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COURSE INFORMATION

The present self learning material “Advanced Differential Equations-II” has
been designed for M.Sc. (Second Semester) learners of Uttarkhand Open University,
Haldwani. This self learning material is writing for increase learner access to high-quality
learning materials.This course is divided into 14 units of study. The first five units are
devoted to Block-I (Advanced Differential Equations-I). Typically builds upon the
foundations of Advanced Differential Equations-I, exploring more advanced topics such
as nonlinear differential equations and advanced applications in physics, engineering,
etc., and other fields. Block-II (Advanced Differential Equations-II) typically covers
topics beyond introductory differential equations, delving into more complex equations,
techniques, and applications. This might include methods like Fourier series, Laplace
transforms, boundary value problems, and partial differential equations. Block-III
(Advanced Differential Equations-IIT) usually covers even more specialized topics,
such as advanced techniques in solving partial differential equations (PDEs), including
numerical methods, Green's functions, variational methods, and advanced applications in
areas. Block-IV(Numerical solution of PDEs) involves using computational methods to
approximate solutions to partial differential equations. This typically includes discretizing
the spatial and temporal domains, employing numerical techniques such as finite
difference, finite element, or spectral methods, and solving resulting algebraic equations

iteratively to approximate the PDE solution.
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Unit 1: Formation and Solution of PDEs
CONTENTS:

1.1  Introduction

1.2 Objectives

1.3 Partial Differential Equation

1.4 Order of Partial Differential Equation
1.5  Degree of Partial Differential Equation

1.6  Linear and Non-linear Partial Differential Equation

1.7  Classification of First Order Partial Differential Equations
1.8  Formation of PDEs

1.9  Cauchy’s Problem for First Order PDEs

1.10  Summary

1.11  Glossary

1.12  References

1.13  Suggested Reading

1.14  Terminal questions

1.15  Answers

1.1 INTRODUCTION:-

Partial Differential Equations (PDEs) play a crucial role in
describing and understanding a wide range of physical phenomena and
mathematical concepts. They are fundamental tools in fields such as
physics, engineering, biology, finance, and more. PDEs describe how
functions and variables change with respect to multiple independent
variables, including time and space. This introduction provides an
overview of the formation and solution of PDEs, highlighting their
significance and the approaches used to tackle them.

PDEs are essential mathematical tools for modeling dynamic
processes across various fields. Their formation involves translating
physical systems into mathematical equations, while their solution
requires a combination of analytical and numerical techniques. PDEs
provide a bridge between theory and real-world applications, enabling us
to make informed decisions and advancements in science and technology.
In this unit, we propose to study various methods to solve partial
differential equations.
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1.2 OBJECTIVES:-

After studying this unit, you will be able to

e To develop a fundamental understanding of what partial
differential equations are and how they differ from ordinary
differential equations.

. To Understand the Basics of PDEs.

o To Analyzing the Physical Phenomena.

The objectives of studying the formation of solutions to PDEs are
designed to equip learners with a solid foundation in the theory and
application of partial differential equations, preparing them to tackle
diverse challenges in mathematics, physics, engineering, and other
scientific disciplines.

1.3 PARTIAL DIFFERENTIAL EQUATION:-

A Partial Differential Equation (PDE) is a type of differential equation that
involves multiple independent variables and their partial derivatives with
respect to those variables. Unlike ordinary differential equations (ODEs),
which involve a single independent variable, PDEs deal with functions of
two or more independent variables.

Or
“An equation containing one or more partial derivatives of an unknown
function of two or more independent variables is known as partial
differential equation.”
Mathematically, a partial differential equation typically takes the form:

7 0z 0z 0z 0%z 0%z 0%z _o .
X1 X2, X 0x,’ 0x,"  0x, 0x?'0x3"  OxZ N @
where

® Xy,Xy, X, are the independent variables,
e 7z is the unknown function of these variables,

z . . o .
o i,(l = 1,2---n) represents the partial derivative of u with
l

respect to x; (the first-order partial derivative).

0%z

* -7 represents the second-order partial derivative of u with
i

respect to x;, and F is some mathematical expression that relates u
and its partial derivatives.
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1.4 ORDER OF PARTIAL DIFFERENTIAL
EQUATION:-

The order of a partial differential equation (PDE) refers to the
highest order of partial derivatives present in equation (1).
For Example:
e The equations

dz 0z ou du , Ju dz 0z
a+5—z+xy, a+5+g—xyz, Z( )+5—xareof
the first order.

e The equations
9%z az\1/2 9z 2 23z 0z
%7 = (1 + 5) , (5) + 5 = 2x (5) are of the second and
third order.

1.5 DEGREE OF PARTIAL DIFFERENTIAL
EQUATION:-

The degree of a partial differential equation (PDE) is the highest
power to which the highest-order partial derivative term is raised in the
equation.

2%u  9%u

6x6y+m+duzo

For E le: az—u+b
or Example: a——

2
In this PDE, the highest-order partial derivative term isZTZ, and its degree

is 2 because it is raised to the power of 2.

1.6 LINEAR AND NON-LINEAR PARTIAL
DIFFERENTIAL EQUATION:-

The partial differential equation is called LINEAR if the dependent
variable and its partial derivatives occur only in the first degree and not
multiplied. A partial differential equation which is not linear is called a
non-linear partial differential equation.

. 0z 0z du Ou , Ju .
Example: The equation P + 2 2 + xy, P + e + 35, = XYz are Linear.

A partial differential equation which is not Linear is known as NON-
LINEAR partial differential equation.

Department of Mathematics
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2 1/2
Example: The equation z (a_z) +22 =y L2 = (1 + %) are non-

ox oy ! 6_3/2 oy
linear.
Notation: Now we adopt the following notations throughout the study of
PDEs
p:a_z q=a—z r=a—zz s = 0%z and r=a—zz
ox’ oy’ ox2’ oxdy dy?

Let we take x4, x5 ... .... x,(n independent variable) and z is then regarded
as the dependent variable. Hence we use the following notation.

0z 0z 0z 0z
pl:a_xl' Pzza_xz; P3:E and Pn:m

ou ou 2%u 0%u

U =50 U =50 Wa =55 Uy =550 and so on.

1.7 CLASSIFICATION OF FIRST ORDER
PARTIAL DIFFERENTIAL EQUATIONS:-

First-order partial differential equations (PDEs) can be classified into four
categories: linear, semi-linear, quasi-linear, and non-linear. These
classifications are based on the degree of linearity in the PDEs. Here's an
explanation of each category with examples:

A first order partial differential equation in two variables in its most
general form can be expressed as

F(x,v,z,p,q9) =0 ..(1)

Where p = Z—i and g = 2—;, z is dependent variable and x, y is independent

variables.

a. Linear PDEs: Linear PDEs are those in which all terms
involving the dependent variable and its partial derivatives are of
the first degree. OR
A first order partial differential equation
F(x,v,2,p,q) = 0 is said to be LINEAR if it is linear p, q and z
i.e., If given equation is of the form

P(x,y)p + Q(x,¥)q = R(x,y)z + S(x,y).
For example:
yx?p + xy%q = xyz + x%y3
pcos(x +y) + gsin(x +y) = z + eVsinx
p+3q =5z + tan(y — 3x)
p+q=z+xy etc.,
are all linear partial differential equations.

Department of Mathematics
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b. Semi-Linear PDEs: A first order partial differential equation
F(x,y,z,p,q) = 0is said to be SEMI-LINEAR if it is linear
p,q and the coefficient of p and q are the functions of x and y
i.e, Ifit is of the form

P(x,y)p + Q(x,y)q = R(x,y, 2)
For example:
(x +y2)p + xlogy q = 2z*x + xy + e*
pcos(x +y) + gsin(x + y) = z3 + e¥ + sinx
xyp + x%yq = x*y*z?
yp +xq = (x*2%[y?) etc.,
are all Semi-linear partial differential equations.

c¢. Quasi-Linear PDEs: A first order partial differential equation
F(x,y,2,p,q) = 0is said to be QUASI-LINEAR if it is linear
inp,qie., Ifit is of the form

P(x,y,2z) + Q(x,y,2)q = R(x,y,2)
For example:
(x+y+2)p+xyz+xz=3x*+5y>+ 62>
(x% +y®)p + 4xyzq = 3z + e**Y
(x* —yz2)p + (y* — zx)q = (2% — xy) etc,,
are all Quasi-linear partial differential equations.

d. Non-Linear PDEs: A first order partial differential equation
F(x,y,z,p,q) = 0 which does not come under the above three
types, called Non-Linear equation.

For example:
p’+q*=1
pq =z
x%p? +y%q? = 2% etc,,
are all Non-linear partial differential equations.

1.8 FORMATION OF PDEs:-

Partial differential equation can be formed either by elimination of
arbitrary constants or by elimination of arbitrary functions.
RULE1: Derivation of a partial differential equation by elimination of
arbitrary constants.
Let us consider F(x,y,z,p,q) =0 ..(1D)
where a, b are arbitrary constants. Let z be the function of two
independent variables x and y.
Now differentiating (1) w.r.t x and y, we obtain

Department of Mathematics
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oF oF
ox " Paz T
oF oF
E +q E =0
Solving these two equations we can formulate partial differential
equation (1).
Situation I: When the number of arbitrary constants is less than the
number of independent variables, then the elimination of arbitrary
constants usually gives rise to more than one partial differential equation
of order one.
Example: Let z=ax+y

Differentiating above equation w.r.t. x and y , we obtain

0z 0z
—=a and — =1, then
dy

dx
(62) N
zZ=x|=—
ax) 7Y
Situation II: When the number of arbitrary constants is equal to the
number of independent variables, then the elimination of arbitrary

constants usually gives rise to unique partial differential equation of order
one.

Example: Let az+b=a’x+y

Differentiating above equation w.r.t. x and y , we get
9z _ 2 9z _

a-=a and a (ay) =1, then

0z\ (0z\

) (5) =1
Situation III: When the number of arbitrary constants is grater then the
number of independent variables, then the elimination of arbitrary
constants leads to unique partial differential equation usually greater than
one.
Example: Let zZ =ax + by + cxy - (1)
Differentiating above equation w.r.t. x and y , we obtain

0z 0z
a—a+cy,£—b+cx .. (2)
and
9%z 9%z 9%z
Iz '6_3/2_ ’ axay_c (3)
then
d d
(é)x =ax +cxy and (ﬁ)y = by + cxy
Now from (1)

Department of Mathematics
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B (62) N (62) N
zZ = % X —cxy 3y y —cxy + cxy

2
z+ey = (Z)x+ (F)y = 2+ 0 (5) = G)x+ G)r
SOLVED EXAMPLE
EXAMPLET1: Solve the partial differential equation by eliminating a
and b from z = ax + by + a? + b?.
SOLUTION: The given equation is
z=ax + by + a® + b? . (D)

Differentiating (1) equation w.r.t. x and y , we obtain
%2_q and Z=b.
ax ay
Putting the value of a and b in (1), we have
Z=x (g—i) +y (2—;) + (Z—i)z + (2—;)2. Which is required solution (PDEs).
EXAMPLE?2: Solve the partial differential equation by eliminating h
and k from (x — h)? + (y — k)? + z? = 22
SOLUTION: The given equation is

(x—h)?+@@-k?*+z2=22 .1
Differentiating (1) equation w.r.t. x and y , we obtain

2(x—h)+22(g—i) =0 and (x—h)= —Z(Z—i)
and
2(y — k) + 2z (Z—;) =0 and (x—k)= —Z(Z—;)

Putting the value of (x — h) and (x — k)in (1), we obtain

72 (z—i)z + 72 (2—;)2 +2z2=2%* and z* [(Z—i)z + (2—;)2 + 1] = A?
Which is required solution (PDEs).

EXAMPLE3: Solve the partial differential equation by eliminating a

and b from the following relations:
2 2

a. 2z = z—z + %
b. 2z=(ax+y)*+b
SOLUTION:
a. Let the equation
X2 2
22 ==+ i—z (D)
Differentiating (1) equation w.r.t. x and y , we obtain
dz\ 2x _(0z\  «x , X
i i

Department of Mathematics
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0z 2y 0z y , Yy
2(5) =5 =0=(5) ===

Putting the value of a? and b?in (1), we get
yZ 2 2

2z ==+ Prilirey: = px + qy. is required solution (PDEs).
) (p)
b. Let the equation
2z=(ax+y)*+b (1)
Differentiating (1) equation w.r.t. x and y , we have
2p =2a(ax+y) =p =alax +y)

2g=2(ax+y)=>q = (ax+y)

0z 0z
where p —a—andq =%

Dividing both above equatlong = a.

Putting the value of a in (1), we obtain

q—( )x+y or px+qy=q:

EXAMPLEA4: Solve the partial differential equation by eliminating

2

x% y z?
a,b,c from;+ﬁ+c—z— 1.

. x2  y? 72
SOLUTION: Given Stats= 1 - (1)
Differentiating (1) equation w.r.t. x and y , we can write
2x 2z0z dz
;+C—2a—0:>cx+aza—0 - (2)
2x 2zdz dz
ﬁ C—za—():)CX-FaZa—O (3)
Differentiating (2) w.r.t. x and(3) w.r.t. y , we obtain
c? + a? (Zi)+ 22?—0 . (4)
2 2 (92 2, 0%z _
c2+b (6y) +b2252=0 . (5)
Now again from (2),
) 0z
cix = —a’z—
“ox
2
2o Faoz
x Ox

Substituting the value of ¢? in (4) and dividing by a?, we obtain

+ <aZ)2+ ’z 0z =0
ct+a axz
2

za? 0z (62)2 a 62

xa? 0x 2\0x

Department of Mathematics
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z 0z az\?2 0%z 0%z az\?2 0z
___+(£) +Zﬁ—00r Zx—+x(—) —z—=0 ..(7)

x 0x 0x2 0x 0x

Similarly from (3) and (5), we get
9%z 92\ 2 0z
Zya—yz-l—y(a) —25—0 (8)
Again differentiating (2) partially w.r.t. y,

o+ {(52) (3 ++ (7)) =

(D) o

Hence (7), (8) and (9) are three possible forms of the required PDEs.
EXAMPLES: Solve the partial differential equation by eliminating

a,b,c fromax? + by? + cz? = 1.
SOLUTION: Given the equation

ax? + by? +cz? =1 (1)
Differentiating (1) equation w.r.t. x and y , we obtain

2ax +2cz (52) = 0 - (2)

2by + 2cz (Z—;) =0 - (3)

Differentiating (2) equation w.r.t. y , we have

0+ 2¢{(5) (52) + 2 (zp)) =0

or

0z\ (0z 9%z
(5) (5) tz (6x6y) =0 ..(4)
Since c is arbitrary constant. The equation (4) is the desired PDEs.
Again, differentiating (2) equation w.r.t. x and (3) w.r.t.y , we get

avaef(Z) +2(22)} =0
T \ox “\oxz)| =~
b+ 2¢{(2) +2(22)} =0

c ay Z ayz =

Again from (2), a = — 2oz Substituting this in above equation, we obtain
x Ox
cz 0z 9z\> 9%z
—(7)X(a)+0{(a) +Z(ﬁ)}=0

Department of Mathematics
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or zZx (%) +x (z—i)z -z (Z—i) =0 ..(5
Similarly from (3), we get

0%z dz\* 0z
zy <a_yz> +y (@) - z<@> =0 ..(6)
Hence required the PDEs.
RULE2: Derivation of a partial differential equation by elimination of

Arbitrary function ¢ from the equation ¢p(u, v) = 0,where
u and v are the functions of x, y and z.

Let ¢(u,v) =0 - (D
be the given equation and let
az 6y 0x
p, =q5. = =0 and 3 = 0 - (2)

Now dlfferentlatmg (1) w.r.t.x, we obtain
a9 (au dx Oudy Odu 62) a9 (av dx O0v ay v 62)

9u\ox ax " dy ox 9z 9x) v \ax ax  dy ox 9z ox
a¢<au au>+a¢ (av 6v> _0

Ju \ox P 0z ov \0x P 0z
Now from (2)
¢ v dv
(au> _ (Gz+ra) @)
) (@
dv ox "Poz
Similarly Differentiating (1) w.r.t. y, we have
d¢ ov v
@) __Grew)
o\  (ou + ou - (4)
@) (G+e3)

Now eliminating ¢ with the help of (3) and (4), we obtain
v v (617 av)
v, 90V —+ g5
Gz+r3) _\oytaa
ou ou\ (du ou
(G *raz) (@Jf q&)

<6u 6u)(6v+ 617) (6u+ 6u><6v+ 617)
dy qaz 0x paz 0x paz dy paz

or Pp+Qq =R
ou dv ou dv ou dv ou dv ou dv ou dv
where P=———-——, Q=—————, =—————
dy 0z dz dy 0z 0x 0x 0z dx dy 0y ox

Department of Mathematics
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SOLVED EXAMPLE
EXAMPLET1: Solve the partial differential equation by eliminating the
arbitrary function f from the equation x + y + z = f(x% + y? + z2).
SOLUTION: The given equation is
x+y+z=f(x*+y%+2z?%) . (D)
Differentiating (1) with w.r.t. x and y
1+p=f"(x?+y%+2%) 2x + 2zp) ..(2)
1+q=f"(x*+y%+2%) 2y + 2zq) ...(3)
From (2) and (3), we obtain
1+p  1+4¢q
(2x +2zp) 2y + 2zq)
1+ +zq) =0+ q)(x+2zp)
(v +2q) +p(y +2q) = (x + zp) + q(x + zp)
(v +zq) + py + zqp = (x + zp) + qx + zpq
(v +zq) +py = (x +2p) +qx
y+zq+py=x+2zp+qx
zqtpy—zp—qx=x—Yy
p(y —z) + q(z — x) = x — y is required the PDEs.
EXAMPLE?2: Eliminate the arbitrary functions f and F from y =
f(x —at) + F(x + at).
SOLUTION: The given equation is
y=f(x—at)+F(x+at) ..(1)

Differentiating (1) w.r.t. x, we get

ay _ ., :
a—f (x —at) + F'(x + at)
Again, differentiating,
Y frc—at) + P+ at) .. (2
axz—fx a x+at) ...(2)
Also, differentiating (1) w.r.t. t, we obtain
d
a—{ = f'(x — at)(—a) + F'(x + at) (@)
d%y
o f"(x —at)(—a)? + F"(x + at)(a)?
azy 2 " "
2= ¢ [f"(x—at) + F"(x + at)] ...(3)

From (1) and (2), we obtain

Department of Mathematics
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EXAMPLE3: From the partial differential equation by eliminating
arbitrary functions f and g from z = f(x? —y) + g(x? + y).
SOLUTION: Let the given equation

z=fx*-y)+gx*+y) ..(D
Now differentiating (1) w.r.t. x and y , we have

0z 1(a2 2 I'(2s2 I (A~ 2
o = 2 = y) + 2gx(x® +y) = 2x{f (% —y) + g'(x + y)}
0z o o
Fve —f =) +9' (" +y)
Again differentiating above equation w.r.t. . x and y , we obtain
0%z
5z = 2 =)+ g ()
+4xH{x? =)+ 9" (x* =)} .. (2)
aZZ " 2 " 2
a—y2=f (x*=y)+g" (x* +y)
Again (2),
et en= ()« (3)
Pt =y + g’ +y) =15 ) X5

Putting the value of f”" (x2 —y) + g"” (x> + y)and f' (x> —y) +
g'(x* + y) in (2), we get

622_2x<1>x<62>+4 ,0%z
ox2 2x ox x dy?

