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COURSE INFORMATION 

 

The self-learning material titled "Advanced Complex Analysis" has been specifically 

designed for M.Sc. (Third Semester) learners at Uttarakhand Open University, Haldwani, 

to provide them with easy access to high-quality educational resources. The course is 

organized into fourteen units, each focusing on different key concepts in complex 

analysis. Units 1 and 2 introduce the foundational topics of complex numbers, including 

the concept of functions, limits, and continuity, which are essential for understanding 

more advanced topics. Units 3 and 4 delve into the concept of analytic functions, 

particularly focusing on the Cauchy-Riemann equations and power series, which are 

crucial for analyzing complex functions. Units 5 and 6 shift the focus to conformal 

mapping and Möbius transformations, as well as other types of mappings that preserve 

angles and are fundamental in complex analysis. Units 7 and 8 explore complex line 

integrals and Cauchy's inequalities, along with their various consequences, which are key 

tools in evaluating integrals and understanding the behaviour of complex functions. Units 

9 and 10 cover Cauchy's Theorem and the Cauchy Integral Formula, along with the 

Maximum and Minimum Modulus Principle and Schwarz Lemma, which provide 

powerful results about the properties of analytic functions. Unit 11 is dedicated to 

singularities, where the behaviour of functions near points of discontinuity is studied. 

Units 12, 13, and 14 explain the residue theorem, argument principle, Rouche’s theorem, 

and the uniqueness of analytic continuation, which are advanced topics that extend the 

applications of complex analysis. 

The material is not only structured for academic learning but is also useful for 

competitive examinations. It explains fundamental principles and theories in a clear and 

straightforward manner, with numerous examples and exercises included to help learners 

easily grasp the subject matter. 



 

 

 

Course Name: Advanced Complex Analysis     Course code: MAT601 

Credit: 4 

Syllabus 

Algebra and Topology of the complex plane. Geometry of the complex 

plane, Complex differentiation. :  Power series and its convergence, 

Cauchy-Riemann equations,  Harmonic functions, Conformal Mapping: 

Circle and line revisited, Conformal Mapping, Möbius transformations, 

Other Mapping, Integration along a contour, The fundamental theorem of 

calculus, Homotopy, Cauchy’s theorem, Cauchy integral formula, 

Cauchy’s inequalities and other consequences, Winding number, Open 

mapping theorem, Schwarz reflection Principle, Singularities of a 

holomorphic function, Laurent series, The residue theorem, Argument 

principle, Rouche’s theorem, Uniqueness of analytic continuation. 

Refrences 

 Ruel V.Churchill, (1960), Complex Variables and Applications, 

McGraw-Hill, New York. 

 S. Ponnusamy, (2011), Foundations of Complex Analysis (2nd 

edition), Narosa Publishing  House. 

 Murray R. Spiegel, (2009), Schaum's Outline of Complex 

Variables(2ndedition). 

Suggested Readings 

 L. V. Ahlfors,(1966), Complex Analysis, Second edition, 

McGraw-Hill, New York. 

 J.B. Conway, (2000), Functions of One Complex Variable, 

Narosa Publishing House,  

 E.T. Copson, (1970), Introduction to Theory of Functions of 

Complex Variable, Oxford University Press. 

 



Advanced Complex Analysis  MAT601 
 

Department of Mathematics  
Uttarakhand Open University Page 1 
 

 

 

 

 

 

 

 

 

BLOCK I 

ANALYTIC FUNCTIONS 

 
 



Advanced Complex Analysis  MAT601 

Department of Mathematics  

Uttarakhand Open University Page 2 
 

UNIT 1:-Introduction to Complex Numbers  

CONTENTS: 
1.1      Introduction 

1.2      Objectives 

1.3      Complex Numbers 

1.4      Equality of Complex Numbers 

1.5      Geometrical Representation of Complex Numbers 

1.6      Complex Plane or Argand Plane 

1.7      Polar Form of Complex Numbers  

1.8      Properties of Arguments.  

1.9      Properties of Moduli 

1.10     Summary 

1.11     Glossary 

1.12     References 

1.13     Suggested Reading 

1.14     Terminal questions  

1.15     Answers  

 

1.1 INTRODUCTION:-  

Complex numbers extend the real number system to include solutions to 

equations that have no real solutions, such as  𝑥2 + 1 = 0 . A complex 

number is of the form  𝑧 = 𝑎 + 𝑖𝑏  where 𝑎 the real part, 𝑏 is the 

imaginary part, and 𝑖 is the imaginary unit with 𝑖2 = −1. They can be 

represented on the complex plane, with the real part on the horizontal axis 

and the imaginary part on the vertical axis. The term “Complex Number” 

was coined by C.F. Gauss, and later mathematicians like A.L. Cauchy, B. 

Riemann, and K. Weierstrass made significant contributions, enriching the 

subject with their original work. Basic operations with complex numbers, 

such as addition, subtraction, multiplication, and division, follow specific 

rules. The modulus and argument provide a polar form, offering an 

alternative way to express complex numbers, which is particularly useful 

in advanced mathematics and engineering. 

1.2 OBJECTIVES:-  

After studying this unit, the learner’s will be able to  
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 To find the solutions to equations that lack real solutions. 

 To represent complex numbers as points or vectors on the complex 

plane. 

 To solved the form of complex numbers. 

 To solved the equation of straight line and circle. 

1.3 COMPLEX NUMBERS:-  

Complex numbers were introduced to provide solutions to equations like 

𝑥2 + 1 =  0, where there are no real solutions. These numbers include 

both real and imaginary parts and are denoted as 𝑎 + 𝑖𝑏, where 𝑎, 𝑏  are 

the real numbers, is called Complex Number. and 𝑖  represents the 

imaginary unit, which is defined as the square root of −1, also called 𝑖 as 

imaginary unit. 

If we represent a number in the form 𝑧 = 𝑥 + 𝑖𝑦,  then 𝑧  is called a 

complex Variable . Here, 𝑥 and 𝑦 are called the real and imaginary parts of 

𝑧  respectively. Sometimes we write z as  

𝑧 = (𝑥, 𝑦) 

we also write 

𝑅(𝑧) = 𝑥, 𝐼(𝑧) = 𝑦 

If 𝑥 = 0, 𝑖. 𝑒., 𝑧 = 𝑖𝑦, then 𝑧 is known as pure imaginary number. 

The complex conjugate of a complex number 𝑧 = 𝑥 + 𝑖𝑦  is denoted as  

𝑥 + 𝑖𝑦 and is equal to 𝑥 − 𝑖𝑦. In other words, it involves changing the sign 

of the imaginary part while leaving the real part unchanged.  

𝑧 = 𝑥 + 𝑖𝑦   𝑜𝑟    𝑧̅ = 𝑥 + 𝑖𝑦 

Example: the conjugate of −3 − 5𝑖 is 3 + 5𝑖. 

It is easy to verify that 

𝑅(𝑧) = 𝑥 =
𝑧 + 𝑧̅

2
,      𝐼(𝑧) = 𝑦 =  

𝑧 − 𝑧̅

2𝑖
      

1.4 EQUALITY OF COMPLEX NUMBERS:-  

The equality of complex numbers follows the same principles as equality 

of real numbers. Two complex numbers 𝑥1 + 𝑖𝑦1  and 𝑥2 + 𝑖𝑦2 are 
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considered equal if and only if both their real parts and imaginary parts are 

equal, i.e., 𝑥1 = 𝑥2 and 𝑦1 = 𝑦2 . 

Formally 

𝑧1 = 𝑥1 + 𝑖𝑦1,    𝑧2 = 𝑥2 + 𝑖𝑦2 

𝑧1 = 𝑧2 if and only if 𝑥1 = 𝑥2,      𝑦1 = 𝑦2. 

Remark: The phrases “greater than” or “less than” have no meaning in 

the set of complex numbers. 

Fundamental operations with complex numbers: 

 Addition: To add two complex numbers, add their corresponding 

real and imaginary parts. 

            If  
                                   𝑧1 = 𝑎 + 𝑖𝑏,    𝑧2 = 𝑐 + 𝑖𝑑  then 

𝑧1 + 𝑧2 = (𝑎 + 𝑐) + 𝑖(𝑏 + 𝑑) 
 Subtraction: To subtract one complex number from another, 

subtract their corresponding real and imaginary parts. 

𝑧1 = 𝑎 + 𝑖𝑏,    𝑧2 = 𝑐 + 𝑖𝑑  then 

𝑧1 − 𝑧2 = (𝑎 − 𝑐) + 𝑖(𝑏 − 𝑑) 
 Multiplication: To divide two complex numbers, multiply the 

numerator and the denominator by the conjugate of the 

denominator. 

If  
                                   𝑧1 = 𝑎 + 𝑖𝑏,    𝑧2 = 𝑐 + 𝑖𝑑  then 

𝑧1. 𝑧2 = (𝑎 + 𝑖𝑏)(𝑐 + 𝑖𝑑) = 𝑎𝑐 + 𝑖𝑎𝑑 + 𝑏𝑐 + 𝑖2𝑏𝑑 

= (𝑎𝑐 − 𝑏𝑑) + 𝑖(𝑎𝑑 + 𝑏𝑐) 
 Division: To divide two complex numbers, multiply the numerator 

and the denominator by the conjugate of the denominator. 

If  
                                   𝑧1 = 𝑎 + 𝑖𝑏,    𝑧2 = 𝑐 + 𝑖𝑑, the conjugate of  

𝑧2 is 𝑧2̅ = 𝑐 − 𝑖𝑑 then 
𝑧1
𝑧2 

=
𝑎 + 𝑖𝑏

𝑐 + 𝑖𝑑
 .
𝑐 − 𝑖𝑑 

𝑐 − 𝑖𝑑 
=
(𝑎 + 𝑖𝑏)(𝑐 − 𝑖𝑑)

𝑐2 + 𝑑2
 

=
(𝑎𝑐 − 𝑏𝑑)(𝑏𝑐 − 𝑎𝑑)

𝑐2 + 𝑑2
 

= (
𝑎𝑐−𝑏𝑑

𝑐2+𝑑2
) + 𝑖 (

𝑏𝑐−𝑎𝑑

𝑐2+𝑑2
) if 𝑐2 + 𝑑2 ≠ 0 
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Absolute Value: For a complex number 𝑧 = 𝑎 + 𝑖𝑏, where 𝑎 the real part 

is and 𝑏 is the imaginary part, the absolute value is defined as: 

|𝑧| = |𝑎 + 𝑖𝑏| = √𝑎2 + 𝑏2  

∴                        |𝑧|2 = 𝑎2 + 𝑏2 = (𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏) = 𝑧𝑧̅ 

|𝑧|2 = 𝑧𝑧̅ 

Also                                        𝑧1. 𝑧2̅̅ ̅̅ ̅̅ ̅ = 𝑧1̅ 𝑧2̅ 

Properties of the Absolute Value: 

 Non-negativity: ∣ 𝑧 ∣≥ 0 

           The absolute value is always non-negative. 

 Zero:                                 ∣ 𝑧 ∣= 0 

          if and only if z=0 (i.e., both the real and imaginary parts are zero). 

 Multiplicatively:                    |𝑧1. 𝑧2 | = |𝑧1||𝑧2| 

The absolute value of the product of two complex numbers is the 

product of their absolute values. 

 

 Triangle Inequality:        |𝑧1 + 𝑧2 | ≤ |𝑧1| + |𝑧2| 

The absolute value of the sum of two complex numbers is less than 

or equal to the sum of their absolute values. 

 Conjugate:                         ∣ 𝑧 ∣=∣ 𝑧̅ ∣ 

The absolute value of a complex number is equal to the absolute 

value of its conjugate. 

1.5 GEOMETRICAL REPRESENTATION OF 

COMPLEX NUMBERS:-  

A complex number 𝑧 = 𝑥 + 𝑖𝑦  is defined as an ordered pair of real 

numbers (𝑥, 𝑦), where 𝑥 the real part is and 𝑦 is the imaginary part. 
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Fig.1 

A complex number 𝑧 = 𝑥 + 𝑖𝑦  can be represented by a point 𝑃  with 

Cartesian coordinates (𝑥, 𝑦) on a rectangular coordinate system, where the 

𝑋 −axis is the real axis and the 𝑌 − 𝑎xis is the imaginary axis. 

Each complex number corresponds to a unique point in the plane, and 

conversely, each point in the plane corresponds to one and only one 

complex number. 

1.6 COMPLEX PLANE OR ARGAND PLANE:-  

The complex plane, also known as the Argand plane or the z-plane, is a 

two-dimensional coordinate system used to represent complex numbers 

geometrically. Gauss was the first to produce in 1799 that complex 

numbers are represented by points in a plane, then this concept that was 

developed by Argand in 1806. In this plane, each complex number 𝑧 =

𝑥 + 𝑖𝑦 can identify with a point 𝑃 = (𝑥, 𝑦), where 𝑥 the real part is and 𝑦 

is the imaginary part. The horizontal axis, known as the real axis, contains 

all points of the form (𝑥, 0), representing real numbers, while the vertical 

axis, called the imaginary axis, includes points of the form (0, 𝑦), 

representing purely imaginary numbers. Points not on the real axis 

represent general complex numbers with both real and imaginary parts. 

The origin (0,0), represents the complex number0 + 𝑖0 . This graphical 

representation helps in visualizing complex number operations and 

understanding their properties. 

The nonnegative number ∣ 𝑧 ∣, called the modulus or absolute value of a 

complex number 𝑧 = 𝑥 + 𝑖𝑦 , represents the distance of the complex 

number 𝑧 from the origin in the complex plane. It is calculated using the 

formula: 
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|𝑧| = √𝑥2 + 𝑦2 

This is derived from the Pythagorean theorem, considering 𝑧 = (𝑥, 𝑦) as a 

point in the 𝑥𝑦 −plane.(see Fig.2.) 

 

Fig.2. 

The distance between two points 𝑧1 = 𝑥1 + 𝑖𝑦1,    𝑧2 = 𝑥2 + 𝑖𝑦2 in the 

complex plane is given by the distance formula: 

|𝑧1 − 𝑧2| = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 

This formula measures the straight-line distance between the points 

(𝑥1, 𝑦1) and (𝑥2, 𝑦2) in the complex plane. 

1.7 POLAR FORM OF COMPLEX NUMBERS:-  

In the complex plane, any complex number 𝑧 = 𝑥 + 𝑖𝑦 can be represented 

as a point 𝑃 with coordinates (𝑥, 𝑦). The polar coordinates (𝑟, 𝜃) of this 

point are derived from its Cartesian coordinates (𝑥, 𝑦). The modulus 𝑟, 

also known as the absolute value of 𝒛, is found by taking the square root 

of the sum of the squares of the real and imaginary parts, giving us 𝑟 =

√𝑥2 + 𝑦2 . 

 

Fig.3. 
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This represents the distance of the point 𝑃  from the origin 𝑂 . The 

argument 𝜃, often referred to as the amplitude of 𝑧, is determined by the 

angle 𝜃  between the line segment 𝑂𝑃  and the positive real axis. It is 

calculated as the arctangent of 𝜃 = tan−1
𝑦

𝑥
, representing the direction of 

the point 𝑃  from the origin. Together, the modulus and argument 

provide a comprehensive description of the complex number's location 

and direction within the complex plane and it is also written as 𝜃 =

𝑎𝑚𝑝(𝑧) or 𝜃 = arg (𝑧). 

From the figure 3.                𝑥 = 𝑟𝑐𝑜𝑠𝜃, 𝑦 = 𝑟𝑠𝑖𝑛𝜃 

Then                                        𝑟 = √𝑥2 + 𝑦2 = |𝑥 + 𝑖𝑦| = |𝑧| 

𝜃 = tan−1
𝑦

𝑥
 

It follows  

𝑧 = 𝑥 + 𝑖𝑦 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) = 𝑟𝑒𝑖𝜃 

It is called polar form of the complex number 𝑧 and that 𝑟, 𝜃 are called 

polar coordinates of 𝑧. 

 The argument of a complex number 𝑧 is not unique because it can 

differ by any integer multiple of 2𝜋. 

 The principal value of the argument of a complex number 𝑧 , 

denoted as 𝐴𝑟𝑔(𝑧), is the value of θ that lies within the interval 

−𝜋 < 𝜃 ≤ 𝜋 𝑜𝑟 0 < 𝜃 ≤ 2𝜋. 

 If 𝑧 = 0,  then 𝑎𝑟𝑔(𝑧) =  𝑎𝑟𝑔(0)  is not defined and 𝑎𝑟𝑔(𝑧)  is 

defined only if only 𝑧 ≠ 0. 

 If 𝐴𝑟𝑔(𝑧)denoted general value and argument 𝑎𝑟𝑔(𝑧)  denoted 

principal value, then 

𝐴𝑟𝑔(𝑧) = 𝑎𝑟𝑔(𝑧) + 2𝑛𝜋 ∀ 𝑛 ∈ 𝐼 

where 𝐼 = set of integers. 

 If  𝑧 = 𝑥 + 𝑖𝑦, then  

arg(𝑧) =

{
 
 
 

 
 
 
tan−1

𝑦

𝑥
, 𝑖𝑓 𝑥 > 0, 𝑦 > 0 𝑜𝑟 𝑦 ≤ 0

𝜋 + tan−1
𝑦

𝑥
𝑖𝑓 𝑥 < 0 𝑎𝑛𝑑 𝑦 ≥ 0

−𝜋 + tan−1
𝑦

𝑥
𝑖𝑓 𝑥 < 0 𝑎𝑛𝑑 𝑦 ≥ 0

𝜋

2
 𝑖𝑓 𝑥 = 0, 𝑦 > 0

−
𝜋

2
 𝑖𝑓 𝑥 = 0, 𝑦 < 0

              

 1.8 PROPERTIES OF ARGUMENTS:-  
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Theorem1.  The argument of the product of two complex numbers is 

equal to the sum of their arguments. 

arg(𝑧1𝑧2) = 𝑎𝑟𝑔(𝑧1) + 𝑎𝑟𝑔(𝑧2) 

𝐏𝐫𝐨𝐨𝐟: Let 𝑧1 and 𝑧2 be two complex numbers with arguments 𝜃1and 𝜃2 

respectively. In polar form, these complex numbers can be written as: 

𝑧1 = 𝑟1(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1) 

𝑧2 = 𝑟2(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2) 

 

Now, consider the product 𝑧1𝑧2: 

𝑧1𝑧2 = [𝑟1(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1)][𝑟2(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2)] 

= 𝑟1𝑟2[(𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 − 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2) + 𝑖(𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2 + 𝑠𝑖𝑛𝜃1𝑐𝑜𝑠𝜃2)] 

Using the angle addition formulas for sine and cosine: 

𝑐𝑜𝑠(𝜃1 + 𝜃2) = 𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 − 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2 

  𝑠𝑖𝑛(𝜃
1
+ 𝜃2) = 𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2 + 𝑠𝑖𝑛𝜃1𝑐𝑜𝑠𝜃2 

We can rewrite the product as: 

𝑧1𝑧2 = 𝑟1𝑟2[𝑐𝑜𝑠(𝜃1 + 𝜃2) + 𝑠𝑖𝑛(𝜃1 + 𝜃2)] 

This shows that the modulus of the product is 𝑟1𝑟2and the argument of the 

product is 𝜃1 + 𝜃2.Therefore 

arg(𝑧1𝑧2) = 𝑎𝑟𝑔(𝑧1) + 𝑎𝑟𝑔(𝑧2) 

Theorem2. The argument of the quotient of complex numbers is equal 

to the difference of their arguments. 

𝑎𝑟𝑔 (
𝑧1
𝑧2
) =  𝑎𝑟𝑔(𝑧1) − 𝑎𝑟𝑔(𝑧2) 

Proof:  Let 𝑧1 and 𝑧2 be two complex numbers with arguments 𝜃1and 𝜃2 

and moduli  𝑟1 and 𝑟2. In polar form, these complex numbers can be 

expressed as: 

𝑧1 = 𝑟1(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1) 

𝑧2 = 𝑟2(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2) 

Now, consider the quotient 𝑧1/𝑧2: 

𝑧1
𝑧2
=
𝑟1(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1)

𝑟2(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2)
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Using the properties of complex numbers in polar form, we can write this 

as: 

𝑧1
𝑧2
=
𝑟1
𝑟2
.
(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1)

(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2)
 

To simplify the fraction, we multiply the numerator and the denominator 

by the complex conjugate of the denominator: 

𝑧1
𝑧2
=
𝑟1
𝑟2
.
(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1)

(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2)
.
(𝑐𝑜𝑠𝜃1 − 𝑖𝑠𝑖𝑛𝜃1)

(𝑐𝑜𝑠𝜃2 − 𝑖𝑠𝑖𝑛𝜃2)
 

The denominator simplifies as: 

(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2). (𝑐𝑜𝑠𝜃2 − 𝑖𝑠𝑖𝑛𝜃2) = 𝑐𝑜𝑠2𝜃2 + 𝑖𝑠𝑖𝑛
2𝜃2 = 1 

This shows that the modulus of the quotient is 
𝑟1

𝑟2
 , and the argument of the 

quotient is 𝜃1 − 𝜃2. Therefore 

𝑎𝑟𝑔 (
𝑧1
𝑧2
) =  𝑎𝑟𝑔(𝑧1) − 𝑎𝑟𝑔(𝑧2) 

This completes the proof that the argument of the quotient of two complex 

numbers is equal to the difference of their arguments. 

1.9 PROPERTIES OF MODULI:-  

Theorem3: The modulus of the product of two complex numbers is the 

product of their modulus. 

|𝑧1. 𝑧2| = |𝑧1|. |𝑧2| 

Proof: |𝑧1. 𝑧2|
𝟐 = (𝑧1. 𝑧2)(𝑧1. 𝑧2)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑧1. 𝑧2. 𝑧1̅. 𝑧2̅ 

= (𝑧1. 𝑧1̅)(𝑧2. 𝑧2̅) = |𝑧1|
𝟐. |𝑧2|

𝟐 

|𝑧1. 𝑧2|
𝟐 = |𝑧1|

𝟐. |𝑧2|
𝟐 

⇒        

|𝑧1. 𝑧2| = |𝑧1|. |𝑧2| 

Remark:   |𝑧1| = |
𝑧1

𝑧2
. 𝑧2| = |

𝑧1

𝑧2
| . |𝑧2|, 

|
𝑧1
𝑧2
| = |

𝑧1
𝑧2
| 
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Theorem4: The modulus of the sum of two complex numbers is less than 

or equal to sum of their moduli. 

|𝑧1 + 𝑧2| ≤ |𝑧1| + |𝑧2| 

Proof: Suppose, 𝑧1 = 𝑟1𝑒
𝑖𝜃1 , 𝑧2 = 𝑟2𝑒

𝑖𝜃2, then  

𝑧1 + 𝑧2 = 𝑟1(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1) + 𝑟2(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2) 

= (𝑟1𝑐𝑜𝑠𝜃1 + 𝑟2𝑐𝑜𝑠𝜃2) + 𝑖(𝑟1𝑠𝑖𝑛𝜃1 + 𝑟2𝑠𝑖𝑛𝜃2) 

|𝑧1 + 𝑧2| = √(𝑟1𝑐𝑜𝑠𝜃1 + 𝑟2𝑐𝑜𝑠𝜃2)2 + (𝑟1𝑠𝑖𝑛𝜃1 + 𝑟2𝑠𝑖𝑛𝜃2)2 

= √𝑟1
2 + 𝑟2

2 + 2𝑟1𝑟2𝑐𝑜𝑠(𝜃1 − 𝜃2) 

≤ √𝑟1
2 + 𝑟2

2 + 2𝑟1𝑟2             𝑓𝑜𝑟  𝑐𝑜𝑠(𝜃1 − 𝜃2) ≤ 1  

= 𝑟1 + 𝑟2 = |𝑧1| + |𝑧2| 

|𝑧1 + 𝑧2| ≤ |𝑧1| + |𝑧2| 

Remark:   By induction, it follows that 

|∑𝑧𝑛

∞

𝑛=1

| ≤ ∑|𝑧𝑛|

∞

𝑛=1

 

Theorem5: The modulus of the sum of two complex numbers is less than 

or equal to sum of their moduli. 

|𝑧1 − 𝑧2| ≥ |𝑧1| − |𝑧2| 

Proof: Let, 𝑧1 = 𝑟1𝑒
𝑖𝜃1 , 𝑧2 = 𝑟2𝑒

𝑖𝜃2, then  

|𝑧1| = 𝑟1, |𝑧2| = 𝑟2  

𝑧1 − 𝑧2 = 𝑟1(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1) − 𝑟2(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2) 

= (𝑟1𝑐𝑜𝑠𝜃1 − 𝑟2𝑐𝑜𝑠𝜃2) + 𝑖(𝑟1𝑠𝑖𝑛𝜃1 − 𝑟2𝑠𝑖𝑛𝜃2) 

|𝑧1 − 𝑧2| = √(𝑟1𝑐𝑜𝑠𝜃1 − 𝑟2𝑐𝑜𝑠𝜃2)2 + (𝑟1𝑠𝑖𝑛𝜃1 − 𝑟2𝑠𝑖𝑛𝜃2)2 

= √𝑟1
2 + 𝑟2

2 − 2𝑟1𝑟2𝑐𝑜𝑠(𝜃1 − 𝜃2) 
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≤ √𝑟1
2 + 𝑟2

2 − 2𝑟1𝑟2             𝑓𝑜𝑟  𝑐𝑜𝑠(𝜃1 − 𝜃2) ≥ −1  

= 𝑟1 − 𝑟2 = |𝑧1| − |𝑧2| 

|𝑧1 − 𝑧2| ≥ |𝑧1| − |𝑧2| 

Remark:  To prove  

|𝑧1 − 𝑧2| ≤ |𝑧1| + |𝑧2| 

|𝑧1 − 𝑧2| = |𝑧1 + (−𝑧2)| 

≤ |𝑧1| + |−𝑧2|  by theorem2 

= |𝑧1| + |𝑧2| 

|𝑧1 − 𝑧2| ≤ |𝑧1| + |𝑧2| 

Hence    |𝑧1| − |𝑧2| ≤ |𝑧1 − 𝑧2| ≤ |𝑧1| + |𝑧2| 

Theorem6: To prove |𝑧1 + 𝑧2| ≥ |𝑧1| − |𝑧2|. 

Proof: : Let, 𝑧1 = 𝑟1𝑒
𝑖𝜃1 , 𝑧2 = 𝑟2𝑒

𝑖𝜃2, then  

|𝑧1| = 𝑟1, |𝑧2| = 𝑟2  

𝑧1 + 𝑧2 = 𝑟1(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1) + 𝑟2(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2) 

= (𝑟1𝑐𝑜𝑠𝜃1 + 𝑟2𝑐𝑜𝑠𝜃2) + 𝑖(𝑟1𝑠𝑖𝑛𝜃1 + 𝑟2𝑠𝑖𝑛𝜃2) 

|𝑧1 + 𝑧2| = √(𝑟1𝑐𝑜𝑠𝜃1 + 𝑟2𝑐𝑜𝑠𝜃2)2 + (𝑟1𝑠𝑖𝑛𝜃1 + 𝑟2𝑠𝑖𝑛𝜃2)2 

= √𝑟1
2 + 𝑟2

2 + 2𝑟1𝑟2𝑐𝑜𝑠(𝜃1 − 𝜃2) 

≥ √𝑟1
2 + 𝑟2

2 − 2𝑟1𝑟2             𝑓𝑜𝑟  𝑐𝑜𝑠(𝜃1 − 𝜃2) ≥ −1  

= 𝑟1 − 𝑟2 = |𝑧1| − |𝑧2|  if   𝑟1 > 𝑟2 

𝑟1 − 𝑟2 = |𝑧1| − |𝑧2| 

|𝑧1 + 𝑧2| ≥ |𝑧1| − |𝑧2|  if   |𝑧1| > |𝑧2| 

Theorem7: Parallelogram Law: The sum of squares of the length of 

diagonals of a parallelogram is equal to the sum of squares of length of its 

sides, i.e., prove that  
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|𝑧1 + 𝑧2|
2 + |𝑧1 − 𝑧2|

2 = 2[|𝑧1|
2 + |𝑧2|

2] 

OR 

To prove that |𝑧1 + 𝑧2|
2 + |𝑧1 − 𝑧2|

2 = 2[|𝑧1|
2 + |𝑧2|

2] 

Proof: Let 𝑧1 = 𝑟1𝑒
𝑖𝜃1 , 𝑧2 = 𝑟2𝑒

𝑖𝜃2, then  

|𝑧1| = 𝑟1, |𝑧2| = 𝑟2  

𝑧1 + 𝑧2 = 𝑟1(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1) + 𝑟2(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2) 

= (𝑟1𝑐𝑜𝑠𝜃1 + 𝑟2𝑐𝑜𝑠𝜃2) + 𝑖(𝑟1𝑠𝑖𝑛𝜃1 + 𝑟2𝑠𝑖𝑛𝜃2) 

𝑧1 − 𝑧2 = (𝑟1𝑐𝑜𝑠𝜃1 − 𝑟2𝑐𝑜𝑠𝜃2) + 𝑖(𝑟1𝑠𝑖𝑛𝜃1 − 𝑟2𝑠𝑖𝑛𝜃2) 

Now |𝑧1 + 𝑧2|
2 + |𝑧1 − 𝑧2|

2 = [(𝑟1𝑐𝑜𝑠𝜃1 + 𝑟2𝑐𝑜𝑠𝜃2)
𝟐 + 𝑖(𝑟1𝑠𝑖𝑛𝜃1 +

𝑟2𝑠𝑖𝑛𝜃2)
2] + [(𝑟1𝑐𝑜𝑠𝜃1 − 𝑟2𝑐𝑜𝑠𝜃2)

2 + (𝑟1𝑠𝑖𝑛𝜃1 − 𝑟2𝑠𝑖𝑛𝜃2)
2] 

= [𝑟1
2 + 𝑟2

2 + 2𝑟1𝑟2𝑐𝑜𝑠(𝜃1 − 𝜃2)] + [𝑟1
2 + 𝑟2

2 − 2𝑟1𝑟2𝑐𝑜𝑠(𝜃1 − 𝜃2)] 

= [𝑟1
2 + 𝑟2

2] 

= 2[|𝑧1|
2 + |𝑧2|

2] 

Theorem8: (Equation of Straight line)To find the equation of straight 

line joining two points𝑧1 and 𝑧2 in the complex plane. 

Proof: Let the equation of line AB joining the points A (𝑧1) and B(𝑧2), 

suppose point P(z) on it. So  

 

Fig.4. 

𝑎𝑟𝑔 (
𝑧−𝑧1

𝑧1−𝑧2
) = 0 or 𝜋 

Consequently (
𝑧−𝑧1

𝑧1−𝑧2
) is purely real so that 
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(
𝑧 − 𝑧1
𝑧1 − 𝑧2

) = (
𝑧 − 𝑧1
𝑧1 − 𝑧2

̅̅ ̅̅ ̅̅ ̅̅ ̅
) = (

𝑧̅ − 𝑧1̅
𝑧1̅ − 𝑧2̅

) 

(𝑧 − 𝑧1)(𝑧1̅ − 𝑧2̅) = (𝑧1 − 𝑧2)(𝑧̅ − 𝑧1̅) 

𝑧(𝑧1̅ − 𝑧2̅) − 𝑧̅(𝑧1̅ − 𝑧2̅) − 𝑧1𝑧1̅ + 𝑧1𝑧2̅ + 𝑧1𝑧1̅ − 𝑧2𝑧1̅ = 0 

𝑧(𝑧1̅ − 𝑧2̅) − 𝑧̅(𝑧1̅ − 𝑧2̅) + (𝑧1𝑧2̅ − 𝑧2𝑧1̅) = 0 is required equation of line. 

Theorem9: (Equation of a Circle) To show that the equation of circle in 

the Argand plane can be put in the form  

𝑧𝑧̅ + 𝑧̅𝑏 + �̅�𝑧 + 𝑐 = 0 

where 𝑐 is real and 𝑏 is complex constant. 

Proof: Suppose 𝑎 be a complex coordinate of the centre 𝐶 and 𝑟 be the 

radius of circle. Consider any point 𝑃(𝑧) on the circle.  

Then the length of line 𝐶𝑃 = radius of circle   or   

|𝑧 − 𝑎| = 𝑟 

 
Fig.5. 

Squaring both sides, we have 

|𝑧 − 𝑎|2 = 𝑟2 

(𝑧 − 𝑎)(𝑧̅ − �̅�) = 𝑟2 

(𝑧𝑧̅ − �̅�𝑧 + 𝑎�̅� − 𝑎𝑧̅) = 𝑟2  

𝑧𝑧̅ − �̅�𝑧 − 𝑎𝑧̅ + (|𝑎|2 − 𝑟2) = 0 

Taking – 𝑎 = 𝑏 and (|𝑎|2 − 𝑟2) = 𝑐 = 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 

𝑧𝑧̅ + 𝑧̅𝑏 + �̅�𝑧 + 𝑐 = 0 

where 𝑐 is real and 𝑏 is complex constant. 

SOLVED EXAMPLE 
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EXAMPLE1: Prove that |𝑎 + √𝑎2 − 𝑏2| + |𝑎 − √𝑎2 − 𝑏2| =

[|𝑎 − 𝑏| + |𝑎 − 𝑏|]2. 

SOLUTION: Suppose |𝑧1 + 𝑧2|
2 + |𝑧1 − 𝑧2|

2 = 2[|𝑧1|
2 + |𝑧2|

2] 

|𝑧1𝑧2| = |𝑧1|. |𝑧2| 

Now we shall prove the given problem 

[|𝑎 + √𝑎2 − 𝑏2| + |𝑎 − √𝑎2 − 𝑏2|]
2

= |𝑎 + √𝑎2 − 𝑏2|
2

+ |𝑎 − √𝑎2 − 𝑏2|
2

+ 2 |𝑎 + √𝑎2 − 𝑏2| |𝑎 − √𝑎2 − 𝑏2| 

= 2 [|𝑎|2 + |√𝑎2 − 𝑏2|
2

] + 2 |[𝑎 + √𝑎2 − 𝑏2] [𝑎 − √𝑎2 − 𝑏2]| 

= 2[|𝑎|2 + |𝑎2 − 𝑏2|] + 2|𝑎2 − (𝑎2 − 𝑏2)| 

= 2[|𝑎|2 + |𝑎2 − 𝑏2|] + 2|𝑏2| 

= 2[|𝑎|2 + |𝑏2|] + 2|𝑎2 − 𝑏2| 

= [|𝑎 + 𝑏|2 + |𝑎 − 𝑏|2] + 2|𝑎 + 𝑏|. |𝑎 − 𝑏| 

= [|𝑎 + 𝑏|2 + |𝑎 − 𝑏|2]2 

Hence  

|𝑎 + √𝑎2 − 𝑏2| + |𝑎 − √𝑎2 − 𝑏2| = [|𝑎 − 𝑏| + |𝑎 − 𝑏|]2  is required the 

solution. 

EXAMPLE2: Determine the regions of Argand diagram given by 

|𝑧2 − 𝑧| < 1. 

SOLUTION: Let 𝑧 = 𝑟𝑒𝑖𝜃 

Then    𝑧2 − 𝑧 = 𝑟2𝑒𝑖2𝜃 − 𝑟𝑒𝑖𝜃  

= (𝑟2𝑐𝑜𝑠2𝜃 − 𝑟𝑐𝑜𝑠𝜃) + 𝑖(𝑟2𝑠𝑖𝑛2𝜃 − 𝑟𝑠𝑖𝑛𝜃) 

|𝑧2 − 𝑧|2 = (𝑟2𝑐𝑜𝑠2𝜃 − 𝑟𝑐𝑜𝑠𝜃)2 + (𝑟2𝑠𝑖𝑛2𝜃 − 𝑟𝑠𝑖𝑛𝜃)2 

= 𝑟4 + 𝑟2 − 2𝑟3cos (2𝜃 − 𝜃) 
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But                                      |𝑧2 − 𝑧|2 < 1 

Hence                            

𝑟4 + 𝑟2 − 2𝑟3 cos 𝜃 < 1 

or                                  𝑟4 + 𝑟2 − 2𝑟3 cos 𝜃 − 1 < 0 

Hence  

𝑟4 + 𝑟2 − 2𝑟3 cos𝜃 − 1 = 0 

EXAMPLE3: Determine the region of 𝑧 −plane for which 

|𝑧 − 1| + |𝑧 + 1| ≤ 3. 

SOLUTION: Let  𝑧 = 𝑥 + 𝑖𝑦 

|𝑧 − 1| + |𝑧 + 1| = |𝑥 + 𝑖𝑦 − 1| + |𝑥 + 𝑖𝑦 + 1| 

= √(𝑥 − 1)2 + 𝑦2 +√(𝑥 + 1)2 + 𝑦2 

But          |𝑧 − 1| + |𝑧 + 1| ≤ 3 

√(𝑥 − 1)2 + 𝑦2 +√(𝑥 + 1)2 + 𝑦2 ≤ 3 

√(𝑥 − 1)2 + 𝑦2 ≤ 3 −√(𝑥 + 1)2 + 𝑦2 

(𝑥 − 1)2 + 𝑦2 ≤ 9 + (𝑥 + 1)2 + 𝑦2 − 6√(𝑥 + 1)2 + 𝑦2 

0 < 4𝑥 + 9 − 6√(𝑥 + 1)2 + 𝑦2 

6√(𝑥 + 1)2 + 𝑦2 ≤ (4𝑥 + 9) 

36[(𝑥 + 1)2 + 𝑦2] ≤ 16𝑥2 + 81 + 72𝑥 

36𝑥2 + 36 + 36𝑦2 + 72𝑥 ≤ 16𝑥2 + 81 + 72𝑥 

36𝑥2 + 36 + 36𝑦2 ≤ 16𝑥2 + 81 

20𝑥2 + 36𝑦2 ≤ 45 

𝑥2

(9/4)
+

𝑦2

(5/4)
= 1 

EXAMPLE4: Show that the locus of z such that  
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|𝑧 − 𝑎|. |𝑧 + 𝑎| = 𝑎2, 𝑎 > 0 

is a lemniscate. 

SOLUTION: Let              |𝑧2 − 𝑎2| = 𝑎2     or        𝑧2 − 𝑎2 = 𝑎2𝑒𝑖𝜆 

Put 𝑧 = 𝑟𝑒𝑖𝜃. Then                   𝑟2𝑒𝑖2𝜃 − 𝑎2 = 𝑎2𝑒𝑖𝜆 

This     ⇒                       𝑟2𝑐𝑜𝑠2𝜃 − 𝑎2 = 𝑎2𝑐𝑜𝑠𝜆  

𝑟2𝑠𝑖𝑛2𝜃 = 𝑎2𝑠𝑖𝑛𝜆 

Both above equations are squaring and adding 

(𝑟2𝑐𝑜𝑠2𝜃 − 𝑎2)2 + (𝑟2𝑠𝑖𝑛2𝜃)2 = 𝑎4 

𝑟2(𝑟2 − 2𝑎2𝑐𝑜𝑠2𝜃) = 0 

But 𝑟 ≠ 0 as 𝑧 ≠ 0 

𝑟2 − 2𝑎2𝑐𝑜𝑠2𝜃 = 0                     or              𝑟2 = 2𝑎2𝑐𝑜𝑠2𝜃    

which is lemniscates. 

SELF CHECK QUESTIONS 

1. Given two complex numbers𝑧1 = 3+ 4𝑖, 𝑧2 = 1 − 2𝑖 perform the 

following operations: 

a. Find the sum 𝑧1 + 𝑧2.      

b. Find the difference 𝑧1 − 𝑧2.     

c. Find the product 𝑧1 × 𝑧2.    

d. Find the quoteint of 𝑧1/𝑧2     

e. Find the magnitude of 𝑧1       

f. Find the conjugate of 𝑧2.       

2. Determine whether the following pairs of complex numbers are 

equal: 

a. 𝑧1 = 4+ 2𝑖 and 𝑧2 = 4 + 2𝑖   equal 

b. 𝑧3 = −1 + 4𝑖 and 𝑧3 = −1− 4𝑖   not equal 

c. 𝑧5 = 5  and       𝑧6 = 7 + 0𝑖  equal 

d. 𝑧7 = 0  and       𝑧8 = 0 + 0𝑖  equal 

e. 𝑧5 = 2𝑖  and       𝑧6 = −2𝑖  not equal 

3. Determine whether the following statements about the geometrical 

representation of complex numbers are true (Answer with "True" 

or "False"): 
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a. The complex number 3 + 4𝑖 is represented by the point 

(3, 4) on the complex plane.  true 

b. The magnitude of the complex number −3 − 4𝑖 is 5. true 

c. The complex number 0 + 0𝑖 is located at the origin.  true 

d. The argument of the complex number 1 + 𝑖 is 
𝜋

4
. true 

e. The complex number 4 lies on the imaginary axis. False 

4. For the circle |𝑧| = 1, the inverse of the point 𝑧 is : 

a. 𝑧 

b. 𝑧̅ 

c. 1/𝑧 ̅

d. None  

5. If the amplitude of the complex number 𝑧 be 𝜃, then amplitude of 

𝑖𝑧 is : 

a. – 𝜃 

b. 𝜃 + 𝜋/2 

c. 𝜃 + 𝜋 
d. None 

6. Polar form of complex number −5 + 5𝑖 is: 

a. 5√2𝑒𝑖𝜋/4 

b. 5√2𝑒−3𝑖𝜋/4 

c. 5√2𝑒3𝑖𝜋/4 
d. None 

7. If 𝑎, 𝑏, 𝑐 and 𝑢, 𝑣, 𝑤 complex numbers representing vertices of two 

triangles s.t., 𝑐 = (1 − 𝑟)𝑎 + 𝑟𝑏 and 𝑤 = (1 − 𝑟)𝑢 + 𝑟𝑣, where 𝑟 

is a complex number, then the two triangles.  

a. have the same area 

b. are similar 

c. are congruent 

d. None 

8. The points 𝑧1, 𝑧2, 𝑧3, 𝑧4 in the complex plane are the vertices of a 

parallelogram in order iff  

a. 𝑧1 + 𝑧4 = 𝑧2 + 𝑧3 

b. 𝑧1 + 𝑧3 = 𝑧2 + 𝑧4 

c. 𝑧1 + 𝑧2 = 𝑧3 + 𝑧4 
d. None 

1.10 SUMMARY:-  

In this unit we have studied, a complex number is a mathematical entity 

that extends the concept of one-dimensional real numbers to a two-

dimensional number system. It is expressed in the form 𝑎 + 𝑏𝑖, where 𝑎 

and 𝑏 are real numbers, and 𝑖  is the imaginary unit satisfying 𝑖2 = −1. 
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Here, 𝑎 is referred to as the real part and 𝑏 as the imaginary part of the 

complex number. Complex numbers enable the solution of equations that 

have no real solutions, such as 𝑥2 + 1 = 0.  They are fundamental in 

various fields of mathematics, engineering, and physics, providing a way 

to describe oscillations, waveforms, and other phenomena. 

1.11 GLOSSARY:-  

 Complex Number: A number of the form 𝑎 + 𝑏𝑖, where 𝑎 and 𝑏 

are real numbers, and 𝑖 is the imaginary unit with 𝑖2 = −1. 

 Real Part: The component 𝑎  in a complex number 𝑎 + 𝑏𝑖 , 

representing a real number. 

 Imaginary Part: The component 𝑏 in a complex number 𝑎 + 𝑏𝑖, 

representing a real number multiplied by the imaginary unit 𝑖. 

 Imaginary Unit (𝒊): A mathematical constant satisfying 𝑖2 = −1. 

 Equality of Complex Numbers: Two complex numbers 𝑎 + 𝑏𝑖 and 

𝑐 + 𝑑𝑖 are equal if and only if 𝑎 = 𝑐 and 𝑏 = 𝑑. 

 Complex Plane (Argand Plane): A two-dimensional plane for 

representing complex numbers, where the horizontal axis is the 

real part and the vertical axis is the imaginary part. 

 Magnitude (Modulus): The distance from the origin to the point 

(𝑎, 𝑏) in the complex plane, calculated as ∣ 𝑧 ∣= √𝑎2 + 𝑏2  for a 

complex number 𝑧 = 𝑎 + 𝑏𝑖. 

 Argument (Phase): The angle θ formed with the positive real axis, 

calculated using 𝜃 = tan−1
𝑏

𝑎
, (𝑏/𝑎)  for a complex number 𝑧 =

𝑎 + 𝑏𝑖. 

 Polar Form: A representation of a complex number in terms of its 

magnitude and argument: 𝑧 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) or 𝑧 = 𝑟𝑒𝑖𝜃. 

 Conjugate: The conjugate of a complex number 𝑎 + 𝑏𝑖 is 𝑎 − 𝑏𝑖. 

 Addition of Complex Numbers: Combining two complex 

numbers by adding their real parts and their imaginary parts 

separately:  (𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖. 

 Multiplication of Complex Numbers: Multiplying two complex 

numbers using distributive property and the fact that 𝑖2 = −1: 

(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖. 

 Division of Complex Numbers: Dividing by multiplying the 

numerator and denominator by the conjugate of the denominator 

and simplifying:
𝑎+𝑏𝑖

𝑐+𝑑𝑖
=

(𝑎+𝑏𝑖)(𝑐−𝑑𝑖)

𝑐2+𝑑2
. 
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1.14 TERMINAL QUESTIONS:- 

(TQ-1) Let 𝐴 and 𝐵 be two complex numbers s.t  

𝐴

𝐵
+
𝐵

𝐴
= 1 

Prove that origin and two points represented by 𝐴 and 𝐵 form vertices of 

an equilateral triangle. 

(TQ-2) If the complex numbers 𝑠𝑖𝑛𝑥 + 𝑖𝑐𝑜𝑠2𝑥 and 𝑐𝑜𝑠𝑥 − 𝑖𝑠𝑖𝑛2𝑥 are 

complex conjugate to each other, then the value of 𝑥.     

(TQ-3)A relation R on the set of complex numbers is defined by 

𝑧1𝑅𝑧2 ⇔
𝑧1−𝑧2

𝑧1+𝑧2
 real. Show that R is an equivalence relation. 

(TQ-4) Show that the origin and the point representing the roots of the 

equation 𝑧2 + 𝑝𝑧 + 𝑞 = 0 form an equilateral if 𝑝2 = 3𝑞. 

(TQ-5) Find 𝑎𝑟𝑔𝑖(𝑥 + 𝑖𝑦) if 𝑎𝑟𝑔(𝑥 + 𝑖𝑦) = 𝛼.       

(TQ-6)Show that the triangles whose vertices are 𝑧1, 𝑧2, 𝑧3  and 

𝑧′1𝑧′2𝑧′3are directly if  

|

𝑧1  𝑧
′
1  1

𝑧2  𝑧
′
2  1

𝑧3  𝑧′3  1
| = 0 

file:///C:/Users/user/Downloads/Paper-III-Complex-Analysis.pdf
file:///C:/Users/user/Desktop/1456304480EtextofChapter1Module1%20(1).pdf
file:///C:/Users/user/Desktop/1456304480EtextofChapter1Module1%20(1).pdf
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(TQ-7) Show that |𝑧1 − 𝑧2| ≥ (|𝑧1| − |𝑧2|) 

(TQ-8) Prove that |𝑧1 − 𝑧2|
2 + |𝑧1 + 𝑧2|

2 = 2|𝑧1|
2 + 2|𝑧2|

2 and deduce 

that |𝛼 + √𝛼2 − 𝛽2| + |𝛼 − √𝛼2 − 𝛽2| = |𝛼 + 𝛽| + |𝛼 − 𝛽|  all the 

numbers concerned being complex. 

 (TQ-9) Find the principal value of 𝑎𝑟𝑔 ′𝑖′.    

(TQ-10) Find the principal value of  𝑎𝑟𝑔 (1 + 𝑖).  

 

1.15 ANSWERS:- 

SELF CHECK ANSWERS (SCQ’S) 

1.  

a. 4 + 2𝑖 

b.   2 + 6𝑖 

c. 11 − 2𝑖 

d.   −1 + 2𝑖 

e. 5 

f. 1 + 2𝑖 

2.  

g.  equal 

h. not equal 

i. equal 

j. equal 

k. not equal 

3.  

a. true 

b. true 

c. true 

d. true 

e. False 

4. 1/𝑧 ̅

5. 𝜃 +
𝜋

2
 

6. 5√2𝑒3𝑖𝜋/4 

7. are similar 

8. 𝑧1 + 𝑧3 = 𝑧2 + 𝑧4 
 

TERMINAL ANSWERS (TQ’S) 
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(TQ-2) 𝑥 =
𝜋

8
,
5𝜋

8
,
9𝜋

8
, … 

(TQ-5) 
𝜋

2
+ 𝛼 

 (TQ-9) 
𝜋

2
 

 (TQ-10) 
𝜋

4
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UNIT 2:-Concept of Functions, Limit and 

Continuity  

CONTENTS: 
2.1      Introduction 

2.2      Objectives 

2.3      Point Set  

2.4      Neighborhood  

2.5      Limit Points 

2.6      Interior, Exterior and Boundary Points  

2.7      Open Set and Closed Set.  

2.8      Convex Set  

2.9      Bounded, Unbounded and Compact Set 

2.10    Derived Set, Closure of a Set and Connected Set 

2.11    Domain 

2.12    Jordan Arc(Curve) 

2.13    Function Of A Complex Variable 

2.14    Continuity 

2.15    Summary 

2.16     Glossary 

2.17     References 

2.18     Suggested Reading 

2.19     Terminal questions  

2.20     Answers  

 

2.1 INTRODUCTION:-  

In this unit, learners are well-versed in the definitions of limits and 

continuity for functions of a real variable; in this chapter, we will extend 

these concepts to functions of a complex variable. This includes exploring 

the nuances of limits and continuity within the complex plane, where 

functions involve both real and imaginary components. By understanding 

these definitions in the context of complex variables, students will gain 

deeper insights into the behavior and properties of complex functions, 

building on their existing knowledge from real analysis to navigate the 

more intricate landscape of complex analysis. 
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2.2 OBJECTIVES:-  

After studying this unit, the learner’s will be able to  

 To Understand and describe the relationship between variables 

through functions, enabling the modeling of real-world 

phenomena.  

 To verify the continuity of a function of two variables at a point.  

Overall apply these fundamental concepts to solve practical problems in 

various fields such as physics, engineering, economics, and beyond, where 

understanding change and stability is essential. 

2.3 POINT SET:-  

A point set in the complex plane refers to a gathering of points, each 

representing a distinct element within the set. These points, commonly 

referred to as numbers or elements of the set, collectively constitute the 

spatial arrangement of the set within the two-dimensional complex plane. 

2.4 NEIGHBORHOOD:-  

In the Argand plane (also known as the complex plane), the neighborhood 

of a point 𝑧0 is defined as the set of points 𝑧 such that the distance 

between 𝑧0 and 𝑧 (denoted as |𝑧 − 𝑧0| < 𝜀 is less than some positive real 

number ε. Mathematically, it can be expressed as {𝑧 ∈ ℂ: |𝑧 − 𝑧0| < 𝜀 }, 

where ℂ represents the complex numbers. This neighborhood represents 

an open set around the point z, where all points within a certain distance 𝜀 

from 𝑧 are included.  

The neighborhood of the point at infinity in the complex plane is the set 

of points 𝑧 s.t.  |𝑧| < 𝑘 where 𝑘 is any positive real number. 

2.5 LIMIT POINTS:-  

A point 𝑧0 in the complex plane ℂ is termed a limit point of a set 𝑆 ⊆ ℂ if 

every punctured neighborhood of 𝑧0  contains at least one point of 𝑆. A 

limit point may or may not be an actual member of the set. For instance, 

all points on the circle |𝑧 ∣= 𝑟 are limit points of the set ∣ 𝑧 ∣< 𝑟, yet they 

do not belong to the set itself. Conversely, all points within the circle ∣ 𝑧 ∣

= 𝑟 are limit points of the set and they do belong to the set ∣ 𝑧 ∣< 𝑟. This 
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illustrates the nuanced relationship between limit points and sets in the 

complex plane. 

OR 

A point 𝑧0 ∈ ℂ is called a limit point (or accumulation point) of a subset 

𝑆 ⊆ ℂ if every open neighborhood of 𝑧0  contains at least one point of 

𝑆 different from 𝑧0 itself. Formally, 𝑧0 is a limit point of 𝑆 if for every 𝜖 >

0, there exists a point 𝑧 ∈ 𝑆 such that 0 <∣ 𝑧 − 𝑧0 ∣< 𝜖. This means that 

𝑧0 can be approached arbitrarily closely by points of 𝑆. 

Theorem1: Let 𝑓 be a complex valued function defined on 𝐷  and let 

𝑧0𝜖𝐶𝑙(𝐷). If lim
𝑧−𝑧0

𝑓(𝑧) exist, then this limit is unique. 

Solution: Suppose for contradiction that the limit is not unique. This 

means there exist two distinct complex numbers 𝑙1and 𝑙2 such that: 

lim
𝑧−𝑧0

𝑓(𝑧) = 𝑙1, lim
𝑧−𝑧0

𝑓(𝑧) = 𝑙2 

Now assume 𝑙1 ≠ 𝑙2 

By the definition of the limit, for any 𝜖 > 0, there exists a 𝛿1 > 0 such 

that: 

∣ 𝑧 − 𝑙1 ∣< 𝜖 whenever 0 <∣ 𝑧 − 𝑧0 ∣< 𝛿1 

Similarly, there exists a 𝛿2 > 0 such that: 

∣ 𝑧 − 𝑙2 ∣< 𝜖 whenever 0 <∣ 𝑧 − 𝑧0 ∣< 𝛿2 

Let 𝛿 = 𝛿1𝛿2 Then for any z satisfying 0 <∣ 𝑧 − 𝑧0 ∣< 𝛿 both inequalities 

hold: 

∣ 𝑧 − 𝑙1 ∣< 𝜖, ∣ 𝑧 − 𝑙2 ∣< 𝜖  

Using the triangle inequality, we get: 

∣ 𝑙1 − 𝑙2 ∣= |𝑙1 − 𝑓(𝑧) + 𝑓(𝑧) − 𝑙2| ≤ |𝑙1 − 𝑓(𝑧)| + |𝑓(𝑧) − 𝑙2| <∈ +∈

= 2 ∈ 

However, by our assumption 𝑙1 ≠ 𝑙2, so ∣ 𝑙1 − 𝑙2 ∣is a positive constant. 

By choosing  
∣𝑙1−𝑙2∣

3
 we have 

∣ 𝑙1 − 𝑙2 ∣< 2.
∣ 𝑙1 − 𝑙2 ∣

3
=

2

3
∣ 𝑙1 − 𝑙2 ∣ 
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This is a contradiction because ∣ 𝑙1 − 𝑙2 ∣ cannot be less than itself. 

Therefore, our assumption that the limit is not unique must be false. 

lim
𝑧−𝑧0

𝑓(𝑧) = 𝑙1 

Hence the limit lim
𝑧−𝑧0

𝑓(𝑧) is unique if it exist. 

Theorem2: Let f be the complex valued function defined on D. Suppose, 

𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), 𝑧0 = 𝑥0 + 𝑖𝑦0, 𝑤0 = 𝑢0 + 𝑖𝑣0  and 𝑧0 ∈

𝐶𝑙(𝐷). 

Then lim
𝑧−𝑧0

𝑓(𝑧) = 𝑤0 iff lim
𝑧−𝑧0

𝑢(𝑥, 𝑦) = 𝑢0 and lim
𝑧−𝑧0

𝑣(𝑥, 𝑦) = 𝑣0 

Solution: Given 

𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) 

𝑧0 = 𝑥0 + 𝑖𝑦0 

𝑤0 = 𝑢0 + 𝑖𝑣0 

 and                                         𝑧0 ∈ 𝐶𝑙(𝐷) 

Forward direction (𝐼𝑓 𝑙𝑖𝑚
𝑧→𝑧0

𝑓(𝑧) = 𝑤0𝑡ℎ𝑒𝑛 𝑖𝑓 𝑙𝑖𝑚
𝑧→𝑧0

𝑢(𝑥, 𝑦) =

𝑢0  𝑎𝑛𝑑 𝑙𝑖𝑚
𝑧→𝑧0

𝑢(𝑥, 𝑦) = 𝑣0): 

Assume                                 𝑙𝑖𝑚
𝑧→𝑧0

𝑓(𝑧) = 𝑤0 

This means that ∀ ∈> 0, ∃ 𝛿 > 0  such that whenever 0 < |𝑧 − 𝑧0| < 𝛿, 

we have 

|𝑓(𝑧) − 𝑤0| <∈ 

We can express this in terms of the real and imaginary parts:  

|𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) − (𝑢0 + 𝑖𝑣0)| <∈ 

Using the properties of absolute values for complex numbers; this can be 

written as  

√(𝑢(𝑥, 𝑦) − 𝑢0)2 + (𝑣(𝑥, 𝑦) − 𝑣0)2 <∈ 

Since the square root function is positive and increasing, we have: 
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(𝑢(𝑥, 𝑦) − 𝑢0)2 + (𝑣(𝑥, 𝑦) − 𝑣0)2 <∈2 

This implies: 

|𝑢(𝑥, 𝑦) − 𝑢0| <∈    and  |𝑣(𝑥, 𝑦) − 𝑣0| <∈ 

Therefore, 𝑙𝑖𝑚
𝑧→𝑧0

𝑢(𝑥, 𝑦) = 𝑢0 and 𝑙𝑖𝑚
𝑧→𝑧0

𝑣(𝑥, 𝑦) = 𝑣0. 

Reverse direction (𝑖𝑓 𝑙𝑖𝑚
𝑧→𝑧0

𝑢(𝑥, 𝑦) = 𝑢0  𝑎𝑛𝑑 𝑙𝑖𝑚
𝑧→𝑧0

𝑢(𝑥, 𝑦) =

𝑣0  𝑡ℎ𝑒𝑛 𝑙𝑖𝑚
𝑧→𝑧0

𝑓(𝑧) = 𝑤0): 

Assume      

𝑙𝑖𝑚
𝑧→𝑧0

𝑢(𝑥, 𝑦) = 𝑢0  𝑎𝑛𝑑 𝑙𝑖𝑚
𝑧→𝑧0

𝑢(𝑥, 𝑦) = 𝑣0 

This means that ∀ ∈> 0, ∃ 𝛿1 > 0 such that whenever 0 < |𝑧 − 𝑧0| < 𝛿1, 

we have 

|𝑢(𝑥, 𝑦) − 𝑢0| <
∈

√2
 

Similarly ∃ 𝛿2 > 0 such that whenever 0 < |𝑧 − 𝑧0| < 𝛿2, we have 

|𝑣(𝑥, 𝑦) − 𝑣0| <
∈

√2
 

Using these inequalities, we get: 

(𝑢(𝑥, 𝑦) − 𝑢0)2 < (
∈

√2
)

2

=
∈2

2
 

(𝑣(𝑥, 𝑦) − 𝑣0)2 < (
∈

√2
)

2

=
∈2

2
 

This implies: 

| 𝑓(𝑧) − 𝑤0| = |(𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)) − (𝑢0 + 𝑖𝑣0)| <∈ 

Hence, 𝑙𝑖𝑚
𝑧→𝑧0

𝑓(𝑧) = 𝑤0. 

Therefore 𝑙𝑖𝑚
𝑧→𝑧0

𝑓(𝑧) = 𝑤0  if and only if 𝑙𝑖𝑚
𝑧→𝑧0

𝑢(𝑥, 𝑦) = 𝑢0  and 

𝑙𝑖𝑚
𝑧→𝑧0

𝑣(𝑥, 𝑦) = 𝑣0. 
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SOLVED EXAMPLE 

EXAMPLE1: Prove that lim
𝑧→0

�̅�

𝑧
 does not exist. 

SOLUTION: Let 𝑓(𝑧) → 𝑙 (a unique limit) as 𝑧 → 𝑧0 in any manner in 

the ℂ − plane. 

Let  𝑓(𝑧) =
�̅�

𝑧
 and 𝑧 → 0, along the real axis. 

∴  𝑦 = 0, 𝑧 = 𝑥                      (∵ 𝑧 = 𝑥 + 𝑖𝑦) 

∴  lim
𝑧→0

𝑓(𝑧) = lim
𝑧→0

�̅�

𝑧
= lim

𝑧→0

𝑥

𝑥
= 1  

Suppose 𝑧 → 0, along the imaginary axis. 

∴ 𝑥 = 0, 𝑧 = 𝑖𝑦                      (∵ 𝑧 = 𝑥 + 𝑖𝑦) 

∴  lim
𝑧→0

𝑓(𝑧) = lim
𝑧→0

�̅�

𝑧
= lim

𝑧→0

−𝑖𝑦

𝑖𝑦
= −1  

Hence the limit is not unique along real and imaginary axis. 

∴ lim
𝑧→0

�̅�

𝑧
 does not exist. 

EXAMPLE2: If 𝑓(𝑧) = 𝑧2, prove that lim
𝑧→0

𝑓(𝑧) = 𝑧2. 

SOLUTION: Let 𝜖 > 0 given, to find 𝛿 > 0 s.t. |𝑧2 − 𝑧0
2| <∈ whenever 

0 < |𝑧 − 𝑧0| < 𝛿 

Consider                   |𝑧2 − 𝑧0
2| = |(𝑧 − 𝑧0)(𝑧 + 𝑧0)| 

|𝑧 + 𝑧0||𝑧 − 𝑧0| < 𝛿|𝑧 + 𝑧0| 

= |𝑧 − 𝑧0 + 2𝑧0| ≤ 𝛿|𝑧 − 𝑧0| + 2𝛿|𝑧0| < 𝛿𝛿 + 2𝛿|𝑧0| =∈ 

  ∵ now 𝛿 > 0s.t. min{
∈

1+2|𝑧0|
, 1} 

 ⇒  |𝑧2 − 𝑧0
2| <∈ 

⇒ lim
𝑧→0

𝑓(𝑧) = 𝑧0
2  

2.6 INTERIOR, EXTERIOR AND BOUNDARY 

POINTS:-  

An interior point of a set 𝑆 ⊆ 𝐶 is a point 𝑧0 ∈ 𝑆 where there exists a 

neighborhood entirely contained within  𝑆. An exterior point of 𝑆  is a 

point 𝑧0 where there exists a neighborhood containing no point of 𝑆. A 

boundary point of 𝑆 is a point 𝑧0 where every neighborhood contains at 
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least one point of 𝑆 and at least one point of the complement of 𝑆. The 

collection of all such boundary points is referred to as the boundary of 𝑆. 

2.7 OPEN SET AND CLOSED SET:-  

A set 𝑆 ⊆ ℂ is called as an open set if it exclusively comprises interior 

points, ensuring that for every point in S, there exists a neighborhood 

contained entirely within 𝑆. Conversely, a closed set in ℂ includes all its 

limit points or possesses no limit points; if a set is closed, its complement 

is open. Some sets neither qualify as open nor closed, while others exhibit 

characteristics of both.  

Notably, the empty set ∅ and the entire complex plane C are examples of 

sets that are simultaneously open and closed. The set 𝐴 = {𝑧: 0 <∣ 𝑧 − 𝑧0 ∣

≤ 𝑟} exemplifies a set that fails to meet the criteria for either openness or 

closedness. Moreover, the open disc ∣ 𝑧 ∣< 1  represents an open set, 

whereas the closed disc ∣ 𝑧 ∣≤ 1 constitutes a closed set. Additionally, it's 

crucial to acknowledge that the intersection of a finite number of open sets 

remains open, while the arbitrary union of open sets also remains open. 

2.8 CONVEX SET:-  

A set 𝑆 ⊆ ℂ is called a convex set if, for any two point 𝑧1, 𝑧2 ∈ 𝑆, the line 

segment connecting1z1and z2is entirely contained with𝑆. Mathematically, 

this means that 𝑧1, 𝑧2 ∈ 𝑆 and any t in the interval 0 ≤ 𝑡 ≤ 1, the point 

𝑡𝑧1 + (1 − 𝑡)𝑧2 ∈ 𝑆. 

2.9 BOUNDED, UNBOUNDED AND COMPACT 

SET:-  

Bounded Set: A set 𝑆 ⊆ ℂ  is bounded if there exists a positive real 

number 𝑀  such that for every point 𝑧 ∈ 𝑆 , the distance ∣ 𝑧 ∣  from the 

origin is less than 𝑀. That is, 𝑆 is contained within some finite region of 

the complex plane. 

Unbounded Set: A set 𝑆 ⊆ ℂ  is unbounded if for every positive real 

number𝑀, there exists at least one point 𝑧 ∈ 𝑆 such that ∣ 𝑧 ∣≥ 𝑀. This 

means that the set is not contained within any finite region of the complex 

plane and can extend infinitely in one or more directions. 
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Compact Set: A set 𝑆 ⊆ ℂ is compact if it is closed (contains all its limit 

points) and bounded (contained within a finite region). Equivalently, a set 

is compact if every open cover of the set has a finite subcover. 

2.10 DERIVED SET, CLOSURE OF A SET AND 

CONNECTED SET:-  

Derived Set: The derived set (or the set of limit points) of a set 𝑆 ⊆ ℂ is 

the set of all points in the complex plane that are limit points of 𝑆. A point 

𝑧0 is a limit point of 𝑆 if every neighborhood of 𝑧0 contains at least one 

point of 𝑆 other than 𝑧0 itself. The derived set can be denoted as 𝑆′. 

Closure of a Set: The closure of a set 𝑆 ⊆ ℂ is the smallest closed set that 

contains 𝑆. It is denoted by 𝑆̅ and includes all points of S along with all its 

limit points. Mathematically, 𝑆̅ = 𝑆 ∪ 𝑆′, where 𝑆′ is the derived set of  𝑆. 

The closure represents the "completion" of 𝑆 by including its boundary 

points. 

Connected Set: A set 𝑆 ⊆ ℂ is connected if it cannot be partitioned into 

two non-empty disjoint open subsets. Intuitively, this means that 𝑆 is all in 

"one piece," and there is a continuous path within 𝑆 between any two 

points in 𝑆. A connected set does not have any isolated parts, making it an 

essential concept in understanding the topological structure of sets. 

2.11 DOMAIN:-  

A domain is defined as a nonempty, open, and connected subset of the 

complex plane C. If the set includes its boundary points, it is termed a 

closed domain. Notably, every neighborhood of a point in the complex 

plane qualifies as a domain. When a domain is combined with some, none, 

or all of its boundary points, it is referred to as a region. Consequently, 

every domain is a type of region, but not all regions qualify as domains, 

highlighting that domains are a specific subset of regions with stricter 

criteria. 

2.12 JORDAN ARC(CURVE):-  

The equation 𝑧 = 𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡)  

where 𝑥(𝑡)  and  𝑦(𝑡) are real-valued continuous functions of the real 

variable  t, with t in the interval [𝑎, 𝑏], defines a set of points in the 
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complex plane known as a continuous curve. This curve is called a simple 

curve if 𝑡1 ≠ 𝑡2 implies 𝑧(𝑡1) ≠ 𝑧(𝑡2)meaning the curve does not intersect 

itself. If the curve is such that 𝑡1 < 𝑡2  and 𝑧(𝑡1) = 𝑧(𝑡2) implies 𝑡1 =

𝑎 and 𝑡2 = 𝑏 , then it is a simple closed curve, which means the curve 

starts and ends at the same point, forming a loop without self-intersections 

except at the endpoints. Simple curves are often referred to as Jordan 

curves. A common example of a Jordan curve is a polygon formed by 

joining a finite number of line segments end to end. 

An important property of a bounded infinite set in the complex plane is 

that it must have at least one limit point within the complex plane. This 

property is derived from the Bolzano-Weierstrass theorem, which states 

that every bounded sequence in C has a convergent subsequence. This 

implies that any bounded infinite set in the complex plane cannot be 

composed entirely of isolated points; instead, it must contain points 

arbitrarily close to each other, leading to the presence of limit points. This 

property is fundamental in understanding the structure and behavior of sets 

in the complex plane. 

Theorem 3. (Bolzano-Weierstrass Theorem) 

If a set 𝑆 ⊆ ℂ is bounded and contains an infinite number of points, then it 

must have at least one limit point. 

Theorem 4. (Jordan Curve Theorem) 

It states that a simple closed Jordan curve divides the Argand plane into 

two open domains which have the curve as the common boundary. One of 

these domains is bounded and is known as interior domain, while the other 

is bounded and is called exterior domain. 

2.13 FUNCTION OF A COMPLEX VARIABLE:-  

A complex variable, symbolized by 𝑧, denotes any element within a set 𝑆 

contained in the complex plane ℂ. A function 𝑓: 𝑆 → ℂ represents a rule 

assigning a unique complex value 𝑓(𝑧) to each 𝑧 ∈ 𝑆 , denoted as 𝑤 =

𝑓(𝑧),  where 𝑧  is considered the independent variable and w is the 

dependent variable. This function f maps elements from the domain S to 

the complex planeℂ, often visualized in another complex plane known as 

the 𝑤 −plane. If 𝑆  constitutes a subset of the real line, 𝑓  is termed a 

complex function of a real variable. The set 𝑆 is identified as the domain 
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of 𝑓, while the collection of all 𝑓(𝑧) for 𝑧 in 𝑆 is recognized as the range 

of 𝑓. 

OR 

A function  𝑓: 𝐴 → 𝐵 , where 𝐴  and 𝐵  are non-empty subsets of the 

complex numbers, is a rule that assigns to each complex number 𝑧0 =

𝑥0 + 𝑖𝑦0 ∈ 𝐴 a unique complex number 𝑤0 = 𝑢0 + 𝑖𝑣0 ∈ 𝐵.  

The number 𝑤0 is the value of f at 𝑧0, denoted 𝑓(𝑧0) = 𝑤0 . As 𝑧 varies in 

𝑓(𝑧) = 𝑤 varies in 𝐵 . This function is a complex-valued function of a 

complex variable, where w is the dependent variable and z is the 

independent variable. If 𝑆 is a subset of 𝐴, then 𝑓(𝑆) = {𝑓(𝑧) ∣, 𝑧 ∈ 𝑆} is 

called the image of 𝑆 under 𝑓, and the set 𝑅 = {𝑓(𝑧) ∣ 𝑧 ∈ 𝐴} is called the 

range of 𝑓. 

Single and Multiple Valued Function: For any non-zero complex 

number 𝑧 ∈ ℂ − {0}, the polar form of 𝑧 is given by 𝑧 = 𝑟𝑒𝑖𝜃, where 𝑟 =∣

𝑧 ∣ is the modulus of 𝑧 and 𝜃 ∈ [−𝜋, 𝜋] is the argument of 𝑧. This can be 

expressed as 𝑧 = 𝑧(𝑟, 𝜃) = 𝑟𝑒𝑖𝜃. If we increase the argument 𝜃 by 2𝜋, we 

have: 

    𝑧(𝑟, 𝜃 + 2𝜋) = 𝑟𝑒𝑖(𝜃+2𝜋) = 𝑟𝑒𝑖𝜃. 𝑒2𝜋𝑖 = 𝑟𝑒𝑖𝜃 = 𝑧(𝑟, 𝜃) 

Thus, 𝑧(𝑟, 𝜃 + 2𝜋)  returns to its original value, demonstrating the 

periodicity of the complex exponential function with period 2𝜋. 

Definition. A function 𝑓 is said to be single-valued if it satisfies 𝑓(𝑧) =

𝑓(𝑧(𝑟, 𝜃)) = 𝑧(𝑟, 𝜃 + 2𝜋) , meaning the function's value remains 

unchanged when the argument θ is increased by 2𝜋.  

Otherwise, 𝑓 is said to be a multiple valued function. 

Example: 𝑓(𝑧) = 𝑧𝑛 , 𝑛 ∈ 𝑍 is said to a single valued function. 

Solution: 𝑓(𝑧) = 𝑓(𝑧(𝑟, 𝜃)) = (𝑟𝑒𝑖𝜃)
𝑛

 

𝑓(𝑧(𝑟, 𝜃 + 2𝜋)) = [𝑟𝑒𝑖(𝜃+2𝜋)]
𝑛

= 𝑟𝑛𝑒𝑖𝑛𝜃𝑒2𝜋𝑛𝑖  

= 𝑟𝑛𝑒𝑖𝑛𝜃𝑒2𝜋𝑛𝑖  

                                       {∵     𝑒2𝜋𝑛𝑖 = 1, 𝑛 ∈ ℤ } 

= (𝑟𝑒𝑖𝜃)
𝑛

= 𝑓(𝑧(𝑟, 𝜃)) 
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Note:  If 𝑛 ∉ ℤ then 𝑓(𝑧) = 𝑧𝑛 is multiplied valued function. 

∵  𝑒2𝜋𝑛𝑖 ∉ 1, when 𝑛 ∉ ℤ 

Let 𝑓: 𝐴 → 𝐵 be a function then 

i) If the elements of 𝐴  are complex numbers and those of 𝐵  are real 

numbers, then 𝑓 is a real-valued function of a complex variable. 

ii) If the elements of 𝐴  are real numbers and those of 𝐵  are complex 

numbers, then 𝑓 is a complex-valued function of a real variable. 

Let 𝑓: ℝ → ℝ be a function. The graph of f is a subset of ℝ × ℝ and is a 

two-dimensional object that can be represented well on a two-dimensional 

page. However, for a function 𝑓: ℂ → ℂ, the graph is a subset of ℂ × ℂ, 

which is equivalent to the Cartesian product ℝ × ℝ × ℝ × ℝ . This four-

dimensional object cannot be represented directly on a two-dimensional 

plane. Instead, we use two separate planes: one for the z-plane (domain) 

and another for the w-plane (range). 

 

 

Fig.1.  

2.14 CONTINUITY:-  

A function 𝑓: ℂ → ℂ is said to be continuous at a point 𝑧0 ∈ ℂ if, for every 

𝜖 > 0, there exists a 𝛿 > 0 such that whenever ∣ 𝑧 − 𝑧0 ∣< 𝛿, it follows 

that ∣ 𝑓(𝑧) − 𝑓(𝑧0) ∣< 𝜖. In other words, small changes in the input 𝑧 near 

𝑧0 result in small changes in the output 𝑓(𝑧). The function f is continuous 

on a set 𝑆 ⊆ ℂ if it is continuous at every point in 𝑆. 

OR 
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A function 𝑓: 𝐷 → ℂ is said to be continuous at a point 𝑧0 ∈ 𝐷 iff ∀  ∈

> 0, ∃ 𝛿 > 0 s.t ∣ 𝑓(𝑧) − 𝑓(𝑧0) ∣< 𝜖 whenever 𝑧 ∈ 𝐷 and ∣ 𝑧 − 𝑧0 ∣<∈. 

Uniform Continuous: A function 𝑓: 𝐷 → ℂ  is said to be uniformly 

continuous D if for every ∈> 0 ∃ 𝛿 > 0 s.t. ∀𝑧1 and 𝑧2 in D. 

|𝑧1 − 𝑧2| < 𝛿 ⇒ |𝑓(𝑧1) − 𝑓(𝑧2)| <∈ 

SOLVED EXAMPLE 

EXAMPLE3: If 𝑓(𝑧) = 𝑧2 then prove that 𝑓 is continuous at a point 𝑧 =

𝑖 ∈ ℂ. 

SOLUTION: Let 𝑓(𝑧) = 𝑧2, 𝑧0 = 𝑖 

 ∴      𝑓(𝑖) = 𝑖2 = −1 

 ∴      lim
𝑧→𝑖

𝑧2 = 𝑙2 = −1 

 ∴     lim
𝑧→𝑖

𝑧2 = −1 = 𝑓(𝑖) 

So 𝑓 is continuous at a point 𝑧 = 𝑖. 

EXAMPLE4: Let 𝑓(𝑧) = {𝑧2    𝑧 ≠ 𝑖
0      𝑧 = 𝑖

  prove that 𝑓 is not continuous at a 

point 𝑧 = 𝑖. 

SOLUTION:  𝑓(𝑖) = 0 

 ∴   lim
𝑧→𝑖

𝑓(𝑧) = lim
𝑧→𝑖

𝑙2 = −1 

∴   lim
𝑧→𝑖

𝑓(𝑧) = − 1 ≠ 𝑓(𝑖) 

∴   𝑓 is not continuous at 𝑧 = 𝑧0. 

EXAMPLE5: explain the continuity of 𝑓(𝑧) =
𝑧2

𝑧4+3𝑧2+1
 at 𝑧 = 𝑒𝑖

𝜋

4. 

SOLUTION: 𝑧 = 𝑒𝑖
𝜋

4 

⇒    𝑧2 = 𝑒𝑖
𝜋

2 = 𝑖 ⇒ 𝑧4 = −1 

 ∴  𝑓(𝑧) = −
𝑖

−1+3𝑖+1
=

1

3
 

 ∴ 𝑡ℎ𝑒 𝑙𝑖𝑚𝑖𝑡 𝑒𝑥𝑖𝑠𝑡 𝑧 = 𝑒𝑖
𝜋

4 
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 ∴ 𝑓(𝑧) is continuous at 𝑧 = 𝑒𝑖
𝜋

4. 

 

 

EXAMPLE6: Determine whether the function 𝑓(𝑥) is continuous at 𝑥 =

1 where: 

𝑓(𝑥) = {
𝑥2    𝑖𝑓 𝑥 ≠ 1
3     𝑖𝑓 𝑥 = 1

 

SOLUTION: To determine whether 𝑓(𝑥) is continuous at 𝑥 = 1, we need 

to check the three conditions of continuity. 

1. Check if the function is defined at 𝒙 = 𝟏: 

            The function is defined at 𝑥 = 1, and we have: 

                                     𝑓(1) = 3 

2. Find the limit of the function as 𝒙 approaches 𝟏:We need to find 

lim
𝑥→1

𝑓(𝑥) Since the function has two different cases, we consider 

the limit as 𝑥 approaches 1 from the left (𝑥 → 1−) and from the 

right (𝑥 → 1+). 

For 𝑥 → 1− (approaching from the left), 𝑓(𝑥) = 𝑥2, so: 

lim
𝑥→1−

𝑓(𝑥) = lim
𝑥→1−

𝑥2 = 12 = 1 

For 𝑥 → 1+ (approaching from the left), 𝑓(𝑥) = 𝑥2, so: 

lim
𝑥→1+

𝑓(𝑥) = lim
𝑥→1+

𝑥2 = 12 = 1 

Since both one-sided limits are equal, the limit lim lim
𝑥→1

𝑓(𝑥)  

exists and is equal to 1.  

3. Compare the limit with the function value at 𝒙 = 𝟏: We have 

lim
𝑥→1

𝑓(𝑥) = 1  𝑜𝑟  lim
𝑥→1

𝑓(1) = 3 

Since lim
𝑥→1

𝑓(𝑥) ≠ 𝑓(1), the function is not continuous at 𝑥 = 1. 

Hence the function 𝑓(𝑥) is not continuous at 𝑥 = 1 because the limit as 𝑥 

approaches 1 does not equal the function value at 1. 

EXAMPLE7: Determine whether the function 𝑔(𝑥) is continuous at 𝑥 =

0, where: 

𝑔(𝑥) = 𝑓(𝑥) = {

sin (𝑥)

𝑥
    𝑖𝑓 𝑥 ≠ 0

1              𝑖𝑓 𝑥 = 0
 

We need to check the three conditions of continuity at 𝑥 = 0. 

1. Check if the function is defined at 𝑥 = 0: 

             The function is defined at 𝑥 = 0, and: 

𝑔(0) = 1 
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2. Find the limit of the function as 𝑥 approaches 0: 

We need to find lim
𝑥→0

𝑔(𝑥). When 𝑥 ≠ 0, the function is given by 

𝑔(𝑥) =
sin(𝑥)

𝑥
. So, we need to find: 

lim
𝑥→0

sin(𝑥)

𝑥
 

This is a standard limit in calculus, and it is known that: 

lim
𝑥→0

sin(𝑥)

𝑥
= 1 

Compare the limit with the function value at 𝑥 = 0: We have 

lim
𝑥→0

𝑔(𝑥) = 1  𝑎𝑛𝑑  𝑔(0) = 1 

Since lim
𝑥→0

𝑔(𝑥) = 𝑔(0), the function is continuous at 𝑥 = 0. 

The function 𝑔(𝑥)  is continuous at 𝑥 = 0  because the limit as 𝑥 

approaches 0 equals the function value at 0. There is no discontinuity at 

this point, and the function behaves smoothly. 

