range of T and K (T) is kernel of T.

TQ 10.8.3 Let H be a Hilbert space and let U be a bounded linear operator
such that R(U) = H. Then show that the following are equivalent:

(&) U is unitary.

(b) U is anisometry: ||Ux|| = ||x||for every x € H;

(c) U preserves the inner product: (Ux, Uy) = (Tx, Tx) forall x,y € H.
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TQ 10.8.4 Let H be a Hilbert space and T: H — Hbe a bijective bounded
linear operator whose inverse is bounded. Show that (T*) lexists and
(T~ = (7"

10.9ANSWER TO TERMINAL QUESTION

TQ 10.8.1Let y € R(T). Then, there exists x € H such that Tx = y.
Then, for any z € K(T*)(y, z) = (Tx,z) = (x,T*z) = 0. This implies that
y € K(T*)Y. R(T) € K(T*)*.

Now, let x € R(T)*. Then for all y € H,(Ty,x) = 0 = (y,T*x). This
implies that T*x = 0. And hence, x € K(T*). Therefore, R(T)* < K(T*).
This further implies that K(T*)* € R(T)'* = R(T). HenceR(T) =
K(T*)*.

TQ 10.8.2Since, T* = T and using TQ 10.8.1 on T* instead of T, we have
R(THL = K(T*)*L. This implies that K(T) = R(T*)*.

TQ 10.8.3 : See theorem 10.4.4

TQ 10.84See the definition of self-adjoint operator and use the

concept of bijectivity.
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11.1 INTRODUCTION

The Hahn-Banach theorem is a cornerstone of functional analysis,

a branch of mathematical analysis that studies vector spaces endowed with

a topology, typically infinite-dimensional. Named after Hans Hahn and
Stefan Banach, who independently formulated the theorem in the early
20th century, this result has profound implications in both pure and
applied mathematics.The development of the Hahn-Banach theorem marks
a pivotal moment in the evolution of functional analysis. During the early
1900s, mathematicians were focused on generalizing classical results from
finite-dimensional vector spaces to infinite-dimensional contexts. The
theorem's origin can be traced back to Hahn's work in 1927, which was
later extended by Banach in 1929.

The Hahn Banach theorem is a central tool in functional analysis.
It allows the extension of bounded linear functionals defined a vector
subspace of some vector space to the whole space, and it also shows that
there are "enough™continuous linear functionals defined on every normed
vector space to make the study of the dual space "interesting”. Another
version of the Hahn—Banach theorem is known as the Hahn—Banach
separation theorem or the hyperplane separation theorem and has
numerous uses in convex geometry.The Hahn—-Banach theorem arose from
attempts to solve infinite systems of linear equations. This is needed to
solve problems such as the moment problem, whereby given all the
potential moment of a function one must determine if a function having
these moments exists, and, if so, find it in terms of those moments.
Another such problem is the Fourier cosine series problem, whereby given
all the potential Fourier cosine coefficients one must determine if a

function having those coefficients exists, and, again, find it if so.
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11.2 OBJECTIVES

After studying this unit, learner will be able to

Understand the Statement and Proof Comprehend the formal
statement of the Hahn-Banach Theorem and its proof, including

the key concepts and techniques used.

Extend Linear Functionals: Apply the Hahn-Banach Theorem to
extend linear functionals from a subspace of a vector space to the

whole space while preserving their norm.

Dual Spaces: Understand the concept of dual spaces and how the
Hahn-Banach Theorem ensures the richness of the dual space by

guaranteeing the existence of many continuous linear functionals.

Functional Analysis Applications: Apply the theorem in various

problems and proofs in functional analysis, including in the study

of weak topologies, reflexivity, and the representation of dual

spaces.

Problem Solving: Solve advanced problems in functional analysis

and related fields using the Hahn-Banach Theorem as a tool.
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11.3 BASICS

We first defined the basic definitions:

11.3.1 PARTIAL ORDER SET

Partial Order Set: Let X be a non-empty set a relation R on X is said to
be a partial order if

I. Risreflexive (i.e. xR X, V x € X))

ii. Risanti-symmetrici.e. xRy, yRX, =X = y, VX, yE X.

Ristransitivei.e. XRy,yRz=xRz VX, Yy, Z€ X.

e Let R be partial order relation on X and (x, y) € R. Then we write
xX<y.
e A non-empty set X with a partial order relation < defined on X

i.e. (X, <)iscalled a partial order set.

Definition: Let (X, <) be a partial order set then

I. An element a € X is said to be an upper bound of X if x < a,
VX € X
An element a € X is said to be a least upper bound of X if a is
an upper bound of X and a is an upper bound of X then a <a.
An element x € X is said to be a maximal element of X if x <
Y,y € X = Xx=V.
Let A be a subset of X. Then set A is said to be linearly order

setor chainifx,y €A, =x< yory<x.
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Let N be a natural number and n < mif % A= {2, 4,5} them

L.U.B. =20.

N=1{1,23,.. 50,51, ..., 100} and m > n if % , then

maximal elements are 51, 52, 53,...,100.

11.3.2 ZORN’S LEMMA

Zorn’s Lemma- If every chain in a partial order set (X, <) has an upper

bound then there is a maximal element in X.

Sub linear functional: Let X be a vector space over a filed R. A function
p on X into R is said to be sub linear function if

I p(x+y) < p(x) + p(y) .V X, y € X.
ii. P(ax) = a p(x), « ER,x € X.

Exercise: Let X be a vector space over a filed R and Y be a proper linear
subspace of X, let g be a linear functional on Y. let xoe X \'Y, define a
function G on Y @ [xo] by

Gy+axo)=g(y)+aC V y+ axo€Y @ [xo], Where C is fixed. Then G
is a linear functional on'Y @ [xo]
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11.4 HAHN BANACH THEOREM FOR REAL
VECTOR SPACE

Hahn-Banach Theorem for real vector space- Let X be a vector space
over the field of real line and p be a sub linear functional on X defined as
p(x+y) < p(x) + p(y) .V X, y € X.

P(ax) = a p(X), « ER, x € X.
Let M be a linear sub space of X, let f be a linear functional on M such
that

f(x) <p(x) VvxeM.
Then there is a linear functional F on X such that

F(x) = f(x)

F(X) < p(x) V x € X.

For the proof of this theorem, a lemma is required.

Lemma: Let X be a vector space over a field R and p be a sub linear

functional on X. Let Y be a proper subspace of X, let g be a linear

functional on Y such that

gly) <p(y) VyeY.
Let xo €X'\ Y. Then there is a linear functional G on Y @ [xo] into R such
that

G(y)=9(y) VyeY,

G(y + axo) < p(y+ axo) Vy+ ax€eY @ [X]

Proof of Hahn Banach theorem: Proof is an application of Zorn’s
lemma. Let F be a collection of linear functional g from X into R such that
i. M < D(g)
ii. gx)=f(x) VXeM
iii. gx) <p(x) VXeM

Department of Mathematics
Uttarakhand Open University




And G(y + axo) < p(y + axo) Va €R, forg, h € Fif

D(g) < D(h)

g(x) =h(x) v x € D(9).
It is easy to see that < is a partial order relation on F. Then (F, <) isa
partial order set. Let
C={g,: a € A} beachaininF. Let= Uy D(g4)
Since C = {g,: a € A} be a chain in F, let g,, gg € C, therefore either
Ja < gg OF go = gp that implies that D(g,) S D(gg) or D(geq) 2

D(gg). let x € D and x belong to D(g,) as well as D(gg) then

9a(X) = gp(x) for such x
It follows that D is a linear subspace of X, define g on D into R by
9(x) = go(X) V X € D(gq)-
Then g is well defined on D, and g is linear, also M € D(g) = Uy e a D(94)
=D
(X) = go(x)=f(x) VXEM (CEF)
9(x) = ga(X) SP(X) V X €U eaD(gy) =D then g €F

Next g, < gVa €A, (D(gy) € D(9) = UgeaD(ga) =D
Since g is upper bound of the chain C in F. Then by Zorn’s lemma (F , <)
has a maximal element in F. Let F be the maximal element in (F ,< ).
Now we claim that D(F) = X proof by contradiction, suppose D(F) # X,
let xo€ X \ D(F). Then by using the Lamma, there exists a linear functional
G on D(F) @ [xo] into R, defined by

G(X) = F(x) V¥ x € D(F)
And G(X) < p(X) vV x € D(F) & [x0]
Clearly M c D(G) (D(F) € D(F) @ [xd])