0%z 0z 3 0%z . . )
X—— = ( 6x) + 4x 372 is required the solution.

1.9 CAUCHY’S PROBLEM FOR FIRST ORDER
PDEs:-

If

a. xo(u),yo(u) andzy(u) are functions which together with their
first derivatives, are continuous in interval I defined by p; < u <
Hz-

b. And if f(x,y,2zp,q) is continuous function of x,y,z,p and q in
certain region U of the xyzpq space, then it is required to
establish the existence of function ¢(x,y) with the following
properties:

i. ¢(x,y) and its partial derivatives with respect to x and y are
continuous functions of x and y in a region R of the xy space.
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ii. For all value of x and y lying in R , the point
{x, Y, ¢(x,y), O (x,¥), by (x, y)} lies in U and
flx v, 06, 9), de(x, ), P, (x,7)} = 0.
ii.For all u Dbelonging to interval 1, the point
{xo(1), yo(u)}belongs to the region R and ¢p{xo (1), yo (W)} =
Z.
Stated geometrically, what we wish to prove is that there exists
a surface z = ¢(x,y) which passes through the curve C whose
parametric equations are given by x = xo(u),y = yo(u),z =
Z o(u) and every point of which the direction (p, g, —1) of the
normal is such that f(x,y,z,p,q) = 0.
EXAMPLE: Solve the Cauchy’s problem for zp + g = 1, when the initial
datacurve inxg = W, yg = U, Zg = %,0 <u<l
SOLUTION: The given equation
fx,y,20,Q) =2zp+q—1=0 ..(1)
And the given initial data curve

U
x0=,u,y0=,u,zo=§,0SuS1 -.(2)

Now from (1), we have
of _ of _ 9f dxo _ 9f Ao _ 11
ap—z, aq_l and 37 dn a9 d,u_1X1 zXx1=1 WU,
for0<u<1.

ax _ of ay _of dz _ dzdx | 9z dy
Now we have dt ~ ap dt = aq and dt =~ dxdt 9y dt
And &=z, Y—1..03)

dt dt

%:p(%)+q(%)=pz+q=1,by(l) . (4)

Now integrating (3) and (4) , we have
y:t+Cl, Z:t‘l'CZ ...(5)

Again from (2) at t=0,x(u,0) =u,y(w,0) =u and z(u0)=
u
PO (6)
Using (6), (5)reduceto y=t+u and z=t+ g - (7)
Again from (3) and (7), we get

dx

L N
. = t+3 so that x SXt +2><yt+C3

Now Using (6),in above equation, we get

—1><t2+1>< t+
X=3 g THETH

And then solving y = t + p with above equation for u and t in terms of x
and y, we obtain
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d _ x=(»?/2)
" TR

Substituting these valuesinz =t + %, the required surface passing

through the initial data curve is
{Z(y—x) +x—y72}

2—y '
SELF CHECK QUESTIONS

Choose the Correct Option:
1. The equation ptany + qtanx = sec?z is of order

7 =

a. 1
b. 2
c. 3
d. 4
2. The equation % -2 ( aizazy) + (Z—;)Z = 0 is of order
a. 1
b. 2
c. 3
d. None
3. The equation (2x + 3y)p + 4xq —8pq = x + y is
a. Linear

b. Non-linear
c. Quasi- linear
d. Semi-linear

4. The equation (x +y — z) (Z—i) + (3x + 2y) (Z—)Z/) +2z=x+yis

a. Linear
b. Quasi-linear
c. Semi-linear
d. Non-linear
5. If the coefficient of highest derivative does not contain either the
dependent variable or its derivatives such partial differential
equation is
a. Linear
b. Non-linear
c. Quasi-linear
d. Semi-linear
6. Choose the correct option:
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7.

10.

11.

Every semi-linear partial differential equation is quasi-linear.
Every quasi-linear partial differential equation is semi-linear.
Every semi-linear partial differential equation is linear

d. Every quasi-linear partial differential equation is linear.

A semi-linear partial differential equation which is linear is
dependent variable and its derivative, then it is

a. Linear

b. Non-linear

c. Quasi-linear

d. Semi-linear

o oe

Consider the surfaces z = F(x, y, a, b) then corresponding partial
differential equation is of the form

a. f(x,y,2p,9) =0

b. f(x'prJQ):O
c. f(x,y,z2)=0
d f(p.q) =0

If we eliminate arbitrary constants from the surface Consider the
surfaces z = F(x,y, a, b) then corresponding partial differential
equation is of the form F(x,y,z,p,q) = 0, a,b are constants,
then the obtained partial differential equation is

a. Quasi-linear

b. Non-linear

c. Bothaandb

d. None

Consider the surface F(u,v) =0 where u and v are known
functions of x, y,z. After eliminating the arbitrary functions from
given surface, we obtain

a. A quasi-linear partial differential equation
b. A semi-linear partial differential equation
c. A non-linear partial differential equation

d. A linear partial differential equation
A partial differential equation z = pq where p = Z—)Zc,q = Z—; is
formed by eliminating arbitrary constants a and b from the
equation

a. z=(a+x)+(a+y)
b. z=(a+x)(a+y)

c. z=ax+ by

d. 2z=(ax+y)*+b
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1.10 SUMMARY :-

In this unit we have studied the PDEs, order and degree of PDEs, linear
and non-linear PDEs, classification of first order PDEs, origin of PDEs,
Cauchy problem for first order PDEs. The partial differential equations
continue to be fundamental in various scientific and engineering
disciplines. They play a crucial role in fields such as physics, engineering,
economics, and biology, providing a powerful mathematical framework
for understanding and predicting complex phenomena with multiple
variables.

1.11 GLOSSARY:-

Differential Equation: An equation that relates one or more
functions and their derivatives. In the context of partial differential
equations, these equations involve partial derivatives with respect
to multiple independent variables.

Partial Differential Equation (PDE): A type of differential
equation that involves partial derivatives. It describes a relation
between a function and its partial derivatives with respect to two or
more independent variables.

Cauchy problem for a first-order partial differential equation :
The Cauchy problem for a first-order partial differential equation
(PDE) involves specifying initial conditions for the unknown
function and its partial derivatives.

1.12
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Differential Equations

1.14 TERMINAL QUESTIONS:-

(TQ-1):Form partial differential equations by eliminating arbitrary
constants a and b from the following relations:

a. z=alx+y)+b

b. z=ax+by+ab

c. z=ax+a’y*+b

d z=x+a)(x+Db)
(TQ-2):Find the partial differential equation of planes having equal x
and y intercepts.
(TQ-3):Find the partial differential equation of all spheres whose centres
lie on z —axis.
(TQ-4):Eliminate the arbitrary constants indicated in brackets from the
following equations and form corresponding PDEs

a. z = AeP'sinpx, (p and A)

b. z = Ae P’tcospx, (p and A)

c. z=ax>+by3(ab)

2
d. 4z=[ax+§+b] ; (a,b)
e. z=ax?+bxy+cy?(ab,c)
f. z?2 = ax3+ab + by3;(a,b,c)

g ax’+z2+cy?=1
(TQ-5) Eliminate arbitrary function f from

a. z=f(x*-y%
b. z=f(x*+y?)

1.15 ANSWERS:-

SELF CHECK ANSWERS (SCQ’S)

l.a 2b 3b 4.b
5.a 6.b 7. a 8.a
9.b 10.c 11. ¢

TERMINAL ANSWERS (TQ’S)

(TQ-1):
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0z 0z
a. aza
b z=x(2)+y(Z)+(2) ()

e ()= (5)

@ 2= (%)
(TQ-2):p—q=0
(TQ-3): xq —yp =0

(TQ-4):
g 9z _dz
©o9x2 dt
9%z dz
b =%

C. x(z—i) +y(2—;) = 3z
4 2=(5) ()

e (53) + 20 (555) + 7 (57) = 22

f. 9x%y?z = 6x3y? (Z—i) + 6x2y3 (Z—;) + 42(

: ofex() -y (®) -1
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Unit 2: Linear Partial Differential Equations
of Order One
CONTENTS:

2.1  Introduction
2.2 Objectives
2.3 Complete Integral

2.4 General solution of Lagrange Equation

2.5  working rule (Example based)

2.6 Surface and normal’s in three Dimensions

2.7  Curve in three dimensions intersection of two surfaces.

2.8 Integral Surfaces passing through a given curve (The Cauchy
Problem)

2.9 Surface orthogonal to a given system of surfaces

2.10 Geometrical description of Lagrange’s equation

Pp + Qq = R and Lagrange’s auxiliary equations
ax _dy _ 4z

p Q R
2.11  Geometrical interpretation of Pp + Qq = R

2.12 Linear Partial Differential Equations of order one with n
independent variables

2.13  Summary

2.14  Glossary

2.15 References

2.16  Suggested Reading

2.17  Terminal questions

2.18 Answers

2.1 INTRODUCTION:-

In this unit, we will study appears to cover a broad range of topics related
to first-order linear partial differential equations, Lagrange's method,
integral surfaces, orthogonal surfaces, and extensions to multiple
independent variables. Each of these topics contributes to a deeper
understanding of the geometric and analytical aspects of partial
differential equations.
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2.2 OBJECTIVES:-

After studying this unit learner’s will be able to

e Study Lagrange's equation and method for solving specific linear
first-order PDEs. Understand the steps involved and the conditions
under which this method is applicable.

e Learn about integral surfaces associated with solutions to linear
first-order PDEs. Understand their geometric interpretation and
significance in the context of differential equations.

e Explore the concept of surfaces orthogonal to integral surfaces.
Understand the relationship between these surfaces and the
geometric interpretation of solutions.

e Develop the ability to provide a geometrical description of
solutions to linear first-order PDEs.

The main objectives of this unit, learners gain a comprehensive
understanding of linear first-order PDEs and their applications, preparing
them for more advanced studies in differential equations and mathematical
modeling.

23 LAGRANGE EQUATION:-

Lagrange equations in the context of partial differential equations (PDEs)
typically refer to a specific type of quasi-linear first-order PDE. The
Lagrange equation of order one is given by:

Pp+Qq =R
where P, Q and R are the functions of x, y, z.

Example: xyz + yzp = zx is Lagrange equation.

2.4 GENERAL SOLUTION OF LAGRANGE
EQUATION:-

Theorem: The general solution of Lagrange equation
Pp+Qq=R (1)
is ¢(u,v) =0 .. (2)

where ¢ is an arbitrary function and

Department of Mathematics
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u(x,y,z) =c and v(x,y,z) =c, ..(3)
are two independent solutions of

dx dy dz @
> 0" R

Here, c; and ¢, are arbitrary constants and at least one of u, v must
contain z. Also recall that u and v are said to be independent if % is not

merely constant.
Proof: Now differentiating (2) with respect to ‘x’ and ‘y’, we obtain

d¢ (au N 6u> L 99 d¢ (61} N av) 0 .
gu\ax  Paz) T v \ox TP oz - ()
agb du du\ 0¢ (0v dv

( +q ) +— ( +q ) ...(6)
du \dy 0z dv \dy 0z

Eliminating Z—i and Z—f between (5) and (6), we get
du N <6u> dv N (617)
d0x p 0z 0x p az/| _
du N <6u> dv N (617) o
dy 1 0z dy 1 0z
(au N au) (61} N av) (au 6u> (617 N av) _0
ax Paz)\ay T 9%2) "\&y T 9%z \ax TP az) T

<6u Jv Odu 617) (au Jv Jdu av) Judv Judv
p

dzdy 0dyoz

t\oxox  az0x 29y ayoz_ 2 D

1" 920y oy oz
Similarly

Taking the differentials of u(x,y,z) = ¢; and v(x,y,z) = c,, we have

@:) dx + (g;) dy + @;) dz=0 ..(8)

G+ G)ar+ G0 w0

where u and v are independent functions.

From (8) and (9) for dx: dy: dz, gives
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dx _ dy _ dz 10
0udv_0udv ~ gudv_oudov  uov_guov
dyodz 0zdy 0zJx 0x0z O0xdy OJyodx

Now from (4) and (10), we have
udv 0udv  gugv _dgugv Oudv_0Judv
dydz 0z0y 970x 0xdz _ 0x0dy ayax_k
P B Q B R -
Judv OJudv Judv OJudv " Judv OJudv LR
dydz dzdy ' 0z0x 0x0z U dy Odyodx

Putting these values in (7), we obtain

dzdy 0Jdyoz

Ox 0x 0z0dx

(auav auav) +(6u6v 6u6v> +6u6v auav_o
p 17520y ayoz

(kP)p + (kQ)q = kR
k(Pp + Qq) = kR

Pp + Qq = R which is given equation (1).

Therefore if u(x,y,z) =c¢; and v(x,y,z) =c, (where c¢y,c, are

constants) are two independent solutions of the system of differential

equations% = ‘Z—y = %, then ¢p(u, v) = 0 is the solution ofPp + Qq = R,

¢ being arbitrary function.

2.5 WORKING RULE: -

Working rule for solving Pp + Qg = R by Lagrange’s method:-

Step1: Substitute the given equation in the standard form of a linear first-
order partial differential equation.

Pp+Qq =R (1)
Step2: Write down the Lagrange’s auxiliary equations for (1) namely,

dx dy dz
p Q@ R

Step3: Solve (2) by using the well known methods. Let u(x,y,z) =
ciand v(x,y, z) = ¢, be two independent solutions of (2).
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Step4: The general solution of (1) is obtained in one of the following three
equivalent forms:

¢w,v) =0, u=¢) or v=¢(u), ¢ being
arbitrary function.
TYPE1 based on rule I for solving % = % = %:

Given the partial differential equation Pp + Qq = R, the Lagrange's
auxiliary equation is given by:

dx dy dz

P Q R
Now, let's consider two fractions, say, % and %. If one of the variables (x
or y) is either absent or cancels out, then we can set up a differential

equation and integrate.

.~dx d . .
For example, if - and ?y, are given, and let's say y is absent or cancels

out, then we have:

dx dz
P R
Now, you can integrate this equation with respect to x and z separately:
1 1
F dx = E dz

Similarly, you can repeat the procedure with another set of two fractions.

o dz . .
For example, if 33' and — are given, and z is absent or cancels out, then we

have:
dy dx
Q P
Integrate this equation with respect to y and x separately:
1 1
5 dy = E dx

These integrations will give you solutions involving the variables x,y
and z. The constants of integration can be determined by any initial or
boundary conditions provided.

SOLVED EXAMPLES

EXAMPLET1: Solve the partial differential equation 2p + 3q = 1 by
Lagrange’s methods.
SOLUTION: Let the given Differential equation is

Pp+Qq=R - (1)
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where P =2,0 =3,R=1

The Lagrange‘s auxiliary equations for (1) are
wx_dy _ ds x _dy _ dz

or ===— . (2)
P Q@ R 2 3 1
Taking two fraction of two, we obtain
dz—x = ds—y or 3dx —2dy =0 ..(3)

Now integrating (3), we have
3x — 2y = ¢4, cq being an arbitrary constant
~u(x,y,z) = 3x — 2y = ¢, is one solution of the given partial
differential equation
Similarly, taking last two fraction of two, we get

ds—y=% or dy—3dz=0 ..(4)
Now integrating (4), we get
y—3z =c,, C,beingan arbitrary constant
~v(x,y,z) = y — 3z = c, is another solution of the given partial
differential equation.
Hence the general solution is given below
¢=0Bx—-2y,y—32z)=0
Where ¢ is an arbitrary constant.
EXAMPLE2: Find the general solution of zp + x = 0.
SOLUTION: Let the given Differential equationis zp + x = 0
Pp+Qq=R «.(1D)
where P =2,Q0 =0,R = —x

The Lagrange‘s auxiliary equations for (1) are
dx _ dy _ dz

dx _dy _ 4z &y _az

-0 "R or — == .. (2)
Taking first and last fraction of (2), we obtain
dZ—x = f—i or xdx +zdz=0 ..(3)

Now integrating (3), we have
x2_2 + é =k, or x?+ z? = ¢, being an arbitrary
constant
s~ u(x,y,z) = x? + z% = ¢4 is one solution of the given partial
differential equation.
Also the second fraction of (2), we get

dy =0
Integrating, y = c,
~v(x,y,z) = y = c, is another solution of the given partial differential
equation.

Hence the desired solution is
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p=0x*+2z%y)=0
where ¢ is an arbitrary constant.
EXAMPLE3: Solve y?p — xyp = —x(z — 2y).
SOLUTION: Let the given equation
yp—xyp=—-x(z-2y) ..(1)
The Lagrange’s auxiliary equations for (1) are

dx dy dz
—2 = — = — (2)
y xy x(z—2y)
Taking the first two fractions of (1) , we get
2xdx + 2ydy =0 SO x2+y?=¢
Now again taking the last two fractions of (1), we have
dz z=2y dz z
— = or —+=-=2
dy y dy vy
So which is linear in z and y. Its integrating factor = el /¥y —
elogy = y.
Hence z.y= [2ydy+c, or zy —y% =c¢,

From above equations, the required general integral is ¢ (x? + y?,zy —
y?) being an arbitrary function.
EXAMPLE4: Solve p tanx + qtany = tanz.
SOLUTION: The given equation is
p tanx + qtany = tanz ...(1)

The Lagrange’s auxiliary equations are
dx dy dz

tanx tany tanz

Taking first two fraction of above equation, we obtain

dx dy
= = cotxdx — cotydy = 0
tanx tany

Now integrating, logsinx — logsiny = logc; or ZZ;C/ =0
Again last two fraction of above equation, we get
dy dz
= = cotydx — cotzdz = 0
tany tanz
Now integrating, logsiny — logsinz = logc; or ZTZ] =,
. . . sinx siny .
Hence the required general solution is prvi [0) (Sinz) , ¢ being an
arbitrary function.
dz

TYPE2 based on rule II for solving % = % ==
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Let the Lagrange’s auxiliary equations for the partial differential

Pp+Qq=R - (D)
dx dy dz

— == - (2
> "0 R (2)

Suppose that one integral of (2) is known by using rule 1 derived in
previous article and suppose also that another integral cannot be derived
by using the rule I of previous article. Then, one (the first) integral known
to us is used to find another (the second) integral as shown in the
following solved examples. Note that in the second integral, the constant
of integration of the first integral should be removed later on equation.