SELF CHECK QUESTIONS 

1. What is a function? 

2. What is a limit? 

3. What does it mean for a function to be continuous? 

4. What is a complex-valued function? 

5. What is the range of a function? 

2.15 SUMMARY:-  

Functions: A function is a relation between two sets, typically denoted as 

𝑓: 𝐴 → 𝐵 , where each element 𝑧 ∈ 𝐴 (the domain) is associated with a 

unique element 𝑤 ∈ 𝐵 (the codomain). If 𝑧 is a complex number 𝑧 = 𝑥 +

𝑖𝑦  and 𝑤 = 𝑢 + 𝑖𝑣,  then 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦).  The number 𝑤 =

𝑓(𝑧) is called the value of the function at 𝑧. Functions can be real-valued 

or complex-valued, depending on whether their output values are real or 

complex numbers. 

Limit: The limit of a function describes the behavior of the function as its 

input approaches a particular value. For a function 𝑓(𝑧)  defined on a 

domain 𝐷 and a point 𝑧0 ∈ �̅�  (the closure of D), we say 𝑙𝑖𝑚
𝑧→𝑧0

𝑓(𝑧) =

𝑤0  ∀  ∈> 0 and there exists a 𝛿 > 0 such that whenever 0 < |𝑧 − 𝑧0| <

𝛿, we have |𝑓(𝑧) − 𝑤0 | <∈ For complex functions, this can be broken 

down into limits of the real and imaginary parts: 𝑙𝑖𝑚
𝑧→𝑧0

𝑓(𝑧) = 𝑤0 if and 

only if 𝑙𝑖𝑚
𝑧→𝑧0

𝑢(𝑥, 𝑦) = 𝑢0  𝑎𝑛𝑑 𝑙𝑖𝑚
𝑧→𝑧0

𝑢(𝑥, 𝑦) = 𝑣0. 
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Continuity: A function f is continuous at a point 𝑧0 if the limit of 𝑓(𝑧) as 

𝑧  approaches 𝑧0  equals the function value at 𝑧0 :  𝑙𝑖𝑚
𝑧→𝑧0

𝑓(𝑧) =

𝑓(𝑧0 ).Continuity can also be described in terms of ∈ and δ:f is continuous 

at 𝑧0  if for every ∈> 0, there exists a 𝛿 > 0  such that if |𝑧 − 𝑧0| < 𝛿 , 

then|𝑓(𝑧) − 𝑓(𝑧0 )| <∈. 

Uniform Continuity:  Uniform continuity strengthens the concept of 

continuity by requiring that the 𝛿  in the definition of continuity works 

uniformly over the entire domain 𝐷. A function 𝑓 is uniformly continuous 

if for every ∈> 0, there exists a 𝛿 > 0  such that such that for all 𝑧1,𝑧2 ∈

𝐷 if |𝑧1 − 𝑧2| < 𝛿, then|𝑓(𝑧1) − 𝑓(𝑧2)| <∈. 

 

2.16 GLOSSARY:-  

 Function: A relation between a set of inputs (domain) and a set of 

possible outputs (co domain), where each input is related to exactly 

one output. It is typically written as 𝑓(𝑥), where 𝑥 is the input, and 

𝑓(𝑥) is the output. 

 Domain: The set of all possible input values (or arguments) for 

which a function is defined. For example, the domain of 𝑓(𝑥) =

1/𝑥 is all real numbers except 𝑥 = 0. 

 Piecewise Function: A function that is defined by different 

expressions or rules over different parts of its domain. For 

example: 

𝑓(𝑥) = {
𝑥 + 1    𝑖𝑓 𝑥 < 0

𝑥2          𝑖𝑓 𝑥 ≥ 0
 

 Limit: The value that a function approaches as the input 

approaches a certain point. Limits help describe the behavior of 

functions at points where they may not be explicitly defined. It is 

written as lim
𝑥→𝑎

𝑓(𝑥). 

 Left-Hand Limit: The value that a function approaches as the 

input approaches a certain point from the left (i.e., from smaller 

values). It is written as lim
𝑥→𝑎−

𝑓(𝑥). 

 Right-Hand Limit: The value that a function approaches as the 

input approaches a certain point from the right (i.e., from larger 

values). It is written as lim
𝑥→𝑎+

𝑓(𝑥). 
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 Limit at Infinity: Describes the behavior of a function as the input 

grows infinitely large (positive infinity) or infinitely small 

(negative infinity). It is written as as lim
𝑥→∞

𝑓(𝑥).or lim lim
𝑥→−∞

𝑓(𝑥). 

 Continuity: A function is continuous at a point 𝑥 = 𝑎  if the 

function is defined at 𝑎, the limit as 𝑥 approaches 𝑎 exists, and the 

limit equals the function's value at 𝑎 (i.e., lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎).). 

 Continuous Function: A function that is continuous at every point 

in its domain. This means the graph of the function has no breaks, 

jumps, or holes. 

 Discontinuity: A point at which a function is not continuous. 

There are several types of discontinuities: 

 Removable Discontinuity: Occurs when the limit lim
𝑥→𝑎

𝑓(𝑥) 

exists, but is not equal to the function's value 𝑓(𝑎).  The 

discontinuity can be "removed" by redefining the function value at 

𝑥 = 𝑎. 

 Jump Discontinuity: Occurs when the left-hand limit and 

right-hand limit at a point 𝑥 = 𝑎 are not equal, leading to a "jump" 

in the graph. 

  Infinite Discontinuity: Occurs when the function 

approaches infinity or negative infinity as the input approaches a 

certain point. 

2.17 REFERENCES:-  

 James Ward Brown and Ruel V. Churchill (2009),Complex 

Variables and Applications.  

  Ravi P. Agarwal, Kanishka Perera, and Sandra Pinelas (2011), An 

Introduction to Complex Analysis. 

 Goyal and Gupta (Twenty first edition 2010), Function of complex 

Variable. 

2.18 SUGGESTED READING:-  

 Goyal and Gupta (Twenty first edition 2010), Function of complex 

Variable. 
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 https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-III-

Complex-Analysis.pdf 

2.19 TERMINAL QUESTIONS:- 

(TQ-1) Find the limit of the sequence 𝑧𝑛 = 𝑧𝑛 for |𝑧| < 1. 

(TQ-2) Explain the definition of a function and provide an example. 

(TQ-3) What is a limit in the context of a function, and how is it formally 

defined? Provide an example. 

(TQ-4) Define continuity for a function and explain the difference 

between continuity and uniform continuity. 

(TQ-5) Prove that if a function 𝑓 is uniformly continuous on a set D, then 

it is also continuous on 𝐷. 

(TQ-6) Determine whether the function ℎ(𝑥)  is continuous at 𝑥 =

2, where: 

ℎ(𝑥) = {
𝑥 + 2    𝑖𝑓 𝑥 < 1

𝑥2     𝑖𝑓 𝑥 ≥ 1
 

2.20 ANSWERS:- 

SELF CHECK ANSWERS 

1. A function is a relation that assigns each input exactly one output 

2. A limit is the value that a function approaches as the input 

approaches a certain point. 

3. A function is continuous if it does not have any abrupt changes in 

value and the limit as the input approaches any point equals the 

function's value at that point. 

4. A real-valued function is one where the outputs are real numbers, 

even if the inputs are complex. 

5. A complex-valued function is one where the outputs are complex 

numbers, even if the inputs are real. 

TERMINAL ANSWERS 

     (TQ-1) 0 

     (TQ-6) The function is continuous at 𝑥 = 2. 

 

https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-III-Complex-Analysis.pdf
https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-III-Complex-Analysis.pdf
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UNIT 3:- Analytic Function (Cauchy Riemann 

Equation)  

CONTENTS: 
3.1      Introduction 

3.2      Objectives 

3.3      Definition 

3.4      Cauchy Riemann equation 

3.5      Conjugate Function 

3.6      Harmonic Function 

3.7      Polar Form of Cauchy-Riemann Equations 

3.8      Orthogonal System 

3.9      Milne’s Thomson Method 

3.10    Summary 

3.11     Glossary 

3.12     References 

3.13     Suggested Reading 

3.14     Terminal questions  

3.15     Answers  

3.1 INTRODUCTION:-  

An analytic function is a complex-valued function that is differentiable at 

every point in its domain and can be locally represented by a convergent 

power series. A key condition for a function to be analytic is that it 

satisfies the Cauchy-Riemann equations, which are a set of two partial 

differential equations that link the partial derivatives of the function's real 

and imaginary parts. Harmonic functions, which are closely related to 

analytic functions, are real-valued functions that satisfy Laplace's 

equation, meaning their second partial derivatives sum to zero. These 

functions often represent the real or imaginary parts of an analytic 

function. 

 

3.2 OBJECTIVES:-  

In this unit, we will explore the differentiability of complex-valued 

functions through their power series expansions, where a function is 

termed analytic around a point  𝑧0 ∈ ℂ . An analytic function 𝑓(𝑧) must 

satisfy certain properties, notably the Cauchy-Riemann equations. 

Additionally, we will examine the term-by-term differentiation of power 



Advanced Complex Analysis  MAT601 
   

Department of Mathematics    

Uttarakhand Open University  Page 41 
 

series, assuming it is feasible. The unit will also cover the inverse function 

theorem and introduce harmonic functions. Furthermore, we will discuss 

the differentiability of well-known complex functions such as  𝑒𝑧 , 
𝑠𝑖𝑛(𝑧), 𝑐𝑜𝑠(𝑧). 

 

3.3 DEFINITION:-  

A single-valued function 𝑓(𝑧) is said to be differential at a point 𝑧0  if 

there exists a neighborhood 𝑈 around 𝑧0 such that 𝑓(𝑧) is differentiable at 

every point 𝑧 ∈ 𝑈. Mathematically, this can be expressed as: For all  

𝑓′(𝑧) = lim
ℎ→0

𝑓(𝑧+ℎ)−𝑓(𝑧)

ℎ
 exist. 

This implies that the limit 

lim
ℎ→0

𝑓(𝑧) − 𝑓(𝑧0)

𝑧 − 𝑧0
 

exists and is finite, and this condition holds not just at 𝑧0  but at every 

point in the neighborhood 𝑈 of  𝑧0. 

 

Definition: The function 𝑓(𝑧) is said to be analytic at a point 𝑧0 if it is 

differentiable at 𝑧0 and at every point within some neighborhood of  𝑧0.  

In a broader context, 𝑓(𝑧) is analytic in a region 𝑅 of the complex 

plane if it is analytic at every point within 𝑅.  

The terms "regular" and "holomorphic" are often used 

interchangeably with "analytic" to describe functions that satisfy these 

conditions of differentiability in the complex plane. 

Singular point:  A point 𝑧 = 𝑧0 is said to be a singular point of a function 

𝑓(𝑧) if 𝑓′(𝑧) does not exist.  

 

3.4 CAUCHY RIEMANN EQUATIONS:-  

The Cauchy-Riemann equations are a set of two partial differential 

equations which, together with certain continuity conditions, are necessary 

and sufficient for a complex function to be holomorphic. The Cauchy-

Riemann equations are given by: 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
,   

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 

where 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) and 𝑧 = 𝑥 + 𝑖𝑦. 

 

3.5 CONJUGATE FUNCTION:-  

If 𝑓(𝑧) = 𝑢 + 𝑖𝑣  is analytic and if u and v satisfy Laplace’s equation 

∇2𝑉 = 0,  then u and v are called conjugate harmonic functions or 

conjugate function simply. 
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3.6 HARMONIC FUNCTION:-  

A function 𝑢(𝑥, 𝑦) is said to be harmonic function if first and second order 

partial derivatives of u are continuous and u satisfied Laplace’s 

equation∇2𝑉 = 0. 

 

Theorem1: Necessary condition for 𝒇(𝒛) to be analytic. If 𝑓(𝑧) = 𝑢 +
𝑖𝑣 is analytic in a domain 𝐷, then 𝑢, 𝑣 satisfy the equations 

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
,
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 

Provided the four partial derivatives 𝑢𝑥 , 𝑢𝑦, 𝑣𝑥 , 𝑣𝑦 exist. 

Proof:  A function 𝑤 = 𝑓(𝑧) = 𝑢 + 𝑖𝑣  is analytic at a point z if it is 

differentiable 
𝑑𝑤

𝑑𝑧
 exists so that 

𝑑𝑤

𝑑𝑧
 has the same value along every path. 

i. Along 𝑥 −axis, 𝛿𝑧 = 𝛿𝑥. 
𝑑𝑤

𝑑𝑧
= lim

𝛿𝑧→0

𝛿𝑤

𝛿𝑧
= lim

𝛿𝑥→0

𝛿𝑤

𝛿𝑥
=

𝜕𝑤

𝜕𝑥
                       … (1) 

ii. Along 𝑦 −axis, 𝛿𝑧 = 𝑖𝛿𝑦. 
𝑑𝑤

𝑑𝑧
= lim

𝛿𝑧→0

𝛿𝑤

𝛿𝑧
= lim

𝛿𝑦→0

𝛿𝑤

𝑖𝛿𝑦
= −𝑖

𝜕𝑤

𝜕𝑦
         … (2) 

 

From (1) and (2), 
𝜕𝑤

𝜕𝑥
= −𝑖

𝜕𝑤

𝜕𝑦
 

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
= −𝑖

𝜕𝑢

𝜕𝑦
+

𝜕𝑢

𝜕𝑦
 

This  ⇒
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑥
,

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 

Theses equations are called Cauchy Riemann equations.  

Theorem2: Sufficient condition for 𝒇(𝒛) to be analytic. The function 

𝑤 = 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic in a domain 𝐷 if  

i. 𝑢, 𝑣 are differentiable in 𝐷 and 𝑢𝑥 = 𝑣𝑦 , 𝑢𝑦 = −𝑣𝑥 

ii. The partial derivatives 𝑢𝑥 , 𝑣𝑦, 𝑢𝑦, 𝑣𝑥 all are continuous in D. 

Proof:  Let 𝑤 = 𝑓(𝑧) = 𝑢 + 𝑖𝑣 = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) = 𝑓(𝑥, 𝑦), then 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑥
,

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
            𝑖. 𝑒. , 𝑢𝑥 = 𝑣𝑦 , 𝑢𝑦 = −𝑣𝑥                     … (1) 

 

For 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) to be analytic in a domain 𝐷, 𝑢 and 𝑣 must 

be differentiable with continuous partial derivatives satisfying the Cauchy-

Riemann equations, and increments 𝛿𝑧, 𝛿𝑢, 𝛿𝑣, 𝛿𝑤  correspond to the 

increments 𝛿𝑥, 𝛿𝑦 of 𝑥 and 𝑦. 

So 

𝑢𝑥 ⇒ 𝛿𝑢 = 𝑢𝑥𝛿𝑥 + 𝑢𝑦. 𝛿𝑦 + 𝛼𝛿𝑥 + 𝛽𝛿𝑦 

Similarly 

⇒ 𝛿𝑣 = 𝑣𝑥𝛿𝑥 + 𝑣𝑦 . 𝛿𝑦 + 𝛼1𝛿𝑥 + 𝛽1𝛿𝑦 

where  𝛼, 𝛽, 𝛼1, 𝛽1 all tends to zero as 𝛿𝑥 → 0, 𝛿𝑦 → 0 

Now 
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𝛿𝑤

𝛿𝑧
=

𝛿𝑢+𝑖𝛿𝑣

𝛿𝑥+𝑖𝛿𝑦
                                           … (2) 

𝛿𝑢 + 𝑖𝛿𝑣 = 𝛿𝑥(𝑢𝑥 + 𝑖𝑣𝑥) + 𝛿𝑦(𝑢𝑦 + 𝑖𝑣𝑦) + (𝛼 + 𝑖𝛼1)𝛿𝑥 + (𝛽 + 𝑖𝛽1)𝛿𝑦 

=  𝛿𝑥(𝑢𝑥 + 𝑖𝑣𝑥) + 𝑖𝛿𝑦(−𝑖𝑢𝑦 + 𝑣𝑦) + 𝛼′𝛿𝑥 + 𝛽′𝛿𝑦 

Where 𝛼′ = 𝛼 + 𝑖𝛼1, 𝛽′ = 𝛽 + 𝑖𝛽1 

From (1) 

𝛿𝑢 + 𝑖𝛿𝑣 = (𝑢𝑥 + 𝑖𝑣𝑥)(𝛿𝑥 + 𝑖𝛿𝑦) + 𝛼′𝛿𝑥 + 𝛽′𝛿𝑦 

Dividing by 𝛿𝑥 + 𝑖𝛿𝑦 and then from(2) 
𝛿𝑤

𝛿𝑧
= 𝑢𝑥 + 𝑖𝑣𝑥 +

𝛼′𝛿𝑥

𝛿𝑥 + 𝑖𝛿𝑦
+

𝛽′𝛿𝑦

𝛿𝑥 + 𝑖𝛿𝑦
 

|
𝛿𝑤

𝛿𝑧
− (𝑢𝑥 + 𝑖𝑣𝑥)| = |

𝛼′𝛿𝑥

𝛿𝑧
+

𝛽′𝛿𝑦

𝛿𝑧
| ≤ |𝛼′|. |

𝛿𝑥

𝛿𝑧
| + |𝛽′| |

𝛿𝑦

𝛿𝑧
| 

≤ |𝛼′| + |𝛽′| as  |𝛿𝑥| ≤ |𝛿𝑥 + 𝑖𝛿𝑦| 
 

|
𝛿𝑤

𝛿𝑧
−

𝛿𝑤

𝛿𝑥
| ≤ |𝛼| + |𝛼1| + |𝛽| + |𝛽1|  as 𝛼′ = 𝛼 + 𝑖𝛼1 

But when 𝛿𝑧 → 0, the R.H.S→ 0. Hence 

lim
𝛿𝑧→0

𝛿𝑤

𝛿𝑧
−

𝛿𝑤

𝛿𝑥
= 0 or 

𝑑𝑤

𝑑𝑧
=

𝜕𝑤

𝜕𝑥
= 𝑢𝑥 + 𝑖𝑣𝑥 

But 𝑢𝑥 , 𝑣𝑥 exist. So 
𝑑𝑤

𝑑𝑧
  hence 𝑤 is analytic in 𝐷. 

Note1. The equation 
𝑑𝑤

𝑑𝑧
=

𝜕𝑤

𝜕𝑥
 is of vital importance for further study. 

Note2. 𝑓′(𝑧) =
𝑑𝑤

𝑑𝑧
=

𝜕𝑤

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
 

|𝑓′(𝑧)|2 = (𝑢𝑥)2 + (𝑣𝑥)2 = 𝑢𝑥𝑣𝑦 − 𝑢𝑦𝑣𝑥  

Note3.        𝑑𝑢 =
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑑𝑦. 

𝑑2𝑢 = 𝑑[𝑑𝑢] = [
𝜕

𝜕𝑥
(

𝜕𝑢

𝜕𝑥
𝑑𝑥) 𝑑𝑥 +

𝜕

𝜕𝑦
(

𝜕𝑢

𝜕𝑦
𝑑𝑦) 𝑑𝑦] 

= [
𝜕2𝑢

𝜕𝑥2
(𝑑𝑥)2 +

𝜕2𝑢

𝜕𝑥𝜕𝑦
𝑑𝑥𝑑𝑦] + [

𝜕2𝑢

𝜕𝑦2
(𝑑𝑦)2 +

𝜕2𝑢

𝜕𝑦𝜕𝑥
𝑑𝑥𝑑𝑦] 

𝑑2𝑢 =
𝜕2𝑢

𝜕𝑥2
(𝑑𝑥)2 + 2

𝜕2𝑢

𝜕𝑥𝜕𝑦
𝑑𝑥𝑑𝑦 +

𝜕2𝑢

𝜕𝑦2
(𝑑𝑦)2 

Similarly 

𝑑2𝑣 =
𝜕2𝑣

𝜕𝑥2
(𝑑𝑥)2 + 2

𝜕2𝑣

𝜕𝑥𝜕𝑦
𝑑𝑥𝑑𝑦 +

𝜕2𝑣

𝜕𝑦2
(𝑑𝑦)2 

 

3.7 POLAR FORM OF CAUCHY-RIEMANN 

EQUATIONS:-  

Theorem3: If 𝑓(𝑧) = 𝑢 + 𝑖𝑣  is an analytic function and 𝑧 = 𝑟𝑒𝑖𝜃where 

𝑢, 𝑣, 𝑟, 𝜃 are all real, show that the Cauchy-Riemann Equation are 
𝜕𝑢

𝜕𝑟
=

1

𝑟

𝜕𝑣

𝜕𝜃
,
𝜕𝑣

𝜕𝑟
= −

1

𝑟

𝜕𝑢

𝜕𝜃
 

Or 
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To prove that the necessary and sufficient condition for 𝑓(𝑧) to be analytic 

in polar coordinates. 

 

Proof:  Let 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is an analytic function so that Cauchy-Riemann 

Equation 

                                                    𝑢𝑥 = 𝑣𝑦                                          … (1) 

                                                    𝑢𝑦 = −𝑣𝑥                                      … (2) 

are satisfied 

to prove that , in view of above equations 

 
𝜕𝑢

𝜕𝑟
=

1

𝑟

𝜕𝑣

𝜕𝜃
,
𝜕𝑣

𝜕𝑟
= −

1

𝑟

𝜕𝑢

𝜕𝜃
 

Let 𝑥 = 𝑟𝑠𝑖𝑛𝜃, 𝑦 = 𝑟𝑐𝑜𝑠𝜃. 

Then   𝑟2 = 𝑥2 + 𝑦2, 𝑡𝑎𝑛𝜃 =
𝑦

𝑥
, 𝜃 = tan−1(𝑦/𝑥) 

𝜕𝑟

𝜕𝑥
=

𝑥

𝑟
= 𝑐𝑜𝑠𝜃,

𝜕𝑟

𝜕𝑦
=

𝑦

𝑟
= 𝑠𝑖𝑛𝜃 

𝜕𝜃

𝜕𝑥
=

1

1 + (
𝑦2

𝑥2)
. (

−𝑦

𝑥2
) = −

𝑠𝑖𝑛𝜃

𝑟
 

 
𝜕𝜃

𝜕𝑦
=

1

1 + (
𝑦2

𝑥2)
. (

1

𝑥
) =

𝑐𝑜𝑠𝜃

𝑟
 

𝜕𝑢

𝜕𝑥
=

𝜕𝑢

𝜕𝑟

𝜕𝑟

𝜕𝑥
+

𝜕𝑢

𝜕𝜃

𝜕𝜃

𝜕𝑥
 

Or  

                                          
𝜕𝑢

𝜕𝑥
= 𝑐𝑜𝑠𝜃.

𝜕𝑢

𝜕𝑟
−

𝑠𝑖𝑛𝜃

𝑟
.

𝜕𝑢

𝜕𝜃
                         … (3) 

𝜕𝑣

𝜕𝑦
=

𝜕𝑢

𝜕𝑟

𝜕𝑟

𝜕𝑦
+

𝜕𝑣

𝜕𝜃

𝜕𝜃

𝜕𝑦
 

                                   
𝜕𝑣

𝜕𝑦
= 𝑠𝑖𝑛𝜃.

𝜕𝑣

𝜕𝑟
+

𝑐𝑜𝑠𝜃

𝑟
.

𝜕𝑣

𝜕𝜃
                                   … (4) 

Now, by (1), (3) and (4), we get  
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 

                       𝑐𝑜𝑠𝜃.
𝜕𝑢

𝜕𝑟
−

𝑠𝑖𝑛𝜃

𝑟
.

𝜕𝑢

𝜕𝜃
= 𝑠𝑖𝑛𝜃.

𝜕𝑣

𝜕𝑟
+

𝑐𝑜𝑠𝜃

𝑟
.

𝜕𝑣

𝜕𝜃
                   … (5) 

𝜕𝑢

𝜕𝑦
=

𝜕𝑢

𝜕𝑟

𝜕𝑟

𝜕𝑦
+

𝜕𝑢

𝜕𝜃

𝜕𝜃

𝜕𝑦
= 𝑠𝑖𝑛𝜃

𝜕𝑢

𝜕𝑟
+

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑢

𝜕𝜃
 

𝜕𝑣

𝜕𝑥
=

𝜕𝑣

𝜕𝑟

𝜕𝑟

𝜕𝑥
+

𝜕𝑣

𝜕𝜃

𝜕𝜃

𝜕𝑥
= 𝑐𝑜𝑠𝜃

𝜕𝑣

𝜕𝑟
−

𝑠𝑖𝑛𝜃

𝑟

𝜕𝑣

𝜕𝜃
 

Since last two equations obtains 

                               𝑠𝑖𝑛𝜃
𝜕𝑢

𝜕𝑟
+

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑢

𝜕𝜃
= 𝑐𝑜𝑠𝜃

𝜕𝑣

𝜕𝑟
−

𝑠𝑖𝑛𝜃

𝑟

𝜕𝑣

𝜕𝜃
                 … (6) 

Now the equation (5) multiply by cos𝜃 and (6) by sin𝜃 obtains 
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𝜕𝑢

𝜕𝑟
=

1

𝑟

𝜕𝑣

𝜕𝜃
                                      … (7)  

From (6), we have 
𝑠𝑖𝑛𝜃

𝑟
.
𝜕𝑣

𝜕𝜃
+

𝑐𝑜𝑠𝜃

𝑟
.
𝜕𝑢

𝜕𝜃
= −𝑐𝑜𝑠𝜃.

𝜕𝑣

𝜕𝑟
+

𝑠𝑖𝑛𝜃

𝑟
.
𝜕𝑣

𝜕𝜃
 

                                                          
𝜕𝑣

𝜕𝑟
= −

1

𝑟

𝜕𝑢

𝜕𝜃
                                  … (8)  

 

The above equations (7) and (8), which is the required results. 

Theorem4: Derivative of 𝒘 in polar form. To prove that 
𝑑𝑤

𝑑𝑧
= 𝑒−𝑖𝜃

𝜕𝑤

𝜕𝑟
= −

𝑖

𝑟
𝑒−𝑖𝜃

𝜕𝑤

𝜕𝜃
 

Proof: the Cauchy-Riemann Equation are 
𝜕𝑢

𝜕𝑟
=

1

𝑟

𝜕𝑣

𝜕𝜃
,
𝜕𝑣

𝜕𝑟
= −

1

𝑟

𝜕𝑢

𝜕𝜃
 

 

Let 𝑥 = 𝑟𝑠𝑖𝑛𝜃, 𝑦 = 𝑟𝑐𝑜𝑠𝜃. 

Then   𝑟2 = 𝑥2 + 𝑦2, 𝑡𝑎𝑛𝜃 =
𝑦

𝑥
, 𝜃 = tan−1(𝑦/𝑥) 

𝜕𝑟

𝜕𝑥
=

𝑥

𝑟
= 𝑐𝑜𝑠𝜃,

𝜕𝑟

𝜕𝑦
=

𝑦

𝑟
= 𝑠𝑖𝑛𝜃 

𝜕𝜃

𝜕𝑥
=

1

1 + (
𝑦2

𝑥2)
. (

−𝑦

𝑥2
) = −

𝑠𝑖𝑛𝜃

𝑟
 

 
𝜕𝜃

𝜕𝑦
=

1

1 + (
𝑦2

𝑥2)
. (

1

𝑥
) =

𝑐𝑜𝑠𝜃

𝑟
 

𝑑𝑤

𝑑𝑧
=

𝜕𝑤

𝜕𝑥
=

𝜕𝑤

𝜕𝑟
.
𝜕𝑟

𝜕𝑥
+

𝜕𝑤

𝜕𝜃
.
𝜕𝜃

𝜕𝑥
= 𝑐𝑜𝑠𝜃

𝜕𝑤

𝜕𝑟
−

𝑠𝑖𝑛𝜃

𝑟

𝜕𝑤

𝜕𝜃
  

 

                                  
𝑑𝑤

𝑑𝑧
= 𝑐𝑜𝑠𝜃 (

𝜕𝑢

𝜕𝑟
+ 𝑖

𝜕𝑣

𝜕𝑟
) −

𝑠𝑖𝑛𝜃

𝑟
(

𝜕𝑢

𝜕𝜃
+ 𝑖

𝜕𝑣

𝜕𝜃
)         … (1) 

 

= 𝑐𝑜𝑠𝜃
𝜕𝑤

𝜕𝑟
−

𝑠𝑖𝑛𝜃

𝑟
(−𝑟

𝜕𝑣

𝜕𝑟
+ 𝑖𝑟

𝜕𝑢

𝜕𝑟
) 

= 𝑐𝑜𝑠𝜃
𝜕𝑤

𝜕𝑟
− 𝑖𝑠𝑖𝑛𝜃 (

𝜕𝑢

𝜕𝑟
+ 𝑖

𝜕𝑣

𝜕𝑟
) 

= (𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃)
𝜕𝑤

𝜕𝑟
= 𝑒−𝑖𝜃

𝜕𝑤

𝜕𝑟
 

                                                    
𝑑𝑤

𝑑𝑧
= 𝑒−𝑖𝜃 𝜕𝑤

𝜕𝑟
                                    … (2) 

Now from (1), we obtain 
𝑑𝑤

𝑑𝑧
= 𝑐𝑜𝑠𝜃 (

1

𝑟

𝜕𝑣

𝜕𝜃
−

𝑖

𝑟

𝜕𝑢

𝜕𝜃
) −

𝑠𝑖𝑛𝜃

𝑟

𝜕𝑤

𝜕𝜃
 

= −𝑖
𝑐𝑜𝑠𝜃

𝑟
(

𝜕𝑢

𝜕𝜃
+ 𝑖

𝜕𝑣

𝜕𝜃
) −

𝑠𝑖𝑛𝜃

𝑟

𝜕𝑤

𝜕𝜃
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−
𝑖

𝑟
(𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃)

𝜕𝑤

𝜕𝜃
= −

𝑖

𝑟
𝑒−𝑖𝜃

𝜕𝑤

𝜕𝜃
 

𝑑𝑤

𝑑𝑧
= −

𝑖

𝑟
𝑒−𝑖𝜃

𝜕𝑤

𝜕𝜃
 

Which is required the results. 

 

3.8 ORTHOGONAL SYSTEM:-  

Two families of curves 𝑢(𝑥, 𝑦) = 𝑐1, 𝑣(𝑥, 𝑦) = 𝑐2  are said to form an 

Orthogonal System if they interest at right angles at each of their points 

of interaction. 

Theorem5: If  𝑓(𝑧) = 𝑢 + 𝑖𝑣 is an analytic function, in domain D, prove 

that the curves 𝑢 = 𝑐𝑜𝑛𝑠𝑡. , 𝑣 = 𝑐𝑜𝑛𝑠𝑡.  from two orthogonal families. 

Proof: Let 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is an analytic function so that Cauchy-Riemann 

Equation 

                                                    𝑢𝑥 = 𝑣𝑦                                          … (1) 

                                                    𝑢𝑦 = −𝑣𝑥                                      … (2) 

are satisfied 

To prove that the curves 𝑢(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡. = 𝑐1, 𝑣(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡. = 𝑐2 

Suppose  

𝑚1 = 𝑐1 = 𝑢(slope of tangent to the curve) 

𝑚2 = 𝑐2 = 𝑣(slope of tangent to the curve) 

Now if we show that 𝑚1𝑚2 = −1, the result will be proved. 

Taking  

𝑢 = 𝑐1 

𝑣 = 𝑐2 

𝑑𝑢 = 0, 𝑑𝑣 = 0 
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑑𝑦 = 0,

𝜕𝑣

𝜕𝑥
𝑑𝑥 +

𝜕𝑣

𝜕𝑦
𝑑𝑦 = 0         

𝑚1 =
𝑑𝑦

𝑑𝑥
= −

𝑢𝑥

𝑢𝑦
, 𝑚2 =

𝑑𝑦

𝑑𝑥
= −

𝑣𝑥

𝑣𝑦
 

𝑚1𝑚2 = (−
𝑢𝑥

𝑢𝑦
) (−

𝑣𝑥

𝑣𝑦
) =

𝑢𝑥𝑣𝑥

𝑢𝑦𝑣𝑦
=

𝑢𝑥𝑣𝑥

(−𝑣𝑥)(𝑢𝑥)
= −1 

Theorem6: Real and imaginary parts of an analytic function satisfied 

Laplace’s equation. That is to say, if 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is an analytic function 

of 𝑧 = 𝑥 + 𝑖𝑦, then 𝑢, 𝑣 satisfy Laplace equation. 

Or. If  𝑓(𝑧) = 𝑢 + 𝑖𝑣  is an analytic function of 𝑧 = 𝑥 + 𝑖𝑦,  then 𝑢  and 

𝑣 both are harmonic functions. 

Proof: Let 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is an analytic function so that Cauchy-Riemann 

Equation 

                                                    𝑢𝑥 = 𝑣𝑦                                          … (1) 

                                                    𝑢𝑦 = −𝑣𝑥                                      … (2) 

are satisfied 

To prove that ∇2𝑢 = 0, ∇2𝑣 = 0 
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Differentiating (1) and (2) w.r.t. 𝑥 and 𝑦 and adding, we obtain 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
=

𝜕2𝑣

𝜕𝑥𝜕𝑦
−

𝜕2𝑣

𝜕𝑦𝜕𝑥
= 0 

Or  

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0    𝑜𝑟  ∇2𝑢 = 0 

Differentiating (1) and (2) w.r.t. 𝑥 and 𝑦 and subtracting, we get 

 

𝜕2𝑣

𝜕𝑥𝜕𝑦
−

𝜕2𝑣

𝜕𝑦𝜕𝑥
=

𝜕2𝑣

𝜕𝑦2
− (

𝜕2𝑣

𝜕𝑥2
) =

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
 

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
= 0   𝑜𝑟  ∇2𝑣 = 0  

 

3.9 MILNE’S THOMSON METHOD:-  

The Milne-Thomson method is a technique used to derive the Cauchy-

Riemann equations in polar coordinates from their Cartesian form. It 

involves expressing a complex function 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)  in 

terms of polar coordinates, where 𝑧 = 𝑟𝑒𝑖𝜃, and then applying the chain 

rule to relate the partial derivatives in Cartesian coordinates to those in 

polar coordinates. This method ensures that the conditions for analyticity 

are preserved in the transformation. 

We have 𝑧 = 𝑥 + 𝑖𝑦 so that 𝑥 =
𝑧+�̅�

2
, 𝑦 =

𝑧−�̅�

2𝑖
 

𝑤 = 𝑓(𝑧) = 𝑢 + 𝑖𝑣 =  𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) 
Or  

𝑓(𝑧) = 𝑢 (
𝑧 + 𝑧̅

2
,
𝑧 − 𝑧̅

2𝑖
) + 𝑖𝑣 (

𝑧 + 𝑧̅

2
,
𝑧 − 𝑧̅

2𝑖
) 

Now let 𝑥 = 𝑧, 𝑦 = 0 so that 𝑧 = 𝑧̅, we have 

 

𝑓(𝑧) = 𝑢(𝑧, 0) + 𝑖𝑣(𝑧, 0) 

𝑓′(𝑧) =
𝑑𝑤

𝑑𝑧
=

𝜕𝑤

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
  

                                        =
𝜕𝑢

𝜕𝑥
− 𝑖

𝜕𝑣

𝜕𝑥
              by Cauchy Riemann equation 

Let we take  
𝜕𝑢

𝜕𝑥
= ∅1(𝑥, 𝑦) = ∅1(𝑧, 0) 

𝜕𝑢

𝜕𝑦
= ∅2(𝑥, 𝑦) = ∅2(𝑧, 0) 

We obtain       𝑓′(𝑧) = ∅1(𝑧, 0) − ∅2(𝑧, 0) 

Now integrating,  

𝑓(𝑧) = ∫[∅1(𝑧, 0) − 𝑖∅2(𝑧, 0)]𝑑𝑧 + 𝐶 

Where C is constant. 
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Similarly 

 

𝑓(𝑧) = ∫[𝜓1(𝑧, 0) − 𝑖𝜓2(𝑧, 0)]𝑑𝑧 + 𝐶′ 

 

Where 𝜓1 =
𝜕𝑣

𝜕𝑦
,    𝜓2 =

𝜕𝑣

𝜕𝑥
. 

SOLVED EXAMPLE 

EXAMPLE1: Find the analytic function 𝑓(𝑧) = 𝑢 + 𝑖𝑣 of which the real 

part 𝑢 = 𝑒𝑥(𝑥𝑐𝑜𝑠𝑦 − 𝑦𝑠𝑖𝑛𝑦). 

Solution: Now let 
𝜕𝑢

𝜕𝑥
= 𝑒𝑥(𝑥𝑐𝑜𝑠𝑦 − 𝑦𝑠𝑖𝑛𝑦) + 𝑒𝑥𝑐𝑜𝑠𝑦 

𝜕𝑢

𝜕𝑦
= 𝑒𝑥(−𝑥𝑠𝑖𝑛𝑦 − 𝑠𝑖𝑛𝑦 − 𝑦𝑐𝑜𝑠𝑦) 

 

(
𝜕𝑢

𝜕𝑥
)

𝑦=0
= 𝑒𝑥𝑥 + 𝑒𝑥 = 𝑒𝑥(𝑥 + 1) 

(
𝜕𝑢

𝜕𝑦
)

𝑦=0

= 𝑒𝑥0 = 0 

 

 

𝜙1(𝑥, 0) = (
𝜕𝑢

𝜕𝑥
)

𝑦=0
= 𝑒𝑥(𝑥 + 1) 

𝜙2(𝑥, 0) = (
𝜕𝑢

𝜕𝑦
)

𝑦=0

= 0 

By Milne’s method, 

𝑓(𝑧) = ∫[𝜙1(𝑧, 0) − 𝑖𝜙2(𝑧, 0)] + 𝑐 

= ∫[𝑒𝑧(𝑧 + 1) − 𝑖. 0]𝑑𝑧 + 𝑐 = ∫(𝑧𝑒𝑧 + 𝑒𝑧)𝑑𝑧 + 𝑐 

= (𝑧 − 1)𝑒𝑧 + 𝑒𝑧 + 𝑐 = 𝑧𝑒𝑧 + 𝑐 

𝑓(𝑧) = 𝑧𝑒𝑧 + 𝑐 

EXAMPLE2: Find the analytic function 𝑓(𝑧) = 𝑢 + 𝑖𝑣 , where 𝑢 =
𝑒−𝑥[(𝑥2 − 𝑦2)𝑐𝑜𝑠𝑦 + 2𝑥𝑦 𝑠𝑖𝑛𝑦]. 
SOLUTON: Let 𝑢 = 𝑒−𝑥[(𝑥2 − 𝑦2)𝑐𝑜𝑠𝑦 + 2𝑥𝑦 𝑠𝑖𝑛𝑦] 

𝜙1(𝑥, 𝑦) =
𝜕𝑢

𝜕𝑥
= −𝑒−𝑥[(𝑥2 − 𝑦2)𝑐𝑜𝑠𝑦 + 2𝑥𝑦 𝑠𝑖𝑛𝑦]

+ 𝑒−𝑥[2𝑥𝑐𝑜𝑠𝑦 + 2𝑦𝑠𝑖𝑛𝑦] 

𝜙2(𝑥, 𝑦) =
𝜕𝑢

𝜕𝑦
= 𝑒−𝑥[−2𝑦𝑐𝑜𝑠𝑦 − (𝑥2 − 𝑦2)𝑠𝑖𝑛𝑦 + 2𝑥 𝑠𝑖𝑛𝑦 + 2𝑥𝑦𝑐𝑜𝑠𝑦] 

Substituting 𝑥 = 𝑧, 𝑦 = 0 and so 𝑐𝑜𝑠𝑦 = 1, 𝑠𝑖𝑛𝑦 = 0, we obtain 

𝜙(𝑧, 0) = −𝑒−𝑧(𝑧2 + 2𝑧), 𝜙2(𝑧, 0) = 0 
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𝑓(𝑧) = ∫(𝜙1 − 𝑖𝜙2) 𝑑𝑧 = ∫(𝜙1 − 𝑖. 0) = ∫ 𝜙1 𝑑𝑧 

= − ∫ 𝑒−𝑧(𝑧2 + 2𝑧) 𝑑𝑧 = 𝑒−𝑧(𝑧2 + 4𝑧 + 4) + 𝑐 

EXAMPLE3: If 𝑓(𝑧) = 𝑢 + 𝑖𝑣  is analytic function and 𝑢 − 𝑣 =
𝑒𝑥(𝑐𝑜𝑠𝑦 − 𝑠𝑖𝑛𝑦), find 𝑓(𝑧) in term of 𝑧. 

 
SOLUTION: Given                   𝑓(𝑧) = 𝑢 + 𝑖𝑣                       … (1) 

                                     𝑢 − 𝑣 = 𝑒𝑥(𝑐𝑜𝑠𝑦 − 𝑠𝑖𝑛𝑦)                   … (2) 

Again from (1) 

                                                   𝑖𝑓(𝑧) = 𝑖𝑢 − 𝑣                       … (3) 
 

Adding (1) + (3), we have 

(1 + 𝑖)𝑓 = (𝑢 − 𝑣) + 𝑖(𝑢 + 𝑣) 

Let we take 𝑢 − 𝑣 = 𝑈, 𝑢 + 𝑣 = 𝑉, (1 + 𝑖)𝑓 = 𝐹(𝑧) 

We get                              𝐹(𝑧) = 𝑈 + 𝑖𝑉 

By (2), we obtain 

𝑈 = 𝑒𝑥(𝑐𝑜𝑠𝑦 − 𝑠𝑖𝑛𝑦) 

Take             𝜙1(𝑥, 𝑦) =
𝜕𝑈

𝜕𝑥
, 𝜙2(𝑥, 𝑦) =

𝜕𝑈

𝜕𝑦
     

Then             

𝜙1(𝑥, 𝑦) = 𝑒𝑥(𝑐𝑜𝑠𝑦 − 𝑠𝑖𝑛𝑦), 𝜙2(𝑥, 𝑦) = 𝑒𝑥(−𝑠𝑖𝑛𝑦 − 𝑐𝑜𝑠𝑦) 

This ⇒ 𝜙1(𝑧, 0) = 𝑒𝑧(𝑐𝑜𝑠0 − 𝑠𝑖𝑛0) = 𝑒𝑧 , 𝜙1(𝑧, 0) = 𝑒𝑥(−𝑠𝑖𝑛0 −
𝑐𝑜𝑠0) = −𝑒𝑧 
By Milne’s method, 

𝐹(𝑧) = 𝑐 + ∫[𝜙1(𝑧, 0) − 𝑖𝜙2(𝑧, 0)] 𝑑𝑧 = 𝑐 + ∫ 𝑒𝑧 (1 + 𝑖)𝑑𝑧 

(1 + 𝑖)𝑓 = 𝑐 + (1 + 𝑖)𝑒𝑧 

𝑓(𝑧) = 𝑐1 + 𝑒𝑧 

EXAMPLE4: To prove that 
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 =
4𝜕2

𝜕𝑧𝜕�̅�
. 

SOLUTION: 𝑧 = 𝑥 + 𝑖𝑦, 𝑧̅ = 𝑥 − 𝑖𝑦 

𝑥 =
𝑧 + 𝑧̅

2
, 𝑦 =

𝑧 − 𝑧̅

2𝑖
=

−𝑖

2
(𝑧 − 𝑧̅) 

This               ⇒
𝜕𝑥

𝜕𝑧
=

1

2
=

𝜕𝑥

𝜕�̅�
,   

𝜕𝑦

𝜕�̅�
=

𝑖

2
= −

𝜕𝑦

𝜕𝑧
 

Let 𝑓 = 𝑓(𝑥, 𝑦). Then 𝑓 = 𝑓(𝑧, 𝑧̅) also 
𝜕𝑓

𝜕𝑧
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑧
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑧
=

1

2
(

𝜕𝑓

𝜕𝑥
− 𝑖

𝜕𝑓

𝜕𝑦
) 

𝜕𝑓

𝜕𝑧̅
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑧̅
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑧̅
=

1

2
(

𝜕𝑓

𝜕𝑥
+ 𝑖

𝜕𝑓

𝜕𝑦
) 

𝜕2𝑓

𝜕𝑧𝜕𝑧̅
=

𝜕

𝜕𝑧

𝜕𝑓

𝜕𝑧̅
=

1

4
(

𝜕

𝜕𝑥
− 𝑖

𝜕

𝜕𝑦
) (

𝜕

𝜕𝑥
+ 𝑖

𝜕

𝜕𝑦
) 𝑓 

𝜕2𝑓

𝜕𝑧𝜕𝑧̅
=

1

4
(

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) 𝑓 
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𝜕2

𝜕𝑧𝜕𝑧̅
=

1

4
(

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) 

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
= 4

𝜕2

𝜕𝑧𝜕𝑧̅
 

EXAMPLE5: Show that the harmonic function satisfies the differential 

equation: 

𝜕2𝑢

𝜕𝑧𝜕𝑧̅
= 0 

SOLUTION: Let we know that 

 

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
= 4

𝜕2

𝜕𝑧𝜕𝑧̅
                … (1) 

Let u is harmonic function⇒ ∇2𝑢 = 0 ⇒
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 0 

Now from (1), we get 

4
𝜕2𝑢

𝜕𝑧𝜕𝑧̅
=

𝜕2𝑢

𝜕𝑧𝜕𝑧̅
= 0 

EXAMPLE6: If 𝑓(𝑧) is an analytic function of 𝑧, prove that 

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) |𝑅 𝑓(𝑧)|2 = 2|𝑓′(𝑧)|2 

SOLUTION: 𝑓(𝑧) = 𝑢 + 𝑖𝑣, 𝑅𝑓(𝑧) = 𝑢 
𝜕

𝜕𝑥
𝑢2 = 2𝑢

𝜕𝑢

𝜕𝑥
 

Differentiation Again  

𝜕2𝑢2

𝜕𝑥2
= 2 [(

𝜕𝑢

𝜕𝑥
)

2

+ 𝑢
𝜕2𝑢

𝜕𝑥2
] 

Similarly               

𝜕2𝑢2

𝜕𝑦2
= 2 [(

𝜕𝑢

𝜕𝑦
)

2

+ 𝑢
𝜕2𝑢

𝜕𝑦2
] 

Now adding 

𝜕2𝑢2

𝜕𝑥2
+

𝜕2𝑢2

𝜕𝑦2
= 2 [(

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
)

2

+ 𝑢 (
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
)] 

But 𝑢 satisfies Laplace’s equation, we get 

𝜕2𝑢2

𝜕𝑥2
+

𝜕2𝑢2

𝜕𝑦2
= 2 [(

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
)

2

] + 2𝑢. (0) 

                                              = [𝑢𝑥
2 + 𝑣𝑥

2]                  For 𝑢𝑦 = −𝑣𝑥 

But 

𝑓′(𝑧) =
𝑑𝑤

𝑑𝑧
=

𝜕𝑤

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
 

Now at last gives 

𝜕2𝑢2

𝜕𝑥2
+

𝜕2𝑢2

𝜕𝑦2
= 2|𝑓′(𝑧)|2 
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(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) |𝑅 𝑓(𝑧)|2 = 2|𝑓′(𝑧)|2 

EXAMPLE7: Prove that the function 𝑓(𝑧) = 𝑥𝑦 + 𝑖𝑦  is everywhere 

continuous but not analytic. 

SOLUTION: Let given that 𝑓(𝑧) = 𝑥𝑦 + 𝑖𝑦 
𝜕𝑢

𝜕𝑥
= 𝑦,

𝜕𝑣

𝜕𝑦
= 1,

𝜕𝑢

𝜕𝑦
= 𝑥,

𝜕𝑣

𝜕𝑥
= 0. 

From which 
𝜕𝑢

𝜕𝑥
≠

𝜕𝑣

𝜕𝑦
,

𝜕𝑢

𝜕𝑦
≠ −

𝜕𝑣

𝜕𝑥
 

This implies that the Cauchy-Riemann equations are not satisfied. 

 ⇒          𝑓(𝑧) is not analytic. 

EXAMPLE8: If 𝜙  and 𝜓  are functions of 𝑥  and 𝑦  satisfying Laplace’s 

equation show that 𝑠 + 𝑖𝑡 is analytic, where 

𝑠 =
𝜕𝜙

𝜕𝑦
−

𝜕𝜓

𝜕𝑥
, 𝑡 =

𝜕𝜙

𝜕𝑥
+

𝜕𝜓

𝜕𝑦
 

SOLUTION: Let us suppose 𝜙(𝑥, 𝑦)  and 𝜓(𝑥, 𝑦)  satisfy Laplace 

equation 

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
= 0 

𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
= 0 

Let 𝑠 =
𝜕𝜙

𝜕𝑦
−

𝜕𝜓

𝜕𝑥
, 𝑡 =

𝜕𝜙

𝜕𝑥
+

𝜕𝜓

𝜕𝑦
 

Now to prove that 𝑠 + 𝑖𝑡 is analytic function, we obtain to show that 
𝜕𝑠

𝜕𝑥
=

𝜕𝑡

𝜕𝑦
,
𝜕𝑠

𝜕𝑦
= −

𝜕𝑡

𝜕𝑥
 

𝑖. 𝑒.,              
𝜕𝑠

𝜕𝑥
−

𝜕𝑡

𝜕𝑦
= 0,

𝜕𝑠

𝜕𝑦
+

𝜕𝑡

𝜕𝑥
= 0 

𝑎𝑛𝑑 𝑠𝑥 , 𝑠𝑦, 𝑡𝑥 , 𝑡𝑦  all are continuous. 

𝜕𝑠

𝜕𝑥
−

𝜕𝑡

𝜕𝑦
=

𝜕

𝜕𝑥
(

𝜕𝜙

𝜕𝑦
−

𝜕𝜓

𝜕𝑥
) −

𝜕

𝜕𝑦
(

𝜕𝜙

𝜕𝑥
+

𝜕𝜓

𝜕𝑦
) 

=
𝜕2𝜙

𝜕𝑥𝜕𝑦
−

𝜕2𝜓

𝜕𝑥2
−

𝜕2𝜙

𝜕𝑦𝜕𝑥
−

𝜕2𝜓

𝜕𝑦2
= 0 

− (
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
) = 0 

∴                                              
𝜕𝑠

𝜕𝑥
−

𝜕𝑡

𝜕𝑦
= 0         

𝜕𝑠

𝜕𝑦
+

𝜕𝑡

𝜕𝑥
= 

𝜕

𝜕𝑦
 (

𝜕𝜙

𝜕𝑦
−

𝜕𝜓

𝜕𝑥
) +

𝜕

𝜕𝑥
 (

𝜕𝜙

𝜕𝑥
+

𝜕𝜓

𝜕𝑦
) 

𝜕2𝜙

𝜕𝑦2
−

𝜕2𝜓

𝜕𝑦𝜕𝑥
+

𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑥𝜕𝑦
= 0 
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(
𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
) = 0 

Also 
𝜕𝑠

𝜕𝑦
+

𝜕𝑡

𝜕𝑥
= 0 

EXAMPLE9: Prove that the function 𝑢 = 𝑥3 − 3𝑥𝑦2 + 3𝑥2 − 3𝑦2 + 1 

satisfies Laplace’s equation and determine corresponding analytic 

function. 

SOLUTION: 𝑢 = 𝑥3 − 3𝑥𝑦2 + 3𝑥2 − 3𝑦2 + 1 

𝜙1(𝑥, 𝑦) =
𝜕𝑢

𝜕𝑥
= 3𝑥2 − 3𝑦2 + 6𝑥 

𝜙2(𝑥, 𝑦) =
𝜕𝑢

𝜕𝑦
= −6𝑥𝑦 − 6𝑦 

𝜕2𝑢

𝜕𝑥2
= 6𝑥 + 6 

𝜕2𝑢

𝜕𝑦2
= −6𝑥 − 6 

From the above equations 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 

∴   𝑢 is satisfies Laplace’s equation. Substituting 𝑥 = 𝑧, 𝑦 = 0 in above 

equations  

𝜙1(𝑧, 0) = 3𝑧2 + 6𝑧, 𝜙2(𝑧, 0) =  0. 

By Milne’s Thomson method 

𝑓(𝑧) = ∫[𝜙1(𝑧, 0) − 𝑖𝜙2(𝑧, 0)]𝑑𝑧 

∫[3𝑧2 + 6𝑧 − 𝑖. 0] 𝑑𝑧 = 𝑧3 + 3𝑧2 + 𝑐 

EXAMPLE10: If 𝑢 = 𝑥3 − 3𝑥𝑦2, show that there exists function 𝑣(𝑥, 𝑦) 

such that 𝑤 = 𝑢 + 𝑖𝑣 is analytic in a finite region. 

SOLUTION: Let given that  𝑢 = 𝑥3 − 3𝑥𝑦2 
𝜕𝑢

𝜕𝑦
= −6𝑥𝑦,

𝜕𝑢

𝜕𝑥
= 3𝑥2 − 3𝑦2 

𝑑𝑣 =
𝜕𝑣

𝜕𝑥
𝑑𝑥 +

𝜕𝑣

𝜕𝑦
𝑑𝑦 = − (

𝜕𝑢

𝜕𝑦
) 𝑑𝑥 + (

𝜕𝑢

𝜕𝑥
) 𝑑𝑦 

6𝑥𝑦𝑑𝑥 + (3𝑥2 − 3𝑦2)𝑑𝑦 = 𝑀𝑑𝑥 + 𝑁𝑑𝑦 
𝜕𝑀

𝜕𝑦
= 6𝑥 =

𝜕𝑁

𝜕𝑥
 

∴    𝑀𝑑𝑥 + 𝑁𝑑𝑦 is exact.  So that 

∫ 𝑑𝑣 = ∫ 6𝑥𝑦𝑑𝑥 + ∫ −3𝑦2𝑑𝑦 = 3𝑥2𝑦 − 𝑦3 + 𝑐 

𝑓(𝑧) = 𝑢 + 𝑖𝑣 = (𝑥3 − 3𝑥𝑦2) + 𝑖(3𝑥2𝑦 − 𝑦3 + 𝑐) 

= (𝑥 + 𝑖𝑦)3 + 𝑖𝑐 = 𝑧3 + 𝑖𝑐 

So that 𝑓(𝑧) is analytic in a finite domain. 
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SELF CHECK QUESTIONS 

1. What is an analytic function? 

2. State the Cauchy-Riemann equations. 

3. What is the significance of the Cauchy-Riemann equations? 

4. What is the relationship between analyticity and harmonic 

functions? 

5. Explain the concept of analytic continuation.  
6. What is the Milne-Thomson method used for? 

7. How does the Milne-Thomson method work? 

8. What is the advantage of using the Milne-Thomson method in 

complex analysis? 

9. The function 𝑓(𝑧) = 𝑡𝑎𝑛𝑧 is 

a. continuous everywhere 

b. analytic in finite complex plane 

c. analytic everywhere except the points where 𝑐𝑜𝑠𝑧 = 0 

d. none 

10. A function of 𝑥 and 𝑦 possessing continuous partial derivatives 

of first and second order is called harmonic function if it is 

satisfied 

a. Euler equation 

b. Laplace equation 

c. Homogenous equation 

d. Lagrange equation 

11. An analytic function with constant modulus is:  

a. Variable 

b. May be Variable and constant 

c. Constant 

d. None 

12. Which of the following functions is not analytic 

a. 𝑠𝑖𝑛𝑧 

b. 𝑐𝑜𝑠𝑧 

c. 𝑎𝑥2 + 𝑏𝑧 + 𝑐 = 0 

d. 
1

𝑧−1
 

13. True/False statements 

(i). Cauchy Riemann equation is sufficient for a function to be 

analytic.  

(ii). The function 𝑤 = |𝑧|2  is continuous everywhere but 

nowhere differentiable except at the origin.  

(iii). An analytic function with constant modulus is constant.  

(iv). If 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is an analytic function, then being given 

one of u and v, the other can b determined.  

(v). An analytic function cannot have a constant absolute value 

without reducing to a constant.  
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3.10 SUMMARY:-  

An analytic function, or holomorphic function, is a complex function that 

is differentiable at every point in its domain, meaning it can be represented 

by a convergent power series around any point within its domain. These 

functions satisfy the Cauchy-Riemann equations, ensuring their real and 

imaginary parts are harmonic. Key properties include infinite 

differentiability and the ability to be expressed in a power series. 

Important theorems associated with analytic functions are Liouville's 

theorem, the maximum modulus principle, and Cauchy's integral 

theorems. Applications of analytic functions span across conformal 

mappings, complex integration, and potential theory in physics and 

engineering. 

 

3.11 GLOSSARY:-  

 Analytic Function: A complex function that is differentiable at 

every point in its domain. Also known as a holomorphic function. 

 Cauchy-Riemann Equations: A set of partial differential 

equations that must be satisfied for a function to be analytic. For 

𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), the equations are: 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 

 Harmonic Function: A function  𝑢(𝑥, 𝑦) or 𝑣(𝑥, 𝑦) that satisfies 

Laplace's equation: 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0,

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
= 0 

 Analytic Continuation: The process of extending the domain of 

an analytic function beyond its original domain while maintaining 

its analyticity. 

 Complex Plane: A two-dimensional plane representing complex 

numbers, with the horizontal axis as the real part and the vertical 

axis as the imaginary part. 

 Holomorphic: Another term for an analytic function, emphasizing 

its differentiability properties. 

 Potential Theory: A field of study using harmonic and analytic 

functions to solve problems in physics and engineering related to 

potentials, such as gravitational or electrostatic potentials. 

 Complex Differentiability: A condition for a function 𝑓(𝑧) to be 

differentiable with respect to 𝑧 in the complex plane. This requires 

the existence of the limit: 

lim
∆𝑧→0

𝑓(𝑧 + ∆𝑧) − 𝑓(𝑧)

∆𝑧
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 Holomorphic: Another term for an analytic function, emphasizing 

its differentiability and the satisfaction of the Cauchy-Riemann 

equations. 

 Necessary Condition: A condition that must be true for a function 

to be analytic. The Cauchy-Riemann equations are necessary 

conditions for complex differentiability. 

 Sufficient Condition: A condition that, if true, guarantees a 

function is analytic. If a function satisfies the Cauchy-Riemann 

equations and its partial derivatives are continuous, it is analytic. 

 Complex Plane: A two-dimensional plane used to represent 

complex numbers, with the horizontal axis as the real part and the 

vertical axis as the imaginary part. 

 Partial Derivative: A derivative of a function with respect to one 

variable, treating other variables as constants. In the context of the 

Cauchy-Riemann equations, partial derivatives are taken with 

respect to x and y. 

 Continuity: A property of a function where small changes in the 

input result in small changes in the output. For the Cauchy-

Riemann equations to imply analyticity, the partial derivatives 
𝜕𝑢

𝜕𝑥
,

𝜕𝑣

𝜕𝑥
,

𝜕𝑢

𝜕𝑦
,

𝜕𝑣

𝜕𝑥
 must be continuous. 

 Complex Conjugate: For a complex number  𝑧 = 𝑥 + 𝑖𝑦 , its 

complex conjugate is 𝑧̅ = 𝑥 − 𝑖𝑦. The Cauchy-Riemann equations 

involve differentiating with respect to 𝑥 and 𝑦, not 𝑧̅. 
 Complex Potential:  A complex function representing potential 

flow in fluid dynamics, where the real part is the velocity potential 

and the imaginary part is the stream function. The Cauchy-

Riemann equations ensure that the flow is irrotational and 

incompressible. 
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 https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-III-

Complex-Analysis.pdf 

 Robert E. Greene and Steven G. Krantz (4th Edition, 2020), 

Function Theory of One Complex Variable. 

3.14 TERMINAL QUESTIONS:- 

(TQ-1) Show that 𝑢 = (1/2)log (𝑥2 + 𝑦2)  s harmonic and find its 

harmonic conjugate. 

(TQ-2) Prove that an analytic function with constant real part is constant. 

(TQ-3) If 𝑓(𝑧) is analytic function with constant modulus, then it is 

constant. 

(TQ-4) If 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is an analytic function of 𝑧 = 𝑥 + 𝑖𝑦, and 𝜓 is a 

function of 𝑥 and 𝑦 possessing partial differential coefficients of the first 

two orders, show that 

i. (
𝜕𝜓 

𝜕𝑥
)

2

+ (
𝜕𝜓 

𝜕𝑦
)

2

= [(
𝜕𝜓 

𝜕𝑢
)

2

+ (
𝜕𝜓 

𝜕𝑣
)

2

] |𝑓′(𝑧)|2 

ii. 
𝜕2𝜓 

𝜕𝑥2 +
𝜕2𝜓 

𝜕𝑦2 = (
𝜕2𝜓 

𝜕𝑢2 +
𝜕2𝜓 

𝜕𝑣2 ) |𝑓′(𝑧)|2 

(TQ-5) An incompressible fluid flowing xy-plane has velocity potential  

𝜙 = 𝑥2 − 𝑦2 +
𝑥

𝑥2 + 𝑦2
 

Find stream function 𝜓 so that 𝑤 = 𝜙 + 𝑖𝜓 is analytic. 

(TQ-6) Prove that the function 𝑒𝑥(𝑐𝑜𝑠𝑦 + 𝑖𝑠𝑖𝑛𝑦)  is holomorphic and 

find its derivative. 

(TQ-7) Find an analytic function whose real part is 𝑒𝑥𝑐𝑜𝑠𝑦. 

(TQ-8) Show that the function 𝑢 = 𝑐𝑜𝑠𝑥𝑐𝑜𝑠ℎ𝑦 is harmonic and find the 

harmonic conjugate. 

(TQ-9) show that the function 𝑓(𝑧) = |𝑥𝑦|1/2is not regular at the origin, 

although the Cauchy Riemann equations are satisfied at the point. 

(TQ-10) the Explain the nature of the function 𝑤 = 𝑓(𝑧) = 𝑧1/3 

i. Show that 𝑓(𝑧) = 𝑧̅ is continuous at 𝑧 = 𝑧0 but not analytic at 𝑧 =
𝑧0 

ii. Prove that the function 𝑓(𝑧) = cos (𝑧) is continuous at everywhere 

analytic. 

(TQ-11) Prove that continuity is necessary but not sufficient condition 

for the existence of a finite derivative. 

(TQ-12) Find the analytic function 𝑤 = 𝑢 + 𝑖𝑣 if 

i. 𝑢 = 𝑥3 − 3𝑥𝑦2 

ii. 𝑢 = 𝑒𝑥𝑐𝑜𝑠𝑦 

 

3.15 ANSWERS:- 

https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-III-Complex-Analysis.pdf
https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-III-Complex-Analysis.pdf
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SELF CHECK ANSWERS 

1. An analytic function, also known as a holomorphic function, is a 

complex function that is differentiable at every point in its domain. 

Furthermore, its derivative must also be continuous. This implies 

that the function can be represented as a convergent power series 

in some neighborhood around any point in its domain. 

2.   
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑥
,

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
            𝑖. 𝑒. , 𝑢𝑥 = 𝑣𝑦 , 𝑢𝑦 = −𝑣𝑥       

3. The Cauchy-Riemann equations provide necessary and sufficient 

conditions for a function to be analytic. They ensure that the 

function is differentiable in the complex sense. If a function 

satisfies these equations and has continuous first partial 

derivatives, it is guaranteed to be analytic. 

4. Harmonic functions are twice continuously differentiable functions 

that satisfy Laplace's equation, implying that they are solutions to 

the heat equation in steady state. 

5. Analytic continuation is a technique to extend the domain of a 

given analytic function beyond its initial domain. This is done by 

defining the function on a larger domain such that the new function 

agrees with the original function on their common domain. The 

extended function remains analytic in the new domain. 

6. The Milne-Thomson method is used to find the real and imaginary 

parts of a complex function, given its complex form. It is 

particularly useful in fluid dynamics and conformal mapping 

problems, where it helps to convert complex potential functions 

into their real and imaginary components. 

7. The Milne-Thomson method works by expressing a complex 

function 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) in terms of 𝑧 and its conjugate 

𝑧̅  . The method involves writing the complex function 𝑓(𝑧)  in 

terms of 𝑧 and 𝑧̅, and then using the relationships between the real 

and imaginary parts to separate them.  

8. The advantage of using the Milne-Thomson method is that it 

provides a systematic way to separate the real and imaginary parts 

of a complex function, which is essential in many applications, 

such as solving physical problems in fluid dynamics and 

electromagnetic. It simplifies the process of finding these parts 

without directly differentiating the function. 

9. c         10.  b           11. c              12. d 

13.     (i). F      (ii).T (iii).T     (iv). T    (v). T  
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UNIT 4:- Power Series  

CONTENTS: 
4.1      Introduction 

4.2      Objectives 

4.3      Power Series 

4.4      Absolute Convergence Of ∑ 𝑎𝑛𝑧𝑛 

4.5      Some Special Test for Convergence of Series 

4.6      Radius of Convergence of Power Series 

4.7      Sum Function of a Power Series 

4.8      Theorems     

4.9       Summary 

4.10     Glossary 

4.11     References 

4.12     Suggested Reading 

4.13     Terminal questions  

4.14     Answers  

 

4.1 INTRODUCTION:-  

A power series is an infinite series of the form ∑ 𝑎𝑛(𝑧 − 𝑐)𝑛∞
𝑛=0 are 

complex coefficients, 𝑧 is a complex variable, and 𝑐 is the center of the 

series. Power series are fundamental in complex analysis because they 

represent functions as sums of infinitely many terms that depend on the 

distance from the center 𝑐. The series converges within a certain radius, 

called the radius of convergence, which can be determined using various 

convergence tests. Within this radius, a power series can be used to 

represent analytic functions, providing a powerful tool for understanding 

their properties and behavior. 

4.2 OBJECTIVES:-  

After studying this unit, learners will be able to  

 Understand and identify the structure and components of power 

series, including their terms, coefficients, and center. They will be 

able to determine the radius and interval of convergence for power 
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series and apply convergence tests to assess where a series 

converges.  

 Learners will also be able to represent analytic functions as power 

series, use these series to approximate functions, and compute 

derivatives and integrals of functions expressed in this form. 

4.3 POWER SERIES:-  

A power series is an infinite series of the form  

∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

 

are complex coefficients, 𝑧  is a complex variable, and 𝑐  is a constant 

known as the center of the series. It represents a function as a sum of terms 

involving powers of (𝑧 − 𝑐). The power series converges within a certain 

radius of convergence, 𝑅, and diverges outside of this radius. Within this 

radius, the power series can be used to express analytic functions and 

analyze their properties. 

OR 

A series of the form  

            ∑ 𝑎𝑛𝑧𝑛∞
𝑛=0                              or                             ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛∞

𝑛=0  

is called a power series, where 𝑎𝑛 , 𝑎 are a complex constant and 𝑧 is a 

complex variable. The second form  ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛 ccan be simplified to the 

first form by substituting 𝑧 = 𝜁 + 𝑎 yielding 

∑ 𝑎𝑛(𝑧 − 𝑎)𝑛 = ∑ 𝑎𝑛 𝜁𝑛 

The first form is simpler than the second form. Hence 

∑ 𝑎𝑛𝑧𝑛∞
𝑛=0       or        simply ∑ 𝑎𝑛𝑧𝑛 

in our discussion. 

4.4 ABSOLUTE CONVERGENCE OF ∑ 𝑎𝑛𝑧𝑛:-  

The concept of absolute convergence is crucial when dealing with power 

series. A series ∑ 𝑎𝑛𝑧𝑛∞
𝑛=0  is said to be absolutely convergent if the series 

formed by taking the absolute value of each term, 

∑|𝑎𝑛𝑧𝑛| = ∑|𝑎𝑛||𝑧𝑛| 

converges. 

The power series ∑ 𝑎𝑛𝑧𝑛 is said to be conditionally convergent if ∑ 𝑎𝑛𝑧𝑛 

is convergent but ∑|𝑎𝑛||𝑧|𝑛 is not convergent. 
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4.5 SOME SPECIAL TEST FOR CONVERGENCE 

OF SERIES:-  

Convergence tests are essential tools in mathematical analysis to 

determine whether a series converges (i.e., approaches a finite limit) or 

diverges. Here are some special tests commonly used to check for the 

convergence of series: 

1. If ∑ 𝑢𝑛 is convergent, then lim
𝑛→∞

𝑢𝑛 = 0. 

2. If lim
𝑛→∞

𝑢𝑛

𝑣𝑛
= finite non-zero quantity, then the two series ∑ 𝑢𝑛 and 

∑ 𝑣𝑛 have identical nature. 

3. Comparison Test: ∑ 𝑢𝑛 is absolutely convergent if  

|𝑢𝑛| ≤ |𝑣𝑛| 

4. Root Test: For a series 𝑢𝑛: 

Compute 𝐿 = lim
𝑛→∞

|𝑢𝑛|1/𝑛 

 If 𝐿 < 1, the series converges absolutely. 

 If 𝐿 > 1, the series diverges. 

 If L=1, the test is inconclusive. 

5. Ratio Test: For a series 𝑢𝑛: 

Compute 𝐿 = lim
𝑛→∞

|
𝑢𝑛+1

𝑢𝑛
| < 1     or      > 1 

 If 𝐿 < 1, the series converges absolutely. 

 If 𝐿 > 1or 𝐿 = ∞, the series diverges. 

 If L=1, the test is inconclusive. 

6. p-Series Test: For a series of the form 
1

𝑛𝑝: 

 The series converges if 𝑝 >  1 

 The series diverges if 𝑝 ≤ 1 

7. Dirichlet’s Test: The series ∑ 𝑎𝑛𝑢𝑛 is convergent if  

i. |𝑆𝑛| = |∑ 𝑎𝑖
𝑛
𝑖=1 | ≤ 𝑘∀𝑛, 𝑘 being a finite number. 

ii. lim
𝑛→∞

𝑢𝑛 = 0 

iii. ∑(𝑢𝑛 − 𝑢𝑛+1) is convergent. 

8. Integral Test: If 𝑓(𝑥)  is a continuous, positive, decreasing 

function for 𝑥 ≥ 1 and 𝑎𝑛 = 𝑓(𝑛), then the series ∑𝑎𝑛 converges 

if and only if the improper integral ∫ 𝑓(𝑥)𝑑𝑥
∞

1
 converges. 

9. Absolute Convergence Test: If the series ∑|𝑎𝑛| converges, then 

the series ∑𝑎𝑛 converges absolutely. 

10. p-series test: For a series of the form ∑
1

𝑛𝑝 
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 The series converges if 𝑝 > 1. 

 The series diverges if 𝑝 ≤ 1. 

These tests are commonly used to determine the convergence or 

divergence of series. Each test has its specific conditions and is useful in 

different scenarios. 

4.6 RADIUS OF CONVERGENCE OF POWER 

SERIES:-  

Let the power series ∑ 𝑎𝑛𝑧𝑛 = ∑ 𝑢𝑛(𝑧),say, ∑ 𝑢𝑛 is convergent if  

lim
𝑛→∞

|𝑢𝑛|1/𝑛 < 1 

This⇒ lim
𝑛→∞

|𝑎𝑛𝑧𝑛|
1

𝑛 < 1 ⇒ lim
𝑛→∞

|𝑎𝑛|
1

𝑛. |𝑧| < 1 

Taking lim
𝑛→∞

|𝑎𝑛|
1

𝑛 =
1

𝑅
 , we obtain 

|𝑧|

𝑅
< 1   or    |𝑧| < 𝑅. 

Thus ∑ 𝑎𝑛𝑧𝑛 is convergent or divergent according as  

|𝑧| < 𝑅    or   |𝑧| > 𝑅. 

∴ For a given power series n, there exists a non-negative real number 𝑅, 

known as the radius of convergence. This radius 𝑅 determines the region 

in the complex plane where the series converges. Specifically, the series 

converges absolutely for all complex numbers 𝑧 such that ∣ 𝑧 ∣< 𝑅  and 

diverges for ∣ 𝑧 ∣> 𝑅. 

Now if we draw a circle of radius R with centre at the origin, then define 

in one paragraph 

i. The power series ∑ 𝑎𝑛𝑧𝑛 is convergent for every 𝑧 within the 

circle. (|𝑧| < 𝑅) 

ii. The power series ∑ 𝑎𝑛𝑧𝑛 is divergent for every 𝑧 outside the 

circle. (|𝑧| > 𝑅) 

The circle of radius 𝑅,  centered at the origin, is called the circle of 

convergence for the power series ∑ 𝑎𝑛𝑧𝑛, and the radius 𝑅 is referred to as 

the radius of convergence. There are three possibilities for 𝑅: 
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i. 𝑅 = 0 

In case series in convergent only when 𝑧 = 0. 

ii. 𝑅 is finite 

In this case series is convergent at every point within this circle 

and divergent at every point outside it. 

iii. 𝑅 is infinite 

iv. In this case series is convergent∀ 𝑧. 

4.7 SUM FUNCTION OF A POWER SERIES:- 

The sum function of a power series is a function that represents the value 

to which the series converges for each point within its radius of 

convergence. Given a power series of the form: 

∑ 𝑎𝑛𝑧𝑛 

the sum function 𝑓(𝑧) is defined as: 

𝑓(𝑧) = ∑ 𝑎𝑛𝑧𝑛

∞

𝑛=0

 

where 𝑧 is a complex variable and 𝑎𝑛 are the coefficients of the series. 

 

4.8 THEOREMS:- 

Theorem1: The power series ∑ 𝑎𝑛𝑧𝑛 either  

i. Converges for every 𝑧 

ii. Converges only for 𝑧 = 0 

iii. Converges for some values of 𝑧 

Proof: 

i. Let the power series ∑
𝑧𝑛

𝑛!
. 

Comparing this with ∑ 𝑢𝑛(𝑧), we find that 

𝑢𝑛+1

𝑢𝑛
=

𝑧𝑛+1

(𝑛 + 1)!
.
𝑛!

𝑧𝑛
=

𝑧

(𝑛 + 1)
 

lim
𝑛→∞

|
𝑢𝑛+1

𝑢𝑛
| = lim

𝑛→∞

1

𝑛 + 1
. |𝑧| = 0 < 1 

Hence the power series ∑
𝑧𝑛

𝑛!
 is convergent for every 𝑧. 

ii. Let the power series ∑ 𝑧𝑛 𝑛! = ∑ 𝑢𝑛 , then lim
𝑛→∞

 |𝑢𝑛| =

lim
𝑛→∞

 𝑛!.|𝑧|𝑛 

= {
0, 𝑖𝑓 𝑧 = 0 
∞  𝑖𝑓  𝑧 ≠ 0
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            ∴ ∑ 𝑢𝑛 , 𝑖. 𝑒. , ∑ 𝑛 ! 𝑧𝑛 is convergent if 𝑧 = 0 and divergent if    

              𝑧 ≠ 0. 

iii. The power series ∑ 𝑧𝑛  is convergent if |𝑧| < 1  and is not 

convergent if |𝑧| ≥ 1. 

Theorem2: If the power series ∑ 𝑎𝑛𝑧𝑛  converges for a particular 

value 𝑧0 of z, then it converges absolutely for every z for which|𝑧| <

|𝑧0|. 

Proof: Let the power series ∑ 𝑎𝑛𝑧𝑛is convergent for 𝑧 = 𝑧0 so that 

∑ 𝑎𝑛𝑧𝑛 is convergent. So 

lim
𝑛→∞

∑ 𝑎𝑛𝑧0
𝑛 = 0                        …(1) 

To prove that ∑ 𝑎𝑛𝑧𝑛 is convergent ∀ 𝑧 for which |𝑧| < |𝑧0|. 

From (1), there exist a real positive constant 𝑀 > 0, we obtain 

|𝑎𝑛𝑧0
𝑛| ≤ 𝑀∀ 𝑛 

Now  

|𝑎𝑛𝑧0
𝑛| ≤ 𝑀 |

𝑧

𝑧0
|

𝑛

 

 

But ∑
|𝑧|𝑛

|𝑧0|𝑛 is convergent ∀ 𝑧 s.t., 

|𝑧|

|𝑧0|
< 1,   𝑖. 𝑒. ,    |𝑧| < |𝑧0|   

∴  By comparison test, ∑|𝑎𝑛𝑧0
𝑛| is convergent ∀ 𝑧 𝑠. 𝑡.   |𝑧| < |𝑧0|. 

Consequently ∑ 𝑎𝑛𝑧0
𝑛 is absolutely convergent ∀ 𝑧 𝑠. 𝑡. |𝑧| < |𝑧0|. 

Theorem3: For every power series ∑ 𝑎𝑛𝑧𝑛, there exists a number R 

such that 0 ≤ 𝑅 ≤ ∞ with the following properties: 

i. The series converges absolutely for every z such that |𝑧| < 𝑅. 

ii.  The series diverges if |𝑧| > 𝑅. 

Proof: Given the power series∑ 𝑎𝑛𝑧𝑛∞
𝑛=0 , we need to find the radius of 

convergence 𝑅 such that the series converges for ∣ 𝑧 ∣< 𝑅 and diverges 

for ∣ 𝑧 ∣> 𝑅. 

i. Convergence within the radius: 

 Let 𝑟 < 𝑅 and 𝑧 be such that ∣ 𝑧 ∣= 𝑟. By the definition of the limit 

superior, for any 𝜖 > 0, there exists an integer 𝑁 such that for all 𝑛 >
𝑁, 

|𝑎𝑛|1/𝑛 <
1

R
+∈ 

 Thus, for ∣ 𝑧 ∣= 𝑟 < 𝑅, we have: 

|𝑎𝑛𝑧𝑛| = |𝑎𝑛||𝑧𝑛| = |𝑎𝑛|𝑟𝑛 <
1

𝑅
+∈𝑛 𝑟𝑛  
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Since 𝑟 < 𝑅, there exists 𝜖 > 0 such that 𝑟 (
1

𝑅
+ 𝜖) < 1. Therefore, the 

terms|𝑎𝑛𝑧0
𝑛| are bounded above by a geometric series with a ratio less 

than 1, ensuring the series converges absolutely. 

ii. Divergence outside the radius:  

Now, consider ∣ 𝑧 ∣> 𝑅. We want to show that the series ∑ 𝑎𝑛𝑧𝑛∞
𝑛=0  

diverges in this case. Assume∣ 𝑧 ∣= 𝑟 > 𝑅. By the definition of 𝑅, for 

any 𝜖 > 0, there exists infinitely many 𝑛 such that: 

|𝑎𝑛|1/𝑛 <
1

R
−∈ 

Choosing ∈=
1

2𝑅
, we find 

|𝑎𝑛| > (
1

𝑅
−

1

2𝑅
)

𝑛

= (
1

2𝑅
)

𝑛

 

Thus, for sufficiently large 𝑛, 

 

|𝑎𝑛𝑧𝑛| = |𝑎𝑛||𝑧𝑛| = |𝑎𝑛|𝑟𝑛 > (
1

2𝑅
)

𝑛

𝑟𝑛 

Since 𝑟 > 𝑅 , the ratio 
𝑟

2𝑅
> 1  and the terms |𝑎𝑛𝑧𝑛|  grow without 

bound, leading to the divergence of the series. 

Theorem 4: To show that the power series ∑ 𝑛𝑎𝑛𝑧𝑛−1∞
𝑛=0 , obtained by 

differentiating power series∑ 𝑎𝑛𝑧𝑛, has the same radius of convergence as 

the original series ∑ 𝑎𝑛𝑧𝑛. 
Proof: Let the original power series be ∑ 𝑎𝑛𝑧𝑛∞

𝑛=0  , and let 𝑅 be its radius 

of convergence. According to the Cauchy-Hadamard theorem, the radius 

of convergence 𝑅 𝑖s given by: 
1

𝑅
= lim

𝑛→∞
|𝑎𝑛|1/𝑛  

  Consider the differentiated series: 

𝑓(𝑧) = ∑ 𝑎𝑛𝑧𝑛

∞

𝑛=0

 

Differentiating term by term, we get: 

𝑓′(𝑧) = ∑ 𝑛𝑎𝑛𝑧𝑛−1

∞

𝑛=0

 

We aim to prove that the series ∑ 𝑛𝑎𝑛𝑧𝑛−1∞
𝑛=0  has the same radius of 

convergence 𝑅 as the original series. 

The radius of convergence of the differentiated series is given by: 
1

𝑅′
= lim

𝑛→∞
|𝑛𝑎𝑛|1/(𝑛−1) 

To find 𝑅′ , consider: lim
𝑛→∞

|𝑛𝑎𝑛|1/(𝑛−1) . Using above properties, we can 

simplify the expression: 

 

lim
𝑛→∞

|𝑛𝑎𝑛|1/(𝑛−1) = lim
𝑛→∞

|𝑛|1/(𝑛−1)|𝑎𝑛|1/(𝑛−1) 
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Since, lim
𝑛→∞

𝑛1/𝑛 = 1, we get 

lim
𝑛→∞

𝑛1/(𝑛−1) = 1 

Thus, the radius of convergence 𝑅′ is: 
1

𝑅′
= lim

𝑛→∞
|𝑎𝑛|1/𝑛 =

1

𝑅
 

Therefore, 𝑅′ = 𝑅 , and the differentiated series ∑ 𝑛𝑎𝑛𝑧𝑛−1∞
𝑛=0 has the 

same radius of convergence as the original series ∑ 𝑎𝑛𝑧𝑛∞
𝑛=0 . 