GX)=FX)=f(x) VXEM

G(X)=F(x) <p(x) VxeD(G)
ThenG eFandF <G (D(F) € D(G))
AlsoF #G
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This is a contradiction the maximal of F, F is the required extension of f
FX)=f(x) VX eM
And F(x) <p(x) VxeX

Corollary:
Let X be a vector space over a field K(R). Let p be a semi-norm on X, let
M be a linear subspace of X. Let f be linear functional on M into R such
that [f(x)| < p(x) ¥ x € M. Then there is a linear functional F on X into R
such that
I. Fx)=f(x) VXEM
ii. [f(X)| < p(X) Vxe€X
Proof.
We need that a semi norm in a sub linear functional then
f(x) < [f(X)| < p(X) V x € M, then f(X) < p(x) V x € M. By Hahn
Banach theorem, for real vector space, there exists a linear functional F on
X into R such that
FX)=f(x) YXEM
And F(X) <p(x) YxeX
Since F(X) < p(x) V x € X and F is a linear functional on X
F(-x) < p((-1)x) vxeX
-F(xX) < |-1|p(x) vxE€ X
-F(x) <p(x) vxeX
IF(X)| < p(x) Vx € X

Department of Mathematics Page 235
Uttarakhand Open University




1141 HAHN BANACH THEOREM FOR
COMPLEX VECTOR SPACE

Hahn Banach theorem for Complex vector spaces:
Let X be vector space over a field of complex number and p a semi norm
on X. Let M be a linear subspace of X. Let f be linear functional on M into
C such that
[f(xX)] < p(X) Vx€E M.
Then there is a linear functional f on X into C such that
F(x) =f(x) VvxeM.
FOX)| < p(X) vV x€X.
Proof. Define u on M into R by
u(x) = Real part (f(x)) VXeM
Then u(x+y) = Re (f(x + iy)
u(x+y) = Re (f(x) + f(y)) (since fis linear)
u(x+y) = Re (f(x)) + Re f(y))
u(x+ty) =u(x) +u(y) vx,y M
u(ax) = Re (f(a(x))
u(ax) = Re af((x) (since fis linear)
uU(ax) = a Re f(x) = a u(x).
Since u: M — R is a real linear functional, Also Ju(x)| = Re (f(x)) < [f(X)|

VXEM

This implies that Ju(x)| < p(X) vV x € M. Now by Hahn Banach theorem

for real vector space there exists a real linear functional U on X into r such
that

Ux)=u(x) VYXEM

Ux) <p(x) VXeEM

Ux)=ux) VXEM
Define F: X - C by
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F(x) = U(-(x+y)) — iU(i(x + y))
F(x) = U(-i%x + -i%y) —i U(ix + iy)
F(x)=0 (x+y) -1 0 (ix +1y)
F(x) = U(x) + U(y) — i(U(ix) + U(iy)) (U is linear)
F(x) = F(x) + F(y)
For all ¢ €R, F(ax) = U((ax) —iU(ia Xx)
F(ax) = aU(X) — iaD(ix)
F(a x) = a (U(x)—10(ix)
F(a X) = a F(x) Forall ¢ R, x € X.
Also F(ix) = U(ix) —1 U (i X)
F(ix) = U(ix) — 1 U(-X)
F(ix) = U(ix) + iU(x)
F(ix) =iF(x) Forall x € X.
LetC=a+iB,a,BER
F(c(x)) = F((a +iB)x)
= F(ax +ifx) = F(a x) + F(iBx)
= a F(x) + BF(iX) = a F(X) + 1BF(X)
=(a+iB) F(X) = c F(x)
F(c(x) = cF(x)
F: X(C) = Cisa linear functional now
F(x) = U(x) — iU(ix)
F(X) = Re(f(x)) — iRe(f(ix)) Farallx e M
F(X) = Re(f(x)) — iRe(if(x)) Farallx e M
F(X) = Re(f(x)) + ilm(f(x)) Farall x e M
F(x) = f(x) Farall x e M
It is remained to show that |f(x)| < p(x) Far all x eX
F(X) = [F(x)| e'?, 0 is real
[FO)I = F(x) e~
[F()I = F(x 7€)
F(0)|= U (x e719) |
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(‘since |F(x)| is real number = 0)
FOI < p (xe™™) (V)| < p(x) For
all x € X)

F(X)| < | e p(x) { pis semi linear}

[F(X)| < p(x) Forall x € X.

11.42 HAHN BANACH THEOREM FOR NORMED
LINEAR SPACE

Hahn Banach theorem for Normed linear space: Let (X, | |) be a
normed linear space over a filed K (=R or C) and M be a linear subspace
of X. Let f be a bounded linear functional on M. Then there is a bounded
linear functional F on X such that
I. Fx)=f(x) vxXeM
i, [IFIl = [I]I
Proof. Definep: X - R by
PO) =l Xl v xeX
It is easy to see that p is semi norm on X
[feAL<Ifll Xl VxeM
fX)|<p(x) VXEeEM
By Hahn Banach theorem , there is a linear functional F on X such that
FX)=1f(x) VXeEM
And FO)I<p(X) VXxeX
IFOI < Ifll Xl vxeX
IFIl < IIfl
|f ol

Il
— [F(x)| -

Il = supy c m ||(;| (F(x) = f(x) V x € M)

P

Il

IFll = supx e m
Ifll < supxem = IFl
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Il < [IF]
Hence ||F|| = |If]|-

11.4.3 APPLICATION OF HAHN BANACH THEOREM

1. Let (X, || ||) be a normed linear space over a filed K (=R or C). Let X
be a non-zero vector in x. then there is a bounded linear functional F on X
such that

. FO) = [Ix]|

ii. ||F|| = 1.

Proof Given x eXand x # 0, Let M =[x] ={a x: a € K}
Define f: M - K by
flax)=a |X|| VaeK
Let x € M and a1, a2€ K
f(aix + axx) = f((a1ta2)x) = ar+az ||X|
flax + a2x) = ay [|x|| + a2 [[X]
= f(a1x) + f(a2x)
Forall g eK, f(B(ax))=f(Bax) = af |X|
f(B(ax)) = B(a [IX])
f(B(ax) = B f(ax)
Since fin linear functional on M then f(ax) = a |X|| Vx € K
Let @ =1 then F(x) = ||x|]
flax)=a |X|| vVx €K
[[f(ax)[l = la| [Ix]| = [l x]|
Hence |fl|<1

fis a bounded linear functional on M then
| f (ax)|

fll=su
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L] (1]
f|l=su 1
” ” pCXEKlale”

Hence || 1 =1.
By Hahn Banach theorem there is a bounded linear functional F on X such
that
F(a x) = f(a x) Vx € K
And [FI=1fl=1
In particular taking a = 1 then
F(x) = f(x) = [| x|
And IFI=1fl=1
Hence F(x) =|x||and ||IF| = 1.

2. Let (X, || | be anormed linear space over a field K (=R or C). Let x1
and X2 be two vectors in X such that x1# x2. Then there is a bounded linear
functional F on X such that

F(x1) # F(x2).

Proof. Given thatx: # X2
X =X1-X2# 0, i.e., || X || =] X1- X2 || # 0
Then there is a bounded linear functional F on X such that
F(X) = F(x1- X2) = || x1- X2 || #0 (Fislinear)
F(x1)-F(x2)#0
F(x1) # F(x2).
(3). Let X be a normed linear space over a field K (=R or C) and M be a
closed subspace of X. Let x € X \ M then there is a bounded linear
functional F on X such that
i. F(M)=0 YmEe M
il F(x) = Dist. (x, M)
i ||F| =1
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11.5 EXAMPLES

Example 1:Define F on:R2(R) - Rby F (x,y) =ax + by V X, y € R¥(R)
Where a and b are fixed real number

I (x y) 1= x| +ly] VX, y€RR)

| x[I=]x]Vx€R*R)

Then F is a linear functional. Find || F||.