SOLVED EXAMPLE

EXAMPLE 1: Solve xzp + yzq = xy
SOLUTION: Given xzp + yzq = xy (D)

From (1), we have
dx _dy _ dz

iy -.(2)
Taking first two fraction, we get
dx dy
Pl 0 ..(3)
Integrating (3), we obtain
logx —logy =logc; or % =c; or x=yc¢ ..(4)
From second and third fraction of (2), we have
d d
y—z = j or ciydy —zdz=0 ..(5)
Integrating (3), we have
1 1
501)’2 - 522 =G

xy —z% =,
From (4) and (5), the required general solution is ¢ (xy — 72, g), ¢ being
an arbitrary function.

EXAMPLE 2: Solve p + 3q = 5z + tan (y — 3x)

SOLUTION: Given p + 3q = 5z + tan(y — 3x) ..(1)
From (1), we get

dx dy dz

— === . (2)

1 3 b5z+ tan(y — 3x)
Taking first two fraction
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dy—3dx =0
Now integrating above equation y — 3x =c¢;, ¢, being an arbitrary
constant.
Again from (2), we obtain
dx dz
1 5z+ tan(y — 3x)

Integrating, x — ilog(Sz + tanc,) = % Cy

where ¢, being arbitrary constant.
5x —log[5z + tan(y — 3x)] = ¢,
Hence the required general integral is
5x —log[5z + tan(y — 3x)] =¢(y —3x), where ¢ is an arbitrary
function.

TYPE3 based on rule III for solving % =—==—

The Lagrange’s auxiliary equations for the partial differential

Pp+Qq=R - (D)
dx _dy _dz -
> "0 R

If P;,Q, and R; be the function of x,y and z,then by a well- known
principle of algebra, each fraction in (1) will be equal to
P;dx + Q.dy + R dz 3

PP +Q:Q + R4R - (3)
If denominator is zero (P;P + Q,Q + R{R), then P;dx + Q.dy + R dz is
also zero which is integrated to obtain u, (x, y, z) = c;. This method may
be repeated to another integralu, (x, y, z) = c¢,. Here, P1, Q1, and R1 are
called as Lagrange’s multipliers. As special case, these can be constants
also. In such cases second integral should be obtained by using rule I and
rule IT as the case may be.

SOLVED EXAMPLE

EXAMPLETL: Solve(mz — ny)p + (nx — lz)q = ly — mx.
SOLUTION: Given (mz —ny)p + (nx —lz)g =ly —mx ..(1)
The Lagrange’s auxiliary equation of (1) is
dx dy dz
(mz—-ny) ((mx-1Iz) ly—mx
Changing x, y, z multipliers, each fraction of (1), we get
xdx + ydy + zdz xdx +ydy + zdz
x(mz —ny) + y(nx — lz) + n(ly — mx) 0
s xdx +ydy +zdz =0 sothat 2xdx + 2ydy + 2zdz = 0
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Now integrating, we have
x2+yt+z2=¢; ..(2)
where ¢, being an arbitrary constant.
Again, choose [, m, n multipliers, each fraction of (1), we obtain
ldx + mdy + ndz _ ldx +mdy +ndz
I(mz — ny) + m(nx — lz) + n(ly — mx) 0

s~ ldx+mdy+ndz=0 sothat Ix+my+nz=c, ..(3)
From (2) and (3), the required general solution is given by

¢(x? +y? +z% Ix + my +nz) =0, ¢ being an arbitrary function.
EXAMPLE2: Solve x(y? — z2)q — y(z? + x?)q + z(x? + y?).
SOLUTION: Given x(y? — z2)q — y(z% + x*)q + z(x* + y?) ...(1)
The Lagrange’s auxiliary equation of (1) is

dx dy dz

0= @) 24y ~@
Changing x, y, z multipliers, each fraction of (2), we have
xdx + ydy + zdz xdx +ydy + zdz
x(y2—2z8)q —y(22 +x2)q + z(x* +y2) 0
xdx +ydy +zdz=0 sothat x> +y*+2z2=¢; ..(3)

Again, choose %, - %, — é multipliers, each fraction of (2), we obtain

B+ G+ G gt may+nas

y2 —z2 472 + x2 — (x2 + y2) 0
1 1 1
(;) dx — (;) dy — (;) dz =0 sothat logx —logy —logz = logc,
log{x/(yz)} = logc, or i =c, ..(4)

The required solution is ¢ (x? + y? + z%,x/(vz)) = 0 ¢ being an
arbitrary function.
EXAMPLES3: Solve the general solution of the equation(y + zx)p —
(x+yz)q+y*—x*=0.

SOLUTION: Given (y+zx)p— (x+yz)g+y*—x*=0 ..(1)
The Lagrange’s auxiliary equations are
dx ay __ az 2
(y+zx)  —(x+yz)  x2—y2 - (2)

Changing x, y, z multipliers, each fraction of (2), we get

xdx + ydy — zdz _ xdx +ydy —zdz
x(y+2x) —y(x + yz) —z(x? —y?) 0
xdx +ydy —zdz =0 sothat 2xdx + 2ydy — 2zdz =0
Integrating, x2+y?—z2=¢ ..(3)

where ¢, being an arbitrary constant.
Choose x, y, 1 multipliers, each fraction of (2), we obtain
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xdx +ydy + dz _xdx +ydy +dz
y(y +2zx) —x(x +yz) + x2 —y2 0
xdx +ydy +dz=0 or dxy)+dz=0
Integrating, Xy +z=c, .. (4)

where ¢, being arbitrary constant.
Hence the required solution is ¢ (x? + y2 —z%,xy+2z) =0, ¢
being an arbitrary function.
EXAMPLE4: Solve (y —z)p+ (z—x)g=x—y.
SOLUTION: The Lagrange’s auxiliary equations are

dx dy dz
E = ; = E (1)
Changing 1,1,1 multipliers, each fraction of (1), we obtain
dx +dy +dz dx +dy +dz
0V-2)+E-0+x-y) 0
dx+dy+dz=0 = x+y+z=c
Choosing x, y, z multipliers, each fraction of (1), we obtain
xdx +ydy + zdz xdx +ydy + zdz

Cx(y—2)+y(z-x)+z(x—y) 0
2xdx +2ydy +2zdz=0 = x*+y?+z%=q,
Hence the required solution is ¢ (x + y + z,x% + y% 4+ z2) = 0, ¢ being
an arbitrary function.

TYPE4 based on rule IV for solving % =_ 2,

Q R
The Lagrange’s auxiliary equations for the partial differential
Pp+Qq=R - (D
dx dy dz
—=—==— - (2)
p Q@ R

If P;,Q, and R; be the function of x,y and z,then by a well- known
principle of algebra, each fraction in (1) will be equal to
P;dx + Q.dy + R dz
P;P + Q,Q + R4R - (3)
Let us consider that the numerator of (3) is an exact differential of the
denominator of (3), then (3) can be combined with a suitable fraction in
(2) to obtain an integral. But, in some problems, another set of multipliers
P,, Q, and R, are so obtain that the fraction
P,dx + Q,dy + R,dz
P,P + Q,Q + R,R - (3)
is such that its numerator is an exact differential of denominator. Fractions

(3) and (4) are then combined to give an integral. This method may be
repeated in some problems to get another integral. Sometimes, only one

Department of Mathematics
Uttarakhand Open University Page 30



Advanced Differential Equations I1 MATS08

integral is possible by using the rule IV. In such cases, the second integral
should be derived by using rule 1 or rule 2 or rule 3 of previous articles.
The following solved examples will illustrate the rule:

SOLVED EXAMPLE

EXAMPLEL: Solve(y +z)p+ (z+x)g=x+y.
SOLUTION: Given (y+2)p+(z+x)g=x+y ..(1)

The Lagrange’s auxiliary equations are

d_xzd_yzﬁ ."(2)

y+z Z+Xx x+y

Changing 1, —1,0 multipliers, each fraction of (2), we obtain
dx — dy _d(x—y) 3)

+2)-(x+y) —(x-y)

Again choose 0,1, —1 multipliers, each fraction of (2), we get

dy —dz _d(y—2) @

z+x)-(x+y) —-(y—-2) ~

Again finally choose 1,1,1 multipliers, each fraction of (2), we have

dx +dy+dz _dx+dy+dz

V+2)+@+x)+x+y) 2(x+y+2) - (5)
Now from (3),(4) and (5), we have
dx—y) d(y—z) dx+dy+dz ©

—(x-y) (-2 2(x+y+2)
Taking first two fraction of (6), we get
d(x-y) _d(y-2)
—x-y) -(r-2)
Integrating it, we obtain log(x —y) = log(y — z) + logc,
x=y
Sz 6 >x—y=c(y—2) ..(7)
Taking first and third fraction of (6), we have
2d(x—y) dx+dy+dz
(x—y)  2(x+y+z)
Integrating it, we get
2log(x —y) +log(x +y +2) =logc, = (x—y)*(x+y+2z)=c,
> (x—y)ix+y+z)=c, ...(8)
From (8) and (9), we get
¢[<_x—y )(x— Y(x+y+2z)|=0
o y y

Where ¢ is an arbitrary function.
EXAMPLE2: Solve y2(x — y)p + x*(y — x)q = z(x? + y?).
SOLUTION: Given y?(x —y)p + x2(y —x)qg = z(x* + y?)  ..(1)
The Lagrange’s auxiliary equations are
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dx d dz
Yoy —xz(ic/—y) ~ 2P 4y?) - (2)
Taking first two fraction of (2), we have
dx dy
Voo
x?dx +y*dy =0
Integrating it, we obtain =~ x? +y%2 =¢;  ...(3)
choose 1, —1,0 multipliers, each fraction of (2), we have
_ dx —dy _ dx —dy 4
Ve iea—y oty Y
Combining the third fraction of (2) with (4), we obtain
dx —dy dz dlx—y) dz 0

= = B —
2+x)x—y) zx?+y?) &-y) z
Integrating it, we get log(x — y) — log(z) = logc,

08X =) oo 5 XY
~ gC2 ~ 2
Hence, the required solution is
x —_—
¢ [xz + y?, y] =0

Where ¢ is an arbitrary function.

2.6 SURFACES AND NORMALS IN THREE
DIMENSION: -

Suppose Q be a domain in three-dimensional space R3 and ¢ (x,y, z) be a
scalar point function, then the vector valued function grad¢ may be
obtained as

gradgp = Vo = (3£,22,28) .. (1)
If we suppose that the partial derivatives of ¢ do not vanish
simultaneously at any point, then the set of points ¢(x,y,z) in Q,
satisfying the equation

o(x,y,z) =C - (2)

is a surface in Q for some constant C. This surface is known as a level or
equipotential surface of ¢. If (xy, yo, Z,) is a obtained point in Q, then by
taking ¢ (xo, o, 29) = C , we get an equation of the form

¢(x,y,2) = ¢(x0, Y0, 20) - (3)
which represents a surface in the domain Q of three dimensional space
passing through the point (x,, yo, o). Here, equation (2) represents a one-
parameter family of surface in the domain Q. The value of grad ¢ is a
vector, normal to the level surface. Now, one may ask, if it is possible to
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solve equation (2) for z in terms of x and y. To answer this question,
suppose a set of relations of the form
x=fWv), y=f(uwv), z=f(u,v) - (4)
Here, for every pair of values of u and v, we will have three numbers x, y
and z, which represent a point in space. But if the Jacobian
0(f1. f2)
da(u,v)
then, the first two equations of (4) can be solved and u and v can be

%0 . (5)

indicated as functions of x and y such as

u=Axy) & v=ulxy) ...(6)
Hence, the third relation of equation (4) gives the value of z in the form
z = f3[A(x,y), u(x,y) | - (7)

This relation is of course, a functional relation between the co-
ordinates x, y and z as in equation (2). Hence, any points (x, y, z) obtained
from equation (4) always lie on a fixed surface. The set of equations (4)
are called as the parametric equations of a surface. It may be noted that
the parametric equations of a surface need not be unique, which can be
seen in the following example:

Let the two sets of parametric equations are

X = rsinfcos¢p y = rcosfsing z =rcosf ..(setl)
and

_.(1-¢?) _ . (-9%) . _ .2
X =T e cos6 Y =T oD sin@ Z=T17 - (set2)

represent the surface x? + y% + z? = r2, which is a sphere
Now let we take the surface whose equation is
z=f(xy) ..(9)
The above equation may be expressed as
¢=fxy)—z=0 ..(10)
So differentiating with respect to x and y, we have
9¢ 9z

9¢ , 940z _ ag B
6x+626x_0 and 5y+626y_0

Using form (9), we obtain

9z _3¢/ox _ 3¢ . 3 _ 09 _ 09 _

x —9por —ax S o P g, =05, =71 (11)

Hence, the direction cosines of the normal to the surface at point P(x,y, z)
are obtained by

p q —1
, , - (12)
P2+ q2+1 \p?+q2+1 p2+q>+1
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Now, replacing to the level surface obtained by equation (2), it is easy to
write the equation of the tangent plane to the level surface at a point

(X0, Y0, Zo) as

G-wla]  ro-wln]  re-wla

(x0,Y0,20)

=0
2.7 CURVE IN THREE DIMENSIONS:
INTERECTION OF TWO SURFACES:-

(>0,Y0,20)

A curve in three-dimensional space R® can be explained in terms of
parametric equations. Suppose r denotes the position vector of a point on a
curve C, then the vector equation of the curve C may be given as

-

7 =Ft, tel . (D

where I is some interval on the real axis. The equation (1) can be written
as

x = f1(¢), y = f2(0), z=f3(t) ..(2)
where? = (x,y, z), F= [f1(D), f2(0), f3(E)]

Now we assume that

dfi(t) dfy(t) dfs(t)
( ac ' dt ° dt );’:(0,0,0)

This non-vanishing vector is known as the tangent vector to the curve C at
the point (x,y,z) or at [ f;(t), fo(t), f5(t)] to the curve C. Another way
of explaining a curve in three-dimensional space R> is by using the fact
that the intersection of the surfaces obtain rise to a curve.

Suppose

$1(x,y,z) =C; and b2(x,y,2) = G, -« (3)

are two surfaces. Their intersection, if not empty, is always a curve,
produced grad ¢p; and grad ¢, are not collinear at any point of the domain
Q. In other words, the intersection of surfaces obtained by equation (3) is
a curve if

grad ¢, (x,y,2) = C;. gradg,(x,y,2z) = C, # (0,0,0)
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for every (x, y, z) € Q. For various values of Cl and C2, equation (4)
explains different curves. The totality of these curves is called a two
parameter family of curves. Here, Cl and C2 are mentioned to as
parameters of this family.

2.8 INTEGRAL SURFACES PASSING THROUGH
A GIVEN CURVE (THE CAUCHY PROBLEM):-

In the previous article, we have expressed general integral of the partial
differential equation Pp + Qq = R. We shall now present two methods for
finding the integral surface which passes through a obtained curve.

MethodlI: Suppose Pp + Qq =R (1)

be given partial differential equation. Let its Lagrange’s auxiliary
equations give us the following two independent solutions

u(x,y,z) =¢ and v(x,y,z) =c, -.(2)

Let, we desire to give the integral surface which passes through the curve
whose equation in parametric form is obtained by

x=x(t),y=y(t),z=2z(t)
Where t is parameter and may be written as
u(x@®),y@®),z()) =¢;  and v(x(®),y(®),2(1) = ¢

We now eliminate the parameter t from the above equations and get a
relation involving c¢; and c,. Finally, we replace c; and ¢, with help of (2)
and give the required integral surface.

MethodlII: Suppose Pp +Qq =R . (1)

be given partial differential equation. Let its Lagrange’s auxiliary
equations give us the following two independent solutions

u(x,y,z) =¢ and v(x,y,z) =c, -.(2)

Let, we desire to give the integral surface which passes through the curve
which is established by the following two equations

¢,(x,y,z2) =0 and ¢y(x,y,2) =0 ..(3)
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We now eliminate x, y and z from the two pairs of given above equations
and get a relation between cl and c2. Finally, we choose ¢, by u(x, y, z)
and ¢, by v(x,y,z) in that relation and we give the desired integral
surface.

2.9 SURFACE ORTHOGONAL TO A GIVEN
SYSTEM OF SURFACES:-

Let fl,y,2z) =c (1)

shows a system or surfaces, where c is a parameter. Suppose we wish to
obtain a system of surfaces which cut each of (1) at right angles. Then the

direction ratios of the normal at the point (x, y, z) to (1) which passes

) af 8f of
through that point are 3%’ 9y 97

Let the surface z=¢(x,y) .(2)

cuts each surface of (1) at right angles. Then the normal at (x, y, z) to (2)
has direction ratios z—i,z—;, —1i.e.,p,q,—1. Hence normal’s at P(x, y, z)

to (1) and (2) are at right angles, therefore, we obtain

(G +aG)-G=0 o p(E)+a(G)=G) -o
Which is the form of Pp+ Qq =R, where P = (Z—D,Q = (Z—f}) and
= ()

Conversely, we may easily verify that any solution of (3) is orthogonal to
every surface of (1).

2.10 GEOMETRICAL DESCRIPTION OF
SOLUTIONS OF LAGRANGE’S EQUATION
Pp + Qq = R AND LANGRAGE’S AUXILIARY

dx _dy _dz ,_
EQUATIONS % =% =%,

Let

Pp+Qq=R ..(1)
and
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dx dy dz
—_—=—=— .. (2)
p Q@ R

where P, Q, R are the function of x, y, z.

Let z=¢(x,y) ..(3)

Represents the solution of the Lagrange’s partial differential equation (1).
Then (3) expresses a surface whose normal at any point (x, y, z) has

L . 9z 9 .
direction ratlosé,é, —1li.e.,p,q,—1. Also, we know that the system of

simultaneous equations (2) represent a family of curves such that the
tangent at any point has direction ratios P, @, R. Rewriting (1), we obtain
Pp+Qq+R(-1)=0 ..(4)

which expresses that the normal to the surface (3) at any point is
perpendicular to the member of family of curves (2) through that point.
Hence, the member must touch the surface at that point. Since this holds
for each point on (3), therefore, we consider that the curves (2) lies
completely on the surface (3) whose differential equation is obtain by (1).

2.11 GEOMETRICAL INTERPRETATION OF
Pp+Qq =R :-

To show that the surfaces represented by Pp + Qg = R are orthogonal to
the surfaces represented by Pdx + Qdy + Rdz = 0.
We know that the curves whose equations are solution of

dx dy dz

—_— == (D)

p Q@ R
Are orthogonal to the system of surfaces whose satisfied the equation

Pdx + Qdy + Rdz =10 .. (2)
Again, from (1) lie on the surface represented by

Pp+Qq=R ..(3)
Hence we conclude that surfaces represented by (2) and (3) are
orthogonal.