 

SOLVED EXAMPLE 

 

EXAMPLE1: Prove that the series 1 +
𝑎.𝑏

1.𝑐
𝑧 +

𝑎(𝑎+1)𝑏(𝑏+1)

1.2.𝑐.(𝑐+1)
𝑧2 + ⋯ has 

unit radius of convergent. 

SOLUTION: The given series is  

1 +
𝑎. 𝑏

1. 𝑐
𝑧 +

𝑎(𝑎 + 1)𝑏(𝑏 + 1)

1.2. 𝑐. (𝑐 + 1)
𝑧2 + ⋯ 

We can write the general term 𝑎𝑛as: 

𝑎𝑛 =
𝑎(𝑎 + 1) … (𝑎 + 𝑛 − 1)𝑏(𝑏 + 1) … (𝑏 + 𝑛 − 1)

1.2 … 𝑛. 𝑐 (𝑐 + 1) … … (𝑐 + 𝑛 − 1)
 

𝑎𝑛+1 =
𝑎(𝑎 + 1) … (𝑎 + 𝑛 − 1)(𝑎 + 𝑛)𝑏(𝑏 + 1) … (𝑏 + 𝑛 − 1)(𝑏 + 𝑛)

1.2 … 𝑛 (𝑛 + 1)𝑐 (𝑐 + 1) … … (𝑐 + 𝑛 − 1)(𝑐 + 𝑛)
 

Simplifying, we get: 

𝑎𝑛+1

𝑎𝑛
=

(𝑛 + 𝑎)(𝑛 + 𝑏)

(𝑛 + 1)(𝑐 + 𝑛)
=

(1 +
𝑎
𝑛) (1 +

𝑏
𝑛)

(1 +
1
𝑛) (1 +

𝑐
𝑛)

 

Now, taking the limit as 𝑛 → ∞: 
1

𝑅
= lim

𝑛→∞
|
𝑎𝑛+1

𝑎𝑛
| = lim

𝑛→∞
|
(1 + 0)(1 + 0)

(1 + 0)(1 + 0)
| = 1 

𝑅 = 1 

EXAMPLE2: Find the radius of convergence of the series 
𝑧

2
+

1.3

2.5
𝑧2 +

1.3.5

2.5.8
𝑧3 + ⋯ 

SOLUTION: The coefficient of 𝑧𝑛 of the given power series is given by 

𝑎𝑛 =
1.3.5 … (2𝑛 − 1)

2.5.8 … (3𝑛 − 1)
 

𝑎𝑛+1 =
1.3.5 … (2𝑛 − 1)(2𝑛 + 1)

2.5.8 … (3𝑛 − 1)(3𝑛 + 2)
 

𝑎𝑛+1

𝑎𝑛
=

2𝑛 + 1

3𝑛 − 1
=

2

3

(1 +
1

2𝑛)

(1 +
2

3𝑛)
 

1

𝑅
= lim

𝑛→∞
|
𝑎𝑛+1

𝑎𝑛
| =

2

3

(1 + 0)

(1 + 0)
=

2

3
 



Advanced Complex Analysis  MAT601 
 

Department of Mathematics     

Uttarakhand Open University Page 66 
 

𝑅 =
3

2
 

EXAMPLE3: Find the convergence of the series∑ 𝑛2∞
𝑛=0 (

𝑧2+1

1+𝑖
)

𝑛

. 

SOLUTION: Given the series: 

∑ 𝑛2

∞

𝑛=0

(
𝑧2 + 1

1 + 𝑖
)

𝑛

 

To apply the ratio test, we find: 

𝑎𝑛+1

𝑎𝑛
=

(𝑛 + 1)2 (
𝑧2 + 1
1 + 𝑖 )

𝑛+1

(𝑛)2 (
𝑧2 + 1
1 + 𝑖 )

𝑛  

=
(𝑛 + 1)2

(𝑛)2
|
𝑧2 + 1

1 + 𝑖
| 

= (
𝑛 + 1

𝑛
)

2

|
𝑧2 + 1

1 + 𝑖
| 

Now, we take the limit as 𝑛 → ∞: 

lim
𝑛→∞

|
𝑢𝑛+1

𝑢𝑛
| = lim

𝑛→∞
(

𝑛 + 1

𝑛
)

2

|
𝑧2 + 1

1 + 𝑖
| 

To express this condition in terms of𝑧, we calculate the modulus of the 

denominator: 

|1 + 𝑖| = √12 + 12 = √2 
So the inequality becomes: 

|
𝑧2 + 1

√2
| < 1 

|𝑧2 + 1| < √2 
This condition determines the region in the complex plane where the 

series converges. Specifically, the series converges for all 𝑧 such that the 

absolute value of 𝑧2 + 1 is less than√2. 

EXAMPLE4: Examine the behavior of power series ∑
𝑧𝑛

𝑛(𝑙𝑜𝑔𝑛)2
∞
𝑛=2  on the 

circle of convergence. 

SOLUTION: The general term of the series is: 

𝑎𝑛 =
1

𝑛(𝑙𝑜𝑔𝑛)2
 

 

𝑎𝑛+1

𝑎𝑛
=

𝑛(𝑙𝑜𝑔𝑛)2

(𝑛 + 1)[log (𝑛 + 1)]2
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=
1

(1 +
1
𝑛

) [
log 𝑛 (1 +

1
𝑛)

𝑙𝑜𝑔𝑛 
]

2 

=
1

(1 +
1
𝑛) [

{1 + 𝑙𝑜𝑔 (1 +
1
𝑛)}

𝑙𝑜𝑔𝑛 ]

2 

=
1

(1 +
1
𝑛) [1 +

1
𝑛𝑙𝑜𝑔𝑛 −

1
2𝑛2𝑙𝑜𝑔𝑛

+ ⋯ ]
2 

1

𝑅
= lim

𝑛→∞
|
𝑎𝑛+1

𝑎𝑛
| =

1

1
. 1 = 1 

𝑅 = 1 

The series converges inside the circle ∣ 𝑧 ∣< 1 and diverges outside ∣ 𝑧 ∣>
1 . Now, we must examine the series' behavior on the circle of 

convergence,∣ 𝑧 ∣= 1. 

Behavior on the Circle∣ 𝒛 ∣= 𝟏: 

To analyze convergence on the circle ∣ 𝑧 ∣= 1 , also ∑
𝑧𝑛

𝑛(𝑙𝑜𝑔𝑛)2
∞
𝑛=2  is 

convergent, by Cauchy’s condensation test. Hence ∑
𝑧𝑛

𝑛(𝑙𝑜𝑔𝑛)2
∞
𝑛=2  is 

absolutely convergent ∀ 𝑧 on the circle of convergence. 

EXAMPLE5: For what value of z, does the series ∑
1

(𝑧2+1)2 convergence, 

and find its sum. 

SOLUTION: The given series is  

𝑢𝑛 =
1

(𝑧2 + 1)2
, 𝑢𝑛+1 =

1

(𝑧2 + 1)𝑛+1
 

Then  

lim
𝑛→∞

|
𝑢𝑛+1

𝑢𝑛
| = lim

𝑛→∞
|

1

𝑧2 + 1
| 

Since the series is convergent if  

lim
𝑛→∞

|
𝑢𝑛+1

𝑢𝑛
| < 1 

or if |
1

𝑧2+1
| < 1 if 1 < |𝑧2 + 1|. 

Therefore, the series convergent for |𝑧2 + 1| > 1. 

Let 𝑆𝑛(𝑧) be the sum of 𝑛 terms of given series. 

𝑆𝑛 = ∑
1

(𝑧2 + 1)𝑛

𝑛

1

=
1

𝑧2 + 1
+

1

(𝑧2 + 1)2
+ ⋯ . . 𝑡𝑜 𝑛 𝑡𝑒𝑟𝑚𝑠 

=
1

𝑧2+1

[1−
1

(𝑧2+1)
𝑛]

1−
1

𝑧2+1

      as     𝑆𝑛 =
𝑎(1−𝑟𝑛)

1−𝑟
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𝑆𝑛 =
1

𝑧2
[1 −

1

(𝑧2 + 1)𝑛
] 

𝑙𝑖𝑚𝑆𝑛 =
1

𝑧2    𝑎𝑠    
1

|𝑧2+1|
< 1. 

EXAMPLE6: Find the domain of convergence of the power series 

∑ (
2𝑖

𝑧+𝑖+1
)

𝑛

. 

SOLUTION: The given series can be rewritten as: 

∑ (
2𝑖

𝑧 + 𝑖 + 1
)

𝑛

 

We have  𝑢𝑛 = (
2𝑖

𝑧+𝑖+1
)

𝑛

, 𝑢𝑛+1 = (
2𝑖

𝑧+𝑖+1
)

𝑛+1

 

Now  

lim
𝑛→∞

|
𝑢𝑛+1

𝑢𝑛
| = lim

𝑛→∞
|

2𝑖

𝑧 + 𝑖 + 1
| =

2

|𝑧 + 𝑖 + 1|
 

The given series is convergent if  
2

|𝑧+𝑖+1|
< 1. 

 

|𝑧 + 𝑖 + 1| > 2 

Thus the inequality |𝑧 + 𝑖 + 1| > 2   describes the set of all complex 

numbers 𝑧 such that the distance between 𝑧 and −𝑖 − 1 is greater than 2. 

This represents the exterior of a circle in the complex plane with center 

−𝑖 − 1 and radius 2. 

EXAMPLE7: For what values of z does the series ∑(−1)𝑛 (𝑧𝑛 + 𝑧𝑛+1) 

converge and find its sum. 

SOLUTION: First, rewrite the series as follows: 

𝑢𝑛 = (−1)𝑛(𝑧𝑛 + 𝑧𝑛+1)  

𝑢𝑛+1 = (−1)𝑛+1(𝑧𝑛+1 + 𝑧𝑛+2)  

= −(−1)𝑛𝑧(𝑧𝑛 + 𝑧𝑛+1) = −𝑧𝑢𝑛 

lim
𝑛→∞

|
𝑢𝑛+1

𝑢𝑛
| = lim

𝑛→∞
|−𝑧| = |𝑧| 

The series is convergent if lim
𝑛→∞

|
𝑢𝑛+1

𝑢𝑛
| < 1 or  if |𝑧| < 1. 

Hence the series is convergent inside the circle of radius one and centre at 

𝑧 = 0. 
Suppose 𝑆𝑛(𝑧) = sum of n terms of the series. 

Then      

𝑆𝑛 = (1 − 𝑧 + 𝑧2 − 𝑧3 + ⋯ 𝑡𝑜 𝑛 𝑡𝑒𝑟𝑚𝑠)
+ (𝑧 − 𝑧2 + 𝑧3 + ⋯ 𝑡𝑜 𝑛 𝑡𝑒𝑟𝑚𝑠) 

= (1 − 𝑧 + 𝑧2 − 𝑧3 + ⋯ 𝑡𝑜 𝑛 𝑡𝑒𝑟𝑚𝑠)
+ 𝑧(1 − 𝑧 + 𝑧2 − 𝑧3 + ⋯ 𝑡𝑜 𝑛 𝑡𝑒𝑟𝑚𝑠) 

= (1 + 𝑧)(1 − 𝑧 + 𝑧2 − 𝑧3 + ⋯ 𝑡𝑜 𝑛 𝑡𝑒𝑟𝑚𝑠) 

= (1 + 𝑧)
[1 − (−𝑧)𝑛]

1 + 𝑧
= 1 − (−𝑧)𝑛 

lim
𝑛→∞

𝑆𝑛 = lim
𝑛→∞

[1 − (−𝑧)𝑛] = 1,   𝑓𝑜𝑟 |𝑧| < 1 

∴    Sum of series =1 
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SELF CHECK QUESTIONS 

1. What is the radius of convergence for the power series∑
𝑛!𝑧𝑛

𝑛𝑛
∞
𝑛=0 ? 

2. For which values of z does the series ∑
𝑧𝑛

3𝑛
∞
𝑛=0 ?  

3. What kind of singularity does the function represented by 
∑ 𝑛!∞

𝑛=0 𝑧𝑛 have at infinity?   

4. What is the interval of convergence of the series ∑
(−1)𝑛

𝑛+1
𝑧𝑛∞

𝑛=0  ? 

 

4.9 SUMMARY:-  

A power series is an infinite sum of the form  ∑ 𝑎𝑛𝑧𝑛∞
𝑛=0 , where are 

coefficients and 𝑧 is a variable. The radius of convergence 𝑅, defines the 

interval where the series converges absolutely: it converges for ∣ 𝑧 ∣< 𝑅 

and diverges for ∣ 𝑧 ∣> 𝑅, with boundary convergence needing separate 

verification. The radius is determined by the formula  
1

𝑅
= lim

𝑛→∞
|𝑎𝑛|1/𝑛 . Power series can be differentiated and integrated term by 

term, retaining the same radius of convergence, and they are used to 

represent analytic functions that are infinitely differentiable within their 

interval of convergence. 

Power series are fundamental in many areas of mathematics and 

engineering, including calculus, differential equations, and complex 

analysis. They provide a way to represent functions and can be used to 

approximate functions over certain intervals. 

 

4.10 GLOSSARY:-  

 Power Series: An infinite series of the form ∑ 𝑎𝑛𝑧𝑛∞
𝑛=0 , where an 

are coefficients, 𝑧 is a variable, and 𝑛 is a non-negative integer. 

 Coefficient: The 𝑎𝑛 in a power series, representing the weight of 

the 𝑛 −th term 𝑧𝑛. 

 Variable: The 𝑧 in a power series, often representing a complex or 

real number. 

 Term: An individual component of the power series,𝑎𝑛𝑧𝑛. 

 Radius of Convergence (R): A non-negative number that 

determines the interval in which the power series converges 

absolutely. Calculated as 

 
1

𝑅
= lim

𝑛→∞
|𝑎𝑛|1/𝑛 . 

 Convergence: The condition where the partial sums of a series 

approach a finite limit as the number of terms increases. 

 Absolute Convergence: When the series ∑|𝑎𝑛𝑧𝑛| converges. This 

implies the convergence of the original series. 
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 Divergence: The condition where a series does not converge, 

meaning the partial sums do not approach a finite limit. 

 Analytic Function: A function that can be represented by a power 

series within its radius of convergence. Such functions are 

infinitely differentiable in this interval. 

 Term-by-Term Differentiation: The process of differentiating a 

power series term by term, resulting in a new series ∑ nanzn−1∞
n=0  

with the same radius of convergence as the original. 

 Term-by-Term Integration: The process of integrating a power 

series term by term, resulting in a new series ∑
𝑎𝑛

𝑛+1
𝑧𝑛+1∞

𝑛=0 plus a 

constant, with the same radius of convergence as the original. 

 Limit Superior (lim sup): The limit of the supremum (upper 

bound) of the tail end of a sequence. Used in calculating the radius 

of convergence. 

 Interval of Convergence: The range of values of z for which the 

power series converges. It includes all z for which ∣z∣<R and may 

or may not include boundary points where ∣z∣=R. 

 Analytic Function: A function defined by a power series within 

its radius of convergence is called an analytic function. Such 

functions are infinitely differentiable within the interval of 

convergence. 

 

4.11 REFERENCES:-  

 Dennis G. Zill and Patrick D. Shanahan(2013 Third Edition), 
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 William F. Trench(2013), Introduction to Real Analysis. 
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 Hilary A. Priestley (2nd Edition, 2019, Oxford University Press), 

Introduction to Complex Analysis. 

 

4.12 SUGGESTED READING:-  
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 Goyal and Gupta (Twenty first edition 2010), Function of complex 

Variable. 

 Igor Kriz and Ales Pultr(2013),Introduction to Mathematical 
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(TQ-1)Prove that the sum function 𝑓(𝑧)  of the power series ∑ 𝑎𝑛𝑧𝑛 

represents an analytic function inside the circle of convergence. 

(TQ-2)If 𝑅1  and 𝑅2  are the radii of convergence of the power series 
∑ 𝑎𝑛𝑧𝑛 and ∑ 𝑏𝑛𝑧𝑛 respectively, then show that the radius of convergence 

of the power series ∑ 𝑎𝑛𝑏𝑛𝑧𝑛 is 𝑅1𝑅2. 

(TQ-3) Show that the domain of convergence of the series ∑ (
𝑖𝑧−1

2+𝑖
)

𝑛

 is 

given by |𝑧 + 𝑖| < √5. 

(TQ-4) Find the domain of convergence of the following series: 

∑
(−1)𝑛−1𝑧2𝑛−1

(2𝑛 − 1)!
 

(TQ-5)Find the radius of convergence of power series ∑
(𝑛+1)𝑧𝑛

(𝑛+2)(𝑛+3)

∞
𝑛=1 . 

(TQ-6)Discuss the behavior of power series ∑ (−1)𝑛 𝑧𝑛

𝑛

∞
𝑛=1  on the circle 

of convergence. 

(TQ-7) Objectives types questions: 

i. If the series ∑ 𝑎𝑛𝑧𝑛 is convergent but the series ∑|𝑎𝑛𝑧𝑛| is not 

convergent, then ∑ 𝑎𝑛𝑧𝑛 is said to be 

a. divergent 

b. oscillatory  

c. conditionally convergent 

d. finite 

ii. The radius of the convergence of the series ∑ 𝑛𝑛𝑧𝑛∞
𝑛=1  is: 

a. 0 

b. 1 

c. 2 

d. 3 

iii. The radius of the convergence of the series ∑ 𝑧𝑛!∞
𝑛=0 is 

a. 1 

b. 2 

c. 3 

d. 4 

iv. The radius of the convergence of the series ∑ 2𝑛𝑧𝑛!is 

a. 1 

b. 2 

c. 0 

d. N 

v. The alternating series test guarantees convergence if: 

a. The terms decrease and have a non-zero limit. 

b.  The terms decrease and have a limit of zero. 

c. The terms increase and have a limit of zero. 

d.  The terms are positive and bounded. 

(TQ-8) True/False type Questions 
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a. A power series can converge conditionally at a point on its circle 

of convergence.  T 

b. The radius of convergence of a power series can be zero. T 

c. A power series can be used to represent a function that is not 

differentiable. F 

d. The power series ∑ 𝑧𝑛∞
𝑛=0  converges for all complex numbers z. F 

e. If a power series converges at 𝑧 = 3, it must also converge at 𝑧 =
−3. F 

(TQ-9) If ∑ 𝑎𝑛
∞
𝑛=0  converges, then prove that 𝑓(𝑧) = ∑ 𝑎𝑛

∞
𝑛=0 𝑧𝑛 tends 

to 𝑓(1) as 𝑧 → 1 in such a manner that 
|1−𝑧|

1−|𝑧|
 remains bounded. 

(TQ-10) Find the radii of convergence of the following power series: 

a. ∑
2+𝑖𝑛

2𝑛 𝑧𝑛 

c. ∑ (1 +
1

𝑛
)

𝑛2

𝑧2 

 

 b. ∑ 2√𝑛𝑧𝑛 

d. ∑
𝑧𝑛

2𝑛+1
 

 

  

 𝑒. ∑
𝑧𝑛

𝑛𝑛 

 

 f. ∑
2−𝑛𝑧𝑛

1+𝑖𝑛2 

 

  

g. ∑
(𝑛!)2

(2𝑛)!
𝑧𝑛 

 

 h. ∑
𝑛!

𝑛𝑛 𝑧𝑛 

 

  

(TQ-11)Investigate the behavior of ∑
𝑧𝑛

𝑛
 on the circle of convergence. 

(TQ-12) Examine the behavior of the power series ∑
𝑧4𝑛

1+4𝑛

∞
𝑛=0  on the 

circle of convergence. 

(TQ-13) For what values of z does the series ∑(−1)𝑛 (𝑧𝑛 + 𝑧𝑛+1) 

converge and find its sum. 

 (TQ-14) Prove that the series 1 +
𝑎.𝑏

1.𝑐
𝑧 +

𝑎(𝑎+1)𝑏(𝑏+1)

1.2.𝑐.(𝑐+1)
𝑧2 + ⋯ has unit 

radius of convergent. 

(TQ-15) Show that the domain of convergence of series ∑ (
𝑖𝑧−1

2+𝑖
)

𝑛

is 

given by |𝑧 + 𝑖| < √5. 

(TQ-16)If the radius of the convergence of power series ∑ 𝑎𝑛𝑧𝑛∞
𝑛=0  is a 

positive real number R, then prove that the function f(z) defined by 

𝑓(𝑧) = ∑ 𝑎𝑛𝑧𝑛∞
𝑛=0  is analytic in |𝑧| < 𝑅. 

 

4.14 ANSWERS:- 

SELF CHECK ANSWERS 

1. 1  

2. 3 

3. Essential 

4. |𝑧| < 1 
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TERMINAL ANSWERS 

(TQ-4) The series is absolutely convergent for every finite value of z. 

(TQ-5) 𝑅 = 1 

(TQ-7) 

(TQ-8)      

 

 (TQ-10)     

 

 

(TQ-13) 1 

 

1.(c) 2.(a) 3.(a) 4.(a) 5.(b) 

a.T b.T c.F d.F e.F 

a.𝑅 = 2 b.𝑅 = 1 c.𝑅 = 1/𝑒  d.𝑅 = 2 

e. 𝑅 = ∞   f. 𝑅 = 2 g. 𝑅 = 4 h. 𝑅 = 𝑒 
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UNIT 5:-Conformal Mapping  

CONTENTS: 
5.1      Introduction 

5.2      Objectives 

5.3      Conformal Mapping 

5.4      Transformation of Conformal 

5.5      Some General Transformations 

5.6       Summary 

5.7       Glossary 

5.8       References 

5.9       Suggested Reading 

5.10     Terminal questions  

5.11     Answers  

 

5.1 INTRODUCTION:-  

Conformal mapping is a fundamental concept in complex analysis 

that focuses on functions which preserve angles between intersecting 

curves. These mappings are characterized by being analytic functions with 

non-zero derivatives in their domains, ensuring that small shapes are 

mapped similarly, though their size may change. The key property of 

conformal mappings is their ability to maintain the local geometry of 

figures, specifically the angles and the orientation of intersections, making 

them invaluable for simplifying and analyzing complex shapes and 

patterns. The applications of conformal mapping extend across various 

scientific and engineering fields. In fluid dynamics, for example, 

conformal maps are used to transform complex flow patterns into simpler 

ones, aiding in the analysis and solution of potential flow problems. In 

electromagnetism, they help simplify the geometry of problems, making it 

easier to solve Maxwell's equations in complex domains. Additionally, 

conformal maps are crucial in cartography, where they preserve angles, 

making them useful for navigation and map projections like the Mercator 

projection, which represents the globe on a flat surface. 

5.2 OBJECTIVES:-  

After studying this unit, learners will be able to  



Advanced Complex Analysis  MAT601 
 

Department of Mathematics      

Uttarakhand Open University Page 76 
 

 To understand the fundamental concepts and transformation of 

mapping. 

 To identify and apply conformal transformation. 

 To prove theoretical results. 

These objectives make conformal mapping a versatile and powerful tool 

across various disciplines, allowing for the transformation and analysis of 

complex systems and shapes while preserving essential geometric 

properties. 

5.3 CONFORMAL MAPPING:-  

A transformation or mapping defined by the equations 𝑢 = 𝑢(𝑥, 𝑦) and 

𝑣 = 𝑣(𝑥, 𝑦) establishes a correspondence between points in the 𝑥𝑦 −plane 

and the 𝑢𝑣 −plane. If each point in the 𝑥𝑦 −plane uniquely maps to a 

point in the 𝑢𝑣 −plane and vice versa, this transformation is termed a one-

to-one (bijective) transformation. The points corresponding in the two 

planes are considered images of each other. Through such a 

transformation, regions or curves in the 𝑥𝑦 − plane are mapped onto 

corresponding regions or curves in the 𝑢𝑣 −plane, effectively representing 

one plane's features in terms of another. 

Jacobian transformation:  

Let's consider a transformation from coordinates (𝑥, 𝑦) to (𝑢, 𝑣) defined 

by the functions:  

𝑢 = 𝑢(𝑥, 𝑦)𝑎𝑛𝑑𝑣 = 𝑣(𝑥, 𝑦). 

The Jacobian matrix 𝐽 for this transformation is given by derivatives of the 

functions: 

𝐽 =
𝜕(𝑥, 𝑦)

𝜕(𝑥, 𝑦)
= ||

𝜕𝑢

𝜕𝑥
   

𝜕𝑢

𝜕𝑦
𝜕𝑣

𝜕𝑥
   

𝜕𝑣

𝜕𝑦

|| 

The determinant of the Jacobian matrix, denoted as 𝑑𝑒𝑡(𝐽) or ∣ 𝐽 ∣, is: 

𝑑𝑒𝑡(𝐽) = ||

𝜕𝑢

𝜕𝑥
   

𝜕𝑢

𝜕𝑦
𝜕𝑣

𝜕𝑥
   

𝜕𝑣

𝜕𝑦

|| =
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
−

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
 

By Cauchy –Riemann Equations: 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
,   

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
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𝑑𝑒𝑡(𝐽) =
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑥
− (−

𝜕𝑣

𝜕𝑥
)

𝜕𝑣

𝜕𝑥
= (

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑥
)

2

 

|
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
|

2

= |
𝜕𝑤

𝜕𝑥
|

2

= |
𝑑𝑤

𝑑𝑥
|

2

= |𝑓′(𝑧)|2   𝑓𝑜𝑟  
𝑑𝑤

𝑑𝑥
=

𝜕𝑤

𝜕𝑥
 

Thus 
𝜕(𝑥,𝑦)

𝜕(𝑥,𝑦)
= |𝑓′(𝑧)|2 , if f(z) is analytic. 

5.4 TRANSFORMATION OF CONFORMAL:-  

In complex analysis, a transformation 𝑢 = 𝑢(𝑥, 𝑦), 𝑣 = 𝑣(𝑥, 𝑦) that maps 

two curves 𝐶1and 𝐶2 , intersecting at a point 𝑃(𝑧0) in the z-plane, onto 

curves 𝐶1′and 𝐶2′, intersecting at 𝑃′(𝑧0) in the w-plane, is classified based 

on how it preserves angles. If the angle between 𝐶1and 𝐶2 at 𝑧0 is the same 

as the angle between 𝐶1′and 𝐶2′at𝑤0, the transformation is called isogonal. 

An isogonal transformation maintains the magnitude of the angles but not 

necessarily their orientation. If the transformation also preserves the sense 

of rotation (i.e., the orientation), it is called conformal. This means that 

conformal transformations maintain both the magnitude and the clockwise 

or counterclockwise nature of the angles. 

For example, the transformation 𝑤 =  𝑧̅, where 𝑧̅ is the complex conjugate 

of 𝑧 , is isogonal because it preserves the angles but reverses the 

orientation (flipping clockwise to counterclockwise), distinguishing it 

from conformal transformations which preserve both the angle magnitude 

and orientation. 

 

Fig.1 

 

Fig.2 
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5.5 SOME GENERAL TRANSFORMATIONS:-  

Transformations involving complex numbers can perform various 

geometric operations on figures in the complex plane. Here are 

explanations of some common types of transformations: 

1. Translation: The transformation of the form 𝑤 = 𝑧 + 𝑎, where  𝑎 

is a complex constant, is known as a translation. This 

transformation shifts all points in the 𝑧 −plane uniformly in the 

direction and magnitude specified by a.  

EXAMPLE: Let a rectangular domain R be bounded by 𝑥 =

0, 𝑦 = 0, 𝑥 = 2, 𝑦 = 1 . Determine the region R’of w-plane into 

which R is mapped under the transformation 𝑤 = 𝑧 + (1 − 2𝑖). 

SOLUTION: Let the given transformation 

𝑤 = 𝑧 + (1 − 2𝑖) 

𝑢 + 𝑖𝑣 = 𝑥 + 𝑖𝑦 + (1 − 2𝑖) 

             ⇒          𝑢 = 𝑥 + 1, 𝑣 = 𝑦 − 2  

           By the map 𝑢 = 𝑥 + 1, the line 𝑥 = 0, 𝑥 = 2 are mapped respective    

           on the lines  𝑢 = 1, 𝑢 = 3. 

           Again the map 𝑣 = 𝑦 − 2, the lines 𝑦 = 0, 𝑦 = 1 are mapped on    

           𝑣 = −2, 𝑣 = −1 respectively. 

           Since the required image 𝑅′ bounded by 𝑢 = 1, 𝑢 = 3, 𝑣 =
−2,   𝑣 = −1 in w-plane as shown in figure. 

 

 
Fig.3 

2. Rotation: The transformation  𝑤 = 𝑒𝑖𝜃𝑧 , where  𝜃  is a real 

constant, is known as a rotation. Here, iθ represents a complex 

number on the unit circle (with modulus 1) corresponding to an 

angle  𝜃  in radians. This transformation rotates figures in 

the 𝑧 −plane by an angle 𝜃 around the origin. If 𝜃 > 0, the rotation 

is anti-clockwise; if 𝜃 < 0, the rotation is clockwise.  

EXAMPLE: Consider the transformation 𝑤 = 𝑧𝑒𝑖𝜋/4  and 

determine the region 𝑅′  in 𝑤 −plane corresponding to triangular 
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region R bounded by the lines 𝑥 = 0, 𝑦 = 0 and 𝑥 + 𝑦 = 1  in z-

plane. 

SOLUTION: Let  𝑤 = 𝑧𝑒𝑖𝜋/4 gives 𝑢 + 𝑖𝑣 = (𝑥 + 𝑖𝑦)
(1+𝑖)

√2
 

⇒       𝑢 =
1

√2
(𝑥 − 𝑦), 𝑣 =

1

√2
(𝑥 + 𝑦)      … (1)   

Substituting 𝑥 = 0 in above equation 

𝑢 = −
1

√2
𝑦, 𝑣 =

1

√2
𝑦 

𝑣 = −𝑢 

Again substituting 𝑦 = 0 in above equation 

𝑢 =
1

√2
𝑥, 𝑣 =

1

√2
𝑥 

𝑣 = 𝑢 

Substituting 𝑥 + 𝑦 = 1 in (1), we obtain 

𝑣 =
1

√2
 

 

 
Fig.4 

 

3. Stretching (Magnification): The transformation 𝑤 = 𝑎𝑧, where 𝑎 

is a real constant, is called stretching (or scaling). This 

transformation stretches or contracts figures in the z-plane 

depending on the value of 𝑎. If 𝑎 > 1, figures are stretched (scaled 

up) away from the origin, and if 0 < 𝑎 < 1, figures are contracted 

(scaled down) towards the origin. This transformation alters the 

size but not the shape of the figures. 

EXAMPLE: Consider the transformation 𝑤 = 2𝑧 and determine 

the region 𝑅′  in 𝑤 −plane corresponding to triangular region R 

bounded by the lines 𝑥 = 0, 𝑦 = 0  and 𝑥 + 𝑦 = 1  in z-plane is 

mapped under the map. 

SOLUTION: Let 𝑤 = 2𝑧 gives 𝑢 + 𝑖𝑣 = 2𝑥 + 𝑖2𝑦 

⇒       𝑢 = 2𝑥, 𝑣 = 2𝑦 

⇒       𝑥 = 0, 𝑢 = 2𝑥 ⇒ 𝑢 = 0 

⇒       𝑦 = 0, 𝑣 = 2𝑦 ⇒ 𝑣 = 0 
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⇒       𝑥 + 𝑦 = 1, 𝑢 = 2𝑥, 𝑣 = 2𝑦 ⇒ 𝑢 + 𝑣 = 2(𝑥 + 𝑦) = 2.1 =

2 

⇒       𝑢 + 𝑣 = 2 

            Hence the required image 𝑅′ bounded by 𝑢 = 0, 𝑣 = 0, 𝑢 +  𝑣 =
2,   𝑣 = −1 as shown in figure. 

 
Fig.5 

4.  Inversion: The mapping 𝑤 =
1

𝑧
is known as inversion. This 

transformation maps each point zzz in the complex plane to a new 

point www such that the product of their magnitudes is 1 

(i.e., |𝑧||𝑤| = 1 ) and the argument (angle) is preserved but 

reversed in sign. The origin, however, is mapped to infinity, and 

vice versa. Inversion changes the scale of figures based on their 

distance from the origin, inverting them relative to the unit circle. 

For example, points inside the unit circle are mapped outside and 

vice versa. 

           EXAMPLE: Consider the map 𝑤 =
1

𝑧
 and determine the region 𝑅′           

           in w-plane of infinite strip R-bounded by 
1

4
< 𝑦 <

1

2
. 

          SOLUTION: Let 𝑤 =
1

𝑧
 gives 𝑢 + 𝑖𝑣 =

𝑥−𝑖𝑦

𝑥2+𝑦2
 

           ⇒       𝑢 =
𝑥

𝑥2+𝑦2
, 𝑣 = −

𝑦

𝑥2+𝑦2
     ⇒  

𝑢

𝑣
= −

𝑥

𝑦
 ⇒ 𝑥 = −

𝑢𝑦

𝑣
 

           ⇒        𝑣 = −
𝑦

𝑥2+𝑦2
  ⇒   𝑣 = −

𝑦
𝑦2𝑢2

𝑣2 +𝑦2
= −

𝑣2

𝑦(𝑢2+𝑣2)
 

          ⇒                𝑦 = −
𝑣

𝑢2+𝑣2
 

 

          ⇒     𝑦 <
1

2
   ⇒    −

𝑣

𝑢2+𝑣2
<

1

2
  ⇒ −𝑣 <  𝑢2 + 𝑣2  ⇒  𝑢2 +

(𝑣 + 1)2 > 1   

          ⇒     𝑦 <
1

4
   ⇒    −

𝑣

𝑢2+𝑣2
>

1

4
  ⇒ −4𝑣 <  𝑢2 + 𝑣2  ⇒  𝑢2 +

(𝑣 + 2)2 > 22   

          So  

                 
1

2
< 𝑦 <

1

4
   ⇒   𝑢2 + (𝑣 + 2)2 > 22 and  𝑢2 + (𝑣 + 1)2 > 1   

𝑢2 + (𝑣 + 2)2 = 22 and  𝑢2 + (𝑣 + 1)2 = 1 
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Fig.6 

Theorem1: To prove that at each point z of a domain where 𝑓(𝑧)  is 

analytic and 𝑓′(𝑧) ≠ 0,the mapping 𝑤 = 𝑓(𝑧) is conformal. 

Proof: Let  𝑤 = 𝑓(𝑧)  be an analytic function in a domain 𝐷  on the 

 𝑧 −plane, and 𝑧0 be a point in the interior of 𝐷. Consider two curves 𝐶1 

and 𝐶2 in the 𝑧 −plane that intersect at 𝑧0) . These curves are mapped to 

the w- plane under the function 𝑓 , resulting in the curves 𝐶1
′  and 𝐶2

′   

intersecting at 𝑤0 = 𝑓(𝑧0). Let 𝑧1  and 𝑧2   be points on 𝐶1  and 𝐶2 , 

respectively, close to 𝑧0 . These points are mapped to 𝑤1 = 𝑓(𝑧1)  and 

𝑤2 = 𝑓(𝑧2)on 𝐶1
′  and 𝐶2

′ , respectively. 

distance between 𝑧1 and 𝑧0=  distance between 𝑧2 and 𝑧0 = 𝑟. So we can 

write  

𝑧1 − 𝑧0 = 𝑟𝑒𝑖𝜃1, 𝑧2 − 𝑧0 = 𝑟𝑒𝑖𝜃2  

The tangent at 𝑧0 to the curves 𝐶1 and 𝐶2 make angles 𝛼1, 𝛼2 with real axis 

to that 𝜃1 → 𝛼1, 𝜃2 → 𝛼1 𝑎𝑠 𝑟 → 0. 

Also the tangent at 𝑤0  to the curves 𝐶1′ and 𝐶2′ make angles 𝛽1, 𝛽2  with 

real axis and let  

𝑤1 − 𝑤0 = 𝜌1𝑒𝑖𝜙1 , 𝑧2 − 𝑧0 = 𝜌2𝑒𝑖𝜙2 

Where  𝜙1 → 𝛽1 𝑎𝑠𝜌1 → 0 , 𝜙2 → 𝛽2 𝑎𝑠 𝜌2 → 0 

𝑓′(𝑧0) = lim
𝑧→𝑧0

𝑓(𝑧) − 𝑓(𝑧0)

𝑧 − 𝑧0
= lim

𝑧1→𝑧0

𝑤1 − 𝑤0

𝑧1 − 𝑧0
= lim

𝑧1→𝑧0

𝜌1𝑒𝑖𝜙1

𝑟𝑒𝑖𝜃1
 

𝑓′(𝑧0) = lim
𝑧1→𝑧0

𝜌1

𝑟
𝑒𝑖(𝜙1−𝜃1) 
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Fig.7 

So our assumption 𝑓′(𝑧0) ≠ 0. we write 𝑓′(𝑧0) = 𝑅𝑒𝑖𝜆 

𝑅𝑒𝑖𝜆 = lim
𝑧1→𝑧0

𝜌1

𝑟
𝑒𝑖(𝜙1−𝜃1) 

Now equating modulus and argument 

𝑅 = lim
𝑧1→𝑧0

𝜌1

𝑟
, 𝜆 = lim(𝜙1 − 𝜃1) = 𝛽1 − 𝛼1 

𝛽1 =  𝜆 + 𝛼1 

Similarly 

𝛽2 =  𝜆 + 𝛼2 

So  

𝛽1 − 𝛽2 = 𝛼1 − 𝛼2 

This proof demonstrates that the angle between the images of the curves 

𝐶1′ and 𝐶2′  at the point 𝑤0 in the www-plane is both equal in magnitude 

and identical in sign to the angle between the original curves 𝐶1 and 𝐶2 at 

the point 𝑧0  in the 𝑧 − plane. Consequently, this shows that the 

transformation 𝑤 = 𝑓(𝑧) preserves both the size and orientation of angles, 

thus confirming that the transformation is conformal. 

Theorem2: To the study of conformal property when 𝑓′(𝑧) = 0 if 𝑓(𝑧) is 

a regular function of 𝑧. 

Solution: Let us consider the transformation 𝑤 = 𝑓(𝑧)  is conformal at 

𝑧 = 𝑧0  if 𝑓(𝑧)  is analytic at 𝑧 = 𝑧0  and 𝑓′(𝑧) ≠ 0 . Let us examine the 

case when 𝑓′(𝑧) = 0. Suppose that 𝑓′(𝑧) has a zero of order 𝑛 at 𝑧0  so 

that  

𝑓′(𝑧) = (𝑧 − 𝑧0)𝑛𝜙(𝑧) 

where 𝜙(𝑧) is analytic and 𝜙(𝑧0) ) ≠ 0. 

⇒       𝑓′(𝑧0) = 𝑓′′(𝑧0) = ⋯ 𝑓(𝑛)(𝑧0) = 0, 𝑓(𝑛+1)(𝑧0) ≠ 0      … (1) 

Expending by Taylor theorem 

                                   𝑓(𝑧) =  ∑ 𝑎𝑚(𝑧 − 𝑧0)𝑚∞
𝑚=0                      … (2) 

where  

                                                     𝑎𝑚 =
𝑓(𝑚)(𝑧0)

𝑚!
                          … (3) 
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Now we apply (1) to (3)  

𝑎𝑚 = 0   𝑓𝑜𝑟 𝑚 = 1,2,3 … 𝑛 

By (2) 

𝑓(𝑧) = 𝑎0(𝑧 − 𝑧0)0 + ∑ 𝑎𝑚

∞

𝑚=𝑛+1

(𝑧 − 𝑧0)𝑚 

Since                                     𝑎0 =
𝑓(0)(𝑧0)

𝑚!
= 𝑓(𝑧0) 

∴                    𝑓(𝑧) −  𝑓(𝑧0) = 𝑎𝑛+1(𝑧 − 𝑧0)𝑛+1 + ⋯ 

Where 𝑎𝑛+1 ≠ 0 

⇒              𝑤1 − 𝑤0 = 𝑎𝑛+1(𝑧 − 𝑧0)𝑛+1 

Now we taking  

𝑤1 − 𝑤0 = 𝜌1𝑒𝑖𝜙1 , 𝑧1 − 𝑧0 = 𝑟𝑒𝑖𝜃1, 𝑎𝑛+1 = 𝛼𝑒𝑖𝜆 

We obtain  

𝜌1𝑒𝑖𝜙1 = 𝛼𝑟1
𝑛+1𝑒𝑖[(𝑛+1)𝜃1+𝜆] 

⇒   𝑙𝑖𝑚𝜙1 = 𝑙𝑖𝑚[(𝑛 + 1)𝜃1 + 𝜆] = (𝑛 + 1)𝑎1 + 𝜆 

Similarly  

𝑙𝑖𝑚𝜙2 = (𝑛 + 1)𝑎2 + 𝜆 

The curves 𝐶1′ and 𝐶2′  intersect at 𝑤0 with an angle that is (𝑛 + 1) times 

the angle between the curves 𝐶1  and 𝐶2  intersecting at 𝑧0 , then the 

conformal property fails at 𝑧0. 

Theorem3: If the mapping 𝑤 = 𝑓(𝑧) is conformal, then show that 𝑓(𝑧) is 

an analytic function of 𝑧. 

Proof: Given the conformal transformation 𝑤 = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) =

𝑓(𝑧)., where 𝑢 and 𝑣 are the real and imaginary parts of 𝑓(𝑧), the line 

elements 𝑑𝑠 in the 𝑧 −plane and 𝑑𝜎 in the w-plane respectively so that  

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2, 𝑑𝜎2 = 𝑑𝑢2 + 𝑑𝑣2 

𝑑𝑢 =
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑑𝑦 

𝑑𝑣 =
𝜕𝑣

𝜕𝑥
𝑑𝑥 +

𝜕𝑣

𝜕𝑦
𝑑𝑦 

Squaring and adding 

𝑑𝜎2 = 𝑑𝑢2 + 𝑑𝑣2 

= ((
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑥
)

2

) 𝑑𝑥2 + ((
𝜕𝑢

𝜕𝑦
)

2

+ (
𝜕𝑣

𝜕𝑦
)

2

) 𝑑𝑦2

+ 2 [
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
] 𝑑𝑥𝑑𝑦 

So the transformation is conformal and hence the ratio 
𝑑𝜎2

𝑑𝑠2
  is of direction- 

independent and Compare with 
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𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 

(
𝜕𝑢
𝜕𝑥

)
2

+ (
𝜕𝑣
𝜕𝑥

)
2

1
=

(
𝜕𝑢
𝜕𝑥

)
2

+ (
𝜕𝑣
𝜕𝑥

)
2

1
=

𝜕𝑢
𝜕𝑥

𝜕𝑢
𝜕𝑦

+
𝜕𝑣
𝜕𝑥

𝜕𝑣
𝜕𝑦

0
 

⇒                    (
𝜕𝑢

𝜕𝑥
)

2
+ (

𝜕𝑣

𝜕𝑥
)

2
= (

𝜕𝑢

𝜕𝑥
)

2
+ (

𝜕𝑣

𝜕𝑥
)

2
                    . . (1) 

and                             
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
= 0                              …(2) 

From(2), 

𝜕𝑢
𝜕𝑥
𝜕𝑣
𝜕𝑦

= −

𝜕𝑣
𝜕𝑥
𝜕𝑢
𝜕𝑦

= 𝜆 

                                          
𝜕𝑢

𝜕𝑥
= 𝜆

𝜕𝑣

𝜕𝑦
 ,      

𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
 𝜆     … (3) 

Substituting these values in (1), we obtain 

𝜆2 (
𝜕𝑣

𝜕𝑦
)

2

+ 𝜆2 (
𝜕𝑢

𝜕𝑦
)

2

= (
𝜕𝑢

𝜕𝑦
)

2

+ (
𝜕𝑣

𝜕𝑦
)

2

 

(𝜆2 − 1) [(
𝜕𝑢

𝜕𝑦
)

2

− (
𝜕𝑣

𝜕𝑦
)

2

] = 0 

⇒          𝜆2 − 1 = 0   ⇒ 𝜆 = ±1 

Using in(3), we get  

                            
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 ,      

𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
  𝑤ℎ𝑒𝑛 (𝜆 = 1)     . . (4) 

                            
𝜕𝑢

𝜕𝑥
= −

𝜕𝑣

𝜕𝑦
 ,      

𝜕𝑣

𝜕𝑥
=

𝜕𝑢

𝜕𝑦
  𝑤ℎ𝑒𝑛 (𝜆 = −1) 

Hence the equations (4) are Cauchy Riemann equations. 

SOLVED EXAMPLE 

EXAMPLE1: Show that 𝑤 = 𝑖𝑧 + 𝑖 map half plane 𝑥 > 0 onto half 

plane𝑣 > 1. 

SOLUTION: Gives 𝑤 = 𝑖𝑧 + 𝑖  

𝑢 + 𝑖𝑣 = 𝑖(𝑥 + 𝑖𝑦) + 𝑖 

⇒         
𝑢 = −𝑦   

𝑣 = 𝑥 + 1   
}  ⇒   𝑥 = 𝑣 − 1 

Using 𝑥 > 0 

⇒       𝑣 − 1 > 0 ⇒ 𝑣 > 1 
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EXAMPLE2: Consider the map 𝑤 = 𝑧𝑒𝑖𝜋/4√2 and determine the region 

𝑅′ of w-plane into which the rectangular region R bounded by 𝑥 = 0, 𝑦 =

0, 𝑥 = 2, 𝑦 = 3 in z-plane is mapped under this map. 

SOLUTION: Let 𝑤 = 𝑧𝑒𝑖𝜋/4√2 gives 

𝑢 + 𝑖𝑣 = (𝑥 + 𝑖𝑦) (
1 + 𝑖

√2
) √2 

⇒                                     𝑢 = 𝑥 − 𝑦, 𝑣 = 𝑥 + 𝑦                       … (1) 

Substituting 𝑥 = 0 in (1), 𝑢 = −𝑦, 𝑣 = 𝑦                     so that 𝑣 = −𝑢 

Substituting 𝑦 = 0 in (1), 𝑢 = 𝑥, 𝑣 = 𝑥                        so that 𝑣 = 𝑢 

Substituting 𝑦 = 3  in (1), 𝑢 = 𝑥 − 3, 𝑣 = 𝑥 + 3  so that 𝑣 − 3 = 𝑢 +

3   𝑜𝑟   𝑣 = 𝑢 + 6 

Substituting 𝑥 = 2  in (1), 𝑢 = 2 − 𝑦, 𝑣 = 2 + 𝑦    𝑜𝑟   2 − 𝑢 = 𝑣 − 2 

𝑜𝑟   𝑣 = 4 − 𝑢 

The region 𝑅′ is a rectangle in the uv-plane bounded by the lines 𝑣 = 𝑢, 

𝑣 = −𝑢, 𝑣 = 𝑢 + 6 and 𝑣 = 4 − 𝑢, as depicted in the following figures.    

                   

 
Fig.8 

This transformation performs a rotation of 𝑅 through an angle of 450 and 

magnification of length of magnitude√2. 

EXAMPLE3: A rectangle region 𝑅 in 𝑧 −plane is bounded by 𝑥 = 0, 𝑦 =

0, 𝑥 = 2, 𝑦 = 1, determine the region 𝑅′ of the w-plane into which 𝑅  is 

mapped under the transformation:  𝑤 = 𝑧𝑒𝑖𝜋/4√2. 𝑧 + (1 − 2𝑖) 

SOLUTION:𝑤 = 𝑧𝑒𝑖𝜋/4√2. 𝑧 + (1 − 2𝑖) 

𝑢 + 𝑖𝑣 = (1 + 𝑖)(𝑥 + 𝑖𝑦) + (1 − 2𝑖) 

𝑢 = 𝑥 − 𝑦 + 1                  … (1) 

𝑣 = 𝑥 + 𝑦 − 2                 … (2) 

Substituting 𝑦 = 0 in (1) & (2), we get 

⇒         𝑢 = 𝑥 + 1, 𝑣 = 𝑥 − 2 ⇒         𝑢 = (𝑣 + 2) + 1 ⇒ 𝑢 = 𝑣 + 3 

⇒          
𝑢

3
+

𝑣

(−3)
= 1 

Substituting 𝑦 = 2 in (1) & (2), we obtain 
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⇒         𝑢 = 𝑥, 𝑣 = 𝑥 − 1 ⇒         𝑢 = 𝑣 + 1 

⇒          
𝑢

1
+

𝑣

(−1)
= 1 

Substituting 𝑥 = 0 in (1) & (2), we have 

⇒         𝑢 = −𝑦 + 1, 𝑣 = 𝑦 − 2 ⇒         𝑣 = (1 − 𝑢) − 2 

⇒          
𝑢

(−1)
+

𝑣

(−1)
= 1 

Substituting 𝑥 = 2 in (1) & (2), we have 

⇒         𝑢 = 3 − 𝑦, 𝑣 = 𝑦 ⇒         𝑢 = 3 − 𝑣 

⇒          
𝑢

3
+

𝑣

3
= 1 

 

 
Fig.9 

Where 𝑅 is rectangle OABC. 

𝑅′ is rectangle PQRS.  𝑅′ Is image of 𝑅. 

 

SELF CHECK QUESTIONS 

 

1. What is a conformal mapping? 

2. What is preserved under a conformal mapping?  

3. What must be non-zero for a function to be conformal at a point? 

Does a conformal mapping preserve the magnitude of angles or 

their orientation? What type of function must f(z) be for it to be 

conformal?  

4. How does a conformal mapping affect the local distance between 

points?  

5. What happens to the angles between curves under a conformal 

mapping?  

5.6 SUMMARY:-  

Conformal mapping is a mathematical technique in complex analysis 

where a function preserves local angles and the shapes of infinitesimally 

small figures, though it may alter their size and position. For a function 

f(z) to be conformal, it must be holomorphic (complex differentiable) with 
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a non-zero derivative throughout its domain. Common examples include 

linear transformations, Möbius transformations, and exponential functions, 

which map complex domains in ways that preserve angle relationships. 

Conformal mappings are crucial in solving complex boundary value 

problems and have applications in fields like fluid dynamics and 

electromagnetic theory. 

5.7 GLOSSARY:-  

 Conformal Mapping: A function that locally preserves angles and 

the shapes of infinitesimal figures between complex domains, 

although it may alter their size and position. 

 Holomorphic: A function that is complex differentiable at every 

point in its domain. 

 Derivative: In complex analysis, the derivative of a function 𝑓(𝑧) 

at a point 𝑧  is given by  𝑓′(𝑧) . For a mapping to be conformal, 

𝑓 ′ (𝑧) must be non-zero. 

 Angle Preservation: The property of a conformal mapping where 

the angle between two intersecting curves is preserved under the 

transformation. 

 Möbius Transformation: A specific type of conformal mapping 

of the form 𝑓(𝑧) =
𝑐𝑧+𝑑

𝑎𝑧+𝑏
 where 𝑎𝑑 − 𝑏𝑐 ≠ 0 . It maps lines and 

circles in the complex plane to other lines or circles. 

 Unit Disk: The set of all complex numbers z such that ∣ 𝑧 ∣< 1. It 

is often used as a domain for conformal mappings. 

 Upper Half-Plane: The set of all complex numbers 𝑧 such that 

𝐼𝑚(𝑧) > 0. It is commonly mapped to other domains, such as the 

unit disk. 

 Branch Point: A point where a function (such as the logarithm) 

fails to be single-valued and requires a branch cut to define it 

properly. 

 Branch Cut: A curve or line in the complex plane where a 

multivalued function (like the logarithm) is discontinuous. It is 

used to make a function single-valued. 

 Exponential Function: The function 𝑓(𝑧) = 𝑒𝑧  , which is 

conformal everywhere in the complex plane except at infinity. 

 Logarithm Function: The complex function 𝑓(𝑧) = 𝑙𝑜𝑔(𝑧), 

which maps complex numbers to a strip in the complex plane and 

introduces a branch cut for proper definition. 
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 Linear Transformation: A function of the form 𝑓(𝑧) = 𝑎𝑧 + 𝑏 

where 𝑎 and 𝑏 are constants, and 𝑎 ≠ 0. This is a simple type of 

conformal mapping involving translation and scaling. 

 Fractional Linear Transformation: Also known as a Möbius 

transformation, it is of the form 𝑓(𝑧) =
𝑐𝑧+𝑑

𝑎𝑧+𝑏
,  which transforms 

circles and lines in the complex plane. 

 Reflection: A type of conformal mapping that involves reflecting 

points through a line or circle in the complex plane. 

 Singularity: A point where a function ceases to be well-behaved, 

such as where it is not holomorphic or where its derivative is zero. 

Singularities affect conformality at those points. 

 Domain: The set of all points in the complex plane where a 

function is defined. The nature of the mapping often depends on 

the domain being considered. 

5.8 REFERENCES:-  

 Barry Simon (2015),Complex Analysis: A Comprehensive Course 

in Analysis, Part 2B 

 Tristan Needham (2020 Edition), Visual Complex Analysis. 

 Matthew A. P. Lambert (2019), A First Course in Complex 

Analysis with Applications" by  

 James Ward Brown and Ruel V. Churchill (2016), Complex 

Variables and Applications. 

5.9 SUGGESTED READING:-  

 Goyal and Gupta (Twenty first edition 2010), Function of complex 

Variable. 

 file:///C:/Users/user/Desktop/1468564002EText(Ch-9,M-

1%20(1).pdf 

 X. Zhang and J. Li (2017), Recent Advances in Conformal 

Mapping Techniques. 

 Y. Wang and S. Kumar (2019), Conformal Mapping and its 

Applications in Fluid Dynamics. 

5.10TERMINAL QUESTIONS:-  

file:///C:/Users/user/Desktop/1468564002EText(Ch-9,M-1%20(1).pdf
file:///C:/Users/user/Desktop/1468564002EText(Ch-9,M-1%20(1).pdf
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(TQ-1) Prove that if 𝑤 = 𝑥 + 𝑖
𝑏

𝑎
𝑦, 0 < 𝑎 < 𝑏  the inside of the circle 

𝑥2 + 𝑦2 = 𝑎2corresponds to the inside of an ellipse in the w-plane, but 

that the transformation is not conformal. 

(TQ-2) Consider the transformation 𝑤 = 𝑧 + (1 − 𝑖) and determine the 

region 𝐷′ of w-plane corresponding to the rectangle D in z-plane bounded 

by 𝑥 = 0, 𝑦 = 0, 𝑥 = 1, 𝑦 = 2.  
(TQ-3) What is the region of w-plane into which the rectangular region 

in z-plane bounded by the lines 𝑥 = 0, 𝑦 = 0, 𝑥 = 1, 𝑦 = 2  is mapped 

under the map 𝑤 = 𝑧 + (2 − 𝑖)? 
(TQ-4) Find the image of rectangle 𝑥 = 0, 𝑦 = 0, 𝑥 = 1, 𝑦 = 2  in z-

plane under the map 𝑤 = (1 + 𝑖)𝑧 + (2 − 𝑖) 

(TQ-5) True/False type Questions 

a. A conformal mapping always preserves distances between points 

in the complex plane.  

b. The function f(z)= (z+2)/(z−2) is a conformal mapping. 

c. Conformal mappings are linear transformations of the complex 

plane. 

d. The complex logarithm function f(z)=log(z) is conformal 

everywhere in the complex plane.  

e. Conformal mappings can map the entire complex plane onto itself. 

f. Conformal mappings preserve the orientation of angles between 

intersecting curves. 

g. The function 𝑓(𝑧) = 𝑒𝑖𝑧 is a conformal mapping.  

h. In the case of an isogonal mapping, the magnitude of angles is 

preserved but not necessarily the sense of angles. 

i. The mapping 𝑤 = 𝑧̅ is isogonal but not conformal. 

(TQ-6) Show that the transformation 𝑤 =
1

𝑧
 transforms circles in z-plane 

to circles of w-plane. What type of circles in z-plane will be transformed 

into straight lines of w-plane? 

(TQ-7) Show that the region |𝑧 − 𝑎| ≤ 𝑅 ia mapped conformally on 𝑤 ≤

1 by the transformation𝑤 =
𝑅(𝑧−𝑐)𝑒𝑖𝛼

𝑅2−(𝑧−𝑎)(𝑐−̅�̅�)
, where 𝛼 is real and 𝑧 = 𝑐 is the 

point which is transformed into the origin. 

 

5.11 ANSWERS:- 

SELF CHECK ANSWERS 

1. A conformal mapping is a function that preserves angles locally 

between curves. Mathematically, if 𝑓(𝑧) is a conformal mapping, 

it means that 𝑓  is holomorphic (complex differentiable) and its 

derivative 𝑓′ (𝑧) is non-zero. The property of preserving angles 
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means that infinitesimally small shapes are preserved under the 

transformation, though their sizes and positions might change. 

2. Angles 

3. Derivative 

4.  Mapping 

5. Analytic 

6. Scales 

7. They are preserved 

TERMINAL ANSWERS 

(TQ-2) 𝐷′ is rectangle bounded by 𝑢 = 1, 𝑣 = −1, 𝑢 = 2 and 𝑣 = 1 . It 

leads to translation of 𝐷. 

(TQ-3) Rectangle in w-plane bounded by lines 𝑢 = 2, 𝑣 = −1, 𝑢 = 3 

and 𝑣 = 1. 

(TQ-4) Re Image in w-plane is rectangle bounded by 𝑢 + 𝑣 = 1, 𝑢 −
𝑣 = 3, 𝑢 + 𝑣 = 3 and 𝑢 − 𝑣 = 1. It performs rotation and magnification. 

(TQ-5) 

a.F b.T c.F d.F e.F 

f.T g.T h.T i.T  
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UNIT 6:- Möbius transformations and other 

Mapping  

CONTENTS: 
6.1      Introduction 

6.2      Objectives 

6.3      Möbius transformations (Bilinear Transformation) 

6.4      Critical points 

6.5      Invariant and fixed points 

6.6      Cross Ratio 

6.7      Parabolic 

6.8      Theorems 

6.9      Summary 

6.10    Glossary 

6.11     References 

6.12     Suggested Reading 

6.13     Terminal questions  

6.14     Answers  

 

6.1 INTRODUCTION:-  

Möbius transformations are a fundamental class of conformal mappings in 

complex analysis, characterized by the formula 𝑓(𝑧) =
𝑐𝑧+𝑑

𝑎𝑧+𝑏
 with complex 

coefficients satisfying 𝑎𝑑 − 𝑏𝑐 ≠ 0. These transformations are notable for 

their ability to map circles and lines in the complex plane to other circles 

and lines while preserving angles and the cross ratio, making them 

essential in geometry and mathematical physics. In addition to Möbius 

transformations, complex analysis also encompasses a variety of other 

mappings such as linear transformations, exponential functions, and more 

general holomorphic functions. These mappings are crucial for modeling 

and solving problems in various fields, including fluid dynamics, 

electromagnetism, and conformal geometry, by maintaining essential 

properties like angle preservation and local structure. 

6.2 OBJECTIVES:-  

After studying this unit, learners will be able to  
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 To understand how Möbius transformations and other mappings 

preserve angles and the structure of geometric figures, such as 

lines and circles, which is crucial in conformal geometry and 

various applications. 

 To analyze how these transformations map different regions of the 

complex plane to one another, providing insights into the 

topological and analytic properties of these regions. 

 

6.3 MÖBIUS TRANSFORMATION (BILINEAR 

TRANSFORMATION:-  

A Möbius transformation, also known as a bilinear transformation, is a 

function defined on the extended complex plane (including the point at 

infinity) of the form: 

         𝑓(𝑧) =
𝑐𝑧+𝑑

𝑎𝑧+𝑏
                                                      … (1) 

where 𝑎, 𝑏, 𝑐 , and 𝑑 are complex numbers such that 𝑎𝑑 − 𝑏𝑐 ≠ 0. The 

transformation (1) can be written as  

𝑐𝑤𝑧 + 𝑤𝑑 − 𝑎𝑧 − 𝑏 = 0, 𝑎𝑑 − 𝑏𝑐 ≠ 0 

The transformation  𝑎𝑑 − 𝑏𝑐 ≠ 0  is called the determinant of the 

transformation. The transformation (1) is said to be the normalized if 𝑎𝑑 −
𝑏𝑐 = 1. 

Let 𝑤1 and 𝑤2 be the values of w corresponding to 𝑧1 and 𝑧2 in (1), then 

𝑤2 − 𝑤1 =
𝑎𝑧2 + 𝑏

𝑐𝑧2 + 𝑑
−

𝑎𝑧1 + 𝑏

𝑐𝑧1 + 𝑑
 

=
(𝑎𝑑 − 𝑏𝑐)(𝑧2 − 𝑧1)

(𝑐𝑧1 + 𝑑)(𝑐𝑧2 + 𝑑)
= 0 𝑖𝑓 𝑎𝑑 − 𝑏𝑐 = 0 

 ∴     𝑤2 − 𝑤1 = 0  𝑖𝑓 𝑎𝑑 − 𝑏𝑐 = 0. 

This shows that 𝑤 is constant. 

 

6.4 CRITICAL POINTS:-  

Let 𝑓(𝑧) be a non-constant analytic function defined on a domain 𝐷. A 

point 𝑧0 ∈ 𝐷 is called a critical point of the function 𝑓(𝑧) if the derivative 

of 𝑓 at 𝑧0, denoted by 𝑓′(𝑧0), is equal to zero, i.e., 𝑓′(𝑧0) = 0. 

 

This definition can be illustrated with the example function 𝑤 = 𝑓(𝑧) =
2𝑧3 − 1 .The derivative of 𝑓(𝑧)  is 𝑓′(𝑧) = 6𝑧2 .Setting the derivative 

equal to zero, 6𝑧2 = 0, we find that 𝑧 = 0 is the only critical point in this 

case. Thus, 𝑧 = 0 is a critical point of the transformation 𝑤 = 2𝑧3 − 1. 

 

It is also noted that a constant function f(z)=c for some constant  c has no 

critical points. This is because the derivative of a constant function is zero 



Advanced Complex Analysis  MAT601 
 

Department of Mathematics       

Uttarakhand Open University Page 93 
 

everywhere, and a critical point requires the function to be non-constant at 

some point in the domain. 

6.5 INVARIANT AND FIXED POINTS:-  

Fixed points, or invariant points, of a transformation 𝑤 = 𝑓(𝑧) are points  

𝑧 in the domain of f that satisfy the condition 𝑧 = 𝑓(𝑧). In other words, a 

point 𝑧 is a fixed point if it remains unchanged under the transformation f; 

that is, the output of the transformation is the point itself. These points are 

obtained by solving the equation  𝑧 = 𝑓(𝑧)  and are crucial for 

understanding the behavior and properties of the transformation, including 

identifying equilibrium states and analyzing the stability of the system 

described by the function 𝑓. 

The invariant points of the transformation 𝑤 =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
                      … (1)  is 

given by 𝑤 =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
 or 𝑐𝑧2 − (𝑎 − 𝑑)𝑧 − 𝑏 = 0 or 𝑧 =

(𝑎−𝑑)±√𝑀

2𝑐
    … (2)  

where 𝑀 = (𝑎 − 𝑑)2 + 4𝑏𝑐. According as 𝑀 = 0 or 𝑀 ≠ 0. 

Case1: Suppose 𝑐 = 0 and 𝑑 ≠ 0. Then from (1), we get 

𝑤 =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
=

𝑎

𝑑
𝑧 +

𝑏

𝑑
 

The fixed point is obtained by 

                                               𝑧 =
𝑎

𝑑
𝑧 +

𝑏

𝑑
  or  𝑧 =

𝑏

𝑑−𝑎
                    … (3) 

 

If 𝑎 − 𝑑 ≠ 0, the equation (2)  has one fixed point at infinity and another 

fixed point that is finite, while if 𝑎 − 𝑑 = 0, the transformation has only 

one fixed point, which is at infinity. Thus we have the following results: 

i. If 𝑐 ≠ 0 and 𝑀 ≠ 0, two finite fixed points. 

ii. If 𝑐 ≠ 0 and 𝑀 = 0, one finite fixed point. 

iii. If 𝑐 ≠ 0 and 𝑎 − 𝑑 = 0, only one fixed point i.e., infinity. 

In this case 𝑤 = 𝑧 +
𝑏

𝑑
 

iv. If 𝑐 ≠ 0 and 𝑎 − 𝑑 ≠ 0, only one finite and other is infinity. 

 

6.6 CROSS RATIO:-  

The cross ratio of four distinct points 𝑧1, 𝑧2, 𝑧3, 𝑧4  is a complex number 

defined as: 

(𝑧1, 𝑧2, 𝑧3, 𝑧4) =
(𝑧4 − 𝑧1)(𝑧2 − 𝑧3)

(𝑧2 − 𝑧1)(𝑧4 − 𝑧3)
 

 

Despite the 24 permutations of four points 𝑧1, 𝑧2, 𝑧3, 𝑧4 leading to different 

arrangements of the cross ratio formula, there are actually only six distinct 

cross ratios. This is because the cross ratio is invariant under permutations 

of the four points and under Möbius transformations, which means many 

permutations result in the same value. The six distinct cross ratios are: 
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(𝑧1, 𝑧2, 𝑧3, 𝑧4), (𝑧1, 𝑧2, 𝑧4, 𝑧3), (𝑧1, 𝑧3, 𝑧2, 𝑧4) 
 

(𝑧1, 𝑧3, 𝑧4, 𝑧2), (𝑧1, 𝑧4, 𝑧2, 𝑧3), (𝑧1, 𝑧4, 𝑧3, 𝑧2) 
 

6.7 PARABOLIC:-  

A linear fractional (bilinear) transformation with exactly one fixed point 

𝑧0  is known as a parabolic transformation and can be expressed as 
1

𝑤−𝑧0 
=

1

𝑧−𝑧0 
+ ℎ    if 𝑧0 ≠ ∞ 

𝑤 = 𝑧 + ℎ if 𝑧0 = ∞ 

A linear fractional (bilinear) transformation with two fixed points 𝑧1 and 

𝑧2  can be expressed as 
𝑤−𝑧1

𝑤−𝑧2
=

𝑘(𝑧−𝑧1)

(𝑧−𝑧2)
  if 𝑧1, 𝑧2 ≠ ∞ 

If 𝑧2 = ∞, then it becomes 𝑤 − 𝑧1 = 𝑘(𝑧 − 𝑧1). 
 

A transformation with two fixed points is known as hyperbolic if 𝑘 > 0, 
and elliptic if 𝑘 = 𝑒𝑖𝛼 and loxodromic if 𝑘 = 𝛼𝑒𝑖𝛼, where 𝛼 ≠ 1, 𝛼 ≠ 0; 
𝛼 and 𝛼 both are real numbers and 𝛼 > 0. 

 

6.8 THEOREMS:-  

Theorem1: (Geometrical Inversion) Every bilinear transformation is the 

resultant of bilinear transformations with simple geometric imports. 

Proof: Let the bilinear transformation 

                                                 𝑤 =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
                               … (1) 

Where  
𝑎𝑑 − 𝑏𝑐 ≠ 0, 𝑐 ≠ 0 

In equation (1), we obtain 

𝑤 =
𝑎

𝑐
.
𝑧 + (

𝑏
𝑎)

𝑧 + (
𝑑
𝑐)

=
𝑎

𝑐
[1 +

𝑏
𝑎 −

𝑑
𝑐

𝑧 +
𝑑
𝑐

] 

𝑤 =
𝑎

𝑐
+

𝑏𝑐 − 𝑎𝑑

𝑐2
.

1

𝑧 +
𝑑
𝑐

 

Taking    

𝑧1 = 𝑧 +
𝑑

𝑐
, 𝑧2 =

1

𝑧1
, 𝑧3 =

𝑏𝑐 − 𝑎𝑑

𝑐2
. 𝑧2 

we get  𝑤 =
𝑎

𝑐
+ 𝑧3 which is similar to 

𝑧1 = 𝑧 +
𝑑

𝑐
 

Now  𝑧1, 𝑧2, 𝑧3 are of the form 
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𝑤 = 𝑧 + 𝛼, 𝑤 =
1

𝑧
, 𝑤 = 𝛽𝑧 

Where  

1. 𝑤 = 𝑧 + 𝛼 represents translation.  

2. 𝑤 =
1

𝑧
 represents inversion. 

3. 𝑤 = 𝛽𝑧  represents dilation. 

 

This  proves that every bilinear transformation is the resultant of bilinear 

transformations. 

Theorem2: To show that the resultant (or product) of two bilinear 

transformations is a bilinear transformation. 

Solution: Let the bilinear transformation 

                                                 𝑤 =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
                               … (1) 

and           

                                    𝜁 =
𝑎1𝑤+𝑏1

𝑐1𝑤+𝑑1
                       … (2)   

where  
𝑎1𝑑1 − 𝑏1𝑐1 ≠ 0  

 Substituting the value of 𝑤 in (2), we get 

𝜁 =
𝑎1 (

𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑) + 𝑏1

𝑐1 (
𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑) + 𝑑1

 

𝜁 =
𝑧(𝑎𝑎1 + 𝑏1𝑐) + (𝑏1𝑑 + 𝑎1𝑏)

𝑧(𝑐1𝑎 + 𝑑1𝑐) + (𝑑1𝑑 + 𝑐1𝑏)
 

Now we can write  

𝐴 = 𝑎𝑎1 + 𝑏1𝑐, 𝐵 = 𝑏1𝑑 + 𝑎1𝑏 

𝐶 = 𝑐1𝑎 + 𝑑1𝑐, 𝐷 = 𝑑1𝑑 + 𝑐1𝑏 
 

𝜁 =
𝐴𝑧 + 𝐵

𝐶𝑧 + 𝐷
 

Here  

𝐴𝐷 − 𝐵𝐶 = (𝑎𝑎1 + 𝑏1𝑐)(𝑑1𝑑 + 𝑐1𝑏) − (𝑐1𝑎 + 𝑑1𝑐)(𝑐1𝑎 + 𝑑1𝑐) 

= (𝑎1𝑑1 − 𝑏1𝑐1)(𝑎𝑑 − 𝑏𝑐) ≠ 0 
Thus  

𝜁 =
𝐴𝑧 + 𝐵

𝐶𝑧 + 𝐷
     𝑠. 𝑡. 𝐴𝐷 − 𝐵𝐶 ≠ 0 

This is bilinear transformation and is called resultant (or product) of 

transformation.  

Theorem3: (Preservance of cross ratio) To prove that the cross ratio 

remains invariant under a bilinear transformation. 

Solution: Suppose 𝑤1, 𝑤2, 𝑤3, 𝑤4  be the images of 𝑧1, 𝑧2, 𝑧3, 𝑧4 

respectively  

                                                 𝑤 =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
                               … (1) 
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Where  
𝑎𝑑 − 𝑏𝑐 ≠ 0, 𝑐 ≠ 0 

If we prove that 
(𝑤4 − 𝑤1)(𝑤2 − 𝑤3)

(𝑤2 − 𝑤1)(𝑤4 − 𝑤3)
=

(𝑧4 − 𝑧1)(𝑧2 − 𝑧3)

(𝑧2 − 𝑧1)(𝑧4 − 𝑧3)
 

 

 

From (1), we get 

𝑤𝑟 − 𝑤𝑠 =
𝑎𝑧𝑟 + 𝑏

𝑐𝑧𝑟 + 𝑑
−

𝑎𝑧𝑠 + 𝑏𝑐

𝑐𝑧𝑠 + 𝑑
 

𝑤𝑟 − 𝑤𝑠 =
(𝑎𝑑 − 𝑏𝑐)(𝑧𝑟 − 𝑧𝑠)

(𝑐𝑧𝑟 + 𝑑)(𝑐𝑧𝑠 + 𝑑)
 

 

 ⇒   

(𝑤4 − 𝑤1)(𝑤2 − 𝑤3) =
(𝑎𝑑 − 𝑏𝑐)(𝑧4 − 𝑧1)

(𝑐𝑧4 + 𝑑)(𝑐𝑧1 + 𝑑)
.
(𝑎𝑑 − 𝑏𝑐)(𝑧2 − 𝑧3)

(𝑐𝑧2 + 𝑑)(𝑐𝑧3 + 𝑑)
 

 

(𝑤4 − 𝑤1)(𝑤2 − 𝑤3) =
(𝑎𝑑 − 𝑏𝑐)2(𝑧4 − 𝑧1)(𝑧2 − 𝑧3)

(𝑐𝑧4 + 𝑑)(𝑐𝑧1 + 𝑑)(𝑐𝑧2 + 𝑑)(𝑐𝑧3 + 𝑑)
 

Similarly, 

(𝑤2 − 𝑤1)(𝑤4 − 𝑤3) =
(𝑎𝑑 − 𝑏𝑐)2(𝑧2 − 𝑧1)(𝑧4 − 𝑧3)

(𝑐𝑧1 + 𝑑)(𝑐𝑧2 + 𝑑)(𝑐𝑧3 + 𝑑)(𝑐𝑧4 + 𝑑)
 

Dividing last two equations, we obtain 
(𝑤4 − 𝑤1)(𝑤2 − 𝑤3)

(𝑤2 − 𝑤1)(𝑤4 − 𝑤3)
=

(𝑧4 − 𝑧1)(𝑧2 − 𝑧3)

(𝑧2 − 𝑧1)(𝑧4 − 𝑧3)
 

which is proves that. 

Theorem4: (Fixed points of a bilinear transformation) To prove that in 

general there are two values of z (invariant points) for which w=z, but 

there is only one if 

(𝑎 − 𝑑)2 + 4𝑏𝑐 = 0 

Show that if there are distinct invariant points p and q, the transformation 

may be put in the form (normal form) 
(𝑤 − 𝑝)

(𝑤 − 𝑞)
= 𝑘

(𝑧 − 𝑝)

(𝑧 − 𝑞)
 

and that, if there is only one invariant point p, the transformation may be 

put in the form(normal form) 
1

𝑤 − 𝑝
=

1

𝑧 − 𝑝
+ 𝐾 

Proof: Let the bilinear transformation 

𝑤 =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
                               … (1) 

i. The invariant points are 

𝑤 = 𝑧                 𝑖. 𝑒. ,          𝑧 =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
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This gives 𝑐𝑧2 − (𝑎 − 𝑑)𝑧 − 𝑏 = 0                … (2) 

Solving  

𝑧 =
(𝑎 − 𝑑) ± √(𝑎 − 𝑑)2 + 4𝑏𝑐

2𝑐
 

Taking   

𝑝 =
(𝑎 − 𝑑) + √(𝑎 − 𝑑)2 + 4𝑏𝑐

2𝑐
 

𝑞 =
(𝑎 − 𝑑) − √(𝑎 − 𝑑)2 + 4𝑏𝑐

2𝑐
 

If (𝑎 − 𝑑)2 + 4𝑏𝑐 = 0, then  

𝑝 = 𝑞 =
𝑎 − 𝑑

2𝑐
 

Hence there is only one invariant point namely 

𝑝 =
𝑎−𝑑

2𝑐
  if (𝑎 − 𝑑)2 + 4𝑏𝑐 = 0. 

ii. Let p and q are distinct invariant points of the transformation(1) So 

from (2), we get 

𝑐𝑝2 − (𝑎 − 𝑑)𝑝 − 𝑏 = 0   
𝑐𝑞2 − (𝑎 − 𝑑)𝑞 − 𝑏 = 0   

From above equations 

𝑐𝑝2— 𝑎𝑝 = 𝑏 − 𝑝𝑑 

𝑐𝑞2— 𝑎𝑞 = 𝑏 − 𝑞𝑑 

(𝑤 − 𝑝)

(𝑤 − 𝑞)
=

(
𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑) − 𝑝

(
𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑) − 𝑞

 

 

=
(𝑎𝑧 + 𝑏) − 𝑝𝑐𝑧 − 𝑝𝑑

(𝑐𝑧 + 𝑑) − 𝑐𝑞𝑧 − 𝑞𝑑
=

(𝑎 − 𝑝𝑐)𝑧 + 𝑏 − 𝑝𝑑

(𝑐 − 𝑐𝑞) + 𝑏 − 𝑞𝑑
 

 

=
(𝑎 − 𝑝𝑐)𝑧 + 𝑐𝑝2— 𝑎𝑝

(𝑐 − 𝑐𝑞) + 𝑐𝑞2— 𝑎𝑞
 

=
(𝑎 − 𝑝𝑐)(𝑧 − 𝑝)

(𝑐 − 𝑐𝑞)(𝑧 − 𝑞)
 

Taking 𝑘 =
(𝑎−𝑝𝑐)

(𝑐−𝑐𝑞)
, we obtain 

(𝑤 − 𝑝)

(𝑤 − 𝑞)
= 𝑘

(𝑧 − 𝑝)

(𝑧 − 𝑞)
 

iii. Suppose there be only one variant p so that 

𝑝 =
𝑎 − 𝑑

2𝑐
, 𝑐𝑝2— 𝑎𝑝 = 𝑏 − 𝑝𝑑 

Now,   
1

𝑤 − 𝑝
=

1

(
𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

) − 𝑝
=

𝑐𝑧 + 𝑑

(𝑎 − 𝑝𝑐)𝑧 + 𝑏 − 𝑝𝑑
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Solving this equation 
1

𝑤 − 𝑝
=

𝑐

𝑎 − 𝑐𝑝
+

1

𝑧 − 𝑝
 

Taking 𝐾 =
𝑐

𝑎−𝑐𝑝
,  we obtain  

1

𝑤 − 𝑝
=

1

𝑧 − 𝑝
+ 𝐾 

Theorem5: If 𝛼 and 𝛽 are two given points and 𝑘 is a constant, show that 

the equation 

|
𝑧 − 𝛼

𝑧 − 𝛽
| = 𝑘 

represent the circle. 

Proof: The given equation is  

|
𝑧 − 𝛼

𝑧 − 𝛽
| = 𝑘                       … (1) 

From (1), we obtain 
|𝑧 − 𝛼|2

|𝑧 − 𝛽|2
= 𝑘2      𝑜𝑟        

(𝑧 − 𝛼)(𝑧̅ − �̅�)

(𝑧 − 𝛽)(𝑧̅ − �̅�)
= 𝑘2 

(𝑧𝑧̅ − 𝛼𝑧̅ − 𝛼𝑧̅ + 𝛼�̅�) = 𝑘2(𝑧𝑧̅ − 𝛽𝑧̅ − 𝛽𝑧̅ + 𝛽�̅�) 

(1 − 𝑘2)𝑧𝑧̅ − (𝛼 − 𝛽𝑘2)𝑧̅ − (�̅� − �̅�𝑘2)𝑧 = 𝛽�̅�𝑘2 − 𝛼�̅� 

𝑧𝑧̅ − (
𝛼 − 𝛽𝑘2

1 − 𝑘2
) 𝑧̅ − (

𝛼 − 𝛽𝑘2

1 − 𝑘2
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑧 +

|𝛼|2 − 𝑘2|𝛽|2

1 − 𝑘2
= 0  … (2) 

It is the form 

𝑧𝑧̅ + 𝑏𝑧̅ + 𝑧�̅� + 𝑐 = 0, 𝑤ℎ𝑒𝑟𝑒 𝑐 𝑖𝑠 𝑟𝑒𝑎𝑙 
The equation (2) express a circle if 𝑘 ≠ 1. 

Consequently (1) express a circle if 𝑘 ≠ 1.  
 

SOLVED EXAMPLE 

 

EXAMPLE 1: Find the bilinear transformation which maps the points 

𝑧1 = 2, 𝑧2 = 𝑖, 𝑧3 = −2  into the points 𝑤1 = 1, 𝑤2 = 𝑖, 𝑤3 = −1. 

SOLUTION: The transformation is given by 
(𝑤4 − 𝑤1)(𝑤2 − 𝑤3)

(𝑤2 − 𝑤1)(𝑤4 − 𝑤3)
=

(𝑧4 − 𝑧1)(𝑧2 − 𝑧3)

(𝑧2 − 𝑧1)(𝑧4 − 𝑧3)
 

Substituting values in above equation are  
(𝑤 − 1)(𝑖 + 1)

(1 − 𝑖)(−1 − 𝑤)
=

(𝑧 − 2)(𝑖 + 2)

(2 − 𝑖)(−2 − 𝑧)
 

= (
𝑧 − 2

𝑧 + 2
) (

4 − 1 + 4𝑖

4 + 1
) (

1 − 1 − 2𝑖

1 + 1
) 

𝑤 − 1

𝑤 + 1
= (

4 − 3𝑖

5
) (

𝑧 − 2

𝑧 + 2
) 

𝑤 − 1 + 𝑤 + 1

(𝑤 − 1) − (𝑤 + 1)
=

(4 − 3𝑖)(𝑧 − 2) + 5(𝑧 + 2)

(4 − 3𝑖)(𝑧 − 2) − 5(𝑧 + 2)
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𝑤

−1
=

3𝑧(3 − 𝑖) + 2(1 + 3𝑖)

−𝑖𝑧(3 − 𝑖) − 6(3 − 𝑖)
=

−(3𝑧 + 2𝑖)(3 − 𝑖)

(𝑖𝑧 + 6)(3 − 𝑖)
 

𝑤 =
3𝑧 + 2𝑖

𝑖𝑧 − 6
 

EXAMPLE 2: Find the bilinear transformation which transforms the unit 

circle |𝑧| = 1  into real axis in such a way that the points 1, 𝑖, −𝑖  are 

mapped into 0,1,∞ respectively. Into what regions the interior and exterior 

of the circle are mapped. 