Solution. For all (x1, y1), (X2, y2)€ R¥(R)
F((X1, Y1), (X2, ¥2)) = F (X1 + X2, Y1 + y2)
=a X1+ X2) + b (y1+ o)
= (ax1 + bya) + (ax2 + by2)
F((X1, y1), (X2, ¥2)) = F (X1, y1) + F (X2, ¥2)
Forallc € R, V X,y € R¥(R) then
F(c(x, y)) = F (cx, cy) = a (cx) + b(cy)
=c (ax + hy)
F(c(x,y) =cF(x,y)
Hence F is linear functional on R%(R)
F(x,y) =ax + by
|F (X, y)|=]ax+by|
[F(xy)I=lallx|+|b]|y]
smax.{|al[b}(Ix[+]y]

=max.{|al[b[}[(y)
Hence F is bounded linear functional on R?(R)

) _ POl
F(1,0)=a[F1 0)|=laland == a|

Therefore ||F || =|a]
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) b ang P01
F(1,00=b,[F(,0)[=]bland T~ r=[b]

Therefore | F||=|b |
Hence | F|l = Max.{|a|, |b[}
| F|l=Max.{|a|, |b]}

11.5.1 PROBLEMS

Problem1:Let R%(R) be a normed linear space over R and
I |lh:R2(R) — R is defined by
¢ y) Ie=1x]+]y|Vxy€ER¥R)
Let M= {(x,0): x € R }. Then proof that M = { (X, 0) : x € R } isa linear
subspace of R?(R).

Problem 2: If N is a normed linear space and Xo is a non-empty vector in
N, then there exists a functional fo in N* such that
fo(xo) = || xo || and || fo || = 1.

Problem 3: If M is a closed linear subspace of normed linear space N and
Xo is a vector not in M, then there exists a functional fo in N* such that
Fo(M) =0 and fo(Xo) # 0.

11.6 SUMMARY

The Hahn-Banach Theorem is a fundamental result in functional
analysis, a branch of mathematics. It has several equivalent forms and
important implications in various areas of mathematics. Here's a summary

of the theorem and its significance.
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Hahn Banach theorem for Normed linear space:

Let (X, || ||) be a normed linear space over a filed K (=R or C) and M be a

linear subspace of X. Let f be a bounded linear functional on M. Then

there is a bounded linear functional F on X such that

(). Fx) =f(x) vxXeM

(ii). [IFII = I

Significance

1. Extension of Linera Functionals: The theorem ensures that any

bounded linear functional defined on a subspace of a vector space
can be extended to the whole space without increasing its norm.
Separation of Convex Sets: It provides a way to separate disjoint
convex sets by a hyperplane, which is crucial in convex analysis
and optimization.
Duality Theory: It forms the basis for duality in optimization
problems, particularly in the context of linear programming and
convex optimization.
Functional Analysis: It is a cornerstone in the study of Banach
spaces and their duals, leading to the development of various
results in functional analysis, such as the existence of continuous
linear functionals with specific properties.
Applications: The theorem has numerous applications in areas
such as economics (e.g., utility theory), engineering (e.g., signal
processing), and physics (e.g., quantum mechanics), where the
extension of functionals and the separation of sets play a key role.

The Hahn-Banach Theorem is celebrated for its generality and

thepowerful tools it provides for analysis and problem-solving in

mathematics.
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11.7 GLOSSARY

Set: Any well-defined collection of objects or numbers are

referred to as a set.

Interval: An open interval does not contain its endpoints, and is
indicated  with  parentheses. (a,b) =]a,b[= {xeR:a < x <
b}. Aclosed interval is an interval which contain all its limit
points, and is expressed with square brackets. [a,b] = [a,b] =
{xeR:a < x < b}. A half-open interval includes only one of its
endpoints, and is expressed by mixing the notations for open and
closed intervals.(a, b] =]a, b] = {xeR:a < x < b}.[a, b) =
[a,b[= {xeR:a < x < b}.

Ordered Pairs: An ordered pair (a, b) is a set of two elements

for which the order of the elements is of significance. Thus
(a,b) = (b,a)unless a = b. In this respect (a, b) differs from the set
{a, b}.Again (a,b)=(c,d)<a=candb=d.If X and Y are two
sets, then the set of all ordered pairs (X, y), such that x € X and

y €Y is called Cartesian product of X and Y.

Relation: A subset R of X xY is called relation of X on Y. It
gives a correspondence between the elements of X and Y. If (x, y)
be an element of R, then y is called image of x.A relation in which

each element of X has a single image is called a function.
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Function: Let X and Y are two sets and suppose that to each
element x of X corresponds, by some rule, a single element y of Y.

Then the set of all ordered pairs (x, y) is called function.

Variable: A symbol such as x or y, used to represent an arbitrary

element of a set is called a variable.

Metric space: Let X = @ be a set then the metric on the set X is
defined as a function d:X X X — [0,0) such that some

conditions are satisfied.

Vector space: - Let VV be a nonempty set with two operations

(1 Vector addition: Ifany u,v € Vthenu+v €V

(i) Scalar Multiplication: If any u €V and k € F then
ku eV
Then V is called a vector space (over the field F) if the
following axioms hold for any vectors if the some

conditions hold.

CHECK YOUR PROGRESS

Fill in the Blanks:
1. A minimal element of a partially ordered set M is an x € M such that y
~ X impels

2. Norm on a vector space X is a functional on X.

True/False
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Is the Hahn Banach theorem being true for Complex vector space.
True/False.
Every semi-normed linear space is normed linear space. True/False.

. Suppose you have a normed vector space (X,lI-l)and a continuous
linear functional defined on a subspace YSX. Can you extend to the
whole space X while preserving its norm? (True / False)

Every Vector space have Hamel basis. (True / False)
Finite partial order set A has how many maximal elements.
I. At most one
ii. Infinite
iii. Finite

. A Sublinear functional p satisfies the followings.
i. P@O)=0

ii.  P(-x) =-P(x).

iii.  Both (i) and (ii).
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11.10TERMINAL QUESTIONS

If M is a closed linear subspace of normed linear space N and Xo is a
vector not in M, then there exists a functional fo in N* such that Fo(M)
= 0 and fo(xo) # 0.
If N is a normed linear space and Xo is a non-empty vector in N, then
there exists a functional fo in N* such that fo(xo) = || %o || and || fo || = 1.
. State and proof of Hahn Bacha theorem of real vector space.
. Sate and proof of Hahn Banach theorem for normed linear space.
Let X benormed linear space over a field K (=R or C) and M be a
closed subspace of X. Let x € X \ M then there is a bounded linear
functional F on X such that
i. FM)=0 VmeM
ii. F(x) = Dist. (x, M)
IF1I=1.
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11.11 ANSWERS

CHECK YOUR PROGRESS
y=X.

Sub linear functional.

True

False

True

True

A

C.

1.
2.
3.
4,
S.
6.
7.
8.
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12.1. INTRODUCTION

In the beginning of this unit, we will study the Baire’s category
theorem. And then we will see that, this theorem led us to three important
theorems in functional analysis. More precisely, these theorems are:
uniform boundedness theorem, open mapping theorem(in the next
unit),closed graph theorem (in the next unit). Hence in this unit we will
focus on Baire’s category theorem, uniform boundedness theorem and
their applications. It is worth noting that Baire's category theorem has

various other applications in functional analysis.

We firstly state the concepts needed for Baire's category theorem.
Such concepts are nowhere dense set, first category set and second
category set in a metric space. These concept has two names, the students

must need to know both names.

12.2 OBJECTIVES

After studying this unit, learner will be able to

i.  Understand the Statement and Proof of the Baire’s Category
Theorem.
Explained the Statement and Proof of Uniform Boundedness
Theorem.
Functional Analysis Applications: Apply the theorem in various
problems and proofs in functional analysis.
Problem Solving: Solve advanced problems in functional analysis
and related fields using the Baire’s Category Theorem and

Uniform Boundedness Theorem as a tool.
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12.3 DEFINITIONS

Definition: A subset Aof a metric space X is said to be rare (or nowhere

dense) in X if its closure A has no interior points. i.e. A is said to be rare
set if (4)" = 0.

Definition: A subset Aof a metric space X is said to be meager (or of the
first category) in X if A is the union of countably many sets each of which

is rare in X.

i.e. A is said to be of first category set if A = Uj-; Ay, where each A4, are

nowhere dense set.

Definition: A subset Aof a metric space X is said to be non meager (or of
the second category) in X if A is not of first category in X. i.e. A is said to
be rare set if (4)" = @.

12.4 BAIRE’S CATEGORY THEOREM

Statement: If a metric space X, it is of second category (non meager) in
itself. (Hence if X is complete and X = Uy~ A, Where each A; is

closed, then at least one A, has non empty interior.)

Proof. Let X be a complete metric space andX # @. On the contrary

suppose that X is of first category in itself. Then

X = UAk
k=1
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with each A, are nowhere dense set in X. Our aim is to construct a Cauchy
sequence (x,)whose limit x(which exists by completeness of X) is in no

Ay, this will give a contradiction.