2.12 LINEAR PARTIAL DIFFERENTIAL
EQUATIONS OF ORDER ONE WITH n
INDEPENDENT VARIABLES:-

Let x4, x5, X3, .t «. ..... X, be the n independent variables and z be
dependent function depending on x4, X5, X3, ... . «.. .. Xpp. Also, let p; =
or L _0r 0z _ oz

o P2 = 55 P38 = gy P =
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Then, the general linear partial differential equation of order one with n
independent variables is obtained by

Pip; + Pypy + P3ps + - + Ppn =R (D
where P;P,P;5 ... ... ... P, are the functions of x4, x5, X3, ... «.. ..... X, and R is
the function of x4, x5, X3, ... ... ..... X, and z.

Therefore, the system of Lagrange’s auxiliary equations is given by

dx; dx; dxz _dx, dz @
p, P, P P, R "
Let uq (X1, X2, X3, e cer e e Xy Z) = Cp, U (X1, X3, X3, ver e e n X, Z) =
Co U3 (X1, Xg), X3,y cen we ven e X, Z) =
C3y een wnn v e (X7, X3, X3, cen en e Xy, Z) = Cp, ) be any independent
integral of (2), then the general solution of (2) is written by
d)(ul,uz,us, .....un) =0
SOLVED EXAMPLE
EXAMPLEL: Solve (y+z2)p+ (z+x)g=x+y
SOLUTION: Here the Lagrange’s auxiliary equations are
dx dy dz
= = (1)
y+z z+x x4y
Changing 1, —1,0 as multipliers of (1), we have
dx — dy _dx—y) @
O+ -(C+x) —-(Ex-y)
Again, choosing 0,1, —1 as multipliers of (1), we obtain
dy —dz _dx—y) 3)
z+x)-(@x+y) -O—2z
Finally, choosing 1,1,1 as multipliers of (1), we get
_ dx +dy +dz _dx+y+72z) A
T Y+ + @+ +(x+y) 2(x+y+2) (1)
From (2), (3) and (4), we get
dx—y) dx—-y) dx+y+z) )

~(x-y) (-2 2x+y+2)
Taking the two fractions of (5), we have
dx—y) _dx-y)
—x-y) -(r-2)
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Integrating, log(x —y) = log(y — z) + logc, , where c; being an
arbitrary constant.

log (;C]_TZ) =logc; or (;C,_TJZ]) =0

Again taking first and third fraction of (5),
dx—y) dx+y+z)
+ =
x-y) (x+y+2)
Integrating, 2 log(x — y) + log(x + y + z) = logc, or
(x=y)x+y+2) =c

Hence the required general solution is ¢ [(x —ix+y+ Z),’;_T}Z'] =

0, ¢ being arbitrary function.

EXAMPLE2: Solve (1+y)p+ (1 +x)g =2z

SOLUTION: Here the Lagrange’s auxiliary equations are

dx dy dz

1+y:1+x:7 (1)

Taking the first two fractions of (1), we get

1+x)dx=A+y)dy or 2(Q1+x)dx—2(1+y)dy=0 ..(2)

Integrating,(1 + x)? — (1 + y)? = ¢4, ¢, being an arbitrary constant.

Taking 1,1,0 as multipliers of each fraction of (1)
dx+dy  d2+x+y)

= = .3
1+y+1+x 2+x+y ®
Combining the last fraction of (1) with (3), we have
d2+x+y) dz d(2+x+y) dz
—_— = or ——-—=0
2+x+y z 2+x+y z
Integrating, log(2 + y + x) —logz = logc, or @ =c, ..(4)

From (2) and (4), the required general solution is obtained by
¢ [(1 +x)2—(1+ y)z,@] = 0, ¢ being an arbitrary function.

EXAMPLES3: Find the tangent vector at the point (0,1, %) to the helix

described by the parametric equations x = cost,y = sint,z = t.
SOLUTION: The tangent vector to the helix at (x,y, z) is obtained by
dx dy dz
(Ed—ia) = (—sint, cost, 1)

We state that the given point (O,l,g) corresponds t = g Therefore, the
required tangent to vector to helix is obtain by

(dx dy dz)—( int t,1) =(-1,0,1

at at ar) = (st eost, ) = (=1.01)

EXAMPLE4: Find the equation of the tangent line to the space circle

24024 52 — — int (— 2 — 3
x“+y“+z:=1,x+y+z=0 atthepomt(m,m, \/ﬁ)'
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SOLUTION: Let
F(x,y,z) =x*+y?>+z>—1=0and
F(x,y,z)=x+y+2z=0 - (1)
The equation of the tangent line at the point (xg, Yo, Zo) is
(x — xo) _ O —Yo) _ (Z_ZO)

0,6 ~ aF6) 9,0 - (2)
(¥, 2) d(z,x)  I(xy)
Where
d(F,G) O0F0G O0FdG 4 6 10
007 dyoz dzay 2 T Via Via
d(F,G) O0FOdG O0FadG 6 2 8
dax)  dz0x oxoz AT AT TG VG vid
d(F,G) O0F0G O0FdG 2 4 -2
d(x,y) 0xdy dyox Y= 1a via Jia
The required solution of the point (%,%, — \/%) is obtained by
(7)) -7
vie) _V "y _\*"m
10 8 =2
V14 V14 V14

EXAMPLES: Find the integral surface of the linear partial differential
equationx (x? + z)p — y(x? + z)q = (x? — y?)z.
SOLUTION: Given x(x* + z)p —y(x* + z)g = (x* —y?)z ..(1)
The Lagrange’s auxiliary equations of (1) are
dx dy dz

x(x2+z2) yx2+z) (x2-—y2)z

The two independent solutions of (2) may be given as
u(x,y,z) =xyz =¢ -.(3)
v(x,y,z) =x*+y*=2z=¢c, ..(4)

Taking ¢ as parameter, the obtained equation of the straight line x + y =

0,z = 1 can be put in parametric form
x=ty=—t, z=1 ..(5

(2

Putting the value of (5) in (3) and (4), we have —t? = ¢; and 2t? — 2 =

C;=>—-2c1—2=¢; = 2¢;,+2+c,=0 ..(6)

Now, substituting the values of c1 and c2 from (3) and (4) in (6), we obtain
2xyz+x2+y*—2z=0

which is the desired integral surface of the given PDE.

EXAMPLEG: Find the equation of integral surface satisfying 4yzp + q +
2y = 0 and passing through y% + z2 = 1,x + z = 2.
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SOLUTION: Given 4yzp+q+2y =0 - (1)
The equation of the obtained curve is
yi+z2=1, x+z=2 - (2)
The Lagrange’s auxiliary equations for (1) are
dx dy dz
=—= -.(3)

4_yz 1 =2y
Taking the first and third fractions of (3), we obtain

dz + 2zdz =0 so that x+2z% = o (4)
Taking the last two fractions of (3), we get
dz + 2ydy =0 so that x+y?= ..(5)

Adding (4) and (5), we have
Z2+y)+(x+2)=c+ ¢
From(2), 1+4+2=c¢ +¢c,
Substituting the values of c1 and c2 from (4) and (5) in (6), the equation of
the required integral surface is written by
3=x+2z>+y%*+z or x+z>+y*+z-3=0

EXAMPLE?7: Find the surface which intersects the surfaces of the
system z(x + y) = c(3z + 1) orthogonally and which passes through the
circlex? +y2=1,z=1.

SOLUTION: The equation of the given system of surfaces is

z(x +y)
foyz)=——7"=C (1)
. 6_f _ z 6_f _z 6_f __[3z+1-3z _ (x+y)
" ox  3z+41’9dy  3z+1’'0z [(3z+1)2 ] (x+y)= (3z+1)2

z3z+1)q+zQBz+1)g=x+y ..(2)
The Lagrange’s auxiliary equations is
dx _ dy _ dz 3
z(3z+1) z(3z+1) (x+y) - 3)
Taking first two fraction of (3), we have dx —dy =0
Integrating it, X—y=c
Taking x,y, —z(3z + 1) as multipliers, each fraction of (3) is
xdx +ydy —z(3z+1)dz=0
xdx +ydy — 3z%dz — zdz = 0

Or
2xdx + 2ydy — 6z%dz — 2zdz = 0

Integrating it, we obtain ~ x2 +y? —2z3—z2=¢, ..(4)

Hence, the equation (1) is given by

x2+y? =223 —z2 =p(x —y)
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where ¢ is an arbitrary function.

EXAMPLES: Find the family orthogonal to ¢[z(x + y)?,x? — y?] = 0.
SOLUTION: Given

plz(x +y)5,x* —y*] =0 (D

Let u=z(x+y)? v=x%—y?
From (1) becomes,
¢o(u,v) =0 . (2)

Differentiating two w.r.t. x and y, we have

s Get) o)
From (2),

ou _ ou _ ou _ 2 9v _ o _
o = 22 +y), o =22(x +y), o=+ y) 50 =2x o=

ay
9
- ,_v: e
2y,22=0  ..(4)

Substituting the values of (4) in (3), we get

9 9
(%) [22Cx + ) +p(x + )71 + (%) [2x +0] = 0
0 9
(%) [22(x +y) +qCc+ %] + (%) [-2y +0] =0
Now
g_i) 2x —2y

00 2z(x+y) +pGx+y)?  2z(x+y) +p(x +y)?
ov

x(x+y)[2z+px+y)] =-yx+y)[2z+qx+y)]
2xz +xq(x +y)+2zy +yp(x+y) =0
xq(x +y) +py(x +y) = —2z(x +y)
(gx +py)(x +y) = —2z(x +y)

qx +py = =2z .. (4)
which is a partial differential equation of the family of surfaces given by
(1).
The differential equation of the family of surfaces orthogonal to (4) is
obtain by
ydx + xdy —2zdz =0 or d(xy)—2zdz=0
Integrating it,

xy—z?>=c

which is the represented family of orthogonal surfaces.
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EXAMPLEY: Solve x,x3p, + X3X1P2 = X1X3X3
SOLUTION: The given equation is a linear partial differential equation
with three independent variables x;,x, and x3 and z as a dependent
function depending on x4, x, and x;.
Comparing the given partial differential equation with Pyp; + P,p, +
P;p3 + -+ P,p, = R, we obtain
P; = x3x3, P, = x3x,P3 = x1x, and R = x1x,x3

. The system of Lagrange’s auxiliary equations is given by
ﬂ ﬁ % dxq dx, dxsz dz

= = or = = = (1)

D1 D2 D3 X2X3 X3X1 X1X2 X1X2X3
Taking first and second fraction of (1), we have

SO

which give

u =x% —x2=( . (2)
Taking second and third fraction of (1), we have

SO
x2 x2 C
23,2
2 2
which give
u2=x§—x§=62 3)

dz = x3dx3
SO
2
x5 (s
= — 4+ —
277
which give
u3 = 2Z — x% = C3 ee (4)

Finally, from (2), (3) and (4), the general solution of the obtained
partial differential equation is
¢ =(x?—x2,x2—x22z—x2)=0.
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EXAMPLEY: Solve Pip; + P,p, + P3p; = az + (x1x3)/x3
SOLUTION: The given equation is a linear partial differential equation
with three independent variables x;,x, and x; and z as a dependent
function depending on x4, x, and x;.

Comparing the given partial differential equation with Pip; + P,p, +
P3ps + -+ + P,p, = R, we obtain

Py =x1,P, = x5,P3 =x3 and R = az + (x1x3)/x3

". The system of Lagrange’s auxiliary equations is given by
G _dn_dxn o odn_dn _dn_

P, P,  Pg X1 Xy x3  az+(x1x2)/x3 - (1)
Taking first and second fraction of (1), we have
dx; dx,
X1 B X2
SO
log x; = logx, +logc,
which give
=d-¢ 2
U = X, 1 - (2)

Taking second and third fraction of (1), we have

dx, dx;
P
SO
logx, =logx; +logc,
which give
X2
U, = x—3 = Cz (3)

Taking first and fourth fraction of (1), we have

dxq dz dz . Xy
— = = since —= = (,
X1 az+(x1x3)/x3 az+Cyxq X3
dz az+ (%
dx; X,
1.e.,
dz a c @
—_— =
dx; x; z

which is a linear differential equation whose integrating function (I.F.) is
given as follows :

SO

I.F of (4), we have

—a ¥
=e x; = p~alogx; — xl—a
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The solution of the linear differential equation (4) is given by

le‘azszxl"adx+C3
—-a+1

—a 1
le == CZ
1—a
—a+1

le‘az(x—z)(xl—)+63 sincei—z=62
z (xz) xy ot _c
x¢ \x3/\1-a) 3

a+1

%zér«%xf;ﬁzc3m@)

Finally, from (2), (3) and (5), the general solution of the given partial
differential equation is

o (- (ED) -0
SELF CHECK QUESTIONS
Choose the Correct Option:

+ C3

ie.,

1. The PDE Pp + Qq = R is popularly known as
a. Lagrange’s equation
b. Euler’s equation
c. Monge’s equation
d. Leibnitz equation
2. Lagrange’s auxiliary equations for xzp + yzq = xy are
wx _dy _az

a. =
xz vz Xy

dx dy dz
b. ==2==

x y z
dx d dz
c. ==2X=2=
b _dy _a
X Z
. E=2_2&
14 q Z

3. The integral surface satisfying 4yzp + q + 2y = and passing
Through y2 + z> = 1,x +z = 2is
a. y*+z24+x+z—-3=0
b. y2+z2+z+x=0
c. y2+z°4+z4+x-3=0
d y*+z°+y+z=0
4. The solution of the PDE xzp + yzq = xy is

a. gb(g,xy—zz) =0
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b. ¢(x%,y)=0
c. ¢p(x%z,y)=0
d. ¢p(x%zx,yx) =0

213 SUMMARY

In this unit we have studied Lagrange’s equation, General solution of

Lagrange Equation, working rule (Example based), Integral Surface,

Surfaces orthogonal, Geometrical description of solutions of
dy _dz

Pp + Qq = R and of the system of equations % =0 "% and to
establish relationship and Linear Partial Differential Equations of order
one with n independent variables and understanding and solving linear
first-order PDEs are fundamental in the study of more complex partial
differential equations and their applications in physics, engineering, and
other scientific disciplines.

2.14 GLOSSARY:-
e Partial Differential Equation (PDE): An equation involving

partial derivatives of an unknown function with respect to two or
more independent variables.

e Linear PDE: A PDE where the unknown function and its
derivatives appear linearly (i.e., without products or powers) in the
equation.

e Order One: Refers to the highest order of derivatives present in
the PDE. For linear PDEs of order one, the highest derivative is
first-order.

e Dependent Variable: The variable that depends on other
variables. In PDEs, this is typically the function being solved for.

e Independent Variables: Variables with respect to which partial
derivatives are taken. In PDEs, these represent dimensions or
parameters that influence the behavior of the dependent variable.

e Coefficient Functions: Functions that multiply the derivatives of
the dependent variable in the PDE. These coefficients may depend
on the independent variables.

e Characteristics: Curves or surfaces along which the PDE
simplifies to an ordinary differential equation (ODE). They help in
transforming the PDE into a simpler form for solution.

e Integral Surface: A surface that satisfies a given PDE. Solutions
to linear first-order PDEs often involve finding such surfaces.

Department of Mathematics
Uttarakhand Open University Page 46



Advanced Differential Equations I1 MATS08

e Initial Conditions: Specified values or conditions given at a
particular point in the domain of the PDE, often used to determine
a unique solution.

¢ Boundary Conditions: Conditions specified on the boundary of
the domain, essential for determining a unique solution to the PDE.

e Method of Characteristics: A technique used to solve linear first-
order PDEs. It involves finding characteristic curves along which
the PDE reduces to an ODE.

e Compatibility Conditions: Conditions that ensure the existence
and uniqueness of solutions to the PDE, often related to the
coefficients and boundary/initial conditions.

e Transport Equation: A specific type of linear first-order PDE
that describes the advection or transport of a quantity along
characteristic curves.

e Orthogonal Surfaces: Surfaces that intersect at right angles. In the
context of PDEs, understanding orthogonal surfaces can provide
geometric insights into the solutions.

e General Solution: The set of all possible solutions to the PDE,
often involving arbitrary functions or constants determined by
initial/boundary conditions.

This glossary provides a foundational understanding of terms related to
linear first-order PDEs. Each term plays a crucial role in formulating,
understanding, and solving these equations in various applications across
science and engineering.

2.15 REFERENCES:-

e Sandro Salsa(2008), Partial Differential Equations in Action: From
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e M.D.Raisinghania 20th eddition (2020), Ordinary and Partial
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e David Logan (2015), Applied Partial Differential Equations.