SOLUTION: The given values are 

𝑧1 = 1, 𝑧2 = 𝑖, 𝑧3 = −𝑖 
𝑤1 = 0, 𝑤2 = 1, 𝑤3 = −∞ 

Now the required transformation is: 
(𝑤4 − 𝑤1)(𝑤2 − 𝑤3)

(𝑤2 − 𝑤1)(𝑤4 − 𝑤3)
=

(𝑧4 − 𝑧1)(𝑧2 − 𝑧3)

(𝑧2 − 𝑧1)(𝑧4 − 𝑧3)
 

(𝑤 − 0)(1 − ∞)

(𝑤 − ∞)(1 − 0)
=

(𝑧 − 1)(𝑖 + 𝑖)

(𝑧 + 𝑖)(𝑖 − 1)
.  𝑏𝑢𝑡

(1 − ∞)

(𝑤 − ∞)
= lim

𝑛→∞
(

1 − 𝑛

𝑤 − 𝑛
) = 1 

𝑤 =
(𝑧 − 1)2𝑖

(𝑧 + 𝑖)(𝑖 − 1)
=

(𝑧 − 1)2

(𝑧 + 𝑖)(1 + 𝑖)
=

(𝑧 − 1)(1 − 𝑖)2

(𝑧 + 𝑖)(1 − 𝑖2)

=
(𝑧 − 1)(1 − 𝑖)

(𝑧 + 𝑖)
 

𝑤 =
(𝑧 − 1)(1 − 𝑖)

(𝑧 + 𝑖)
                             … (1) 

Now from (1) for 𝑧, we obtain 

𝑤𝑧 + 𝑤𝑖 = 𝑧(1 − 𝑖) − (1 − 𝑖) ⇒ 𝑧 = −
[𝑤 + (−𝑖 − 1)]𝑖

𝑤 − (1 − 𝑖)
 

𝑖𝑧 =
𝑤 − (1 + 𝑖)

𝑤 − (1 − 𝑖)
                                      … (2) 

So |𝑧| = 1  ⇒   |𝑖𝑧| = 1. 
From (2), we get 

|
𝑤 − (1 + 𝑖)

𝑤 − (1 − 𝑖)
| = 1 

|𝑤 − (1 + 𝑖)|2 = |𝑤 − (1 − 𝑖)|2 

 ⇒        (𝑢 − 1)2 + (𝑣 − 1)2 = (𝑢 − 1)2 + (𝑣 + 1)2     … (3) 

 ⇒                              −4𝑣 = 0 ⇒ 𝑣 = 0 ⇒ 𝑅𝑒𝑎𝑙 𝑎𝑥𝑖𝑠 𝑜𝑓 𝑤 − 𝑝𝑙𝑎𝑛𝑒 

∴                              |𝑧| = 1   𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑟𝑒𝑎𝑙 𝑎𝑥𝑖𝑠 𝑜𝑓 𝑤 − 𝑝𝑙𝑎𝑛𝑒 

 Now for interior of |𝑧| = 1  , we obtain |𝑧| < 1. 

From (3), we have 
(𝑢 − 1)2 + (𝑣 − 1)2

(𝑢 − 1)2 + (𝑣 + 1)2
< 1 

(𝑢 − 1)2 + (𝑣 − 1)2 < (𝑢 − 1)2 + (𝑣 + 1)2 

 ⇒                      −4𝑣 < 0 ⇒ 𝑣 > 0 ⇒ 𝑢𝑝𝑝𝑒𝑟 ℎ𝑎𝑙𝑓 𝑝𝑙𝑎𝑛𝑒 𝑜𝑓 𝑤 − 𝑝𝑙𝑎𝑛𝑒. 
Similarly |𝑧| = 1 and |𝑧| < 1 corresponds to lower half of 𝑤 −plane. 



Advanced Complex Analysis  MAT601 
 

Department of Mathematics       

Uttarakhand Open University Page 100 
 

EXAMPLE 3: If 𝑧 = 2𝑤 + 𝑤2,  then show that |𝑤| = 1 corresponds to a 

cardioids of  𝑧 −plane. 

SOLUTION: The given equation  

𝑧 = 2𝑤 + 𝑤2                                         … (1) 

|𝑤| = 1     𝑜𝑟  𝑤 = 𝑒𝑖𝜙                         … (2) 

⇒           𝑧 + 1 = (𝑤 + 1)2 = (1 + 𝑒𝑖𝜙)
2

= [𝑒𝑖𝜙/2(𝑒−𝑖𝜙/2 + 𝑒𝑖𝜙/2)]
2
 

⇒         = 𝑒𝑖𝜙 (2𝑐𝑜𝑠 (
𝜙

2
) )

2

⇒   𝑧 + 1 = (4𝑐𝑜𝑠2 (
𝜙

2
)) 𝑒𝑖𝜙 

Taking 𝑧 + 1 = 𝑟𝑒𝑖𝜃 , 𝑖. 𝑒., 𝑝𝑜𝑙𝑒 𝑎𝑡  𝑧 = −1, we obtain 

𝑟𝑒𝑖𝜃 = 4𝑐𝑜𝑠2 (
𝜙

2
) 𝑒𝑖𝜙 ⇒ 𝑟 = 4𝑐𝑜𝑠2 (

𝜙

2
) , 𝜃 = 𝜙 

𝑟 = 4𝑐𝑜𝑠2 (
𝜙

2
) = 2(1 + 𝑐𝑜𝑠𝜃) 

𝑟 = 2(1 + 𝑐𝑜𝑠𝜃) 

EXAMPLE 4: Find the image of the circle |𝑧 − 2| = 2 under the Mobius 

transformation 𝑤 =
𝑧

𝑧+1
. 

SOLUTION: 𝑤 =
𝑧

𝑧+1
 gives 𝑤𝑧 + 𝑤 = 𝑧 

𝑧(𝑤 − 1) = −𝑤 

𝑧 =
𝑤

1 − 𝑤
                              … (1) 

Now  |𝑧 − 2| = 2 gives (𝑧 − 2)(𝑧̅ − 2) = 22     … (2)        

From (1), we have 

𝑧 − 2 =
𝑤

1 − 𝑤
− 2 =

3𝑤 − 2

1 − 𝑤
 

𝑧̅ − 2 =
�̅�

1 − �̅�
− 2 =

3�̅� − 2

1 − �̅�
 

Substituting these values in (2), we get 
(3𝑤 − 2)(3�̅� − 2)

(1 − 𝑤)(1 − �̅�)
= 4 

9𝑤�̅� + 4 − 6(𝑤 + �̅�) = 4[1 + 𝑤�̅� − (𝑤 + �̅�)] 
5𝑤�̅� − 2(𝑤 + �̅�) = 0 

5(𝑢2 + 𝑣2) − 2(2𝑢) = 0 

𝑢2 + 𝑣2 −
4

5
𝑢 = 0 

So the circle of centre (−𝑔, −𝑓) = (
2

5
, 0) 

Radius = (𝑔2 + 𝑓2 − 𝑐)1/2 =
2

5
 

EXAMPLE 5: Show that the transformation 𝑤 =
5−4𝑧

4𝑧−2
 transform the 

circle |𝑧| = 1 into a circle of radius unity in 𝑤 −plane and find the centre 

of the circle. 

SOLUTION:  the given transformation is  

𝑤 =
5 − 4𝑧

4𝑧 − 2
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4𝑧𝑤 − 2𝑤 = 5 − 4𝑧   𝑜𝑟    𝑧 =
2𝑤 + 5

4𝑤 + 4
 

|𝑧| = 𝑧𝑧̅ = 1  Corresponds to [
2𝑤+5

4(𝑤+1)
] [

2�̅�+5

4(�̅�+1)
] = 1 

4𝑤�̅� + 25 + 10(𝑤 + �̅�) = 16(𝑤�̅� + 1 + 𝑤 + �̅�)      … (1) 

But 𝑤 = 𝑢 + 𝑖𝑣, �̅� = 𝑢 − 𝑖𝑣, 𝑤�̅� = 𝑢2 + 𝑣2 , 𝑤 + �̅� = 2𝑢     … (2) 

Hence from (1), we get  

𝑢2 + 𝑣2 −
3

4
= 0 

Now comparing with 𝑢2 + 𝑣2 + 2𝑔𝑢 + 2𝑓𝑣 + 𝑐 = 0, we obtain centre =

(−𝑔, −𝑓) = (−
1

2
, 0) and radius [𝑔2 + 𝑓2 − 𝑐]1/2i.e., 

= (
1

4
+ 0 +

3

4
)

1/2

= 1 

 

EXAMPLE 6: Find the condition that the transformation 𝑤 =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
 

transforms a straight line 𝑧 − 𝑝𝑙𝑎𝑛𝑒 into the unit circle 𝑤 − 𝑝𝑙𝑎𝑛𝑒. 

SOLUTION: The transforms a straight line of 𝑧 − 𝑝𝑙𝑎𝑛𝑒 is  

|
𝑧 − 𝑝

𝑧 − 𝑞
| = 1                           … (1) 

The unit circle in w-plane is |𝑤| = 1                    … (2) 

So  

𝑤 =
𝑎 (𝑧 +

𝑏
𝑎)

𝑐 (𝑧 +
𝑑
𝑐)

 

Taking 𝑝 = −
𝑏

𝑎
, 𝑞 −

𝑑

𝑐
, we have 

𝑤 =
𝑎(𝑧 − 𝑝)

𝑐(𝑧 − 𝑞)
 

Hence    |𝑤| = |
𝑎

𝑐
| |

𝑧−𝑝

𝑧−𝑐
| = |

𝑎

𝑐
| = 1, if |𝑎| = |𝑐| 

 

SELF CHECK QUESTIONS 

 

1. Define the cross ratio for four complex numbers. 

2. Why is the cross ratio invariant under Möbius transformations? 

3. How many distinct cross ratios can be formed from four points?  

4. What is a fixed point in the context of a transformation? 

5. Differentiate between elliptic, hyperbolic, and loxodromic 

transformations in terms of their fixed points and behavior. 

6. In what contexts or fields are Möbius transformations particularly 

useful? 

7. Give an example of how Möbius transformations can be applied in 

geometry or physics. 
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6.9 SUMMARY:-   

A Möbius transformation, also known as a linear fractional 

transformation, is a complex function of the form 𝑤 =  (𝑐𝑧 + 𝑑)/(𝑎𝑧 +

𝑏), where 𝑎, 𝑏, 𝑐, and 𝑑 are complex numbers with 𝑎𝑑 − 𝑏𝑐 ≠ 0. These 

transformations map the extended complex plane, including the point at 

infinity, onto itself and are conformal, meaning they preserve angles. 

Möbius transformations can transform circles and lines into other circles 

or lines and are characterized by their fixed points, which can be one, two, 

or sometimes none on the finite plane, depending on the nature of the 

transformation. They are classified into parabolic, elliptic, hyperbolic, and 

loxodromic types based on the configuration of their fixed points and the 

trace of the transformation matrix |
𝑎  𝑏
𝑐  𝑑

|. The cross ratio, a key invariant 

under Möbius transformations, plays a crucial role in understanding the 

relative geometry of four points in the complex plane. These 

transformations have significant applications in complex analysis, 

geometry, and theoretical physics. 

6.10 GLOSSARY:-  

 Möbius transformation: A Möbius transformation, also known as 

a bilinear transformation, is a function defined on the extended 

complex plane (including the point at infinity) of the form: 

𝑓(𝑧) =
𝑐𝑧 + 𝑑

𝑎𝑧 + 𝑏
                                                      … (1) 

where 𝑎, 𝑏, 𝑐, and 𝑑 are complex numbers such that 𝑎𝑑 − 𝑏𝑐 ≠ 0 

 Conformal: A property of transformations that preserve angles 

locally, meaning the shape of infinitesimally small figures is 

preserved, though their size may not be. 

 Fixed Point: A point z that remains unchanged under a 

transformation, i.e., 𝑓(𝑧) = 𝑧 . In Möbius transformations, fixed 

points are solutions to the equation (𝑧) =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
. 

 Extended Complex Plane: Also known as the Riemann sphere, it 

is the complex plane plus the point at infinity. Möbius 

transformations naturally act on this extended plane. 

 Cross Ratio: An invariant under Mobius transformation, defined 

for four distinct points 𝑧1, 𝑧2, 𝑧3, 𝑧4  as (𝑧1, 𝑧2, 𝑧3, 𝑧4) =
(𝑧4−𝑧1)(𝑧2−𝑧3)

(𝑧2−𝑧1)(𝑧4−𝑧3)
. It uniquely determines the relative positions of the 

four points. 
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 Parabolic Transformation: A type of Möbius transformation 

with exactly one fixed point, characterized by the condition 

(𝑎 + 𝑏)2 = 4(𝑎𝑑 − 𝑏𝑐) and typically represented as 𝑇(𝑧) =
𝑧−𝑧0

1−𝑐𝑧
 

.where c is a constant. 

 Elliptic Transformation: A Möbius transformation with two 

fixed points and associated with rotations. It occurs when ∣ 𝑎 + 𝑑 ∣
< 2. 

 Hyperbolic Transformation: A Möbius transformation with two 

fixed points, characterized by real eigenvalues and associated with 

stretching along one direction. It occurs when ∣ 𝑎 + 𝑑 ∣> 2. 

 Loxodromic Transformation: A transformation with two fixed 

points, involving a combination of rotation and dilation. It occurs 

when ∣ 𝑎 + 𝑑 ∣≠ 2 and the transformation is neither purely elliptic 

nor hyperbolic. 

 Invariance: A property where certain aspects of a geometric 

configuration, such as the cross ratio in Möbius transformations, 

remain unchanged under specific transformations. 

 Bilinear Transformation: Another name for Möbius 

transformation, emphasizing its representation as a ratio of two 

linear functions. 

 Riemann Sphere: A model of the extended complex plane where 

every point on the complex plane corresponds to a point on the 

sphere, and the point at infinity is represented by the north pole of 

the sphere. 

 Angle Preservation: A key property of Möbius transformations, 

which maintain the angles between intersecting curves after 

transformation. 

 Transformation Matrix: The matrix |𝑎  𝑏
𝑐  𝑑

| associated with a 

Möbius transformation, encapsulating the coefficients that define 

the transformation. 

 Identity Transformation: The Möbius transformation 𝑇(𝑧) = 𝑧, 

which leaves every point unchanged. It serves as the identity 

element in the group of Möbius transformations. 

 

These terms are fundamental to understanding Möbius transformations 

and their applications in complex analysis and geometry. 

 

6.11 REFERENCES:-  

 Tristan Needham (2020 Edition), Visual Complex Analysis. 
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6.12 SUGGESTED READING:-  

 Goyal and Gupta (Twenty first edition 2010), Function of complex 

Variable. 

 file:///C:/Users/user/Desktop/1468564049EText(Ch-9,M-

2%20(1).pdf 

 file:///C:/Users/user/Desktop/1468564084EText(Ch-9,M-

3%20(1).pdf 

 file:///C:/Users/user/Desktop/1468564124EText(Ch-9,M-

4%20(1).pdf 

 Y. Wang and S. Kumar (2019), Conformal Mapping and its 

Applications in Fluid Dynamics. 

6.13 TERMINAL QUESTIONS:-  

(TQ-1) To show that the set of all bilinear transformations forms a non-

abelian group under the product of transformations. 

(TQ-2) To prove that the cross ratio (𝑧1, 𝑧2, 𝑧3, 𝑧4) is real iff the four 

points 𝑧1, 𝑧2, 𝑧3, 𝑧4 lie on a circle or on a straight line. 

(TQ-3) To prove that the every bilinear transformation with two finite 

fixed points 𝛼, 𝛽 can be put in the form:  
𝑤 − 𝛼

𝑤 − 𝛽
= 𝜆 (

𝑧 − 𝛼

𝑧 − 𝛽
) 

(TQ-4) If  𝛼, 𝛽 are the inverse points of a circle, then prove that the 

equation of a circle can be written as |
𝑧−𝛼

𝑧−𝛽
| = 𝑘, 𝑘 ≠ 1  and 𝑘  is real 

constant. 

(TQ-5) To prove that the every bilinear transformation maps circles or 

straight lines into circles or straight lines. 

Or 

Find the condition that the transformation 𝑤 =
𝑐𝑧+𝑑

𝑎𝑧+𝑏
 transforms the unit 

circle in 𝑤 − 𝑝𝑙𝑎𝑛𝑒 into straight line of 𝑧 − 𝑝𝑙𝑎𝑛𝑒. 

(TQ-6) To prove that the general linear transformation of a circle |𝑧| ≤ 𝜌 

into a circle |𝑤| ≤ 𝜌′ is  

𝑤 = 𝜌𝜌′𝑒𝑖𝜆 (𝑧−𝛼)

(�̅�𝑧−𝜌2′
)

 𝑠. 𝑡. |𝛼| < 𝜌. 

(TQ-7) To prove that the region |𝑧 − 𝑎| ≤ 𝑅 is mapped conformally on 

|𝑤| ≤ 1 by the transformation 

file:///C:/Users/user/Desktop/1468564049EText(Ch-9,M-2%20(1).pdf
file:///C:/Users/user/Desktop/1468564049EText(Ch-9,M-2%20(1).pdf
file:///C:/Users/user/Desktop/1468564084EText(Ch-9,M-3%20(1).pdf
file:///C:/Users/user/Desktop/1468564084EText(Ch-9,M-3%20(1).pdf
file:///C:/Users/user/Desktop/1468564124EText(Ch-9,M-4%20(1).pdf
file:///C:/Users/user/Desktop/1468564124EText(Ch-9,M-4%20(1).pdf
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𝑤 =
𝑅(𝑧 − 𝑐)𝑒𝑖𝛼

𝑅2 − (𝑧 − 𝑎)(𝑐̅ − �̅�)
 

where 𝛼 is real and 𝑧 = 𝑐 is the point which is transformed into the origin. 

(TQ-8) If the transformation 𝑧 =
𝑖−𝑤

𝑖+𝑤
, show that half of 𝑤 −plane given 

by 𝑣 ≥ 0 corresponds to the circle |𝑧| ≤ 1 in 𝑧 − plane. 

(TQ-9) Discuss the application of the transformation 𝑤 =
𝑖𝑧+1

𝑧+𝑖
 to the 

areas in the z-plane which are respectively inside and outside the unit 

circle with its centre at the origin. 

(TQ-10) Show that the transformation 𝑤 =
5−4𝑧

4𝑧−2
 transforms the circle 

|𝑧| = 1 into a circle of radius unity in 𝑤 − 𝑝𝑙𝑎𝑛𝑒 and find the centre of 

circle. 

(TQ-11) Find the linear maps for 𝑧 = 0, −𝑖, −1 and corresponding 

values of w are 𝑤 = 𝑖, 1,0. 

(TQ-12) Find bilinear transformation which maps 0, 𝑖, −𝑖 of z-plane to 

1, −1,0 of w-plane. 

(TQ-13) True/False Type questions. 
a. A Möbius transformation maps circles and lines in the complex 

plane to circles and lines. 

b. A Möbius transformation can always be written in the form of a 

linear fractional transformation. 

c. Two Möbius transformations are considered equivalent if they 

differ by a scaling factor. 

d. The composition of two Möbius transformations is itself a 

Möbius transformation. 

e. The coefficients a,b,c, and d in a Möbius transformation are 

allowed to be zero, as long as  𝑎𝑑 − 𝑏𝑐 ≠ 0.  

f. The Möbius transformation 𝑤 =
𝑧−1

𝑧+1
  maps the real axis to itself. 

(TQ-14) Objectives Type Questions. 
1.  A transformation of type 𝑤 = 𝑎𝑧 + 𝛽, where 𝛼 and 𝛽 are complex 

constants is the resultant of  
a. Magnification and translation 

b. Magnification, rotation and translation 

c. Rotation and translation 

d. None 

2. Critical points of 𝑤 =
𝛼𝑧+𝛽

𝛾𝑧+𝛿
, 𝛼𝛿 − 𝛽𝛾 ≠ 0 are 

a. –
𝛿

𝛾
 

b. –
𝛿

𝛾
 and ∞ 

c. –
𝛿

𝛾
 and 0 

d. None 
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3. If 𝑤 = 𝑓(𝑧) represents a conformal mapping of a domain D, then 

f(z) is  

a. continuous in D 

b. analytic in D 

c. not analytic in D 

d. none 

4. The transformation 𝑤 = 𝑖𝑧 + 𝑖 maps the half plane 𝑥 > 0 into  

a. half plane 𝑢 > 0 

b. half plane 𝑣 < 1 

c. the half plane 𝑣 > 1 

d. none 

5. The set of all bilinear transformations under the product of 

transformations form 𝑎: 
a. Semi-group 

b. Non-abelian group 

c. Abelian group 

d. None 

(TQ-15)  If (𝑎 − 𝑑)2 + 4𝑏𝑐 ≠ 0, then for transformation 𝑤 =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
 there 

exist unequal numbers 𝛼, 𝛽 such that  
𝑤 − 𝛼

𝑤 − 𝛽 
= 𝑘 (

𝑧 − 𝛼

𝑧 − 𝛽 
) 

where 𝑘  is constant. Show also the radius of the circle in the w-plane 

corresponding to the circle in the z-plane whose diameter is the line 

joining the points 𝑧 = 𝛼, 𝑧 = 𝛽 is |
𝛼−𝛽

2𝑐𝑜𝑠𝜃
|, where 𝜃 is the argument of 𝑘. 

 

6.14 ANSWERS:- 

SELF CHECK ANSWERS 

1. The cross ratio of four points (𝑧1, 𝑧2; 𝑧3, 𝑧4) =  
(𝑧4−𝑧1)(𝑧2−𝑧3)

(𝑧2−𝑧1)(𝑧4−𝑧3)
 

2. The cross ratio is invariant under Möbius transformations because 

such transformations preserve the projective properties of points, 

meaning they maintain the relative geometry of the configuration. 

3. Despite 24 permutations, only six distinct cross ratios can be formed 

from four points, due to the symmetries and invariances in the 

definition of the cross ratio. 

4.  A fixed point of a transformation is a point that remains unchanged 

under the transformation, i.e., 𝑓(𝑧) = 𝑧. 
5. Elliptic: Has two fixed points with a rotation around them. 

Hyperbolic: Has two fixed points with one attracting and the other 

repelling, characterized by dilation or contraction along a line. 

Loxodromic: Has two fixed points, and the transformation involves 

a combination of rotation and dilation/contraction. 
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6.  Möbius transformations are used in complex analysis, geometric 

function theory, hyperbolic geometry, computer graphics, and in the 

study of conformal mappings. 

7. In geometry, Möbius transformations can map the upper half-plane 

onto the unit disk, facilitating the study of hyperbolic geometry. In 

physics, they are used in relativity theory to model transformations 

in space-time. 
 

TERMINAL ANSWERS 

(TQ-11) 𝑤 = −
𝑖(𝑧+1)

𝑧−1
              (TQ-12) 𝑤 = −

𝑖(𝑧+𝑖)

(3𝑧−𝑖)
 

 (TQ-13) 

 

 (TQ-14) 

 

a.T b.T c.F d.T e.F f.T 

1.a 2.b 3.b 4.c 5.c 
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UNIT 7:- Complex Line Integral  

CONTENTS: 
7.1       Introduction 

7.2       Objectives 

7.3       Connected Set, Open and Closed Domain (Region):- 

7.4       Jordan Arc 

7.5       Rectifiable and Regular Curves 

7.6       Contour 

7.7       Simply and Multi Connected Domains 

7.8       Weierstrass M-Test 

7.9       Complex Line Integral 

7.10      Fundamental Theorem of Integral Calculus 

7.11      Summary 

7.12      Glossary 

7.13      References 

7.14      Suggested Reading 

7.15      Terminal questions  

7.16      Answers  

7.1 INTRODUCTION:-  

Complex integration involves integrating functions of a complex variable 

along a path or contour in the complex plane. The integral of a complex 

function 𝑓(𝑧) along a contour 𝛾 is computed using a parameterization of 

𝛾, transforming the problem into a standard real integral. Key results in 

complex integration include Cauchy's Theorem, which states that the 

integral of a holomorphic function over a closed contour is zero, and 

Cauchy's Integral Formula, which relates function values to contour 

integrals. The Residue Theorem further simplifies the evaluation of 

integrals by relating them to residues at singularities within the contour. 

These principles not only facilitate the evaluation of integrals but also 

provide insights into the analytic properties of complex functions. 

7.2 OBJECTIVES:-  

In this unit we will study about  the Compute line integrals of complex-

valued functions along curves in the complex plane, integration along 
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piecewise smooth path, including using parameterizations and contour 

integration techniques. 

7.3 CONNECTED SET, OPEN AND CLOSED 

DOMAIN (REGION):-  

Connected Set: A set S in the Argand plane (complex plane) is said to be 

connected if for any two points within the set, there exists a continuous 

curve (or path) that lies entirely within S and connects these two points. 

 

Open Domain: An open domain is a specific type of connected set that is 

also open. A set D is an open domain if it is connected and, additionally, 

every point in D has a neighborhood completely contained within D. In 

other words, D is open and does not include its boundary points. 

 

Closed Domain: If a set D is an open domain and you include all its 

boundary points, the resulting set is called a closed domain. In other 

words, a closed domain includes both the open domain and its boundary, 

making it closed and still connected. 

 

7.4 JORDAN ARC:-  

The equation 𝑧 = 𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡)  

where 𝑥(𝑡)  and  𝑦(𝑡) are real-valued continuous functions of the real 

variable  t, with t in the interval [𝑎, 𝑏], defines a set of points in the 

complex plane known as a continuous curve. This curve is called a simple 

curve if 𝑡1 ≠ 𝑡2 implies 𝑧(𝑡1) ≠ 𝑧(𝑡2)meaning the curve does not intersect 

itself. If the curve is such that 𝑡1 < 𝑡2  and 𝑧(𝑡1) = 𝑧(𝑡2) implies 𝑡1 =

𝑎 and 𝑡2 = 𝑏 , then it is a simple closed curve, which means the curve 

starts and ends at the same point, forming a loop without self-intersections 

except at the endpoints. Simple curves are often referred to as Jordan 

curves. A common example of a Jordan curve is a polygon formed by 

joining a finite number of line segments end to end. 

An important property of a bounded infinite set in the complex plane is 

that it must have at least one limit point within the complex plane. This 

property is derived from the Bolzano-Weierstrass theorem, which states 

that every bounded sequence in C has a convergent subsequence. This 

implies that any bounded infinite set in the complex plane cannot be 

composed entirely of isolated points; instead, it must contain points 

arbitrarily close to each other, leading to the presence of limit points. This 
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property is fundamental in understanding the structure and behavior of sets 

in the complex plane. 

Theorem 1. (Bolzano-Weierstrass Theorem) 

If a set 𝑆 ⊆ ℂ is bounded and contains an infinite number of points, then it 

must have at least one limit point. 

Theorem 2. (Jordan Curve Theorem) 

It states that a simple closed Jordan curve divides the Argand plane into 

two open domains which have the curve as the common boundary. One of 

these domains is bounded and is known as interior domain, while the other 

is bounded and is called exterior domain. 

7.5 RECTIFIABLE AND REGULAR CURVES:-  

A rectifiable curve is a curve whose length can be measured and is finite. 

In mathematical terms, a curve is rectifiable if its total length is finite. 

Here’s a detailed breakdown of the concept:  

Rectifiable Curve: A curve γ in the complex plane (or in Euclidean 

space) is called rectifiable if its length is finite. This means that if γ is 

parameterized by a continuous function γ:[a,b]→ℂ (or more generally in 

ℝ𝑛), the length of the curve can be computed and is finite. 

The length L of a rectifiable curve parameterized by γ(t) from t=a to t=b is 

given by: 

𝐿 = ∫ |𝛾′(𝑡)|𝑑𝑡
𝑏

𝑎

 

Here,𝛾 ′(𝑡) denotes the derivative of 𝛾(𝑡) with respect to 𝑡, and |∙| denotes 

the modulus (or absolute value) in the complex plane or Euclidean space. 

Regular Curve: A regular curve is a smooth curve where the tangent 

vector is never zero. Formally, if a curve is parameterized by 𝛾(𝑡) with 

𝑡 in some interval[𝑎, 𝑏], then 𝛾(𝑡) is a regular curve if its derivative  𝛾 ′(𝑡) 

is never zero for 𝑡 in [𝑎, 𝑏]. This means that: 

𝛾 ′(𝑡) ≠ 0∀ 𝑡 𝑖𝑛 [𝑎, 𝑏] 

This condition ensures that the curve does not have any sharp corners or 

cusps and is smooth throughout. 
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7.6 CONTOUR:-  

Contour: A simple curve in the complex plane is called a contour if it is 

piecewise smooth, meaning it can be broken down into a finite number of 

smooth (regular) segments, where each segment is smooth and has a finite 

length. A contour is a curve that can be traversed in a specific direction, 

and it is always rectifiable, meaning its length is finite. 

 

Closed Contour: A simple closed curve, often referred to as a closed 

contour, is a contour that forms a closed loop. It returns to its starting 

point, and like any contour, it is piecewise smooth with a finite number of 

smooth segments. Since it is a closed loop, it also has a finite length. An 

example of a closed contour is the curve is  

 

𝑧(𝑡) = 𝑐𝑜𝑠𝑡 + 𝑖𝑠𝑖𝑛𝑡 = 𝑒𝑖𝑡, 0 ≤ 𝑡 ≤ 2𝜋 
 

7.7 SIMPLY AND MULTI CONNECTED 

DOMAINS:-  

A domain is called simply connected if every closed curve within it can 

be continuously contracted to a single point without leaving the domain, 

implying that the domain has no holes or obstructions. Conversely, a 

domain is multiply connected if it is not simply connected, meaning it 

contains one or more holes, which prevents certain closed curves from 

being shrunk to a point without crossing these holes. 

 

7.8 WEIERSTRASS M-TEST:-  

If |𝑢𝑛(𝑧)| ≤ 𝑀𝑛 for each 𝑧  in a domain 𝐷 , where 𝑀𝑛  is a sequence of 

constants independent of 𝑧, and the series ∑ 𝑀𝑛 is uniformly convergent, 

then the series ∑ 𝑢𝑛 (𝑧) converges uniformly on 𝐷 . This result follows 

from the Weierstrass M-test, which states that if a series of functions is 

bounded by a uniformly convergent series of constants, then the original 

series converges uniformly. 

 

7.9 COMPLEX LINE INTEGRAL:-  

Let 𝑓(𝑧) be a complex-valued function defined on a smooth curve 𝛾 in the 

complex plane, parameterized by 𝑧(𝑡)  where  𝑡  varies over an interval 
[𝑎, 𝑏], the complex line integral of 𝑓(𝑧) along 𝛾 is defined as: 

∫𝑓(𝑧)
𝛾

𝑑𝑧 = ∫ 𝑓(𝑧(𝑡))
𝑏

𝑎

. 𝑧′(𝑡)𝑑𝑡 = ∑ ∫ 𝑓(𝑧(𝑡)).
𝑗+1

𝑖

𝑛−1

𝑗=1

𝑧′(𝑡)𝑑𝑡 
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Where 𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡)  and 𝑧′(𝑡) =
𝑑𝑧

𝑑𝑡
= 𝑥′(𝑡) + 𝑖𝑦′(𝑡).  

The limit 𝑎 = 𝑡0 < 𝑡1 < 𝑡 … < 𝑡𝑛−1 = 𝑏  is called the complex line 

integral of 𝑓 over 𝑥.  

 

 
 

Fig.1 

Suppose 𝑓(𝑧) is continuous at every point of a closed curve 𝐶 having a 

finite length, i.e., 𝐶 is rectifiable curve. 

Divide C into n parts by means of points 

𝑧0, 𝑧1, 𝑧2 , … . , 𝑧𝑛 

Suppose 𝑎 = 𝑧0, 𝑏 = 𝑧𝑛 

We choose a point 𝜉𝑘  on each arc joining 𝑧𝑘−1 to 𝑧𝑘. 
Now from the sum 

𝑆𝑛 = ∑ 𝑓(𝜉)

𝑛

𝑟=1

(𝑧𝑟 − 𝑧𝑟−1) 

When the sum 𝑆𝑛  of the integrals of 𝑓(𝑧)  over subdivisions of the 

rectifiable curve 𝐶 converges to a fixed limit that is independent of the 

mode of subdivision, this limit is denoted by 

∫ 𝑓(𝑧)
𝑏

𝑎

𝑑𝑧 = ∫𝑓(𝑧)𝑑𝑧
𝐶

 

which is called the complex line integral, or line integral of 𝑓(𝑧) along the 

curve 𝐶. 

Connection between Real and Complex line integral: If 𝑓(𝑧) = 𝑢(𝑧) +
𝑖𝑣(𝑧) then the complex line integral ∫ 𝑓(𝑧)

𝑥
𝑑𝑧 can be expressed as  

∫𝑓(𝑧)
𝑥

𝑑𝑧 = ∫ 𝑢𝑑𝑥 − 𝑣𝑑𝑦 + 𝑖 ∫𝑢 𝑑𝑦
𝑥

+ 𝑣𝑑𝑥
𝑥

 

 

The connection between real and complex line integrals can be expressed 

through the decomposition of the complex line integral into real and 

imaginary components. If 𝑓(𝑧) = 𝑢(𝑧) + 𝑖𝑣(𝑧) where 𝑢  and 𝑣 are real-

valued functions representing the real and imaginary parts of 
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𝑓 respectively, then the complex line integral ∫ 𝑓(𝑧)
𝛾

𝑑𝑧  along a curve  

𝛾 can be expressed as: 

∫𝑓(𝑧)
𝛾

𝑑𝑧 = ∫(𝑢𝑑𝑥 − 𝑣𝑑𝑦) + 𝑖 ∫(𝑢 𝑑𝑦
𝛾

+ 𝑣𝑑𝑥
𝛾

) 

Here: 

 ∫ (𝑢𝑑𝑥 − 𝑣𝑑𝑦)
𝛾

 Represents the real part of the complex line 

integral. 

 ∫ (𝑢 𝑑𝑦
𝛾

+ 𝑣𝑑𝑥) Represents the imaginary part of the complex line 

integral. 

 

7.10 FUNDAMENTAL THEOREM OF INTEGRAL 

CALCULUS:-  

If 𝑓(𝑧) be a single valued function in a simple connected domain 𝐷. If 

𝑎, 𝑏𝜖𝐷, then ∫ 𝑓(𝑧)𝑑𝑧
𝑏

𝑎
= 𝐹(𝑏) − 𝐹(𝑎), where 𝐹(𝑧) is an infinite integral 

of 𝑓(𝑧). 

Proof: By the definition of infinite integral, we get 

𝐹(𝑧) = ∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎

 

𝐹(𝑏) − 𝐹(𝑎) = ∫ 𝑓(𝑡)
𝑏

𝑧0

𝑑𝑡 − ∫ 𝑓(𝑡)
𝑎

𝑧0

𝑑𝑡 = ∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑧0

+ ∫ 𝑓(𝑡)𝑑𝑡
𝑧0

𝑎

 

= ∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎

 

Or 

 

𝐹(𝑏) − 𝐹(𝑎) = ∫ 𝑓(𝑧)
𝑏

𝑎

𝑑𝑧 

 

SOLVED EXAMPLE 

 

EXAMPLE1: Evaluate ∫
1

𝑧𝑥
𝑑𝑧, where 𝑥(𝑡) = 𝑒𝑖𝑡 , 𝑡 ∈ [0,2𝜋]. 

SOLUTION: By complex line integral 

 

∫
1

𝑧𝑥

𝑑𝑧 = ∫ 𝑓(𝑥(𝑡))
𝑏

𝑎

. 𝑥′(𝑡)𝑑𝑡 

Here,   𝑓(𝑧) =
1

𝑧
,   𝑥(𝑡) = 𝑒𝑖𝑡, 𝑎 = 0, 𝑏 = 2𝜋 

∴                           𝑓[(𝑥(𝑡))] =
1

𝑒𝑖𝑡  ,   𝑥′(𝑡) = 𝑖𝑒𝑖𝑡 

∫
1

𝑧𝑥

𝑑𝑧 = ∫
1

𝑒𝑖𝑡

2𝜋

0

. 𝑖𝑒𝑖𝑡  𝑑𝑡 = ∫ 𝑖
2𝜋

0

 𝑑𝑡 = 𝑖[𝑡]0
2𝜋 = 2𝜋𝑖 
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EXAMPLE2: Find the length of the curve 𝑥(𝑡) = 4𝑒𝑖𝑡 , 𝑡 ∈ [0,2𝜋]. 
SOLUTION: The length of  

𝑥 = 𝐿(𝑥) = ∫ |4𝑖 𝑒𝑖𝑡|
2𝜋

0

𝑑𝑡 = ∫ |4||𝑖||𝑒𝑖𝑡|𝑑𝑡
2𝜋

0

 

= ∫ 4 𝑑𝑡
2𝜋

0

= 4 ∫
2𝜋

𝑑𝑡0

= 8𝜋 

EXAMPLE3: Find the length of the curve 𝑥(𝑡) = 𝑖(1 + 𝑖)𝑡, 𝑡 ∈ [0,4]. 
SOLUTION: The given curve is  

𝑥(𝑡) = 𝑖(1 + 𝑖)𝑡 

𝑥′(𝑡) = 𝑖(1 + 𝑖) 

∴  Length 

𝑥 = 𝐿(𝑥) = ∫ |(1 + 𝑖)|
4

0

𝑑𝑡 

= ∫ √12 + 12
4

0

𝑑𝑡 

= ∫ √2
4

0

𝑑𝑡 = √2 [𝑡]0
4 = 4√2 

EXAMPLE4: Find the value of integral 

∫ (𝑥 − 𝑦 + 𝑖𝑥2)
1+𝑖

0

𝑑𝑧 

a. along the straight line from 𝑧 = 0 to 𝑧 = 1 + 𝑖. 
b. Along the real axis from 𝑧 = 0 to 𝑧 = 1  and then along a line 

parallel to imaginary axis from 𝑧 = 0 to 𝑧 = 1 + 𝑖. 
SOLUTION: Suppose 𝑧 = 𝑥 + 𝑖𝑦 

𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦 
 

 
 

Fig.2 

 

a. Let OA is straight line joining 𝑧 = 0 to 𝑧 = 1 + 𝑖. 
So                                 𝑦 = 𝑥 𝑜𝑛 𝑂𝐴 

𝑑𝑦 = 𝑑𝑥 

∫ (𝑥 − 𝑦 + 𝑖𝑥2)
𝑂𝐴

𝑑𝑧 = ∫ (𝑥 − 𝑦 + 𝑖𝑥2)(𝑑𝑥 + 𝑖𝑑𝑥)
1

0

= 𝑖(1 + 𝑖) ∫ 𝑥2
1

0

𝑑𝑥 =
𝑖(1 + 𝑖)

3
=

𝑖 − 1

3
. 
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𝑏. The real axis from 𝑧 = 0 to 𝑧 = 1 is the line OB, 𝑦 = 0 on 𝑂𝐵 

and so 𝑧 = 𝑥, 𝑑𝑧 = 𝑑𝑥. 

∫ (𝑥 − 𝑦 + 𝑖𝑥2)
𝑂𝐵

𝑑𝑧 = ∫ (𝑥 − 0 + 𝑖𝑥2)𝑑𝑥
1

0

 

= ∫ (𝑥 + 𝑖𝑥2)𝑑𝑥
1

0

=
1

2
+

𝑖

3
 

Now 𝐵𝐴 is the line parallel to imaginary axis from 𝑧 = 0 to 𝑧 = 1 + 𝑖. 
𝑥 = 1 on 𝐵𝐴 so that 𝑑𝑥 = 0, 𝑑𝑧 = 𝑖𝑑𝑦 on 𝐵𝐴. 

∫ (𝑥 − 𝑦 + 𝑖𝑥2)
𝐵𝐴

𝑑𝑧 = ∫ (𝑥 − 𝑦 + 𝑖)𝑑𝑦
1

0

 

= [(1 + 𝑖) −
1

2
] 𝑖 = −1 +

𝑖

2
 

∫ (𝑥 − 𝑦 + 𝑖𝑥2)
𝑂𝐵𝐴

𝑑𝑧

= ∫ (𝑥 − 𝑦 + 𝑖𝑥2)
𝑂𝐵

𝑑𝑧 + ∫ (𝑥 − 𝑦 + 𝑖𝑥2)
𝐵𝐴

𝑑𝑧 

= (
1

2
+

𝑖

3
) + (

𝑖

2
− 1) = −

1

2
+

5𝑖

6
 

 

EXAMPLE5: Evaluate ∫ 𝑧̅𝑑𝑧
𝐶

 from 𝑧 = 0 to 𝑧 = 4 + 2𝑖 along the curve 

C given by 𝑧 = 𝑡2 + 𝑖𝑡. 

SOLUTION:  

                                                           𝐼 = ∫ 𝑧̅
4+2𝑖

0
𝑑𝑧                 … (1)      

 along the curve C given curve by 𝑧 = 𝑡2 + 𝑖𝑡 

𝑑𝑧 = (2𝑡 + 𝑖)𝑑𝑡,   𝑧̅ = (𝑡2 − 𝑖𝑡) 

𝑧̅𝑑𝑧 = (𝑡2 − 𝑖𝑡)(2𝑡 + 𝑖)𝑑𝑡 = (2𝑡3 − 𝑖𝑡2 + 𝑡)𝑑𝑡            … (2) 

𝑧 = 0 ⇒ 𝑡 = 0 and  𝑧 = 4 + 2𝑖 ⇒ 𝑡2 = 4, 𝑡 = 2 ⇒ 𝑡 = 2 

From (1) and (2) ,we get 

𝐼 = (
2

4
𝑡4 −

𝑖

3
𝑡3 +

1

2
𝑡2)

0

2

= 8 −
8𝑖

3
+ 2 = 10 −

8

3
𝑖 

 

SELF CHECK QUESTIONS 

 

1.  What is a complex line integral, and how is it defined for a complex 

function 𝑓(𝑧) along a curve 𝐶? 

2. How can the complex line integral ∫ 𝑓(𝑧)𝑑𝑧
𝐶

 be expressed in terms of 

real and imaginary components? 

3. Under what conditions is the complex line integral independent of the 

path taken between two points? 

4. Explain the physical or geometric interpretation of the real and 

imaginary parts of a complex line integral. 
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7.11 SUMMARY:-  

A complex line integral is an integral of a complex-valued function 𝑓(𝑧) 

along a path or contour 𝐶 in the complex plane, defined as ∫ 𝑓(𝑧)𝑑𝑧
𝐶

. It is 

computed by parameterizing the contour 𝐶  with 𝑧(𝑡)  and integrating 

𝑓(𝑧(𝑡)) ⋅ 𝑧 ′(𝑡) with respect to t over the interval of the parameter. This 

integral can be expressed in terms of real and imaginary parts, and it plays 

a crucial role in complex analysis by connecting the evaluation of integrals 

to the properties of analytic functions and their singularities. Key results 

such as the Fundamental Theorem of Line Integrals and the Residue 

Theorem are often used to simplify and compute these integrals. 

 

7.12 GLOSSARY:-  

 Complex Line Integral: An integral of a complex-valued function 

along a contour in the complex plane, defined as ∫ 𝑓(𝑧)𝑑𝑧
𝐶

, where  

𝐶 is the path or curve and 𝑓(𝑧) is a complex function. 

 Contour (or Path): A continuous and differentiable curve in the 

complex plane along which the complex line integral is computed. 

 Parameterization: A representation of the contour 𝐶  by a 

continuous function 𝑧(𝑡) where t varies over an interval[𝑎, 𝑏]. The 

integral is then evaluated using this parameterization. 

 Complex Function: A function 𝑓(𝑧)  where 𝑧  is a complex 

variable and 𝑓(𝑧) maps 𝑧  to another complex number. It can be 

expressed as 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦),  where 𝑢  and 𝑣  are real-

valued functions. 

 Differential𝒅𝒛: The differential element of the complex variable 

𝑧 , representing an infinitesimal change along the contour. In 

parameterized form, 𝑑𝑧 = 𝑧 ′ (𝑡)𝑑𝑡. 

 Fundamental Theorem of Line Integrals: A theorem stating that 

if 𝑓(𝑧)  is analytic and 𝐹(𝑧)  is an antiderivative of 𝑓(𝑧) , then 

∫ 𝑓(𝑧)𝑑𝑧
𝐶

= 𝐹(𝑧1) − 𝐹(𝑧2), where C is a path from 𝑧0 to 𝑧1. 

 Analytic (or Holomorphic) Function: A function f(z) that is 

complex differentiable at every point in its domain, meaning it has 

a derivative at every point in an open set. 

 Simply Connected Domain: A domain in which any closed 

contour can be continuously shrunk to a point without leaving the 

domain. It ensures that the integral of an analytic function around 

any closed curve is zero. 

 Real and Imaginary Parts: For a complex function f (𝑧) =
𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) are the real and imaginary 

parts of 𝑓(𝑧), respectively. The complex line integral can be split 

into integrals involving these parts. 
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7.13 REFERENCES:-  

 Jerry R. Muir Jr., and Michael J. Kallaher(2019), Complex 

Analysis: A Modern First Course in Function Theory. 

 Boris Makarov and Anatolii Podkorytov(2014), Complex 

Analysis: Fundamentals of the Classical Theory of Functions. 

 Steven G. Krantz (2018), Complex Variables: A Physical 

Approach with Applications and MATLAB Tutorials. 

 Barry Simon (2015), Complex Analysis: A Comprehensive Course 

in Analysis, Part 2B. 
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 file:///C:/Users/user/Downloads/Paper-III-Complex-Analysis.pdf 
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 file:///C:/Users/user/Desktop/1468564049EText(Ch-9,M-

2%20(2).pdf 

 A.I. Markushevich 2005 (Dover Reprint of 1977 Edition),Theory 

of Functions of a Complex Variable. 

7.15 TERMINAL QUESTIONS:-  

(TQ-1) Evaluate ∫ 𝑧2𝑑𝑧,
𝐶

 where 𝐶 is the straight line joining the origin 𝑂 

to the point 𝑃(2,1) in the complex plane. 

(TQ-2) Evaluate  ∮ 𝐼𝑛 𝑧𝑑𝑧
𝐶

, where C is unit circle |𝑧| = 1  taken is 

countor clockwise sense. 

(TQ-3) Evaluate ∮  |𝑧|2𝑑𝑧
𝐶

 around the square with vertices at 

(0,0), (1,0), (1,1), (0,1) 

(TQ-4) Evaluate ∮  (𝑧 − 𝑎)𝑛𝑑𝑧
𝐶

, where 𝑎 is a given complex number, 𝑛 

is any integer and 𝐶  is a circle of radius 𝑅  centered at a and oriented 

anticlockwise. 

(TQ-5) Find the integral of the function 𝑓(𝑧) =
1

𝑧
, taken over a circle of 

Radius 𝑅. 

(TQ-6) Evaluate ∫ 𝑧𝑑𝑧 (𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜)
𝐶

  

(TQ-7) Evaluate ∫ 𝑑𝑧 (𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜)
𝐶

  

(TQ-8) Evaluate ∫ 𝑧𝑑𝑧
1+𝑖

0
 along the line 𝑧 = 0 to 𝑧 = 1 + 𝑖. 

file:///C:/Users/user/Downloads/Paper-III-Complex-Analysis.pdf
file:///C:/Users/user/Desktop/Unit-3_Complex-Integration.pdf
file:///C:/Users/user/Desktop/1468564049EText(Ch-9,M-2%20(2).pdf
file:///C:/Users/user/Desktop/1468564049EText(Ch-9,M-2%20(2).pdf
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(TQ-9) Evaluate the integral ∫ 𝑧̅𝑑𝑧 
𝐶

, where 𝐶  is the straight line from 

(1,0) to (1,1). 

(TQ-10) Evaluate ∫ 𝑧21+𝑖

0
𝑑𝑧. 

(TQ-11)True/False Questions 

a. The circle 𝑧 = 𝑐𝑜𝑠𝑡 + 𝑖𝑠𝑖𝑛𝑡,     0 ≤ 𝑡 ≤ 2𝜋  is a simple closed 

Jordan curve.  

b. If 𝑓(𝑧) is conformally continuous in a domain 𝐷 , then it is not 

necessarily continuous in 𝐷,. 

c. If a function 𝑓(𝑧) is differentiable at 𝑧 = 𝑧0, then it is necessarily 

continuous there.  

d. A contour is continuous chain of a finite number of regular arcs. T 

e. If 𝑓(𝑧)  be continuous in a simply connected domain 𝐷  and 

∫ 𝑓(𝑧)𝑑𝑧 = 0
Γ

, where Γ is any rectifiable closed Jordan curve in 𝐷, 

then 𝑓(𝑧) is analytic in 𝐷.T 

f. For the indefinite integral of a function 𝑓(𝑧) to exist in a simply 

connected domain 𝐷, it is not necessary that 𝑓(𝑧) be analytic in 𝐷. 

g. Let 𝐺  be the simply connected domain, and let 𝑓(𝑧) be a single 

valued analytic function such that ∫ 𝑓(𝑧)𝑑𝑧 = 0
C

, where 𝐿 is any 

closed rectifiable curve continuous in 𝐺. 

h. A function 𝑓(𝑧) possesses a indefinite integral in a simply closed 

connected domain 𝐺 iff the function 𝑓(𝑧) is analytic in 𝐺.  

i. A function 𝑓(𝑧) is called an integral function or entire function if it 

is analytic in finite  complex integral.  

j. Zeros of an analytic function are isolated.  

k. The integral ∫
1

𝑧−𝑎
𝑑𝑧

C
over a closed contour C that does not enclose 

a is zero.  

(TQ-12)Prove that the function [𝑐 (1 +
1

𝑧
)] can be expended in series of 

the type ∑ 𝑎𝑛𝑧𝑛∞
𝑛=0 + ∑ 𝑏𝑛𝑧−𝑛∞

𝑛=1  in which the coefficients of both of 𝑧𝑛 

and 𝑧−𝑛, are 
1

2𝜋
∫ 𝑠𝑖𝑛 (2𝑐 𝑐𝑜𝑠 𝜃)

2𝜋

0
𝑠𝑖𝑛𝑛𝜃 𝑑𝜃. 

(TQ-13) Objectives type Questions: 
1. A simple closed Jordan curve divides the argand plane into….. 

open domain which have the curve as common boundary. 

a. two 

b. three 

c. four 

d. eight  

2. The path of the definite integral ∫ 𝑓(𝑧)
𝑏

𝑎
𝑑𝑧 is: 

a. the line segment joining the points 𝑧 = 𝑎 and 𝑧 = 𝑏. 

b. any curve joining the points 𝑧 = 𝑎 and 𝑧 = 𝑏. 

c. any circle such that the points 𝑧 = 𝑎 and 𝑧 = 𝑏. 

d. any rectangle whose two vertices are the points 𝑧 = 𝑎 and 𝑧 =
𝑏. 
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3. ∫ 𝑑𝑧
𝐶

, where L is any rectifiable arc joining the points 𝑧 = 𝑎 and 

𝑧 = 𝑏 is equal to : 

a. 𝑧 
b. 𝑧 − 𝑎 − 𝑏 
c. 𝑎 − 𝑏 − 𝑧 
d. 𝑏 − 𝑎 

4. ∫ |𝑑𝑧|
𝐶

, where L is any rectifiable arc joining the points 𝑧 = 𝑎 and 

𝑧 = 𝑏 is equal to : 

a. |𝑏 − 𝑎| 
b. b-a 

c. arc length of L  

d. 0 

5. If 𝑓(𝑧) is analytic in simply connected domain D and  C is any 

closed continuous rectifiable curve in D, then ∫ 𝑓(𝑧)𝑑𝑧
𝐶

 is equal 

to: 

a. 0 

b. 1 

c. C 

d. D 

6. Let 𝑓(𝑧)  be a continuous on a contour L of length l and let 

|𝑓(𝑧)| ≤ 𝑀 on L, then |∫ 𝑓(𝑧)
𝐶

 𝑑𝑧| = 𝐴 where 

a. 𝐴 ≤ 𝑀𝑙 
b. 𝐴 > 𝑀𝑙 
c. 𝐴 ≥ 𝑀𝑙 
d. None 

7. If 𝑓(𝑧) is analytic in simply connected domain Genclosed by a 

rectifiable Jordan CurveL  and Let 𝑓(𝑧) be continuous on L. Then 

∫
𝑓(𝑧)

𝑧−𝑧0
𝑑𝑧

𝐿
 is: 

a. 2𝜋𝑖 𝑓(𝑧0) 

b. 2𝜋𝑖 𝑓′(𝑧0) 

c. 2𝜋𝑓(𝑧0) 
d. None  

 

7.16 ANSWERS:- 

SELF CHECK ANSWERS 

 

1. A complex line integral is an integral of a complex-valued function 

𝑓(𝑧)  along a curve 𝐶  in the complex plane. It is defined as 

∫ 𝑓(𝑧)𝑑𝑧
𝐶

= ∫ 𝑓(𝑧(𝑡))
𝑏

𝑎
. 𝑧′(𝑡)𝑑𝑡, where 𝑧(𝑡) is a parameterization 

of 𝐶 and 𝑡 varies over an interval [𝑎, 𝑏]. 
2. If 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦),  where 𝑢  and 𝑣  are real-valued 

functions, and the curve 𝐶 is parameterized by 𝑧(𝑡) = 𝑥(𝑡) +
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𝑖𝑦(𝑡), then the complex line integral can be expressed as 

∫ 𝑓(𝑧)𝑑𝑧
𝐶

= ∫ 𝑓(𝑢(𝑥(𝑡), 𝑦(𝑡))
𝑏

𝑎
+ 𝑖𝑣(𝑥(𝑡), 𝑦(𝑡))(𝑥′(𝑡) +

𝑦′(𝑡))𝑑𝑡.This separates into the real part ∫ (𝑢𝑑𝑥 − 𝑣𝑑𝑦)
𝐶

  and the 

imaginary part 𝑖 ∫ (𝑢𝑑𝑦 + 𝑣𝑑𝑥)
𝐶

. 

3. The complex line integral is independent of the path if f(z) is 

analytic (holomorphic) in a simply connected domain that includes 

the paths and the endpoints. This is a consequence of the Cauchy-

Goursat theorem, which states that the integral around any closed 

contour in such a domain is zero. 

4. The real part of a complex line integral can be interpreted as the 

work done by a vector field with components u and −v along the 

path C, while the imaginary part corresponds to the work done by a 

vector field with components v and u along the same path. This 

duality arises from treating the complex function f(z) as 

comprising two interrelated real-valued functions. 

 

 TERMINAL ANSWERS 

 

(TQ-1) 
1

3
(2 + 11𝑖)           (TQ-2) 2𝜋𝑖 

(TQ-3) – 1 + 𝑖                  (TQ-4) 2𝜋𝑖 

          (TQ-5) 2𝜋𝑖                       (TQ-6) 
𝑏2−𝑎2

2
 

            (TQ-7) 0                          (TQ-8) 𝑖 

          (TQ-9) 𝑖 +
1

2
                    (TQ-10) 

1

2
(1 + 𝑖)3 

          (TQ-11) 
 

 

 (TQ-13)      
 

a.T b.F c.T d.T e.T f.F 

g.T h.T i.T j.T k.T  

1.a 2.b 3.d 4.a 5.a 6.a 

7.a      
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UNIT 8:- Cauchy’s Theorem and Cauchy’s 

Integral Formula  

CONTENTS: 
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8.2      Objectives 

8.3      Green’s Theorem 

8.4       Cauchy Theorem 

8.5       Extension of Cauchy’s Theorem 

8.6       An Upper Bound for Complex Integral  

8.7       Cauchy Integral Formulas  

8.8       Higher Order Derivatives 

8.9       Poisson’s Integral Formula 

8.10     Summary 

8.11     Glossary 

8.12     References 

8.13     Suggested Reading 

8.14     Terminal questions 

8.15     Answers  

 

8.1 INTRODUCTION:-  

Cauchy's Theorem is a fundamental result in complex analysis, stating that 

if a function 𝑓(𝑧) is analytic (holomorphic) within and on a simple closed 

curve 𝐶 in a simply connected domain, then the contour integral of 𝑓(𝑧) 

over 𝐶 is zero. This theorem highlights the profound property of analytic 

functions, ensuring that the value of an integral around a closed path 

depends solely on the function's behavior within the path, leading to 

significant results like Cauchy's Integral Formula and the development of 

residue theory. 

Overall, Cauchy's Theorem is a powerful result that not only facilitates the 

evaluation of complex integrals but also provides deep insights into the 

nature of analytic functions. 

8.2 OBJECTIVES:-  
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The objectives of Cauchy's Theorem and Cauchy's Integral Formula in 

complex analysis are to establish the fundamental property that the 

contour integral of an analytic function over a closed curve in a simply 

connected domain is zero, and to provide a method for determining the 

function's value and its derivatives inside the contour using the values on 

the contour. These results serve as foundational tools for further study, 

enabling the development of series representations, the calculation of 

residues, and the exploration of the relationship between the analytic and 

geometric properties of functions and their domains. 

8.3 GREEN’S THEOREM:-  

Let 𝐶 be a positively oriented, simple closed curve in the plane, and let 

𝐷 be the region enclosed by 𝐶. Suppose 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) are functions 

with continuous partial derivatives on an open region containing 𝐷. Then 

Green's Theorem states: 

∫(𝑃𝑑𝑥 + 𝑄𝑑𝑦)
𝐶

= ∬ (
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
)

𝐷

𝑑𝑥𝑑𝑦 

Here: 𝑃(𝑥, 𝑦)  and 𝑄(𝑥, 𝑦)  are the components of a vector field 𝐹 =

(𝑃, 𝑄). 

Theorem: If 𝑓(𝑧) is analytic with 𝑓′(𝑧)continuous within and on a simple 

closed contour 𝐶, then 

∫𝑓(𝑧)𝑑𝑧 = 0
𝐶

       … (1) 

Proof: Let 𝐶: [𝑎, 𝑏] → 𝐺 is a smooth curve. 

Now we assume  𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)  and 𝐶 = 𝑥(𝑡) + 𝑖𝑦(𝑡), 𝑎 ≤

𝑡 ≤ 𝑏. Then  

∫𝑓(𝑧)𝑑𝑧
𝐶

= ∫(𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦))(𝑑𝑥 + 𝑖𝑑𝑦)𝑑𝑧
𝐶

= ∫ (𝑢𝑑𝑥 − 𝑣𝑑𝑦)
𝑏

𝑎

+ 𝑖 ∫ (𝑢𝑑𝑦 + 𝑣𝑑𝑥)
𝑏

𝑎

         … (2) 

Given that 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)  is an analytic function with 𝑓′(𝑧) 

continuous, the first  order partial derivative and v are continuous. 

Now from (2), we get 
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∫𝑓(𝑧)𝑑𝑧
𝐶

= ∬ (−𝑣𝑥 − 𝑢𝑦)
𝐷

𝑑𝑥𝑑𝑦 + 𝑖 ∬ (𝑢𝑥 − 𝑣𝑦)
𝐷

𝑑𝑥𝑑𝑦 

Where 𝐷 is the region enclosed by 𝐶. By Cauchy Riemann Equations i.e., 

𝑢𝑥 = 𝑣𝑦, 𝑢𝑦 = −𝑣𝑥, we get 

∫𝑓(𝑧)𝑑𝑧
𝐶

= ∬ (𝑢𝑦 − 𝑢𝑦)
𝐷

𝑑𝑥𝑑𝑦 + 𝑖 ∬ (𝑢𝑥 − 𝑢𝑥)
𝐷

𝑑𝑥𝑑𝑦 

∫𝑓(𝑧)𝑑𝑧
𝐶

= ∬ (0)
𝐷

𝑑𝑥𝑑𝑦 + 𝑖 ∬ (0)
𝐷

𝑑𝑥𝑑𝑦 

∫𝑓(𝑧)𝑑𝑧
𝐶

= 0 

8.4 CAUCHY’S THEOREM:-  

If the function 𝑓(𝑧)  is analytic and single valued inside and a simple 

closed contour C, then  

∫𝑓(𝑧)𝑑𝑧
𝐶

= 0 

Proof:  

Lemma: Given 𝜖 > 0, it is possible to divide the region inside a simple 

closed contour 𝐶 into a finite number of smaller regions, either complete 

squares 𝐶𝑛or partial squares 𝐷𝑛, such that within each mesh there exists a 

point 𝑧0, where the following conditions are satisfied: 

|
𝑓(𝑧) − 𝑓(𝑧0)

𝑧 − 𝑧0
− 𝑓′(𝑧0)| < 𝜀 ∀𝑧  𝑖𝑛 𝑚𝑒𝑠ℎ     … (1) 

Proof the Lemma: 

Gourset’s Lemma: Suppose the lemma is not true. It means that the 

lemma fails at least one mesh. Subdivide this mesh by means of line 

joining the middle points of the opposite sides. If there is still at least one 

part which does not satisfy the condition (1). Again subdivide that part in 

the same way. This process comes to an end after a finite number of steps, 

when the condition (1) is satisfied for every subdivision, or the process 

may go on indefinitely. In the second case, we obtain the sequence of 

squares (each contained the proceeding ones) which has 𝑧0 as it limit point 

at which the condition (1) is not satisfied. Of course, 𝑧0 is an interior point 

of C. Since the condition (1) is not satisfied at 𝑧0 and so  
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|
𝑓(𝑧) − 𝑓(𝑧0)

𝑧 − 𝑧0
− 𝑓′(𝑧0)| ≮ 𝜀𝑤ℎ𝑒𝑟𝑒 |𝑧 − 𝑧0| < 𝛿 

𝛿 being a small number of depending upon 𝜀. 

Given that  𝑓(𝑧) is not differentiable at 𝑧0, and 𝑧0 is an interior point of 𝐶, 

you can conclude that 𝑓(𝑧) is not analytic at 𝑧0. This contradicts the initial 

assumption that 𝑓(𝑧) is analytic at every interior point of 𝐶. Therefore, the 

lemma must be true. From the lemma, we get 

𝑓(𝑧) − 𝑓(𝑧0)

𝑧 − 𝑧0
− 𝑓′(𝑧0) = 𝜂 < 𝜀 

And 𝜂 → ∞ as 𝑧 → 𝑧0 

So 

𝑓(𝑧) = (𝑧 − 𝑧0)𝜂(𝑧) + 𝑓(𝑧0) + (𝑧 − 𝑧0)𝑓′(𝑧0)       … (2) 

 

Fig.1 

Proof of this theorem. Divide the interior of C into complete squares 

𝐶1, 𝐶2, … … … … , 𝐶𝑛  and partial squares 𝐷1, 𝐷2, … … … … , 𝐷𝑛 , where 𝐷𝑖part 

of its boundary along the boundary of has 𝐶. 

Consider the integral 

∑ ∫ 𝑓(𝑧)𝑑𝑧
𝐶𝑟

𝑛

𝑟=1

+ ∑ ∫ 𝑓(𝑧)𝑑𝑧
𝐷𝑟

𝑛

𝑟=1

 

where the path of every integral being in anti-clockwise direction. 

In the complete sum, integration along each straight side of each square 

(whether complete or partial) is taken twice in opposite directions, causing 

all such integrals to cancel out; thus, only the integrals along the curved 

boundaries of the partial squares remain, as these are described only once.  
The integrals which are left behind sum equal to  
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∫𝑓(𝑧)𝑑𝑧
𝐶

 

∫𝑓(𝑧)𝑑𝑧
𝐶

= ∑ ∫ 𝑓(𝑧)𝑑𝑧
𝐶𝑟

𝑛

𝑟=1

+ ∑ ∫ 𝑓(𝑧)𝑑𝑧
𝐷𝑟

𝑛

𝑟=1

              … (3) 

From(2), we get 

∫𝑓(𝑧)𝑑𝑧
𝐶

= ∫ [𝑓(𝑧0) + (𝑧 − 𝑧0)𝜂 + (𝑧 − 𝑧0) 𝑓′(𝑧0)]
𝐶𝑟

𝑑𝑧 

= [𝑓(𝑧0) − 𝑧0 𝑓′(𝑧0)] ∫ 𝑑𝑧
𝐶𝑟

+ 𝑓′(𝑧0) ∫ 𝑧𝑑𝑧
𝐶𝑟

+ ∫ (𝑧 − 𝑧0)𝜂𝑑𝑧
𝐶𝑟

 

Now using 

∫ 𝑑𝑧
𝐶𝑟

= 0 = ∫ 𝑧𝑑𝑧
𝐶𝑟

 

We express as 

∫ 𝑓(𝑧)𝑑𝑧
𝐶𝑟

= 0 = ∫ (𝑧 − 𝑧0)𝜂𝑑𝑧
𝐶𝑟

 

Now from (3), we have 

∫𝑓(𝑧)𝑑𝑧
𝐶

= ∑ ∫ (𝑧 − 𝑧0)𝜂𝑑𝑧
𝐶𝑟

𝑛

𝑟=1

+ ∑ ∫ (𝑧 − 𝑧0)𝜂𝑑𝑧
𝐷𝑟

𝑚

𝑟=1

 

|∫𝑓(𝑧)𝑑𝑧
𝐶

| ≤ ∑ |∫ (𝑧 − 𝑧0)𝜂𝑑𝑧
𝐶𝑟

|

𝑛

𝑟=1

+ ∑ |∫ (𝑧 − 𝑧0)𝜂𝑑𝑧
𝐷𝑟

|

𝑚

𝑟=1

 

≤ ∑ ∫ |𝑧 − 𝑧0| |𝜂| |𝑑𝑧|
𝐶𝑟

𝑛

𝑟=1

+ ∑ ∫ |𝑧 − 𝑧0| |𝜂| |𝑑𝑧|
𝐷𝑟

𝑚

𝑟=1

 

< ∑ 𝜀 ∫ |𝑧 − 𝑧0|  |𝑑𝑧|
𝐶𝑟

𝑛

𝑟=1

+ 𝜀 ∑ ∫ |𝑧 − 𝑧0| |𝑑𝑧|
𝐷𝑟

𝑚

𝑟=1

   … (4) 

as |𝜂| < 𝜀. 

Let 𝑙𝑛 , 𝐴𝑛 denote the length of the side and the area of the complete square 

𝐶𝑛, respectively. Similarly, let 𝑙′𝑛 and 𝐴′𝑛denote the length of the side and 

the area of the partial square 𝐷𝑛, respectively.Then from the equation (4), 



Advanced Complex Analysis  MAT601 
 

Department of Mathematics 

Uttarakhand Open University Page 127 
 

|∫𝑓(𝑧)𝑑𝑧
𝐶

| < ∑ 𝜀𝑙𝑟√2 ∫  |𝑑𝑧|
𝐶𝑟

𝑛

𝑟=1

+ ∑ 𝜀𝑙′𝑟√2 ∫  |𝑑𝑧|
𝐷𝑟

𝑚

𝑟=1

 

[𝑆𝑖𝑛𝑐𝑒 |𝑧 − 𝑧0| ≤ 𝑙𝑟√2 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝐶𝑟  ] 

= ∑ 𝜀𝑙𝑟√2 .4

𝑛

𝑟=1

𝑙𝑟 + ∑ 𝜀𝑙′𝑟√2 . (4

𝑚

𝑟=1

𝑙𝑟 + 𝑠𝑟) 

[𝐹𝑜𝑟 ∫ |𝑑𝑧| = 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝐶𝑟
𝐶𝑟

] 

= 4𝜀√2 [∑ 𝐴𝑟
2

𝑛

𝑟=1

+ ∑ 𝐴′
𝑟

𝑚

𝑟=1

] + 𝜀√2 ∑ 𝑙′
𝑟

𝑚

𝑟=1

𝑠𝑟 

= 4𝜀√2. 𝐴 + 𝜀√2 ∑ 𝑙′
𝑟

𝑚

𝑟=1

𝑠𝑟 

where 𝐴 =  total area of square of side 𝑙  with which the region was 

originally covered. Also let 𝑙 be total length of boundary of C. then 

 

|∫𝑓(𝑧)𝑑𝑧
𝐶

| < 4𝜀√2. 𝐴 + 𝜀√2 ∑ 𝑙

𝑚

𝑟=1

𝑠𝑟 

= 4𝜀√2. 𝐴 + 4𝜀𝑙𝐿√2 

|∫𝑓(𝑧)𝑑𝑧
𝐶

| < 𝜀[4𝜀√2. 𝐴 + 4𝜀𝑙𝐿√2] 

Since 𝜀 → 0, we obtain 

∫𝑓(𝑧)𝑑𝑧
𝐶

= 0. 

8.5 EXTENSION OF CAUCHY’S THEOREM:-  

Corollary1: If 𝑓(𝑧) is analytic in a simply connected domain 𝐷, then the 

integral of 𝑓(𝑧)  along any rectifiable curve joining two points 𝑧1 and 

𝑧2within 𝐷 is independent of the path taken between 𝑧1 and 𝑧2. 

Proof: If 𝐴(𝑧1) and 𝐵(𝑧2) are two points in a simply connected domain D, 

and they are joined by two curves 𝐶1 and 𝐶2 the integral of an analytic 
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function 𝑓(𝑧)   along these curves is independent of the specific path 

taken,then by Cauchy’s theorem 

 

Fig.2 

∫ 𝑓(𝑧)𝑑𝑧
𝐴𝐿𝐵𝑀𝐴

= 0 

∫ 𝑓(𝑧)𝑑𝑧
𝐴𝐿𝐵

+ ∫ 𝑓(𝑧)𝑑𝑧
𝐵𝑀𝐴

= 0 

∫ 𝑓(𝑧)𝑑𝑧
𝐴𝐿𝐵

− ∫ 𝑓(𝑧)𝑑𝑧
𝐴𝑀𝐵

= 0 

∫ 𝑓(𝑧)𝑑𝑧
𝐶1

− ∫ 𝑓(𝑧)𝑑𝑧
𝐶2

= 0 

∫ 𝑓(𝑧)𝑑𝑧
𝐶1

= ∫ 𝑓(𝑧)𝑑𝑧
𝐶2

 

Corollary2: If 𝑓(𝑧)  is analytic in the annular region 𝐷 bounded by 𝐶 and 

𝐶1, then the integral of 𝑓(𝑧)  around 𝐶 and 𝐶1 is related by: 

∫𝑓(𝑧)𝑑𝑧
𝐶

= ∫ 𝑓(𝑧)𝑑𝑧
𝐶1

 

Proof: If we join a point 𝐴 on the contour 𝐶 to a point 𝐸 on the contour 

𝐶1, then by Cauchy’s theorem, we get 

∫ 𝑓(𝑧)𝑑𝑧
𝐴𝐵𝐶𝐷𝐴𝐸𝐹𝐺𝐸𝐴

= 0 

Or  

∫ 𝑓(𝑧)𝑑𝑧
𝐴𝐵𝐶𝐷𝐴

+ ∫ 𝑓(𝑧)𝑑𝑧
𝐴𝐸

+ ∫ 𝑓(𝑧)𝑑𝑧
𝐸𝐹𝐺𝐸

+ ∫ 𝑓(𝑧)𝑑𝑧
𝐸𝐴

= 0 

But    ∫ 𝑓(𝑧)𝑑𝑧
𝐴𝐸

= − ∫ 𝑓(𝑧)𝑑𝑧
𝐸𝐴

 and ∫ 𝑓(𝑧)𝑑𝑧
𝐴𝐸

+ ∫ 𝑓(𝑧)𝑑𝑧
𝐸𝐴

= 0 
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Fig.3 

So 

∫ 𝑓(𝑧)𝑑𝑧
𝐴𝐵𝐶𝐷𝐴

+ ∫ 𝑓(𝑧)𝑑𝑧
𝐸𝐹𝐺𝐸

= 0 

∫𝑓(𝑧)𝑑𝑧
𝐶

+ ∫ 𝑓(𝑧)𝑑𝑧
𝐸𝐹𝐺𝐸

= 0 

∫𝑓(𝑧)𝑑𝑧
𝐶

− ∫ 𝑓(𝑧)𝑑𝑧
𝐸𝐺𝐹𝐸

= 0 

Hence 

∫𝑓(𝑧)𝑑𝑧
𝐶

= ∫ 𝑓(𝑧)𝑑𝑧
𝐶1

 

If the contour C contains non-intersecting 𝐶1, 𝐶2 … … . 𝐶𝑛 , then 

∫𝑓(𝑧)𝑑𝑧
𝐶

= ∫ 𝑓(𝑧)𝑑𝑧
𝐶1

+ ∫ 𝑓(𝑧)𝑑𝑧
𝐶2

+ ⋯ ∫ 𝑓(𝑧)𝑑𝑧
𝐶𝑛

 

8.6 AN UPPER BOUND FOR COMPLEX 

INTEGRAL:-  

If a function 𝑓(𝑧)  is continuous on a contour 𝐶 of length 𝑙 and if 𝑀 be the 

upper bound of |𝑓(𝑧)| on 𝐶, then |∫ 𝑓(𝑧)𝑑𝑧
𝐶

| ≤ 𝑀𝑙. 

Proof: Given that divide the contour C into n parts by means of points 

𝑧0, 𝑧1, 𝑧2, … … 𝑧𝑛 .  we choose a point 𝜉𝑟  on each arc joining 𝑧𝑟−1  to 𝑧𝑟 . 

From the sum  
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𝑆𝑛 = ∑ 𝑓(𝜉𝑟)

𝑛

𝑟=1

(𝑧𝑟 − 𝑧𝑟−1) 

Also (𝑧𝑟 − 𝑧𝑟−1) → 0𝑎𝑠 𝑛 → ∞. 

Now we define  ∫ 𝑓(𝑧)𝑑𝑧
𝐶

= lim
𝑛→∞

𝑆𝑛 

|𝑆𝑛| = |∑ 𝑓(𝜉𝑟)

𝑛

𝑟=1

(𝑧𝑟 − 𝑧𝑟−1)| ≤ ∑|𝑓(𝜉𝑟)|

𝑛

𝑟=1

|(𝑧𝑟 − 𝑧𝑟−1)|

≤ ∑ 𝑀

𝑛

𝑟=1

|(𝑧𝑟 − 𝑧𝑟−1)| 

Let 𝑛 → ∞ and noting (1), we obtain 

|∫𝑓(𝑧)𝑑𝑧
𝐶

| ≤ lim
𝑛→∞

𝑀 ∑|(𝑧𝑟 − 𝑧𝑟−1)|

𝑛

𝑟=1

     … (2) 

But  

lim
𝑛→∞

𝑀 ∑|(𝑧𝑟 − 𝑧𝑟−1)|

𝑛

𝑟=1

 

= lim
𝑛→∞

[|𝑧1 − 𝑧0| + |𝑧2 − 𝑧1| + ⋯ + |𝑧𝑛 − 𝑧𝑛+1|] 

= lim
𝑛→∞

[𝑐ℎ𝑜𝑟𝑑 𝑧1𝑧0 + 𝑐ℎ𝑜𝑟𝑑 𝑧2𝑧1 + ⋯ + 𝑐ℎ𝑜𝑟𝑑 𝑧𝑛𝑧𝑛−1] 

= lim
𝑛→∞

[𝑎𝑟𝑐 𝑧1𝑧0 + 𝑎𝑟𝑐 𝑧2𝑧1 + ⋯ + 𝑎𝑟𝑐 𝑧𝑛𝑧𝑛−1] 

= arc length of contour 𝐶 = 𝑙 

Using (2), we get 

|∫𝑓(𝑧)𝑑𝑧
𝐶

| ≤ 𝑀𝑙 

8.7 CAUCHY INTEGRAL FORMULA:-  

If 𝑓(𝑧) is analytic within and on a closed contour 𝐶, and if 𝑎 is any point 

within 𝐶, then  

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶
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Proof: Let 𝑓(𝑧) is analytic within and on a closed contour 𝐶 and 𝑎 is 

interior point of 𝐶. 

To prove that  

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶

 

 

 

Fig.4 

Let the circle 𝛾 about the centre  𝑧 = 𝑎 of small radius 𝑟 𝑠. 𝑡., |𝑧 − 𝑎| = 𝑟 

does not intersect the curve C. Hence by the corollary to Cauchy’s 

theorem, we have 

∫
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶

= ∫
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝛾

        … (1) 

∫
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶

= ∫
𝑓(𝑧) − 𝑓(𝑎)

𝑧 − 𝑎
𝑑𝑧

𝛾

+ ∫
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝛾

  … (2) 

Since 𝑓(𝑧) is analytic within the contour 𝐶, it is also continuous at any 

point 𝑧 = 𝑎. This means that for any given 𝜀 > 0, there exists a 𝛿 > 0  
such that |𝑓(𝑧) − 𝑓(𝑎)| < 𝜀   … (3) whenever ∣|𝑧 − 𝑎| < 𝛿 … . . (4). We 

can choose a radius 𝑟  less than  𝛿  so that for all points 𝑧  on a circle 𝛾 

centered at a with radius  𝑟 , the condition ∣ 𝑧 − 𝑎 ∣< 𝛿  is satisfied, 

ensuring ∣ 𝑓(𝑧) − 𝑓(𝑎) ∣< 𝜖 for all 𝑧 on 𝛾. For any point 𝑧 on 𝛾, 𝑧 can be 

expressed as 𝑧 − 𝑎 = 𝑟𝑒𝑖𝜃 , where 𝜃 ranges from 0 to 2𝜋. 

∫
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝛾

= ∫
𝑓(𝑎)𝑟𝑒𝑖𝜃𝑖𝑑𝜃

𝑟𝑒𝑖𝜃
= 2𝜋𝑖𝑓(𝑎)

2𝜋

0

 

In view of (2), we have 

|∫
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧 − 2𝜋𝑖𝑓(𝑎)

𝐶

| = |∫
𝑓(𝑧) − 𝑓(𝑎)

𝑧 − 𝑎
𝑑𝑧

𝛾

| 

≤ ∫
|𝑓(𝑧) − 𝑓(𝑎)|

|𝑧 − 𝑎|
|𝑑𝑧|

𝛾

<
𝜀

𝑟
∫|𝑑𝑧|

𝛾

=
𝜀

𝑟
. 2𝜋𝑟 
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|∫
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧 − 2𝜋𝑖𝑓(𝑎)

𝐶

| < 2𝜋𝜀 

Since 𝜀 → 0, we obtain 

∫
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧 − 2𝜋𝑖𝑓(𝑎)

𝐶

= 0 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶

 

Remarks:  

1. |𝑎 − 𝑏| < 𝜀 ⇒ 𝑎 − 𝑏 = 0 

2. ∫ |𝑑𝑧| = 2𝜋. 𝑟𝑎𝑑𝑖𝑢𝑠
𝛾

 

3. From equation(1) and (2), we get 
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝛾

= 𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶

        … (5) 

Corollary1: (Gauss Mean Value Theorem) If 𝑓(𝑧)  is analytic in a 

Domain 𝐷 and if the circular domain |𝑧 − 𝑧0| ≤ 𝜌 is contained in 𝐷, then 

the value of 𝑓(𝑧)  at 𝑧0  is given by the average of its values of the 

boundary of the circle |𝑧 − 𝑧0| = 𝜌.Mathematically, this is expressed as 

𝑓(𝑧0) =
1

2𝜋
∫ 𝑓(𝑧0 + 𝜌𝑒𝑖𝜃)

2𝜋

0

𝑑𝜃 

Proof: From the equation (1) and (5), we get 

𝑓(𝑧0) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧

𝐶

=
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧

𝛾

 

|𝑧 − 𝑧0| = 𝜌 ⇒ 𝑧 − 𝑧0 = 𝜌𝑒𝑖𝜃 ⇒ 𝑑𝑧 = 𝜌𝑖𝑒𝑖𝜃𝑑𝜃 

𝑓(𝑧0) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧

𝐶

=
1

2𝜋𝑖
∫

𝑓(𝑧0 + 𝜌𝑒𝑖𝜃)𝜌𝑖𝑒𝑖𝜃𝑑𝜃

𝜌𝑒𝑖𝜃

2𝜋

0

 

𝑓(𝑧0) =
1

2𝜋
∫ 𝑓(𝑧0 + 𝜌𝑒𝑖𝜃)𝑑𝜃

2𝜋

0

 

Theorem1: (Extension of Cauchy’s Integral formula to multiply 

connected regions): If 𝑓(𝑧) is analytic in a ring shaped region bounded 

by two closed curves 𝐶1 and 𝐶2 and 𝑎 is a point in the region between 𝐶1 

and 𝐶2. 
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𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶2

−
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶1

 

where 𝐶2  is outer curve. 