By assumption, A, is nowhere dense in X, so that, by definition, A1
does not contain a nonempty open set, but X does (for instance, X itself).
Thisimplies that A1 X.Hence the complement 4,° = X — A4; is not empty

and open. We may thus choose a point x,in 4; and an openball about it,
say,

By = B(xy; &) €Ay & < %

Again, by assumption, A, is nowhere dense in X, so that A2 does

not contain a nonempty open set. Hence it does not contain the open ball
B(xl;%el).This implies that A_ZC N B(xl;iel)is not empty and open, so

that we may choose a point x,and an open ball in this set, say,
- C 1 1
BZ = B(xz; 82) C AZ NnB (xl;Egl),gz < 581.

By induction we thus obtain a sequence of ballsB;, =
B(xy; €)&x < 27%, such that B, N A;, = @and

By, CB (xk;%ek) C By, fork = 1,2,

since g, < 27%, the sequence (x;) is Cauchy sequence and converges, say

converges to x € X because X is complete by assumption. Also, for every

m and n > m we have B, € B (xm;%sm), so that

d(xmx) < d(Xpm, xn) + d(xp, %)

1
< > &m + d(x,, x)
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E€m

as n — oo. Hence x € B,, for every m. Since B,, c A,,“we now seethat
x & A, for every m, so that x ¢U A,, = X. This contradicts the fact that
x € X.

Remark: Note that there is other form of Baire’s theorem which are as
follows (without proof):

Let G,,G,,.... be a sequence of dense open subsets of a complete
metric space X. Then G = N;~, G, is dense in X.
. The complement of a meagre subset of a complete metric space is

dense. In particular, a complete metric space is of the second category.

Now we are in the state to obtain the uniform boundedness theorem from
Baire’s category theorem. This theorem states that if X is aBanach space,
Y is a normed linear space and a sequence of bounded linear operators
T, € B(X,Y)is pointwise bounded at every point x € X, then the
sequence is uniformly bounded. In other words, pointwise boundedness
implies boundedness in some stronger sense, namely, uniform

boundedness.

12.5 UNIFORM BOUNDEDNESS THEOREM

Statement: Let (T,) be a sequence of bounded linear operators T,,: X —
Y from a Banach space X into a normed space Y such that (T,) is
pointwise bounded i.e for every x € X, there exists a real numberM,such
that

||ITxl| = Min=12, ...,
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where M, is a real number, theM, will vary in general with x, andM, does
not depend on n. Then the sequence of the norms ||T,, || is bounded, that is,

there is a M such that||T, || < M,n = 1,2, ...

Proof. For every k € N, let 4, < X be the set of all x such that||T,x|| <
k, for all n.

Ay is closed. Indeed, for any x € A, there is a sequence (xj) in
Ajconverging to x. This means that for every fixed n we have ||Tnxj|| <k

and obtain ||T,x|| < k because T;, is continuous and so is the norm. Hence

x € Ag. Thus Ais closed.

From the equation (**), each x € Xbelongs to some A, Hence

X = U Ak.
k=1

Since X is complete, Baire‘s category theorem implies that some A

contains anopen ball, say,

By = B(x¢;1) C Ay, IR € §)

Let x € X be arbitrary, not zero. We setz = x4+ Ax, 1 = ﬁ.Then

||z - x0|| < 1,50 that z € By. By (** 1)and from the definition ofA, we
thus have ||T;,z|| < kofor all n. Also ||T,x,|| < My, since x, € B,. By the

definition of z, we get

This gives for all n
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1 4
[ITox]] = 7 11Tn(z = %ol = ATzl | + [1To X0l < ;||x||Mo-

Hence for all n,

4
||Tn|| = sup ||Tnx|| < -—k,,
Jlxl=1 r

TakeM = ‘Lrﬁ and hence the theorem proved.

12.6 PROBLEMS

Question 1: Let X and Y be normed spaces, with X complete, and let

T.m € BX,Y)n,m = 1,2, be such that Tim || Ty, || = oo, for all n €
m-—0oo

N.Then show that there is a set U c X of the second category in X such

that for u € U, we have Tim || T, (w)|| = o, foralln € N
m—-oo

Solution: For a fixed n, let V;, € X be the set of vectors v such that

im || Ty, (v)1| < 0. Then by the uniform boundedness theorem ¥, c is
m-—oo

of the first category. Therefore V = U;-, V,, and thus by remark ** the
set U = X\V is of the second category.

Question 2: Show that N is first category in R with usual metric, but

second category in itself.

Solution: Since in R, every singleton subset is closed and empty interior
(in R every singleton set is an isolated point) and N = Uj;-,{n}. Thus N is
first category in R. Now in N every subset is clopen (closed as well as
open set), therefore in N itself does not have any nowhere dense set. And
hence N in itself can not be written as of union of nowhere dense set.

Thus, N in itself is of second category.
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Question 3: Show that any subset of a first category is also first category.

Solution: Let X be a metric space and A be first category in X. Consider
B c A. Since, Ais fist category in X, therefore A = Uy, Ay, where each

Aare nowhere dense sets in X. This implies that closure ofA,has empty

interior. Also note that interior of closure of A, n Bcontain in Ako,
therefore A, N B is also nowhere dense in X with B = Uy_,(4x N B).

Hence B is also a first category in X.
Question 4: Countable union of first category sets is again first category.

Solution: Let X be a metric space and for each n € N, A,, be first category
sets in X. Therefore for each n € N,A,can be written as A4, =
Ur=1 Ank, Where each A,are nowhere dense sets in X. This implies that
Ume1An = Un=q Up=1 4nk, is again a countable union of nowhere dense

set in X. Thus, Uy~ 4, is of first category in X.
Question 5: Give an application of the uniform boundedness theorem.

Solution: The normed space X of all polynomials is not complete, where

norm  defined by||x||=max|al-|, (ag, aq, the  coefficients
L

ofpolynomial x). To prove this we construct a sequence of bounded linear
operators onX which are pointwise bounded but not uniformly bounded,

so that X cannot be complete.

We may write a polynomial x # 0 of degree N, in the form

(o]
x(t) = Z a;t/
=0

(aj =0 forj> Nx).

As a sequence of operators on X wetake the sequence of functionals T,, =
fn defined by
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T,0=1,(0) =0, Tyux=f,(x)=a¢+a+ +ay,_.

By the definition f,is linear. Also,f, is bounded. Since |a;| < llxlI,
therefore|f,, (x)| = nl|x||. Furthermore, for each fixed x € X the sequence
(| fx|) satisfies the pointwise bounded condition, because a polynomial x

of degree N,, has N, + 1 coefficient, so that by we have,
lfn Gl = lag +a; + -+ an_4|
< laol + lag| + -+ |an_4|

<lagl + lay| + -+ |an_q | + - + |an, |

< (Nx + 1)qu|aj| =M,
]

Hence the sequence (|f;,,x|) satisfies the pointwise bounded condition

We now show that (f,,) does not satisfy the uniformly bounded
condition, that is, there is no M such that ||T,,|| = ||f, || < M for all n. This

we do by choosing particularly polynomialsx,. For f, we choose x
defined by

x() =1+t+-+t"
Then ||x|| = 1 and
fu)=1+1+-+1=n=nlx|.

Hence ||f,I| = ] _ n, so that (||f,|) is unbounded. And hence, the

[l
normed space X is not complete.
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12.7 SUMMARY

The Baire’s Category Theorem and Uniform Boundedness
Theorem are a fundamental results in functional analysis, a branch of
mathematics. It has several equivalent forms and important implications in
various areas of mathematics. The statement of both the theorems are as
follows.

Baire’s Category Theorem: If a metric space X, it is of second
category (non meager) in itself. (Hence if X is complete and X =
Ur=1 Ak, Where each A4, is closed, then at least one A,has non empty

interior.)

Uniform Boundedness Theorem: Let (T;,) be a sequence of bounded
linear operators T,,;: X — Y from a Banach space X into a normed space Y
such that (T},) is pointwise bounded i.e for every x € X, there exists a real

numberM,.such that
|ITxl| = Mn=12,....,

where M, is a real number, theM, will vary in general with x, andM, does

not depend on n. Then the sequence of the norms ||T,,|| is bounded, that is,

there is a M such that||T,|| < Mn = 1,2, ...
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12.8 GLOSSARY

Set: Any well-defined collection of objects or numbers are referred to
as a set.