Department of Mathematics
Uttarakhand Open University Page 47



Advanced Differential Equations I1 MATS08

2.17 TERMINAL QUESTIONS:-

(TQ-1): Solvep + 3q = 5z + tan (y — 3x).
(TQ-2): Solve z(z% + xy) (px — qy) = x*.
(TQ-3): Solve xyp + y?q = zxy — 2x*
(TQ-4): Solve px(z — 2y?) = (z — qy)(z — y* — 2x3)
(TQ-5): Solve xzp + yzq = xy
(TQ-6): Solve (y — zx)p + (x + yz)q = x* + y?
(TQ-7): Solve x(y? + 2)p — y(x? + z2)q = z(x? — y?)
(TQ-8):Solve (y—2)p+(z—x)g=x—y
(TQ-9): Solve (y + zx)p — (x + yz)g + y? —x2> =0
(TQ-10): Solve2y(z — 3)p + (2x — z)q = y(2x — 3)
(TQ-11): Solve (yTZZ) p + xzq = y*?
(TQ-12): Solve ptanx + qtany = tanz
(TQ-13): Solve zp = —x
TQ-14): Find the general solution of differential equation
( g q
0z 0z
2 (9% 2(9%) _
X (ax) Ty (6y> (x+y)z
(TQ-15): Find the general solution of differential equation
px(x+y) —qy(x+y)+ (x—y)2x =2y +2) =0
(TQ-16): Solvep+qg=x+y+z
TQ-17): Find the integral surface of the partial differential equation
( g p q
(x —y)p + (y — x — z)q = z passing through the circle
z=1,x2+y2=1.
(TQ-18): Find the surface which intersects the surfaces of the system
z(x +y) = c(3z + 1) orthogonally and which passes through
the circle x2 + y2 =1,z = 1.
TQ-19): Write down the system of equations for obtaining the general
(
equation of surfaces orthogonal to the family given by
x(x? + y? + z2) = cy?
(TQ-20): Find the surface which is orthogonal to the one parameter
Systemz = cxy(x? + y?) which passes through the
hyperbola x? — y% = a%z = 0.
(TQ-21): Find the integral surface of the linear partial differential
equation x(x2 + z)p — y(x? + z)q = (x?> — y?)z which
contains the straight linex +y = 0,z = 1.
(TQ-22): Find the equation of the integral surface of the partial
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differential equation2y(z — 3)p + (2x — z)q = y(2x — 3)
which passes through the circle z = 0, x2 + y? = 2x

2.18 ANSWERS:-

SELF CHECK ANSWERS (SCO’S)
1. (a) 2.(a) 3.(a) 4.(a)

TERMINAL ANSWERS (TQ’S)
(TQ-1): 5x —log[5z + tan(y — 3x)] = ¢(y — 3x)
(TQ-2): p(xy,x* — z* — 2xyz?) =0
(TQ-3): x —log[z — 2(x*/y*)] = p(x/y)
(TQ-4):(y? —ax —x*)/x = ¢ (%)
(TQ-5): ¢ (xy — Zz,i) =0
(TQ-6): p(x2 —y? +2z%,xy—2)=0
(TQ-7): p(x? + y? — 2z,xyz) =0
(TQ-8): p(x +y+2z,x*+y2+2z2) =0
(TQ-9): p(x2 +y? —z%,xy+2)=0
(010142 2) <o
(TQ-11): p(x3 —y3,x2—22) =0
(TQ-12):372 = ¢ (52)
(TQ-13): p(x* + y*,zy —y*) = 0
(TQ-14): ¢ (2, 22) =0
(TQ-15): ¢plxy, (x +Y)(x+y+2)] =0
(TQ-16): p[x —y,e ™ 2 +x+y+2)]=0
(TQ-17):z4(x +y +2)* + (x —y —2)2 = 2z*(x +y + 2) +
2z2(y—x—2)=0
(TQ-18):x% + y? — 223 — z2 = p(x — y)
(TQ-19): B2 = (252 + y2)/72]
(TQ-20): (x% + y? + 42%)?(x* — y?)? = a*(x* + y?)
(TQ-21): 2xyz+ x> +y*2—-2z+2=0
(TQ-22): x> —y?—2z2-2x+42z=0
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Unit 3: Non-linear Partial Differential
Equations of Order One
CONTENTS:

3.1  Introduction
3.2 Objectives
3.3 Complete Integral

3.4  Particular Integral

3.5  Singular Integral

3.6  General Integral

3.7  Geometrical interpretation of three types of integrals of
f(xryrzrpr CI) =0

3.8  Method of finding Singular Integral directly from given
partial differential equation:

3.9  Compatible System of First Order PDEs

3.10  Charpit’s Method

3.11 Summary

3.12  Glossary

3.13 References

3.14 Suggested Reading

3.15 Terminal questions

3.16  Answers

3.1 INTRODUCTION:-

Non-linear partial differential equations (PDEs) of order one are
mathematical expressions that involve partial derivatives of a dependent
variable with respect to one or more independent variables. The non-
linearity arises when these partial derivatives occur in terms other than the
first degree, meaning they may appear squared, cubed, or in some other
non-linear form. The study of non-linear PDEs is crucial in various
scientific disciplines, including physics, engineering, biology, and
economics, among others. These equations can describe complex
phenomena that involve interactions, feedback mechanisms, or non-trivial
dependencies.

Non-linear PDEs of order one are often more challenging to solve
analytically compared to linear PDEs. The non-linear terms introduce
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complexities that may not have closed-form solutions in many cases. As a
result, researchers and scientists often resort to numerical methods, such as
finite difference, finite element, or spectral methods, to approximate
solutions to these equations. The solutions to non-linear PDEs can exhibit
interesting behaviors, including the formation of shocks, solutions, and
other nonlinear structures. Understanding and solving these equations are
crucial for gaining insights into the behavior of physical and natural
systems. Researchers employ various techniques to tackle non-linear
PDEs, such as perturbation methods, similarity transformations, and
numerical simulations. Additionally, the development of computational
tools and advancements in numerical algorithms has played a significant
role in studying and solving non-linear PDEs in practical applications.

3.2 OBJECTIVES:-

After studying this unit learner’s will be able to

e To complete integral provides a general solution to a differential
equation. It represents a family of solutions that includes all
possible solutions, with the inclusion of arbitrary constants or
functions.

e To understand compatible system of first order equations.

e To provide solution of Charpit’s Method.

3.3 COMPLETE INTEGRAL OR COMPLETE
SOLUTION:-

Let us consider a relation
¢(x,y,z,a,b) =0 (1)
in the variables x,y and z, where x, y are independent variables, z is
a dependent variable and a, b are arbitrary constants.
Differentiating (1) partially w.r.t. x and y, we obtain

o9 L 99
E-I_Ep =0 ..(2)

and

op L 09
$+Eq—0 (3)

Since there are two arbitrary constants; (namely a and b) connected by
these equations (1) and (2). Therefore, the arbitrary constants a and b can
be eliminated. Then, there will appear a relation between x,y, z,p and q in
the form
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f(x,y,2,0,9) =0 . (4)
which is a partial differential equation of order one.

A solution of a partial differential equation of order one in which the
number of arbitrary constants is equal to the number of independent
variables is known as the complete integral (C.I.) or complete solution
(C.S.) of the partial differential equation. For example, z = ax + by,
where a and b are arbitrary constants, is the complete integral of the
partial differential equation z = px + qy.

3.4 PARTICULAR INTEGRAL:-

If particular values are given to the arbitrary constants in the complete
integral of a partial differential equation of order one, then the solution
obtained so, is called the particular integral (P.I) or particular solution
(P.S) of the given partial differential equation.

3.5 SINGULAR INTEGRAL (S.1) OR SINGULAR
SOLUTION (8.5):-

While giving the complete integral (1) of the partial differential equation
(4), the supposition was made that a and b are constants and the equation
(4) there at was deduced from (1), (2) and (3). But if a and b are assumed
to be such functions of the independent variables that these do not alter the
forms of p and q, then the partial differential equation given by the
elimination of the functions will be the same as in the case when a and b
were arbitrary constants, for algebraically elimination takes no account of
the value of the quantity eliminated but only of its form.

Now Differentiating ¢ (x, y, z, a, b) partially w.r.t. x and y regarding a

and b as functions of x and y, we obtain

dgp 0¢ dpda 0d¢adb

a-l—gp %54—%&— ..(5)
0 d dpda J¢adb
0 06 000 00
dy 0z dady 0bady

=~ The forms of p and q will be the same as in (2) and (3), if we obtain
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dpda , dpob _ dpda | dpadb _
saox Tapax =0 Of dady | aboay - (7)
If
da 0b
_lox ox
R=1ap anb
dy 0dy
So
¢ _ ¢ _
RE_O and Rab—O
If R is not zero, then
09 _ 09 _ .
da b

Thus, the elimination of a and b between the equations ¢(x,y,z,a,b),

Z—z = Z—Z’ = 0 obtains a new solution which is called Singular Integral or

Singular Solution of the given partial differential equations.

Therefore, singular integral is a relation between the variables involving
no arbitrary constant. Sometimes, in extraordinary instances, it happens as
a particular integral when special values are given to arbitrary constants
appearing in the complete integral, but generally, it is not so and the
singular integral (when it exits) is usually distinct from a complete
integral.

3.6 GENERAL INTEGRAL (G.I) OR GENERAL
SOLUTION (G.S):-

In the complete integral ¢(x,y, z, a, b) if the arbitrary constants a and b
are functionally associated i.e., if

b = y(a) ..(8)

Where v is arbitrary function.
Then equation (3) and (4) multiplying by dx and dy, adding another ,we
have

Department of Mathematics
Uttarakhand Open University Page 53



Advanced Differential Equations IT MATS08

¢ ¢

using (8) in (9), we obtain

0y
db = %da ..(10)
From (10), we get
09 3V _
da ' 0bda

Hence, this solution is called general integral (G.I) or general solution
(G.S) of the given partial differential equation.

Important Notes: A partial differential equation is called fully should
when it’s all the three types of integrals namely complete integral, singular
integral and general integral have been procured otherwise it is not
considered fully solved._While solving a non-linear or partial differential

equation, we must not only give the complete integral but should also find
the singular and general integrals. In absence of details of singular and
general integrals, merely the complete integral is considered to be
incomplete solution of the given partial differential equation. The students
and readers are advised to find the singular and general integrals also for
the given partial differential equation, when it is asked to solve the same
completely.

Again, when you are asked to find singular and general integrals, then you
must find them.

3.7 GEOMETRICAL INTERPRETATION OF
THREE TYPES OF INTEGRALS:-

i.  Complete Integral: A complete integral, being a relation between
x, y and z, is the equation of a surface. Since it contains two
arbitrary parameters, it belongs to a double infinite system of
surface or to a single infinite system of family of surfaces.

ii.  General Integral:

Let a complete integral of f(x,y,z,a,b) = 0be

¢(x,y,2,a,b) =0 (D)
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A general integral is obtained by eliminating a between (1) and the

equations
o , 3P 1 _
P 51/J =0 ..(3)

where 1 is arbitrary function.
The operation of elimination is equivalent to selection of a
representative family from the system of families of surfaces and
then finding its envelope. The above equations (1), (2), (3)
represent a curve drawn on the surface of the family whose
parameter is a while the equation obtained by eliminating a
between them is the envelope of the family. Consequently, the
envelope touches the surface represented by (1) and (2) along the
curve be evaluated as by equations (1), (2) and (3). This curve is
known as the characteristic of the envelope and the general integral
thus represents the envelope of a family of surfaces considered as
composed of its characteristics.
iili.  Singular Integral:
The singular integral is obtained by eliminating a and b between
equations (1) i.e. ¢(x,y,z,a,b) = 0 and the equations (1)
ap _ d¢
% —_ % —_ O e (4)
The operation of elimination is equivalent to find the envelope of all
the surfaces included in the complete integral. The above equations
(1),(4) give the point of contact of the particular surface regarded by
(1) with the general envelope. The singular integral thus represented
the general envelope of all the surfaces included in the complete
integral.

3.8 METHOD OF FINDINF SINGULAR
INTEGRAL DIRECTLY FROM GIVEN PARTIAL
DIFFERENTIAL EQUATION:-

Let the partial differential equation is

f(x,y,z,a,b) =0 (1)
Suppose a complete integral of (1) is written by
¢(x,y,2,a,b) =0 (2)
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where a and b are constants.
The singular integral of (1) is obtained by equation (2) and

dp _ 0¢
Frialr T 0 ..(3)
The values of p and q gained from (2), when substituted in (1) will render
it an identity and the replacement of the values of p and g (but not of z)
will in general render (1), equivalent to the integral equation. Let this
substitution be made so that in (1) p and g are changed by functions of
X,¥,Z,a and b.

Now from (1), we have

9rov 0704 _ . 9%9p  0fda _ 4)
dpda 0qda dp b  dq db

of of .
Ifa #=0 al’lda * 0, (4) hold if
dpdq Opdq _ 0

dadb 0bda
= Y(p,q) =0

If both the constants a and b take place in p and q (which does not always
happen), the above equation would imply that one of them is a function of
the other and the equations using them give general integral which is not
now concerned.

Now from (4) are also satisfied, then

of of _
= 0 and 7 0 ..(5

The elimination of p and q between equations (1) and (5) will delegate a
relation between x,y and z independent of any arbitrary constant. If this
relation satisfies the differential equation, then it is the singular integral.

3.9 COMPATIBLE SYSTEM OF FIRST ORDER
PDEs:-

Two partial differential equations
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fG,y,2,0,9) =0 - (1)

9(x,y,2,p,q9) =0 - (2)
are called Compatible, if they have a common solution.
To find the condition for (1) and (2) to be compatible:
Let

a(f,9)
= #0 . (3
/ (p.q) @)
Then (1) and (2) can solved to given the explicit expressions for p and q
written by
p=9¢Xxy2) and q=9(xy,2) - (4)

The condition that the pair of Eqns. (1) and (2) should be compatible, then,
reduces to the condition that the equation
dz =pdx +qdy and dz = ¢dx+ypdy—dz =0, using(4) ...(5)

should be integrable. The equation (5) is integrable if
d 0 0 d
6(2-0)+u(0-22)+ -n(22-2) =

0z 0z Jdy Ox
which is equivalent to
aop oY d¢  0J¢
— —=— — ...(6)

ox dz dy 0z

Putting the equations (4) in (1) and differentiating w.rt. x and z
respectively, we obtain

af o0fdp ofoyp

ax Tapox Tagox

of (019 T _

dz Opdz OJdqoz
From (7) and (8), we have

- (7)
.. (8)
of  Of Of (3  Op\ Of (B O\
a+¢a+@(a+¢a)+£(a+¢£)—°
Similarly

dg .  0g  0g (0¢ 6¢>) ag<6¢ 61/))_
0x az+6p<6x+ 0z +6q 6x+¢az =0

From above two equations are
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0 0 1(a(f, a(f,
o o _1 (fg)+¢ f,9) (9
ox oz ] |9(x,p) d(z,p)

Again, putting from (4) in (1) and differentiating w.r.t. y and z, we get

0 0 1(a(f, a(f,
99 _¢:__{ (f g)+¢ (f g)} .(10)
dx 0z JRCICA)) 9(z,q)
Putting the value of (9) and (10) in (1) and changing ¢, by p, q
respectively, we get

1(9(f.9) af 9N _ _1(a(f.9) a(£.9) _
J {a(x,z?) té 6(z,p)} g {a(y,q) +o a(z,q)} or [f,g]1=0

where

=a(f,g) a(f,g) a(f,.g) 9(f,9)
axp) FPap) 00 1z

[f, 9]

A particular Case: To show that first order partial differential

equations p = P(x,y) and q = Q(x,y) are compatible if and only if
o _ 20
ady T oax’

Proof: Let the given equations are

oz _ a_z o
x-P=Pxy) and Z=q=0xy) - (1)
Since

0z
dz = (&) dx + (@) dy = pdx + qdy ..(2)

It follow that the given partial differentials equations (1) are compatible if
and only if the single differential equation

dz = Pdx + Qdy - (3)
is integrable.

~ P and Q are functions of two variables x and y, hence Pdx + Qdy is an

exact differential if and only if Z—i =22 Therefore the equation (3) is

ax
aQ

. . .~OP
integrable if and only if 7 = o
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Remarkl: If Z—i = Z—g, then the given partial differentials equations (1) are

compatible if and only if the single differential equation. Hence these will
possess a common solution.

Remarkl: If Z—i * Z—g, then the given partial differentials equations (1) are

compatible if and only if the single differential equation. Hence these will
possess no solution.

SOLVED EXAMPLE
EXAMPLEL1: Show that the equations xp = yq and z(xp + yq) = 2xy
are compatible and solve them.
SOLUTION: Let

f(x,y,2p,9) =xp—yq =0 - (1)
9x,v,2,p,q9) = z(xp +yq) —2xy =0 .. (2)
of of
0G)_[3E Bl v x iy,
d(x,p) |0g dg| lzp—2y xz y
dx ap
of of
09 oz | 10 x|
a(z,p)= dg ag| T lxp+qy xz = TP X
az op
of of
a(f:g)z @ aq | — oy
d(y.q)  |0g dg| lzqa—2x Zy Y
dy aq
and
af of
a(f.g) oz o 0 —
0z q) |99 63 o +qy z;; =yia+xyq
9z dq

a(f,g) N a(f,9) a(f,g) N a(f,9)
axp) Loz p) a(y, 0 1oz q)
= 2xy — x*p® — xypq — 2xy + xypq + y*q*
= —xp(xp +yq) + yq(xp + yq) = —(xp — yq) (xp + yq) = 0, using(1)
Hence equations (1) and (2) are compatible.
Solving (1) and (2), we have

[f, 9] =
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y X
=2 == ..(3
P z’ a z )

Using (3) in dz = pdx + qdy, we obtain

dz = (g) dx + (g) dy

zdz = d(xy)

Now integrating,
2

Z?=xy+§ or zZ=2xy+c

where c is arbitrary constant.

EXAMPLE?2: Show that the equations xp — yq = x and x*p + q = zx

are compatible and find their solution.
SOLUTION: Let

f(x;y;z;p;Q):xp—yq—x:O (1)
9(x,v,z,p,q9) = x*p+q—zx =0 - (2)
of of

of9) |ox ap| p-1  «x
) = |0y 09| = o s w2|= -0 =xCx -2
ox ap
Similarly
a(f’g)_xz af,g9) _ f.g)
i) ap) T dp)

a(f,g) , 0(f,9) N a(f,g) , 0(f,9)
ip)  To@p  0e) TG

= (p— Dx* —x(2xp — z) —px* —q — xyq
=—x%2+42zx —q—xyq = —x*+ x*p — qxy by (2)
=x(=x+xp—yq) =0, by(l)
Hence equations (1) and (2) are compatible.
Solving (1) and (2) for p and g, we have

[f 9] =

_ (+yz) _ x(z—x)
= T and p = W) ..(3)
Using (3) in dz = pdx + qdy, we obtain
|+ yz) [x(z —X)
T +xy) y) (1+xy)

1+ xy)dz= 1+ yz)dx + x(z — x)dy
(1 + xy)dz — z(ydx + xdy) = dx — x*dy
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dx
(1 +xy)dz — zd(xy) dx—x*dy _ (ﬁ) —dy
(1 + xy)? A4y (y N 1)2
x
b
<1 + xy) B (y _|_1)2
Integrating it, i
z__ 1 b
S

z—x=c(1+xy)
where c is arbitrary constant.

3.10 CHARPIT’S METHOD:-

Let the given partial differential equation of first order and non-linear in p

and q be

f(,y,2,p0,q =0 (D
We know that

dz = pdx + qdy .. (2)
We introduce another PDE of the first order of the type

F(x,y,2,p,9) =0 . (3)
In order to (3), differentiate partially (1) and (3) w.r.t. x and y and given

of | Of 9fdp 9fdq

ox TPz apox Tagax 0 @
OF _OF OFdp 0Fdq_ :
ox Paz opax " aqox - (5)
of Of dfdp dfdq
—+p=— ...(6)
dy 0z ap ay Oq ay
OF OF 0Fdp OFdgq

()

ay paz 6p6y+6q6y

Eliminating P P from (4) and (5), we have
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af of 0fdq\0F (OF oF aF dq\of
(& Pz 0z *3q dq 6x> dp (Ox Pa, 0z aq 6x> op
of OF OF of afaF OF of dof OF aFaf aq
(&% B %%) * (62 dp 0z 6p> pt (aq dp aq ap) 0x
=0 ..(8)

Similarly Eliminating Z—z from (6) and (7), we obtain

afaF JdF of df OF OF d0f df OF OF 0f\0q
<6y dq OJy aq) * (E% B 5%) 9+ (ap dq B %%) dy
=0 ..(9)

Since

dq 0%z 0p

ax dxdy _@
Therefore adding (8) and (9), we get
(6f+ 6f>6F+<g+ 6f)6F+(_ af 6f>6_F+< 6f>6F

ax paz dp \dy qaz dq ’p%—q£ 0z dp/ ox
+< af) =0 10
37) 3y ..(10)

The integral of (10) is given by solving the auxiliary equations
dp dq dz dx dy dF

of __9f of, of __of Oof _9f _9f 0
axTPa; ayT93; Pap~93g “ap “9q

.. (10)

Note: In what follows we shall use the following standard notation:

of L Of L. 0 . Oof . Of _
a—fx'@—fw oz~ Jo ap_fp’ aq_fq

Therefore Charpit’s auxiliary equations (10) may be written as
dp dq dz dx dy dF

fi+pfs f+af, —ph—afy —~f» —~f; O

SOLVED EXAMPLE
EXAMPLEL1: Find the complete integral of z = px + qy + q* + p*.
SOLUTION: Let

fx,y,2,p,9) =0z —px —qy—q* —p° (1)
Charpit’s auxiliary equations are
dp _ dq __ dq _ d_x _ d_y

(2

fxtpfz N fytafz N -pfp—afq N —fp N —fq
From (1),
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fi=-pfh=—0f,=Lf=—x-2pf=-y—-2q ..(3)
Putting the value of (3) in (1), we get

dp dq dz _dx dy
0 0 —px+2p)+qiy+2q) x+2p y+2q°

(4)

Taking the first fraction of (4), we have

dp=0 =>p=a

Taking the second fraction of (4), we have

dg=0 =>qg=a

Substituting p =a and q =b in (1), the required complete integral
is z = ax + by + a® + b?, a, b being arbitrary constants.