Proof: The circle 𝛾 centered at  𝑧 = 𝑎 with radius 𝑟 is chosen such that it 

lies entirely within the annular region bounded by the closed curves 𝐶1 

and 𝐶2, ensuring that the function 
𝑓(𝑧)

𝑧−𝑎
 is analytic in the region enclosed by 

 𝐶1, 𝐶2 and 𝛾. 

 

Fig.5 

By corollary Cauchy’s theorem 

∫
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶2

= ∫
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶1

+ ∫
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝛾

   

Where the integral along each curve is taken in anti-clockwise direction. 

Using Cauchy’s integral formula, 

∫
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶2

= ∫
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶1

+ 2𝜋𝑖 𝑓(𝑎) 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶2

−
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶1

 

Theorem2: (Cauchy’s Integral formula for the derivative of an 

analytic function): If 𝑓(𝑧) is analytic within and on a closed contour C 

and a is any lying in it, then 

𝑓′(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)2
𝑑𝑧

𝐶2

 

Or 

Using Cauchy’s integral formula to find first derivative of an analytic 

function 𝑓(𝑧) at 𝑧 = 𝑧0. 
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Proof: Let 𝑎 + ℎ  be a point in the neighborhood of a point a, then by 

Cauchy’s integral formula, 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶

 

𝑓(𝑎 + ℎ) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − (𝑎 + ℎ)
𝑑𝑧

𝐶

 

Now 

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
=

1

2𝜋𝑖
∫

𝑓(𝑧)

ℎ𝐶

[
1

𝑧 − 𝑎 − ℎ
−

1

𝑧 − 𝑎
] 𝑑𝑧 

=
1

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)ℎ𝐶

[(1 −
ℎ

𝑧 − 𝑎
)

−1

− 1] 𝑑𝑧 

=
1

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)ℎ𝐶

[
ℎ

𝑧 − 𝑎
+ (

ℎ

𝑧 − 𝑎
)

2

+ (
ℎ

𝑧 − 𝑎
)

3

+ ⋯ ] 𝑑𝑧 

=
1

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)𝐶

[
1

𝑧 − 𝑎
+

ℎ

(𝑧 − 𝑎)2
+

ℎ2

(𝑧 − 𝑎)3
+ ⋯ ] 𝑑𝑧 

Taking ℎ → 0, we obtain 

lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
=

1

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)𝐶

[
1

𝑧 − 𝑎
+ 0 + 0 … ] 𝑑𝑧 

𝑓′(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)2
𝑑𝑧

𝐶2

 

8.8 HIGHER ORDER DERIVATIVES:-  

If 𝑓(𝑧) is a function of analysis within and on a closed contour 𝐶 and 𝑎 is 

any point within 𝐶 then derivatives of all orders are analytic and are given 

by 

𝑓𝑛(𝑎) =
𝑛!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)𝑛+1
𝑑𝑧

𝐶2

 

Proof: From the previous theorem 2, we obtain 

𝑓(1)(𝑎) = 𝑓′(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)2
𝑑𝑧

𝐶2
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This proves that the result is true for 𝑛 = 1. Let us consider the result is 

true for 𝑛 = 𝑚 so that 

𝑓(𝑚)(𝑎) = 𝑓′(𝑎) =
𝑚!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)𝑚+1
𝑑𝑧

𝐶2

 

Let 𝑎 + ℎ be the point in neighborhood of 𝑎, then 

𝑓(𝑚)(𝑎 + ℎ) − 𝑓(𝑚)(𝑎)

ℎ

=
𝑚!

2𝜋𝑖
∫ 𝑓(𝑧) [

1

(𝑧 − 𝑎 − ℎ)𝑚+1
−

1

(𝑧 − 𝑎)𝑚+1
] 𝑑𝑧

𝐶

 

=
𝑚!

2𝜋𝑖ℎ
∫

𝑓(𝑧)

(𝑧 − 𝑎)𝑚+1
 [(1 −

1

𝑧 − 𝑎
)

−(𝑚+1)

− 1] 𝑑𝑧
𝐶

 

=
𝑚!

2𝜋𝑖ℎ
∫

𝑓(𝑧)

(𝑧 − 𝑎)𝑚+1
 [

ℎ(𝑚 + 1)

𝑧 − 𝑎
+

(𝑚 + 1)(𝑚 + 2)

2!
(

ℎ

𝑧 − 𝑎
)

2

+ ⋯ ] 𝑑𝑧
𝐶

 

Taking ℎ → 0 

lim
ℎ→0

𝑓(𝑚)(𝑎 + ℎ) − 𝑓(𝑚)(𝑎)

ℎ
==

𝑚!

2𝜋𝑖ℎ
∫

𝑓(𝑧)

(𝑧 − 𝑎)𝑚+1
 [

(𝑚 + 1)

𝑧 − 𝑎
+ 0

+ ⋯

] 𝑑𝑧
𝐶

 

𝑓(𝑚+1)(𝑎) =
(𝑚 + 1)𝑚!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)𝑚+2
 𝑑𝑧

𝐶

 

𝑓(𝑚+1)(𝑎) =
(𝑚 + 1)!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)𝑚+2
 𝑑𝑧

𝐶

 

This proves that we have already seen that the result is true for 𝑛 = 1  and 

shown that it being true for 𝑛 = 𝑚 implies it is true for 𝑛 = 𝑚 + 1, it 

follows that the result is true for all positive integers 𝑛. 

Since 𝑓(1)(𝑎), 𝑓(2)(𝑎), 𝑓(3)(𝑎) … … … … . .  𝑎𝑙𝑙 𝑒𝑥𝑖𝑠𝑡 

Consequently 𝑓(1)(𝑎), 𝑓(1)(𝑎) … … … 𝑎𝑙𝑙 𝑎𝑟𝑒 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑤𝑖𝑡ℎ𝑖𝑛 𝐶. 

8.9 POISSON’S INTEGRAL FORMULA:-  

If 𝑓(𝑧) is analysis within and on a circle 𝐶 defined by |𝑧| = 𝑅 and if 𝑎 is 

any point within C, then 

𝑓(𝑎) =
1

2𝜋𝑖
∫

(𝑅2 − 𝑎�̅�)𝑓(𝑧)

(𝑧 − 𝑎)(𝑅2 − 𝑧�̅�)
𝑑𝑧

𝐶
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Hence deduce the Poisson’s formula 

𝑓(𝑟𝑒𝑖𝜃) =
1

2𝜋
∫

(𝑅2 − 𝑟2)𝑓(𝑅𝑒𝑖𝜙)𝑑𝜙

(𝑅2 − 2𝑅𝑟𝑐𝑜𝑠(𝜃 − 𝜙) + 𝑟2)
𝑑𝑧

𝐶

 

where 𝑎 = 𝑟𝑒𝑖𝜃  is any point inside the circle |𝑧| = 𝑅. 

Proof: Let us suppose 𝑓(𝑧) is analysis within and on a circle 𝐶 defined by 

|𝑧| = 𝑅 and  𝑎 = 𝑟𝑒𝑖𝜃  is any point 𝐴 inside 𝐶 so that 0 < 𝑟 < 𝑅 

 

 

Fig.6 

Let 𝐴′(𝑎′) of 𝐴(𝑎) w.r.t. the circle C is given by 𝑎′ =
𝑅2

�̅�
 which outside 

the circle C, by Cauchy’s integral formula 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶

     … (1) 

Since 𝑓(𝑧) is analysis within and upon the circle 𝐶 and so 
𝑓(𝑧)

𝑧−𝑎′
 is within 

and on a circle 𝐶, by Cauchy’s theorem 

∫
𝑓(𝑧)

𝑧 − 𝑎′
𝑑𝑧

𝐶

= 0           … (2) 

From (1) and (2), we obtain 

𝑓(𝑎) − 0 =  
1

2𝜋𝑖
∫ [

𝑓(𝑧)

𝑧 − 𝑎
−

𝑓(𝑧)

𝑧 − 𝑎′
] 𝑑𝑧

𝐶

 

𝑓(𝑎) =  
1

2𝜋𝑖
∫

(𝑎 − 𝑎′)𝑓(𝑧)

(𝑧 − 𝑎)(𝑧 − 𝑎′)
𝑑𝑧

𝐶
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=  
1

2𝜋𝑖
∫

(𝑎 −
𝑅2

�̅� ) 𝑓(𝑧)

(𝑧 − 𝑎) (𝑧 −
𝑅2

�̅�
)

𝑑𝑧
𝐶

 

=  
1

2𝜋𝑖
∫

(𝑎�̅� − 𝑅2)𝑓(𝑧)

(𝑧 − 𝑎)(�̅�𝑧 − 𝑅2)
𝑑𝑧

𝐶

 

𝑓(𝑎) =
1

2𝜋𝑖
∫

(𝑎�̅� − 𝑅2)𝑓(𝑧)

(𝑧 − 𝑎)(�̅�𝑧 − 𝑅2)
𝑑𝑧

𝐶

         … (3) 

This proves first result. 

Let |𝑧| = 𝑅 is expressible as 𝑧 = 𝑅𝑒𝑖𝜙. 

Also 𝑎 = 𝑟𝑒𝑖𝜃  so that �̅� = 𝑟𝑒−𝑖𝜃 

Now  𝑅2 − 𝑎�̅� = 𝑅2 −  𝑟𝑒𝑖𝜃 . 𝑟𝑒−𝑖𝜃 = 𝑅2 − 𝑟2         … (4) 

(𝑧 − 𝑎)(𝑅2 − 𝑧�̅�) = (𝑅𝑒𝑖𝜙 − 𝑟𝑒𝑖𝜃)(𝑅2 − 𝑅𝑒𝑖𝜙𝑟𝑒−𝑖𝜃) 

= 𝑅𝑒𝑖𝜙(𝑅 − 𝑟𝑒𝑖(𝜃−𝜙))(𝑅 − 𝑟𝑒−𝑖(𝜃−𝜙)) 

= 𝑅𝑒𝑖𝜙[𝑅2 + 𝑟2 − 𝑟𝑅(𝑒𝑖(𝜃−𝜙) − 𝑒−𝑖(𝜃−𝜙))] 

= 𝑅𝑒𝑖𝜙[𝑅2 + 𝑟2 − 2𝑟𝑅𝑐𝑜𝑠(𝜃 − 𝜙)]     … (5) 

                                    𝑑𝑧 = 𝑑(𝑅𝑒𝑖𝜙) = 𝑅𝑖𝑒𝑖𝜙𝑑𝜙     … (6) 

Putting the value of (4), (5) and (6) in (3), we get 

𝑓(𝑎) =
1

2𝜋𝑖
∫

(𝑅2 − 𝑟2)𝑓(𝑧)(𝑅𝑒𝑖𝜙)𝑖𝑑𝜙

(𝑅2 − 2𝑅𝑟𝑐𝑜𝑠(𝜃 − 𝜙) + 𝑟2)𝑅𝑒𝑖𝜙
𝑑𝑧

𝐶

 

𝑓(𝑟𝑒𝑖𝜃) =
1

2𝜋
∫

(𝑅2 − 𝑟2)𝑓(𝑅𝑒𝑖𝜙)𝑑𝜙

(𝑅2 − 2𝑅𝑟𝑐𝑜𝑠(𝜃 − 𝜙) + 𝑟2)
𝑑𝑧

𝐶

 

SOLVED EXAMPLE 

EXAMPLE1: Evaluate ∫
𝑒2𝑧𝑑𝑧

(𝑧+1)4𝐶
, where C is |𝑧| = 3. 

SOLUTION: Suppose  

𝑓𝑛(𝑎) =
𝑛!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)𝑛+1
𝑑𝑧

𝐶2

 

Put 𝑎 = −1, 𝑛 = 3 
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𝑓3(−1) =
3!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)4
𝑑𝑧

𝐶2

 

Taking 𝑓(𝑧) = 𝑒2𝑧 , then 𝑓𝑛(𝑧) = 2𝑛𝑒2𝑧 

𝑓3(−1) = 23𝑒−2 =
8

𝑒2
 

8

𝑒2
=

3!

2𝜋𝑖
∫

𝑒2𝑧

(𝑧 − 𝑎)4
𝑑𝑧

𝐶2

 

8𝜋𝑖

3𝑒2
= ∫

𝑒2𝑧

(𝑧 − 𝑎)4
𝑑𝑧

𝐶

 

EXAMPLE2: Using Cauchy’s integral Formula, Calculate the following 

integrals. 

i. ∫
𝑧

(9−𝑧2)(𝑧+𝑖)
𝑑𝑧

𝐶
, where C is the circle |𝑧| = 2  described in 

positive sense. 

ii. ∫
1

𝑧(𝑧+𝜋𝑖)
𝑑𝑧

𝐶
, where C is the circle |𝑧 + 3𝑖| = 1 

iii. ∫
𝑐𝑜𝑠ℎ(𝜋𝑧)𝑑𝑧

𝑧(𝑧2+1)
𝑑𝑧

𝐶
, where C is the circle |𝑧| = 2 

iv. ∫
𝑒𝑎𝑧

𝑧(𝑧−𝜋𝑖)
𝑑𝑧

𝐶
, where C is the ellipse |𝑧 − 2| + |𝑧 + 2| = 6 

v. Evaluate ∫
𝑑𝑧

𝑧−2𝐶
, where C is |𝑧| = 3. 

SOLUTION: By Cauchy’s integral Formula,  

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶

⇒ ∫
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶

= 2𝜋𝑖𝑓(𝑎) … (1) 

where 𝑧 = 𝑎 is a point inside contour 𝐶  and 𝑓(𝑧) is analytic within and 

upon 𝐶. 

i.  

 
Fig.7 

Suppose   

𝐼 = ∫
𝑧

(9 − 𝑧2)(𝑧 + 𝑖)
𝑑𝑧

𝐶
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 Now we 

𝐼 = ∫
𝑧

(9 − 𝑧2)
𝑑𝑧

𝐶

 

                Then  

𝐼 = ∫
𝑓(𝑧)

(𝑧 − (−𝑖))
𝑑𝑧

𝐶

= 2𝜋𝑖𝑓(−𝑖) =
2𝜋

9 + 1
=

𝜋

5
 

                 Hence 𝑓(𝑧) is analytic within and upon C s.t. |𝑧| = 2 and    

                 𝑧 = −𝑖 lies inside C. 

ii. Let  

𝐼 = ∫
1

𝑧(𝑧 + 𝜋𝑖)
𝑑𝑧

𝐶

 

Take 𝑓(𝑧) =
1

𝑧
 

 

 

 

 Fig.8 

𝐼 = ∫
1

𝑧(𝑧 − (−𝜋𝑖))
𝑑𝑧

𝐶

 

= 2𝜋𝑖𝑓(−𝜋𝑖) 

= 2𝜋𝑖 (
1

−𝜋𝑖
) = −2 

Hence 𝑧 = −𝑖𝜋 lies inside C and 𝑓(𝑧) is analytic within 𝐶. 
iii. Let  

∫
𝑐𝑜𝑠ℎ(𝜋𝑧)𝑑𝑧

𝑧(𝑧2 + 1)
𝑑𝑧

𝐶

 

Take 𝑓(𝑧) = 𝑐𝑜𝑠ℎ(𝜋𝑧) = 𝑐𝑜𝑠ℎ(𝑖𝜋𝑧) and C is |𝑧| = 2. 

Then 
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Fig.9 

𝐼 = ∫
𝑓(𝑧)

𝑧(𝑧2 + 1)
𝑑𝑧

𝐶

 

𝐼 = ∫ [
𝐴

𝑧
+

𝐵

𝑧 − 𝑖
+

𝐶

𝑧 + 𝑖
] 𝑓(𝑧)𝑑𝑧

𝐶

    … (2) 

1

𝑧(𝑧 − 𝑖)(𝑧 + 𝑖)
=

𝐴

𝑧
+

𝐵

𝑧 − 𝑖
+

𝐶

𝑧 + 𝑖
 

𝐴 =
1

(𝑧 − 𝑖)(𝑧 + 𝑖)
= 1 𝑎𝑡 𝑧 = 0 

𝐵 =
1

𝑧(𝑧 + 𝑖)
= −

1

2
 𝑎𝑡 𝑧 = 𝑖 

𝐶 =
1

𝑧(𝑧 − 𝑖)
= −

1

2
 𝑎𝑡 𝑧 = −𝑖 

                when 𝑧 = 0, 𝑖, −𝑖 are the points inside C. 

                From the equation (1) + (2), we obtain 

𝐼 = 2𝜋𝑖[𝐴𝑓(0) + 𝐵𝑓(𝑖) + 𝐶𝑓(−𝑖)] 

= 2𝜋𝑖 [𝑓(0) −
1

2
𝑓(𝑖) −

1

2
𝑓(−𝑖)] 

= 2𝜋𝑖 [𝑐𝑜𝑠(0) −
1

2
𝑐𝑜𝑠(𝑖2𝜋) −

1

2
𝑓(−𝑖2𝜋)] 

= 2𝜋𝑖 [1 +
1

2
−

1

2
] = 2𝜋𝑖 

iv. Let 

 

∫
𝑒𝑎𝑧

𝑧(𝑧−𝜋𝑖)
𝑑𝑧

𝐶
, 

C is the ellipse     |𝑧 − 2| + |𝑧 + 2| = 6 

[(𝑥 − 2)2 + 𝑦2]1/2 = 6 − [(𝑥 + 2)2 + 𝑦2]1/2 
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Fig.10 

Squaring both sides, 

𝑥2 + 𝑦2 + 4 − 4𝑥 = 36 + (𝑥2 + 𝑦2 + 4 + 4𝑥) − 12[(𝑥 + 2)2 + 𝑦2]1/2 

12[(𝑥 + 2)2 + 𝑦2]1/2 = 36 + 8𝑥 

3(𝑥2 + 𝑦2 + 4 + 4𝑥)1/2 = 9 + 2𝑥 

Again squaring 

9(𝑥2 + 𝑦2 + 4 + 4𝑥)1/2 = 81 + 36𝑥 + 4𝑥2 

5𝑥2 + 9𝑦2 = 45 

𝑥2

9
+

𝑦2

5
= 1 

Comparing 
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1, we have 𝑎2 = 9, 𝑏2 = 5 ⇒ 𝑎 = 3, 𝑏 = 2.2𝑎𝑝𝑝𝑜𝑥 

So  
𝑒𝑎𝑧

𝑧(𝑧−𝜋𝑖)
 is analytic within and upon 𝐶. 

 ∴        𝐼 = 0, by Cuchy’s theorem 

v. Suppose  

∫
𝑑𝑧

𝑧 − 2𝐶

= ∫
𝑓(𝑧)𝑑𝑧

𝑧 − 2𝐶

 

Then 𝑎 = 2, 𝑓(𝑧) = 1. C is circle |𝑧| = 3 whose centre is at 𝑧 = 0  and 

radius 𝑅 = 3. 

Since 𝑎 = 2 lies inside 𝐶. 
Now from (1) and (2) ,we get 

𝐼 = 2𝜋𝑖𝑓(𝑎) = 2𝜋𝑖𝑓(2) = 2𝜋𝑖(1) = 2𝜋𝑖 
For   𝑓(𝑧) = 1  ⇒  𝑓(2) = 1. 

 

EXAMPLE3: Evaluate by Cauchy’s integral formula  

∫
𝑑𝑧

𝑧(𝑧 − 𝑖𝜋)𝐶
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where 𝐶 is |𝑧 + 3𝑖| = 1. 

SOLUTION: Let 

∫
𝑑𝑧

𝑧(𝑧 + 𝑖𝜋)𝐶

=
1

𝑖𝜋
[∫

𝑑𝑧

𝑧𝐶

− ∫
𝑑𝑧

(𝑧 + 𝑖𝜋)𝐶

] 

Also 

The distance from 𝑧 = 0 to the center of the circle −3𝑖 is ∣ 0 + 3𝑖 ∣= 3. 

Since 3 > 1, 𝑧 = 0 is not inside the circle. 

The distance from 𝑧 = 𝑖𝜋 to the center of the circle −3𝑖 is ∣ 𝑖𝜋 + 3𝑖 ∣=∣
𝜋 + 3 ∣ 𝑖 ∣= 𝜋 + 3. Since 𝜋 ≈ 3.14 > 1𝜋 ≈ 3.14 > 1, 𝑧 = 𝑖𝜋  is also not 

inside the circle. 

Since neither of the poles is inside the contour C, the function 
1

𝑧(𝑧−𝑖𝜋)
 is 

analytic inside and on C. 

Therefore, the integral of this function over the closed contour C is zero by 

Cauchy's Theorem: 

∫
𝑑𝑧

𝑧𝐶
= 2𝜋𝑖𝑓(0) = 2𝜋𝑖  and ∫

𝑑𝑧

(𝑧+𝑖𝜋)𝐶
= 2𝜋𝑖𝑓(−𝜋𝑖) = 2𝜋𝑖 

 ∴ 

∫
𝑑𝑧

𝑧(𝑧 + 𝑖𝜋)𝐶

=
2𝜋𝑖 − 2𝜋𝑖

𝜋𝑖
= 0 

EXAMPLE4: Find the value of ∫
1

𝑧
𝑑𝑧 where C is circle = 𝑒𝑖𝜃, 0 ≤ 𝜃 ≤

2𝜋 . 

SOLUTION: The circle 𝑧 = 𝑒𝑖𝜃  represents a unit circle in the complex 

plane, parameterized by 𝜃 ranging from 0 to 2𝜋. The parameterization is: 

 𝑧(𝜃) = 𝑒𝑖𝜃  

 𝑑𝑧 =
𝑑𝑧

𝑑𝜃
𝑑𝜃 = 𝑖𝑒𝑖𝜃𝑑𝜃 

The integral becomes: 

∫
1

𝑧
𝑑𝑧

𝐶

= ∫
1

𝑒𝑖𝜃

2𝜋

0

. 𝑖𝑒𝑖𝜃𝑑𝜃 

Simplifying the expression inside the integral: 

= ∫ 𝑖
2𝜋

0

𝑑𝜃 

Since i is a constant, the integral simplifies to: 

= ∫ 𝑖
2𝜋

0

𝑑𝜃 = 𝑖[𝜃]0
2𝜋 = 𝑖(2𝜋 − 0) = 2𝜋𝑖 

Therefore, the value of the integral ∫
1

𝑧
𝑑𝑧

𝐶
, where 𝐶 is the circle 𝑧 = 𝑒𝑖𝜃  

for 0 ≤ 𝜃 ≤ 2𝜋. 

EXAMPLE5: Evaluate ∫
tan (𝑧/2)

(𝑧−𝑥0)2 𝑑𝑧
𝐶
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where 𝐶  is the boundary of square whose sides lie along the lines 𝑥 =
±2, 𝑦 = ±2 and it is described in positive sense, where |𝑥0| < 2. 

SOLUTION: By Cauchy’s integral formula 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶

 

and  

𝑓𝑛(𝑎) =
𝑛!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)𝑛+1
𝑑𝑧

𝐶

 

This             ⇒ 

∫
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶

= 2𝜋𝑖𝑓(𝑎) 

 and  

∫
𝑓(𝑧)

(𝑧 − 𝑎)𝑛+1
𝑑𝑧

𝐶

=
2𝜋𝑖

𝑛!
𝑓𝑛(𝑎) 

where 𝑧 = 𝑎 lies inside 𝐶 and 𝑓(𝑧) is analytic within and upon 𝐶. 

 

SELF CHECK QUESTIONS 

1. How does Cauchy's Theorem relate to the concept of an analytic 

function? 

2. What is the significance of the domain being "simply connected" 

in Cauchy's Theorem? 

3. Can Cauchy's Theorem be applied if the function is not analytic on 

the contour? 

4. What are the conditions for applying Cauchy's Theorem? 

5. How does Cauchy's Theorem lead to Cauchy's Integral Formula? 

 

8.10 SUMMARY:-   

In this unit we have studied the Cauchy's Theorem and Cauchy's Integral 

Formula are foundational results in complex analysis. Cauchy's Theorem 

states that if a function 𝑓(𝑧) is analytic in a simply connected domain 𝐷 

and on a simple closed contour 𝐶 within 𝐷 , then the integral of 𝑓(𝑧) 

around 𝐶  is zero, emphasizing the independence of path in analytic 

regions. Building on this, Cauchy's Integral Formula provides a specific 

value for the function at any point 𝑧0 inside 𝐶 by expressing it as 𝑓(𝑧0) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧−𝑧0
𝑑𝑧

𝐶
, showing that the value of an analytic function inside a 

contour can be determined entirely by its values on the contour. Together, 

these results highlight the deep connections between the values of an 

analytic function within a region and on its boundary, enabling further 

theorems and applications in complex analysis. 
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8.11 GLOSSARY:-   

 Analytic Function (Holomorphic Function): A function 𝑓(𝑧) 

that is complex differentiable at every point in its domain. 

 Simply Connected Domain: A region in the complex plane 

without holes, where any closed curve can be continuously 

contracted to a point within the region. 

 Contour (Path): A directed curve in the complex plane often used 

in the context of integrating functions along its length. 

 Simple Closed Contour: A contour that does not intersect itself 

and encloses a well-defined region. 

 Cauchy's Theorem: A fundamental theorem stating that if a 

function is analytic within and on a simple closed contour in a 

simply connected domain, then the integral of the function over 

that contour is zero. 

 Cauchy's Integral Formula: A powerful result in complex 

analysis that expresses the value of an analytic function inside a 

contour in terms of an integral over the contour. It is given 

by𝑓(𝑧0) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧−𝑧0
𝑑𝑧

𝐶
, where 𝑧0 is a point inside the contour 𝐶. 

 Residue: The coefficient of (𝑧 − 𝑧0)−1 in the Laurent series 

expansion of a function around a point 𝑧0, significant in evaluating 

integrals around singularities. 

 Laurent Series: A representation of a complex function that 

generalizes the Taylor series, allowing terms with negative powers 

of(𝑧 − 𝑧0). 

 Pole: A type of singularity where a function behaves like 
1

(𝑧−𝑧0)𝑛 

near 𝑧 = 𝑧0, causing the function to go to infinity. 

 Singularity: A point at which a function is not analytic, which can 

be a pole, essential singularity, or removable singularity. 

 Integral Path Independence: A property in simply connected 

domains where the integral of an analytic function depends only on 

the endpoints, not the path taken. 

 Integral along a Contour: The sum (integral) of the values of a 

function along a contour in the complex plane, taking into account 

the direction of traversal. 

 Winding Number: The number of times a contour wraps around a 

point, relevant in calculating residues and applying the argument 

principle. 

 Argument Principle: A theorem relating the number of zeros and 

poles of a meromorphic function inside a contour to the integral of 

the function's logarithmic derivative around the contour. 
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8.14 TERMINAL QUESTIONS:-  

(TQ-1) Prove Cauchy's Theorem for a simple closed contour in a simply 

connected domain. 

(TQ-2)Derive and prove Cauchy's Integral Formula for an analytic 

function. 

(TQ-3)Derive Cauchy's Integral Formula for higher-order derivatives. 

(TQ-4)Prove the generalized version of Cauchy's Theorem for multiple 

contours within a simply connected domain. 

(TQ-5) Prove the generalized Cauchy Integral Formula for a multi-

connected domain with multiple singularities. 

(TQ-6)State Cauchy’s theorem.  

(TQ-7) If 𝑓(𝑧) is analytic with 𝑓′(𝑧)continuous within and on a simple 

closed contour 𝐶, then prove that 

∫𝑓(𝑧)𝑑𝑧 = 0
𝐶

        

(TQ-8) If 𝑓(𝑧) is analytic in a simply connected domain 𝐷, then prove 

that the integral of 𝑓(𝑧) along any rectifiable curve joining two points 

𝑧1 and 𝑧2within 𝐷 is independent of the path taken between 𝑧1 and 𝑧2. 

https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-III-Complex-Analysis.pdf
https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-III-Complex-Analysis.pdf
file:///C:/Users/user/Desktop/1468561942EText(Ch-5,M-2%20(1).pdf
file:///C:/Users/user/Desktop/1468561942EText(Ch-5,M-2%20(1).pdf
file:///C:/Users/user/Desktop/1468561978EText(Ch-5,M-3.pdf
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(TQ-9) If a function 𝑓(𝑧)  is continuous on a contour 𝐶 of length 𝑙 and if 

𝑀 be the upper bound of |𝑓(𝑧)| on 𝐶, then prove that  

|∫ 𝑓(𝑧)𝑑𝑧
𝐶

| ≤ 𝑀𝑙. 

(TQ-10) If 𝑓(𝑧) is analytic within and on a closed contour 𝐶, and if 𝑎 is 

any point within 𝐶, then prove that  

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝐶

 

(TQ-11)Using Cauchy’s integral formula to find first derivative of an 

analytic function 𝑓(𝑧) at 𝑧 = 𝑧0. 

(TQ-12)Prove that 𝑓′′′(𝑎) =
3!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧−𝑎)4𝐶
, where C is contour containing 

𝑧 = 𝑎. 

8.15 ANSWERS:- 

SELF CHECK ANSWERS 

1. Cauchy's Theorem highlights that if a function is analytic within a 

simply connected domain, the line integral of the function along 

any closed contour within that domain is zero. This property shows 

the independence of the integral from the specific path taken, 

illustrating that the integral depends only on the endpoints, which 

are the same for a closed contour, thus resulting in zero. 

2. The domain being simply connected ensures that there are no holes 

or isolated singularities within the domain. This is important 

because if the domain were not simply connected, a function might 

have singularities that could affect the value of the integral. In a 

simply connected domain, any two paths between the same points 

can be continuously deformed into each other without leaving the 

domain, ensuring that the integral around a closed loop is zero if 

the function is analytic. 

3. No, Cauchy's Theorem cannot be directly applied if the function 

has singularities on the contour C. The theorem requires the 

function to be analytic on and inside the contour C. If there are 

singularities on the contour, the integral might not even be defined 

in 1. the usual sense, and different techniques or theorems like the 

residue. 

4. Answer: The key conditions for applying Cauchy's Theorem are: 

a. The function 𝑓(𝑧) must be analytic (holomorphic) in a domain 

𝐷. 

b. The domain 𝐷 must be simply connected. 
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c. The contour 𝐶 must be a simple closed contour (a loop without 

self-intersections) within 𝐷. 
5. Cauchy's Integral Formula is a consequence of Cauchy's Theorem. 

It provides a way to evaluate the value of an analytic function 

inside a contour using an integral over the contour itself. 

Specifically, for 𝑓(𝑧) analytic in a domain 𝐷 containing a closed 

contour 𝐶 and 𝑧0 inside 𝐶, Cauchy's Integral Formula states: 

𝑓(𝑧0) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧

𝐶

 

            This formula is derived using Cauchy's Theorem, where the  

function 
𝑓(𝑧)

𝑧−𝑧0
  is analytic inside C except at 𝑧 = 𝑧0, where it has a 

simple pole. 
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UNIT 9:- Cauchy’s Inequalities and other 

Theorem  

CONTENTS: 
9.1      Introduction 

9.2      Objectives 

9.3      Morera’s Theorem 

9.4      Cauchy’s inequality 

9.5       Lioville’s theorem 

9.6       Taylor’s Theorem 

9.7       Laurent’s Theorem  

9.8       Uniqueness of Laurent Expansion 

9.9       Summary 

9.10     Glossary 

9.11     References  

9.12     Suggested Reading  

9.13     Terminal questions 

9.14     Answers  

9.1 INTRODUCTION:-  

In this previous unit, we have studied about Cauchy's Theorems and 

Inequalities, are foundational concepts in complex analysis, providing key 

insights into the behavior of analytic functions. Cauchy's Theorem states 

that the integral of an analytic function over a closed contour is zero, 

highlighting the independence of the path in such integrals. Cauchy's 

Integral Formula further extends this by expressing the value of a function 

at a point inside the contour in terms of an integral around the contour, 

also allowing the calculation of derivatives. 

In this Unit we will study about Cauchy's Inequalities give upper bounds 

for the derivatives of an analytic function based on the maximum value of 

the function on a surrounding contour. These results collectively help in 

understanding the properties of analytic functions, such as growth, 

smoothness, and the nature of singularities, and have broad applications in 

mathematics and physics.Morera's Theorem, Liouville's Theorem, Taylor's 

Theorem, and Laurent's Series are pivotal results in complex analysis that 

extend our understanding of analytic and meromorphic functions. Morera's 

Theorem provides a converse to Cauchy's Theorem, stating that if a 
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function is continuous on a domain and its integral over every closed 

contour within that domain is zero, then the function is analytic. 

Liouville's Theorem asserts that any bounded entire function (analytic on 

the entire complex plane) must be constant, a fundamental result with 

implications in complex function theory and number theory. Taylor's 

Theorem in complex analysis expresses an analytic function as an infinite 

power series centered at a point, detailing the function's behavior in a 

neighborhood of that point. Laurent's Series generalizes this concept, 

representing functions with singularities in terms of both positive and 

negative powers, providing a powerful tool for analyzing functions with 

isolated singularities. Together, these theorems and series offer deep 

insights into the structure and properties of complex functions. 

9.2 OBJECTIVES:-  

The objectives of Cauchy's Inequalities, Morera's Theorem, Liouville's 

Theorem, Taylor's Theorem, and Laurent's Series are to provide 

foundational tools and insights in complex analysis: Cauchy's Inequalities 

aim to bound the derivatives of analytic functions within a region, 

highlighting their growth constraints; Morera's Theorem serves to confirm 

the analyticity of functions based on contour integrals, acting as a 

converse to Cauchy's Theorem; Liouville's Theorem establishes that any 

bounded entire function must be constant, offering critical insights into the 

behavior of complex functions; Taylor's Theorem provides a method to 

represent analytic functions as power series, facilitating local analysis and 

approximation; and Laurent's Series extends this representation to 

functions with isolated singularities, allowing detailed study of their 

behavior near such points. 

 

9.3 MORERA’S THEOREM:-  

If 𝑓(𝑧) is a continuous function in a domain 𝐷  and if for every closed 

Contour 𝐶 in the domain 𝐷, 

∫𝑓(𝑧)
𝐶

𝑑𝑧 = 0 

Then 𝑓(𝑧) is analytic within 𝐷. 

Proof:  Let 𝑧0 be the fixed point in D and 𝑧 a variable point inside the 

domain D.  the value of the integral ∫ 𝑓(𝑡)𝑑𝑡 
𝑧

𝑧0
is independent of the curve 

joining 𝑧0  to 𝑧 and depends only 𝑧. 
 

Now we write  
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𝐹(𝑧) = ∫ 𝑓(𝑡)𝑑𝑡
𝑧

𝑧0

 

Let 𝑧 + ℎ be a point in the neighborhood of 𝑧. Consider the difference 

quotient: 

𝐹(𝑧 + ℎ) − 𝐹(𝑧) = ∫ 𝑓(𝑡)𝑑𝑡 − ∫ 𝑓(𝑡)𝑑𝑡
𝑧

𝑧0

𝑧+ℎ

𝑧0

 

= ∫ 𝑓(𝑡)𝑑𝑡 + ∫ 𝑓(𝑡)𝑑𝑡
𝑧0

𝑧

𝑧+ℎ

𝑧0

= ∫ 𝑓(𝑡)𝑑𝑡
𝑧+ℎ

𝑧

 

By the continuity of 𝑓, for ∣ ℎ ∣ small enough, 𝑓(𝑡) is close to 𝑓(𝑧) for 

𝑡 between 𝑧 and 𝑧 + ℎ. Specifically, for any 𝜖 > 0, there exists 𝛿 > 0 such 

that if ∣ ℎ ∣< 𝛿,  then ∣ 𝑓(𝑡) − 𝑓(𝑧) ∣< 𝜖  for all 𝑡  between 𝑧  and 𝑧 +
ℎ. Therefore 

|
𝐹(𝑧 + ℎ) − 𝐹(𝑧)

ℎ
− 𝑓(𝑧)| = |

1

ℎ
∫ 𝑓(𝑡)𝑑𝑡

𝑧+ℎ

𝑧

− 𝑓(𝑧)|

=
1

|ℎ|
|∫ [𝑓(𝑡) − 𝑓(𝑧)]𝑑𝑡

𝑧+ℎ

𝑧

| 

This can be bounded by: 

≤
1

|ℎ|
∫ |𝑓(𝑡) − 𝑓(𝑧)||𝑑𝑡|

𝑧+ℎ

𝑧

<
𝜀

|ℎ|
|ℎ| 

Since 
[|𝑓(𝑡) − 𝑓(𝑧)| < 𝜀 𝑓𝑜𝑟 |𝑡 − 𝑧| < 𝛿 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑜𝑓 𝑓(𝑧)] 

|
𝐹(𝑧 + ℎ) − 𝐹(𝑧)

ℎ
− 𝑓(𝑧)| < 𝜀 𝑤ℎ𝑖𝑐ℎ 𝜀 → 0 

Thus lim
ℎ→0

𝐹(𝑧+ℎ)−𝐹(𝑧)

ℎ
− 𝑓(𝑧) = 0  or   𝐹′(𝑧) = 𝐹(𝑧). 

Since 𝐹(𝑧)  is the antiderivative of 𝑓(𝑧)  and 𝐹(𝑧)  is analytic (as it is 

defined by an integral of a continuous function), 𝑓(𝑧), being the derivative 

of an analytic function, is also analytic. 

There 𝐹′(𝑧) i.e., 𝑓(𝑧) is analytic in 𝐷. 
Thus, we have shown that if 𝑓(𝑧) is continuous in 𝐷 and the integral of 

𝑓(𝑧) over every closed contour in 𝐷 is zero, then 𝑓(𝑧) is analytic in 𝐷. 

This completes the proof of Morera's Theorem. 

 

Remark: If 𝒇(𝒛)  is analytic in a simply connected region 𝑫  of the 

complex plane, show that there exists a function 𝑭′(𝒙) analytic in 𝑫, 

and such that 𝑭′(𝒛) = 𝒇(𝒛) for 𝒛 in 𝑫. 

 

9.4 CAUCHY'S INEQUALITY:-  

If 𝑓(𝑧) is analytic within and on a circle 𝐶, given by |𝑧 − 𝑎| = 𝑅 and if 
|𝑓(𝑧)| ≤ 𝑀 for every 𝑧 on 𝐶, then the magnitude of the 𝑛 −th derivative 

of 𝑓 at 𝑎 is bounded by 
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|𝑓𝑛(𝑎)| ≤
𝑀𝑛!

𝑅𝑛
 

Proof: Let |𝑧 − 𝑎| = 𝑅 ⇒ 𝑧 − 𝑎 = 𝑅𝑒𝑖𝜃 ⇒ 𝑑𝑧 = 𝑖𝑅𝑒𝑖𝜃𝑑𝜃 ⇒ |𝑑𝑧| = 𝑅𝑑𝜃 

According to Cauchy's Integral Formula, the 𝑛 −th derivative of 𝑓 at a can 

be expressed as: 

𝑓𝑛(𝑎) =
𝑛!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)𝑛+1
𝐶

 

|𝑓𝑛(𝑎)| ≤
𝑛!

2𝜋𝑖
∫

|𝑓(𝑧)||𝑑𝑧|

|𝑧 − 𝑎|𝑛+1
𝐶

≤
𝑀𝑛!

2𝜋𝑅𝑛+1
∫ 𝑅𝑑𝜃

𝑅

0

 

=
𝑀𝑛!

2𝜋𝑅𝑛+1
2𝜋𝑅 

|𝑓𝑛(𝑎)| ≤
𝑀𝑛!

𝑅𝑛
 

Remark: If we take 𝑎𝑛 =
𝑓𝑛(𝑎)

𝑛!
, then |𝑎𝑛| ≤

𝑀

𝑅𝑛 

 

Integral Function: A function 𝑓(𝑧) is called an integral function or entire 

function if it is analytic in every finite region. 

 

9.5 LIOVILLE’S THEOREM:-  

State and prove Liouvlille’s theorem. 

or 

If 𝑓(𝑧) is an entire function is bounded for all values of z, then it is 

constant. 

or 

If a function 𝑓(𝑧)  is analytic for a finite value of 𝑧, and is bounded, then 

𝑓(𝑧) is constant. 

or 

If 𝑓 is regular in hole 𝑧 −plane and if |𝑓(𝑧)| < 𝑘∀𝑧, then 𝑓(𝑧) must be 

constant. 

Proof: Let 𝑎 and 𝑏 be two arbitrary distinct points in the complex plane. 

Consider a large circle 𝐶 centered at the origin with radius 𝑅 such that 𝐶 

encloses both 𝑎  and 𝑏 . The equation of 𝐶  is |𝑧| = 𝑅  so that 𝑧 =
𝑅𝑒𝑖𝜃 , |𝑑𝑧| = 𝑅𝑑𝜃. 

𝐹(𝑧) is bounded ∀𝑧 ⇒ |𝑓(𝑧)| < 𝑀∀𝑧 where 𝑀 > 0. 

By Cauchy’s integral formula for 𝑓(𝑎) and 𝑓(𝑏), 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎𝐶

𝑑𝑧,   𝑓(𝑏) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑏𝐶

𝑑𝑧 

Simplify the integrand: 

𝑓(𝑎) −  𝑓(𝑏) =
1

2𝜋𝑖
∫ (

1

𝑧 − 𝑎
−

1

𝑧 − 𝑏
) 𝑓(𝑧)

𝐶

𝑑𝑧 

= (
𝑎 − 𝑏

2𝜋𝑖
) ∫

𝑓(𝑧)

(𝑧 − 𝑎)(𝑧 − 𝑏)𝐶

𝑑𝑧 
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The modulus of the integral can be bounded as follows: 

|𝑓(𝑎) −  𝑓(𝑏)| ≤
|𝑎 − 𝑏|

2𝜋
∫

|𝑓(𝑧)|

(|𝑧| − |𝑎|)(|𝑧| − |𝑏|)𝐶

|𝑑𝑧| 

The length of the contour C is 2πR: 

≤
𝑀|𝑎 − 𝑏|. 2𝜋𝑅

2𝜋(𝑅 − |𝑎|)(𝑅 − |𝑏|)
 

Simplifying, we get: 

|𝑓(𝑎) −  𝑓(𝑏)| ≤
𝑀|𝑎 − 𝑏|. 𝑅

(𝑅 − |𝑎|)(𝑅 − |𝑏|)
→ 0 𝑎𝑠 𝑅 → ∞. 

 This implies that 𝑓(𝑎) −  𝑓(𝑏) = 0  𝑜𝑟  𝑓(𝑎) =  𝑓(𝑏),  Since 𝑎  and 𝑏 

were arbitrary points in the complex plane, this means that 𝑓(𝑧)  is 

constant everywhere in 𝐶. 

[∫|𝑑𝑧|
𝐶

= 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 𝐶 = 2𝜋𝑅] 

 

Thus, we have proved that if an entire function 𝑓(𝑧) is bounded for all  𝑧, 

then 𝑓(𝑧)  must be constant. This completes the proof of Liouville's 

Theorem. 

Example: If |𝑓(𝜁)| has maximum (𝑟)𝑜𝑛 |𝜉 − 𝑎| = 𝑟 < 𝜌  , then if 𝑎𝑛 =
𝑓𝑛(𝑎)

𝑛!
, show that |𝑎𝑛| ≤

𝑀(𝑟)

𝑟𝑛  and from it deduce Liouville’s theorem. 

Solution: To prove |𝑎𝑛| ≤
𝑀

𝑟𝑛  (Refer the remark of Cauchy inequality) 

Let 𝑓(𝑧) is analytic and bounded ∀𝑧. 

To prove that 𝑓(𝑧) = 𝑐𝑜𝑛𝑠𝑡. 

|𝑓𝑛(𝑎)| ≤
𝑀𝑛!

𝑅𝑛
 

Where |𝑧 − 𝑎| = 𝑅, by (𝑖) part 

Taking 𝑛 = 1, |𝑓′(𝑎)| <
𝑀

𝑅
. R is given to be large. Hence making 𝑅 →

∞, |𝑓′(𝑎)| ≤ 0. But |𝑓′(𝑎)| ≥ 0.  

This ⇒  𝑓′(𝑎) = 0. Also a is arbitrary. 

Hence 𝑓′(𝑧) = 0∀𝑧 𝑜𝑟 
𝑑𝑓

𝑑𝑧
= 0, integrating, 𝑓(𝑧) = 𝑐𝑜𝑛𝑠𝑡. 

 

9.6 TAYLOR’S THEOREM:-  

If a function 𝑓(𝑧) is analytic within a circle 𝐶 with its centre 𝑧 = 𝑎 and 

radius 𝑅, then at every point 𝑧 inside 𝐶,  

𝑓(𝑧) = ∑ 𝑓𝑛

∞

𝑛=0

(𝑎)
(𝑧 − 𝑎)𝑛

𝑛!
  𝑜𝑟    𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

, 

where   𝑎𝑛 =
𝑓𝑛(𝑎)

𝑛!
 

. 

Proof: Let 𝑓(𝑡) be analytic within a circle 𝐶 whose equation is|𝑡 − 𝑎| =
𝑅. Let 𝑧 be any point within C s.t. |𝑧 − 𝑎| = 𝑟 < 𝑅. 
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By Cauchy integral formula, 

𝑓(𝑡) =
1

2𝜋𝑖
∫

𝑓(𝑡)

𝑡 − 𝑧𝐶

𝑑𝑧 

Notice that 𝑡 − 𝑧 = (𝑡 − 𝑎) − (𝑧 − 𝑎). So, 

=
1

2𝜋𝑖
∫

𝑓(𝑡)

(𝑡 − 𝑎) − (𝑧 − 𝑎)𝐶

𝑑𝑧 

=
1

2𝜋𝑖
∫

𝑓(𝑡)

(𝑡 − 𝑎)
[1 − (

𝑧 − 𝑎

𝑡 − 𝑎
)]

−1

𝐶

𝑑𝑡 

𝑓(𝑧) =
1

2𝜋𝑖
∫

𝑓(𝑡)

(𝑡 − 𝑎)𝐶

[1 +
𝑧 − 𝑎

𝑡 − 𝑎
+ (

𝑧 − 𝑎

𝑡 − 𝑎
)

2

+ ⋯ + (
𝑧 − 𝑎

𝑡 − 𝑎
)

𝑛

+ (
𝑧 − 𝑎

𝑡 − 𝑎
)

𝑛+1

(1 −
𝑧 − 𝑎

𝑡 − 𝑎
)

−1

] 𝑑𝑡 

Using the formula, 𝑓𝑛(𝑎) =
𝑛!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧−𝑎)𝑛+1𝐶
 ,we have 

𝑓(𝑧) = 𝑓(𝑎) + (𝑧 − 𝑎)
𝑓′(𝑎)

1!
+ (𝑧 − 𝑎)2

𝑓′′(𝑎)

1!
+ ⋯ + (𝑧 − 𝑎)𝑛

𝑓𝑛(𝑎)

𝑛!
+ 𝑈𝑛+1   … (1) 

 

Where  𝑈𝑛+1 =
(𝑧−𝑎)1+𝑛

2𝜋𝑖
∫

𝑓(𝑡)𝑑𝑡

(𝑡−𝑧)(𝑡−𝑎)𝑛+1𝐶
 

 ∴     

|𝑈𝑛+1| =
|𝑧 − 𝑎|1+𝑛

2𝜋
∫

|𝑓(𝑡)||𝑑𝑡|

(|𝑡 − 𝑎| − |𝑧 − 𝑎|)|𝑡 − 𝑎|𝑛+1
𝐶

 

≤
𝑀

2𝜋
(

𝑟

𝑅
)

𝑛+1

.
1

(𝑅 − 𝑟)
. 2𝜋𝑅 

where 𝑀 = 𝑚𝑎𝑥. |𝑓(𝑡)| on 𝐶. 

Or   

|𝑈𝑛+1| ≤ 𝑀. (
𝑟

𝑅
)

𝑛+1

.
1

1 − (
𝑟
𝑅)

→ 0 𝑎𝑠 𝑛 → ∞. 

For 

𝑙𝑖𝑚
𝑛→∞

(
𝑟

𝑅
)

𝑛+1

= 0 𝑎𝑠
𝑟

𝑅
< 1. 

 ∴             
lim

𝑛→∞
𝑈𝑛+1 = 0 

𝑓(𝑧) = 𝑙𝑖𝑚
𝑛→∞

[𝑓(𝑎) + (𝑧 − 𝑎) + 𝑓′(𝑎) + (𝑧 − 𝑎)2
𝑓′′(𝑎)

1!
+ ⋯

+ (𝑧 − 𝑎)𝑛
𝑓𝑛(𝑎)

𝑛!
)] 

Or  

𝑓(𝑧) = ∑(𝑧 − 𝑎)𝑛
𝑓𝑛(𝑎)

𝑛!

∞

𝑛=0

= ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

           … (2) 



Advanced Complex Analysis  MAT601 

Department of Mathematics         

Uttarakhand Open University Page 154 
 

 

Where  𝑎𝑛 =
𝑓𝑛(𝑎)

𝑛!
. 

This is the Taylor series expansion of 𝑓(𝑧) around the point 𝑧 = 𝑎. 
 

Note: 

The above theorem can also be related as: 

Let 𝑓(𝑧) be analytic at all points within a circle 𝐶0 with its centre at 𝑧0 and 

radius 𝑅. Let z any point inside 𝐶0. Then prove that  

 

𝑓(𝑧) = 𝑓(𝑧0) + ∑
(𝑧 − 𝑎)𝑛

𝑛!

∞

𝑛=1

𝑓𝑛(𝑧0) 

Deduction:  

i. Since z is a point within the circle |𝑡 − 𝑎| = 𝑅 such that |𝑧 − 𝑎| =
𝑟 < 𝑅 so that we can take 𝑧 = 𝑎 + ℎ, ℎ = 𝑧 − 𝑎. Substituting in 

(2), we obtain 

𝑓(𝑎 + ℎ) = ∑
ℎ𝑛

𝑛!

∞

𝑛=1

𝑓𝑛(𝑧0) 

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ𝑓′(𝑎) +
ℎ2

2!
𝑓′′(𝑎) + ⋯ 

      This is alternative form to Taylor’s Series. 

ii. If we write 𝑎 = 0 in (2), then we obtain 

 

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧)𝑛

∞

𝑛=0

                                𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

   

 

                    This is known as Maclaurin’s Series. 

iii. The series converges for |𝑧 − 𝑎| < 𝑅, where RRR is the radius of 

convergence, defined as the distance from 𝑎  to the nearest 

singularity of the function 𝑓(𝑧). The convergence of the series on 

the circle|𝑧 − 𝑎| = 𝑅, may or may not occur. 

 

9.7 LAURENT’S THEOREM:-  

Suppose a function 𝑓(𝑧) is analytic in the closed ring bounded by two 

concentric circles 𝐶 and 𝐶’ of centre a and radii 𝑅 and 𝑅’ (𝑅 > 𝑅’). If 𝑧 is 

any point of annulus, then 

 

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

+ ∑ 𝑏𝑛(𝑧 − 𝑎)−𝑛

∞

𝑛=1

 

where  
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𝑎𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑡)

(𝑡 − 𝑎)𝑛+1
𝐶

, 𝑏𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑡)

(𝑡 − 𝑎)−𝑛+1
𝐶′

 

Proof: Let 𝑓(𝑡) be analytic in the closed ring bounded by two concentric 

circles 𝐶 and 𝐶’ of the centre 𝑎 and radii 𝑅 and 𝑅’ (𝑅 > 𝑅’). Then if z is 

any point within the ring space, then 

𝑅′ < |𝑧 − 𝑎| = 𝑟 < 𝑅. 

Here we shall make the following facts: 

i. 
1

1−𝑏
= (1 − 𝑏)−1 = 1 + 𝑏 + 𝑏2 + ⋯ + 𝑏𝑛 +

𝑏𝑛+1

1−𝑏
 

ii. [1 −
𝑡−𝑎

𝑧−𝑎
]

−1

=
1

1−[
𝑡−𝑎

𝑧−𝑎
]

=
𝑧−𝑎

𝑧−𝑡
  

iii. lim
𝑛→∞

(
𝑟

𝑅
)

𝑛

= 0 = lim
𝑛→∞

(
𝑅′

𝑟
)

𝑛

 𝑎𝑠
𝑟

𝑅
< 1,

𝑅′

𝑟
< 1  

iv. ∫ |𝑑𝑡|
𝐶

= 2𝜋. Radius of a circleC=circumference. 

By extension to Cauchy’s integral formula 

𝑓(𝑧) =
1

2𝜋𝑖
∫

𝑓(𝑡)

𝑡 − 𝑧𝐶

−
1

2𝜋𝑖
∫

𝑓(𝑡)

𝑡 − 𝑧𝐶′
 

𝑓(𝑧) =
1

2𝜋𝑖
∫

𝑓(𝑡)

(𝑡 − 𝑎) − (𝑧 − 𝑎)𝐶

−
1

2𝜋𝑖
∫

𝑓(𝑡)

(𝑧 − 𝑎) − (𝑡 − 𝑎)𝐶′
 

𝑓(𝑧) =
1

2𝜋𝑖
∫

𝑓(𝑡)

𝑡 − 𝑎
[1 −

𝑧 − 𝑎

𝑡 − 𝑎
]

−1

𝐶

𝑑𝑡 −
1

2𝜋𝑖
∫

𝑓(𝑡)

𝑧 − 𝑎
[1 −

𝑡 − 𝑎

𝑧 − 𝑎
]

−1

𝐶′
𝑑𝑡 

 

 

=
1

2𝜋𝑖
∫

𝑓(𝑡)

𝑡 − 𝑎
[1 + (

𝑧 − 𝑎

𝑡 − 𝑎
) + (

𝑧 − 𝑎

𝑡 − 𝑎
)

2

+ ⋯ + (
𝑧 − 𝑎

𝑡 − 𝑎
)

𝑛

𝐶

+ (
𝑧 − 𝑎

𝑡 − 𝑎
)

𝑛+1

[1 −
𝑧 − 𝑎

𝑡 − 𝑎
]

−1

] 𝑑𝑡

+
1

2𝜋𝑖
∫

𝑓(𝑡)

𝑡 − 𝑎
[1 + (

𝑡 − 𝑎

𝑧 − 𝑎
) + (

𝑡 − 𝑎

𝑧 − 𝑎
)

2

+ ⋯ + (
𝑡 − 𝑎

𝑧 − 𝑎
)

𝑛

𝐶′

+ (
𝑡 − 𝑎

𝑧 − 𝑎
)

𝑛+1

[1 −
𝑡 − 𝑎

𝑧 − 𝑎
]

−1

] 

Taking 

 

𝑎𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑡)

(𝑡 − 𝑎)𝑛+1
𝐶

, 𝑏𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑡)

(𝑡 − 𝑎)−𝑛+1
𝐶′

= −𝑎𝑛 

 

𝑓(𝑧) = [𝑎0 + (𝑧 − 𝑎)𝑎1 + (𝑧 − 𝑎)2𝑎2 + ⋯ + (𝑧 − 𝑎)𝑛𝑎𝑛 + 𝑈𝑛+1]

+ [
𝑏1

𝑧 − 𝑎
+

𝑏2

(𝑧 − 𝑎)2
+ ⋯ +

𝑏𝑛

(𝑧 − 𝑎)𝑛
+ 𝑉𝑛+1]  … (1) 

where  

 

𝑈𝑛+1 =
1

2𝜋𝑖
∫

𝑓(𝑡)

(𝑡 − 𝑧)
(

𝑧 − 𝑎

𝑡 − 𝑎
)

𝑛+1

𝐶

𝑑𝑡 
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𝑉𝑛+1 =
1

2𝜋𝑖
∫

𝑓(𝑡)

(𝑧 − 𝑡)
(

𝑡 − 𝑎

𝑧 − 𝑎
)

𝑛+1

𝐶

𝑑𝑡 

Let 𝑀 = 𝑚𝑎𝑥. |𝑓(𝑡)|  on C, 𝑀′ = 𝑚𝑎𝑥. |𝑓(𝑡)|  on 𝐶′ 

|𝑈𝑛+1| ≤
1

2𝜋
∫|𝑓(𝑡)| ⌈

𝑧 − 𝑎

𝑡 − 𝑎
⌉

𝑛+1

𝐶

|𝑑𝑡|

(|𝑡 − 𝑎| − |𝑧 − 𝑎|)
 

≤
𝑀

2𝜋
(

𝑟

𝑅
)

𝑛+1 2𝜋𝑅

(𝑅 − 𝑟)
 

or  

 

|𝑈𝑛+1| ≤ 𝑀 (
𝑟

𝑅
)

𝑛+1

.
1

1 − (
𝑟
𝑅)

→ 0   𝑎𝑠 𝑛 → ∞ 

Hence  lim
𝑛→∞

𝑈𝑛+1 = 0 

|𝑉𝑛+1| ≤
1

2𝜋
∫ |𝑓(𝑡)| ⌈

𝑡 − 𝑎

𝑧 − 𝑎
⌉

𝑛+1

𝐶′

|𝑑𝑡|

(|𝑧 − 𝑎| − |𝑡 − 𝑎|)
 

≤
𝑀′

2𝜋
(

𝑅′

𝑟
)

𝑛+1
2𝜋𝑅′

(𝑟 − 𝑅′)
 

≤ 𝑀′ (
𝑅′

𝑟
)

𝑛+1

.
1

(
𝑟
𝑅′

) − 1
→ 0   𝑎𝑠 𝑛 → ∞ 

Hence  lim
𝑛→∞

𝑉𝑛+1 = 0. 

 

Making 𝑛 → ∞ in (1) and noting the above facts, 

 

𝑓(𝑧) = ∑ 𝑎𝑛

∞

𝑛=0

(𝑧 − 𝑎)𝑛 + ∑
𝑏𝑛

(𝑧 − 𝑎)𝑛

∞

𝑛=0

      … (2) 

Deduction: Take 𝐶0 a circle whose equation is  

 

𝑅′ < |𝑡 − 𝑎| = 𝑅0 < 𝑅. 
Then    

𝑎𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑡)𝑑𝑡

(𝑡 − 𝑎)𝑛+1
𝐶0

, 𝑏𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑡)𝑑𝑡

(𝑡 − 𝑎)−𝑛+1
𝐶0

= −𝑎𝑛 

 

From (2), we get 

𝑓(𝑧) = ∑ 𝑎𝑛

∞

𝑛=0

(𝑧 − 𝑎)𝑛 + ∑(𝑧 − 𝑎)−𝑛𝑎−𝑛

∞

𝑛=0

 

= ∑ 𝑎𝑛

∞

𝑛=0

(𝑧 − 𝑎)𝑛 + ∑ (𝑧 − 𝑎)𝑛𝑎𝑛

−∞

𝑛=−1

= ∑ (𝑧 − 𝑎)𝑛𝑎𝑛

−∞

𝑛=−∞

 

Or  

𝑓(𝑧) = ∑ (𝑧 − 𝑎)𝑛𝑎𝑛
−∞
𝑛=−∞  with 𝑎𝑛 =

1

2𝜋𝑖
∫

𝑓(𝑡)𝑑𝑡

(𝑡−𝑎)𝑛+1𝐶0
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9.8 UNIQUENESS OF LAURENT EXPENSION:-  

Suppose the we have obtained in any manner or as the definition of 𝑓(𝑧), 
the formula 

  

𝑓(𝑧) = ∑ (𝑧 − 𝑎)𝑛𝐴𝑛

−∞

𝑛=−∞

, 𝑅′ < |𝑧 − 𝑎| < 𝑅 

Is the series necessarily identical with the Laurent’s series? 

Proof: The given series 

𝑓(𝑧) = ∑ (𝑧 − 𝑎)𝑛𝐴𝑛

−∞

𝑛=−∞

, 𝑅′ < |𝑧 − 𝑎| < 𝑅   … (1) 

To prove that is identical with Laurent’s expansion. Laurent series is an 

expansion of a complex function that includes terms with both positive 

and negative powers of (𝑧 − 𝑎). It has the general form: 

𝑓(𝑧) =  ∑ (𝑧 − 𝑎)𝑛𝑎𝑛
−∞
𝑛=−∞  … (2) with 𝑎𝑛 =

1

2𝜋𝑖
∫

𝑓(𝑡)𝑑𝑡

(𝑡−𝑎)𝑛+1𝐶0
 

Now 𝐴𝑛 = 𝑎𝑛, the equation to 𝐶0 is |𝑡 − 𝑎| = 𝑟, 𝑖. 𝑒. , 𝑡 − 𝑎 = 𝑟𝑒𝑖𝜃, 𝑅′ <
𝑟 < 𝑅. 

𝑎𝑛 =
1

2𝜋𝑖
∫ ∑ (𝑧 − 𝑎)𝑛𝐴𝑚(𝑡 − 𝑎)𝑚

−∞

𝑚=−∞

𝑓(𝑡)𝑑𝑡

(𝑡 − 𝑎)𝑛+1
𝐶0

 

𝑎𝑛 =
1

2𝜋𝑖
∑ 𝐴𝑚

−∞

𝑚=−∞

∫ (𝑡 − 𝑎)𝑚−𝑛−1𝑑𝑡
𝐶0

 

=
1

2𝜋𝑖
∑ 𝐴𝑚

−∞

𝑚=−∞

∫ 𝑟𝑚−𝑛−1𝑒𝑖(𝑚−𝑛−1)𝜃𝑖𝑟𝑒𝑖𝜃𝑑𝜃
2𝜋

0

 

=
1

2𝜋
∑ 𝐴𝑚𝑟𝑚−𝑛

−∞

𝑚=−∞

∫ 𝑒𝑖(𝑚−𝑛)𝜃𝑑𝜃
2𝜋

0

 

If       𝑚 ≠ 𝑛, ∫ 𝑒𝑖(𝑚−𝑛)𝜃𝑑𝜃
2𝜋

0
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= [
𝑒𝑖(𝑚−𝑛)𝜃

𝑖(𝑚 − 𝑛)
]

0

2𝜋

= 0 𝑎𝑠 𝑒2𝑝𝜋𝑖=1 

If       𝑚 = 𝑛, ∫ 𝑒𝑖(𝑚−𝑛)𝜃𝑑𝜃
2𝜋

0
= ∫ 𝑒0𝑑𝜃

2𝜋

0
= 2𝜋 

𝑎𝑛 =
1

2𝜋𝑖
𝐴𝑛 . 𝑟𝑛−𝑛 . 2𝜋 = 𝐴𝑛 

 

SOLVED EXAMPLE 

 

EXAMPLE1: Obtain the Taylor’s and Laurent’s Series which represents 

the function 
𝑧2−1

(𝑧+2)(𝑧+3)
 in the series. 

(i) |𝑧| < 2 

(ii) 2 < |𝑧| < 3 

(iii) |𝑧| > 3 
SOLUTION: Let the given series is  

𝑓(𝑧) =
𝑧2 − 1

(𝑧 + 2)(𝑧 + 3)
= 1 −

5𝑧 + 7

(𝑧 + 2)(𝑧 + 3)
 

 

𝑓(𝑧) = 1 +
3

𝑧 + 2
−

8

𝑧 + 3
 

(i)  When  |𝑧| < 2, then 
|𝑧|

2
< 1 

𝑓(𝑧) = 1 +
3

2
(1 +

𝑧

2
)

−1

−
8

3
(1 +

𝑧

3
)

−1

 

1 +
3

2
[1 − (

𝑧

2
) + (

𝑧

2
)

2

− (
𝑧

2
)

3

+ ⋯ ]

−
8

3
[1 − (

𝑧

3
) + (

𝑧

3
)

2

− (
𝑧

3
)

3

+ ⋯ ] 

= 1 +
3

2
∑(−1)𝑛

∞

0

𝑧𝑛

2𝑛
−

8

3
∑(−1)𝑛

𝑧𝑛

3𝑛

∞

0

 

= 1 + ∑(−1)𝑛

∞

0

[
3

2𝑛+1
−

8

3𝑛+1
] 𝑧𝑛 

(iv) When 2 < |𝑧| < 3, then 
2

|𝑧|
< 1,

|𝑧|

3
< 1 

 

𝑓(𝑧) = 1 +
3

𝑧
(1 +

2

𝑧
)

−1

−
8

3
(1 +

𝑧

3
)

−1

 

= 1 +
3

2
[1 − (

2

𝑧
) + (

2

𝑧
)

2

− (
2

𝑧
)

3

+ ⋯ ]

−
8

3
[1 − (

𝑧

3
) + (

𝑧

3
)

2

− (
𝑧

3
)

3

+ ⋯ ] 
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= 1 +
3

2
∑(−1)𝑛

∞

0

2𝑛

𝑧𝑛
−

8

3
∑(−1)𝑛

𝑧𝑛

3𝑛

∞

0

 

= 1 + ∑(−1)𝑛

∞

0

[
32𝑛

𝑧𝑛+1
−

8𝑧𝑛

3𝑛+1
] 

 

 This is Laurent’s series in the annuals2 < |𝑧| < 3. 

(v) When |𝑧| > 3, then 
3

|𝑧|
< 1,

2

|𝑧|
<

2

3
< 1 

 

𝑓(𝑧) = 1 +
3

𝑧 + 2
−

8

𝑧 + 3
 

                                        𝑓(𝑧) = 1 +
3

𝑧
(1 +

2

𝑧
)

−1

−
8

3
(1 +

𝑧

3
)

−1

 

 

= 1 +
3

2
∑(−1)𝑛

∞

0

2𝑛

𝑧𝑛
−

8

3
∑(−1)𝑛

3𝑛

𝑧𝑛

∞

0

 

= 1 + ∑
(−1)𝑛

𝑧𝑛+1

∞

0

[3. 2𝑛 − 3𝑛 . 8] 

EXAMPLE2: Find the Taylor’s series expansion of the function 𝑓(𝑧) =

 
𝑧

𝑧4+9
 around 𝑧 = 0. Find also radius of convergence. 

SOLUTION: The given series is  

 

𝑓(𝑧) =  
𝑧

𝑧4 + 9
=

𝑧

9
(1 +

𝑧4

9
)

−1

 

=
𝑧

9
∑(−1)𝑛  (

𝑧4

9
)

𝑛∞

𝑛=0

 

[𝐹𝑜𝑟 (1 + 𝑥)−1 = 1 − 𝑥 + 𝑥2 − 𝑥3 + 𝑥4 + ⋯ = ∑(−1)𝑛 (𝑥)𝑛

∞

𝑛=0

] 

𝑓(𝑧) =
𝑧

9
∑(−1)𝑛  

𝑧4𝑛

32𝑛

∞

𝑛=0

= ∑(−1)𝑛  
𝑧4𝑛+1

32𝑛+2

∞

𝑛=0

 

𝑓(𝑧) = ∑(−1)𝑛  
𝑧4𝑛+1

32𝑛+2

∞

𝑛=0

 … (1) 

This is Taylor expansion of 𝑓(𝑧). 
PartII: Let 

 

𝑓(𝑧) = ∑ 𝑢𝑛(𝑧)

∞

𝑛=0

        … (2) 
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From (1) and (2), we get 

 

𝑢𝑛(𝑧) = (−1)𝑛  
𝑧4𝑛+1

32𝑛+2
 

|
𝑢𝑛+1(𝑧)

𝑢𝑛(𝑧)
| = |

𝑧4𝑛+5

32𝑛+4
.
32𝑛+2

34𝑛+1
| = |

𝑧4

32
| =

|𝑧2|2

32
 

Series is convergent if |
𝑢𝑛+1

𝑢𝑛
| < 1 

If  

|𝑧2|2

32
< 1 𝑜𝑟 |𝑧| < 32/4 𝑜𝑟    |𝑧| < √3  

Radius of convergence= √3. 

EXAMPLE3: Find the Laurent series of the function 𝑓(𝑧) =
1

(𝑧2−4)(𝑧+1)
  

valid in the region.  1 < |𝑍| < 2. 

SOLUTION: The given series is  

𝑓(𝑧) =
1

(𝑧2 − 4)(𝑧 + 1)
 

𝑓(𝑧) =
1

(𝑧 − 2)(𝑧 + 2)(𝑧 + 1)
 

𝑓(𝑧) =
1

12(𝑧 − 2)
+

1

4(𝑧 + 2)
−

1

3(𝑧 − 2)
 

𝑓(𝑧) =
1

12
(1 −

𝑧

2
)

−1

+
1

4
(1 +

𝑧

2
)

−1

−
1

3
(1 +

1

𝑧
)

−1

 

𝑓(𝑧) =
1

24
∑ (

𝑧

2
)

𝑛
∞

𝑛=0

+
1

8
∑(−1)𝑛 (

𝑧

2
)

𝑛
∞

𝑛=0

−
1

3𝑧
∑

(−1)𝑛

𝑧𝑛

∞

𝑛=0

. 

EXAMPLE4: Expand 𝑠𝑖𝑛𝑧 in a Taylor’s series about 𝑧 =
𝜋

4
. 

SOLUTION: Let the series 

𝑓(𝑧) = ∑ 𝑎𝑛 (𝑧 −
𝜋

4
)

𝑛
∞

𝑛=0

  … (1) 

where                                       𝑎𝑛 =
𝑓𝑛(

𝜋

4
)

 

𝑛!
           … (2) 

𝑓(𝑧) = 𝑠𝑖𝑛𝑧 

𝑓𝑛(𝑧) = 𝑠𝑖𝑛 (𝑧 +
𝑛𝜋

2
) 

𝑓𝑛 (
𝜋

4
) = 𝑠𝑖𝑛 (

𝜋

4
+

𝑛𝜋

2
) 

Now substituting value in (1), we get 

𝑓(𝑧) = ∑ 𝑠𝑖𝑛 (
𝜋

4
+

𝑛𝜋

2
)

(𝑧 −
𝜋
4)

𝑛

𝑛!

∞

𝑛=0

 

EXAMPLE5: (a) Expand 𝑓(𝑧) =
1

𝑧
  as a Taylor’s series about 𝑧 = 1. 
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(b) Determine Laurent’s expansion of the function 𝑓(𝑧) =
𝑠𝑖𝑛𝑧

(𝑧−
𝜋

4
)

3 in 

the annulus 0 < |𝑧 −
𝜋

4
| < 1. 

SOLUTION: (a) 𝑓(𝑧) =
1

𝑧
 

𝑓𝑛(𝑧) =
(−1)𝑛𝑛!

𝑧𝑛+1
 

𝑓𝑛(1) =
(−1)𝑛𝑛!

1𝑛+1
 

If 𝑎𝑛 =
(−1)𝑛𝑛!

𝑛!
, then  𝑎𝑛 = (−1)𝑛 

For Taylor’s expansion about 𝑧 = 1, 

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 1)𝑛

∞

𝑛=0

= ∑(−1)𝑛(𝑧 − 1)𝑛

∞

𝑛=0

 

(b) Let the given series is  

𝑓(𝑧) =
𝑠𝑖𝑛𝑧

(𝑧 −
𝜋
4)

3 

 

For Taylor’s expansion about 𝑧 =
𝜋

4
, we write 

𝑓(𝑧) = ∑ 𝑎𝑛

∞

𝑛=0

(𝑧 −
𝜋

4
)

𝑛

+ ∑
𝑏𝑛

 (𝑧 −
𝜋
4)

𝑛

∞

𝑛=1

 

where  

𝑎𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑧)𝑑𝑧

 (𝑧 −
𝜋
4)

𝑛+1
𝐶

 

And  

 

𝑏𝑛 = 𝑎(−𝑛). 𝐶 𝑖𝑠 |𝑧 −
𝜋

4
| = 1 

𝑧 −
𝜋

4
= 𝑒𝑖𝜃, 𝑑𝑧 = 𝑖𝑒𝑖𝜃𝑑𝜃 

𝑓(𝑧) =
𝑠𝑖𝑛 (

𝜋
4 + 𝑒𝑖𝜃)

𝑒𝑖3𝜃
 𝑏𝑦 (1) 

Substituting this value in (3), we have 

𝑎𝑛 =
1

2𝜋𝑖
∫

𝑠𝑖𝑛 (
𝜋
4 + 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 𝑖𝑒𝑖𝜃𝑑𝜃

𝑒𝑖3𝜃 . (𝑒𝑖𝜃)𝑛+1
𝐶

 

=
1

2𝜋
∫ 𝑠𝑖𝑛 (

𝜋

4
+ 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 𝑖𝑒−𝑖𝜃(𝑛+3)𝑑𝜃

𝐶

 

=
1

2𝜋
∫{𝑠𝑖𝑛𝜙. cosh(𝑠𝑖𝑛𝜃) + 𝑖𝑐𝑜𝑠𝜙. 𝑠𝑖𝑛ℎ(𝑠𝑖𝑛𝜃)}{𝑐𝑜𝑠𝑚𝜃 − 𝑖𝑠𝑖𝑛𝑚𝜃}𝑑𝜃

𝐶

 

Where  
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𝑚 = 𝑛 + 3, 𝜙 =
𝜋

4
+ 𝑐𝑜𝑠𝜃 

𝑎𝑛 =
1

2𝜋
∫ [𝑠𝑖𝑛𝜙. 𝑐𝑜𝑠ℎ(𝑠𝑖𝑛𝜃) cos (𝑚𝜃)

2𝜋

0

+ 𝑖𝑐𝑜𝑠𝜙. sinh (𝑠𝑖𝑛𝜃)sin (𝑚𝜃)]𝑑𝜃 

where 𝜙 =
𝜋

4
+ 𝑐𝑜𝑠𝜃, 𝑚 = 𝑛 + 3, 𝑏𝑛 = 𝑎(−𝑛) 

EXAMPLE6: If 0 < |𝑧 − 1| < 2, then express 

𝑓(𝑧) =
𝑧

(𝑧 − 1)(𝑧 − 3)
 

in a series of positive and negative powers of (𝑧 − 1). 
 

SOLUTION: Suppose𝑢 = 𝑧 − 1, then  

0 < |𝑢| < 2, so that 
|𝑢|

2
< 1 

𝑓(𝑧) =
𝑧

(𝑧 − 1)(𝑧 − 3)
=

𝐴

𝑧 − 1
+

𝐵

𝑧 − 3
 

𝐴 = [
𝑧

𝑧 − 3
]

𝑧=1
=

1

1 − 3
= −

1

2
, 𝐵 = [

𝑧

𝑧 − 1
]

𝑧=3
=

3

3 − 1
=

3

2
 

𝑓(𝑧) = −
1

2(𝑧 − 1)
+

3

2(𝑧 − 3)
=

3

2(𝑢 − 2)
−

1

2𝑢
 

=
3

4
(1 −

𝑢

2
)

−1

−
1

2𝑢
 

= −
3

4
∑(𝑢/2)𝑛 −

1

2𝑢

∞

𝑛=0

= −
3

4
∑

(𝑧 − 1)𝑛

2𝑛
−

1

2(𝑧 − 1)

∞

𝑛=0

 

EXAMPLE7: Prove that 𝑙𝑜𝑔 𝑧 = (𝑧 − 1) −
(𝑧−1)2

2!
+ ⋯ , |𝑧 − 1| < 1. 

SOLUTION: Let 𝑓(𝑧) = 𝑙𝑜𝑔𝑧. By Taylor’s Theorem 

𝑓(𝑧) = ∑(𝑧 − 𝑎)𝑛
𝑓𝑛(𝑎)

𝑛!

∞

𝑛=0

 

= 𝑓(𝑎) + (𝑧 − 𝑎)𝑓′(𝑎) +
(𝑧 − 𝑎)2

2!
𝑓′′(𝑎) + ⋯ 

Taking 𝑎 = 1, we get 𝑓(1) = 𝑙𝑜𝑔1 = 0 

𝑓′(𝑧) =
1

𝑧
, 𝑓′′(𝑧) = −

1

𝑧2
 

𝑓(1) = 0, 𝑓′(1) = 1, 𝑓′′(1) = −1 

𝑓(𝑧) = 𝑓(1) + (𝑧 − 1)𝑓′(1) +
(𝑧 − 1)2

2!
𝑓′′(1) + ⋯ 

= 0 + (𝑧 − 1) +
(𝑧 − 1)2

2!
+ ⋯ 

 

EXAMPLE8: Expand 𝑓(𝑧) =
1

(𝑧+1)(𝑧+3)
 in Laurent series valid for: 

a. |𝑧| > 3 

b. 0 < |𝑧 + 1| < 2. 
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SOLUTION: 𝑓(𝑧) =
1

(𝑧+1)(𝑧+3)
=

1

2
(

1

𝑧+1
−

1

𝑧+3
) 

a.  when |𝑧| > 3 ⇒
|𝑧|

3
> 1 ⇒

3

|𝑧|
< 1 ⇒

1

|𝑧|
<

1

3
< 1 

𝑓(𝑧) =
1

2𝑧
[(1 +

1

𝑧
)

−1

− (1 +
3

𝑧
)

−1

] =
1

2𝑧
∑(−1)𝑛

∞

𝑛=0

[
1

𝑧𝑛
−

3𝑛

𝑧𝑛
] 

= ∑ (−1)𝑛+1∞
𝑛=0

1

𝑧𝑛+1 = ∑ (−1)𝑛+1∞
𝑛=0

1

𝑧𝑛.  

b. When 0 < |𝑧 + 1| < 2, substitute 𝑧 + 1 = 𝑡, then 

𝑓(𝑧) =
1

2
[
1

𝑡
−

1

𝑡 + 2
],   |𝑡| < 1 ⇒ |

𝑡

2
| <

1

2
< 1 

=
1

2
[
1

𝑡
−

1

2
(

1

𝑡 + 2
)

−1

] 

=
1

2
[
1

𝑡
−

1

2
∑(−1)𝑛

∞

𝑛=0

(
1

𝑡
)

2

] 

=
1

2
[

1

𝑧 + 1
−

1

2
∑(−1)𝑛

∞

𝑛=0

(𝑧 + 1)𝑛

2𝑛
] 

SELF CHECK QUESTIONS 

1. How can Cauchy's inequalities be used to bound the n-th derivative 

of an analytic function within a given radius? 

2. State Morera's theorem. 

3. Explain how Morera's theorem is used to show that a function is 

analytic. 

4. Question: State Liouville's theorem. 

5. Question: How does Liouville's theorem relate to the fundamental 

theorem of algebra? 

6. How is the radius of convergence of a Taylor series determined? 

 

9.9 SUMMARY:-   

In this unit we have studied the Cauchy's inequalities provide upper 

bounds for the derivatives of an analytic function within a given radius. 

Specifically, if a function 𝑓(𝑧) is analytic within a disk ∣ 𝑧 ∣≤ 𝑅 and the 

absolute value of the function is bounded by 𝑀 on the boundary ∣ 𝑧 ∣= 𝑅, 
then the absolute value of the 𝑛 − th derivative of 𝑓 at the center is 

bounded by 
𝑛!𝑀

𝑅𝑛 . These inequalities are crucial for estimating the size of 

derivatives and understanding the growth behavior of analytic functions. 

Morera's theorem states that if a continuous function f on a domain  𝐷 has 

an integral equal to zero around every closed contour within 𝐷, then f is 

analytic in 𝐷. This theorem is significant because it provides a criterion 

for analyticity based on the behavior of line integrals, allowing one to 
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prove that a function is analytic by verifying that the integral of the 

function around all closed paths in the domain is zero. Morera's theorem is 

often used to demonstrate the analyticity of functions when direct 

verification of the Cauchy-Riemann equations is difficult. Liouville's 

theorem asserts that any entire function (analytic over the entire complex 

plane) that is bounded must be constant, which has implications like 

proving the fundamental theorem of algebra. Taylor's theorem states that if 

a function 𝑓 is analytic at a point a, it can be expanded in a Taylor 

series 𝑓(𝑧) = ∑
𝑓𝑛(𝑎)

𝑛!
𝐴𝑛(𝑧 − 𝑎)𝑛∞

𝑛=0 , with the radius of convergence 

determined by the distance to the nearest singularity. Laurent's theorem 

generalizes this to functions analytic in an annulus, expressing them as a 

Laurent series 𝑓(𝑧) = ∑ 𝐴𝑛(𝑧 − 𝑎)𝑛∞
𝑛=0 , including both positive and 

negative powers, useful for representing functions with singularities. 

These theorems are fundamental in understanding the behavior and 

properties of analytic functions in complex analysis. 