Interval: Anopen interval does not contain its endpoints, and is
indicated  with  parentheses. (a,b) =]a,b[= {xeR:a < x <
b}. A closed interval is an interval which contain all its limit points,
and is expressed with square brackets. [a,b] = [a,b] = {xeR:a <
x < b}. A half-open interval includes only one of its endpoints, and is
expressed by mixing the notations for open and closed
intervals.(a, b] =]a, b] = {xeR:a < x < b}.[a,b) = [a,b[=

{xeR:a < x < b}.

Ordered Pairs: An ordered pair (a, b) is a set of two elements for
which the order of the elements is of significance. Thus (a,b) = (b,a)
unless a = b. In this respect (a, b) differs from the set {a, b}.Again
(a,b)=(c,d)<=a=candb=d.If X and Y are two sets, then the set
of all ordered pairs (X, y), such that x e Xand y €Y is called Cartesian

product of X and Y.

Relation: A subset R of X xY is called relation of X on Y. It gives a

correspondence between the elements of X and Y. If (x, y) be an
element of R, then y is called image of x.A relation in which each
element of X has a single image is called a function.

Function: Let X and Y are two sets and suppose that to each element
x of X corresponds, by some rule, a single element y of Y. Then the set
of all ordered pairs (x, y) is called function.

Variable: A symbol such as x or y, used to represent an arbitrary
element of a set is called a variable.
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Metric space: Let X # @ be a set then the metric on the set X is
defined as a function d: X x X — [0,0) such that some conditions
are satisfied.
Vector space: - Let IV be a nonempty set with two operations
() Vector addition: Ifany u,v e Vthenu+v €
V
(i) Scalar Multiplication: Ifany u €V and k € F
then ku eV
Then V is called a vector space (over the field F) if the following axioms
hold for any vectors if the some conditions hold.

CHECK YOUR PROGRESS

CYP 1: A subset A is said to be nowhere dense in a metric space X, if

CYP 2: Let Abea second category set in a metric space X. Then : is it true

that "A¢is of first category"?

CYP 3: True/False:“Ahas an empty interior in a metric space X if and only

if A%is dense in X.

CYP4: Write the definition for pointwise bounded for a family of

bounded linear operator.

CYP5: Write the definition for uniform bounded for a family of bounded

linear operators.

CYP6: True/False: The uniform boundednessof a family of bounded

linear operators implies the pointwise boundedness of that family.
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CYPT: True/False: Let X &Y be normed spaces and {T;, T, ..., T,,} be
finite collection of bounded linear operators from X to Y. Then

{T,, T, ..., T, }is pointwise bounded.

CYP8: True/False: Let X &Y be normed spaces and {T;, T, ..., T,,} be
finite collection of bounded linear operators from X to Y. Then

{T,,T,, ..., T, }is uniformly bounded.

CYP9: True/False: Let X &Y be normed spaces and {Ty,T,,...,} be
countablyinfinite collection of bounded linear operators from X to Y.

Then {T;,T,, ..., }is pointwise bounded.
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12.11TERMINAL QUESTIONS

1: If A is nowhere dense in a normed linear space X, and B is non-empty

open set in X. Then show that A is nowhere dense in G.

2. Show that superset of a second category set is itself a second category

set.
3. State and prove that the Baire‘s category theorem.

4. State and prove that the uniform boundedness theorem.

12.12 ANSWERS

CHECK YOUR PROGRESS

1. (4 =0.

2. Not true, for this take example as X = R, A = [0,0). Then A4 is
of second category, whereas A€ is of second category too.

. True.

Let X &Y be normed spaces and {T,:a € A} be a family of
bounded linear operators T,: X — Y. Then {T,: @ € A}is said to
be pointwise bounded if for every x € X, there exists a real

numberM,such that for every a« € A

||Tax|| =M,.

Department of Mathematics
Uttarakhand Open University




Let X &Y be normed spaces and {T,:a € A} be a family of
bounded linear operators T,: X — Y. Then {T,: @ € A}is said to
be uniformbounded ifthere exists a real numberMsuch that for

every a € A
[I1T.l| = M.

. True.
. True.
. True.

May not be true.
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13.1 INTRODUCTION

In previous units Hahn-Banach theorem and Category theorem
defined in a simple manner. Now, in this unit Open mapping theorem and
Closed Graph Theorem defined in a systematic manner.

In functional analysis, the open mapping theorem, also known as
the Banach — Schauder theoremor the Banach theorem (named
after Stefan Banach and Juliusz Schauder), is a fundamental result that
states that if abounded or continuous linear operator between Banach
spaces is surjective then it is an open map

In functional analysis and topology, the closed graph theoremis a
output of connecting the continuity of certain kinds of functions to a
topological property of their curve. Mainly, the theorem gives a linear
operator between two Banach spaces is continuous if and only if the graph
of the operator is closed (such an operator is called aclosed linear
operator; see also closed graph property).

The closed graph theorem has important application throughout
functional analysis, because it can control whether a partially-
defined linear operator admits continuous extensions. For this cause, it has
been generalized to many circumstances beyond the elementary
formulation above.

We are assuming that the learners are familiar with different
concept of analysis such as closures, interiors of set, dense set, separable
metric space, no-where dense set. These concepts are defined in advanced

real analysis in first semester.
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13.2 OBJECTIVES

After studying this unit, learner will be able to

Describe the statement of open mapping theorem and closed graph
theorem.
Explain the proof of open mapping theorem and closed graph
theorem.

Understand the concept of open mapping and closed linear operator.

13.3 OPEN MAPPING

Let X and Y be metric spaces. Then T:D(T) — Y with domain
D(T) c X is called an open mapping if for every open set in D(T) the
image isan opensetinY.
Note that if a mapping is not surjective, one must take care to distinguish
between the assertions that the mapping is open as a mapping from its
domain
a) into,

b) onto its range.

b) is weaker than a). For instance, if X c Y, the mapping x — x of X
into Y is open if and only if X is an open subset of Y, whereas the

mapping x ~ x of X onto its range (which is X) is open in any case.

Department of Mathematics
Uttarakhand Open University




13.4 OPEN MAPPING THEOREM, BOUNDED
INVERSE THEOREM

We have discussed the Hahn-Banach theorem and the uniform
boundedness theorem and shall now approach the third "big" theorem in
this unit, the pen mapping theorem. It will be concerned with open
mappings. These are mappings such that the image of every open set is an
open set. Remembering our discussion of the importance of open sets, we
understand that open mappings are of general interest. More specifically,
the open mapping theorem states conditions under which a bounded linear
operator is an open mapping. As in the uniform boundedness theorem we
again need completeness, and the present theorem exhibits another reason
why Banach spaces are more satisfactory than incomplete normed spaces.
The theorem also gives conditions under which the inverse of a hounded
linear operator is bounded. The proof of the open mapping theorem will be

based on Baire's category theorem stated and explained in previous unit.

13.4.1 STATEMENT

A bounded linear operator T from a Banach space X onto a Banach

space Y is an open mapping. Hence if T is bijective, T~1 is continuous and
thus bounded.
Or

in other words every bounded linear transformation from a Banach space

onto a Banach space is open.
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13.4.2 LEMMA (OPEN UNIT BALL)

A bounded linear operator T from a Banach space X onto a Banach
space Y has the property that the image T'(B,) of the open unit ball
B,=B(0;1) cX

contains an open ball about 0 € Y.

Proof. We prove the lemma by following steps:

a) The closure of the image of the open ball By = B (0; %) contains an open

ball B*.
T (B,,) contains an open ball }, about 0 € Y, where
B, = B(0; 27™) c X.

T (B,) contains an open ball about 0 € Y.

(o= 2)

A

Ilustration of formula (1)
Fig.13.4.2.1

-

Illustration of formula (2)
Fig.13.4.2.2
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a) In connection with subsets A ¢ X we shall write aA (« a scalar)

and A +w (w € X) to mean

(1) aA={xeX|x=aa,ac A}

(2) A+w={xeX|x=a+w,ac A}

and similarly for subsets of Y.
We consider the open ball B, = B(0;1) c X. Any fixed x € X is in kB,
with real k sufficiently large (k > 2[|x]]).

X = U kBl
k=1

Since T is surjective and linear.

Hence,

(3) Y=T(X)= T(J}J1 kBl) = Hl kT(By)= kl=Jl kT(B;).