EXAMPLE2: Find the complete integral of ¢ = 3p2.

SOLUTION: Let the given equation is

f(x,y,2,0,q9) =3p>—q=0 (D)
Charpit’s auxiliary equations are
oo o M ED (2
fxtD/fz fy+afz -pfp—afq —fp —fq
Or
%p=d—:=6;—iq=:d—;)=d?y using (1) ..(3)

Taking the first fraction of (3), we have

dp=0 = p=a

Putting the value of p in (1), we obtain q = 3a?

Substituting these values of p and q in dz = pdx + qdy, we get

dz = adx +3a%’dy = z=ax+3a’y+b is required complete
integral, a and b being arbitrary constants.

EXAMPLE3: Find a complete, singular and general integrals of (p? +

q*)y = qz.
SOLUTION: Let the given equation is

fx,y.2p,9) =@ +q)y—qz=0 (1)
Charpit’s auxiliary equations are

v _ _da _ __da _ dx _ 4y 2)
fxtD/fz fy+afz -pfp—afq —fp —fq

Or

dp ﬂ _ dq — dx — dy

-pq  p?*  -p?y+qz-2q2y  -2py  -2qy+z by (1)

Taking the first two fractions, we have
2pdp +2qdq =0 sothat p?+qg?=a ..(3)
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Using (3), in (1), we obtain
a’y = qz or q= az—y

Substituting the value of g in (3), we have

44,2
Now putting these value in dz = pdx + qdy, we obtain
dz = 477 = a?yPdx + 2dy or LY = adx
Integrating,
(22 —a*y)HYV2 =ax+b or z?>—-a’y?=(ax+b)? ..(4)
is required complete integral.
Singular Integral:- Differentiating (4) w.r.t. a and b, we obtain
0 = 2ay? + 2(ax + b)x ..(5)
0 =2(ax+ b)x .. (6)
Eliminating a and b between (4), (5) and (6), we get z = 0

Hence it is singular integral.
General Integral:- changing b by ¢(a) in (4), we have

p=+a%—q? = a2—<

z? — a?y? = (ax + ¢p(a))? w(7)
Differentiating w.r.t. a,
—2ay? = 2[ax + ¢p(a)]. [x + ¢'(a)] ..(8)

The general integral is obtained by eliminating a from (7) and (8).

EXAMPLEA4: Find complete and singular integrals of 2xz — px? —

2qxy +pq = 0.
SOLUTION: Here given equation is
f(x,v,2,p,q) = 2xz — px? — 2qxy + pq = 0. (1)
Charpit’s auxiliary equations are
dp _ dq __ dq _ d_x _ d_y
fxtDfz N fy+asz N —pfp—afq N —fp N —fq
dp _dq _ dx _ dy __ dz
2z-2qy 0  x2—q 2xy-p  pX2+2xyq—2pq by (1)

The second fraction obtain dgq =0  so that q=a

Substituting ¢ = a in (1), we have

p =2x(z - ay)/(x* — a)
Putting values p and q in dz = pdx + qdy, we have given below
dz =

2x(z—ay) dz—ady _ 2xdx

dx +ady or

x2—a z—ay x2—a

Integrating, log(z — ay) = log(x? — a) + logh
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Or z—ay=b(x*—a) or z=ay+b(x?-a) . (2)
which is complete integral.
Differentiating (2) w.r.t. a and b, we have
0=y—b and 0=x%2—-a ..(3)
Solving (3) for a and b, b=y and x*=a
Putting these values in (2),

z = x?y is required the singular solution.
EXAMPLES: Using Charpit’s method, find threecomplete integrals

of pq = px + qy.
SOLUTION: Here given equation is
f(y,2,0,9) =pq—px—qy =0. - (1)

Charpit’s auxiliary equations are

v _ _do___dg __ar _ay
fxtDfz fy+asz —pfp—afq —fp —fq
e are i = by (1) .(2)

> 4 @0 -0  -pa-0-pe-»
To find first complete integral.
Taking the first two fractions of (2), we have

1 1
(;) dp = (5) dq sothat logp =logq+loga or p=aq ..(3)
Using (3),

=  aq’=q(ax+y) = = laxty)

a

Hence, from (3), we get
dz = pdx + qdy = (ax + y)dx + [(ax + y) /aldy
= (2) (ax + y)(adx + y)
Substituting ax +y =t sothat adx + dy = dt,
= dzz(%)xtdt sothat z = (1/2a) Xt>+b or z=

(1/2a) X (ax+y)>+b as t=ax+y.
To find second complete integral. Taking the second and the fourth
ratios in (2), we obtain

dx d_q —
= q or qdx + xdq = qdq
2
Integrating, qx = q? + % or q*—2xq+a=0

wq=[2x+2(x?-a)?]/2 sothat g=x+x*—a)/? ..(4)
Using (4), in (1)

= ple+ (2 — )Y —px—y[x + 2 —a)¥?] =0

So that
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p=[1+x/(x?—a)/?]y

X
1+———
(x%2 —a)2

X
1+———
(x%2 —a)z

dz = pdx + qdy = ydx + dy

1
dz = (ydx + xdy) + I Y+ (2% - a)Edyl or

x%2-a)2

dz =d(xy) +d [y(x2 - a)%]

1
Integrating, z = xy + y(x? — a)z + b, a, b being arbitrary constants.
To find third complete integral.
Taking first and fifth ratios of (2) and third complete integral is

1
z=xy+x(x?—a)z+b.

SELF CHECK QUESTIONS
1. Define a complete integral.
2. Define particular integral.
3. What is the difference between singular integral and general
integral.

3.11 SUMMARY:-

In this unit we have studied the comprehensive view of solving linear
first-order PDEs. The complete integral forms the foundation,
incorporating arbitrary constants. A particular integral is then
determined by satisfying specific conditions. Singular integrals may be
encountered in peculiar cases, and Charpit's integral method is a
valuable technique for solving such PDEs by exploring characteristic
curves and ODEs along them. The general integral combines these
components to offer a solution that fulfills the PDE along with any
prescribed conditions.

3.12 GLOSSARY:-

e Complete Integral: The general solution obtained by integrating a
first-order linear PDE. It includes arbitrary functions or constants
that are determined by additional conditions (e.g., boundary or
initial conditions).

e Particular Integral: A specific solution obtained from the complete
integral by assigning values or functions to the arbitrary constants.
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It satisfies both the PDE and any given boundary or initial
conditions.
¢ Singular Integral: Integrals that may lead to singular solutions or
solutions with singularities. Singular integrals can arise in specific
cases or when dealing with certain types of PDEs.
e General Integral: The combined solution of a linear PDE,

consisting of both the complete integral and any particular integral.

It provides a more comprehensive solution that satisfies the PDE

and additional conditions.
Charpit's Method: A method for solving first-order linear PDEs by
introducing a set of characteristic curves. It involves finding a set of
ordinary differential equations (ODEs) along these characteristics,
ultimately leading to the determination of the solution.
These terms collectively represent essential concepts in the study and
solution of linear first-order PDEs. The complete integral establishes a
broad solution space, and the particular integral refines it to meet specific
conditions. Singular integrals and Charpit's integral method address
peculiar cases and provide alternative approaches to solving these
equations. The general integral combines these components for a
comprehensive understanding of the solution space.
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3.15 TERMINAL QUESTIONS:-

(TQ-1): Show that the equation z = px + qy is compatible with any
equation f(x,y,z,p,q) = 0 which is homogeneous inx, y, z.

(TQ-2): Show that the equation f(x,v,p,q) = 0,9(x,y,p,q) = 0 are

o(f.g) o(f.g) _
a(x,p) tp ov,a)

(TQ-3): Show thatg—i = 7x + 8y —1and Z—JZ, = 9x + 11y — 2 are not

compatible

Compatible.
(TQ-4): Find the complete integral of z = pq.
(T'Q-5): Find the complete integral of (p + y)? + (q + x)? = 1.
(TQ-6): Find the complete integral of z = px + qy + pq.
(TQ-7): Find the complete integral of 2z + p% + qy + 2y% = 0.
(TQ-8): Find the complete integral of z? = pgqxy.

3.16 ANSWERS:-

SELF CHECK ANSWERS

1. A complete integral is a solution to a differential equation that

includes all possible arbitrary constants. It represents the general

solution to the equation, encompassing all possible variations.

2. A particular integral is a specific solution to a differential equation
obtained by substituting specific values or functions into the
equation. It satisfies the given conditions or boundary conditions of
the problem.

3. The difference between a singular integral and a general integral
lies in their nature and scope:

a. Singular integral: This refers to an integral that exhibits
singular behavior, such as having a singularity at one or more
points within its domain. These integrals often require
specialized techniques or interpretations to handle the
singularities.

b. General integral: This refers to the broader class of integrals
that do not necessarily exhibit singular behavior. General
integrals can be evaluated wusing standard integration
techniques and do not pose the same challenges as singular
integrals in terms of convergence or behavior at specific points.
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TERMINAL ANSWERS
(TQ-4):z=(x+b)(x+ a)
(TQ-5):z=ax—(1-a®*)"?y—xy+b
(TQ-6):z=ax+ by +ab
(TQ-7): 2y?z+y*(x —a)> +y*=b
(TQ-8): z = axay?/a
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Unit 4: Fundamentals: Classification and
Canonical Forms of PDE
CONTENTS:

4.1  Introduction

4.2 Objectives

4.3 Classification of partial differential equations of Second
order

4.4  Classification of partial differential equation in three
Independent variables

4.5 Cauchy’s problem

4.6 Laplace transformation (Reduce to canonical forms)

4.7 Working Rules

4.8 Solution of Linear hyperbolic equations

4.9 Summary

4.10  Glossary

4.11  References

4.12  Suggested Reading

4.13  Terminal Questions

4.14  Answers

4.1 INTRODUCTION:-

Partial Differential Equations (PDEs) are pivotal in modeling diverse
phenomena across scientific disciplines. The classification of PDEs based
on order, linearity, and the number of independent variables informs their
complexity and solution approaches. Canonical forms in the context of
mathematical equations, such as the heat equation, wave equation, and
Laplace's equation, serve as standardized representations that simplify the
analysis and solution of these equations.

Canonical forms, such as the heat, wave, and Laplace's equations,
represent fundamental prototypes with distinct physical interpretations.
Understanding these classifications and canonical forms is crucial for
choosing appropriate solution methods and unraveling the mathematical
and physical intricacies embedded in these equations. Researchers and
practitioners utilize analytical, numerical, and computational tools to
address challenges posed by PDEs across various scientific domains.
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4.2 OBJECTIVES:-

After studying this unit learner’s will be able to

e To express PDEs in standard canonical forms those simplify their
analysis.

e To understanding Laplace transformation is to simplify the process
of solving linear differential equations.

e Understanding these classifications helps in selecting appropriate
solution techniques, studying the well-posedness of problems, and
gaining insights into the behavior of physical systems described by
these equations. Different solution methods and numerical
techniques are often employed depending on the classification of
the PDE.

e To Specifying appropriate initial conditions and boundary
conditions is essential for solving hyperbolic equations.

4.3 CLASSIFICATION OF PARTIAL
DIFFERENTIAL EQUATIONS OF SECOND
ORDER:-

Let a general PDEs of second order for a function of two independent
variables x and y in the form

Rr+Ss+Tt+ f(x,y,z,p,9) =0 ..(1)

Where R, S and T are the continuous functions of x and y only possessing
partial derivatives defined in some domains D on the xy —plane. Then
from (1), we have

i. If S2 — 4RT > 0, the partial differential equation is hyperbolic
ata point (x,y) in domain D.

ii. If S2 — 4RT = 0, the partial differential equation is parabolic
at a point (x,y) in domain D.

iii. If S — 4RT < 0, the partial differential equation is elliptic at a
point (x,y) in domain D.
%u ’u  _ d%u

Note: r = —,s = = .
ote ox2’ oxdy’ ot2
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0%z 0%z

EXAMPLE: (i) Let the one dimensional wave equation 9 "oyl 1e.,
r—t=20.

Let comparing equation(1), we obtain

R=1,5=0andT = -1

Hence, S2 —4RT =0—-{4x1x(-1)x}=4>0

So the given equation is parabolic.

.o . . R . 9%z | 9%z _ .
(ii) Let the two dimensional Laplace’s equation =T 57 = 0 1ie.,
r +t = 0. Let comparing equation(1), we have
R=1,S5=0andT =1
Hence, S? — 4RT = 0 — {4 X 1 X (1) x} = —4 < 0.So the given
equation is elliptic.

62

z 0z .
=—1ie,r—q=0.

(iii) Let the one dimensional diffusion equation —; 32— 3y

Let comparing equation (1), we have
R=15=T=0

Hence, S — 4RT = 0 — {4 X 1 x 0} = —4 < 0.So the given equation is
parabolic.

4.4 CLASSIFICATION OF PARTIAL
DIFFERENTIAL EQUATIONIN THREE
INDEPENDENT VARIABLES:-

A linear partial differential equation of the second order in 3 independent
variables x4, x,, X, is obtained by

3 3
ZZaUaxlax] Zb‘a +cu=0 ..(1)

Where a;;(= a;;) , b; and ¢ are constants or xq, X, X, are independent

variables and u is dependent variables.
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Now a;; = aj;, A = [a;j]3x3 is real symmetric matrix of order 3 X 3. The

eigen values of matrix A are roots of the characteristic equation of A4,
namely, |A — AlI| = 0.

Since the equation (1), classified as below:

i. If all eigenvalues of A are non-zero and have the same sign,
except precisely one of them, then (1), is called as hyperbolic
type of equation.

ii. If |[A] = 0,i.e., any one of the eigen values of A is zero, hen
(1), is called as perabolic type of equation.

iii. If all eigenvalues of A are non-zero and of the same sign,
except precisely one of them, then (1), is called as elliptic type
of equation.

Note: The matrix can be indicated as below:

Coeff.of uy, Coeff.of uy, Coeff.of uy,
A = |Coeff.of uy, Coeff.of uy, Coeff.of u,,
Coeff.of u,, Coeff.of uy,, Coeff.of ug

SOLVED EXAMPLE

EXAMPLETL: Classify Uy, + Uy, = Uy, (1)

SOLUTION: The matrix of given equation (1), is
100
A=[010

00 -1

Since , |[A — AI| =0.,i.e.,
1-4200
01-2120
001-21
Hence, 4 = —1,1,1, the given equation of hyperbolic type.

EXAMPLE2: Classify Uy, + uyy + Uy, + Uy, + Uy =0 (1)
SOLUTION: The matrix of given equation (1) is
Upx + 0. Uy + 0. Uy, + 0. Uyy +uyy +uy, +00 Uy +uy,, +
U,y =0

=0 o —-(1+A1HDA-2D%=0
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100 100
Now, |[A|=[0 1 1{=([0 1 1|{=0,
011 00O
Hence, |A| = 0, the given equations is of parabolic type.
EXAMPLE3: Classify uyy, + Uy, +u,, =0 (1)

SOLUTION: The matrix of given equation (1) is
Uy + 0. Uy + 0. Uy + 0. Uy + 0. Uy + 0. Uy + 0. Uy + Uy, + Uy,
=0

A=(0 10
001

Since the eigen values of A are given by |A — AI| = 0.,i.e,,

100]

1-200

01-20/=0 o (1-2A)2=0aregivingd=1,1,1
001-4

Hence, 4 = —1,1,1, the given equation is of parabolic.

4.5 CAUCHY’S PROBLEM FOR SECOND ORDER
PDES:-

Consider a second order PDE for the function z, in the independent
variables x and y, and let us suppose this equation can be solved clearly
for u,,, and hence it can be represented y the equation in the form

Rr+Ss+Tt+f(x,y,zp,9) =0 ..(1)

where R,S and T are the continuous functions of x and y only. If the
initial conditions are described along the same curve in the xy —plane,
then this problem is called Cauchy problem.

Characteristic Equations And Characteristic Curves:

Corresponding (1), let the A quadratic
R\2+SA+T=0 - (2)

Where §2 — 4RT > 0, (2) has real roots. Then

(Z—z) +A0xy) =0 (3

Are known as characteristic equations.
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The equation (3) are known as characteristic curve and simply the
characteristics of the second order PDEs(1).

Now, consider the three cases

1. IfS? — 4RT > 0 (if the equation (1) is hyperbolic ) , then (2) has
two distinct real roots A4,4,, so that we have two characteristic
equations

d d
(é) + A (x,y) =0 and (ﬁ) +,(x,y) =0
Solving it we get two distinct families of characteristics.

2. IfS? — 4RT = 0 (if the equation (1) is parabolic ) , then (2) has
two equal real roots 4,4 so that we have one characteristic
equations

(3—2:) +A(x,y) =0

Solving we get one family of characteristics.

3. IfS? — 4RT < 0 (if the equation (1) is elliptic), then (2) has two
complex roots. Hence there are no characteristics. Thus we get two
families of complex characteristics when (1) is elliptic.