9.10 GLOSSARY:-   

 Cauchy's Inequality (General Form): For a function f analytic 

inside and on a simple closed contour C in the complex plane, if M 

is the maximum value of ∣f(z)∣ on C, then for any z inside C, we 

have 

 |𝑓𝑛(𝑎)| ≤
𝑀𝑛!

𝑅𝑛  

 where 𝑅  is the radius of the largest circle centered at 𝑧  that is 

contained within 𝐶. 

 Cauchy's Integral Formula: If f is analytic inside and on a simple 

closed contour 𝐶, then for any point 𝑎 inside C, 

 𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧−𝑎
𝑑𝑧

𝐶
 

 Cauchy's Theorem: If f is analytic on and inside a simple closed 

contour C, then 

 ∫ 𝑓(𝑧)𝑑𝑧
𝐶

= 0. 

 Cauchy's Integral Theorem: An extension of Cauchy's Theorem 

stating that if f is analytic on a simply connected domain, then the 

integral of f around any closed contour within this domain is zero. 

 Cauchy's Formula for Derivatives: For a function f analytic 

inside and on a simple closed contour C, the n-th derivative of f at 

a point z0 inside C is given by 

 𝑓𝑛(𝑎) =
𝑛!

2𝜋𝑖
∫

𝑓(𝑧)𝑑𝑧

(𝑧−𝑎)𝑛+1𝐶
 

 Morera's Theorem: A theorem in complex analysis that provides 

a criterion for a function to be analytic based on its integral over 

contours. It states:  
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 If 𝑓  is continuous on a region 𝐷  and if the integral of 𝑓 

over every closed contour within 𝐷  is zero, then 𝑓  is 

analytic on 𝐷. 

 Closed Contour: A path in the complex plane that starts and ends 

at the same point. It does not intersect itself and can be simple 

(non-intersecting) or more complex. 

 Contour Integral: The integral of a complex-valued function 

along a contour in the complex plane. If 𝑓 is integrated along a 

path 𝛾, it is written as ∫ 𝑓(𝑧)𝑑𝑧
𝛾

. 

 Region D: A subset of the complex plane where a function 𝑓 is 

defined. For Morera's Theorem, 𝐷  must be an open region 

(meaning every point in 𝐷 has a neighborhood contained in 𝐷). 

 Zero Integral Condition: In the context of Morera's Theorem, 

this condition means that the integral of 𝑓  around every closed 

contour within the region 𝐷 must be zero for 𝑓 to be analytic in 𝐷. 

 Zero Integral Condition: In the context of Morera's Theorem, 

this condition means that the integral of f around every closed 

contour within the region D must be zero for f to be analytic in D. 

 Holomorphic Function: Another term for an analytic function, 

emphasizing that it is complex differentiable. In many contexts, the 

terms "analytic" and "holomorphic" are used interchangeably. 

 Taylor's Theorem: If a function 𝑓(𝑧) is analytic within a circle 

𝐶 with its centre 𝑧 = 𝑎 and radius 𝑅, then at every point 𝑧 inside 𝐶,  

𝑓(𝑧) = ∑ 𝑓𝑛

∞

𝑛=0

(𝑎)
(𝑧 − 𝑎)𝑛

𝑛!
  𝑜𝑟    𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

, 

where   𝑎𝑛 =
𝑓𝑛(𝑎)

𝑛!
  

 Convergence of the Taylor Series: A Taylor series converges to 

the function 𝑓  if, as 𝑛 approaches infinity, the remainder term  

𝑅𝑛(𝑥) approaches zero. If the Taylor series converges to 𝑓 for all  

𝑥 in a neighborhood of 𝑎, 𝑓 is said to be analytic at 𝑎. 
 Analytic Function: A function is analytic at a point if its Taylor 

series converges to the function in some neighborhood around that 

point. This means the function can be represented exactly by its 

Taylor series in that region. 

 Radius of Convergence: The radius 𝑅 of the largest disk centered 

at a within which the Taylor series converges to  𝑓. Outside this 

radius, the series may diverge. 

 Higher-Order Derivatives: Derivatives of 𝑓 of order greater than 

one, which are used in constructing higher-degree Taylor 

polynomials. For instance, 𝑓2(𝑎)  is the second derivative 

evaluated at 𝑎. 
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 Polynomial Approximation: The process of approximating a 

function by a polynomial of degree 𝑛  derived from the Taylor 

series expansion, where the polynomial matches the function and 

its derivatives up to order n at a specific point. 
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9.13 TERMINAL QUESTIONS:-  

(TQ-1) State and prove Liouvlille’s theorem. 

(TQ-2) If 𝑓(𝑧) is a continuous function in a domain 𝐷 and if for every 

closed Contour 𝐶 in the domain 𝐷, then prove that 

∫𝑓(𝑧)
𝐶

𝑑𝑧 = 0 

where 𝑓(𝑧) is analytic within 𝐷. 

(TQ-3) If 𝑓(𝑧) is analytic within and on a circle 𝐶, given by |𝑧 − 𝑎| = 𝑅 

and if |𝑓(𝑧)| ≤ 𝑀 for every 𝑧 on 𝐶, then prove that the magnitude of the 

𝑛 −th derivative of 𝑓 at 𝑎 is bounded by 

|𝑓𝑛(𝑎)| ≤
𝑀𝑛!

𝑅𝑛
 

https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-III-Complex-Analysis.pdf
https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-III-Complex-Analysis.pdf
file:///C:/Users/user/Desktop/1468562133EText(Ch-5,M-5%20(1).pdf
file:///C:/Users/user/Desktop/1468562133EText(Ch-5,M-5%20(1).pdf
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(TQ-4) If 𝑓(𝑧) is an entire function is bounded for all values of z, then it 

is constant. 

or 

If a function 𝑓(𝑧)  is analytic for a finite value of 𝑧, and is bounded, then 

𝑓(𝑧) is constant. 

or 

If 𝑓 is regular in hole 𝑧 −plane and if |𝑓(𝑧)| < 𝑘∀𝑧, then 𝑓(𝑧) must be 

constant. 

(TQ-5) If a function 𝑓(𝑧) is analytic within a circle 𝐶 with its centre 𝑧 =
𝑎 and radius 𝑅, then prove that at every point 𝑧 inside 𝐶,  

𝑓(𝑧) = ∑ 𝑓𝑛

∞

𝑛=0

(𝑎)
(𝑧 − 𝑎)𝑛

𝑛!
  𝑜𝑟    𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

, 

where   𝑎𝑛 =
𝑓𝑛(𝑎)

𝑛!
 

(TQ-6) If a function 𝑓(𝑧) is analytic for all values of 𝑧 and as |𝑧| → ∞, 
|𝑓(𝑧)| = 𝐴|𝑧|𝑘 , then prove that f(z) is polynomial of degree ≤ 𝑘. 

(TQ-7)Find the Laurent series of the function 𝑓(𝑧) =
1

𝑧2(1−𝑧)
 about 𝑧 =

0. 

(TQ-8) If 𝑓(𝑧) = ∑ 𝑎𝑛𝑧𝑛∞
0 (|𝑧| < 𝑅)  and 𝑀(𝑟)  is the upper bound of 

|𝑓(𝑧)| on the circle |𝑧| = 𝑟, (𝑟 < 𝑅), then prove that |𝑎𝑛|𝑟𝑛 ≤ 𝑀(𝑟)∀𝑛. 

(TQ-9) If the function f(z) is analytic and single valued in |𝑧 − 𝑎| < 𝑅 

prove that when 0 < 𝑟 < 𝑅. 

𝑓′(𝑎) =
1

𝜋𝑟
∫ 𝑃(𝜃)

2𝜋

0
𝑒−𝑖𝜃𝑑𝜃 where 𝑃(𝜃) is real part of 𝑓(𝑎 + 𝑟𝑒𝑖𝜃). Also 

prove that 
𝑓𝑛(𝑎)

𝑛!
=

1

𝜋𝑟𝑛 ∫ 𝑃(𝜃)
2𝜋

0
𝑒−𝑖𝜃𝑑𝜃. 

(TQ-10) Prove that 𝑙𝑜𝑔 𝑧 = (𝑧 − 1) −
(𝑧−1)2

2!
+ ⋯ , |𝑧 − 1| < 1. 

 

9.14 ANSWERS:- 

SELF CHECK ANSWERS 

1. Cauchy's inequalities provide an upper bound for the 𝑛 − th 

derivative of an analytic function at the origin in terms of the 

maximum value 𝑀 of the function on the circle of radius 𝑅. 

2. If 𝑓(𝑧) is a continuous function in a domain 𝐷  and if for every 

closed Contour 𝐶 in the domain 𝐷, 

∫𝑓(𝑧)
𝐶

𝑑𝑧 = 0 

3. Morera's theorem can be used to prove that a function is analytic 

by showing that the integral of the function around any closed 
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contour in the domain is zero, indicating the existence of an ant 

derivative and hence analyticity. 

4.  If 𝑓 is entire (analytic on the entire complex plane) and bounded, 

then 𝑓 is constant. 

5.  Liouville's theorem can be used to prove the fundamental theorem 

of algebra by showing that a non-constant polynomial cannot be 

bounded, implying it must have a root. 

6. The radius of convergence 𝑅 is determined by the distance to the 

nearest singularity of the function from the expansion point 𝑎. 
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UNIT 10:- Maximum and Minimum Modulus 

Principle and Schwarz Lemma  

CONTENTS: 
10.1      Introduction 

10.2      Objectives 

10.3      Maximum Modulus Principle 

10.4      Minimum Modulus Principle 

10.5      Schwarz Lemma 

10.6       Open mapping theorem 

10.7       Summary 

10.8       Glossary 

10.9       References 

10.10     Suggested Reading 

10.11     Terminal questions 

10.12     Answers 

10.1 INTRODUCTION:-  

The Maximum and Minimum Modulus Principles and the Schwarz 

Lemma are fundamental results in complex analysis. The Maximum 

Modulus Principle states that if a function is holomorphic on a domain, the 

maximum of the modulus of the function on a closed bounded subset of 

that domain occurs on the boundary. Conversely, the Minimum Modulus 

Principle asserts that if a function is non-constant and holomorphic, the 

minimum modulus cannot occur in the interior unless the function is 

constant. The Schwarz Lemma provides a powerful result for holomorphic 

functions that map the unit disk to itself: if a function fixes the origin, then 

the magnitude of the function is at most as large as the magnitude of the 

input, and the magnitude of the derivative at the origin is at most one, with 

equality only if the function is a rotation. These principles are essential 

tools in the study of holomorphic functions and their behavior. 

10.2 OBJECTIVES:-  

The objectives of the Maximum and Minimum Modulus Principles and the 

Schwarz Lemma in complex analysis are to understand and characterize 

the behavior of holomorphic functions. The Maximum Modulus Principle 

aims to identify where the maximum modulus of a holomorphic function 



Advanced Complex Analysis  MAT601 
 

Department of Mathematics         

Uttarakhand Open University Page 170 
 

occurs, emphasizing that it cannot happen in the interior of the domain 

unless the function is constant. The Minimum Modulus Principle similarly 

helps in determining where the minimum modulus occurs, ensuring that a 

non-constant holomorphic function cannot achieve its minimum modulus 

in the interior. The Schwarz Lemma, on the other hand, provides 

constraints on holomorphic functions mapping the unit disk to itself, 

particularly those fixing the origin. It sets bounds on the function's 

magnitude and the magnitude of its derivative at the origin, offering 

insight into the function's growth and behavior. Collectively, these results 

help in analyzing the constraints and characteristics of holomorphic 

functions in various domains. 

10.3 MAXIMUM MODULUS PRINCIPLE:-  

Suppose 𝑓(𝑧) is analytic within and a simple closed Contour 𝐶 and 𝑓(𝑧) is 

not constnt. Then |𝑓(𝑧)| reaches its maximum value on 𝐶 (and not inside 

𝐶), that is to say, if 𝑀 is maximum value of |𝑓(𝑧)| on and within |𝑓(𝑧)| <

𝑀 for every 𝑧 inside 𝐶. 

Proof: We prove this theorem by the method of contradiction. Analyticity 

of f(z) declares that f(z) is continuous within and on C. Consequently we 

assume f(z) is analytic within and on C and is not constant. Suppose that 

∣f(z)∣ attains its maximum value M at some point a inside C. Therefore, 

𝑚𝑎𝑥. |𝑓(𝑧)| = |𝑓(𝑎)| = 𝑀                   … (1) 

and  

|𝑓(𝑧)| ≤ 𝑀∀𝑧 𝑤𝑖𝑡ℎ𝑖𝑛𝐶                       … (2) 

Since 𝑓(𝑧) is not constant, by the continuity of 𝑓(𝑧), there must exist a 

point 𝑏 inside 𝐶 such that ∣ 𝑓(𝑏) ∣< 𝑀.  

Let 𝜀 > 0 be s.t. |𝑓(𝑏)| = 𝑀 − 𝜀 

By the continuity of |𝑓(𝑧)|  is continuous at  𝑧 = 𝑏  and so |[|𝑓(𝑧)| −

|𝑓(𝑏)|]| < 𝜀/2 whererever |𝑧 − 𝑏| < 𝛿 . 

Since |[|𝑓(𝑧)| − |𝑓(𝑏)|]| ≥ |𝑓(𝑧)| − |𝑓(𝑏)| 

|𝑓(𝑧)| − |𝑓(𝑏)| ≤ |[|𝑓(𝑧)| − |𝑓(𝑏)|]| < 𝜀/2 

|𝑓(𝑧)| − |𝑓(𝑏)| <
𝜀

2
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|𝑓(𝑧)| < |𝑓(𝑏)| +
𝜀

2
 

This implies that within the circle γ centered at b with radius δ, 

= 𝑀 − 𝜀 +
𝜀

2
= 𝑀 −

𝜀

2
 

|𝑓(𝑧)| < 𝑀 −
𝜀

2
∀𝑠. 𝑡. |𝑧 − 𝑏| < 𝛿 

we draw a circle 𝛾 withcentre at b and radius 𝛿. Then (3) shows that  

|𝑓(𝑧)| < 𝑀 −
𝜀

2
∀𝑧 𝑖𝑛𝑠𝑖𝑑𝑒 𝛾 

Consider a circle 𝛤′centred at a with radius 𝑟 =∣ 𝑏 − 𝑎 ∣. By Cauchy's 

Integral Formula, for f analytic on and inside 𝛤′. 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎Γ′
𝑑𝑧 

On Γ′, 𝑧 − 𝑎 = 𝑟𝑒𝑖𝜃 . 

𝑓(𝑎) =
1

2𝜋𝑖
∫ 𝑓(𝑎 + 𝑟𝑒𝑖𝜃)

𝑟𝑖𝑒𝑖𝜃

𝑟𝑒𝑖𝜃

2𝜋

0

𝑑𝜃 

If we measure 𝜃 in anti-clock-wise direction and if 

< 𝑄𝑃𝑅 = 𝛼, 𝑡ℎ𝑒𝑛 

𝑓(𝑎) =
1

2𝜋
[∫ + ∫ ]

2𝜋

𝛼

𝛼

0

𝑓(𝑎 + 𝑟𝑒𝑖𝜃)𝑑𝜃 

 ∴                |𝑓(𝑧)| ≤
1

2𝜋
∫ |𝑓(𝑎 + 𝑟𝑒𝑖𝜃)|𝑑𝜃

𝛼

0
+

1

2𝜋
∫ |𝑓(𝑎 + 𝑟𝑒𝑖𝜃)|𝑑𝜃

2𝜋

𝛼
        

<
1

2𝜋
∫ (𝑀 −

𝜀

2
) 𝑑𝜃

𝛼

0

+
1

2𝜋
∫ (𝑀)𝑑𝜃

𝛼

0

  𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

= (𝑀 −
𝜀

2
)

𝛼

2𝜋
+

𝑀(2𝜋 − 𝛼)

2𝜋
= 𝑀 −

𝛼𝜀

2𝜋
 

Then         𝑀 = |𝑓(𝑎)| < 𝑀 −
𝛼𝜀

2𝜋
 

𝑀 < 𝑀 −
𝛼𝜀

2𝜋
.    A contraction. 
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which is a contradiction because 
𝛼𝜀

2𝜋
> 0. Thus, 𝑀 cannot be the maximum 

value inside 𝐶. 

Therefore, the maximum value of ∣ 𝑓(𝑧) ∣ must occur on the boundary 𝐶. 

This completes the proof of the Maximum Modulus Principle. 

10.4 MINIMUM MODULUS PRINCIPLE:-  

Suppose 𝑓(𝑧) is analytic within and on a closed contour C and let 𝑓(𝑧) ≠

0 inside C. 

Suppose further that f(z) is not constant. Then |𝑓(𝑧) | attains its minimum 

value at a point on the boundary of C, that is to say, if m is minimum 

value of |𝑓(𝑧) |  inside and on C, then 

|𝑓(𝑧) | > 𝑚 ∀𝑧 𝑖𝑛𝑠𝑖𝑑𝑒 𝐶 

Proof: Let 𝑓(𝑧) be analytic within and on the closed contour 𝐶, and let 

𝑓(𝑧) ≠ 0 inside𝐶. Since 𝑓(𝑧) is analytic and non-zero, the function 
1

𝑓(𝑧)
 is 

also analytic within𝐶.By the Maximum Modulus Principle, since 1/f(z) is 

analytic within C and continuous on C, the function |
1

𝑓(𝑧)
|  attains its 

maximum value on the boundary of 𝐶. Let this maximum value be M. 

Consequently, since |
1

𝑓(𝑧)
| reaches its maximum value 𝐶, it follows that ∣

𝑓(𝑧) ∣ attains its minimum value 
1

𝑀
.Thus, if m is the minimum value of 

∣f(z)∣ inside and on 𝐶, then ∣ 𝑓(𝑧) ∣≥ 𝑚 on the boundary of 𝐶. 

Since 
1

𝑓(𝑧)
  attains its maximum value on the boundary of 𝐶, ∣ 𝑓(𝑧) ∣ must 

attain its minimum value on the boundary of 𝐶 . Therefore, ∣ 𝑓(𝑧) ∣  is 

greater than m for every 𝑧 inside 𝐶, which implies ∣ 𝑓(𝑧) ∣> 𝑚 for all 𝑧 

inside 𝐶. 

This completes the proof of the Minimum Modulus Principle. 

10.5 SCHWARZ LEMMA:-  

Suppose  

i. F(z) analytic in a domain defined by |𝑧| < 1 

ii. |𝑓(𝑧)| < 1 
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iii. |𝑓(0)| = 0 

Then |𝑓(𝑧)| < |𝑧|, |𝑓′(𝑧)| < 1 equality holds if f(z) is a linear 

transformation 

𝑤 = 𝑓(𝑧) = 𝑧𝑒𝑖𝛼 

where 𝛼 is real constant. 

Hence prove that |𝑓′(0)| < 1 

Proof: Let c be the circle defined by |𝑧| = 𝑟  such that 𝑟 < 1 . By 

assumption (i), 𝑓(𝑧)  is analytic within and upon the circle c, then by 

Taylor theorem, 

𝑓(𝑧) = ∑ 𝑎𝑛𝑧𝑛

∞

𝑛=0

 

 

For any point z within c 

𝑓(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + ⋯                 … (1) 

Using the assumption (iii),  𝑖. 𝑒. , |𝑓(0)| = 0 , we get 𝑎0 = 0 . Now (1) 

reduces to 

Given 𝑓(0) = 0, we have 𝑎0 = 0. Thus,  

𝑓(𝑧) = 𝑎1𝑧 + 𝑎2𝑧2 + ⋯   

Taking 
𝑓(𝑧)

𝑧
= 𝐹(𝑧), we obtain 

𝐹(𝑧) = 𝑎1 for 𝑧 = 0,       𝑖. 𝑒. ,   𝐹(0) = 𝑎1 

Let 𝑧 = 𝑎 be any point on c so that 𝑎 = 𝑟𝑒𝑖𝛼 , where 𝛼 is real. 

Now 𝐹(𝑧) is analytic within and upon c and so by Maximum modulus 

theorem, |𝐹(𝑧)|  attains its maximum value on c, say at 𝑧 = 𝑎  and not 

within c. Then 
|𝐹(𝑎)| = 𝑚𝑎𝑥|𝐹(𝑧)| 
|𝐹(𝑧)| < 𝑚𝑎𝑥|𝐹(𝑧)| 

= max 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 |
𝑓(𝑧)

𝑧
| <

1

|𝑧|
=

1

𝑟
, 𝑏𝑦 (𝑖𝑖) 

|𝐹(𝑧)| <
1

𝑟
 𝑎𝑠 𝑟 → 1 

|𝐹(𝑧)| < 1 

|
𝑓(𝑧)

𝑧
| < 1 
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|𝑓(𝑧)| < |𝑧| 

Substituting 𝑧 = 0 in above equation  

|𝐹(0)| < 1. But 𝐹(0) = 𝛼1 

Hence  

|𝛼1| < 1 

⇒  𝑓′(𝑧) = 𝑎1𝑧 + 𝑎2𝑧2 + ⋯   ⇒ 𝑓′(0) = 𝑎1   

⇒  |𝑓′(0)| = |𝑎1| < 1 ⇒ |𝑓′(0)| < 1. 

This completes the proof. 

In general, since 𝑎 is arbitrary, we have 

|𝑓(𝑧)| ≤ |𝑧|  for all 𝑧 for which |𝑧| ≤ 1. 

If ∣ 𝑓(𝑧) ∣= |𝑧|  at some point 𝑧  with ∣ 𝑧 ∣< 1,  then ∣ 𝐹(𝑧) ∣  attains its 

maximum value on the interior of the domain. By the Maximum Modulus 

Principle, 𝐹(𝑧) must be constant. Therefore, there exists a constant 𝛼 ∈ 𝑅 

such that 

𝐹(𝑧) =
𝑓(𝑧)

𝑧
= 𝑒𝑖𝛼 

Thus, 𝑓(𝑧) ≤ |𝑧| and ∣𝑓′(0) ∣≤ 1, with equality holding if and only if 

𝑓(𝑧) = 𝑧𝑒𝑖𝛼 for some real constant 𝛼 . This completes the proof of the 

Schwarz Lemma. 

10.6 OPEN MAPPING THEOREM:-  

The Open Mapping Theorem is a fundamental result in complex analysis 

that asserts that a non-constant analytic (holomorphic) function maps open 

sets to open sets. 

Theorem: If 𝑓 is a non-constant analytic function on an open set 𝑈 ⊂ 𝐶, 
then 𝑓(𝑈) is an open set in 𝐶.  
Proof: Let  f be a non-constant analytic function on an open set U⊂C. 

Assume 𝑓 does not map 𝑈 to an open set. We will reach contradiction. 

Suppose  𝑓(𝑈) is not open. This means there exists a point 𝑤0 ∈ 𝑓(𝑈) 

such that there is no neighborhood around 𝑤0  entirely contained within 

𝑓(𝑈). 
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Since 𝑤0 ∈ 𝑓(𝑈), there exists 𝑧0 ∈ 𝑈  such that 𝑓(𝑧0) = 𝑤0 .Because 𝑓  is 

analytic and non-constant, 𝑓  can be expressed locally around 𝑧0  by its 

Taylor series expansion: 

𝑓(𝑧) = 𝑓(𝑧0) + (𝑧 − 𝑧0)𝑓′(𝑧0) +
(𝑧 − 𝑧0)2

2!
𝑓′′(𝑧0) + ⋯ 

The Maximum Modulus Principle states that if 𝑓  is non-constant and 

analytic in an open set, then the maximum of ∣ 𝑓(𝑧) ∣ cannot occur in the 

interior of the set unless f is constant. 

If 𝑓 were to fail to map 𝑈 to an open set, f would be unable to achieve 

local maximum or minimum values on the boundary of small 

neighborhoods around 𝑧0, contradicting the principle. 

Because 𝑓  is non-constant, the image of any sufficiently small open 

neighborhood around 𝑧0  will contain an open disk centered at 𝑤0 . This 

implies that 𝑤0cannot be an isolated point in 𝑓(𝑈) and that every point in 

𝑓(𝑈) has a neighborhood entirely contained within 𝑓(𝑈). 

Thus, 𝑓(𝑈) must be open, proving the theorem. 

SOLVED EXAMPLE 

EXAMPLE1: Let 𝑓(𝑧) = 𝑧2 + 3𝑧 + 2. Show that the maximum value of 

∣ 𝑓(𝑧) ∣ in the disk ∣ 𝑧 ∣≤ 1 is attained on the boundary ∣ 𝑧 ∣= 1. 

SOLUTION: The given equation is  

𝑓(𝑧) = 𝑧2 + 3𝑧 + 2 

and the domain ∣ 𝑧 ∣≤ 1. 

The function 𝑓(𝑧)  is a polynomial and hence analytic everywhere, 

including within and on the disk ∣ 𝑧 ∣≤ 1. 

∣ 𝑓(𝑧) ∣ 𝑜𝑛 ∣ 𝑧 ∣= 1 

Let 𝑧 = 𝑒𝑖𝜃 , where 𝜃 range 0 𝑡𝑜 2𝜋. 

𝑓(𝑒𝑖𝜃) = 𝑒2𝑖𝜃 + 3𝑒𝑖𝜃 + 2 

The modulus of this expression is: 

|𝑓(𝑒𝑖𝜃)| = |𝑒2𝑖𝜃 + 3𝑒𝑖𝜃 + 2| 
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Since 𝑓(𝑧)  is analytic within and on ∣ 𝑧 ∣≤ 1,  the Maximum Modulus 

Principle states that the maximum value of ∣ 𝑓(𝑧) ∣  is attained on the 

boundary ∣ 𝑧 ∣= 1. 

To compare, we evaluate specific points on the boundary: 

|𝑓(1)| = |(1)2 + 3.1 + 2| = |6| = 6 

|𝑓(−1)| = |(−1)2 + 3. (−1) + 2| = |1 − 3 + 2| = |0| = 0 

We can see that the modulus of 𝑓(𝑧) is highest at 𝑧 = 1 on the boundary. 

By the Maximum Modulus Principle, the maximum value of ∣ 𝑓(𝑧) ∣ in 

the disk ∣ 𝑧 ∣≤ 1  is indeed attained on the boundary ∣ 𝑧 ∣= 1 , and the 

maximum value is 6. 

EXAMPLE2: Let 𝑓(𝑧) be an analytic function on the unit disk ∣ 𝑧 ∣< 1, 

with 𝑓(0) = 0  and ∣ 𝑓(𝑧) ∣≤  1/2  for all ∣ 𝑧 ∣< 1.  Prove that ∣ 𝑓(𝑧) ∣≤

 1/2 ∣ 𝑧 ∣ and ∣ 𝑓 ′(0) ∣≤ 1/2 . 

SOLUTION: Let the 𝑓(𝑧) be an analytic function on the unit disk ∣ 𝑧 ∣<

1, 𝑓(0) = 0, ∣ 𝑓(𝑧) ∣≤
1

2
∀ ∣ 𝑧 ∣< 1. 

Now we apply the Schwarz Lemma, which states that if 𝑔(𝑧) is analytic 

on ∣ 𝑧 ∣< 1, 𝑔(0) = 0, and ∣ 𝑔(𝑧) ∣< 1 for all ∣ 𝑧 ∣< 1, then ∣ 𝑔(𝑧) ∣≤∣ 𝑧 ∣ 

and ∣ 𝑔′(0) ∣≤ 1. 

Define 𝑔(𝑧) =  𝑓(𝑧)/1/2 = 2𝑓(𝑧). Then 𝑔(𝑧) satisfies the conditions of 

the Schwarz Lemma: 𝑔 is analytic on ∣ 𝑧 ∣< 1, 𝑔(0) = 2𝑓(0) = 0,∣𝑔(𝑧) ∣

≤ 1 for all ∣ 𝑧 ∣< 1. 

By the Schwarz Lemma: ∣ 𝑔(𝑧) ∣≤∣ 𝑧 ∣ and ∣ 𝑔′(0) ∣≤ 1 

Since 𝑔(𝑧) = 2𝑓(𝑧) 

|2𝑓(𝑧)| ≤ |𝑧|     ⇒   ∣ 𝑓(𝑧) ∣≤
1

2
|𝑧| 

and for the derivative: 

|𝑔′(0)| = |2𝑓′(0)| ≤ 1  ⇒ |𝑓′(0)| ≤
1

2
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EXAMPLE3: Let 𝑓 be analytic and bounded by 1 in the unit disc and 

𝑓 (
1

2
) = 0 Estimate |𝑓 (

3

4
)|. 

SOLUTION: Given: 𝑓 (
1

2
) = 0, then   |𝑓(𝑧)| ≤ 1  for |𝑧| < 1. 

We want to estimate |𝑓 (
3

4
)|. 

Using the Schwarz-Pick Lemma: 

|𝑓(𝑧1) − 𝑓(𝑧2)|

|1 − 𝑓(𝑧2)̅̅ ̅̅ ̅̅ ̅𝑓(𝑧1)|
≤

|𝑧1 − 𝑧2|

|1 − 𝑧2̅𝑧1|
 

For any 𝑧1, 𝑧2𝜖𝐷 

|𝑓(3/4) − 𝑓(1/2)|

|1 − 𝑓(1/2)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑓(3/4)|
≤

|3/4 − 1/4|

|1 − 𝑓(1/2)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑓(3/4)|
 

Since 𝑓(1/2) = 0, this simplifies to: 

|𝑓(3/4)| ≤
|
3
4 −

1
2

|

|1 − 𝑓 (
1
2)

̅̅ ̅̅ ̅̅ ̅
𝑓 (

3
4)|

 

Calculate the numerator: 

|
3

4
−

1

2
| = |

1

4
| =

1

4
 

Calculate the denominator: 

|1 − (
3

4
) (

1

2
)| = |1 −

3

8
| = |

5

8
| =

5

8
 

Thus: 

𝑓 (
3

4
) ≤

1
4
5
8

=
1

4
.
8

5
=

2

5
= 0.4 

Therefore, the estimate for ∣ 𝑓(3/4) ∣ is: 

|𝑓(3/4)| ≤ 0.4 

This shows that under the given conditions, ∣ 𝑓(3/4) ∣ can be estimated to 

be less than or equal to 0.4. 
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EXAMPLE4: Let 𝑓(𝑧) = 𝑧2 +1 be a holomorphic (analytic) function on 

the closed disk ∣ 𝑧 ∣≤ 1. Determine the maximum value of ∣ 𝑓(𝑧) ∣ on the 

disk ∣ 𝑧 ∣≤ 1. 

SOLUTION: The Maximum Modulus Principle states that if 𝑓(𝑧) is a 

non-constant holomorphic function on a domain 𝐷, then the maximum of ∣

𝑓(𝑧) ∣ occurs on the boundary of 𝐷. 

Given 𝑓(𝑧) = 𝑧2 +1, we need to evaluate ∣ 𝑓(𝑧)∣ on the boundary ∣ 𝑧 ∣=

1: 

On the boundary, ∣ 𝑧 ∣= 1, so 𝑧 = 𝑒𝑖𝜃  for 𝜃 ∈ [0,2𝜋). 

𝑓(𝑧) = 𝑧2 + 1 = 𝑒2𝑖𝜃 + 1 

The modulus is 

|𝑓(𝑧)| = |𝑒2𝑖𝜃 + 1| 

Using the identity ∣ 𝑎 + 𝑏 ∣≤∣ 𝑎 ∣ +∣ 𝑏 ∣, we get: 

|𝑒2𝑖𝜃 + 1| ≤ |𝑒2𝑖𝜃| + |1| = 1 + 1 = 2 

The maximum occurs when 𝑒2𝑖𝜃 = −1, which gives 

|𝑓(𝑧)| = |−1 + 1| = 2 

The maximum value of ∣ 𝑓(𝑧) ∣ on the disk ∣ 𝑧 ∣≤ 1 ∣ is 2, and it occurs on 

the boundary ∣ 𝑧 ∣= 1 when 𝑧 = −1. 

EXAMPLE5: Let 𝑓(𝑧) = 𝑧2 − 2𝑧 + 2 be a holomorphic function on the 

closed disk ∣ 𝑧 ∣≤ 2. Determine the minimum value of ∣ 𝑓(𝑧) ∣ on the disk 

∣ 𝑧 ∣≤ 2. 

SOLUTION: The Minimum Modulus Principle states that if 𝑓(𝑧) is a 

non-constant holomorphic function on a domain 𝐷, the minimum value of 

∣ 𝑓(𝑧) ∣ in the interior of D occurs at a point where 𝑓(𝑧) = 0 or on the 

boundary.  

Now to solve  

𝑓(𝑧) = 𝑧2 − 2𝑧 + 2 = 0 

 ⇒                                           𝑧 =
2±√4−8

2
= 2 ± 𝑖 
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The roots 1 + 𝑖 and 1 − 𝑖 are inside the disk ∣ 𝑧 ∣≤ 2|𝑧|. 

On the boundary,∣ 𝑧 ∣= 2: 

|𝑓(𝑧)| = |𝑧2 − 2𝑧 + 2| 

We need to evaluate ∣ 𝑓(𝑧) ∣ for ∣ 𝑧 ∣= 2. Consider 𝑧 = 2𝑒𝑖𝜃, and find: 

|𝑓(𝑧)| = |4𝑒2𝑖𝜃 − 4𝑒𝑖𝜃 + 2| 

The exact calculation is complex, but we only need to know that ∣ 𝑓(𝑧) ∣ 

on the boundary is larger than the minimum at the root points. 

At 𝑧 = 1 + 𝑖, 𝑓(1 + 𝑖) = 0, so ∣ 𝑓(1 + 𝑖) ∣= 0. 

Similarly, at 𝑧 = 1 − 𝑖, 𝑓(1 − 𝑖) = 0, so ∣ 𝑓(1 − 𝑖) ∣= 0. 

The minimum value of ∣ 𝑓(𝑧) ∣ is 0, which occurs at the points 𝑧 = 1 + 𝑖 

and 𝑧 = 1 − 𝑖. 

EXAMPLE6: Let 𝑓(𝑧) be an analytic function on the unit disk ∣ 𝑧 ∣< 1 

such that 𝑓(0) = 0 and  ∣ 𝑓(𝑧) ∣≤∣ 𝑧 ∣ for all ∣ 𝑧 ∣< 1. Show that 𝑓(𝑧) =

𝑐𝑧 for some constant ∣ 𝑐 ∣≤ 1. 

SOLUTION: Schwarz's Lemma states that if f is analytic on the unit disk 

∣ 𝑧 ∣< 1, 𝑓(0) = 0, and ∣ 𝑓(𝑧) ∣≤ 1 for all ∣ 𝑧 ∣< 1, then: 

1. ∣ 𝑓(𝑧) ∣≤∣ 𝑧 ∣ for all ∣ 𝑧 ∣< 1. 

2. If equality holds for some 𝑧 ≠ 0,  then 𝑓(𝑧) = 𝑐𝑧  for some constant 

𝑐 with ∣ 𝑐 ∣≤ 1. 

Given ∣ 𝑓(𝑧) ∣≤∣ 𝑧 ∣, we already satisfy the condition. 

Now consider 𝑓(𝑧)  under these conditions. If ∣ 𝑓(𝑧) ∣=∣ 𝑧 ∣  for some 

nonzero 𝑧, Schwarz's Lemma implies 𝑓(𝑧) = 𝑐𝑧. 

Since 𝑓(0) = 0  and ∣ 𝑓(𝑧) ∣≤∣ 𝑧 ∣, it follows by Schwarz's Lemma that 

𝑓(𝑧) = 𝑐𝑧 for some 𝑐 with ∣ 𝑐 ∣≤ 1. 

Therefore, 𝑓(𝑧) = 𝑐𝑧  where ∣ 𝑐 ∣≤ 1,  satisfying all conditions of 

Schwarz's Lemma. 
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SELF CHECK QUESTIONS 

1. What is the Maximum Modulus Principle, and how does it relate to 

the boundary of a domain? 

2. Can the Maximum Modulus Principle be applied to non-analytic 

functions? Why or why not? 

3.  How would you prove the Maximum Modulus Principle using 

contradiction? 

4. Give an example of a function where the Maximum Modulus 

Principle is applied. What are the implications for the maximum 

value of the modulus? 

5. Why does the Maximum Modulus Principle imply that a non-

constant analytic function cannot achieve its maximum modulus in 

the interior of a domain? 

6. How does the Minimum Modulus Principle follow from the 

Maximum Modulus Principle? 

7. State the Schwarz Lemma and explain its significance in complex 

analysis. 

8. Under what conditions does the Schwarz Lemma hold? 

9. How can the Schwarz Lemma be generalized, and what are the 

implications of such generalizations? 

10.7 SUMMARY:-   

The Maximum Modulus Principle and Minimum Modulus Principle are 

fundamental results in complex analysis that state if 𝑓(𝑧) is a non-constant 

analytic function on a domain 𝐷 and continuous on the closure of 𝐷, then 

the maximum (or minimum) modulus of 𝑓(𝑧) occurs on the boundary of 

𝐷 rather than in its interior. The Schwarz Lemma further refines this idea, 

stating that if a function 𝑓(𝑧) is analytic in the unit disk ∣ 𝑧 ∣< 1, satisfies 

𝑓(0) = 0, and ∣ 𝑓(𝑧) ∣< 1  for all 𝑧 in the disk, then ∣ 𝑓(𝑧) ∣≤∣ 𝑧 ∣  and ∣

𝑓′(0) ∣≤ 1, with equality holding if and only if 𝑓(𝑧) is of the form 𝑓(𝑧) =

𝑧𝑒𝑖𝛼  for some real constant 𝛼.  These principles are crucial in 

understanding the behavior and constraints of analytic functions within 

specified domains. 

10.8 GLOSSARY:-   

 Maximum Modulus Principle: States that if 𝑓(𝑧)  is a non-

constant analytic function on a domain 𝐷 and continuous on the 
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closure of 𝐷,  then the maximum value of |𝑓(𝑧)|  occurs on the 

boundary of 𝐷, not in its interior. 

 Analytic Function: A function that is complex differentiable at 

every point in its domain. 

 Domain: An open connected set in the complex plane. 

 Modulus: The absolute value of a complex number 𝑧 = 𝑥 + 𝑖𝑦, 

denoted as ∣ 𝑧 ∣ and defined as √𝑥2 + 𝑦2. 

 Minimum Modulus Principle: States that if 𝑓(𝑧)  is a non-

constant analytic function on a domain 𝐷 and continuous on the 

closure of 𝐷, and 𝑓(𝑧) ≠ 0 inside 𝐷, then the minimum value of ∣

𝑓(𝑧) ∣ occurs on the boundary of 𝐷. 

 Continuous Function: A function f is continuous at 𝑧0  if 

lim
𝑧→𝑧0

𝑓(𝑧) = 𝑓( 𝑧0). 

 Schwarz Lemma: States that if 𝑓(𝑧) is analytic in the unit disk ∣

𝑧 ∣< 1,  𝑓(0) = 0,  and ∣ 𝑓(𝑧) ∣< 1  for all 𝑧  in the disk, then ∣

𝑓(𝑧) ∣≤∣ 𝑧 ∣ and ∣ 𝑓′(0) ∣≤ 1, with equality if and only if 𝑓(𝑧) =

𝑧𝑒𝑖𝛼  for some real constant 𝛼. 

 Unit Disk: The set of all points in the complex plane whose 

distance from the origin is less than 1, denoted as {𝑧 ∈ 𝐶: ∣ 𝑧 ∣< 1}. 

 Equality Condition: In the context of the Schwarz Lemma, 

equality  ∣ 𝑓(𝑧) ∣=∣ 𝑧 ∣  𝑜𝑟 ∣ 𝑓′(0) ∣= 1  holds if and only if 

𝑓(𝑧) = 𝑧𝑒𝑖𝛼, where 𝛼 is a real constant. 

 Linear Transformation: A function of the form 𝑓(𝑧) = 𝑎𝑧 + 𝑏, 

where 𝑎 and 𝑏 are constants. 

 Argument Principle: A theorem in complex analysis that relates 

the number of zeros and poles of a meromorphic function inside a 

closed contour to the change in the argument of the function along 

the contour. 

 Meromorphic Function: A function that is analytic except at a set 

of isolated points, which are poles of the function. 

 Holomorphic Function: Another term for an analytic function, a 

function that is complex differentiable at every point in its domain. 

 Contour: A piecewise smooth curve in the complex plane along 

which an integral is evaluated. 

 Simple Closed Contour: A contour that does not intersect itself 

and forms a closed loop. 
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Understanding these terms and concepts provides a deeper insight into the 

behavior and properties of analytic functions as described by the 

Maximum and Minimum Modulus Principles and the Schwarz Lemma. 
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 file:///C:/Users/user/Desktop/1468563787EText(Ch-8,M-3.pdf 

 file:///C:/Users/user/Desktop/1468562099EText(Ch-5,M-4.pdf 

 

10.11 TERMINAL QUESTIONS:-  

(TQ-1) State and prove the principle of maximum modulus. 

(TQ-2) Find the maximum modulus of 𝑧2 − 𝑧 in the disc |𝑧| ≤ 1. 

(TQ-3) Show that the maximum modulus of 𝑒𝑧 is always assumed on the 

boundary of the compact domain. 

(TQ-4) Suppose 𝑓, 𝑔 both are analytic in a compact domain 𝐷. Show that  
|𝑓(𝑧)| + |𝑔(𝑧)| take it’s maximum on the boundary. 

(TQ-5) Let 𝑓 be a non-constant analytic function on the closed unit disc 

𝐷 = {𝑧 ∈ 𝐶: ∣ 𝑧 ∣≤ 1}. Prove that ∣ 𝑓(𝑧) ∣  attains its maximum value on 

the boundary 𝜕𝐷 = {𝑧 ∈ 𝐶: ∣ 𝑧 ∣= 1} and not in the interior 𝐷 = {𝑧 ∈ 𝐶: ∣
𝑧 ∣< 1}. Use this to show that if 𝑓  is analytic in 𝐷, bounded by 1, and 

𝑓(0) = 0, then ∣ 𝑓(𝑧) ∣≤∣ 𝑧 ∣  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ 𝐷. 

(TQ-6) Show that among all functions, which are analytic and bounded 

by 1, in the unit disc, Max |𝑓′ (
1

3
)| is assumed, when 𝑓 (

1

3
) = 0. 

https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-III-Complex-Analysis.pdf
https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-III-Complex-Analysis.pdf
file:///C:/Users/user/Desktop/1468563787EText(Ch-8,M-3.pdf
file:///C:/Users/user/Desktop/1468562099EText(Ch-5,M-4.pdf


Advanced Complex Analysis  MAT601 
 

Department of Mathematics         

Uttarakhand Open University Page 183 
 

(TQ-7) If 𝑓 is a non-constant analytic function on an open set 𝑈 ⊂ 𝐶, 
then prove that  𝑓(𝑈) is an open set in 𝐶.  

(TQ-8) Suppose further that 𝑓(𝑧) is not constant. Then |𝑓(𝑧) | attains its 

minimum value at a point on the boundary of 𝐶, that is to say, if m is 

minimum value of |𝑓(𝑧) |  inside and on 𝐶, then 

|𝑓(𝑧) | > 𝑚 ∀𝑧 𝑖𝑛𝑠𝑖𝑑𝑒 𝐶 

 

10.12 ANSWERS:- 

SELF CHECK ANSWERS 

1. The Maximum Modulus Principle states that if a function f is 

analytic and non-constant in a domain 𝐷, then the maximum value 

of ∣ 𝑓(𝑧) ∣ on the closure of 𝐷 occurs on the boundary of 𝐷. This 

means that the modulus of f(z) cannot attain its maximum value 

inside the domain unless the function is constant. 

2.  No, the Maximum Modulus Principle cannot be applied to non-

analytic functions because the principle relies on the properties of 

analytic (holomorphic) functions, specifically their continuity and 

differentiability. Non-analytic functions do not necessarily have 

these properties, and thus the principle does not hold for them. 

3.  To prove the Maximum Modulus Principle by contradiction, 

assume that ∣ 𝑓(𝑧) ∣ attains its maximum value 𝑀 at some point a 

inside the domain 𝐷. Consider a small circle centered at a. By 

analyticity, 𝑓(𝑧) is continuous and there exists a point b within the 

circle such that ∣ 𝑓(𝑏) ∣< 𝑀. This contradicts the assumption that 

𝑀  is the maximum value. Therefore, ∣ 𝑓(𝑧) ∣  must attain its 

maximum value on the boundary of 𝐷. 

4. Consider the function 𝑓(𝑧) = 𝑧  on the unit disk ∣ 𝑧 ∣< 1 . The 

modulus  ∣ 𝑓(𝑧) ∣=∣ 𝑧 ∣.  The maximum value of ∣ 𝑧 ∣  in the unit 

disk is 1, which occurs on the boundary ∣ 𝑧 ∣= 1. The implication 

is that the modulus ∣ 𝑧 ∣ does not reach 1 within the disk but only 

on the boundary. 

5.  If a non-constant analytic function 𝑓(𝑧)  could achieve its 

maximum modulus in the interior of the domain, this would 

contradict the principle that 𝑓(𝑧)  attains its maximum on the 

boundary. This is because an analytic function is open and cannot 

have a local maximum in the interior unless it is constant. 

6. Answer: The Minimum Modulus Principle can be derived from the 

Maximum Modulus Principle by considering the function 𝑔(𝑧) =
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 1/𝑓(𝑧), where 𝑓(𝑧) is analytic and non-zero. Applying the 

Maximum Modulus Principle to 𝑔(𝑧), we find that ∣ 𝑔(𝑧) ∣ attains 

its maximum on the boundary, implying that ∣ 𝑓(𝑧) ∣  attains its 

minimum on the boundary. 

7. The Schwarz Lemma states that if f is an analytic function on the 

unit disk ∣ 𝑧 ∣< 1 with 𝑓(0) = 0  and ∣ 𝑓(𝑧) ∣< 1, then ∣ 𝑓(𝑧) ∣≤∣

𝑧 ∣ for all 𝑧 in the disk, and ∣ 𝑓 ′(0) ∣≤ 1. If ∣ 𝑓(𝑧) ∣=∣ 𝑧 ∣ for some 

𝑧 ≠ 0,  then 𝑓(𝑧) = 𝑒𝑖𝜃, 𝑧 for some real 𝜃.  This lemma is 

significant because it provides bounds for the function and its 

derivative at the origin, showing that an analytic function cannot 

grow too fast within the unit disk. 

8.  The Schwarz Lemma holds for an analytic function f on the unit 

disk ∣ 𝑧 ∣< 1 that satisfies 𝑓(0) = 0 and ∣ 𝑓(𝑧) ∣< 1 for all 𝑧 in the 

disk. 

9. The Schwarz Lemma can be generalized to the Schwarz-Pick 

theorem, which deals with functions mapping the unit disk to itself 

and not necessarily fixing the origin. The generalization provides 

bounds on the function and its derivative in terms of the hyperbolic 

metric. The implications are broader control over the behavior of 

analytic functions mapping the unit disk into itself. 
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UNIT 11:- Singularities  
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11.1 INTRODUCTION:-  

In complex analysis, singularities are points at which a complex function 

ceases to be analytic. There are different types of singularities, classified 

primarily into three categories: removable singularities, poles, and 

essential singularities. A removable singularity is a point where the 

function can be redefined to make it analytic. Poles are points where the 

function goes to infinity in a specific manner, characterized by the 

function behaving like 
1

𝑧−𝑧0
 near the singularity 𝑧0. Essential singularities 

are points where the function exhibits chaotic behavior, as described by 

the Weierstrass–Casorati theorem and Picard's theorem. Understanding 

these singularities is crucial for analyzing the behavior of complex 

functions, especially in the context of Laurent series and residue calculus, 

which are fundamental tools in complex analysis for evaluating integrals 

and solving differential equations. 

 

11.2 OBJECTIVES:-  
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Singularities in complex analysis are critical for understanding the 

behavior and structure of complex functions. They represent points where 

a function ceases to be well-behaved, such as where it becomes infinite or 

undefined. Analyzing singularities helps in classifying functions into 

categories like poles, essential singularities, or branch points, and 

understanding their local behavior and global implications. This analysis is 

vital for solving complex integrals, developing conformal mappings, and 

exploring the analytic continuation of functions, thereby enhancing the 

comprehension of complex functions' intricate properties and their 

applications in various scientific fields. 

 

11.3 ZERO OF AN ANALYTIC FUNCTION:-  

A zero of an analytic function is a point 𝑧0 in the complex plane where the 

function 𝑓(𝑧) evaluates to zero, i.e.,𝑓(𝑧0) = 0. If 𝑓(𝑧) is analytic at 𝑧0, 
then 𝑧0 is called a zero of the function. 

 

Zeros are important in the study of complex functions because they 

provide critical information about the function's behavior and its structure. 

For instance, the order or multiplicity of a zero, defined as the highest 

power of (𝑧 − 𝑧0) that divides 𝑓(𝑧), indicates how the function behaves 

near that zero. Analyzing zeros helps in understanding the function's 

growth, mapping properties, and in solving complex differential equations. 

They also play a significant role in the residue theorem and in the 

factorization of analytic functions. 

An analytic function 𝑓(𝑧)  in a domain 𝐷 can be expanded as a Taylor 

series around a point 𝑎 ∈ 𝐷: 

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

      … (1),       𝑎𝑛 =
𝑓𝑛(𝑎)

𝑛!
         … (2) 

If the coefficients 𝑎0, 𝑎1, 𝑎2 = ⋯ 𝑎𝑚−1  are all zero. But 𝑎𝑚 ≠ 0 , then  

𝑓(𝑧) has a zero of order m at 𝑧 = 𝑎. so that 

𝑓(𝑎) = 𝑓′(𝑎) = 𝑓′′(𝑎) = ⋯ = 𝑓(𝑚−1)(𝑎) = 0, 𝑓𝑚(𝑎) ≠ 0 

 

In this case we say that 𝑓(𝑧) has a zero of order 𝑚 at 𝑧 = 𝑎. 
From (1) takes the form 

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

= ∑ 𝑎𝑛+𝑚(𝑧 − 𝑎)𝑛+𝑚

∞

𝑛=0

 

= (𝑧 − 𝑎)𝑛 ∑ 𝑎𝑛+𝑚(𝑧 − 𝑎)𝑛

∞

𝑛=0

 

Taking 
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∑ 𝑎𝑛+𝑚(𝑧 − 𝑎)𝑛

∞

𝑛=0

= 𝜙(𝑧)                … (3) 

𝑓(𝑧) = (𝑧 − 𝑎)𝑚𝜙(𝑧)  
 From (3),  

𝜙(𝑎) = [∑ 𝑎𝑛+𝑚(𝑧 − 𝑎)𝑛

∞

𝑛=0

]

𝑧=𝑎

= [𝑎𝑚 + ∑ 𝑎𝑛+𝑚(𝑧 − 𝑎)𝑛

∞

𝑛=1

]

𝑧=𝑎

= 𝑎𝑚 

But 𝑎𝑚 ≠ 0 so that 𝜙(𝑎) ≠ 0. 

Thus  

An analytic function 𝑓(𝑧) is said to have a zero of order 𝑚  if 𝑓(𝑧) is 

expressible as  

𝑓(𝑧) = (𝑧 − 𝑎)𝑚𝜙(𝑧) 

where 𝜙(𝑧) is analytic and 𝜙(𝑎) ≠ 0. 𝑓(𝑧) is said to have a simple zero at 

𝑧 = 𝑎 if 𝑧 = 𝑎 is a zero of order one. 

 

11.4 SINGULAR POINTS:-  

A singularity of a complex function 𝑓(𝑧) is a point 𝑧0where 𝑓(𝑧) ceases to 

be analytic. For example if 𝑓(𝑧) =
1

(𝑧−2)
,  then 𝑧 = 2 is a singularity of 

𝑓(𝑧). Singular points are categorized into different types based on their 

characteristics: 

1. Isolated Singularity: A point 𝑧 = 𝑎  is an isolated singularity of a 

complex function 𝑓(𝑧) if: 

i. 𝑓(𝑧) is not analytic at 𝑧 = 𝑎. 
ii. There exist a neighborhood around 𝑧 = 𝑎 (excluding a itself) where 

𝑓(𝑧) is analytic. 

In other words, 𝑧 = 𝑎 is an isolated singularity if 𝑓(𝑧) fails to be analytic 

only at 𝑧 = 𝑎,  but 𝑓(𝑧)  is analytic in some punctured neighborhood 

around 𝑧 = 𝑎. 
Conversely, if every deleted neighborhood of 𝑧 = 𝑎  contains other 

singularities of 𝑓(𝑧), then 𝑧 = 𝑎 is called a non-isolated singularity. This 

means 𝑧 = 𝑎 is part of a set of singularities that accumulate around it. 

2. Definition: For a function 𝑓(𝑧) with an isolated singularity at 𝑧 = 𝑎, 
there exists a deleted neighborhood 0 <∣ 𝑧 − 𝑎 ∣< 𝑟 where 𝑓(𝑧)  is 

analytic. In this neighborhood, 𝑓(𝑧) can be expanded using a Laurent 

series: 

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

+ ∑ 𝑏𝑛(𝑧 − 𝑎)−𝑛

∞

𝑛=1

 

The series ∑ 𝑏𝑛(𝑧 − 𝑎)−𝑛∞
𝑛=1  is called the principal part of the Laurent 

series. Three cases arise based on the nature of the Singularity. 

I. Removable Singularity: If the principal part of a function 𝑓(𝑧) at 

an isolated singularity 𝑧 = 𝑎 contains no terms (i.e.,𝑏𝑛 = 0 for all 
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𝑛), then 𝑧 = 𝑎  is called a removable singularity. In this case, the 

function 𝑓(𝑧) can be expressed as: 

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

 

and 𝑓(𝑧) can be analytically extended to 𝑧 = 𝑎. 
Or 

A singularity 𝑧 = 𝑎 of a function 𝑓(𝑧) is called a removable singularity 

if 𝑓(𝑧) can be analytically extended to 𝑧 = 𝑎. Formally: 

A singularity 𝑧 = 𝑎 is a removable singularity of 𝑓(𝑧) if: lim
𝑧→𝑎

𝑓(𝑧) exists 

finitely. 

This means that even though 𝑓(𝑧)  is not analytic at 𝑧 = 𝑎, it can be 

defined or redefined at 𝑧 = 𝑎 such that 𝑓(𝑧) becomes analytic at 𝑧 = 𝑎. 

EXAMPLE1: Consider 𝑓(𝑧) =
𝑠𝑖𝑛(𝑧)

𝑧
. The point 𝑧 = 0  is a removable 

singularity. Although 
𝑠𝑖𝑛(𝑧)

𝑧
  is not defined at 𝑧 = 0, it can be extended to 

an analytic function by defining 𝑓(0) = 1.The extended function 𝑓(𝑧) =
𝑠𝑖𝑛(𝑧)

𝑧
 for 𝑧 = 0 and 𝑓(0) = 1 is analytic everywhere. 

II. Pole: A singularity 𝑧 = 𝑎  of a function 𝑓(𝑧)  is called a pole of 

order 𝑚 if the principal part of the Laurent series expansion around 

𝑧 = 𝑎  contains a finite number of terms, specifically up to (𝑧 −
𝑎)−𝑚. More precisely: 

If 𝑏𝑛 = 0 for all 𝑛 s.t. 𝑛 > 𝑚, where m is positive integer, then 𝑧 = 𝑎 pole 

of order 𝑚 of 𝑓(𝑧). 
Thus if 𝑧 = 𝑎 is a pole of order 𝑚 of the function 𝑓(𝑧), then 𝑓(𝑧) have the 

expansion of the form 

                     

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

+ ∑ 𝑏𝑛(𝑧 − 𝑎)−𝑛

∞

𝑛=1

 

Or 

A function 𝑓(𝑧) is said to have pole of order 𝑛 if it is expressible as 

𝑓(𝑧) =
𝜙(𝑧)

(𝑧 − 𝑎)𝑛
 

 where 𝜙(𝑧) is analytic and 𝜙(𝑧) ≠ 0. 

  Simple Pole: A pole of order 1 is called a simple pole. 

Residue of a function f(z) at a simple pole  z=a is defined as  

lim
𝑧→𝑎

(𝑧 − 𝑎) 𝑓(𝑧) = 𝑅𝑒𝑠(𝑧 = 𝑎) 

Or 

𝑅𝑒𝑠 (𝑧 = 𝑎) = lim
𝑧→𝑎

𝜙(𝑧)

𝜓′(𝑧)
 

where 𝑓(𝑧) =
𝜙(𝑧)

𝜓′(𝑧)
. 
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EXAMPLE2: For 𝑓(𝑧) =
1

(𝑧−1)2, 𝑧 = 1 is a pole of order 2. Near 𝑧 =

1, 𝑓(𝑧) grows without bound as z approaches 1. 
III. Essential singularity: A singularity 𝑧 = 𝑎 of a function 𝑓(𝑧) is 

called an essential singularity if the Laurent series expansion 

around 𝑧 = 𝑎 has an infinite number of terms in the principal part. 

Specifically:If 𝑏𝑛 ≠ 0 for independently many values of 𝑛  so that 

the series 

∑ 𝑏𝑛(𝑧 − 𝑎)−𝑛

∞

𝑛=1

 

contains an infinite number of terms, then 𝑧 = 𝑎 is an essential singularity 

of 𝑓(𝑧). 
In other words, near an essential singularity, the function 𝑓(𝑧) exhibits 

highly irregular and chaotic behavior. 

EXAMPLE3: For 𝑓(𝑧) = 𝑒 1/(𝑧 − 1),  the point 𝑧 = 1  is an essential 

singularity. As 𝑧  approaches 1,  𝑓(𝑧)  exhibits highly irregular behavior, 

such as taking on virtually every complex value near 𝑧 = 1. 
Theorem1: If 𝑓(𝑧) has a pole at 𝑧 = 𝑎, then |𝑓(𝑧)| → ∞, 𝑧 → 𝑎. 
Proof: Suppose 𝑓(𝑧) has a pole of order 𝑚 at 𝑧 = 𝑎. By definition, the 

Laurent series expansion of 𝑓(𝑧) around 𝑧 = 𝑎 is given by: 

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

+ ∑ 𝑏𝑛(𝑧 − 𝑎)−𝑛

∞

𝑛=1

 

This can be rewritten as: 

= ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

+
𝑏1

𝑧 − 𝑎
+

𝑏2

(𝑧 − 𝑎)2
+ ⋯ +

𝑏𝑛

(𝑧 − 𝑎)𝑚
 

= ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

+
1

(𝑧 − 𝑎)𝑚
[𝑏1(𝑧 − 𝑎)𝑚−1 + 𝑏2(𝑧 − 𝑎)𝑚−2 + ⋯

+ 𝑏𝑚] 
As 𝑧 → 𝑎, the expression within the square brackets on the right-hand side 

approaches 𝑏𝑚  because the terms 𝑏1(𝑧 − 𝑎)𝑚−1, 𝑏2(𝑧 − 𝑎)𝑚−2, …  all 

vanish and the only non-vanishing term is 𝑏𝑚.Therefore 

𝑓(𝑧) ≈ ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

+
𝑏𝑛

(𝑧 − 𝑎)𝑚
 

 

As 𝑧 → 𝑎, the term
𝑏𝑛

(𝑧−𝑎)𝑚dominates the expression since the other terms 

involving 𝑎𝑛(𝑧 − 𝑎)𝑛  and the lower-order principal part terms become 

negligible in comparison. Thus, the magnitude of 𝑓(𝑧)  is primarily 

determined by 
𝑏𝑛

(𝑧−𝑎)𝑚 

Hence, as 𝑧 → 𝑎, 
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|𝑓(𝑧)| ≈ |
𝑏𝑛

(𝑧 − 𝑎)𝑚
| → ∞ 

Therefore, ∣ 𝑓(𝑧) ∣→ ∞ as 𝑧 → 𝑎, proving that 𝑓(𝑧) tends to infinity near 

the pole 𝑧 = 𝑎. 
Theorem2: If an analytic function 𝑓(𝑧) has a pole of order 𝑚 at 𝑧 → 𝑎, 

then 
1

𝑓(𝑧)
 has a zero of order 𝑚 at 𝑧 → 𝑎 and conversely.  

Proof: Suppose an analytic function 𝑓(𝑧) has a zero of order 𝑚 at 𝑧 → 𝑎 

this that 

𝑓(𝑧) =
𝜙(𝑧)

(𝑧 − 𝑎)𝑚
             … (1) 

where 𝜙(𝑎) ≠ 0 and 𝜙(𝑧) is analytic. 

We need to prove that  
1

𝑓(𝑧)
 has a zero of order 𝑚 at 𝑧 = 𝑎. 

1

𝑓(𝑧)
=

(𝑧 − 𝑎)𝑚

𝜙(𝑧)
= (𝑧 − 𝑎)𝑚𝜓(𝑧) 

Where 
1

𝜙
= 𝜓 and 𝜓(𝑎) ≠ 0. 

This implies that 
1

𝑓
 has a zero of order 𝑚  at 𝑧 = 𝑎  so that

1

𝑓(𝑧)
=

(𝑧 − 𝑎)𝑚𝑔(𝑧), where 𝑔(𝑧) is analytic and 𝑔(𝑎) ≠ 0. 
Therefore 

𝑓(𝑧) =
1

(𝑧 − 𝑎)𝑚𝑔(𝑧)
=

ℎ(𝑧)

(𝑧 − 𝑎)𝑚
 

where 
1

𝑓(𝑧)
= ℎ(𝑧). 

This shows that 𝑓(𝑧) can be written as 
ℎ(𝑧)

(𝑧−𝑎)𝑚 where ℎ(𝑧) is an analytic 

ℎ(𝑎) ≠ 0 𝑓(𝑧) has a pole of order 𝑚 at 𝑧 = 𝑎. 
Thus, if 𝑓(𝑧) has a pole of order 𝑚 at 𝑧 = 𝑎, then 1/𝑓(𝑧) has a zero of 

order 𝑚 at 𝑧 = 𝑎, and conversely. 

 

11.5 ZEROS ARE ISOLATED:-  

Theorem3: (Zeros Are Isolated) Zeros of an analytic function is 

isolated. 

Proof: Suppose 𝑓(𝑧) is an analytic function in a domain 𝐷, and suppose 

𝑓(𝑧)  has a zero at 𝑧 = 𝑎.  We aim to show that this zero is isolated, 

meaning there exists a neighborhood around 𝑧 = 𝑎  where 𝑓(𝑧)  has no 

other zeros except 𝑧 = 𝑎. 
Since 𝑓(𝑧) is analytic at 𝑧 = 𝑎, it can be expressed as a Taylor series 

around 𝑧 = 𝑎: 

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

 

where 𝑎𝑛 =
𝑓𝑛(𝑎)

𝑛!
. 
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If 𝑓(𝑧) has a zero of order 𝑚 at 𝑧 = 𝑎, then 𝑎0 = 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑚−1 =
0 and 𝑎𝑚 ≠ 0. 

Therefore, the Taylor series can be written as: 

𝑓(𝑧) = (𝑧 − 𝑎)𝑛 ∑ 𝑏𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

 

where  𝑏0 = 𝑎𝑚 ≠ 0. 
Define 

𝑔(𝑧) = ∑ 𝑏𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

 

Notice that 𝑔(𝑧) is analytic and 𝑔(𝑎) = 𝑏0 ≠ 0. 

 

By the continuity of 𝑔(𝑧), there exists a neighborhood around 𝑧 = 𝑎 such 

that 𝑔(𝑧) ≠ 0 in this neighborhood. Therefore, in this neighborhood, the 

function 𝑓(𝑧) can be written as: 

𝑓(𝑧) = (𝑧 − 𝑎)𝑚𝑔(𝑧) 

Since 𝑔(𝑧) ≠ 0 in this neighborhood, 𝑓(𝑧) = 0 if and only if (𝑧 − 𝑎)𝑚 =
0 which implies 𝑧 = 𝑎. 

Thus, there is a neighborhood around 𝑧 = 𝑎 where 𝑓(𝑧) has no zeros other 

than 𝑧 = 𝑎. This proves that the zero at 𝑧 = 𝑎 is isolated. 

 

11.6 POLES ARE ISOLATED:-  

Theorem4: Poles of an analytic function are isolated. 

Proof: Suppose 𝒇(𝒛) is an analytic function in a domain 𝑫 and has a pole 

at 𝒛 = 𝒂. We need to show that this pole is isolated, meaning there exists a 

neighborhood around 𝒛 = 𝒂 where 𝒇(𝒛) has no other poles except 𝒛 = 𝒂. 
 

By definition, if 𝑧 = 𝑎 is a pole of 𝑓(𝑧) of order 𝑚, then near 𝑧 = 𝑎, the  

function 𝑓(𝑧) can be expressed as: 

𝑓(𝑧) =
ℎ(𝑧)

(𝑧 − 𝑎)𝑚
 

where ℎ(𝑧) is analytic and ℎ(𝑎) ≠ 0. 
Let's consider the function 𝑔(𝑧) = (𝑧 − 𝑎)𝑚𝑓(𝑧).  This function 𝑔(𝑧)  is 

constructed to remove the pole at 𝑧 = 𝑎: 

𝑔(𝑧) = (𝑧 − 𝑎)𝑚 =
ℎ(𝑧)

(𝑧 − 𝑎)𝑚
 

Since ℎ(𝑧) is analytic and non-zero at 𝑧 = 𝑎, 𝑔(𝑧) is analytic at 𝑧 = 𝑎. 
By the continuity of ℎ(𝑧) , there exists a neighborhood 𝑈 around 𝑧 = 𝑎 

such that ℎ(𝑧)  ≠ 0 in U. Because 𝑔(𝑧) = ℎ(𝑧), 𝑔(𝑧) is analytic and non-

zero in this neighborhood 𝑈. 
Given that g(z) is analytic and non-zero in U, we have: 
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𝑓(𝑧) =
𝑔(𝑧)

(𝑧 − 𝑎)𝑚
 

 

Therefore, the pole at 𝑧 = 𝑎 is isolated because there is a neighborhood 

around 𝑧 = 𝑎 where 𝑓(𝑧) has no other poles except 𝑧 = 𝑎. 
Hence, we have shown that poles of an analytic function are isolated. 

 

11.7 THE POINT AT INFINITY:-  

The point at infinity is treated differently from the finite points in the 

complex plane. The extended complex plane (or Riemann sphere) includes 

the point at infinity, denoted as ∞. This extended plane allows for a more 

comprehensive understanding of the behavior of complex functions, 

especially in terms of their singularities. 

 

Key Concepts: 

 Extended Complex Plane: The extended complex plane is the 

complex plane 𝐶 together with the point at infinity, ∞. It is often 

visualized as the Riemann sphere, where the complex plane is 

projected onto a sphere such that the point at infinity is the north 

pole of the sphere. 

 Neighborhood of Infinity: A neighborhood of ∞ consists of all 

points 𝑧 in 𝐶 such that ∣ 𝑧 ∣> 𝑅 for some large 𝑅 > 0. Essentially, 

as ∣ 𝑧 ∣ grows without bound, 𝑧 approaches ∞. 
 Behavior at Infinity: To study the behavior of a function 𝑓(𝑧) at 

∞, we often consider the transformed function 𝑔(𝑤) = 𝑓(𝑤1) and 

examine its behavior as 𝑤 → 0. The point 𝑧 = ∞ in the original 

function corresponds to 𝑤 = 0 in the transformed function. 

 Poles and Essential Singularities at Infinity: 

 Pole at Infinity: A function 𝑓(𝑧) has a pole of order 𝑚 at ∞ if 

𝑓(𝑤1)   has a zero of order 𝑚  at 𝑤 = 0.  Mathematically, 𝑓(𝑧) 

behaves like 𝑧𝑚 as 𝑧 → ∞. 
 Essential Singularity at Infinity: A function 𝑓(𝑧) has an essential 

singularity at ∞ if 𝑓(𝑤1) has an essential singularity at 𝑤 = 0. 
 Removable Singularity at Infinity: A function 𝑓(𝑧)  has a 

removable singularity at ∞  if 𝑓(𝑤1)  is analytic at 𝑤 = 0.  This 

means 𝑓(𝑧) approaches a finite limit as 𝑧 → ∞. 
 

Examples: 

 

 Pole at Infinity: The function 𝑓(𝑧) =  𝑧1 has a simple pole at 𝑧 =
∞ because 𝑓(𝑤1) = 𝑤, which has a zero of order 1 at 𝑤 = 0. 



Advanced Complex Analysis  MAT601 
 

 

Department of Mathematics         

Uttarakhand Open University Page 194 
 

 Essential Singularity at Infinity: The function 𝑓(𝑧) = 𝑒𝑧 has an 

essential singularity at 𝑧 = ∞  because 𝑓 (
1

𝑤
) = 𝑒 1/𝑤  has an 

essential singularity at 𝑤 = 0. 

 Removable Singularity at Infinity: The function 𝑓(𝑧) =
1

1+𝑧
 has 

a removable singularity at 𝑧 = ∞  because 𝑓 (
1

𝑤
) =

1

1+
1

𝑤

=
𝑤

1+𝑤
, 

which is analytic at 𝑤 = 0. 
 

11.8 LIMITING POINT OF ZEROS:-  

A point 𝑧0 ∈ ℂ ∪ {∞} is called a limiting point (or accumulation point) of 

zeros of an analytic function 𝑓(𝑧) if, for any 𝜖 > 0, there are infinitely 

many zeros of 𝑓(𝑧) within the distance 𝜖 from 𝑧0. 
Theorem5: Let 𝒇(𝒛) be an analytic function in a simply connected region 

𝑫. Let 𝒂𝟏, 𝒂𝟐 … 𝒂𝒏 … be a sequence of zeros having a as its limit point, 𝒂 

being the interior point of 𝑫. Then either 𝒇(𝒛) vanishes identically or else 

has an isolated essential singularity at 𝒛 = 𝒂. 
Proof: Suppose 𝑓(𝑧) is analytic in a simply connected region 𝐷 and {𝒂𝒏} 

is a sequence of zeros of 𝑓(𝑧) converging to 𝑎, where 𝑎 is an interior point 

of 𝐷. 
The function 𝑓(𝑧) = 0 in 𝐷, the sequence {𝒂𝒏}  being zeros converging to 

𝑎, poses no contradiction since every point in 𝐷 is a zero. 

Assume 𝑓(𝑧) is not identically zero. By the Identity Theorem, an analytic 

function that is zero on a sequence of points with an accumulation point in 

𝐷 must be identically zero unless it has a singularity at the accumulation 

point. 

Here, 𝑎  is the limit point of zeros of 𝑓(𝑧),  meaning 𝑓(𝑧)  cannot be 

analytic at 𝑎. Therefore, 𝑎 must be a singularity of 𝑓(𝑧). 
 

11.9 LIMIT POINT OF POLES:-  

A point 𝒛𝟎 is called a limiting point of poles of a function 𝑓(𝑧) if every 

neighborhood of 𝒛𝟎 contains infinitely many poles of 𝑓(𝑧). 
 

Theorem6: If 𝑧 = 𝑎 is a limit point of the sequence of poles of an analytic 

function 𝑓(𝑧), then 𝑧 = 𝑎 is an essential singularity (non-isolated essential 

singularity) of 𝑓(𝑧). 
Proof: Suppose 𝑓(𝑧) is analytic in a domain 𝐷 except for some poles. Let 

{𝑎𝑛} be a sequence of poles of 𝑓(𝑧) such that 𝑎𝑛 → 𝑎 as 𝑛 → ∞. 
Since 𝑎  is a limit point of poles, every neighborhood of 𝑎  contains 

infinitely many poles of 𝑓(𝑧). 
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By definition, 𝑧 = 𝑎 is a singularity of f(z) because it is a point where 

𝑓(𝑧) is not analytic.If 𝑧 = 𝑎 were a pole, then 𝑓(𝑧) would have a Laurent 

series expansion around a with only finitely many negative powers: 

𝑓(𝑧) =
𝑏𝑚

(𝑧 − 𝑎)𝑚
+

𝑏𝑚−1

(𝑧 − 𝑎)𝑚−1
.

+ ⋯ +
𝑏1

(𝑧 − 𝑎)1
+ 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑝𝑎𝑟𝑡 

However, if 𝑎 were a pole, then 𝑓(𝑧) would not have an infinite number of 

poles accumulating at 𝑎. Poles are isolated by definition. 

Since 𝑧 = 𝑎 is not isolated (it has an infinite number of poles arbitrarily 

close to it), 𝑎 cannot be a pole. 

According to complex analysis, the only type of singularity where poles 

can accumulate and still fit the behavior of having infinitely many poles in 

every neighborhood is an essential singularity. 

Thus, 𝑧 = 𝑎 must be an essential singularity of 𝑓(𝑧), specifically a non-

isolated essential singularity. This means that 𝑓(𝑧)  exhibits highly 

irregular behavior near 𝑎, consistent with the presence of infinitely many 

poles accumulating at 𝑎. 
 

11.10 CHARACTERIZATION OF POLYNOMIALS:-  

Theorem7: The order of zero of the polynomial equals the order of its 

first non-vanishing derivative. 

Or 

The order (or multiplicity) of a zero of a polynomial 𝑝(𝑧) at  𝑧 = 𝑎  is 

equal to the order of the first non-zero derivative of  𝑝(𝑧) at 𝑧 = 𝑎. 
Proof: A polynomial 𝑝(𝑧) has a zero of order 𝑚 at 𝑧 = 𝑎 if: 

𝑝(𝑎) = 𝑝′(𝑎) = 𝑝′′(𝑎) = ⋯ = 𝑝𝑚−1(𝑎) = 0 and 𝑝(𝑚) ≠ 0. 

In other words, 𝑝(𝑧) can be written locally around 𝑧 = 𝑎 as: 

𝑝(𝑧) = (𝑧 − 𝑎)𝑚𝑞(𝑧) 

where 𝑞(𝑧) is a polynomial and 𝑞(𝑎) ≠ 0. 

The derivatives of  𝑝(𝑧) are: 

𝑝′(𝑧) = 𝑚(𝑧 − 𝑎)𝑚−1𝑞(𝑧) + (𝑧 − 𝑎)𝑚𝑞′(𝑧) 

𝑝′′(𝑧)
= 𝑚(𝑚 − 1)(𝑧 − 𝑎)𝑚−2𝑞(𝑧) + 2𝑚(𝑧 − 𝑎)𝑚−1𝑞′(𝑧)

+ (𝑧 − 𝑎)𝑚𝑞′′(𝑧) 

At 𝑧 = 𝑎, 𝑝(𝑎) = 𝑝′(𝑎) = ⋯ = 𝑝𝑚−1(𝑎) = 0,  but 𝑝𝑚(𝑎)  will be non-

zero because 

𝑝𝑚(𝑧) = 𝑚! 𝑞(𝑧) and 𝑝𝑚(𝑎) = 𝑚! 𝑞(𝑎) ≠ 0 

Therefore, the order of the zero at 𝑧 = 𝑎 is exactly 𝑚, which corresponds 

to the smallest 𝑘 for which 𝑝𝑘(𝑎) ≠ 0. 

EXAMPLE4: For the polynomial 𝑝(𝑧) = (𝑧 − 2)3(𝑧 − 5). 
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At 𝑧 = 2, 𝑝(𝑧) has a zero of order 3. 

The first non-zero derivative at 𝑧 = 2 is the third derivative, which will 

not be zero. This confirms that the order of the zero at 𝑧 = 2 is indeed 3. 

Theorem8: (Due to Riemann) Removable singularity. If 𝑧 = 𝑎 is an 

isolated singularity of 𝑓(𝑧)  and if 𝑓(𝑧)  is bounded on some deleted 

neighborhood of 𝑎, then 𝑎 is a removable singularity. 

Proof: Given that 𝑓(𝑧) is bounded on some deleted neighborhood 𝑁(𝑎) of 

𝑎,  Let 𝑀  be the maximum value of |𝑓(𝑧)|  on a circle 𝐶 defined by 
|𝑧 − 𝑎| = 𝑟,  where the radius 𝑟  is chosen so small that 𝐶 lies entirely 

within 𝑁(𝑎), the Laurent series expansion for a function 𝑓(𝑧)  with an 

isolated singularity at 𝑧 = 𝑎, the Laurent series expansion around 𝑧 = 𝑎 is: 

𝑓(𝑧) =  ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛 +

∞

𝑛=0

∑ 𝑏𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=1

      … (1) 

Where 

𝑏𝑛 =
1

2𝜋𝑖
∫(𝑧 − 𝑎)𝑛−1𝑓(𝑧)𝑑𝑧

𝐶

 

|𝑏𝑛| ≤
𝑀

2𝜋
∫|𝑧 − 𝑎|𝑛−1|𝑑𝑧|

𝐶

=
𝑀𝑟𝑛−1

2𝜋
. 2𝜋𝑟 = 𝑀𝑟𝑛 

|𝑏𝑛| ≤  𝑀𝑟𝑛 which → as 𝑟 → 0 

𝑏𝑛 = 0∀𝑛 

Thus, the boundedness of 𝑓(𝑧) on the deleted neighborhood implies that 

𝑧 = 𝑎 is a removable singularity of 𝑓(𝑧),by definition, this proves that 𝑧 =
𝑎 is removable singularity. 

Theorem9: (Weierstrass Theorem) Essential Singularity. If 𝑧 = 𝑎 is an 

essential singularity of 𝑓(𝑧), prove that any positive number, 𝑟, 𝜀 and any 

number 𝑐, there is a point in the circle |𝑧 − 𝑎| < 𝑟 at which |𝑓(𝑧) − 𝑐| <
𝜀. 

In other words, in any arbitrary neighborhood of an essential singularity, 

there exists a point (and therefore an infinite number of points) at which 

the function differs as little as we please form any –assigned number. 

Proof: Suppose the theorem is false. Then there exist positive numbers  

𝑟 and 𝜀 and a complex number 𝑐, such that|𝑓(𝑧) − 𝑐| > 𝜀  for all z with 

|𝑧 − 𝑧0| < 𝑟 so that 
1

|𝑓(𝑧)−𝑐|
< 𝜀 whenever |𝑧 − 𝑧0| < 𝑟. 
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Use of theorem (2), we see that the function 
1

|𝑓(𝑧)−𝑐|
 has a removable 

singularity so that principal part of Laurent’s expansion for 
1

𝑓(𝑧)−𝑐
 about 

the point 𝑧0 does not contain any term so that 

1

𝑓(𝑧) − 𝑐
= ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛      … (1)

∞

𝑛=0

 

If 𝑎𝑛 ≠ 0, we define 
1

𝑓(𝑧0)−𝑐
= 𝑎0  so that 𝑓(𝑧0) = 𝑐 + (1/𝑎0). It means 

that 
1

𝑓(𝑧)−𝑐
 is analytic and non-zero at 𝑧0. 

∴   As a result of which 𝑓(𝑧) itself is analytic at 𝑧0 . Contrary to be initial 

assumption that 𝑧0 is an essential singularity of 𝑓(𝑧). 

Again if 𝑎𝑛 = 0 for 𝑛 = 0,1,2, … 𝑚 − 1 then (1) becomes 

1

𝑓(𝑧) − 𝑐
= ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛

∞

𝑛=𝑚

 

= 𝑎𝑚(𝑧 − 𝑧0)𝑚 + 𝑎𝑚+1(𝑧 − 𝑧0)𝑚+1 + ⋯ 

= (𝑧 − 𝑧0)𝑚[𝑎𝑚 + 𝑎𝑚+1(𝑧 − 𝑧0) + ⋯ ] 

= (𝑧 − 𝑧0)𝑚 ∑ 𝑎𝑚+𝑛(𝑧 − 𝑧0)𝑛

∞

𝑛=0

 

This proves the theorem. 

SOLVED EXAMPLE 

EXAMPLE5: Find the singularities of the function
𝑒𝑐/(𝑧−𝑎)

𝑒𝑧/𝑎−1
, indicating the 

character of each singularity. 

SOLUTION: Given 

𝑓(𝑧) =
𝑒

𝑐
(𝑧−𝑎)

𝑒
𝑧
𝑎 − 1

 

 

i. Let we write exp (𝑧/𝑎) in place of 𝑒
𝑧

𝑎. 

 

Now then 

𝑓(𝑧) =
𝑒

𝑐
(𝑧−𝑎)

𝑒
𝑧
𝑎 − 1

=
𝑒𝑥𝑝 (

𝑒
𝑧 − 𝑎)

𝑒𝑥𝑝 (1 +
𝑧 − 𝑎

𝑎 ) − 1
=

𝑒
𝑐

(𝑧−𝑎)

𝑒. 𝑒
(𝑧−𝑎)

𝑎 − 1

  

= 𝑒
𝑐

(𝑧−𝑎)
[1−𝑒.𝑒

(𝑧−𝑎)
𝑎 ]

−1
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= 𝑒
𝑐

(𝑧−𝑎)
[1−𝑒.{1+

(𝑧−𝑎)
𝑎

+(
(𝑧−𝑎)

𝑎
)

2

.
1
2!