Note that by taking closures we did not add further points to the
union since that union was already the whole spaceY. Since Y is complete,

it is non meager in itself, by Baire's category theorem.
Hence kT (B;) must contain some open ball. This implies that T'(B;) also

contains an open ball, B* = B(y,; ¢) © T(B,). It follows that,
(4) B*—yo= B(0; £) = T(B;) — yo.

(b) We prove that B* —y, c T(B,), where Bo is given in the theorem.
This we do by showing that
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(5) T(B;)— yo< T(By).

Let y E T(Bl) _yo.

Theny + y, € T(B;), and we remember that, y, € T(B,), there are
u, =Tw, € T(B,)

such that

U, — y+y0,

v, =Tz, € T(B;)
such that
Un — Yo
Since wy, z, € By and B has radius -, it follows that
[Wn = zal| = Wl + [zl <2 +2=1,
So that,
w, — Z, € By.
From
T(wp,—2z,)=Tw,— Tz, =u,—v, ——> Yy

We see that, y € T(B,) .
Since y € T(B;) —y, was arbitrary, this proves (5). From (4) we thus

have,
(6) B*—y,=B(0; &) = T(By).
Let
B,.=B(0;2 ") c X.
Since T is linear,

T(Bn) =2"" T(BO)
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From (6) we thus obtain (7),

(7) V. =B(0; &/2") < T(B,).
(c) We finally prove that
Vi =B(0;3¢e) < T(By)
By showing that every y € V; isin T(By). So let y € V. From (7) with n

=1 we have, V; c T(B,).
Hence y € T(B,).
There must be a
ve T(By)

close to y, say,

||y — || < /4.

vE T(B]_)

implies v = Tx, for some x; € B, hence,

E
- Txql<-=.
"y xl” 4

From this and (7) with n = 2 we see that —Tx; € V, c T(B,) . As

before we conclude that there is an x, € B, such that

(8) “y- Y Tx|<=ar
k=1 2

Let

Zy =X+ -+ X

we have

[l || < 1/2F.

This yields for n > m,
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"

”ﬁr—zmugi 2:

k=m+1

Hence (z,) is Cauchy. (z,) converges, say,

In —> X

because X is complete.

Also B, has radius 1 and,

(9)

Since T is continuous,

and (8) shows that

y € T(Bg).

13.4.3 PROOF OF THE THEOREM

We are using above lemma for the proof of the theorem.
Statement:

A bounded linear operator T from a Banach space X onto a Banach
space Y is an open mapping. Hence if T is bijective, T~ is continuous and
thus bounded.
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Proof. We prove that for every open set A c X the image T(4) is openinY.
This we do by showing that for every y = Tx € T(A) the set T(A) contains an
open ball about y = Tx.
Let

y=Tx €T(A).
Since A is open, it contains an open ball with center x.

Hence A — x contains an open ball with center 0; let the radius of the ball be r and

setk = 3, sothatr = =.
r k

Then k(A — x) contains the open unit ball B(0; 1).

By previous lemma implies that T (k(A — x)) = k[T (A) — TX] contains an open
ball about 0, and so does T(4) — Tx.

Hence T (A)contains an open ball about Tx = y.

Since y € T(A) was arbitrary, T(A) is open.

Finally, if T~1:Y — X exists, it is continuous because T is open. Since T ~1is linear

by it is bounded . (We have read this theorem in previous studies).

13.5 CLOSED LINEAR OPERATOR

Let X and Y be normed spaces and T:D(T) — Y is a linear
operator with domain D(T) c X. Then T is called a closed linear operator

if its graph

4(T)={(x, ) | x€D(T), y = Tx}

is closed in the normed space X x Y, where the two algebraic operations of a vector

space in X x Y are defined as usual, that is
(x1, Y1)+ (x2, y2) = (x1+ X2, y1+ ¥2)

a(x, y)=(ax, ay)
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(a a scalar) and the norm on X X Y is defined by,

¢y ICe, vl =lxll+{lv1l

13.6 CLOSED GRAPH THEOREM

Not all linear operators of practical importance are bounded. For
instance, the differential operator is unbounded, and in quantum
mechanics and other applications one needs unbounded operators quite
frequently. However, practically all of the linear operators which the
analyst is likely to use are so-called closed linear operators. This makes it
worthwhile to give an introduction to these operators. In this unit we
define closed linear operators on normed spaces and consider some of
their properties, in particular in connection with the important closed
graph theorem which states sufficient conditions under which a closed

linear operator on a Banach space is bounded.

Statement: Let X and Y be Banach spaces and T:D(T) — Y a closed
linear operator, where D(T) c X. Then if D(T) is closed in X, the

operator T is bounded.

Proof. We first show that X x Y with norm defined by (1) is complete.
Let (z,) be Cauchy in X x Y, where z, = (x,,,¥,,). Then for every ¢ > 0

there is an N such that,
(2) 120 = Zml| = 10 = Xl + [y — Yol < & (m,n>N).

Hence (x,,) and ( y,,) are Cauchy in X and Y, respectively, and converge.

Xn——X

L
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because X and Y are complete.
This implies that,

Zn—>2=(x,y)

since from (2) with m — oo we have,

lz.—z||= e

n> N.

Since the Cauchy sequence (z,) was arbitrary, X X Y is complete.

By assumption, 4(T) is closed in X XY and @(T) is closed in X.
Hence %(T) and @(T) are complete

We now consider the mapping:

P: 4(T)— %(T)

(x, Tx) —— x.

P is linear. P is bounded because

1PCx, Tx)]| = [lxl| = ||+ [ Tx[| = [|(x, Tx).

P is bijective; in fact the inverse mapping is

P 9(T)—>4(T)
x — (x, Tx).
Since 9(T) and @(T) are complete,

we can apply the bounded inverse theorem,
and see that
P! is bounded, say, ||(x, Tx)|= b||x|| for
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and see that P™' is bounded, say, ||(x, Tx)|= b|x| for
some b and all x€e@(T). Hence T is bounded because

I Txl| =Tl +[lxl| = I(x, Tx)l| = bllx]

For all x € D(T).
By definition, 4(T) is closed if and only if z =(x, y) € 4(T) implies

z2€%9(T).

we see that-z € §(T) if and only if

there are z, =(x,, Tx,)€%(T) such that z, —> z, hence

(3) Xp —> X, Tx, —>y;
and z =(x, y)e%(T) if and only if x€ %(T) and y = Tx.

This proves the following useful criterion which expresses a property that

is often taken as a definition of closedness of a linear operator.

13.6 .1 THEOREM (CLOSED LINEAR OPERATOR)

Let T:D(T) — Y be a linear operator, where D(T) € X and X and Y are
normed spaces. Then T is closed if and only if it has the following

property.
If x,, = x, where x,, € D(T) and Tx,, = y thenx € D(T) and Tx = y.
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13.6 .2 EXAMPLE (DIFFERENTIAL OPERATOR)

Let X=CJ[0, 1] and
T: (T)— X

x> x’

where the prime denotes differentiation and @(T) is the subspace of
functions x € X which have a continuous derivative. Then T is not
bounded, but is closed.

We are showing that T is not bounded:

Let X be the normed space of all
polynomials on J=[0, 1] with norm given [x|=max|x(t), teJ. A
differentiation operator T is defined on X by

Tx(t)=x'(¢t)
where the prime denotes differentiation with respect to . This operator

is linear but not bounded. Indeed, lct x,(t)=1t", where neN. Then
Ix,]l=1 and

Tx, () =x,'(t) = nt"~"

so that || Tx,||=n and || Tx,|/llx.]|= n. Since n €N is arbitrary, this shows
that there is no fixed number ¢ such that || Tx,[l/llx.]| = ¢. From this and

(1) we conclude that T is not bounded.
Let (x,) in @(T) be such that
both (x,) and (Tx,) converge, say,

Xp —> X and Tx,=x,'"—y.

Since convergence in the norm of C[0, 1] is uniform convergence on
[0, 1], from x,"— y we have

t

J.I y(7)dr = J,t r}l_rﬁc x,(t)dr = }Hﬂe J x, (1) dv= x(t) — x(0),

0 0 0
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x(t)= x(0)+j y(7) dr.

0

This shows that x e @(T) and x'=y.
Using the theorem 13.6 it is implies that T is closed.

It is worth noting that in this example, @(T) is not closed in X
since T would then be bounded by the closed graph theorem.

Remark: Closedness does not imply boundedness of a linear operator.

Conversely, boundedness does not imply closedness.