SOLVED EXAMPLE

EXAMPLE1: Find the characteristics of y?r — x%t = 0.
SOLUTION: Given  y?r —x2%t =0 (1)
Comparing with Rr + Ss + Tt + f(x,y,2,p,q) = 0. Here R = y%,5 =0
and T = —x?. Then
S2 —4RT = 0 — 4 X y% X (—x2) = 4x%y2 > 0
Hence the (1) is hyperbolic everywhere except on the coordinates axes
x=0andy = 0.
The A quadratic is
RN>+SA+T=0 o y*1—-x*2=0 ..(2

Solving (2), A = 3, — § Corresponding characteristic equations are

d d
() + G/ =0 and ()= (x/y) =0
xdx +ydy =0 and xdx —ydy =0
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Integrating, x%+y?=c¢; and x%—y? =c, is required families of
characteristics and these are families of circles and hyperbolas
respectively.
EXAMPLE2: Find the characteristics of x*r + 2xys + y*t = 0.
SOLUTION: Given  x?r + 2xys + y?t =0 (1)
Comparing with Rr + Ss + Tt + f(x,y,z,p,q) = 0. Here R = x2,S =
2xy and T = y2. Then

S2 —4RT = 4x%y? — 4x%y? = 4x%y2 =0
Hence the (1) is parabolic everywhere.
The A -quadratic is RA2+SA+T =0 or x?A?+2xyil+y?=
0 ...(2)
Solving (2), we have
(xA+y)? =0 sothat 1 =— %, —% (equation roots). The characteristic
equationis  (dy/dx) — (y/x) =0 or (1/y)dy —(1/x)dx =0
Giving % =0 or y = c¢1x 1s required family of characteristics

and it represents a family of straight lines passing through the origin.

4.6 LAPLACE TRANSFORMATION: REDUCTION
TO CANONICAL (OR NORMAL) FORMS:-

Let the partial differential equation of the type
Rr+Ss+Tt+ f(x,y,z,p,9) =0 - (D

where R, S and T are the continuous functions of x and y only. Laplace
transformation on (1) consists of replacing the independent variables x, y
to new set of continuously differentiable independent variables u, v where
u=u(x,y) and v =v(x,y) . (2)

are to be selected so that from (2), we have

__ 0z _ 0zodu dz v 0z _ 0z 0du dz v

9x  oudx | ovox and g = 5 - E@y ov dy - (3)
d ou 0 ov 0 d ou o0 odv 0
|% —a—aa aa and q —5—5@ Ea_v (4)
From (3) and (4), we get
B 0%z 0 (62) B <6u 0 +6v 6>(azau+azav)
T‘axz ~9x\dx) \dxou 0dxov/\dudx dvaox
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_Ou 0 (626u+626v>+6v 0 (626u+626v)
T 9x0u\dudx v ix Jdx 0v\dudx 0Jvdx

3 0%z <6u>2 ) 0%z dudv N 0%z <6v)2 N 0z 0%u N 0z 0%v
© 0u? \ox oudv dx 0x 0v?\dx Judx?  OJvox?

Again (3) and (4), we have

622_6(62)_(6u6 6v6)<626u azav)

= axay _ox\ay) ~\axou "oxav)\Gudy T avay
azzau6u+ 0%z (6u6v+6u6v> 6226v6v+az 0%u
ou? dx dy Oudv\dxdy dydx) 0du?dxdy Judydx
+az d0%v
dv dydx

and by (3) and (4), we obtain

9%z 0 (62)_(6u 0 +6v 6)<6uaz+avaz>

~9y2 ody\dy/ \dyou adyov/\dyou dyodv
du d <6u az+6vaz>+6v d <6u az+6v 62)
dyou\dydu 0dydv/ dydv\dydu dyadv

0%z (Ou)z ) 0%z dudv N 0%z (617)2 N 0z 0%u N 0z 0%v
~ 0u? \dy dudv dydy 0dv?\dy dudy? 0vady?

Substituting the above values of p, q, 7, s, t in (1), we get

AaZZ+ZB 0%z +CaZZ+F( 0z 62) )
ou? guov * ovz L\ P50 v
where
AR <6u> N Ju ou L7 (6u>2 6
oy dx 9y oy - (6)
ou ov ou dv ou ov ou dv
B = Ra—a+‘5(aa +E£) o (7
_ ov ov 2

C—R(a) +S£ay+T(ay) . (8)

And F (u, v, Z, Z—i, Z—i) is transformed form of F(x, y, z,p, q).
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The method of evaluation of desired values of u and v becomes easy when
the discriminant S? — 4RT of quadratic equation

RA>+SA+T =0 ..(9)

is everywhere either positive, negative or zero, and we shall present these
three cases separately.

Casel: Let S — 4RT > 0. When this condition is satisfied, then A;, 1, of
the equation (9) are real and distinct. So the equation (5) will be vanish if

ou ou
Z=l (5) . (10)
v v
2 =1 (5) . (11)
Since
RN +SM+T=0 .. (12)

Now putting the value of (10) in (6), we get
A= RM2+SM+T) (Z—;)Z =0 . (13)
Again
RM+ S0, +T =0 .. (14)
Now putting the value of (11) in (8), we get
C =R\ + Sy +T) (;’—;)2 =0 . (15)

From (10), we obtain
(Ou/ox) —A;(0u/oy) =0

The Lagrange auxiliary equation is

dx dy du
x A 0
Sothat du=0 = U = c4,C, areconstants.

Taking first and second fraction of above equation, we obtained
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d
é +A4, =0 = fi(x,y) = ¢4, c, are constants.

The general solutionis u = f;(x,y),v = fo(x,y)
Here f; and f, are arbitrary function

_p2_ 2y (Qudv  Judv)?
AC — B? = 1 (4RT - %) (5 b )

1 2y (U dv  Oudv\? o
=(4RT - S )(6xay 6yax) asA=C=0 ..(16)
Let the jacobian J of u and v be non-zero.i.e.,

_0(wv) Odudv OJu av
Ca(x,y) T ox ay ay ax

So

S§2 — 4RT > 0, (16) prove that B? > 0. Hence the equation (5),
transforms to the form

0%z
oudv

0z 0z\ . . . .
=¢ (u, v, Z, E'E) is canonical form of (1) in this case.

Casell: Let S? —4RT = 0, when this condition is satisfied, the roots
A, A, of (9) are real and equal. Take v to be any function of x, y which is
independent of u. Now in case I, A = 0. Also, S — 4RT = 0, (16) shows
thatB? = 0. So thatB = 0.

Moreover C # 0, Putting A = 0, B = 0 and dividing by C, (5) transforms
to the form

92 9z 0 . .

6_1; =¢ (u, v,z é, a—i) 1s the canonical form.
Caselll: Let S2 — 4RT < 0, when this condition is satisfied, the roots
A1, A, of (9) are complex. Hence this case III is the same as Casel.
Therefore, obtain a real canonical form we make further transformation
u=a+if andv = a— if so that

a= uTW and B = EC)

Zi - ZZ (aa) T o5 (aﬁ) - %(Z_Z - ig_;) -+ (17)
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az __ 0z (da a_z % _ oz
o aa( ) + a8 (av) N ( +i 3) -~ (18)

i = 7aae) =3 Ga = 135) <3 (G i55)

G ig) ~ i e+ i) =1 G+ s~ e + i550)
=15 Z_;) aizazﬁ = 622;“ .(19)

Substituting u = a + iff,v = a — iff and using(17),(18) and (19), reduce
to (16), we get

9%z 0%z 9z 9z . .
(ﬁ) + (ﬁ) =Y (a, B, V;a,ﬁ) is canonical form.

4.7 WORKING RULES:-

Working rule for reducing a hyperbolic equation to its canonical
form:

Step1: Let the given equation

Rr+Ss+Tt+ f(x,y,z,p,q) =0 ..(1D)
Be hyperbolic so that S? — 4RT > 0
Step2: Let A quadratic equation RN +SA+T=0 .. (2)
Step3: Suppose A; and A, be two distinct roots of (2), we have
Z—Z+7\1=0 and Z—Z-l-?\z:o - (3)
Solving this equation, we obtain, f;(x,y) =¢; and fo,(x,y) =c;
Step4: Now we selectu = f;(x,y),v = fo(x,y) .. (4)
where u and v known as characteristic coordinates.
StepS: Using (4), find p,q,7,s and ¢t in terms of u and v.

Step6: putting the values of p,q,7,s and t in (1), we obtain the following
canonical form

0%z < 0z 62)
A G
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SOLVED EXAMPLE

0%z

EXAMPE1: Reduce 22 = 2 (
: Reduce 75 = x* (53

SOLUTION: Let re-writing, the obtained equation is
r—x%t=0 (D)

) to canonical form

Now comparing (1) with Rr + Ss+ Tt + f(x,y,z,p,q) = 0, we get

R=1,5=0,T = —x?
A- quadratic RA? + SA + T = 0 written as

A—x2=0 = A1=+x

Since 4y = xand A, = —x
dy _ dy _
Hence =T A4, =0 and T A, =0
= Dix=0 and Z-—x=0
dx dx

Integrating it, y + %xz =c¢; and y-— %xz = c,.
Hence, we change x, y to u, v by taking, we get
u=y+%x2 and v=y—%x2

p = 0z _ 62(6u)+ 62(617) _xa_z_xa_z using(Z)

T ox  ou\ox av\ax) ~ " au ov’
0z 0z (du dz (dv 0z 0z .
a=5 =55+ 2 (G) =5t 5 using )

B 0%z 0 (OZ) 0 { (62 62)}
r‘axz_ax ox _axxau v

_ 0 <az az>+1 <az 62)
_xax ou Ov ‘\ou oJv

B [6(62 62)6u+6<62 az>6v]+62 0z

- Ju\dou o0Jv/odx dv\du 0Jv/ox Ju 0Ov

. 0%z ) 0%z +azz +az 0z
- X du? Judv 0Jv? Ju OJv

and
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t_azz_6(6)_(6+6>(az+62)_622+2622+azz
“9y2 dy\ay) \ou odv/\ou odv/ 0y? oudv  0Jv?

Substituting these values of r and t in (1), we have

L (0%z 2622+622 +az 0z azz+zazz +622 — 0
—* \ou? oudv  Jv? ou dv \dy? Judv  ovz)

Or

0%z 1 (az 62)

oudv - 4x2\0u Ov
0%z B 1 (az 62)
oudv  4(u—-v)\du dv

Which is required canonical form.

EXAMPE2: Reduce 7z _ (1+ y)? (&) to canonical form
' d0x2 y dy?

SOLUTION: Let re-writing, the obtained equation is
r—(1+y)t=0 . (D

Now comparing (1) with Rr + Ss + Tt + f(x,y,z,p,q) = 0, we obtain
R=1S=0,T =—(1+y)?

S§%2 —4RT = (14 y)? > 0 for y # —1, showing that (1) is
hyperbolic.

A- quadratic RA? + SA + T = 0 written as

P—1+4+y)?2=0 = A=1+y,—(1+y)
Hence %+(1+y)=0 and Z—Z—(l+y)=0
Integrating it,
= log(l+y)+x=C, and log(1+y)—x=20C,
In order to reduce (1) to its canonical form, we get

u=log(1+y)+x and v=Ilog(1+y)—x

_ 0z 0z (6u)+ 0z (61})_62_62 sin (2)
p_ax_au ox av \ax) ~ au 6v’u g
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0z dz {ou 0z (ov 1 0z 0z .
9=3,= a(@) + a—v(a) —m(wa—v)’usmg@)

g 9 0
dx  Odu Ov
_ 0% _ 002\ _ (0 , 0\ (02, 07\ . .
r=o 2= 5 (6x) = (au + 6v) (au + av)' using above equation.
0%z ) 0%z +azz ;
"= x oudv =~ 0v? - 3)
t_azz_ d (62)_ d { 1 (62+az>}
~dy? ay\ay) oyl +y\ou v

_ 1 <az+az>+ 1 6<az+62)
~ (1+y)2\ou ov/) 1+ydy\ou Ov

B 1 <az+az>+ 1 [6(az+62)6u+6<az+az>av]
(1 +y)2\ou ov/) 1+ylou\ou ov/ay ov\ou av/ady
B 1 (62 N 62)

1+ y)2\ou v

N 1 0%z N 0%z 1 N 0%z N 0%z 1
1+y|\ou? oJudv/1+y \0v? oOudv/1+y
1 0%z 0%z 0%z 0z o0z
t= + -
1+ y)?\ou? dudv 0v? odu OJv

- (7)
Using (6) and (7) in (1), the required canonical form is

0%z ) 0%z +622 622+2 0%z +azz 0z 0z
0x? oudv dv? du? Judv dv? ou OJv

0%z _ 0z N 0z
oudv ou ov

Working rule for reducing a parabolic equation to its canonical form:

Step1: Let the given equation
Rr+Ss+Tt+f(x,y,z,p,q9) =0 ..(1)
Be hyperbolic so that S? —4RT =0

Step2: Let A quadratic equation ~ RA2+SA+T =0 - (2)
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Step3: Suppose A; = A be two equal roots of (2), we have

dy
E‘I’}\l—o

Solving this equation, we obtain, f;(x,y) = ¢, , ¢; being arbitrary
constant.

Step4: Now we selectu = fi(x,y),v = f,(x,y) .. (4)

where u and v known as characteristic coordinates. For this verify
Jacobian J of u and v given by (4) is non- zero,

ou OJu
d(w,v) |ox’ dy| oudv dv ou
= = = — * 0
d(x,y) |dv Odv[ dxdy Ox dy
ox’ dy

Step5S: Using (4), find p,q,7, s and t in terms of u and v.

Step6: putting the values of p,q,7,s and t in (1), we obtain the following
canonical form

0%z B ( 0z 62)
ou? ¢ ”’”'Z’au'au
0%z 3 ( 0z 62)
v ¢ ”’”'Z’au’au
SOLVED EXAMPLE

9%z
0x0y

2
EXAMPLI1: Reduce the equation % + 2

form and hence solve it.
SOLUTION: Let the given equation is
R+2s+t=0 (1)

0%z .
+ — = 0 to canonical
ay?

be parabolic and comparing (1) with Rr + Ss + Tt + f(x,y,2,p,q) =0,
R=1S8S=2T=1
So that
S2—4RT =0

Let A quadratic equation M+22+1=0 = A1=-1,—1(equal
roots)
The corresponding characteristic equation is
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dy _ _
(2)-1=0 dx —dy = 0
Integrating, xX—y=c
where ¢ being constant.
Take, u=x—-y ad v=x+y . (2)
So
Ju Ju
d(wv) |ox dy| oudv dv du
=—" = =———-——=114+11=2%0
d(x,y) |dv dv| dxdy Odx dy
ox’ dy
Now,

0z dz (du dz (0dv 0z 0z .
p=rr=5(50)+ 5 (5) =5+ 50 using )
0z dz (ou dz (o0v 0z 0z .
=5 =5 (5)+ 2 (5) = o+ 5r - wsing @)

From the above equations, we obtain

_azz_a(az>_<a+a>< 6+6)
7‘_axz_ax ox)  \ou v ou Ov

B azz+2 0%z +622
— \ou? oudv dv?

and

0z 9 /0 o 0 0z 0z

”rfa(a)%%*%)(%*a)
0%z 0%z 0%z
=6y2_26u6v+6v2

B 622_6<az>_<6+6)< az+62)
S_axay_ax ay)  \ou ov du OJv

B 0 ( az+62)+ 6( 62+62)
~ ou Ju Jdv ov Ju Jdv
azz+azz
du?  ov?
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Putting the values of r, s, t in equation (1), we have

92z d [0z
2 =0 or a_v(a_v)_o

Integrating w.r.t. v, we get
% = ¢(u), [0} being arbitrary function.

2= [ pdv + ) = vp ) + Y

z=(x+y)p(x—y)+p(x —y), which is desired solution, ¢,
being arbitrary functions.
EXAMPL2: Reduce the equation 7 + 2xs + x*t = 0 to canonical form
and hence solve it.
SOLUTION: Let the given equation is
r+2xs+x%t=0 (D

Comparing (1) with Rr + Ss+ Tt + f(x,y,z,p,q) =0,
R=1S=2xT = x?
So that
S2 — 4RT = 0, showing parabolic.

Let A quadratic equation ~ A2+ 2Ax+x>=0 = (A1+x%) =0 so
that 1 = —x, —x (equal roots)
The corresponding characteristic equation is
(Q)—xzo dy —xdx =0
dx

2
Integrating, y— x? =

where c; being constant.
2
X

Take, u=y-—= and v=x .. (2)
So
ou OJu
o(w,v) |ox’ ay| oudv ovou
d(x,y) |dv dv| dxdy dx dy
ox’ dy

J

Now,

2D_az_az(a_u)_l_ az(a_v) = —xZ 1% sing (2)

T ox  ou\ox av \ox ou  ov’
0z 0z (0u dz (odv 0z .
=—=—|—=)+ —(=) ==, using (2
q dy odu (ay) + v (63/) ou’ g()

From the above equations, we obtain
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_622_6(62)_6< az+az>_ 0z 6(62)_'_6(62)
r‘axz_ax ox)  odx xau ov/]  ou xax 0x dx \ov

=_Q_x[6 (62)6u+ 0 (62)617 N 0 (62)6u+ 0 (62)617

ou ou\ou) ax ' av\av)axl " au\ouwox  av\av/ax
0z 0%z 0%z 0%z 0%z
_a_x<_x6u2 +6u6v>_x6u2 +6u6v
_ (xz"’_zz_z,ca_zzﬁ_zz_%)
ou? oudv  0v? oJu

and
_ 0%z 0 (6)_ d (62)6u+ d (62)617_622
~0y?2  dy\dy) ou\ou/dy odv\ou/dy ou?

0%z 0 (62) 0 (62)6u 0 (62) v 0%z 0%z

S = axdy ox\ay) " ou\au)ox av\aw)ax - 9wz | ouov

Using the values of r, s, t in equation (1), we have
0%z 0z

v? du
Which is required canonical form.

Working rule for reducing a elliptic equation to its canonical form:

Step1: Let the given equation

Rr+Ss+Tt+ f(x,y,z,p,q) =0 ..(1D)
Be hyperbolic so that S? —4RT < 0
Step2: Let A quadratic equation R\ +SA+T=0 .. (2)

Step3: Suppose A; and A, be two complex conjugates of (2), we obtain

d d
é+)\1=o and ﬁw\z:o .(3)

Solving this equation, we obtain, f;(x,y) + ifo(x,y) = c¢; and
il y) —ifa(x,y) =c;

Step4: Now we select

u= filx,y) +if(x,y),v= filx,y) —ifa(x,y) (%)
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where u and v known as characteristic coordinates.Let a and 8 be two
real independent variables suchthatu = a +if and v=a—if
Step5: Using (4), find p, q, 7, s and ¢t in terms of u and v.

Step6: putting the values of p, q, 7, s and t in (1), we obtain the following
canonical form

azz 0%z B ( 0z 62)
daztap = ? 2 9a’ 9B
SOLVED EXAMPLE

2 2
EXAMPEL1: Reduce PDEs % + x? 2—; =0 orr + x%t = 0 to canonical

form.
SOLUTION: The given equation is
r+x’t=0 .. (1)

Comparing (1) with Rr + Ss + Tt + f(x,y,z,p,q) = 0,
R=1,S=0,T = x?
So that
§% — 4RT = 0, showing elliptic.