+⋯..}]

−1

 

= [1 +
𝑐

𝑧 − 𝑎
+ (

𝑐

𝑧 − 𝑎
)

2

.
1

2!
+ ⋯ ]

× [1 + 𝑒 {1 +
(𝑧 − 𝑎)

𝑎
+ (

(𝑧 − 𝑎)

𝑎
)

2

.
1

2!
+ ⋯ }

+ 𝑒
2{1+

(𝑧−𝑎)
𝑎

+(
(𝑧−𝑎)

𝑎
)

2

+⋯ }
] 

Hence by the definition 𝑧 = 𝑎 is an essential singularity. 

 

ii.                     𝑓(𝑧) =  
𝑒𝑥𝑝(

𝑒

𝑧−𝑎
)

𝑒𝑥𝑝(
𝑧

𝑎
)−1

 

Evidently denominator has zero of order 1at 

 

𝑒𝑧/𝑎 = 1 = 𝑒2𝑛𝜋𝑖 , 𝑖. 𝑒. , 𝑧 = 2𝑛𝜋𝑖𝑎. 
So the function 𝑓(𝑧) has a pole of order one at each point 𝑧 = 2𝑛𝜋𝑖𝑎 

(where 𝑛 = 0, ±1, ±2, … … …). 

 

EXAMPLE6: Specify the nature of singularity at 𝑧 = −2 of 𝑓(𝑧) =

(𝑧 − 3)𝑠𝑖𝑛 (
1

𝑧+2
). 

SOLUTION: The given singularity is  

𝑓(𝑧) = 0   𝑜𝑟     (𝑧 − 3) 𝑠𝑖𝑛 (
1

𝑧 + 2
) = 0 

This implies that  

⇒    𝑧 = 3 and  𝑠𝑖𝑛 (
1

𝑧+2
) = 0 = 𝑠𝑖𝑛0 

⇒    
1

𝑧+2
= 𝑛𝜋 + (−1)𝑛(0) = 𝑛𝜋 and  𝑠𝑖𝑛 (

1

𝑧+2
) = 0 = 𝑠𝑖𝑛0 

⇒    𝑧 + 2 =
1

𝑛𝜋
 ⇒    𝑧 = −2 +

1

𝑛𝜋
  

⇒        𝑧 = −2 +
1

𝑛𝜋
   for  𝑛 = 0,1,2,3 … …. 

Limit points of zeros is 𝑧 = −2. 

Hence the isolated singularity is 𝑧 = −2. 

EXAMPLE7: Find zeros and pole of (
𝑧+1

𝑧2+1
)

2

. 

SOLUTION: The given singularity is  

𝑓(𝑧) = (
𝑧 + 1

𝑧2 + 1
)

2

 

I. The zeros of 𝑓(𝑧) is given by 

(𝑧 + 1)2 = 0     
𝑧 = −1, −1 

So 𝑧 = −1 is a zero of order 2. 

II.  The poles of  𝑓(𝑧) is given by 
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(𝑧2 + 1)2 = 0   
  (𝑧 + 𝑖)2(𝑧 − 𝑖)2 = 0    

𝑧 = −𝑖, −𝑖, 𝑖, 𝑖 
Hence 𝑧 = −𝑖 and 𝑧 = 𝑖 both are poles of order2. 

 

EXAMPLE8: Find Laurent series of 𝑓(𝑧) = (𝑧 − 3) sin (
1

𝑧+2
) about 

singularity 𝑧 = −2 and indicate nature of singularity. 

SOLUTION: Let  

𝑠𝑖𝑛𝜃 = 𝜃 −
𝜃3

3!
+

𝜃5

5!
−

𝜃7

7!
+ ⋯ 

So that 

𝑓(𝑧) = (𝑧 − 3) [
1

(𝑧 + 2)
−

1

3!
.

1

(𝑧 + 2)3
+

1

5! (𝑧 + 2)5
+ ⋯ ] 

which represents Laurent’s series. 

Now the zeros of 𝑓(𝑧) is  

(𝑧 − 3)𝑠𝑖𝑛
1

(𝑧 + 2)
= 0 ⇒ 𝑧 − 3 = 0, 𝑠𝑖𝑛

1

(𝑧 + 2)
= 0 

  ⇒             

𝑠𝑖𝑛
1

(𝑧 + 2)
= 0 = 𝑠𝑖𝑛(𝑛𝜋)  ⇒

1

(𝑧 + 2)
= 𝑛𝜋 

⇒  𝑧 + 2 =
1

𝑛𝜋
⇒ 𝑧 =

1

𝑛𝜋
− 2 for 𝑛 = 1,2,3,4, … …. 

Now  

𝑧 =
1

∞
− 2 = −2 

EXAMPLE9: Determine the nature of the singularity at z=0 for the 

function: 

𝑓(𝑧) =
𝑠𝑖𝑛(𝑧)

𝑧
 

SOLUTION: The function  

𝑓(𝑧) =
𝑠𝑖𝑛(𝑧)

𝑧
 

 is not defined at 𝑧 = 0 because of the division by zero. This suggests a 

possible singularity at 𝑧 = 0. 
So the limit as 𝑧 approaches 0:  

lim
𝑧→0

𝑠𝑖𝑛(𝑧)

𝑧
 

Using the standard limit lim
𝑧→0

𝑠𝑖𝑛(𝑧)

𝑧
= 1, we have 

lim
𝑧→0

𝑠𝑖𝑛(𝑧)

𝑧
= 1 

Since the limit exists and is finite, the singularity at 𝑧 = 0 is a removable 

singularity. The function can be redefined at 𝑧 = 0 as 𝑓(0) = 1 to remove 

the singularity and make the function analytic at that point. 
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EXAMPLE10: Determine the nature and order of the singularity at 𝑧 = 0 

for the function: 

𝑔(𝑧) =
1

𝑧3
 

SOLUTION: The function 𝑔(𝑧) =
1

𝑧3 is undefined at 𝑧 = 0, indicating a 

potential singularity at 𝑧 = 0. 
The function can be written as, 

 𝑔(𝑧) =
1

𝑧3
  

Here, the function clearly approaches infinity as z approaches 0. 

Since the function can be expressed as 

 𝑔(𝑧) =
1

(𝑧−0)3, 

 It is evident that this is a pole of order 3.The singularity at 𝑧 = 0 is a pole 

of order 3. 
 

SELF CHECK QUESTIONS 

1. What is a singularity in the context of complex analysis? 

2. What are the three main types of isolated singularities? 

3. Define a removable singularity. 

4. What does it mean for zeros to be isolated? 

5. Explain the relationship between the limit points of zeros and 

essential singularities. 

6. How does the Weierstrass theorem describe a removable 

singularity? 

11.11 SUMMARY:-   

In this unit we have studied the singularities in complex analysis are points 

where a function is not analytic. They can be classified into three main 

types: removable singularities, poles, and essential singularities. A 

removable singularity is one where the function can be redefined to make 

it analytic. Poles are points where the function approaches infinity, with 

the order of the pole indicating how fast it diverges. Essential singularities 

are characterized by chaotic behavior, where the function takes on almost 

every possible value infinitely often in any neighborhood around the 

singularity. According to Picard's theorem, near an essential singularity, a 

function assumes every complex value, with at most one exception, 

infinitely often. Singularities play a crucial role in understanding the 

behavior and properties of complex functions. 

11.12 GLOSSARY:-   

 Analytic Function: A function that is locally given by a 

convergent power series. 
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 Singularity: A point at which a function is not analytic. 

 Isolated Singularity: A singularity where there exists a 

neighborhood around the point such that there are no other 

singularities within that neighborhood. 

 Removable Singularity: A point 𝑧 = 𝑎 where a function is not 

analytic but can be redefined to be analytic. If the Laurent series of  

𝑓(𝑧)  around 𝑧 = 𝑎  contains no negative power terms, it is a 

removable singularity. 

 Pole: A singularity where a function approaches infinity as the 

variable approaches the point. The order of the pole indicates the 

highest power of the negative term in the Laurent series expansion. 

 Simple Pole: A pole of order one. 

 Essential Singularity: A point where a function exhibits chaotic 

behavior such that, in any neighborhood around the singularity, the 

function takes on nearly every possible value infinitely often. The 

Laurent series has an infinite number of negative power terms. 

 Laurent Series: A representation of a complex function as a series 

that includes both positive and negative powers of (𝑧 − 𝑎). 
 Principal Part: The part of the Laurent series that contains the 

negative powers of (𝑧 − 𝑎). 
 Limit Point of Zeros: A point where a sequence of zeros 

accumulates. If such a point is within the domain of an analytic 

function, the function must either be identically zero or have an 

essential singularity at that point. 

 Picard's Theorem: A theorem stating that near an essential 

singularity, a function takes on every possible complex value, with 

at most one exception, infinitely often. 

 Weierstrass Theorem: In the context of removable singularities, 

this theorem states that if a function is bounded near an isolated 

singularity, then the singularity is removable. 

 Deleted Neighborhood: A neighborhood around a point, 

excluding the point itself. 

 Non-Isolated Singularity: A singularity where every 

neighborhood of the point contains other singularities. 

 Simply Connected Region: A region without holes, where any 

loop can be continuously contracted to a point within the region. 

 

11.13 REFERENCES:-  

 Gerald B. Folland (2020), Complex Analysis: A Modern 

Introduction. 

 Steven G. Krantz (2020),Complex Analysis. 

 Gerald Teschl (2017),Complex Analysis: An Invitation. 
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 John P. D'Angelo (2021), Complex Analysis: An Introduction. 

 

11.14 SUGGESTED READING:-  

 Goyal and Gupta (Twenty first edition 2010), Function of complex 

Variable. 

 https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-III-

Complex-Analysis.pdf 

 James Brown and Ruel Churchill (2019), Complex Variables and 

Applications. 

  R. A. Johnson (2020), Introduction to Complex Analysis. 

11.15 TERMINAL QUESTIONS:-  

(TQ-1) If 𝑓(𝑧) = ∑
𝑧2

4+𝑛2𝑧2
∞
𝑛=1 , show that  𝑓(𝑧) is finite and continuous 

for all real values of z but f(z) cannot be expanded in a Maclaurin’s series. 

Show that 𝑓(𝑧) possesses Laurent’s expansion valid in succession of the 

ring spaces. 

(TQ-2) Show the function 𝑐𝑜𝑠𝑒𝑐𝑧 has a simple pole at 𝑧 = ∞. 

(TQ-3) Show that the function 𝑒−1/𝑧2
 has no singularities. 

(TQ-4) Show that the function 𝑒𝑧 has isolated essential singularity at 𝑧 =
∞. 

(TQ-5) Show that the function 𝑒1/𝑧  actually takes every value except 

zero an infinite number of times in the neighborhood of 𝑧 = 0. 

(TQ-6) Prove that a function which have no singularity in the finite part 

of the planes or at infinity is constant. 

(TQ-7) To show that a function which has no singularity in the finite part 

of the plane and has a pole of order 𝑛 at infinity is a polynomial of degree 

𝑛. 

(TQ-8) If 𝑧 = 𝑎  is an essential singularity of 𝑓(𝑧),  prove that any 

positive number, 𝑟, 𝜀  and any number 𝑐,  there is a point in the circle 
|𝑧 − 𝑎| < 𝑟 at which |𝑓(𝑧) − 𝑐| < 𝜀. 

(TQ-9)  If 𝑧 = 𝑎 is an isolated singularity of 𝑓(𝑧) and if 𝑓(𝑧) is bounded 

on some deleted neighborhood of 𝑎, then 𝑎 is a removable singularity. 

(TQ-10) If 𝑓(𝑧) has a pole at 𝑧 = 𝑎, thenprove that  |𝑓(𝑧)| → ∞, 𝑧 → 𝑎. 

(TQ-11) Objectives Types Questions: 

https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-III-Complex-Analysis.pdf
https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-III-Complex-Analysis.pdf
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1. If a function is analytic at all points of a bounded domain except at 

infinity many points, then these points are called: 

a. Zeros 

b. Singularities 

c. Poles 

d. Simple points 

2. A function which has poles as its only singularities in the finite 

part of the plane is  

a. An analytic function 

b. A meromorphic function 

c. An entire function 

d. A finite function 

3. The number of zeros of the function 𝑓(𝑧) = sin (
1

𝑧
) is: 

a. 3 

b. 4 

c. Infinite 

d. None 

4. The number of poles  of the function 𝑓(𝑧) = tan
1

𝑧
 is: 

a. 2 

b. 4 

c. Infinite 

d. None 

5. What type of singularity is characterized by the fact that a 

function's Laurent series contains only a finite number of negative 

power terms? 

a. Removable Singularity 

b. Pole 

c. Essential Singularity 

d. Isolated Singularity 

(TQ-12) True/ False Types Questions: 

1. A removable singularity is characterized by a Laurent series with 

no negative power terms. 

2.  At a pole, the Laurent series of the function has an infinite number 

of negative power terms. 

3. An essential singularity is a point where the Laurent series of the 

function has only a finite number of negative power terms. 

4. A function with a pole at 𝑧0 can be expressed as 
𝑓(𝑧)

(𝑧−𝑧0)𝑛 where f(z) 

is analytic and non-zero at 𝑧0.  

5. The behavior of a function near an isolated singularity can be 

classified as removable, pole, or essential.  

6. The residue of a function at a removable singularity is always zero. 

7. Every isolated singularity of a function is either a removable 

singularity, a pole, or an essential singularity. 
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8. The function 𝑓(𝑧) = 𝑒1/(𝑧−1) has a removable singularity at 𝑧 = 1. 

(TQ-13) Find kind of the singularities of the following 

a. 
𝑐𝑜𝑡𝜋𝑧

(𝑧−𝑎)2 at 𝑧 = 𝑎 and 𝑧 = ∞.  

b. tan (1/𝑧) at 𝑧 = 0.   

c. 𝑐𝑜𝑠𝑒𝑐 (
1

𝑧
) at 𝑧 = 0.  

d. 𝑠𝑖𝑛 [
1

1−𝑧
] at 𝑧 = 1.  

e. 
1

𝑠𝑖𝑛𝑧−𝑐𝑜𝑠𝑧
 at 𝑧 =

𝜋

4
.  

f. 𝑠𝑖𝑛𝑧 − 𝑐𝑜𝑠𝑧 at 𝑧 = ∞. 

g.  
𝑒𝑧

𝑧2+4
  

h. 𝑓(𝑧) =
1−𝑒𝑧

1+𝑒𝑧 at  𝑧 = ∞.  

i. 𝑓(𝑧) = 𝑧 𝑐𝑜𝑠𝑒𝑐𝑧 at  𝑧 = ∞. 

 

11.16 ANSWERS:- 

SELF CHECK ANSWERS 

1. A singularity is a point at which a complex function is not analytic. 

Singularities are points where the function fails to be differentiable 

or undefined. 

2. The three main types of isolated singularities are: 

 Removable singularities 

 Poles 

 Essential singularities 

3. A removable singularity at 𝑧 = 𝑎 is a point where a function 𝑓(𝑧) 

is not defined or not analytic, but can be made analytic by defining 

or redefining 𝑓(𝑎)  appropriately. If 𝑓(𝑧)  is bounded in some 

deleted neighborhood of 𝑎, then 𝑎 is a removable singularity. 

4. Zeros of a function 𝑓(𝑧) are said to be isolated if each zero has a 

neighborhood in which it is the only zero of the function. This 

implies that there are no other zeros of 𝑓(𝑧) arbitrarily close to it. 

5. If a function 𝑓(𝑧) is analytic in a simply connected region 𝐷 and 

has a sequence of zeros 𝑎1, 𝑎2, 𝑎3, … … .. that accumulate at a point 

a within 𝐷, then either 𝑓(𝑧) is identically zero in 𝐷, or 𝑧 = 𝑎 is an 

isolated essential singularity of 𝑓(𝑧). 
6. The Weierstrass theorem states that if 𝑧 = 𝑎  is an isolated 

singularity of 𝑓(𝑧)  and if 𝑓(𝑧)  is bounded on some deleted 

neighborhood of 𝑎, then 𝑎 is a removable singularity. 

 

TERMINAL  ANSWERS 
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 (TQ-11)  

 (TQ-12) 

(TQ-13) 

a. 𝑧 = 𝑎 

b. 𝑧 = 0 

c. 𝑧 = 0 

d. 𝑧 = 1 

e. 𝑧 =
𝜋

4
 

f. 𝑧 = ∞. 

g. 𝑧 = 2𝑖, −2𝑖 

h. 𝑧 = ∞ 

i. 𝑧 = ∞. 

 

 

1.b 2.b 3.c 4.c 5.d 

1.T 2.F 3.F 4.T 5.T 

6.T 7.T 8.T   
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UNIT 12:- The residue theorem  

CONTENTS: 
12.1       Introduction 

12.2       Objectives 

12.3       Cauchy’s Residue Theorem 

12.4       Computation of Residue at Finite Pole  

12.5       Working Rule (For Computing the Residue) 

12.6        Jordan’s Inequality  

12.7         Integration Round the Unit Circle  

12.8        Evaluation of Integrals of the Type 

12.9        Summary 

12.10      Glossary 

12.11       References 

12.12       Suggested Reading 

12.13       Terminal questions 

12.14       Answers 

 

12.1 INTRODUCTION:-  

The residue theorem is a powerful tool in complex analysis, which 

simplifies the evaluation of contour integrals. It states that if a function 

𝑓(𝑧) is analytic inside and on a simple closed contour 𝐶, except for a finite 

number of isolated singularities within 𝐶, then the integral of 𝑓(𝑧) around 

C is 2πi times the sum of the residues of f at those singularities. Formally, 

∫ 𝑓(𝑧)𝑑𝑧
𝐶

= 2𝜋𝑖 ∑ 𝑅𝑒𝑠(𝑓, 𝑧𝑘) where 𝑅𝑒𝑠(𝑓, 𝑧𝑘) denotes the residue of 𝑓 

at the singularity 𝑧𝑘. This theorem greatly facilitates the computation of 

complex integrals, especially in cases where directly evaluating the 

integral is difficult. 

12.2 OBJECTIVES:-  

After studying this unit, learners will be able to: 

 Understand and verify the Cauchy residue theorem, 

comprehending its significance and applications in evaluating 

contour integrals with isolated singularities. 
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 Analyze Jordan's lemma, gaining insights into its role in 

simplifying the evaluation of integrals involving exponential 

functions and semicircular contours. 

 Solve integration problems around the unit circle, applying the 

concepts learned to compute integrals of complex functions 

effectively.  

12.3 CAUCHY’S RESIDUE THEOREM:-  

Theorem1: Let 𝑓(𝑧) be a function that is analytic inside and on a simple 

closed contour C, except for a finite number of isolated singularities 

𝑧1, 𝑧2 … … … … 𝑧𝑛 inside 𝐶. Then prove that the integral of 𝑓(𝑧) around 𝐶 

is given by: 

∫𝑓(𝑧)𝑑𝑧 =
𝐶

2𝜋𝑖 ∑ 𝑅𝑒𝑠(𝑧 = 𝑧𝑟)

𝑛

𝑟=1

 

where 𝑅𝑒𝑠(𝑧 = 𝑧𝑟) denotes the residue of 𝑓 at the singularity 𝑧𝑘. 

Proof: Let 𝛾1, 𝛾2, … … , 𝛾𝑛  are the circles with centres at 𝑧1, 𝑧2, … … , 𝑧𝑛 

respectively and radii within C and do not overlap. 𝑓(𝑧) is analytic within 

the annulus bounded by these circles and curve C, by the corollary to 

Cauchy’s theorem, 

∫𝑓(𝑧)𝑑𝑧 =
𝐶

∫ 𝑓(𝑧)
𝛾1

𝑑𝑧 + ∫ 𝑓(𝑧)
𝛾2

𝑑𝑧 + ⋯ + ∫ 𝑓(𝑧)
𝛾𝑛

𝑑𝑧 

But 
1

2𝜋𝑖
∫ 𝑓(𝑧)

𝛾1
𝑑𝑧 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑜𝑓 𝑓(𝑧)𝑎𝑡 𝑧 = 𝑧1 

= 𝑅𝑒𝑠(𝑧 = 𝑧1) 

∫ 𝑓(𝑧)
𝛾1

𝑑𝑧 = 2𝜋𝑖𝑅𝑒𝑠(𝑧 = 𝑧1) 

Using(1), we obtain 

∫𝑓(𝑧)𝑑𝑧 =
𝐶

2𝜋𝑖𝑅𝑒𝑠(𝑧 = 𝑧1) + ⋯ + 2𝜋𝑖𝑅𝑒𝑠(𝑧 = 𝑧𝑛) 

= 2𝜋𝑖 ∑ 𝑅𝑒𝑠(𝑧 = 𝑧1)

𝑛

𝑟=1

 

This completes the proof that the integral of 𝑓(𝑧) around a simple closed 

contour 𝐶 is 2𝜋𝑖 times the sum of residues of 𝑓 at the isolated singularities 

inside 𝐶. 

Theorem2: If a function 𝑓(𝑧)  is analytic except at finite number of 

singularities (including that at infinity), then the sum of residues of these 

singularities is zero. 
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Proof: Let 𝐶 be a closed contour that encloses all the singularities of 𝑓(𝑧) 

in the finite part of the complex plane , except that at infinity. By sum 

∑ 𝑅 residues at all the singularities of 𝑓(𝑧), the integral of 𝑓(𝑧) around C 

is given by: 

∫𝑓(𝑧)𝑑𝑧 =
𝐶

2𝜋𝑖 ∑ 𝑅 

Also 

−
1

2𝜋𝑖
∫ 𝑓(𝑧)

𝛾1

𝑑𝑧 = 𝑅𝑒𝑠(𝑧 = ∞) 

Adding these equations, we obtain  

𝑅𝑒𝑠(𝑧 = ∞) + ∑ 𝑅 = 0 

This completes the proof that the sum of the residues of f(z) at all 

singularities in the finite plane, including the singularity at infinity, is zero. 

SOLVED EXAMPLE 

EXAMPLE1: Evaluate the residue of 
𝑧2

(𝑧−1)(𝑧−2)(𝑧−3)
 at 1,2,3 and infinity 

and show that their sum is zero. 

SOLUTION: Suppose the given residue is 

𝑓(𝑧) =
𝑧2

(𝑧 − 1)(𝑧 − 2)(𝑧 − 3)
 

Residue at 𝒛 = 𝟏: To find the residue of 𝑓(𝑧) at 𝑧 = 1, we first rewrite 

𝑓(𝑧) as: 

lim
𝑧→1

(𝑧 − 1) 𝑓(𝑧) = lim
𝑧→1

𝑧2

(𝑧 − 2)(𝑧 − 3)
 

=
𝑧2

(1 − 2)(1 − 3)
=

1

2
 

Residue at 𝒛 = 𝟐: To find the residue of 𝑓(𝑧) at 𝑧 = 2, we first rewrite 

𝑓(𝑧) as: 

lim
𝑧→1

(𝑧 − 2) 𝑓(𝑧) = lim
𝑧→1

𝑧2

(𝑧 − 1)(𝑧 − 3)
= −4 

Residue at 𝒛 = 𝟑: 

lim
𝑧→1

(𝑧 − 3) 𝑓(𝑧) = lim
𝑧→1

𝑧2

(𝑧 − 1)(𝑧 − 2)
=

9

2
 

Residue at 𝒛 = +∞: 
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lim
𝑧→1

(−𝑧) 𝑓(𝑧) = lim
𝑧→1

𝑧𝑧

𝑧(𝑧 − 1)(𝑧 − 2)(𝑧 − 3)
= −1 

Sum of residues=
1

2
− 4 +

9

2
− 1 = 0. 

Therefore, the sum of residues of 𝑓(𝑧) at 𝑧 = 1,2,3, and infinity is indeed 

zero. 

EXAMPLE2: Evaluate the residue of 
𝑧3

(𝑧−1)(𝑧−2)(𝑧−3)
 at  𝑧 → ∞. 

SOLUTION: Suppose the given residue is 

𝑓(𝑧) =
𝑧3

(𝑧 − 1)(𝑧 − 2)(𝑧 − 3)
 

= (1 −
1

𝑧
)

−1

(1 −
2

𝑧
)

−1

(1 −
3

𝑧
)

−1

 

= (1 +
1

𝑧
+ ⋯ ) (1 +

2

𝑧
+ ⋯ ) (1 +

3

𝑧
+ ⋯ ) 

= 1 +
6

𝑧
+ ℎ𝑖𝑔ℎ𝑒𝑟 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓

1

𝑧
 

Thus, 

𝑅𝑒𝑠(𝑓, ∞) = −6 

Therefore, the residue of 
𝑧3

(𝑧−1)(𝑧−2)(𝑧−3)
 at 𝑧 → ∞ is −6. 

EXAMPLE3: Evaluate the residue of 𝑓(𝑧) where 𝑓(𝑧) =
𝑒𝑧

𝑧2(𝑧2+9)
 at 𝑧 =

0, −3𝑖, +3𝑖. 

SOLUTION: To find the residues of the function 𝑓(𝑧) =
𝑒𝑧

𝑧2(𝑧2+9)
at the 

given points 𝑧 = 0, 𝑧 = −3𝑖, and 𝑧 = 3𝑖, follow these steps: 

1. Residue at 𝒛 = 𝟎: The point 𝑧 = 0 is a pole of order 2. To find the 

residue at a pole of order 2, use the formula: 

𝑅𝑒𝑠(𝑓, 𝑧0) = lim
𝑧→𝑧0

𝑑

𝑑𝑧
[(𝑧 − 𝑧0)𝑓(𝑧)] 

Here, 𝑧0 = 0 so we need 

𝑅𝑒𝑠(𝑓, 𝑧0) = lim
𝑧→𝑧0

𝑑

𝑑𝑧
𝑧2

𝑒𝑧

𝑧2(𝑧2 + 9)
 

Simplify inside the limit: 

𝑧2
𝑒𝑧

𝑧2(𝑧2 + 9)
=

𝑒𝑧

(𝑧2 + 9)
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Now, differentiate: 

𝑑

𝑑𝑧

𝑒𝑧

(𝑧2 + 9)
=

𝑒𝑧(𝑧2 + 9) − 𝑒𝑧2𝑧

(𝑧2 + 9)2
=

𝑒𝑧(𝑧2 + 9 − 2𝑧)

(𝑧2 + 9)2
=

9

81
=

1

9
 

Evaluate at 𝑧 = 0: 

𝑅𝑒𝑠(𝑓, 0) =
𝑒0(02 + 9 − 2.0)

(02 + 9)2
=

9

81
=

1

9
 

2. Residue at 𝒛 = 𝟑𝒊: The point 𝑧 = 3𝑖 is a simple pole. To find the 

residue at a simple pole, use the formula: 

𝑅𝑒𝑠(𝑓, 𝑧0) = lim
𝑧→𝑧0

𝑑

𝑑𝑧
[(𝑧 − 𝑧0)𝑓(𝑧)] 

Here, 𝑧0 = 3𝑖 so we need 

𝑅𝑒𝑠(𝑓, 3𝑖) = (𝑧 − 3𝑖)
𝑒𝑧

𝑧2(𝑧2 + 9)
 

(𝑧2 + 9) = (𝑧 − 3𝑖)(𝑧 + 3𝑖) 

𝑅𝑒𝑠(𝑓, 3𝑖) =
𝑒𝑧

𝑧2(𝑧 + 3𝑖)
 

 

Evaluate at 𝑧 = 3𝑖: 

𝑅𝑒𝑠(𝑓, 3𝑖) =
𝑒3𝑖

(3𝑖)2(3𝑖 + 3𝑖)
=

𝑒3𝑖

−54𝑖
 

3. Residue at 𝒛 = −𝟑𝒊: 

Similarly, 𝑧 = −3𝑖 is a simple pole. To find the residue: 

𝑅𝑒𝑠(𝑓, 𝑧0) = lim
𝑧→𝑧0

𝑑

𝑑𝑧
[(𝑧 − 𝑧0)𝑓(𝑧)] 

Here, 𝑧0 = −3𝑖 so we need 

𝑅𝑒𝑠(𝑓, −3𝑖) = (𝑧 + 3𝑖)
𝑒𝑧

𝑧2(𝑧2 + 9)
 

(𝑧2 + 9) = (𝑧 − 3𝑖)(𝑧 + 3𝑖) 

𝑅𝑒𝑠(𝑓, 3𝑖) =
𝑒𝑧

𝑧2(𝑧 − 3𝑖)
 

 

Evaluate at 𝑧 = −3𝑖: 

𝑅𝑒𝑠(𝑓, −3𝑖) =
𝑒−3𝑖

(−3𝑖)2(−3𝑖 − 3𝑖)
=

𝑒3𝑖

54𝑖
 

Hence  
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 Residue at 𝑧 = 0: 
1

9
 

 Residue at 𝑧 = 3𝑖: 
𝑒3𝑖

−54𝑖
  

 Residue at 𝑧 = −3𝑖: 
𝑒3𝑖

54𝑖
 

EXAMPLE4: Using residue theorem, evaluate ∫
𝑒𝑧

𝑧(𝑧−1)2𝐶
𝑑𝑧  where C is 

circle |𝑧| = 2. 

SOLUTION: To evaluate the integral ∫
𝑒𝑧

𝑧(𝑧−1)2𝐶
𝑑𝑧 where C is circle |𝑧| =

2.   Using the residue theorem, we need to find the residues of the 

integrand inside the contour 𝐶. 

The integrate 
𝑒𝑧

𝑧(𝑧−1)2 has singularities at 𝑧 = 0 and 𝑧 = 1. 

 𝑧 = 0 is a simple pole. 

 𝑧 = 1 is a pole of order 2. 

Both poles are inside the contour ∣ 𝑧 ∣= 2. 

Residue at 𝒛 = 𝟎: 

For the simple pole at 𝑧 = 0: 

𝑅𝑒𝑠
𝑒𝑧

𝑧(𝑧 − 1)2
 0 = lim

𝑧→0

𝑒𝑧

𝑧(𝑧 − 1)2
 𝑧 = lim

𝑧→0

𝑒𝑧

(𝑧 − 1)2
=

𝑒0

(0 − 1)0
= 1 

Residue at 𝒛 = 𝟏: 

For the pole of order 2 at 𝑧 = 1: 

𝑅𝑒𝑠
𝑒𝑧

𝑧(𝑧 − 1)2
, 1 = lim

𝑧→1

𝑑

𝑑𝑧
(𝑧 − 1)2

𝑒𝑧

𝑧(𝑧 − 1)2
= lim

𝑧→0

𝑑

𝑑𝑧

𝑒𝑧

𝑧
 

Now, differentiate: 

𝑑

𝑑𝑧

𝑒𝑧

𝑧
=

𝑧𝑒𝑧 − 𝑒𝑧

𝑧2
 

Evaluate at 𝑧 = 1: 

𝑅𝑒𝑠
𝑒𝑧

𝑧(𝑧 − 1)2
, 1 =

1𝑒1 − 𝑒1

12
= 0 

The residue theorem states: 

∫𝑓(𝑧)𝑑𝑧
𝐶

= 2𝜋𝑖 𝑅𝑒𝑠(𝑓, 𝑧𝑖)   

Sum of residues inside C: 

𝑅𝑒𝑠
𝑒𝑧

𝑧(𝑧 − 1)2
, 0 + 𝑅𝑒𝑠

𝑒𝑧

𝑧(𝑧 − 1)2
, 1 = 0 + 1 = 1 
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Therefore, the integral is: 

∫
𝑒𝑧

𝑧(𝑧 − 1)2
𝑑𝑧

𝐶

= 2𝜋𝑖 ∙ 1 = 2𝜋𝑖 

So, the value of the integral is 2𝜋𝑖. 

12.4 COMPUTATION OF RESIDUE AT FINITE 

POLE:-  

1. Residue of 𝒇(𝒛) at a simple pole 𝒛 = 𝒂. 
i. 𝑅𝑒𝑠 (𝑧 = 𝑎) = lim

𝑧→𝑎
(𝑧 − 𝑎) 𝑓(𝑧) 

ii. Let 𝑓(𝑧) =
𝜙(𝑧)

𝜓(𝑧)
 have a simple pole at 𝑧 = 𝑎,  where 𝜓(𝑧) =

(𝑧 − 𝑎)𝐹(𝑧) and 𝐹(𝑎) ≠ 0. 

Then, residue of 𝑓(𝑧) at 𝑧 = 𝑎 

= lim
𝑧→𝑎

(𝑧 − 𝑎)𝑓(𝑧) 

= lim
𝑧→𝑎

(𝑧 − 𝑎)
𝜙(𝑧)

𝜓(𝑧)
                          [𝑓𝑟𝑜𝑚

0

0
] 

= lim
𝑧→𝑎

(𝑧 − 𝑎) [𝜙(𝑎) + (𝑧 − 𝑎)𝜙′(𝑎) +
(𝑧 − 𝑎)2

2!
𝜙′′(𝑎) + ⋯ ]

𝜓(𝑎) + (𝑧 − 𝑎)𝜓′(𝑎) +
(𝑧 − 𝑎)2

2! 𝜓′′(𝑎) + ⋯
 

[by Taylor’s theorem] 

 

= lim
𝑧→𝑎

[𝜙(𝑎) + (𝑧 − 𝑎)𝜙′(𝑎) +
(𝑧 − 𝑎)2

2! 𝜙′′(𝑎) + ⋯ ]

𝜓′(𝑎) +
(𝑧 − 𝑎)2

2! 𝜓′′(𝑎) + ⋯
=

𝜙(𝑎)

𝜓′(𝑎)
 

[for (𝑎) = 0 ] 

Hence 

𝑅𝑒𝑠 (𝑧 = 𝑎) =
𝜙(𝑎)

𝜓′(𝑎)
 

2. Residue at a pole of order 𝒎: 

Theorem3: To prove that the residue of 
𝜙(𝑧)

(𝑧−𝑎)𝑚 at 𝑧 = 𝑎 is 
𝜙(𝑚−1)(𝑎)

(𝑚−1)!
. 

Proof: Let 𝜙(𝑧) be analytic at 𝑧 = 𝑎, and let  

𝑓(𝑧) =
𝜙(𝑧)

(𝑧 − 𝑎)𝑚
                … (1) 
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where 𝑚 ≥ 1. Then the residue of 𝑓(𝑧) at 𝑧 = 𝑎 is given by: 

Residue of 𝑓(𝑧) at 𝑧 = 𝑎 is 𝑏1, where 𝑏1 is given by 

𝑏1 =
1

2𝜋𝑖
∫𝑓(𝑧)𝑑𝑧

𝐶

=
1

2𝜋𝑖
∫

𝜙(𝑧)

(𝑧 − 𝑎)𝑚
𝑑𝑧

𝐶

 

=
1

(𝑚 − 1)!
.
(𝑚 − 1)!

2𝜋𝑖
∫

𝜙(𝑧)

(𝑧 − 𝑎)𝑚−1+1
𝑑𝑧

𝐶

 

=
1

(𝑚 − 1)!
. 𝜙(𝑚−1)(𝑎) 

[by Cauchy’s integral formula] 

From (1), we obtain 

𝑅𝑒𝑠 (𝑧 = 𝑎) =
1

(𝑚−1)!

𝑑𝑚−1

𝑑𝑧𝑚−1 [(𝑧 − 𝑎)𝑚𝑓(𝑧)] as 𝑧 → 𝑎. 

Theorem4: Liouville’s theorem. If a function is analytic at every point 

and finite at infinity, then it must be constant. 

Proof: Let 𝑓(𝑧) be the given function. Let 𝑎 and 𝑏  be any two distinct 

points, then the only singularities of the function 

𝐹(𝑧) =
𝑓(𝑧)

(𝑧−𝑎)(𝑧−𝑏)
 are 𝑧 = 𝑎 and 𝑧 = 𝑏, 

and possibly at infinity. But 

𝑅𝑒𝑠(𝑧 = ∞) = 𝑙𝑖𝑚
𝑧→∞

−𝑧𝐹(𝑧) 

𝑅𝑒𝑠(𝑧 = ∞) = [𝑙𝑖𝑚
𝑧→∞

−𝑧

(𝑧 − 𝑎)(𝑧 − 𝑏)
] × [ lim

𝑧→∞
𝑓(𝑧)] = 0 

𝑅𝑒𝑠(𝑧 = ∞) = 0 

Since the sum of all the residues is zero and so 

𝑅𝑒𝑠(𝑧 = 𝑎) + 𝑅𝑒𝑠(𝑧 = 𝑏) + 𝑅𝑒𝑠(𝑧 = ∞) = 0 

𝑙𝑖𝑚
𝑧→∞

(𝑧 − 𝑎)𝐹(𝑧) + 𝑙𝑖𝑚
𝑧→∞

(𝑧 − 𝑏)𝐹(𝑧) + 0 = 0 

𝑓(𝑎)

(𝑎 − 𝑏)
+

𝑓(𝑏)

(𝑏 − 𝑎)
= 0  𝑜𝑟  𝑓(𝑎) = 𝑓(𝑏) 

where 𝑓(𝑧) is constant. 

12.5 WORKING RULE (FOR COMPUTING THE 

RESIDUE):-  

To compute the residue of a function at a given point, follow these steps: 

1. Identify the Type of Pole:  

Determine if the point 𝑧 = 𝑎 is a simple pole, a pole of higher 

order, or an essential singularity. 

2. Simple Pole (Pole of Order 1): 

If 𝑧 = 𝑎 is a simple pole, the residue can be found using the limit: 

 



Advanced Complex Analysis  MAT601 
 

Department of Mathematics         

Uttarakhand Open University Page 214 
 

𝑅𝑒𝑠(𝑧 = 𝑎) = lim
𝑧−𝑎

(𝑧 − 𝑎) 𝑓(𝑧) 

3. Pole of Order m: 

If 𝑧 = 𝑎 is a pole of order 𝑚, the residue can be computed using 

the formula: 

𝑅𝑒𝑠(𝑓, 𝑎) =
1

(𝑚 − 1)!
lim
𝑧−𝑎

𝑑𝑚−1

𝑑𝑧𝑚−1
[(𝑧 − 𝑎)𝑓(𝑧)] 

4. Removable Singularity: 

If 𝑧 = 𝑎 is a removable singularity, the residue is zero because the 

function is analytic at that point after removing the singularity. 

5. Residue for Functions Expressed as Laurent Series: 

If the function can be expressed as a Laurent series around 𝑧 = 𝑎: 

∫𝑓(𝑧)𝑑𝑧
𝐶

= 2𝜋𝑖 ∑ 𝑅𝑒𝑠(𝑟 = 𝑟𝑟)

𝑛

𝑟=1

 

 

SOLVED EXAMPLE 

EXAMPLE5: Find the residue 

𝑧3

(𝑧−1)4(𝑧−2)(𝑧−3)
  at 𝑧 = 1,2,3. 

SOLUTION: Suppose  

𝑓(𝑧) =
𝑧3

(𝑧 − 1)4(𝑧 − 2)(𝑧 − 3)
 

Now we take  

𝜙(𝑧) =
𝑧3

(𝑧−2)(𝑧−3)
 , then  

𝑓(𝑧) =
𝜙(𝑧)

(𝑧 − 1)4
 

𝑅𝑒𝑠(𝑧 = 1) =
𝜙(3)(1)

3!
                 … (1) 

Breaking 𝜙(𝑧) into partial fractions 

𝜙(𝑧) = 𝑧 + 5 −
8

𝑧 − 2
+

27

𝑧 − 3
 

𝜙′(𝑧) = 𝑧 + 5 −
8

(𝑧 − 2)2
+

27

(𝑧 − 3)2
 

𝜙′′(𝑧) = −
16

(𝑧 − 2)3
+

54

(𝑧 − 3)3
 

𝜙3(𝑧) =
48

(𝑧 − 2)4
−

162

(𝑧 − 3)4
 

𝜙3(1) = 48 −
162

16
=

303

8
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Now using in (1), we have 

𝑅𝑒𝑠(𝑧 = 1) =
303

8
=

101

16
 

𝑅𝑒𝑠(𝑧 = 2) = 𝑙𝑖𝑚
𝑧−2

(𝑧 − 2) 𝑓(𝑧) 

𝑅𝑒𝑠(𝑧 = 2) = 𝑙𝑖𝑚
𝑧−2

𝑧3

(𝑧 − 1)4(𝑧 − 3)
=

8

1 × (−1)
= −8 

𝑅𝑒𝑠(𝑧 = 3) = 𝑙𝑖𝑚
𝑧−2

(𝑧 − 3) 𝑓(𝑧) 

𝑅𝑒𝑠(𝑧 = 3) = 𝑙𝑖𝑚
𝑧−3

𝑧3

(𝑧 − 1)4(𝑧 − 2)
=

27

16 × (1)
=

27

16
 

EXAMPLE6: Find the residue of 
1

(𝑧2+1)3 at 𝑧 = 𝑖. 

SOLUTION: Let 

𝑓(𝑧) =
1

(𝑧2 + 1)3
=

𝜙(𝑧)

(𝑧 − 𝑖)3
 

Where 𝜙(𝑧) =
1

(𝑧+𝑖)3 , 𝜙′(𝑖) =
−3

(𝑧+𝑖)4 , 𝜙′′(𝑧) =
12

(𝑧+𝑖)5 

𝜙′′(𝑖) =
12

(𝑖 + 𝑖)5
=

12

(2𝑖)5
=

3

8𝑖
 

𝑅𝑒𝑠(𝑧 = 𝑖) =
𝜙′′(𝑖)

2!
=

3

16!
 

Hence 𝑧 = 𝑖 is the pole of order 3. 

EXAMPLE7: Find the residue of 
𝑧3

(𝑧2−1)
 at 𝑧 = ∞. 

SOLUTION: Let  

𝑓(𝑧) =
𝑧3

(𝑧2 − 1)
 

Then 

𝑓(𝑧) =
𝑧3

𝑧2
(1 −

1

𝑧2
)

−1

 

= 𝑧 [1 +
1

𝑧2
+

1

𝑧4
+

1

𝑧6
+ ⋯ ] 

𝑓(𝑧) = 𝑧 +
1

𝑧
+

1

𝑧3
+

1

𝑧5
+ ⋯ 

𝑅𝑒𝑠(𝑧 = ∞) = − (𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓
1

𝑧
) = −1 = −1 
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EXAMPLE8: Find the residue of 𝑓(𝑧) =
2𝑧+1

(𝑧2+𝑎2)2 at  𝑧 = 𝑖𝑎. 

SOLUTION: Let 

𝑓(𝑧) =
2𝑧 + 1

(𝑧 + 𝑖𝑎)2(𝑧 − 𝑖𝑎)2
=

𝜙(𝑧)

(𝑧 − 𝑖𝑎)2
, 

𝜙(𝑧) =
1

(𝑧 + 𝑖𝑎)2
 

𝑓(𝑧) has a pole of order 2 at 𝑧 = 𝑖𝑎 

𝑅𝑒𝑠(𝑧 = 𝑖𝑎) = lim
𝑧→𝑖𝑎

𝜙′(𝑧)

1
= lim

𝑧→𝑖𝑎

−2

(𝑧 + 𝑖𝑎)3
= −

2

(2𝑖𝑎)3
=

𝑖

4𝑎3
 

Theorem5: If 𝐴𝐵 is the arc 𝜃1 ≤ 𝜃 ≤ 𝜃2 of the circle |𝑧 − 𝑎| = 𝑟 and if 

lim
𝑧→𝑎

(𝑧 − 𝑎) 𝑓(𝑧) = 𝑘 (constant), then lim
𝑟→0

∫ 𝑓(𝑧)
𝐴𝐵

𝑑𝑧 = 𝑖(𝜃1 − 𝜃2)𝑘. 

Proof: Let 𝐴𝐵  be the arc 𝜃1 ≤ 𝜃 ≤ 𝜃2  of the circle ∣ 𝑧 − 𝑎 ∣= 𝑟,  and 

suppose lim
𝑧→𝑎

(𝑧 − 𝑎)𝑓(𝑧) = 𝑘 , where 𝑘 is a constant. We want to prove 

that: 

lim
𝑟→0

∫ 𝑓(𝑧)
𝐴𝐵

𝑑𝑧 = 𝑖(𝜃1 − 𝜃2)𝑘. 

The arc 𝐴𝐵 on the circle ∣ 𝑧 − 𝑎 ∣= 𝑟 can be parameterized as: 

𝑧(𝜃) = 𝑎 + 𝑟𝑒𝑖𝜃,                               𝜃1 ≤ 𝜃 ≤ 𝜃2  

The differential 𝑑𝑧 is: 

𝑑𝑧 = 𝑖𝑟𝑒𝑖𝜃𝑑𝜃 

The integral over the arc 𝐴𝐵 is: 

∫ 𝑓(𝑧)
𝐴𝐵

𝑑𝑧 = ∫ 𝑓(𝑧(𝜃))
𝜃2

𝜃1

 𝑖𝑟𝑒𝑖𝜃𝑑𝜃 

Substitute 𝑧(𝜃) = 𝑎 + 𝑟𝑒𝑖𝜃  into 𝑓(𝑧): 

= ∫ 𝑓(𝑎 + 𝑟𝑒𝑖𝜃  )
𝜃2

𝜃1

 𝑖𝑟𝑒𝑖𝜃𝑑𝜃 

lim
𝑧→𝑎

(𝑧 − 𝑎) 𝑓(𝑧) = 𝑘, substitute 𝑧(𝜃) = 𝑎 + 𝑟𝑒𝑖𝜃and take the limit as 𝑟 →

0: 

𝑙𝑖𝑚
𝑟→0

(𝑎 + 𝑟𝑒𝑖𝜃 − 𝑎) 𝑓(𝑎 + 𝑟𝑒𝑖𝜃) = 𝑙𝑖𝑚
𝑟→0

𝑟𝑒𝑖𝜃𝑓(𝑎 + 𝑟𝑒𝑖𝜃) = 𝑘 

So,  

𝑙𝑖𝑚
𝑟→0

𝑟𝑓(𝑎 + 𝑟𝑒𝑖𝜃) =
𝑘

𝑒𝑖𝜃
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Substitute this into the integral: 

= 𝑙𝑖𝑚
𝑟→0

∫
𝑘

𝑒𝑖𝜃

𝜃2

𝜃1

 𝑖𝑒𝑖𝜃𝑑𝜃 = 𝑙𝑖𝑚
𝑟→0

∫ 𝑘𝑖𝑑𝜃
𝜃2

𝜃1

  

The 𝑟 terms cancel out, and the integral simplifies to: 

= 𝑙𝑖𝑚
𝑟→0

∫ 𝑘𝑖𝑑𝜃
𝜃2

𝜃1

 

The integral is straightforward: 

= 𝑙𝑖𝑚
𝑟→0

∫ 𝑘𝑖𝑑𝜃
𝜃2

𝜃1

= 𝑘𝑖(𝜃2 − 𝜃1) 

Hence, 

lim
𝑟→0

∫ 𝑓(𝑧)
𝐴𝐵

𝑑𝑧 = 𝑖(𝜃1 − 𝜃2)𝑘 

This completes the proof. 

Theorem6: If 𝐴𝐵  is an arc 𝛼 ≤ 𝜃 ≤ 𝛽  of the circle |𝑧| = 𝑅  and if 

lim
𝑅→∞

𝑧𝑓(𝑧) = 𝑘(constant), then 

lim
𝑅→0

∫ 𝑓(𝑧)
𝐴𝐵

𝑑𝑧 = 𝑖(𝛽 − 𝛼)𝑘. 

Proof: Let 𝐴𝐵  be the arc 𝛼 ≤ 𝜃 ≤ 𝛽  of the circle ∣ 𝑧 − 𝑎 ∣= 𝑟,  and 

suppose lim
𝑧→𝑎

(𝑧 − 𝑎)𝑓(𝑧) = 𝑘 , where 𝑘 is a constant. We want to prove 

that: 

lim
𝑅→0

∫ 𝑓(𝑧)
𝐴𝐵

𝑑𝑧 = 𝑖(𝛽 − 𝛼)𝑘. 

The arc 𝐴𝐵 on the circle ∣ 𝑧 − 𝑎 ∣= 𝑟 can be parameterized as: 

𝑧(𝜃) = 𝑎 + 𝑅𝑒𝑖𝜃 ,                               𝛼 ≤ 𝜃 ≤ 𝛽  

The differential 𝑑𝑧 is: 

𝑑𝑧 = 𝑖𝑅𝑒𝑖𝜃𝑑𝜃 

The integral over the arc 𝐴𝐵 is: 

∫ 𝑓(𝑧)
𝐴𝐵

𝑑𝑧 = ∫ 𝑓(𝑧(𝜃))
𝛽

𝛼

 𝑖𝑅𝑒𝑖𝜃𝑑𝜃 

Substitute 𝑧(𝜃) = 𝑎 + 𝑅𝑒𝑖𝜃  into 𝑓(𝑧): 

= ∫ 𝑓(𝑎 + 𝑅𝑒𝑖𝜃  )
𝜃2

𝜃1

 𝑖𝑅𝑒𝑖𝜃𝑑𝜃 
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lim
𝑧→𝑎

(𝑧 − 𝑎) 𝑓(𝑧) = 𝑘, substitute 𝑧(𝜃) = 𝑎 + 𝑅𝑒𝑖𝜃and take the limit as 

𝑅 → 0: 

𝑙𝑖𝑚
𝑅→0

(𝑎 + 𝑅𝑒𝑖𝜃 − 𝑎) 𝑓(𝑎 + 𝑅𝑒𝑖𝜃) = 𝑙𝑖𝑚
𝑅→0

𝑅𝑒𝑖𝜃𝑓(𝑎 + 𝑅𝑒𝑖𝜃) = 𝑘 

So,  

𝑙𝑖𝑚
𝑅→0

𝑟𝑓(𝑎 + 𝑅𝑒𝑖𝜃) =
𝑘

𝑒𝑖𝜃
 

Substitute this into the integral: 

= 𝑙𝑖𝑚
𝑅→0

∫
𝑘

𝑒𝑖𝜃

𝛽

𝛼

 𝑖𝑒𝑖𝜃𝑑𝜃 = 𝑙𝑖𝑚
𝑟→0

∫ 𝑘𝑖𝑑𝜃
𝛽

𝛼

  

The 𝑅 terms cancel out, and the integral simplifies to: 

= 𝑙𝑖𝑚
𝑟→0

∫ 𝑘𝑖𝑑𝜃
𝛽

𝛼

 

The integral is straightforward: 

= 𝑙𝑖𝑚
𝑟→0

∫ 𝑘𝑖𝑑𝜃
𝛽

𝛼

= 𝑘𝑖(𝛽 − 𝛼) 

Hence, 

lim
𝑅→0

∫ 𝑓(𝑧)
𝐴𝐵

𝑑𝑧 = 𝑖(𝛽 − 𝛼)𝑘. 

This completes the proof. 

12.6 JORDAN’S INEQUALITY:-  

Jordan's Inequality is an inequality that provides bounds on the sine 

function in terms of the angle 𝜃. It is defined as follows: 

For any angle 𝜃 in the interval 
2

𝜋
𝜃 ≤ 𝑠𝑖𝑛𝜃 ≤ 𝜃 

Theorem7: If 𝑓(𝑧) is analytic except at finite number of singularities and 

if 𝑓(𝑧) → 0 uniformly as 𝑧 → ∞, then 

lim
𝑅→0

∫𝑒𝑖𝑚𝑧𝑓(𝑧)
Γ

𝑑𝑧 = 0, 𝑚 > 0 

where Γ denotes the semi-circle |𝑧| = 𝑅, 𝐼(𝑧) > 0. 
Proof: Given 

 𝑓(𝑧) is analytic except at a finite number of singularities. 

 f(𝑧) → 0 uniformly as ∣ 𝑧 ∣→ ∞. 
 

The semicircle Γ in the upper half-plane can be parametrized as: 

𝑧(𝜃) = 𝑅𝑒𝑖𝜃,            0 ≤ 𝜃 ≤ 𝜋                    
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The differential 𝑑𝑧 is: 

𝑑𝑧 = 𝑖𝑅𝑒𝑖𝜃𝑑𝜃 

The integral over Γ becomes: 

∫𝑒𝑖𝑚𝑧𝑓(𝑧)
Γ

𝑑𝑧 = ∫ 𝑒𝑖𝑚𝑅𝑒𝑖𝜃
𝜋

0

𝑓(𝑅𝑒𝑖𝜃)𝑖𝑅𝑒𝑖𝜃𝑑𝜃 

The exponential term 𝑒𝑖𝑚𝑧 for 𝑧 = 𝑅𝑒𝑖𝜃 is: 

𝑒𝑖𝑚𝑧 = 𝑒𝑖𝑚𝑅𝑒𝑖𝜃
= 𝑒𝑖𝑚𝑅(𝑐𝑜𝑠𝜃+𝑖𝑠𝑖𝑛𝜃) = 𝑒−𝑖𝑚𝑅𝑠𝑖𝑛𝜃𝑒𝑚𝑅𝑐𝑜𝑠𝜃 

Thus, the integral becomes: 

∫ 𝑒−𝑖𝑚𝑅𝑠𝑖𝑛𝜃𝑒𝑚𝑅𝑐𝑜𝑠𝜃
𝜋

0

𝑓(𝑅𝑒𝑖𝜃). 𝑖𝑅𝑒𝑖𝜃𝑑𝜃 

Consider the modulus of the integral: 

|∫𝑒𝑖𝑚𝑧𝑓(𝑧)
Γ

𝑑𝑧| ≤ |∫ 𝑒−𝑖𝑚𝑅𝑠𝑖𝑛𝜃 𝑒𝑚𝑅𝑐𝑜𝑠𝜃𝑓(𝑅𝑒𝑖𝜃). 𝑖𝑅𝑒𝑖𝜃
𝜋

0

| 𝑑𝜃 

Since |𝑒𝑚𝑅𝑐𝑜𝑠𝜃| = 1 and |𝑒−𝑚𝑅𝑠𝑖𝑛𝜃| = 𝑒−𝑚𝑅𝑠𝑖𝑛𝜃 , this simplifies to: 

 

|∫𝑒𝑖𝑚𝑧𝑓(𝑧)
Γ

𝑑𝑧| ≤ ∫ 𝑒−𝑖𝑚𝑅𝑠𝑖𝑛𝜃
𝜋

0

|𝑓(𝑅𝑒𝑖𝜃)|𝑑𝜃 

Given that 𝑓(𝑧) → 0  uniformly as ∣ 𝑧 ∣→ ∞,  for large 𝑅, 

|𝑓(𝑅𝑒𝑖𝜃)|becomes small uniformly for all 𝜃. 
Therefore, for large R, we have: 

|∫𝑒𝑖𝑚𝑧𝑓(𝑧)
Γ

𝑑𝑧| ≤ 𝑅. ∈. ∫ 𝑒−𝑖𝑚𝑅𝑠𝑖𝑛𝜃
𝜋

0

𝑑𝜃 

where 𝜖 is a small constant because 𝑓(𝑧) is small for large 𝑅. 

The integral ∫ 𝑒−𝑖𝑚𝑅𝑠𝑖𝑛𝜃𝜋

0
𝑑𝜃 tends to zero as R increases because 

𝑒−𝑖𝑚𝑅𝑠𝑖𝑛𝜃  decays rapidly except near  𝜃 = 0  and 𝜃 = 𝜋,  where 𝑠𝑖𝑛𝜃  is 

small. 

Therefore, the whole expression tends to zero: 

lim
𝑅→0

∫𝑒𝑖𝑚𝑧𝑓(𝑧)
Γ

𝑑𝑧 = 0 

Thus, we have shown that: 

lim
𝑅→0

∫𝑒𝑖𝑚𝑧𝑓(𝑧)
Γ

𝑑𝑧 = 0, 𝑚 > 0 

12.7 INTEGRATION ROUND THE UNIT CIRCLE:-  

We proceed to evaluate the integrals of the type 

∫ 𝑓(𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃)𝑑𝜃
2𝜋

0

 

If we take 𝑧 = 𝑒𝑖𝜃, then the above takes the form 

∫ 𝜙(𝑧)
𝐶

𝑑𝑧. For 
𝑧+𝑧−1

2
= 𝑐𝑜𝑠𝜃,

𝑧−𝑧−1

2
= 𝑠𝑖𝑛𝜃 

Where C is the unit circle |𝑧| = 1. 
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SOLVED EXAMPLE 

EXAMPLE9: Evaluate∫
𝑑𝜃

1+𝑎𝑐𝑜𝑠𝜃

2𝜋

0
, 𝑎2 < 1. 

SOLUTION: Let 𝐼 = ∫
𝑑𝜃

1+𝑎𝑐𝑜𝑠𝜃

2𝜋

0
, 𝑎2 < 1 

Let C be a circle |𝑧| = 1. 

𝑧 = 𝑒𝑖𝜃, 𝑑𝑧 = 𝑒𝑖𝜃𝑖𝑑𝜃 = 𝑖𝑧𝑑𝜃 

𝑑𝜃 =
𝑑𝑧

𝑖𝑧
, 𝑐𝑜𝑠𝜃 =

𝑒𝑖𝜃 + 𝑒−𝑖𝜃

2
=

𝑧 + 𝑧−1

2
=

1 + 𝑧2

2𝑧
 

𝐼 = ∫
1

[1 +
𝑎(1 + 𝑧2)

2𝑧 ]𝐶

(
𝑑𝑧

𝑖𝑧
) =

2

𝑖
∫

𝑑𝑧

2𝑧 + 𝑎 + 𝑎𝑧2
 

𝐼 =
2

𝑎𝑖
∫𝑓(𝑧)𝑑𝑧

𝐶

 

where                               𝑓(𝑧) =
1

[𝑧2+
2𝑧

𝑎
+1]

 

Now  

𝑧2 +
2𝑧

𝑎
+ 1 = 0   𝑜𝑟     𝑎𝑧2 + 2𝑧 + 𝑎 = 0 

or  

𝑧 =
−2 ± √4 − 4𝑎2

2𝑎
=

−1 ± √1 − 𝑎2

𝑎
 

Take  

𝛼 =
−1 + √1 − 𝑎2

𝑎
, 𝛽 =

−1 − √1 − 𝑎2

𝑎
 

Than 

𝛼𝛽 = 1. Evidently |𝛼| < 1. And |𝛽| > 1. 

𝑧 = 𝛼 is a simple pole lying inside 𝐶. 

𝑅𝑒𝑠(𝑧 = 𝛼) = lim
𝑧→𝛼

(𝑧 − 𝛼) 𝑓(𝑧) = lim
𝑧→𝛼

(𝑧 − 𝛼) 
1

(𝑧 − 𝛼)(𝑧 − 𝛽)
 

= lim
𝑧→𝛼

 
1

(𝑧 − 𝛽)
=

1

(𝛼 − 𝛽)
=

𝑎

2√1 − 𝑎2
 

∫𝑓(𝑧)𝑑𝑧
𝐶

= 2𝜋𝑖. 𝑅𝑒𝑠(𝑧 = 𝛼) =  
2𝜋𝑖𝑎

2√1 − 𝑎2
=

𝜋𝑖𝑎

√1 − 𝑎2
 

𝐼 =
2

𝑎𝑖
∫𝑓(𝑧)𝑑𝑧

𝐶

= (
2

𝑎𝑖
)

𝜋𝑖𝑎

√1 − 𝑎2
=

2𝜋

√1 − 𝑎2
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EXAMPLE10: Evaluate ∫
𝑎𝑑𝜃

𝑎2+𝑠𝑖𝑛2𝜃

𝜋

0
,  where 𝑎 > 0. 

SOLUTION: Given  

𝐼 = ∫
𝑎𝑑𝜃

𝑎2 + 𝑠𝑖𝑛2𝜃

𝜋

0

 

Then                  

𝐼 = ∫
2𝑎𝑑𝜃

2𝑎2 + 2𝑠𝑖𝑛2𝜃

𝜋

0

= ∫
2𝑎𝑑𝜃

2𝑎2 + 1 − 𝑐𝑜𝑠2𝜃

𝜋

0

 

= ∫
𝑎𝑑𝑡

2𝑎2 + 1 − 𝑐𝑜𝑠𝑡

𝜋

0

, 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 2𝜃 = 𝑡 

= ∫
𝑎𝑑𝑡

2𝑎2 + 1 −
1
2

(𝑒𝑖𝑡 + 𝑒−𝑖𝑡)

𝜋

0

 

Substituting 𝑧 = 𝑒𝑖𝑡 so 𝑑𝑧 = 𝑒𝑖𝑡𝑑𝑡, we have 

𝐼 = ∫
2𝑎

2(2𝑎2 + 1) − (𝑧 + 𝑧−1)

𝑑𝑧

𝑖𝑧𝐶

 

where c is unit circle |𝑧| = 1 

𝐼 =
2𝑎

𝑖
∫

𝑑𝑧

2(2𝑎2 + 1)𝑧 − 𝑧2 − 1𝐶

= 2𝑎𝑖 ∫
𝑑𝑧

𝑧2 − 2(2𝑎2 + 1)𝑧 + 1𝐶

 

𝐼 = ∫𝑓(𝑧)𝑑𝑧
𝐶

                             … (1) 

𝑓(𝑧) =
1

𝑧2 − 2(2𝑎2 + 1)𝑧 + 1
 

The poles 𝑓(𝑧) are given as 

𝑧2 − 2(2𝑎2 + 1)𝑧 + 1 = 0 

𝑧 =
2(2𝑎2 + 1) ± √4(2𝑎2 + 1)2 − 4

2
 

= (2𝑎2 + 1) ± √(2𝑎2 + 1)2 − 1 

= (2𝑎2 + 1) ± 2𝑎√𝑎2 + 1 

Now taking 

𝛼 = (2𝑎2 + 1) + 2𝑎√𝑎2 + 1 

𝛽 = (2𝑎2 + 1) − 2𝑎√𝑎2 + 1 

we obtain 𝑧 = 𝛼, 𝛽. Evidently |𝛼| > 1 and |𝛽| > 1. 

So 𝑓(𝑧) has only simple pole 𝑧 = 𝛽 lying within C. 
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𝑅𝑒𝑠(𝑧 = 𝛽) = lim
𝑧→𝛼

(𝑧 − 𝛽) 𝑓(𝑧) = lim
𝑧→𝛼

(𝑧 − 𝛽) 
1

(𝑧 − 𝛼)(𝑧 − 𝛽)
 

=
1

(𝛽 − 𝛼)
=

1

−4𝑎√𝑎2 + 1
 

By Cauchy’s residue theorem 

∫𝑓(𝑧)𝑑𝑧
𝐶

= 2𝜋𝑖(𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝐶) =
2𝜋𝑖

−4𝑎√𝑎2 + 1
 

From (1), we obtain 

𝐼 =
2𝑖𝑎. 2𝜋𝑖

−4𝑎√𝑎2 + 1
=

𝜋

(𝑎2 + 1)1/2
 

EXAMPLE11: Evaluate the contour integration:  ∫ (
1+2𝑐𝑜𝑠𝜃

5+4𝑐𝑜𝑠𝜃
) 𝑑𝜃

𝜋

0
. 

SOLUTION: Given  

𝐼 = ∫ (
1 + 2𝑐𝑜𝑠𝜃

5 + 4𝑐𝑜𝑠𝜃
) 𝑑𝜃

𝜋

0

 

Then  

𝐼 =
1

2
∫ (

1 + 2𝑐𝑜𝑠𝜃

5 + 4𝑐𝑜𝑠𝜃
) 𝑑𝜃

2𝜋

0

 

Now we take the circle 𝑐 as |𝑧 = 1|, 𝑧 = 𝑒𝑖𝜃, 𝑑𝑧 = 𝑒𝑖𝜃, 𝑧 = 𝑖𝑧𝑑𝜃 

𝐼 =
1

2
 ∫

(1 + 2𝑒𝑖𝜃)

5 + 2 (𝑧 +
1
𝑧

)𝐶

(
𝑑𝑧

𝑖𝑧
) =

1

2𝑖
∫

(1 + 2𝑧)𝑑𝑧

5𝑧 + 2𝑧2 + 2𝐶

 

=
1

4𝑖
∫

(1 + 2𝑧)𝑑𝑧

5𝑧
2 + 𝑧2 + 1𝐶

=
1

4𝑖
∫𝑓(𝑧)𝑑𝑧

𝐶

 

where 𝑓(𝑧) =
(1+2𝑧)

5𝑧

2
+𝑧2+1

. So the poles are 
5𝑧

2
+ 𝑧2 + 1 = 0. 

𝑧2 + 5𝑧 + 1 = 0 ⇒ 𝑧 = −
5 ± 3

4
= −2, −

1

2
= 𝛼, 𝛽 

𝑧 = 𝛼 lies outside |𝑧| = 2 > 1. 𝑧 = 𝛽 lies inside C. 

𝑅𝑒𝑠(𝑧 = 𝛽) = lim
𝑧→𝛼

(𝑧 − 𝛽) 𝑓(𝑧) = lim
𝑧→𝛼

(𝑧 − 𝛽) 
(1 + 2𝑧)

(𝑧 − 𝛼)(𝑧 − 𝛽)
 

= lim
𝑧→𝛼

 
(1 + 2𝑧)

(𝑧 − 𝛼)
=

1 + (−1)

(𝛽 − 𝛼)
=

0

𝛽 − 𝛼
= 0. 

∫𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖.
𝐶

 𝑅𝑒𝑠(𝑧 = 𝛽) = 2𝜋𝑖. 0 = 0 
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Hence  

𝐼 = 0 

EXAMPLE12: By the method of contour integration, prove that 

∫ 𝑒𝑐𝑜𝑠𝜃
2𝜋

0

. 𝑐𝑜𝑠(𝑠𝑖𝑛𝜃 − 𝑛𝜃) 𝑑𝜃 =
2𝜋

𝑛!
 

where 𝑛 is a positive integer. 

OR 

Prove that      

∫ 𝑒𝑐𝑜𝑠𝜃
2𝜋

0

. 𝑐𝑜𝑠(𝑛𝜃 − 𝑠𝑖𝑛𝜃) 𝑑𝜃 =
2𝜋

𝑛!
 

 

SOLUTION: Now let |𝑧| = 1 denote the circle 𝐶 and  

𝐼 = ∫ 𝑒𝑐𝑜𝑠𝜃
2𝜋

0

. 𝑐𝑜𝑠(𝑛𝜃 − 𝑠𝑖𝑛𝜃) 𝑑𝜃 

𝐼 = ∫ 𝑒𝑐𝑜𝑠𝜃
2𝜋

0

𝑒𝑖(𝑠𝑖𝑛𝜃−𝑛𝜃)𝑑𝜃 

𝐼 = ∫ exp[𝑐𝑜𝑠𝜃 + 𝑖(𝑠𝑖𝑛𝜃 − 𝑛𝜃)]
2𝜋

0

𝑑𝜃 = ∫ exp[(𝑒𝑖𝜃 − 𝑖𝑛𝜃)]
2𝜋

0

𝑑𝜃 

= ∫𝑒𝑥𝑝(𝑧)
𝐶

𝑒−𝑖𝑛𝜃
𝑑𝑧

𝑖𝑧
,   𝑧 = 𝑒𝑖𝜃  

𝐼 =
1

𝑖
∫

𝑒𝑧

𝑧𝑛+1
𝐶

𝑑𝑧 =
1

𝑖
∫𝑓(𝑧)

𝐶

𝑑𝑧 

where  𝑓(𝑧) =
𝑒𝑧

𝑧𝑛+1 at 𝑧 = 0 of order 𝑛 + 1.  

𝑅𝑒𝑠(𝑧 = 0) =
1

𝑛!

𝑑𝑛

𝑑𝑧𝑛
[𝑒𝑧]𝑧=0 =

1

𝑛!
. 𝑒0 =

1

𝑛!
 

By Cauchy’s residue theorem, 

∫𝑓(𝑧)
𝐶

𝑑𝑧 = 2𝜋𝑖(𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝐶) =
2𝜋𝑖

𝑛!
 

From (1), we obtain 

𝐼 =
1

𝑖

2𝜋𝑖

𝑛!
 

12.8 EVALUATION OF INTEGRALS OF THE 

TYPE:-  

∫ 𝑓(𝑧)𝑑𝑧
∞

−∞
 where the function 𝑓(𝑧) is s.t. no pole of f(z) lies on the real 

line, but pole lies in the upper half of z-plane. We evaluate the above 

integrals by considering them along a closed contour C consisting of  

i. semi circle γ s.t. |𝑧| = 𝑅 in the upper half plane. 

ii. real axis from – 𝑅 to 𝑅.  

The integral over the closed contour C is: 
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∫𝑓(𝑧)
𝐶

𝑑𝑧 = ∫𝑓(𝑧)
Γ

𝑑𝑧 + ∫ 𝑓(𝑧)𝑑𝑧
𝑅

−𝑅

 

Taking limits as 𝑅 → ∞, ∫ 𝑓(𝑧)
𝐶

𝑑𝑧 = ∫ 𝑓(𝑧)𝑑𝑧
∞

−∞
 

According to the Cauchy’s Residue Theorem, the integral over the closed 

contour 𝐶 is equal to 2𝜋𝑖 times the sum of the residues of 𝑓(𝑧) inside 𝐶: 

 

Fig.1. 

∫ 𝑓(𝑧)𝑑𝑧
∞

−∞

= 2𝜋𝑖(𝑆𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝐶) 

SOLVED EXAMPLE 

EXAMPLE13: Prove that ∫
𝑑𝑥

1+𝑥2

∞

0
=

𝜋

2
. 

SOLUTION: Recall that the integral 

∫𝑓(𝑧)𝑑𝑧
𝐶

, 𝑤ℎ𝑒𝑟𝑒 𝑓(𝑧) =
1

1 + 𝑧2
 

∫𝑓(𝑧)𝑑𝑧
𝐶

= ∫ 𝑓(𝑥)
𝑅

−𝑅

𝑑𝑥 + ∫𝑓(𝑧)𝑑𝑧
Γ

 

Where C is closed contour consisting of Γ. Let 𝑓(𝑧) has only one simple 

pole at 𝑧 = 𝑖 inside 𝐶. So 

𝑅𝑒𝑠(𝑧 = 𝑖) = lim
𝑧→𝑖

(𝑧 − 𝑖)𝑓(𝑧) = lim
𝑧→𝑖

(𝑧 − 𝑖)
1

(𝑧 − 𝑖)(𝑧 + 𝑖)
=

1

2𝑖
 

By Cauchy’s residue theorem, 

∫𝑓(𝑧)𝑑𝑧
𝐶

= 2𝜋𝑖(𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝐶) =
2𝜋𝑖

2𝑖
= 𝜋 

lim
|𝑧|→∞

𝑧𝑓(𝑧) = lim
|𝑧|→∞

 
1

1+𝑧2 = 0                                        by theorem6 

lim
𝑅→∞

∫𝑓(𝑧)𝑑𝑧
Γ

= 𝑖(𝜋 − 0)(0) = 0 

From 𝑅 → ∞ in (1), we obtain 
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𝜋 = ∫ 𝑓(𝑥)
∞

−∞

𝑑𝑥 + 0 𝑜𝑟 ∫
𝑑𝑥

1 + 𝑥2

∞

−∞

= 2 ∫
𝑑𝑥

1 + 𝑥2

∞

0

= 𝜋 𝑜𝑟 ∫
𝑑𝑥

1 + 𝑥2

∞

0

=
𝜋

2
 

EXAMPLE14: Prove that the contour integration ∫
𝑐𝑜𝑠𝑚𝑥

𝑥2+𝑎2

∞

0
𝑑𝑥 =

𝜋𝑒−𝑚𝑎

2𝑎
 

where 𝑚 ≥ 0, 𝑎 ≥ 0. 

SOLUTION: First, express the cosine function using Euler's formula: 

𝑐𝑜𝑠𝑚𝑥 =
𝑒𝑖𝑚𝑥 + 𝑒−𝑖𝑚𝑥

2
 

Thus, the integral becomes: 

∫
𝑐𝑜𝑠𝑚𝑥

𝑥2 + 𝑎2

∞

0

𝑑𝑥 =
1

2
∫

𝑒𝑖𝑚𝑥

𝑥2 + 𝑎2

∞

0

𝑑𝑥 + ∫
𝑒−𝑖𝑚𝑥

𝑥2 + 𝑎2

∞

0

𝑑𝑥 

Consider the complex function: 

𝑓(𝑧) =
𝑒𝑖𝑚𝑥

𝑧2 + 𝑎2
 

The poles of 𝑓(𝑧) =
𝑒𝑖𝑚𝑥

𝑥2+𝑎2 are at 𝑧 = ±𝑖𝑎. 𝑓(𝑧) has only simple one pole 

𝑧 = 𝑖𝑎 inside 𝐶. 

𝑅𝑒𝑠(𝑧 = 𝑖𝑎) = lim
𝑧→𝑖𝑎

(𝑧 − 𝑖𝑎)𝑓(𝑧) = lim
𝑧→𝑖𝑎

(𝑧 − 𝑖𝑎)
𝑒𝑖𝑚𝑥

(𝑧 + 𝑖𝑎)(𝑧 − 𝑖𝑎)
 

𝑅𝑒𝑠(𝑧 = 𝑖𝑎) =
1

2𝜋𝑖
𝑒−𝑚𝑎 

lim
|𝑧|→∞

1

𝑥2+𝑎2 = 0. Hence by Jordan’s Lemma. 

lim
𝑅→∞

∫
𝑒𝑖𝑚𝑥

𝑧2 + 𝑎2
Γ

𝑑𝑧 = lim
𝑅→∞

∫𝑓(𝑧)
Γ

𝑑𝑧 = 0 

By Cauchy’s residue theorem, 

∫𝑓(𝑧)𝑑𝑧
𝐶

= 2𝜋𝑖(𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑤𝑖𝑡ℎ 𝐶) =
2𝜋𝑖𝑒−𝑚𝑎

2𝑖𝑎
 

∫𝑓(𝑧)𝑑𝑧
Γ

+ ∫ 𝑓(𝑥)𝑑𝑥 =
𝑅

−𝑅

𝜋

𝑎
𝑒−𝑚𝑎 

Now making 𝑅 → ∞, we have 

∫ 𝑓(𝑥)𝑑𝑥 =
∞

−∞

𝜋

𝑎
𝑒−𝑚𝑎       𝑜𝑟 ∫

𝑒𝑖𝑚𝑥

𝑥2 + 𝑎2
𝑑𝑥 =

∞

−∞

𝜋

𝑎
𝑒−𝑚𝑎 

Now equating real parts, we obtain 
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∫
𝑐𝑜𝑠𝑚𝑥

𝑥2 + 𝑎2
𝑑𝑥 =

∞

−∞

𝜋

𝑎
𝑒−𝑚𝑎        … (1) 

∫
𝑐𝑜𝑠𝑥

𝑥2 + 𝑎2
𝑑𝑥 =

∞

0

𝜋

2𝑎
𝑒−𝑚𝑎       … (2) 

Deductions: 

1. Taking 𝑚 = 𝑎 = 1, we get 

∫
𝑐𝑜𝑠𝑥

𝑥2 + 𝑎2
𝑑𝑥 =

∞

0

𝜋

2
𝑒−1 =

𝜋

2𝑒
 

2. Taking 𝑚 = 1 in (1), we obtain 

∫
𝑐𝑜𝑠𝑥

𝑥2 + 4
𝑑𝑥 =

∞

0

𝜋

𝑎
𝑒−𝑎  

3. Taking 𝑎 = 2, 𝑚 = 1 in (2) , we have 

∫
𝑐𝑜𝑠𝑥

𝑥2 + 4
𝑑𝑥 =

∞

0

𝜋

4
𝑒−2 =

𝜋

4𝑒2
 

4. Taking 𝑚 = 1 in 92) ,we get 

∫
𝑐𝑜𝑠𝑥

𝑥2 + 𝑎2
𝑑𝑥 =

𝜋

2𝑎
𝑒−𝑎

∞

0

 

EXAMPLE15: Apply the method of calculus of residues to prove that  

∫
log (1 + 𝑥2)

1 + 𝑥2
𝑑𝑥 = 𝜋𝑙𝑜𝑔2

∞

0

 

SOLUTION: Consider the complex function 

𝑓(𝑧) =
log (𝑧 + 𝑖)

1 + 𝑧2
 

We use a keyhole contour that consists of: 

 A line segment along the real axis from 0 < 𝜖 < 1 and 𝑅 > 1. 
 A large semicircle 𝐶𝑅centered at the origin in the upper half-plane 

of radius 𝑅. 
 A line segment along the real axis from −𝑅 to −𝜖. 
 A small semicircle 𝐶𝜖 around the origin in the upper half-plane. 

The function 𝑓(𝑧) has branch points at 𝑧 = ±𝑖. The branch cut is usually 

taken along the imaginary axis from 𝑧 = −𝑖 to 𝑧 = 𝑖. 

𝑓(𝑧) has poles at 𝑧 = ±𝑖 where 1 + 𝑧2 = 0 

Let's calculate the residue at 𝑧 = 𝑖: 

𝑅𝑒𝑠(𝑓(𝑧), 𝑧 = 𝑖) = lim
𝑧→𝑖

(𝑧 − 𝑖)
log (𝑧 + 𝑖)

1 + 𝑧2
 

Since 1 + 𝑧2 = (𝑖 − 𝑧)(𝑖 + 𝑧), we simplify this to: 



Advanced Complex Analysis  MAT601 
 

Department of Mathematics         

Uttarakhand Open University Page 227 
 

𝑅𝑒𝑠(𝑓(𝑧), 𝑧 = 𝑖) =
log (2𝑖)

2𝑖
=

log (2𝑒𝑖𝜋/2)

2𝑖
=

log 2 + (𝑖𝜋/2)

2𝑖
 

By Cauchy’s residue theorem, 

∫𝑓(𝑧)𝑑𝑧
𝐶

= 2𝜋𝑖(𝑅𝑒𝑠(𝑧 = 𝑖)) =
2𝜋𝑖

2𝑖𝑎
[log 2 + (𝑖𝜋/2)] 

∫𝑓(𝑧)𝑑𝑧
Γ

+ ∫ 𝑓(𝑥)𝑑𝑥 =
𝑅

−𝑅

[log 2 + (𝑖𝜋/2)] 

Now let 𝑅 → 0 so 

∫
log (𝑥 + 𝑖)

1 + 𝑥2
𝑑𝑥 =

∞

−∞

𝜋[log 2 + (𝑖𝜋/2)] 

Equating real parts from both sides, we get 

1

2
∫

log(𝑥 + 𝑖)

1 + 𝑥2
𝑑𝑥 =

∞

−∞

𝜋[log 2] 

1

2
∫

log (𝑥 + 𝑖)

1 + 𝑥2
𝑑𝑥 = ∫

log (𝑥 + 𝑖)

1 + 𝑥2
𝑑𝑥 =

∞

0

∞

−∞

𝜋[log 2] 

EXAMPLE16: Show that ∫
𝑥𝑠𝑖𝑛𝑎𝑥

𝑥2+𝑘2 𝑑𝑥 =
∞

0

𝜋

2
𝑒−𝑎𝑘, (𝑤ℎ𝑒𝑟𝑒 𝑎 > 0, 𝑘 > 0). 

SOLUTION: We begin by considering the complex function: 

𝑓(𝑧) =
𝑧𝑒𝑖𝑎𝑧

𝑧2 + 𝑘2
 

where 𝑧 is a complex variable. This function has poles at 𝑧 = ±𝑖𝑘. 
To evaluate the real integral, consider integrating 𝑓(𝑧) over a contour that 

consists of: 

A line segment along the real axis from −𝑅 to 𝑅. 