Proof. The first statement is illustrated by 13.6 and the second one by the
following example.

We are taking
T: (T)—> B(T)= X

identity operator on QE(T), where %(T) is a proper dense subspace of a
normed space X. Then it is trivial that T is linear and bounded.
However, T is not closed. This follows immediately from Theorem

if we take an x € X —%(T) and a sequence (x,) in @(T) which
converges to x.

13.6.3 LEMMA(CLOSED OPERATOR)

Let T: 9(T)— Y be a bounded
linear operator with domain @(T)< X, where X and Y are normed
spaces. Then:

(@) If 9(T) is a closed subset of X, then T is closed.

(b) If Tis closed and Y is complete, then @(T) is a closed subset of
X.

Department of Mathematics
Uttarakhand Open University




Proof. (a) If (x,) is in @(T) and converges, say, x, —> x, and is
such that (Tx,) also converges, then x € @(T)=%(T) since W(T) is

closed, and Tx, — Tx since T is continuous. Hence T is closed
(b) For xe@(T) there is a sequence (x,) in %(T) such
that x, — x;

Since T is bounded,

"Txn - Txm” = "T(xn - xm)" g”T” ”xn - xm"-

This shows that (Tx,) is Cauchy. (Tx,) converges, say, Tx, —> y€ Y
Since T is closed, xe9(T)

[Using the theorem 13.6.1]

Hence @(T) is closed because x € D(T) was arbitrary.

13.7 SUMMARY

In this unit we are explaining Open mapping, Open mapping
theorem, Bounded Inverse Theorem Statement, Lemma related to Open
unit ball and then the gives Proof of the open mapping theorem. After that
Closed linear operator defined then Closed Graph Theorem state and
prove. In continuation theorem related to Closed linear operator gives
then Example(Differential operator) defined. After that Lemma related to

Closed operator defined in a proper manner.
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13.8 GLOSSARY

Set: Any well-defined collection of objects or numbers are

referred to as a set.

Interval: An open interval does not contain its endpoints, and is

indicated with  parentheses. (a,b) =]a,b[= {xeR:a < x <
b}. Aclosed interval is an interval which contain all its limit
points, and is expressed with square brackets. [a,b] = [a,b] =
{xeR:a < x < b}. A half-open interval includes only one of its
endpoints, and is expressed by mixing the notations for open and
closed intervals.(a, b] =]a, b] = {xeR:a < x < b}.[a,b) =
[a,b[= {xeR:a < x < b}.

Ordered Pairs: An ordered pair (a, b) is a set of two elements
for which the order of the elements is of significance. Thus
(a,b) = (b,a)unless a = b. In this respect (a, b) differs from the set
{a, b}.Again (a,b)=(c,d)=a=candb=d.If X and Y are two
sets, then the set of all ordered pairs (X, y), such that x € X and

y €Y is called Cartesian product of X and Y.

Relation: A subset R of X xY is called relation of X on Y. It
gives a correspondence between the elements of X and Y. If (X, y)
be an element of R, then y is called image of x.A relation in which

each element of X has a single image is called a function.
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Function: Let X and Y are two sets and suppose that to each
element x of X corresponds, by some rule, a single element y of Y.
Then the set of all ordered pairs (x, y) is called function.

Variable: A symbol such as x or y, used to represent an arbitrary

element of a set is called a variable.

Metric space: Let X = @ be a set then the metric on the set X is
defined as a function d:X X X — [0,0) such that some
conditions are satisfied.

Vector space: - Let IV be a nonempty set with two operations

(1 Vector addition: Ifany w,v € Vthenu+v €V

(i)  Scalar Multiplication: If any u €V and k € F then
ku eV
Then V is called a vector space (over the field F) if the
following axioms hold for any vectors if the some
conditions hold.

Normed Space

Banach Space

Linear operator

Linear functional
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CHECK YOUR PROGRESS
FILL IN THE BLANKS
1. A bounded linear operator T from a Banach space X onto a Banach

space Y is an open mapping. Hence if T is
continuous and thus bounded.
Let X and Y be Banach spaces and T: D(T) — Y a closed linear
operator, where D(T) c X. Then if D(T) is
operator T is bounded.

CHOOSE THE CORRECT ONE

A bijective map A : X — Y is open if and only if :

/,

a - X — Y is invertible.

b X — Y is bounded.

(a) A

(b) 4

(¢) A':Y — X is bounded.
(d) A7F:

Y — X is open.

Every complete subspace of a normed space 1s:

a) closed

c) finite

(a)
(b) open
(c)

)

None of these.

(d
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13.9 TERMINAL QUESTIONS

1. State and prove open mapping theorem.

13.10 ANSWERS

CHECK YOUR PROGRESS

. Bijective
. Closed
. C

.a
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14.1 INTRODUCTION

Fixed point theory is an important branch of Mathematics. The
presence or absence of a fixed point is an intrinsic property of a map.
However, many necessary or sufficient conditions for existence of such
points involve a mixture of algebraic, order theoretic or topological
properties of the mappings or its domain.

14.2 OBJECTIVES

After completion of this unit, learner will be able to
1. Analyze about fixed point.

Describe the contraction mapping.

2
3. Understand the existence of fixed point.
4

Prove some important fixed point theorems.

14.3 FIXED POINT

Definition.
Let X be a non empty setand T : X — X be a map. A point x, € X is
called a fixed point of T if Txy = x,.
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Examples:
e Let a be any non zero real number and Ta : R — R be defined as
T,(x) = x + a.
Then T, has no fixed point in R.
Let T : R — R be defined as T(x) = x2. Then 0 and 1 are two
fixed points of T.
Let T : R? — R? be defined as T(x,y) = (x,0). Then T has

infinitely many fixed points (all points of the x-axis).

14.4 CONTRACTION AND OTHER MAPPINGS

e Lipschitzian mapping: A mapping f on a metric space
(X,d),V x,y € Xis a Lipschitzian mapping if there exists a real
number ¢ > 0 such that
d(Tx,Ty) < d(x,y)

Contraction mapping: A mappingf on a metric
space (X,d),V x,y € X is a Contraction Mapping if there exists a
real numbera, 0 < a < 1, such that

d(Tx,Ty) < ad(x,y) ...(1)
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Fig 14.4.1

e Non-expensive mapping: A mappingf on a metric space
(X,d),V x,y € X isaNon-expensive mapping if
d(Tx, Ty) < d(x,y) ........(b)

Contractive Mapping: A mapping f on a metric space
(X,d),Vx,y € X isacontractive mapping if
d(Tx,Ty) < d(x,¥) «.........(C)

It is important to note that:

Contraction = non — expansive = Lipschitz = Contractive,

While the opposite of what it implies is untrue.

Example:
e The identity mapping I: X — X, is non-expansive but not contractive
as vVx,y€ X,
d(Ix,ly) < d(x,y).

Mapping f: X — X defined by

1
fx)=x +;,\7’x € X

Is a contractive mapping while f is not a contraction.

Mapping f: X — X defined by
f(x) = 3x,

T is a Lipschitzian mapping for M = 3, while f is not a contraction.
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CHECK YOUR PROGRESS

1. Describe fixed point
2. T;:R— Rbedefinedas T;(x) = x + 1.Then T, has
fixed point in R.

14.5 BANACH FIXED POINT THEOREM
( CONTRACTION)

Theorem 1. Consider a metric space X = (X, d), where X # @. Suppose
that X is a complete and let T: X — X be a contraction on X. Then T has

precisely one (unique) fixed point.

Proof. Construct a sequence (x,,) and show that it is Cauchy, so that it
converges in the complete space X, and then we prove that its limit x is a
fixed point of T and T has no further fixed points. This is the explanation
of the proof.

We choose any x,, € X and define the “iterative sequence” (x,,) by

Xo, X1 =Txq, X, =Tx; =
Clearly, this is the sequence of the image of x, under repeated application
of T.
We show that (x;,) is Cauchy.
From equation (1) and equation (2),
d(Tx,Ty) = d(Tx,,, Tx,_1)

S a d(xml xm—l)
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a d(Txpm—1, TXpm—2)

aZ d(xm—lJ xm—z)

Hence by triangle inequality and the formula for the sum of a geometric
progression we obtain for n > m.
d(xm' xn) = d(xm;xm+1) + d(xm+1Jxm+2) + d(xn—lJ xn)
S @+ a™l 4+ -+ a™Dd(xg,x1) =
d(x()l xl)'

Since 0 < a < 1, in the numerator we have 1 — a™™™ < 1. Consequently,

_,m-n
ml-a

1-a

a

A ) S {od(roxy) (0> m).

On the right, 0 < @ <1 and d(x,, x,) is fixed, so that we can make the
right-hand side as small as we please by taking m sufficiently large ( and
n > m). This proves that (x,,) is Cauchy. Since X is complete, (x,,)
converges, say x,, — x. We show that this limit x is a fixed point of the

mapping T.

From the triangle inequality and (1) we have,
d(x,Tx) = d(x,x,,) + d(x,,41, TX).

= d(x, x) + ad (x4, %),
and can make the sum in the second line smaller than any preassigned €>
0 because x,, = x. We conclude that d(x,Tx) = 0, so that x = Tx (By
second property of metric space). This shows that x is a fixed point of the
mapping T.
x is the only fixed point of the mapping T because Tx = x and Tx = X we
obtain by (1),

d(x,x) = d(Tx, Tx) = ad(x, %),

which implies d(x, x) = 0 since a < 1.
Hence x = X (By second property of metric space).

Then it means T has precisely one (unique) fixed point.
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CHECK YOUR PROGRESS
3. Converse of Banach fixed point theorem is always true
True/False

146.1 COROLLARY (ITERATION, ERROR
BOUNDS)

Under the condition of previous theorem (Banach contraction
principle) the iterative sequence (2) with arbitrary x, € X converges to the

unique fixed point x of T. Error estimates are the prior estimate

am
d(xm, x) < md(xo, x1)

and the posterior estimate

a
d(xpy,,x) < T—= d(Xm—1,Xm)

Proof. The first statement is obvious from the previous proof. Inequality
(5) follows from (4) by letting n — co.
We derive (6). Taking m = 1 and the writing y, for x, and y, for x;, we
have from (5),

d(y1, x) < —d(yo, y1).

Setting yo, = x,,—1, We have y; = T'y, = x,,, and obtain (6).

14.6.2 IMPORTANT THEOREMS
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Theorem 2. Let T be a mapping of a complete metric space X = (X, d)

into itself. Suppose T is a contraction on a closed ball Y =

{xld(x,x0) =7},
that is, T satisfies (1) for all x,y € Y. Moreover, assume that

d(x,Txy) < (1 —a)r.

Then the iterative sequence (2) converges to an x € Y. This x is a fixed

point of T and is the only fixed point of T inY.

Proof . We merely have to show that all x,,'s as well as x lie in Y. We

putm = 0 in (4), change n to m and use (7) to get

1
d(xg, Xp) < md(xo,xﬂ <r.

Hence all x,,,’s are in Y. Also x € Y since
X, — x and Y is closed. The assertion of the theorem now follows from

the proof of Banach Theorem.

Theorem 3. Every contraction mapping is continuous

Proof.

Let T : X — X be a contraction on a metric space (X, d).

with modulus 3, and let

TE X, Let € = (), and let §d = e

and let § = €. Then d(z.7) < d = d(Tz.T7) = 34 < €. Therefore T is

continuous at T. Since T was arbitrary, T is continuous on X,

Theorem 4. Every contraction mapping is uniformly continuous.
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Theorem 5.Brouwer fixed Point Theorem. Let . S —S be a
continuous function from a non — empty, compact, convex set S < R"
into itself, then there existsa X €S, suchthat X = f(X)(X is a fixed of

function f).

Theorem 6. Schauder fixed point theorem. Let S be a non empty closed
convex subset of a normed space X. Then every continuous function from

S into a compact subset of S has a fixed point.

Theorem 7. Markov-Kakutani theorem. Let C be a non empty compact
convex subset of a normed linear space X; and T a family of a affine
continuous maps from C to C such that FG = GF for all F,G €T. Then the
family T has a common fixed point in C.

Theorem 8. Browder fixed point theorem. [11] . Let X be a uniformly
convex Banach space and S be a non empty closed bounded and convex
subset of X. If T is a family of non expansive maps from S to S such that
FG = GF for all F; G €T; then T has a common fixed point in S.

Theorem 9. Let T be a continuous mapping of a complete metric space X,
into itself such that T* is a contraction mapping of X for some positive

integer k. Then T has a unique fixed point.

Proof. Since from theorem 1 we can say that T* has a unique fixed point

uin X and,

u=lim(T*)"x, € X .
n—-oo

Also lim (T*)"(Fx,) = u. Hence,
n—-oo
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w= Hm(TE)"(Fxy) = lim T(T¥)"x, = T (lim (T")"xo).
n—oo n—oo n—-oo
Since each fixed point of T is also a fixed point of F*. The uniqueness of

the fixed point of T follows from the uniqueness of the fixed point of F¥,

Remark : The continuity condition on T is not necessary.

1, x is rational

LetX =R T(x) = {O,x is irrational.
T is not continuous mapping and hence not a contraction mapping.

f(1) =1, xisrational
f(0) = 1,x is irrational.

But T2(x) = {

T2 is a contraction and T2 and T both have the same fixed point 1.

Theorem 10. Suppose (X,d) is a complete metric space and suppose
T:X — X is a mapping for which TV is a contraction mapping of X for

some positive integer N. Then T has a unique fixed point.

Proof. By Banach contraction theorem TV has a unique fixed point x.
However,

TV+1(x) = T(TV(x)) = T(x),
so T(x) is a also a fixed point of TV,
Since the fixed point of TV is unique, it must be the case that T(x) = x.
Also, if T(y) = y then TN(y) = y proving (again by uniqueness) that y =

X.

14.6 EXAMPLES

Example 1.
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Let X = (0, l, equipped with the standard met-
ric d(x, y)=|r— _!f: . This is 1']l‘n|']_'-.' an i]u':;]u]]]rlc' metric space,
» X be defined as T'(x) = a2 is a contraction

The mapping T : X

but T has no fixed point.

Example 2.
Let X ={r € R: 2 > 1} with the stan-

dard metric. Let T": X — X be given by Tx = x + f Then

1" is contractive but 1" has no fixed point. Note that 71" is not a

contraction.

Example 3.
Let X = [0, 00) with the standard metric.

Let T': X — X be given by Tax = T Then T is contractive

but has no fixed point. Note that 7" is not a contraction.

Example 4.

Let T : Cla,b] — Cla,b], (—o¢

with uniform norm. be defined as
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Then it can be shown that

TN = g fult = )" f @),

For sufficiently large values of k, the mapping T is a contraction,

whereas 7T is not a contraction if (b —a) > 1.

14.7 SUMMARY

This unit is the presentation of the work related to Fixed Point
theory. In this unit in starting the contraction, contractive and non-
expansive mappings defined in a simple manner. After the important
Banach contraction fixed point theorem defined in a systematic manner.
Then different theorems for find the fixed point defined. After that

examples are defined.

14.8 GLOSSARY

Metric space: Let X # @ be a set then the metric on the set X is
defined as a function d:X X X — [0,00) such that some
conditions are satisfied.
Vector space: - Let IV be a nonempty set with two operations

. Vector addition: Ifany w,v € Vthenu+v €V

. Scalar Multiplication: Ifany u € Vand k € F thenku €V
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Then V is called a vector space (over the field F) if the following
axioms hold for any vectors if the some conditions hold.
Normed space:- Let X be a vector space over scalar field K. A
norm on a (real or complex) vector space X is a real-valued
function on X (||lx]l: X - K) whose value at an x € X is denoted
by ||x|| and which has the four properties here x and y are
arbitrary vectors in X and « is any scalar.
Banach space:- A complete normed linear space is called a
Banach space.
v.  Cauchy sequence.
vi.  Convergent sequence.
vii.  Uniqueness.
viii.  Function(mappings).
CHECK YOUR PROGRESS
4. The cosine function is continuous in [—1, 1] and maps it into [—1, 1],
and thus must have a fixed point. True/False

5. Every contraction map is discontinuous. True/False
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14.10SUGGESTED READINGS

i. H.L. Royden: Real Analysis (4" Edition), (1993), Macmillan
Publishing Co. Inc. New York.
J. B. Conway, (1990). A Course in functional Analysis (4" Edition),
Springer.
iii. B. V. Limaye, (2014), Functional Analysis, New age International
Private Limited.
iv. https://www.youtube.com/watch?v=0w3g1A19hdY

14.10 TERMINAL QUESTIONS

1. What is an example of a fixed point theory?

14.11 ANSWERS
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CHECK YOUR PROGRESS
2. No

3. False

4. True

5. False
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