A semicircle Γ𝑅 in the upper half-plane (𝑟𝑎𝑑𝑖𝑢𝑠 𝑅). 
We close the contour in the upper half-plane because 𝑒𝑖𝑎𝑧 decays rapidly 

as 𝐼𝑚(𝑧) increases when 𝑎 > 0. 
The only pole of 𝑓(𝑧) in the upper half-plane is at 𝑧 = 𝑖𝑘. The residue of  

𝑓(𝑧) at 𝑧 = 𝑖𝑘 is: 

𝑅𝑒𝑠(𝑓(𝑧), 𝑧 = 𝑖𝑘) = lim
𝑧→𝑖𝑘

(𝑧 − 𝑖𝑘)
𝑧𝑒𝑖𝑎𝑧

𝑧2 + 𝑘2
 

Since 𝑧2 + 𝑘2 = (𝑧 − 𝑖𝑘)(𝑧 + 𝑖𝑘), the residue simplifies to: 

𝑅𝑒𝑠(𝑓(𝑧), 𝑧 = 𝑖𝑘) =
𝑖𝑘𝑒−𝑎𝑘

2𝑖𝑘
=

𝑒−𝑎𝑘

2
 

By the residue theorem, the contour integral around the closed contour 𝐶 

is: 

∫𝑓(𝑧)𝑑𝑧
𝐶

= 2𝜋𝑖 ×
𝑒−𝑎𝑘

2
= 𝜋𝑖𝑒−𝑎𝑘  

∫𝑓(𝑧)𝑑𝑧
Γ

+ ∫ 𝑓(𝑥)𝑑𝑥 =
𝑅

−𝑅

𝜋𝑖𝑒−𝑎𝑘  
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Now → ∞ , we obtain 

∫ 𝑓(𝑥)𝑑𝑥 =
𝑅

−∞

∫
𝑥𝑒𝑖𝑎𝑥

𝑥2 + 𝑘2
𝑑𝑥

∞

−∞

= 𝜋𝑖𝑒−𝑎𝑘  

Equating imaginary parts from both sides, 

∫
𝑥𝑠𝑖𝑛𝑎𝑥

𝑥2 + 𝑘2
𝑑𝑥 =

∞

−∞

2 ∫
𝑥𝑠𝑖𝑛𝑎𝑥

𝑥2 + 𝑘2
𝑑𝑥 =

∞

0

𝜋𝑒−𝑎𝑘  

∫
𝑥𝑠𝑖𝑛𝑎𝑥

𝑥2 + 𝑘2
𝑑𝑥 =

∞

0

1

2
 𝜋𝑒−𝑎𝑘            … (1) 

Deduction: 

1. Substituting 𝑘 = 1, in (1), we get 

∫
𝑥𝑠𝑖𝑛𝑎𝑥

𝑥2 + 𝑘2
𝑑𝑥 =

∞

0

1

2
 𝜋𝑒−𝑎            

2. Substituting 𝑘 = 1, in (1), we get 

∫
𝑥𝑠𝑖𝑛𝑥

𝑥2 + 𝑘2
𝑑𝑥 =

∞

0

1

2
 𝜋𝑒−𝑘 

3. Substituting 𝑎 = 𝑘 = 1, in (1), we get 

∫
𝑥𝑠𝑖𝑛𝑥

𝑥2 + 1
𝑑𝑥 =

∞

0

1

2
 𝜋𝑒−1 =

𝜋

2𝑒
 

SELF CHECK QUESTIONS 

1. What is a residue? 

2. How do you find the residue at a simple pole? 

3. What are the conditions for applying the Residue Theorem? 

4. If a function 𝑓(𝑧) has no singularities inside the contour 𝐶, what is 

the value of the contour integral? 

5. How does the Residue Theorem simplify the evaluation of 

integrals? 

6. What happens if the contour 𝐶 encloses multiple singularities? 

 

12.9 SUMMARY:-   

In this unit we have studied the Residue Theorem in complex analysis 

states that if a function is analytic inside and on a closed contour, except 

for a finite number of isolated singularities, the contour integral of the 

function around the contour is equal to 2πi2πi times the sum of the 

residues of the function at those singularities. This theorem provides a 

powerful tool for evaluating complex integrals by reducing the problem to 

calculating residues at the singular points within the contour. 

 

12.10 GLOSSARY:-   

 Residue Theorem: A fundamental theorem in complex analysis 

stating that the contour integral of a function around a closed curve 
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can be calculated as 2πi times the sum of the residues at the 

singularities enclosed by the contour. 

 Residue: The coefficient of the 1/𝑧 − 𝑧𝑘   term in the Laurent 

series expansion of a function around a singularity 𝑧𝑘, representing 

the contribution of the singularity to the contour integral. 

 Contour: A closed, oriented path in the complex plane typically 

used to describe the boundary around which the integral is taken. 

 Singularity: A point where a complex function is not analytic, 

which may be a pole, essential singularity, or other types of non-

removable discontinuity. 

 Laurent Series: A representation of a complex function as a 

power series that includes terms of negative powers, used to 

describe functions near singularities. 

 Pole: A type of singularity where the function approaches infinity 

as the variable approaches the pole; classified by the order of the 

pole, indicating how quickly the function diverges. 

 Analytic Function: A function that is differentiable at every point 

in a given domain, implying it is smooth and has a well-defined 

derivative. 

12.11 REFERENCES:-  

 Stein, E. M., & Shakarchi, R. (2010), Complex Analysis (Princeton 

Lectures in Analysis, Volume II). Princeton University Press. 

 Saff, E. B., & Snider, A. D. (2016), Fundamentals of Complex 

Analysis with Applications to Engineering, Science, and 

Mathematics (3rd ed.). Pearson. 

 Brown, J. W., & Churchill, R. V. (2013), Complex Variables and 

Applications (9th ed.). McGraw-Hill. 

12.12 SUGGESTED READING:-  

 Goyal and Gupta (Twenty first edition 2010), Function of complex 

Variable. 

 Fischer, W. (2012). Complex Analysis: A Brief Introduction (1st 

ed.). World Scientific. 

 Mathews, J. H., & Howell, R. W. (2012). Complex Analysis for 

Mathematics and Engineering (6th ed.). Jones & Bartlett Learning. 

 Stein, E. M., & Shakarchi, R. (2010). Complex Analysis (Princeton 

Lectures in Analysis, Volume II). Princeton University Press. 

12.13 TERMINAL QUESTIONS:-  
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(TQ-1) Using residue theorem, evaluate ∫
𝑒𝑧𝑑𝑧

𝑧(𝑧−1)2𝐶
 with C is circle |𝑧| =

2. 

(TQ-2) Prove that  

lim
𝑧→∞

−𝑧𝑓(𝑧) = 𝑅𝑒𝑠(𝑧 = ∞) 

Provided f(z) is analytic at 𝑧 = ∞. 

(TQ-3) Determine the order of the pole and values of residues of the 

function  

i. 𝑐𝑜𝑠𝑒𝑐𝑧 

ii. 
𝑧+3

𝑧2−2𝑧
 

(TQ-4) If 𝜙(𝑧) and 𝜓(𝑧) are two regular functions and 𝑧 = 𝑎 is onced 

repeated root of 𝜓(𝑧) = 0 and 𝜙(𝑎) ≠ 0, then prove that the residue 
𝜙(𝑧)

𝜓(𝑧)
 

at 𝑧 = 𝑎 is 

6𝜙′(𝑎)𝜓′′(𝑎) − 2𝜙(𝑎) 𝜓′′′(𝑎)

3[𝜓′′′(𝑎)]2
 

(TQ-5) Prove that ∫
𝑐𝑜𝑠23𝜃𝑑𝜃

1−2𝑝𝑐𝑜𝑠2𝜃+𝑝2

2𝜋

0
=

𝜋(1−𝑝+𝑝2)

1−𝑝
, 0 < 𝑝 < 1 

(TQ-6) Evaluate∫
𝑑𝜃

2+𝑠𝑖𝑛2𝜃

𝜋

0
. 

(TQ-7) Prove that ∫
(1+2𝑐𝑜𝑠𝜃)2𝑐𝑜𝑠𝑛𝜃𝑑𝜃

3+2𝑐𝑜𝑠𝜃

2𝜋

0
 𝑛 being positive integer. 

(TQ-8) Prove that ∫
𝑠𝑖𝑛2𝜃𝑑𝜃

𝑎+𝑏𝑐𝑜𝑠𝜃

2𝜋

0
=

2𝜋

𝑏2
[𝑎 − √(𝑎2 − 𝑏2)], where 𝑎 > 𝑏 > 0 

(TQ-9) Prove that ∫
𝑐𝑜𝑠2𝜃𝑑𝜃

5+4𝑐𝑜𝑠𝜃

2𝜋

0
=

𝜋

6
 

(TQ-10) Evaluate ∫
1+2𝑐𝑜𝑠𝜃

4+5𝑐𝑜𝑠𝜃
𝑑𝜃 

𝜋

0
 

(TQ-11) Prove that ∫ 𝑒−𝑐𝑜𝑠𝜃𝑐𝑜𝑠(𝑛𝜃 + 𝑠𝑖𝑛𝜃)𝑑𝜃
2𝜋

0
=

2𝜋(−1)𝑛

𝑛!
 , 𝑛 being 

positive integer. 

(TQ-12) Prove that ∫
𝑎𝑐𝑜𝑠𝜃

𝑎+𝑐𝑜𝑠𝜃
𝑑𝜃 

𝜋

−𝜋
= 2𝜋𝑎 [1 −

𝑎

√𝑎2−1
] , 𝑎 > 1 

(TQ-13) show that ∫ 𝑡𝑎𝑛 (𝜃 + 𝑖𝑎)
𝜋

0
𝑑𝜃 = 𝑖𝜋, where 𝑅(𝑎) > 0. 

(TQ-14) Prove that if 𝑎 > 0,  ∫
𝑑𝑥

𝑥4+𝑎4

∞

0
=

𝜋√2

4𝑎3. 

(TQ-15) Prove by the contour integration ∫
𝑑𝑥

𝑥4+1

−∞

0
=

𝜋

2√2
 

(TQ-16) Show that ∫
𝑥𝑠𝑖𝑛𝑎𝑥𝑑𝑥

𝑥2+𝑎4

∞

0
=

𝜋

2
𝑒−𝑎𝑘, (where 𝑎 > 0, 𝑘 > 0). 

(TQ-17) Prove that ∫
𝑙𝑜𝑔𝑥𝑑𝑥

(1+𝑥2)2

∞

0
= −

𝜋

4
. 

(TQ-18) Prove that ∫
𝑠𝑖𝑛𝑚𝑥𝑑𝑥

𝑥

∞

0
=

𝜋

2
 

(TQ-19) Show that ∫
𝑠𝑖𝑛2𝑚𝑥𝑑𝑥

𝑥2(𝑥2+𝑎2)

∞

0
=

𝜋

4𝑎3 (𝑒−2𝑚𝑎 − 1 + 2𝑚𝑎)where 𝑚 >

0, 𝑎 > 0 

(TQ-20) Prove that if 0 < 𝑎 < 1, then 

i. ∫
𝑥𝑎−1

1+𝑥

∞

0
𝑑𝑥 =

𝜋

𝑠𝑖𝑛𝜋𝑎
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ii. ∫
𝑥𝑎−1

1−𝑥

∞

0
𝑑𝑥 = 𝜋𝑐𝑜𝑡𝜋𝑎. 

 

12.14 ANSWERS:- 

SELF CHECK ANSWERS 

1.  A residue is the coefficient of 1/𝑧 − 𝑧𝑘 in the Laurent series 

expansion of a function around a singularity 𝑧𝑘. 
2.  For a simple pole at 𝑧𝑘, the residue can be found using: 

𝑅𝑒𝑠(𝑓, 𝑧𝑘) = lim
𝑧→𝑧𝑘

𝑧𝑘 (𝑧 − 𝑧𝑘)𝑓(𝑧) 

3.  The function 𝑓(𝑧) must be analytic inside and on a simple, closed 

contour 𝐶, except at a finite number of isolated singularities inside 

𝐶. 
4. If there are no singularities inside 𝐶, the contour integral is zero. 

5. Answer: Instead of directly evaluating the contour integral, which 

may be complicated, the Residue Theorem allows the integral to be 

computed by summing the residues of the function at the 

singularities inside the contour and multiplying by 2𝜋𝑖. 
6. The integral is calculated by summing the residues at all the 

enclosed singularities and multiplying the result by 2𝜋𝑖. 
 

TERMINAL ANSWERS 

(TQ-1) 2𝜋𝑖 

(TQ-3) i.  𝑅𝑒𝑠(𝑧 = 0) = 1        ii. 𝑅𝑒𝑠(𝑧 = 0) = −
3

2
, 𝑅𝑒𝑠(𝑧 = 2) =

5

2
 

(TQ-6) 
𝜋

√6
                   (TQ-10) 

4𝜋

5
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UNIT 13:- Argument Principle and Rouche’s   

Theorem  

CONTENTS: 
13.1       Introduction 

13.2       Objectives 

13.3       Argument Principle 

 13.4       Rouche’s Theorem  

13.5       Fundamental Theorem of Algebra 

13.6       Summary 

13.7        Glossary 

13.8        References 

13.9        Suggested Reading 

13.10      Terminal questions 

13.11       Answers 

 

13.1 INTRODUCTION:-  

The Argument Principle in complex analysis relates the change in the 

argument of a meromorphic function around a closed contour to the 

difference between the number of its zeros and poles inside the contour, 

quantified as 
1

2𝜋
 imes the total change in argument. Rouché’s Theorem 

provides a method for determining the number of zeros of a function 

inside a contour by comparing it to another function, stating that if one 

function is dominated by another on the contour, they have the same 

number of zeros inside. Both theorems are essential for analyzing the 

distribution of zeros and poles of analytic functions in complex domains. 

The Argument Principle aims to determine the net number of zeros and 

poles of a meromorphic function inside a closed contour by analyzing the 

change in the argument of the function along the contour, providing a 

relationship between this change and the count of singularities within. 

Rouché’s Theorem seeks to facilitate the counting of zeros of a function 

within a contour by comparing it to a simpler function, asserting that if the 

simpler function dominates the difference between the two functions on 

the contour, both functions will have the same number of zeros inside. 

Both principles are used to analyze and understand the behavior of 

complex functions and their zeros and poles in a given region. 
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13.2 OBJECTIVES:-  

The objectives of the Argument Principle and Rouche’s Theorem in 

complex analysis are to provide students with the tools to analyze and 

determine the number of zeros and poles of analytic functions within a 

contour. The Argument Principle aims to connect the change in the 

argument of a function along a contour to the number of zeros and poles 

inside, while Rouche’s Theorem helps in comparing functions to establish 

when they have the same number of zeros within a given region. Mastery 

of these principles enables students to solve complex problems involving 

zero distributions, simplify functions for easier analysis, and understand 

the impact of function perturbations on zero locations. 

13.3 ARGUMENT PRINCIPLE:-  

The Argument Principle is indeed a powerful tool for determining the 

number of zeros and poles of a meromorphic function inside a given 

contour. Here’s a summary of the relevant observations and theorem: 

Meromorphic Functions: A function 𝑓(𝑧)  is meromorphic if it is 

analytic except for isolated poles. Specifically: 

 Analytic functions are a subset of meromorphic functions, where 

the function is analytic everywhere in its domain (i.e., no poles). 

 Rational functions, defined as 𝑓(𝑧) = 𝑝(𝑧)/𝑞(𝑧) where 𝑝(𝑧) and 

𝑞(𝑧) are polynomials, are meromorphic across the entire complex 

plane, with poles corresponding to the roots of 𝑞(𝑧). 

 Meromorphic functions do not have essential singularities, only 

poles. 

Argument Principle: If 𝑓(𝑧) is analytic on and inside a simple closed 

contour 𝐶 and meromorphic in the region enclosed by 𝐶, then:  

 𝑓(𝑧) can have at most a finite number of zeros and poles inside 𝐶. 

 The function 𝑔(𝑧) =
1

𝑓(𝑧)
 is also meromorphic in this region, and 

thus 𝑓(𝑧) has a finite number of poles inside Cbecause 𝑔(𝑧) will 

have a finite number of zeros inside 𝐶. 

The Argument Principle states that the difference between the number of 

zeros and poles of 𝑓(𝑧) inside 𝐶 is given by: 
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𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒛𝒆𝒓𝒐𝒔 − 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒐𝒍𝒆𝒔 =
𝟏

𝟐𝝅
∆𝒂𝒓𝒈 𝒇(𝒛) 

Where ∆𝒂𝒓𝒈 𝒇(𝒛)   is the total change in the argument of 𝑓(𝑧)  as 

𝑧 traverses 𝐶 once. This principle provides a way to calculate the number 

of zeros and poles of 𝑓(𝑧)  based on the behavior of 𝑓(𝑧)  around the 

contour. 

Theorem1:(Number of poles and zeros of a meromorphic function) 

Let 𝑓(𝑧) by analytic inside and on a simple closed curve 𝐶 except for a 

finite number of poles inside 𝐶, and let 𝑓(𝑧) ≠ 0 on 𝐶. Prove that  

1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)𝐶

𝑑𝑧 = 𝑁 − 𝑃 

where 𝑁 and 𝑃 are respectively the number of zeros and the number of 

poles of 𝑓(𝑧) inside 𝐶. A pole of zero of order 𝑛 is counted 𝑛 times. 

Proof: Let 𝑓(𝑧)  be analytic inside and on a simple closed contour 

𝐶 except for a finite number of poles inside 𝐶. Assume 𝑓(𝑧) ≠ 0 on 𝐶. To 

use the Argument Principle, we decompose C into smaller contours around 

each pole and zero of 𝑓(𝑧). Also suppose that 𝑓(𝑧) has a zero of order 𝑛 at 

𝑧 = 𝑏 inside 𝐶. Then we prove that 

1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)𝐶

𝑑𝑧 = 𝑁 − 𝑃 

Specially, Let 𝛾1  and Γ1  be non-overlapping circles inside C with their 

centres at 𝑧 = 𝑎 and 𝑧 = 𝑏 respectively. The by the corollary of Cauchy’s 

Theorem, 

1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)𝐶

𝑑𝑧 =
1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)𝛾1 

𝑑𝑧 +
1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)Γ1

𝑑𝑧                … (1) 

 

Fig.1. 
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 Suppose 𝒇(𝒛) has a zero of order 𝒑 at 𝒛 = 𝒂,  𝒇(𝒛) can be written as: 

                                        𝑓(𝑧) =
𝑔(𝑧)

(𝑧−𝑎)𝑝                                                    … (2) 

where 𝑔(𝑧) is analytic and non zero within and 𝛾1. 

Taking both side logarithmic of 𝑓(𝑧), we obtain 

𝑙𝑜𝑔𝑓(𝑧) = 𝑙𝑜𝑔 𝑔(𝑧) + 𝑝 𝑙𝑜𝑔(𝑧 − 𝑎) 

Now differentiating, w.r.t.to 𝑧,  

𝑓′(𝑧)

𝑓(𝑧)
=

𝑔′(𝑧)

𝑔(𝑧)
− 𝑝 𝑙𝑜𝑔(𝑧 − 𝑎) 

∫
𝑓′(𝑧)

𝑓(𝑧)𝛾1 

𝑑𝑧 = ∫
𝑔′(𝑧)

𝑔(𝑧)𝛾1 

𝑑𝑧 − 𝑝 ∫
1

(𝑧 − 𝑎)𝛾1 

𝑑𝑧 

                                              = ∫
𝑔′(𝑧)

𝑔(𝑧)𝛾1 
𝑑𝑧 − 2𝜋𝑖𝑝                         … (3) 

Since 𝑔(𝑧) is analytic and  𝑔′(𝑧) is also analytic, so 𝑔′(𝑧)/𝑔(𝑧) is analytic 

and within on 𝛾1 . Hence by Cauchy’s theorem , we get 

∫
𝑔′(𝑧)

𝑔(𝑧)𝛾1 

𝑑𝑧 = 0 

So 

                                            ∫
𝑓′(𝑧)

𝑓(𝑧)𝛾1 
𝑑𝑧 = 0 − 2𝜋𝑖𝑝                        … (4) 

Suppose 𝒇(𝒛) has a zero of order 𝒑 at 𝒛 = 𝒃,  𝒇(𝒛) can be written as: 

                                   𝑓(𝑧) = (𝑧 − 𝑏)𝑛𝜙(𝑧)                                     … (5) 

Where 𝜙(𝑧)  is analytic and 𝜙′(𝑧)/𝜙(𝑧)  within on Γ1. Hence by Cauchy’s 

theorem 

                                               ∫
𝜙′(𝑧)

𝜙(𝑧)Γ1
𝑑𝑧 = 0                                  … (6) 

Taking both side logarithmic of 𝑓(𝑧), we obtain 

log 𝑓(𝑧) = 𝑛 log(𝑧 − 𝑏) + 𝑙𝑜𝑔𝜙(𝑧) 

Differentiating this, we obtain  

𝑓′(𝑧)

𝑓(𝑧)
=

𝑛

𝑧 − 𝑏
+

𝜙′(𝑧)

𝜙(𝑧)
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Integrating along Γ1 and the integral   
𝜙′(𝑧)

𝜙(𝑧)
 around Γ1 is zeros by Cauchy’s 

theorem because 
𝜙′(𝑧)

𝜙(𝑧)
 is analytic on Γ1 ,  from (6), we get 

∫
𝑓′(𝑧)

𝑓(𝑧)Γ1

𝑑𝑧 = 𝑛 ∫
𝑑𝑧

(𝑧 − 𝑏)Γ1

𝑑𝑧 = 2𝜋𝑖𝑛    

                                                  ∫
𝑓′(𝑧)

𝑓(𝑧)Γ1
𝑑𝑧 = 2𝜋𝑖𝑛                            … (7) 

Writing (1) with the help of (4) and (7), we obtain 

                                            
1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)𝐶
𝑑𝑧 = −𝑝 + 𝑛                        … . (8) 

Now we suppose that 𝑓(𝑧) has the pole of order 𝑝𝑚  at 𝑧 = 𝑎𝑚  for 𝑚 =

1,2 … … 𝑟  and 𝑛𝑚 at 𝑧 = 𝑎𝑚 for 𝑚 = 1,2 … … 𝑠  within 𝐶.  Specifically, let 

𝛾1, 𝛾2, … … . 𝛾𝑟  and Γ1, Γ2, … … . Γ𝑠 be small circles around the poles  of 

𝑓(𝑧). By summing up the contributions from all the poles and zeros,  from 

(8), we get 

1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)𝐶

𝑑𝑧 = − ∑ 𝑝𝑚

𝑟

𝑚=1

+ ∑ 𝑛𝑚

𝑠

𝑚=1

 

Taking  

∑ 𝑝𝑚

𝑟

𝑚=1

= 𝑃,   ∑ 𝑛𝑚

𝑠

𝑚=1

= 𝑁  

Hence 

1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)𝐶

𝑑𝑧 = 𝑁 − 𝑃 

Theorem2: (Principle of Argument): If 𝑓(𝑧) is analytic and on C, then  

𝑁 =
1

2𝜋
. Δ𝐶 arg 𝑓(𝑧) 

Proof:  By the Argument Principle, we have: 

        
1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)𝐶
𝑑𝑧 = 𝑁 − 𝑃               … (1) 

where 𝑃 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑙𝑒 𝑖𝑛𝑠𝑖𝑑𝑒 𝐶, 𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑧𝑒𝑟𝑜𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝐶. 

Suppose 𝑓(𝑧) has no poles inside 𝐶 , then 𝑃 = 0  and  from (1) , we have 
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1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)𝐶
𝑑𝑧 = 𝑁                      … (2) 

We can relate this to the change in the logarithm of 𝑓(𝑧), the function 

𝑙𝑜𝑔𝑓(𝑧)  (where 𝑙𝑜𝑔 denotes the principal branch of the complex 

logarithm) has a change in its value around 𝐶 given by: 

              ∫
𝑓′(𝑧)

𝑓(𝑧)𝐶
𝑑𝑧 = [log 𝑓(𝑧)]𝐶 = Δ𝐶 𝑙𝑜𝑔 𝑓(𝑧)        … (3)   

From the equation (2) and (3), we obtain 

           2𝜋𝑖𝑁 = [log 𝑓(𝑧)]𝐶 = Δ𝐶 𝑙𝑜𝑔 𝑓(𝑧)                  … (4) 

where Δ𝐶  is the variation of log 𝑓(𝑧) and 𝑓(𝑧) as 𝑧 moves once round 𝐶. 

𝑙𝑜𝑔 𝑓(𝑧) = 𝑙𝑜𝑔|𝑓(𝑧)| + 𝑖𝑎𝑟𝑔 𝑓(𝑧) 

For  

log(𝑥 + 𝑖𝑦) =
1

2
(𝑥2 + 𝑦2) + 𝑖𝑡𝑎𝑛−(𝑦/𝑥) 

Δ𝐶 𝑙𝑜𝑔 𝑓(𝑧) = 𝑙𝑜𝑔|𝑓(𝑧)| + 𝑖𝑎𝑟𝑔 𝑓(𝑧) 

But   

Δ𝐶 𝑙𝑜𝑔|𝑓(𝑧)| = 0 𝑎𝑠 𝑙𝑜𝑔|𝑓(𝑧)|  𝑖𝑠 𝑠𝑖𝑛𝑔𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑑. 
Hence  

Δ𝐶 𝑙𝑜𝑔 𝑓(𝑧) = 𝑖. Δ𝐶 𝑎𝑟𝑔 𝑓(𝑧) 

From(2), we get 

2𝜋𝑖𝑁 = 𝑖. Δ𝐶 𝑎𝑟𝑔 𝑓(𝑧) 

𝑁 =
1

2𝜋
. Δ𝐶 𝑎𝑟𝑔 𝑓(𝑧) 

This completes the proof of the Principle of Argument. 

 

SOLVED EXAMPLE 

EXAMPLE1: If 𝑓(𝑧) = 𝑧5 − 3𝑖𝑧2 + 2𝑧𝑖 − 1 , then ∫
𝑓′(𝑧)

𝑓(𝑧)𝐶
𝑑𝑧,  where C 

encloses zero of f(z)? 

SOLUTION: Let given 𝑓(𝑧) has 5 zeros, So 

𝑁 = 5 

Put 𝑃 = 0, by theorem (1), we have 
1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)𝐶

𝑑𝑧 = 𝑁 − 𝑃 = 5 − 0 = 5 

∫
𝑓′(𝑧)

𝑓(𝑧)𝐶

𝑑𝑧 = 10𝜋𝑖 

EXAMPLE2: Evaluate the integral ∫
𝑓′(𝑧)

𝑓(𝑧)𝐶
𝑑𝑧  when 𝑓(𝑧) =

(𝑧2+1)
2

(𝑧2+3𝑧+2)3 

and C is the circle |𝑧| = 3, taken in the positive sense. 

SOLUTION: The zeros of 𝑓(𝑧) occur where the numerator is zero, 𝑖. 𝑒., 
𝑧2 + 1 = 0 ⇒ 𝑧2 = −1 ⇒ 𝑧 = ±𝑖 

So, 𝑓(𝑧) has zeros at 𝑧 = 𝑖 and 𝑧 = −𝑖. Since the numerator is squared, 

both zeros are of order 2. 
The poles of 𝑓(𝑧) occur where the denominator is zero, 𝑖. 𝑒., 
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𝑧2 + 3𝑧 + 2 = 0 
Solving the quadratic equation: 

𝑧2 + 3𝑧 + 2 = (𝑧 + 1)(𝑧 + 2) = 0 

gives poles at 𝑧 = −1 and 𝑧 = −2. Since the denominator is cubed, both 

poles are of order 3. 

 The zeros 𝑧 = 𝑖  and 𝑧 = −𝑖  have magnitudes ∣ 𝑖 ∣=∣ −𝑖 ∣= 1,  so 

they are both inside the contour. 

 The poles 𝑧 = −1  and 𝑧 = −2  have magnitudes ∣ −1 ∣= 1  and ∣
−2 ∣= 2, so they are also inside the contour. 

 

Using the integral formula 
1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)𝐶

𝑑𝑧 = 𝑁 − 𝑃 

where 𝑁  is the number of zeros (counted with multiplicity) inside 

𝐶 and 𝑃 is the number of poles (counted with multiplicity) inside 𝐶. 
Zeros inside C: 

𝑧 = 𝑖 (𝑜𝑟𝑑𝑒𝑟 2), 
𝑧 = −𝑖 (𝑜𝑟𝑑𝑒𝑟 2) 

Thus, 
𝑁 = 2 + 2 = 4 

Poles inside C: 

𝑧 = −1(𝑜𝑟𝑑𝑒𝑟 3) 
𝑧 = −2(𝑜𝑟𝑑𝑒𝑟 3) 

Thus,  

𝑃 = 3 + 3 = 6 
Now substitute the values into the formula: 

1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)𝐶

𝑑𝑧 = 𝑁 − 𝑃 = 4 − 6 = −2 

Thus, the integral evaluates to: 
1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)𝐶

𝑑𝑧 = −2 

∫
𝑓′(𝑧)

𝑓(𝑧)𝐶

𝑑𝑧 = −2 × 2𝜋𝑖 = −4𝜋𝑖 

 

13.4 ROUCHE’S THEOREM:-  

If  𝑓(𝑧) and 𝑔(𝑧)  are analytic and on a simple closed curve C and if 
|𝑔(𝑧)| < |𝑓(𝑧)|  on C, then 𝑓(𝑧)  and 𝑓(𝑧)  + 𝑔(𝑧)  both have the same 

number of zeros inside 𝐶. 
Proof: Given 𝑓(𝑧) and 𝑔(𝑧) are analytic on and inside a simple closed 

curve  |𝑔(𝑧)| < |𝑓(𝑧)| on C. 

To prove that 𝑓(𝑧) and 𝑓(𝑧) + 𝑔(𝑧) have the same number of zeros inside 

𝐶. 
(i). Prove that neither f(z)nor f(z)+g(z) has zeros on C. 
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Assume 𝑓(𝑧) has a zero at 𝑧 = 𝑎 on 𝐶. Then 𝑓(𝑎) = 0. But according to 

the given condition, ∣ 𝑔(𝑎) ∣<∣ 𝑓(𝑎) ∣= 0 , which implies ∣ 𝑔(𝑎) ∣= 0 . 

Therefore, 𝑓(𝑎) + 𝑔(𝑎) = 0 + 0 = 0,  leading to ∣ 𝑓(𝑎) ∣=∣ 𝑔(𝑎) ∣.  This 

contradicts the assumption that ∣ 𝑔(𝑧) ∣<∣ 𝑓(𝑧) ∣ on  
Now, assume 𝑓(𝑧) + 𝑔(𝑧) has a zero at 𝑧 = 𝑎 on 𝐶. Then 𝑓(𝑎) + 𝑔(𝑎) =
0 ,  𝐶.  which implies 𝑓(𝑎) = −𝑔(𝑎)  and ∣ 𝑓(𝑎) ∣=∣ 𝑔(𝑎) ∣.  Again, this 

contradicts the assumption ∣ 𝑔(𝑧) ∣<∣ 𝑓(𝑧) ∣ on 𝐶. 
Thus, neither 𝑓(𝑧) nor 𝑓(𝑧) + 𝑔(𝑧) has zeros on 𝐶.  
(ii). Show that 𝑵𝟏 = 𝑵𝟐  where 𝑵𝟏 and 𝑵𝟐 are the number of zeros of 

𝒇(𝒛) and 𝒇(𝒛) + 𝒈(𝒛) inside 𝑪, respectively. 

Since 𝑓 and 𝑓 + 𝑔 are analytic inside and on 𝐶, they have no poles inside 

𝐶.By the Argument Principle, the number of zeros 𝑁1 of 𝑓(𝑧) inside 𝐶 is 

given by: 
1

2𝜋𝑖
∫

𝑓′

𝑓𝐶

𝑑𝑧 = 𝑁1 

Similarly, the number of zeros 𝑁2 of 𝑓 + 𝑔 inside 𝐶 is given by: 

 

1

2𝜋𝑖
∫

𝑓′ + 𝑔′

𝑓 + 𝑔𝐶

𝑑𝑧 = 𝑁2 

Subtracting these two integrals, we have  

                                    
1

2𝜋𝑖
∫ (

𝑓′+𝑔′

𝑓+𝑔
−

𝑓′

𝑓
)

𝐶
𝑑𝑧 = 𝑁2 − 𝑁1          … (1) 

express 𝑔/𝑓 = 𝜙 so that 𝑔 = 𝜙𝑓, where |𝑔/𝑓| < 1 = 𝜙 < 1  
𝑓′ + 𝑔′

𝑓 + 𝑔
−

𝑓′

𝑓
=

𝜙′

1 + 𝜙
 

Now using (1), we have 

𝑁2 − 𝑁1 =
1

2𝜋𝑖
∫

𝜙′

1 + 𝜙
 𝑑𝑧

𝐶

 

                                   𝑁2 − 𝑁1 =
1

2𝜋𝑖
∫ 𝜙′ (1 + 𝜙)−1𝑑𝑧

𝐶
           … (2) 

Since |𝜙| < 1, we can expand (1 + 𝜙)−1as a binomial series is possible 

and the binomial expansion thus obtained is uniformly convergent and 

hence term by term integration is permissible. Hence 

∫𝜙′ (1 + 𝜙)−1𝑑𝑧
𝐶

= ∫𝜙′ (1 − 𝜙 + 𝜙2 − 𝜙3 + ⋯ )𝑑𝑧
𝐶

 

  = ∫ 𝜙′ 𝑑𝑧
𝐶

− ∫ 𝜙′𝜙 𝑑𝑧
𝐶

+ ∫ 𝜙′𝜙2 𝑑𝑧
𝐶

− ∫ 𝜙′ 𝜙3𝑑𝑧
𝐶

+ ⋯        … (3)    

                        

The functions 𝑓 and 𝑔 both are analytic within and on 𝐶 and 𝑔(𝑧) ≠ 0 for 

any point on C. Hence 
𝑔

𝑓
= 𝜙 is analytic and non-zero for any point of C. 

Therefore 𝜙  and its all derivatives are analytic. By Cauchy’s integral 

theorem, each integral on R.H.S. of (3). Consequently 

∫𝜙′ (1 + 𝜙)−1𝑑𝑧
𝐶

= 0 

From (2), we get 
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𝑁2 − 𝑁1 = 0 𝑜𝑟 𝑁2 = 𝑁1 

Hence the number of zeros of 𝑓(𝑧) and 𝑓(𝑧) + 𝑔(𝑧) inside 𝐶 is the same, 

i.e., 𝑁2 = 𝑁1. 
 

13.5 FUNDAMENTAL THEOREM OF ALGEBRA:-  

Every polynomial degree of n has exactly 𝑛 zeros. 

Or 

Prove that the polynomial equation. 

𝑃(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + ⋯ + 𝑎𝑛𝑧𝑛 , 𝑎𝑛 ≠ 0, 𝑛 ≥ 1 

has exactly 𝑛 roots. 

Proof: Given polynomial is  

𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + ⋯ + 𝑎𝑛𝑧𝑛 , 𝑎𝑛 ≠ 0 

we want to show that it has exactly 𝑛 roots. 

Now we take 

𝑓(𝑧) = 𝑎𝑛𝑧𝑛 , 𝑔(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + ⋯ + 𝑎𝑛−1𝑧𝑛−1 

Let C be the circle |𝑧| = 𝑟 where 𝑟 > 1. 
|𝑔(𝑧)| ≤ |𝑎0| + |𝑎1|𝑟 + |𝑎2|𝑟2 + ⋯ + |𝑎𝑛−1|𝑟𝑛−1 

≤ |𝑎0|𝑟𝑛−1 + |𝑎1|𝑟𝑛−1 + |𝑎2|𝑟𝑛−1 + ⋯ + |𝑎𝑛−1|𝑟𝑛−1 

= (|𝑎0| + |𝑎1| + |𝑎2| + ⋯ + |𝑎𝑛−1|)𝑟𝑛−1 

But       |𝑓(𝑧)| = |𝑎𝑛𝑟𝑛| = |𝑎𝑛|𝑟𝑛 

∴                 |
𝑔(𝑧)

𝑓(𝑧)
| ≤

(|𝑎0|+|𝑎1|+|𝑎2|+⋯+|𝑎𝑛−1|)𝑟𝑛−1

|𝑎𝑛|𝑟𝑛  

=
|𝑎0| + |𝑎1| + |𝑎2| + ⋯ + |𝑎𝑛−1|

|𝑎𝑛|𝑟
 

Now if |𝑔(𝑧)| ≤ |𝑓(𝑧)| so that |
𝑔(𝑧)

𝑓(𝑧)
| < 1, then 

|𝑎0| + |𝑎1| + |𝑎2| + ⋯ + |𝑎𝑛−1|

|𝑎𝑛|𝑟
< 1 

 ⇒ 

𝑟 >
|𝑎0| + |𝑎1| + |𝑎2| + ⋯ + |𝑎𝑛−1|

|𝑎𝑛|𝑟
 

As 𝑟 becomes large, the terms involving 𝑟 in the denominator tend to zero. 

Hence, for sufficiently large 𝑟, we have: 

 
|𝑔(𝑧)| ≤ |𝑓(𝑧)|𝑟𝑛 = |𝑓(𝑧)| on 𝐶 

 

By applying Rouche’s Theorem, we find that the polynomial 𝑃(𝑧) =
𝑓(𝑧) + 𝑔(𝑧) has the same number of zeros inside the circle ∣ 𝑧 ∣< 𝑟 as the 

polynomial 𝑓(𝑧) = 𝑎𝑛𝑧𝑛. Since 𝑓(𝑧) is a polynomial of degree 𝑛, it has 

exactly 𝑛  zeros (counting multiplicities) inside any sufficiently large 

circle. Consequently, the given polynomial 𝑃(𝑧) also has exactly 𝑛 zeros 

in the complex plane. 
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SOLVED EXAMPLE 

EXAMPLE3: Using Rouche’s theorem determine the number of zeros of 

the polynomial 𝑃(𝑧) = 𝑧10 − 6𝑧7 + 3𝑧3 + 1 in |𝑧| < 1. 

SOLUTION: Let 𝑃(𝑧) = 𝑧10 − 6𝑧7 + 3𝑧3 + 1 

𝑓(𝑧) = −6𝑧7, 𝑔(𝑧) = 𝑧10 + 3𝑧3 + 1 

Then                                𝑃(𝑧) = 𝑓(𝑧) + 𝑔(𝑧) 

Let the circle C defined |𝑧| = 1. 

Then 𝑓(𝑧) and 𝑔(𝑧) both are analytic within and upon 𝐶. 

|
𝑔

𝑓
| = |

𝑧10 + 3𝑧3 + 1

6𝑧7
| ≤

|𝑧10| + 3|𝑧3| + 1

6| 𝑧7|
 

=
110 + 3(1)3 + 1

6(1)7
< 1 

=
5

6
< 1 

|
𝑔

𝑓
| < 1      𝑜𝑟       |𝑔| < |𝑓| 

By Rouche's Theorem, 𝑓(𝑧) = −6𝑧7  and  𝑃(𝑧) = 𝑧10 − 6𝑧7 + 3𝑧3 +
1 have the same number of zeros inside ∣ 𝑧 ∣< 1. 
The function 𝑓(𝑧) = −6𝑧7clearly has 7 zeros inside the unit circle (all at  

𝑧 = 0). 

Hence the polynomial 𝑃(𝑧) = 𝑧10 − 6𝑧7 + 3𝑧3 + 1has exactly 7 zeros 

inside the unit circle ∣ 𝑧 ∣< 1. 
EXAMPLE4: Use Rouche’s theorem to show that the equation 𝑧5 +

15𝑧 + 1 = 0 has one root in the disc |𝑧| <
3

2
 and four roots in the annulus 

3

2
< |𝑧| < 2. 

SOLUTION: We are given the equation 𝑧5 + 15𝑧 + 1 = 0 and need to 

demonstrate that it has one root in the disc |𝑧| <
3

2
 and four roots in the 

annulus 
3

2
< |𝑧| < 2. using Rouche’s theorem. 

Let |𝑧| = 2 represent the circle 𝐶1. Then we have 

𝑧5 + 15𝑧 + 1 = 0 

Take 𝑓(𝑧) = 𝑧5 and 𝑔(𝑧) = 15𝑧 + 1 

Then  

|
𝑔

𝑓
| = |

15𝑧 + 1

𝑧5
| =

15|𝑧| + 1

|𝑧|5
=

15.2 + 1

25
=

31

32
< 1 

 

Since ∣ 𝑔(𝑧) ∣<∣ 𝑓(𝑧) ∣ on 𝐶1  by Rouche’s theorem, 𝑃(𝑧) = 𝑓(𝑧) +
𝑔(𝑧) = 𝑧5 + 15𝑧 + 1  and 𝑓(𝑧) = 𝑧5 have the same number of zeros 

inside ∣ 𝑧 ∣< 2. The polynomial 𝑓(𝑧) =  𝑧5has five zeros inside ∣ 𝑧 ∣< 2 

(all at 𝑧 = 0). Therefore, 𝑧5 + 15𝑧 + 1 = 0 has five zeros inside ∣ 𝑧 ∣= 2. 
 

Consider the circle 𝐶2 defined by |𝑧| = 3/2. We need to determine the 

number of zeros of 𝑧5 + 15𝑧 + 1 inside |𝑧| < 3/2 
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Take 𝑓(𝑧) = 15𝑧, 𝑔(𝑧) =  𝑧5 + 1. 

Thus 

|
𝑔

𝑓
| = |

𝑧5 + 1

15𝑧
| ≤

|𝑧|5 + 1

15|𝑧|
=

(
3
2

)
5

+ 1

15 (
3
2)

=
275

720
< 1 

Since ∣ 𝑔(𝑧) ∣<∣ 𝑓(𝑧) ∣  on 𝐶2 , by Rouche’s theorem, 𝑃𝑃(𝑧) = 𝑓(𝑧) +
𝑔(𝑧) = 𝑧5 + 15𝑧 + 1 and 𝑓(𝑧) = 15𝑧  have the same number of zeros 

inside ∣ 𝑧 ∣< 3/2.  The polynomial 𝑓(𝑧) = 15𝑧  has one zero at z=0. 

Therefore, 𝑧5 + 15𝑧 + 1 = 0  has exactly one zero inside ∣ 𝑧 ∣= 3/2 . 

Therefore, we conclude that the equation 𝑧5 + 15𝑧 + 1 = 0 has one root 

in the disc ∣ 𝑧 ∣< 3/2 and four roots in the annulus 3/2 <∣ 𝑧 ∣< 2. 
 

SELF CHECK QUESTIONS 

 

1. What does the Argument Principle state about the integral 
1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)𝐶
𝑑𝑧 for a function 𝑓(𝑧) analytic inside and on a contour 

𝐶. 
2. If 𝑓(𝑧) = 𝑧2 − 1 and 𝐶  is the unit circle, what is the number of 

zeros of 𝑓(𝑧) inside 𝐶 using the Argument Principle? 

3. State Rouche’s Theorem and how it helps in counting zeros of 

𝑓(𝑧) and 𝑔(𝑧) inside a contour 𝐶. 
4. If 𝑓(𝑧) is analytic on and inside 𝐶 except for a simple pole at 𝑧 =

𝑎, how does the Argument Principle account for this pole when 

counting zeros? 

 

13.6 SUMMARY:-   

In this unit we have studied the Argument Principle and Rouche's 

Theorem are fundamental results in complex analysis used to count the 

zeros of analytic functions within certain regions. The Argument Principle 

states that for an analytic function 𝑓(𝑧) inside and on a simple closed 

contour 𝐶, the change in the argument of 𝑓(𝑧) around 𝐶  is 2𝜋 times the 

difference between the number of zeros and the number of poles inside 𝐶. 

Rouche's Theorem provides a method for comparing two analytic 

functions 𝑓(𝑧)  and 𝑔(𝑧) on a contour 𝐶.  If ∣ 𝑔(𝑧) ∣<∣ 𝑓(𝑧) ∣  on 𝐶,  then 

𝑓(𝑧)  and 𝑓(𝑧) + 𝑔(𝑧)  have the same number of zeros inside 𝐶.  Both 

theorems are powerful tools for determining the number of zeros of 

complex functions without explicitly solving for them. 

 

13.7 GLOSSARY:-   

 Argument Principle: A result in complex analysis that relates the 

number of zeros and poles of an analytic function inside a simple 
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closed contour 𝐶  to the integral of 𝑓′(𝑧)/𝑓(𝑧)  around 𝐶. 

Specifically, 
1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)𝐶
𝑑𝑧 equals the number of zeros minus the 

number of poles of 𝑓(𝑧) within 𝐶. 
 Rouche’s Theorem: A theorem in complex analysis that helps 

determine the number of zeros of a function inside a contour. If 

𝑓(𝑧) and 𝑔(𝑧) are analytic on and inside a simple closed contour 

𝐶, and if ∣ 𝑓(𝑧) − 𝑔(𝑧) ∣<∣ 𝑓(𝑧) ∣ on 𝐶,  then 𝑓(𝑧) and 𝑔(𝑧)  have 

the same number of zeros inside 𝐶. 
 Zeros: Points where a function 𝑓(𝑧) is equal to zero. In the context 

of these theorems, zeros are counted with their multiplicities. 

 Poles: Points where a function f(z) goes to infinity. Poles are also 

counted with their multiplicities when applying the Argument 

Principle. 

 Contour C: A simple closed curve in the complex plane that is 

used to define the boundary of a region where properties of the 

function are analyzed. 

 Analytic Function: A function f(z) that is differentiable at every 

point in its domain, meaning it can be expressed locally by a 

convergent power series. 

 Integral 
𝟏

𝟐𝝅𝒊
∫

𝒇′(𝒛)

𝒇(𝒛)𝑪
𝒅𝒛:  The integral used in the Argument 

Principle to calculate the difference between the number of zeros 

and poles of a function 𝑓(𝑧) inside the contour 𝐶. 
 Comparison Function: In Rouche’s Theorem, a function 𝑔(𝑧) is 

compared with 𝑓(𝑧) to determine if they have the same number of 

zeros inside a contour 𝐶. 
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13.10 TERMINAL QUESTIONS:-  

(TQ-1) Let 𝑓(𝑧)  by analytic inside and on a simple closed curve 𝐶 

except for a finite number of poles inside 𝐶, and let 𝑓(𝑧) ≠ 0 on 𝐶. Prove 

that  

1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)𝐶

𝑑𝑧 = 𝑁 − 𝑃 

where 𝑁 and 𝑃 are respectively the number of zeros and the number of 

poles of 𝑓(𝑧) inside 𝐶. A pole of zero of order 𝑛 is counted 𝑛 times. 

(TQ-2) If 𝑓(𝑧) is analytic and on C, then prove that 

𝑁 =
1

2𝜋
. Δ𝐶 arg 𝑓(𝑧) 

(TQ-3) State and prove the principle of Argument. 

(TQ-4) State and prove Rouche’s Theorem. 

Or 

If  𝑓(𝑧) and 𝑔(𝑧)  are analytic and on a simple closed curve C and if 
|𝑔(𝑧)| < |𝑓(𝑧)|  on C, then 𝑓(𝑧)  and 𝑓(𝑧)  + 𝑔(𝑧)  both have the same 

number of zeros inside 𝐶. 

(TQ-5) Prove that polynomial equation. 

𝑃(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + ⋯ + 𝑎𝑛𝑧𝑛 , 𝑎𝑛 ≠ 0, 𝑛 ≥ 1 

has exactly 𝑛 roots. 

(TQ-6) Show that one root of the equation 𝑧4 + 𝑧 + 1 = 0 lies in the 

first quadrant. 

(TQ-7) Show that  roots of the equation 𝑧6 − 9𝑧2 + 11 = 0 all lies in 

the circles |𝑧| = 1 and |𝑧| = 3. 

(TQ-8) Prove that one root of the equation 𝑧4 + 𝑧3 + 1 = 0 lies in the 

positive quadrant. 

(TQ-9) Show that the equation 𝑧4 + 2𝑧3 + 3𝑧2 + 4𝑧 + 5 = 0  has no 

real purely imaginary roots and that it has one complex root in each 

quadrant. 

(TQ-10) Show that the equation 𝑒−𝑧 = 𝑧 − (1 + 𝑖) has one root in the 

first quadrant. 

(TQ-11) State Rouche’s theorem and use it to find the number of zeros 

of the polynomial 2𝑧4 − 2𝑧3 + 2𝑧2 + 2𝑧 + 11 = 0 inside the circle |𝑧| =
1. 
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(TQ-12) State Rouche’s theorem and apply it to determine the number of 

roots of the equation 𝑧8 − 4𝑧5 + 𝑧2 − 1 = 0 , that lies inside the 

circle|𝑧| = 1. 

 

13.11 ANSWERS:- 

SELF CHECK ANSWERS 

1. The Argument Principle states that 
1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)𝐶
𝑑𝑧  equals the 

number of zeros minus the number of poles of 𝑓(𝑧) inside C. 

2. The number of zeros inside 𝐶  is 1
1

2𝜋𝑖
∫

𝑓′(𝑧)

𝑓(𝑧)𝐶
𝑑𝑧 = 2 , since 

 𝑓(𝑧) = 𝑧2 − 1  has 2 zeros inside the unit circle. 

3. Rouche’s Theorem states that if ∣ 𝑓(𝑧) − 𝑔(𝑧) ∣<∣ 𝑓(𝑧) ∣ on 𝐶, 
then 𝑓(𝑧) and 𝑔(𝑧) have the same number of zeros inside 𝐶. 

4. The Argument Principle considers the residue at the pole, 

which affects the count of zeros. Specifically, the number of 

zeros is adjusted by subtracting the number of poles, including 

their orders, from the total integral result. 
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UNIT 14:- Uniqueness of analytic continuation  
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14.6       Schwartz’s Reflection Principle 

14.7       Summary 

14.8        Glossary 

14.9        References 
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14.11      Terminal questions 

14.12      Answers 

 

14.1 INTRODUCTION:-  

Analytic continuation is a fundamental concept in complex analysis, 

where the idea is to extend the domain of an analytic function beyond its 

original region of definition. The uniqueness of analytic continuation 

asserts that if two analytic functions agree on a common domain, then they 

must agree everywhere on their domain of convergence. This property 

highlights the rigidity of analytic functions: once an analytic function is 

defined on a small region, its behavior on a much larger region is 

completely determined. The principle stems from the fact that analytic 

functions are highly constrained by their local behavior. Specifically, if 

two analytic functions are equal on a set that has an accumulation point 

within their domain of definition, they must be equal on the entire 

connected domain where both functions are analytic. This concept is 

crucial in various areas of mathematics and physics, as it ensures that the 

analytic continuation of a function is unique, making the extended 

function well-defined. 

14.2 OBJECTIVES:-  

The objectives of studying the uniqueness of analytic continuation are to 

understand the fundamental concept of extending an analytic function 

beyond its initial domain while ensuring that the extended function 

remains uniquely determined. This involves exploring the uniqueness 
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theorem, which asserts that if two analytic functions agree on a common 

domain with an accumulation point, they must coincide throughout their 

entire domain of definition. Additionally, the objectives include applying 

this principle to solve complex analysis problems, recognizing the role of 

accumulation points, and connecting this concept to broader topics such as 

the identity theorem and holomorphic functions, all while working through 

illustrative examples to solidify understanding. 

14.3 ANALYTIC CONTINUATION:-  

Let 𝑓1(𝑧) be a function that is analytic in a domain 𝐷1 . If there exists 

another function 𝑓2(𝑧) that is analytic in a different domain 𝐷2, and 𝐷2 

overlaps with 𝐷1 in a region 𝐷12,  where 𝑓1(𝑧) = 𝑓2(𝑧)  for all 𝑧  in 𝐷12, 

then 𝑓2(𝑧) is called the analytic continuation of 𝑓1(𝑧) from 𝐷1 into 𝐷2 via 

𝐷12. 

 Equivalently, 𝑓1(𝑧) can be viewed as the analytic continuation of 𝑓2(𝑧)  

from 𝐷1 into 𝐷2 via 𝐷12. 

 

Fig.2 

For analytic continuation, it is sufficient that the domains 𝐷1and 𝐷2 have 

even a small arc in common, as long as the function values agree on that 

common part. 

For example, consider an arc ABC that is shared by both 𝐷1 and 𝐷2. If a 

function 𝑓1(𝑧)  is analytic in 𝐷1 and another function 𝑓2(𝑧) is analytic in 

𝐷2, and if 𝑓1(𝑧) = 𝑓2(𝑧)  for all 𝑧 on the 𝑎𝑟𝑐 𝐴𝐵𝐶, then 𝑓2(𝑧)  is the 

analytic continuation of 𝑓1(𝑧) from 𝐷1into 𝐷2 via the 𝑎𝑟𝑐 𝐴𝐵𝐶. 

An Alternate definition: If 𝑓(𝑧) is analytic in a domain 𝑆1 and if 𝑓(𝑧) is 

also analytic in a domain 𝑆2 continuation of 𝑓(𝑧) in the domain 𝑆2. 

SOLVED EXAMPLE 

EXAMPLE1: Let 𝑓(𝑧) = ∑ 𝑧𝑛∞
𝑛=0 , 𝜙(𝑧) =

1

1−𝑧
. 
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SOLUTION: The function 𝑓(𝑧) = ∑ 𝑧𝑛∞
𝑛=0  is analytic within the unit 

circle ∣ 𝑧 ∣< 1, where it equals the function 𝜙(𝑧) =
1

1−𝑧
. While 𝜑(𝑧) is 

analytic at all points in the complex plane except at 𝑧 = 1, where it has a 

simple pole, it matches 𝑓(𝑧) within ∣ 𝑧 ∣< 1. Therefore, 𝜑(𝑧) provides the 

analytic continuation of 𝑓(𝑧) over the entire complex plane, except at the 

singularity 𝑧 = 1. 

EXAMPLE2: Let 𝑓1(𝑧) = ∑ 𝑧𝑛∞
𝑛=0 , 𝑓2(𝑧) = ∑

1

2
(

1+𝑧

2
)

𝑛
∞
𝑛=0 . 

SOLUTION: The first power series 𝑓1(𝑧) = ∑ 𝑧𝑛∞
𝑛=0  is convergent inside 

the circle 𝑅1defined by ∣ 𝑧 ∣= 1 and has the sum 
1

1−𝑧
. The second power 

series𝑓2(𝑧) = ∑
1

2
(

1+𝑧

2
)

𝑛
∞
𝑛=0  is Geometric series with first term 

1

2
 and a 

common ratio 
1+𝑧

2
 converging when |

1+𝑧

2
| < 1 or equivalent |𝑧 + 1| < 2. 

The sum of the second series is given by  

𝑓2(𝑧) =
1

2
.

1

1 −
(1 + 𝑧)

2

=
1

1 − 𝑧
 

Hence, 𝑓1(𝑧) simplifies to the same function as 𝑓2(𝑧), 𝑖. 𝑒. ,
1

1−𝑧
. 

 

 
Fig.1 

 

 

The function 𝑓1(𝑧)  is analytic inside the circle 𝑅1  where ∣ 𝑧 ∣= 1 , and 

𝑓2(𝑧) is analytic inside the circle 𝑅2  where ∣ 𝑧 + 1 ∣= 2. Both functions 

are equal in the region where 𝑅1 and 𝑅2 overlap, meaning 𝑓1(𝑧) = 𝑓2(𝑧)  

in this common region. Therefore, 𝑓2(𝑧) extends the domain of the 

analytic function 𝑓1(𝑧)  from 𝑅1 to the larger domain 𝑅2, making 𝑓2(𝑧) the 

analytic continuation of 𝑓1(𝑧) from 𝑅1 in to 𝑅2. 

 

Definition: An analytic function f defined on a domain 𝐷 is known as a 

function element, which is denoted by (𝑓, 𝐷). 
 

14.4 COMPLETE ANALYTIC FUNCTION:-  

Suppose 𝑓(𝑧) is an analytic function within a domain 𝐷. By forming all 

possible analytic continuations of the pair (𝑓, 𝐷),  and subsequently all 
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possible continuations of the resulting function elements 

(𝑓1, 𝐷1) … … . . (𝑓𝑛 , 𝐷𝑛), we eventually construct a function 𝐹(𝑧) . This 

function 𝐹(𝑧)  is defined such that for any point 𝑣, 𝐹(𝑣)  represents the 

value obtained by the analytic continuation to 𝑣, with: 

𝐹(𝑧) = {

𝑓1(𝑧)𝑖𝑓 𝑧 ∈ 𝐷1 

𝑓1(𝑧) 𝑖𝑓 𝑧 ∈ 𝐷2

… … … … … … .
𝑓𝑛(𝑧) 𝑖𝑓 𝑧 ∈ 𝐷𝑛 

 

The function 𝐹(𝑧)  constructed in this way is known as a complete 

analytic function. During the process of analytic continuation, it is 

possible to encounter a closed curve beyond which further continuation is 

not possible. This closed curve is referred to as the natural boundary of 

the complete analytic function. Points lying outside this natural boundary 

are considered singularities of the complete analytic function, where the 

function ceases to be analytic. 

Theorem1: If 𝑓(𝑧) is analytic in a domain 𝑅 and 𝑓(𝑧) = 0 at all points on 

𝑎𝑟𝑐 𝑃𝑄 inside 𝑅, then 𝑓(𝑧) = 0 throughout 𝑅. 

Solution: Suppose 𝑓(𝑧) is analytic within a domain 𝑅. Let PQ be an arc 

inside RR such that f(z)=0 for all points z on the arc PQ. This is the given 

condition, s.t. 

𝑓(𝑧) = 0∀𝑧 𝑜𝑛 𝑃𝑄       … (1) 

We need to prove that 𝑓(𝑧) = 0  throughout the entire domain 𝑅. Consider 

an arbitrary point 𝑧0  on the arc 𝑃𝑄. Since 𝑓(𝑧) is analytic at 𝑧0,we can 

describe a circle 𝐶 centered at 𝑧0 within which 𝑓(𝑧) can be expanded as 

Taylor series: 

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛

∞

𝑛=0

   … (2) 

where  𝑎𝑛 =
𝑓𝑛(𝑧0)

𝑛!
. 

Since 𝑧0lies on PQ, by the given condition 𝑓(𝑧0) = 0, by (1) 

 ⇒                    𝑓(𝑧) = 0 at 𝑧 = 𝑧0 

⇒                    𝑓(𝑧), 𝑓′(𝑧), 𝑓′′(𝑧), … , 𝑓𝑛(𝑧) = 0 at 𝑧 = 𝑧0 

⇒                    𝑓𝑛(𝑧0) = 0 when 𝑛 = 0,1,2,3, … 

Here 𝑓0(𝑧0) = 𝑓(𝑧) 

⇒               𝑎𝑛 = 0, for 𝑛 = 0,1,2,3, …     

Form(2), we get 
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𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛

∞

𝑛=0

= ∑ 0(𝑧 − 𝑧0)𝑛

∞

𝑛=0

= 0 

Hence, 𝑓(𝑧) = 0 for all points 𝑧 inside the circle 𝐶. 

Since 𝑓(𝑧) = 0 inside the circle 𝐶 centered at 𝑧0, and 𝑧0 was an arbitrary 

point on 𝑃𝑄, this argument can be extended across the entire domain 𝑅. 

By the identity theorem, since 𝑓(𝑧) = 0 in an open set (the arc 𝑃𝑄 and its 

interior), 𝑓(𝑧) must be identically zero throughout 𝑅. 

Thus, 𝑓(𝑧) = 0  throughout the domain 𝑅.  This completes the proof of 

Theorem. 

Theorem2: If a function 𝑓(𝑧) and all its derivatives vanish at a point 𝑎, 

then 𝑓(𝑧) and all its derivatives will vanish at all points in the domain of 

𝑎. 

Proof: By Taylor theorem 

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛

∞

𝑛=0

 

where  𝑎𝑛 =
𝑓𝑛(𝑧0)

𝑛!
.  for 𝑛 = 0,1,2,3, …    

By assumption, 𝑎0 = 𝑎1 = 𝑎2 = 𝑎3 = ⋯ = 0. 

Hence 𝑓(𝑧), 𝑓′(𝑧), 𝑓′′(𝑧) all vanish at all points of the domain. 

Thus, if a function 𝑓(𝑧) and all its derivatives vanish at a point 𝑎, then 

𝑓(𝑧)  and all its derivatives will vanish at all points in the domain 

containing 𝑎. 

 

14.5 UNIQUENESS OF ANALYTIC 

CONTINUATION:-  

The uniqueness of analytic continuation is a fundamental concept in 

complex analysis. It states that if two analytic functions agree on a non-

discrete subset of a domain, they must be identical on the entire domain to 

which they can both be analytically continued. 

Theorem3: There cannot be one more than one continuation of analytic 

continuation 𝑓2(𝑧) in to the same domain. 

Proof: Let 𝑓1(𝑧) be analytic in a domain 𝐷1and let 𝑓2(𝑧)   and 𝑔2(𝑧) be 

two analytic continuations of 𝑓1(𝑧)  from 𝐷1 into a domain 𝐷2  .Assume 

via 𝐷12 which is common to both 𝐷1 and 𝐷2. 

If we show that 𝑓2(𝑧) = 𝑔2(𝑧) throughout 𝐷2,  the result will follow 

By the definition of analytic continuation 

i. 𝑓1(𝑧) = 𝑓2(𝑧)∀𝑧 ∈ 𝐷12 and 𝑓1(𝑧) is analytic in 𝐷2. 
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ii. 𝑓1(𝑧) = 𝑔2(𝑧)∀𝑧 ∈ 𝐷12 and 𝑔2(𝑧) is analytic in 𝐷2. 

Now from (i) and (ii), we get 

𝑓2(𝑧) = 𝑓1(𝑧) = 𝑔2(𝑧)∀𝑧 ∈ 𝐷12 

𝑓2(𝑧) = 𝑔2(𝑧)∀𝑧 ∈ 𝐷12 

(𝑓2 − 𝑔2)(𝑧) = 0∀𝑧 ∈ 𝐷12 

𝑓2 and 𝑔2 are analytic in 𝐷2. 

Thus we see that (𝑓2 − 𝑔2)(𝑧) vanishes in 𝐷12 which is a part of 𝐷2. Also 

the function of analytic in 𝐷2. Hence we must have  

(𝑓2 − 𝑔2)(𝑧) = 0∀𝑧 ∈ 𝐷2 

𝑓2(𝑧) = 𝑔2(𝑧)∀𝑧 ∈ 𝐷2 

 

14.6 SCHWARTZ’S REFLECTION PRINCIPLE:-  

Theorem5: Suppose that 𝑓1(𝑧) is analytic in the region 𝑅1  and that 

𝑓1(𝑧)takes only real values on the parts LMN of the real axis. Then the 

Swartz’s reflection principle states that the analytic continuation 𝑓2(𝑧)of 

𝑓1(𝑧)into the domain 𝑅2(considered as the mirror images of 𝑅1 with LMN 

as mirror) is given by 𝑓2(𝑧) = 𝑓1(𝑧)̅̅ ̅̅ ̅̅ ̅. 

Proof: Suppose that 𝑓1(𝑧)is analytic in the region 𝑅1 and that 𝑓1(𝑧)takes 

only real values on the parts LMN of the real axis so that 

𝑓2(𝑧) = 𝑓1(𝑧)̅̅ ̅̅ ̅̅ ̅ on the line LMN                  ….(1) 

Let 𝑅2be the mirror image 𝑅1 with LMN as mirror and let 

                                         𝑓2(𝑧) = 𝑓1(𝑧)̅̅ ̅̅ ̅̅ ̅                           …(2) 

To prove that 𝑓2(𝑧) is analytic continuation of 𝑓1(𝑧)from 𝑅1 into 𝑅2 via 

the line LMN, it is enough to show that  

i. 𝑓2(𝑧) = 𝑔2(𝑧) on the line LMN 

ii. 𝑓2(𝑧) is analytic in 𝑅2. 

 

(i) . on the line LMN, 𝑧 = 𝑥, 𝑧̅ = 𝑥 so that 𝑧 = 𝑧 ̅

 Now from (1) , we get 𝑓2(𝑧) = 𝑓1(𝑧)̅̅ ̅̅ ̅̅ ̅ on the line LMN 

Using (2), we have 𝑓1(𝑧) = 𝑓2(𝑧) on the line LMN 

Hence prove result (i) 

(ii). Let 𝑓1(𝑧) = 𝑓1(𝑥 + 𝑖𝑦) = 𝑢1(𝑥, 𝑦) + 𝑖𝑣1(𝑥, 𝑦)          … (3) 

Analyticity of 𝑓1(𝑧) in the domain 𝑅1 implies that Cauchy-Riemann 

equations are satisfied 

                                         
𝜕𝑢1

𝜕𝑥
=

𝜕𝑣1

𝜕𝑦
,

𝜕𝑢1

𝜕𝑦
= −

𝜕𝑣1

𝜕𝑥
              … (4) 

and Compute the  partial derivatives are continuous so 

From(3), we obtain 
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𝑓1(𝑧̅) = 𝑓1(𝑥 − 𝑖𝑦) = 𝑢1(𝑥, −𝑦) + 𝑖𝑣1(𝑥, −𝑦) 

𝑓1(𝑧)̅̅ ̅̅ ̅̅ ̅ = 𝑓2(𝑧) = 𝑢1(𝑥, −𝑦) + 𝑖𝑣1(𝑥, −𝑦) 

Now 𝑓2(𝑧) is analytic in 𝑅2, we obtain 

If  

𝜕𝑢1

𝜕𝑥
=

𝜕(−𝑣1)

𝜕(−𝑦)
,

𝜕𝑢1

𝜕(−𝑦)
= −

𝜕(−𝑣1)

𝜕𝑥
 

Or equivalently if  

𝜕𝑢1

𝜕𝑥
=

𝜕𝑣1

𝜕𝑦
,
𝜕𝑢1

𝜕𝑦
= −

𝜕𝑣1

𝜕𝑥
 

which is true by (4),  

For 

𝜕(−𝑣1)

𝜕(−𝑦)
=

𝜕𝑣1

𝜕𝑦
,
𝜕(−𝑣1)

𝜕𝑥
= −

𝜕𝑣1

𝜕𝑥
  

These satisfy the Cauchy-Riemann equations, showing𝑓2(𝑧) is analytic in 

𝑅2. 

SOLVED EXAMPLE 

EXAMPLE3: If 𝑓(𝑧)̅̅ ̅̅ ̅̅ = 𝑓(𝑧), then prove that  𝑓(𝑥) is real. 

SOLUTION: Suppose 𝑓1(𝑧) is an analytic function and satisfies: 

𝑓(𝑧̅) = 𝑓(𝑧) 

Let  

𝑓(𝑧) = 𝑓1(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) 

𝑓(𝑧)̅̅ ̅̅ ̅̅ = 𝑓1(𝑥 − 𝑖𝑦) = 𝑢(𝑥, −𝑦) + 𝑖𝑣(𝑥, −𝑦) 

Taking conjugate of it and Let 𝑓(𝑧) be written as: 

𝑓(𝑧)̅̅ ̅̅ ̅̅ = 𝑢1(𝑥, −𝑦) + 𝑖𝑣1(𝑥, −𝑦) 

𝑓(𝑧)̅̅ ̅̅ ̅̅ = 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) 

So that 

𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) = 𝑢(𝑥, −𝑦) + 𝑖𝑣(𝑥, −𝑦) 

Substituting 𝑦 = 0, we have 

𝑢(𝑥, 0) + 𝑖𝑣(𝑥, 0) = 𝑢(𝑥, 0) + 𝑖𝑣(𝑥, 0) 

2𝑖𝑣(𝑥, 0) = 0 𝑜𝑟 𝑣(𝑥, 0) = 0 

 

Substituting 𝑦 = 0 in 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) 

𝑓(𝑥) = 𝑢(𝑥, 0) + 𝑖𝑣(𝑥, 0) 

= 𝑢(𝑥, 0) as 𝑣(𝑥, 0) = 0 

𝑓(𝑥) = 𝑢(𝑥, 0) 

Hence 𝑓(𝑥) is real. 

EXAMPLE4: Show that the power series ∑ 𝑧3𝑛∞
𝑛=0  cannot be continued 

analytically beyond the circle |𝑧| = 1. 

SOLUTION: Let  
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|𝑢𝑛(𝑧)|1/𝑛 = |𝑧3𝑛|1/𝑛 = |𝑧3| = |𝑧|3 

Hence the series is convergence is |𝑧| < 1. 

Circle of convergence is |𝑧| = 1. 

𝑓(𝑧) = ∑ 𝑧3𝑛

𝑞

𝑛=0

+ ∑ 𝑧3𝑛

∞

𝑛=𝑞+1

= 𝑓1(𝑧) + 𝑓2(𝑧) 

Take a point p of affix 𝑧 = 𝑟𝑒
2𝜋𝑝𝑖

3𝑞 (𝑟 > 1). 

Now proceed as in Problem 2, 𝑓(𝑧) → ∞𝑎𝑠 𝑟 → 1. 

For 𝑓1(𝑧) = finite quantity and 𝑓2(𝑧) → ∞ as 𝑟 → 1. 

EXAMPLE5: Show that the series 

1

2
+

𝑧

4
+

𝑧2

8
+ ⋯ += ∑

𝑧𝑛

2𝑛+1

∞

𝑛=0

 

and   

1

2 − 𝑖
+

𝑧 − 𝑖

(2 − 𝑖)2
+

(𝑧 − 𝑖)2

(2 − 𝑖)3
+ ⋯ = ∑

(𝑧 − 1)𝑛

(2 − 𝑖)𝑛+1

∞

𝑛=0

 

are analytic continuation of each other. 

SOLUTION: Consider the first series: 

𝑓1(𝑧) = ∑
𝑧𝑛

2𝑛+1

∞

𝑛=0

 

This is a geometric series where the first term 𝑎 = 1/2 and the common 

ratio 𝑟 =
𝑧

2
, the sum of an infinite geometric series ∑ 𝑎𝑟𝑛∞

𝑛=0 is given by: 

𝑓1(𝑧) =
𝑎

1 − 𝑟
=

1
2

1 −
𝑧
2

=

1
2

2 − 𝑧
2

=
1

2 − 𝑧
 

Consider the second series: 

𝑓2(𝑧) = ∑
(𝑧 − 1)𝑛

(2 − 𝑖)𝑛+1

∞

𝑛=0

 

This is a geometric series where the first term 𝑎 =
1

2−𝑖
 and the common 

ratio 𝑟 =
𝑧−𝑖

2−𝑖
. The sum of an infinite geometric series ∑ 𝑎𝑟𝑛∞

𝑛=0  is given 

by: 

𝑓2(𝑧) =
𝑎

1 − 𝑟
=

1
2 − 𝑖

1 −
𝑧 − 𝑖
2 − 𝑖

=

1
2 − 𝑖
2 − 𝑧
2 − 𝑖

=
1

2 − 𝑧
 

We found that: 

𝑓1(𝑧) =
1

2 − 𝑧
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And 

𝑓2(𝑧) =
1

2 − 𝑧
 

Since both functions 𝑓1(𝑧) and 𝑓2(𝑧) are equal, the series ∑
𝑧𝑛

2𝑛+1
∞
𝑛=0  and 

∑
(𝑧−1)𝑛

(2−𝑖)𝑛+1
∞
𝑛=0  are indeed analytic continuations of each other. This shows 

that they represent the same analytic function over their domains of 

convergence. 

EXAMPLE6: Show that the function defined by  

𝑓1(𝑧) = ∫ 𝑡3𝑒−𝑧𝑡
∞

0

𝑑𝑡 

is analytic at all points z for which 𝑅(𝑧) > 0. Find also a function which is 

analytic continuation of 𝑓1(𝑧) into the left hand place 𝑅(𝑧) < 0, where 

𝑅(𝑧) means the real part of 𝑧. 

SOLUTION: Consider the integral: 

𝑓1(𝑧) = ∫ 𝑡3𝑒−𝑧𝑡
∞

0

𝑑𝑡 

Integration by parts 

𝑓1(𝑧) = [𝑡3 (
𝑒−𝑧𝑡

−𝑧
) − 3𝑡2 (

𝑒−𝑧𝑡

𝑧2
) + 6𝑡 (

𝑒−𝑧𝑡

−𝑧3
) − 6 (

𝑒−𝑧𝑡

𝑧4
)]

𝑡=0

∞

 

𝑓1(𝑧) =
6

𝑧4 if 𝑅(𝑧) > 0 

Let                                     𝑓2(𝑧) =
6

𝑧4  

                                          𝑓2(𝑧) = 𝑓1(𝑧) for 𝑅(𝑧) > 0 

Hence 𝑓1(𝑧) is required analytic continuation of 𝑓2(𝑧). 

EXAMPLE7: Show that the circle of convergence of the power series 

∑ 𝑧𝑛∞
𝑛=0  is a natural boundary for its sum function. 

Or 

 Show that the function ∑ 𝑧𝑛∞
𝑛=0 = 1 + 𝑧 + 𝑧2 + ⋯  can be obtained 

outside the circle of convergence of the power series. 

SOLUTION: The given power series is: 

∑ 𝑧𝑛

∞

𝑛=0

= 1 + 𝑧 + 𝑧2 + ⋯ 

This is a geometric series with the first term 𝑎 = 1 and the common ratio 

𝑟 = 𝑧. The sum 𝑆 of an infinite geometric series is given by: 

𝑆 =
𝑎

1 − 𝑟
=

1

1 − 𝑧
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provided ∣z∣<1. So, within the circle of radius 1 centered at the origin, the 

series converges to: 

∑ 𝑧𝑛

∞

𝑛=0

=
1

1 − 𝑧
 

The radius of convergence RR for the series ∑ 𝑧𝑛∞
𝑛=0  can be found using 

the formula: 

1

𝑅
= lim

𝑛→∞
|
𝑎𝑛+1

𝑎𝑛
| 

where 𝑎𝑛 = 𝑧𝑛. We have: 
𝑎𝑛+1

𝑎𝑛
= 𝑧 

So 

1

𝑅
= |𝑧| ⇒ 𝑅 = 1 

Hence, the power series ∑ 𝑧𝑛∞
𝑛=0  converges for ∣ 𝑧 ∣< 1, which means the 

circle ∣ 𝑧 ∣= 1 is the boundary of convergence. 

 

SELF CHECK QUESTIONS 

1.  What is the statement of the Uniqueness Theorem for analytic 

continuation? 

2. Why does the existence of an accumulation point in the shared 

domain matter in the uniqueness theorem? 

3. Explain the role of connectedness in the uniqueness theorem for 

analytic continuation. 

4. What is the implication of the uniqueness theorem for the 

extension of an analytic function? 

5. What are the practical implications of the uniqueness of analytic 

continuation in complex analysis? 

6. How does the identity theorem relate to the uniqueness of analytic 

continuation? 

14.7 SUMMARY:-   

The uniqueness of analytic continuation is a fundamental principle in 

complex analysis, stating that if two analytic functions coincide on any 

non-discrete subset of their domain, then they must be identical on their 

entire domain. This means that an analytic function is uniquely determined 

by its values on any small region, as long as this region has an 

accumulation point within the domain. The principle underscores the 

rigidity of analytic functions, where local behavior completely dictates 
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global behavior, allowing a function defined on a small part of its domain 

to be uniquely extended to a larger domain. 

 

14.8 GLOSSARY:-   

 

 Analytic Function: A complex function that is differentiable at 

every point in its domain. This implies that the function can be 

locally represented by a convergent power series. 

 Analytic Continuation: The process of extending the domain of 

an analytic function beyond its original domain, while preserving 

the function's analyticity. 

 Domain: The set of all points in the complex plane where a 

function is defined and analytic. 

 Non-Discrete Subset: A subset of a domain that has an 

accumulation point, meaning that within any neighborhood of a 

point in this subset, there are infinitely many other points from the 

subset. 

 Accumulation Point: A point in the complex plane where any 

neighborhood around it contains infinitely many points from a 

given set. 

 Uniqueness Theorem: A principle in complex analysis stating that 

if two analytic functions coincide on a non-discrete subset of their 

domain, they must be identical throughout the entire domain. 

 Rigidity: The concept that the behavior of analytic functions is 

strictly determined by their values in a small region, allowing no 

flexibility in how they can be extended. 

 Power Series: A series of the form ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛∞
𝑛=0 , where anan 

are coefficients and 𝑧0  is the center of the series. An analytic 

function can be expressed as a power series around any point in its 

domain. 

 Local Behavior: The behavior or properties of a function in a 

small neighborhood around a specific point. 

 Global Behavior: The overall behavior or properties of a function 

across its entire domain. 

 Identity Theorem: A theorem in complex analysis that states if 

two analytic functions agree on an infinite set of points that has an 

accumulation point within their domain, then they must be 

identical on the entire domain. 
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 Extension: The process of enlarging the domain of a function 

while maintaining its original properties, particularly analyticity. 

 Holomorphic Function: Another term for an analytic function, 

often used interchangeably in the context of complex analysis. 

 Isolated Singularity: A point where a function is not analytic but 

is analytic in some punctured neighborhood around that point. 

Analytic continuation can sometimes resolve isolated singularities. 

 

 Analytic Continuation Along a Path: A method of extending an 

analytic function by moving along a path in the complex plane, 

ensuring that the function remains analytic at each point. 

 Convergence Radius: The radius within which a power series 

converges to the corresponding analytic function. The concept is 

crucial in understanding the limits and possibilities for analytic 

continuation. 

 Removable Singularity: A point where a function is not initially 

analytic, but where it can be redefined so that the function becomes 

analytic. Analytic continuation can often "fill in" these points, 

ensuring the uniqueness of the function. 

 Schwarz Reflection Principle: A method used in analytic 

continuation, especially when the original function is defined on a 

domain with a boundary. It reflects the function across the 

boundary, maintaining analyticity and ensuring uniqueness. 

 

14.9 REFERENCES:-  

 Krantz, S. G. (2013). Geometric Function Theory: Explorations in 

Complex Analysis. Birkhäuser. 

 Remmert, R. (2012). Classical Topics in Complex Function 

Theory. Springer. 

 Dinh, T.-C., & Sibony, N. (2018). Dynamics in Several Complex 

Variables: Endomorphisms of Projective Spaces and Polynomial-

like Mappings. Springer. 

 

14.10 SUGGESTED READING:-  

 Aizenberg, L. (2012). Carleman's Formulas in Complex Analysis: 

Theory and Applications. Springer. 
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 Goyal and Gupta (Twenty first edition 2010), Function of complex 

Variable. 

 https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-III-

Complex-Analysis.pdf 

 Dinh, T.-C., & Sibony, N. (2018). Dynamics in Several Complex 

Variables: Endomorphisms of Projective Spaces and Polynomial-

like Mappings. Springer. 

14.11 TERMINAL QUESTIONS:-  

(TQ-1) Define analytic continuation. 

(TQ-2) Define natural boundary. 

(TQ-3) show that two function 𝑓1(𝑧) and 𝑓2(𝑧) are equal at all points of 

a line 𝐿 in a region 𝐷 in which they are holomorphic; the functions are 

equal at all points of 𝐷. 

(TQ-4) Prove that the unit circle |𝑧| = 1 is a natural boundary of the 

function 𝑓(𝑧) = ∑ 𝑧𝑛!∞
𝑛=1  

 (TQ-5) If 𝑓(𝑧) is analytic in a domain 𝑅 and 𝑓(𝑧) = 0 at all points on 

𝑎𝑟𝑐 𝑃𝑄 inside 𝑅, thenprove that 𝑓(𝑧) = 0 throughout 𝑅. 

 (TQ-6) Show that the function 

𝑓(𝑧) =
1

𝑎
+

𝑧

𝑎2
+

𝑧2

𝑎3
+ ⋯ 

Can be continued analytically outside the circle of convergence. 

(TQ-7): If a function 𝑓(𝑧) and all its derivatives vanish at a point 𝑎, then 

prove that  𝑓(𝑧) and all its derivatives will vanish at all points in the 

domain of 𝑎. 

 

14.12 ANSWERS:- 

SELF CHECK ANSWERS 

1. The Uniqueness Theorem for analytic continuation states that if 

two analytic functions 𝑓(𝑧) and 𝑔(𝑧) are defined on a connected 

domain 𝐷  and if there exists a subset 𝑆 ⊂ 𝐷  containing an 

accumulation point where 𝑓(𝑧) = 𝑔(𝑧) for all 𝑧 ∈ 𝑆, then 𝑓(𝑧) =
𝑔(𝑧) for all 𝑧 ∈ 𝐷. This means that an analytic function is uniquely 

determined by its values on any subset that has an accumulation 

point within the domain. 

https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-III-Complex-Analysis.pdf
https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-III-Complex-Analysis.pdf
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2. The existence of an accumulation point ensures that the agreement 

of the two functions on the shared subset is not just coincidental 

but instead implies that the functions must be identical on the 

entire connected open set 𝑈. 
3. Connectedness of the domain U is crucial because if the domain 

were not connected, the agreement of the functions on a subset 

might not necessarily extend to the entire domain. The theorem 

relies on the ability to "continue" the agreement throughout a 

single connected component. 

4. The uniqueness theorem implies that an analytic function, if it can 

be analytically continued from a given domain to a larger domain, 

must be unique on that larger domain as long as the continuation is 

well-defined and the domain is connected. 

5. The practical implications include the fact that once an analytic 

function is known in a small region, it is uniquely determined in 

the entire domain of definition, allowing for consistent extension 

and prediction of the function's behavior beyond the initially 

known region. 

6.  The identity theorem is a specific case of the uniqueness theorem. 

It states that if two analytic functions agree on a set that has a limit 

point within their domain of definition, then they must be identical 

on the entire connected component of the domain. This theorem 

underpins the uniqueness of analytic continuation. 
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