Let A quadratic equation ~ RA2+SA+T =0 = A*+x%2=0 so
that A = ix, —ix (equal roots)
The corresponding characteristic equation is

(Z—z)+ix=0 and (Z—z)—ixzo
Integrating

y+i(xz—2)=c1 and y—i(xz—z)=c2
Select,

u=y+i(xz—2)=a+iﬁ and u=y—i(xz—2)=a—i,8

where a=y and f==— ..(2)
Now

- zazc - Zi (M) t (aﬁ) xZ—B using (2)
1=5=5(5)+ 55 (5) = 5= using @

From the above equations, we obtain
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0’z 0 (62) 0 ( 62) B az+ 0 (62)
“oxz ox\ox) ox\"apg) T " *ox\op
0z [6 (62) da 0 (62) aﬁ] 0z 0%z

=95 " *19a\op) 5x " 95 \oa " o

0x

and

0%z 6(6)_ d (62)_622
~0y2  dy\dy) 0da\da) 0da?

Using the values of 7,, t in equation (1), we have

0z 26 z 262 9%z | 0%z _ 1 0z _ x?
ﬁ+ 6ﬁ'z+ aaz—O or 6ﬁ2+6a2_ YET. as f =

which is required canonical form.

2 62Z 2 622
EXAMPE2: Reduce PDEs y 2 TX

g4 __ 2 25 —

377 =0 oryr+x“t=0to
canonical form.

SOLUTION: The given equation is

yir+x*t=0 (1)

Comparing (1) with Rr + Ss+ Tt + f(x,y,z,p,q) =0,
R=v%5=0,T = x?
So that
§2 —4RT = 0 = —4x?y% <0, for x # 0,y # 0, showing elliptic.

Let A quadratic equation RN +SA+T=0 = y*2A2+x%2=0 so

that A2 = —X 1 =% _X
y y

The correspondmg characteristic equation is
WD) ) _&x_
( ) + S = 0 and ( ) =0

dx dx y
Integrating

y+ix?=¢, and y—ix?=c,
Select,
u=y+ix?=a+ip and u=y—ix’?=a—ip
where a=y? and fB=x? - (2)

Since two independent variables
__ 0z _ 0z (0a ap\ _ a_z .
T ax aa( )+6ﬁ'( )—Zxaﬁ,usmg(2)
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_ az __ 0z (da a_z % _ 6_2 .
- 6y 60:( ) + ap (ay) - Zy oa’ using (2)

From the above equations, we obtain

R e )
d <az> da 0 <62) aﬁ] 0z 0%z

=2 — - — | — . 2
2 +2x[6a 98)ax Top\oa)oxl T 2op T

and

0%z 6( 6)_ 0z 6(62) 0z

=52 "y \Pay) "5 T 5 \5a) T aa

zaz [ ( )aa 8(62)8,8 282+4 ,0%z
=252 92\a5) 5y T35\ 3yl T 232 TV a2
Using the values of r,, t in equation (1), we have
I L P L SN L
Vigp T Y gmt i g Ty g =
or

0%z 0%z 0z 0z
2aﬁ<a—ﬁ2+—>+a—+ﬁ£= 0
0%z 0%z 10z 10z
2 352 +§<Eaa+ﬁaﬁ> -

which is required canonical form.

4.8 SOLUTION OF LINEAR HYPERBOLIC
EQUATIONS:-

It what follow we aim at sketching the existence theorems for two types of
initial conditions on the linear hyperbolic equation

0%z _ #( ) .
axay_f X,¥,%,0,q - (1)

For both kind of initial conditions, suppose that the function f (xy, z, p, q)

Satisfied the following two conditions
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i.  f is continuous at all points of rectangular region R defined by
a<x<p,y <y <S4 forall values of x, y, z, p, q concerned.
ii.  f satisfied so called Lipschitz condition, mnamely,
|f (%, ¥, 22,02, 62) — (%, ¥, 21,P1,q1) |
< M{lz; — z1| + Ip2 — pal + 192 — qu 1}

is all bounded subrectangles r of R.

SELF CHECK QUESTIONS

1. Define a linear hyperbolic partial differential equation.
2. What is the characteristic equation associated with linear
hyperbolic equations?

What is the Laplace transform of f(t) = e? = =

s—a

What is the Laplace transform of f(t) = sinbt? = i

52+b2

What is the Laplace transform of the unit step function u(t)? = %
What is an elliptic partial differential equation (PDE)?

Define the canonical form of an elliptic equation.

What are the working rules for reducing an elliptic equation to its
canonical form?

RSN AW

9. Define a linear parabolic partial differential equation.

10. What is the purpose of finding characteristic curves for a given
PDE?

11. For a first-order linear PDE, what does the characteristic equation.

12. How do you determine the characteristic curves corresponding to a
second-order linear PDE in two variables u(x, y).

13. What role do characteristic curves play in determining the type and
behavior of solutions to a PDE?

14. In the context of hyperbolic, elliptic, and parabolic PDEs, how do
characteristic curves help in classifying these types of equations?
represent?

4.9 SUMMARY:-

In this unit we have studied In this unit we have studied classified
of PDEs based on their order and the number of independent variables,
order of a PDE by the highest order of the partial derivatives present in
the equation, Canonical forms, Laplace's transformation and solution of
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hyperbolic function. This unit covered the fundamental aspects of
classifying PDEs, understanding their order, transforming them into
canonical forms, using Laplace's transformation for solution, and dealing
with hyperbolic functions in the context of PDE solutions.

4.10 GLOSSARY:-

o Partial Differential Equation (PDE): An equation involving
partial derivatives that describe how a function depends on
multiple variables.

o Classification of PDEs: Categorization of PDEs based on their
order (first-order, second-order, etc.) and the number of
independent variables.

o Order of a PDE: The highest order of partial derivatives present
in a PDE, determining its classification as first, second, or higher
order.

o Canonical Forms: Standardized representations of PDEs that
simplify analysis and solution by expressing equations in a
structured and uniform manner.

. Linear PDE: A PDE where the dependent variable and its
derivatives appear linearly.

. Nonlinear PDE: A PDE where the dependent variable or its
derivatives appear nonlinearly.

. Homogeneous PDE: A PDE in which every term is a function of
the dependent variable and its derivatives and not of the
independent variables.

. Inhomogeneous PDE: A PDE with terms that depend on both the
dependent variable and its derivatives, as well as the independent
variables.

. Canonical Transformation: A systematic method of transforming
a PDE into a standard form or canonical form, making it easier to
analyze and solve.

o Characteristic Curves: Curves along which PDEs can be
transformed into ordinary differential equations (ODEs) in
canonical form.

o Method of Characteristics: A technique used to find solutions of
first-order PDEs by transforming them into systems of ordinary
differential equations along characteristic curves.
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e  Elliptic PDEs: PDEs in which the highest-order derivatives are of
second order and have mixed partial derivatives.

o Parabolic PDEs: PDEs in which the highest-order derivatives are
of second order and primarily involve first-order time derivatives.

. Hyperbolic PDEs: PDEs in which the highest-order derivatives
are of second order and primarily involve second-order spatial
derivatives.

. Laplace Transform: A mathematical operation that transforms a
function of time (often denoted as f(t)) into a complex function of
a complex variable s (often denoted as F(s)).

This glossary covers some fundamental terms related to the classification
and canonical forms of PDEs and the Laplace transform, used in
engineering and applied mathematics for solving linear differential
equations and analyzing dynamic systems

4.11 REFERENCES:-

e Sandro Salsa(2008), Partial Differential Equations in Action: From
Modelling to Theory.

e Robert C. McOwen(2003), Partial Differential Equations: Methods
and Applications.

4.12 SUGGESTED READING:-

e M.D.Raisinghania 20th eddition (2020), Ordinary and Partial
Differential Equations.

e Michael Shearer and Rachel Levy (2007), Partial Differential
Equations: Methods, Applications, and Theories.

e M.D.Raisinghania (2003), Advanced Differential Equations.

4.13 TERMINAL QUESTIONS:-

(TQ-1): Classify the following equations:
i Uy T Uy =U
1i. Uyy + 2Uyy + Uy = 2Uyy + Uy,

(TQ-2): Find the characteristicof 4r +5s+t+p+q—2 = 0.
(TQ-3): Find the characteristic of 4(sin?x)r + (2cosx)s —t = 0.
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(TQ-4): Reduce the differential equationt —s +p — g (1 + i) + 2 =0
to canonical form.

(TQ-5): Solve x%r — y?t + px — qy = x°.
(TQ-6): Reduce r + 2xs + x%t = 0 to canonical form.
(TQ-7): Reduce r — 65 + 9t + 2p + 3q — z = 0 to canonical form.
(TQ-8): Reduce r — 2s + t + p — g = 0 to canonical form.
(TQ-9): Reduce the following to canonical form and hence solve

i x*r+2xys+y%t=0

. r—4s+4t=0

iii. x%r+ 2xys +y*t+xyp +y?q =0

iv. 2r—4s+2t+3z=0

0%z . 0%z
V. 24+ —==0
ady2 = 0x2
Vi. Zyy + (sech*x)z,, =0
.. 0%z 0%z
2 2 —
11. -— — = 0
Vil y dx2 dy?
... 0%z 0%z
VI111. XE + ﬁ =0
. 0%z 0%z 0%z
ix. 322+10(>2)+372=0
dx2 + 0x0y + dy?

X. yr+x+y)s+xt=0

4.14 ANSWERS:-

SELF CHECK ANSWERS

10. Purpose of finding characteristic curves: The characteristic curves
provide a geometric interpretation and insight into the behavior and
properties of solutions to the PDE. They help in understanding how
solutions propagate and interact within the domain of the PDE.

11. First-order linear PDE and characteristic equation: For a first-order
linear PDE, the characteristic equation represents the direction along
which characteristics (or curves along which data propagate) are aligned in
the solution domain.

Department of Mathematics
Uttarakhand Open University Page 94



Advanced Differential Equations II MATS08

12. Determining characteristic curves for a second-order PDE: To
determine characteristic curves for a second-order linear PDE in two
variables u(x,y) one typically looks for curves along which the
coefficients of the highest-order derivatives remain constant. This involves
setting the coefficients of the second-order derivatives to zero and solving
the resulting system of ordinary differential equations to obtain the
characteristic curves.

13. Role of characteristic curves in determining solutions: Characteristic
curves guide the propagation of information and determine how solutions
evolve over time and space. They help in prescribing initial and boundary
conditions and play a crucial role in establishing well-posedness and
uniqueness of solutions to PDEs.

14. Classification of PDEs using characteristic curves:

e Hyperbolic PDEs: For hyperbolic equations, characteristic curves
correspond to waves along which disturbances propagate. The
behavior of solutions is influenced by these characteristic curves.

e Elliptic PDEs: For elliptic equations, characteristic curves typically
do not exist in the same sense as in hyperbolic or parabolic cases.
The solutions are smooth, and the equation's behavior is
characterized by properties such as positivity and coercivity.

e Parabolic PDEs: For parabolic equations, characteristic curves
determine the direction of propagation of heat or diffusion. These
curves help in understanding the evolution of solutions over time,
especially in phenomena governed by diffusion processes.

TERMINAL ANSWERS
(TQ-1):
1. Parabolic
1. Parabolic

(TQ-2):y—x=c; and y—(x/y) =c;
(TQ-3): y + cosecx — cotx = ¢; and y + cosecx + cotx = ¢,

9%z 0z 1 _ 0z z
Q) 5 et =0
(TQ-5): z ==+ P (x/y) + p(xy)
9%z 0z
(TQ-6): o~ ou
0z z 0z 1 _ 0z
(TQ-7: 55 =5- () +3%5,
Department of Mathematics
Uttarakhand Open University Page 95




Advanced Differential Equations II MATS08

(TQ-8): T2=% 7 = g(x +y) + Y(x +)
(TQ-9):
i 2=y (2)+v ()

X

. z=ydp(y+ 2x) +p(y + 2x)

iii. z=¢(y/x) +e Y (y/x)

iv. z=eV3¢(y+x) +e V32 (y + x)
P o1 (%)

Ve ba2 ap2 ~  2a’ \oa

Vi. Zya + Zﬁﬁ = {Zﬁ/(l — ﬁz)}Zﬁ

.. 0%z 9%z 1(10z 190z

viil, S+ S22 (Gaet5an) = O

0%z | 0%z 3z 30z 10z

viii, 22 =330 102

da2  9p2 4 49a 20B

. 0%z _ _ B
iX. 6u6v2_ 0,z=f(y—3x)+gBy—x)
] ] _
X W+ =0,2= =00 XD + (- D)
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Unit 5: Monge’s Method
CONTENTS:

5.1  Introduction

5.2 Objectives

5.3  Monge’s Method of Integrating Rr + Ss + Tt =V

54  Working Rules

5.5 Monge’s Method of Integrating Rr + Ss + Tt
+UGt—s?)=V

5.6 Summary

5.7 Glossary

5.8 References
5.9  Suggested Reading
5.10 Terminal questions
5.11 Answers

5.1 INTRODUCTION:-

Monge's method, also known as the method of characteristics or the
method of lines, is a mathematical technique developed by the French
mathematician Gaspard Monge in the late 18th century. This method is
primarily used to solve problems related to optimal transportation and
allocation of resources. The central problem addressed by Monge's
method is often referred to as the transportation problem. In this problem,
there are multiple suppliers located at distinct points and multiple
consumers also located at distinct points. The task is to find the most cost-
effective way to transport a certain amount of resources from the suppliers
to the consumers, with each transportation route incurring a specific cost.
Monge's method provides a geometric and intuitive approach to solving
optimization problems related to transportation. While the method is
particularly well-suited for problems with certain structural characteristics,
it may not be applicable to all types of transportation and allocation
problems. Despite its historical origins, Monge's method remains relevant
in fields such as operations research, economics, and logistics.

An equation is said to be of order two, if it involves at least on of the
2

. . . 0 92 0?
differential coefficients r = (—i) ,t= (—Z) ,S=1r= ( z ), but now
0x dy? dxdy
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of higher order; the quantities p and q may also enter into the equation.
Thus the general form of a second order Partial differential equation is

f(x,y,2,q,r1,51t) =0 .. (1)

It is only special cases that (1) can be integrated. Some well known
methods of solutions were given by Monge. His methods are applicable to
a wide class (but not all) of equation of the form (1). Monge’s methods
consists in finding one or two first integrals of the form

u=a¢w) -(2)

Where u and v are known as functions of x,y,z,p and g and ¢ is an
arbitrary function. In other words, Monge’s methods cosnists in obtaining
relations of the form (2) such that equation (1) can be derived from (2) by
eliminating arbitrary function. A relation of the form (2) is known as an
intermediate integral of (1). Every equation of the form (1) need not
possess an intermediate integral. However, it has been shown that most
general partial differential equations having (2) as an intermediate integral
are of the following forms

Rr+Ss+Tt=V and Rr+Ss+Tt+U@t—s*)=V  ..(3)

where R,S,T,U and V are functions of x,y,z,p and q.Even equation (3)
need not always possess an intermediate integral. In what follows we shall
assume that an intermediate integral of (3) exist

5.2 OBJECTIVES:-

Monge's Method addresses these objectives, offering a comprehensive
approach to solving transportation problems and finding applications in
various fields where efficient resource management is a critical
consideration.

5.3 MONGE’S METHOD OF INTEGRATING Rr +
Ss+Tt=V:-

Let the given

Rr+S8Ss+Tt=V (1)
where R, S, T, U and V are functions of x,y, z,p and q.
We know that
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_ 0z _ 0z
P= %% 1= oy
_622_6(62)_6p t_azz_a<az>_a \I
" axz T ax\ox) " ox ~dyz  ody\ay) o0y ¥ @
_622_6(62>_6q _622_6<62>_6p '
S_axay_ax dy)  ox S_ayax_ay d0x _ayJ
Now
dp dp ,
dp = —dx + —dy = rdx + sdy, using (2)
0x dy
dq dq ..(3)
dq = adx + @dy = sdx + tdy, using (2))
From (3), we get
r= dp—sdy and r= dq-sdx
dx dy
Putting these values of r and s in (1), we obtain
dp — sd dq — sd
rz—p > y+Ss+—q > x=V
dx dy
R(dp — sdy)dy + Ssdxdy + T(dq — sdx)dx = Vdxdy
(Rdpdy + Tdqdx — Vdxdy) + s(Rdy? — Sdxdy + Tdx?)
=0 .. (4)

Clearly any relation between x, y, z, p and g which satisfies (5) must also
satisfy the following two simultaneous equations

Rdpdy + Tdqdx — Vdxdy = 0 ..(5)
Rdy? — Sdxdy + Tdx* = 0 .. (6)

The equations (5) and (6) are called Monge’s subsidiary equations and
the relations which satisfy these equations are called intermediate
integrals.

Now equations (6) being a quadratic, in general, it can be resolved into
two equations, say

dy —m;dx =0 . (7)
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dy —m,dx =0 ...(8)
Now the following cases aries:
Casel: When m,; and m, are distinct in (7) and (8).

In case (5) and (7), if necessary by using well known the result dz =
pdx + qdy, will gives two integrals u; =a,u, =b , where a,b ar
arbitrary constants. These give

w = f1(vy) «(9)

where f; is an arbitrary function. It is called an intermediate integral of

(1).
Next, taking (5) and (8), we get
Uy = f2(v,) ..(10)

where f, is an arbitrary function. Thus we have in two cases two distinct
intermediate integrals (9) and (10). Solving these equations, we obtain
values of p and g in well known relation

dz = pdx + qdy
And then integrating (11), is required complete integral of (1).
Casell: When m; = m, i.e., is perfect square.

As before, in this we get only one intermediate integral which is in
Lagrange’s form

Pp+Qq=R .. (11)

Solving (11) with the help of Lagrange’s method, we obtain the required
complete integral of (1).

Remark1: Usually with case I, we get second intermediate integral
directly by using symmetry. However sometimes in the absence of any
symmetry, we find the complete integral with help of only one
intermediate integral. This is done with the help of using Lagrange’s
method.

Remark2: While getting an intermediate integral, remember to use the
relation dx = pdp + qdy as described below
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1. pdx + qdy + 2xdx = 0 can be re-written as
dz+ 2xdx =0 sothatz+x%=c
il xdp + ydq = dx can be re-written as

xdp + ydqpdx + qdy = dx + pdx + qdy
d(xp) +d(yq) =dx+dz sothatxp +yp =x+z

Remark3: while integrating, we shall use the following types of
calculations. In what follows, f and g are arbitrary functions and k and a
are a constant.

i. [kf(t)dt=g(t)

ii. [kf(©)dt = g(t)

ifi. [k f(t2)d(t?) = g(¢?)

iv. [kf(x+y)dx+y)=g(x+y)

< gues (a) 1) 1) -o)

Vi ftiz flat®)d(t?) = [ (a’;) f(at?)d(at?) = g(at?)

Importance Note: For sake of convenience, we have divided all question
based on Rr + Ss + Tt = V in four types. We shall now discuss them one
by one.

5.4 WORKING RULE:-

Typel basedon Rr + Ss+Tt=V:

Step1: Write the given equation in the standard form
Rr+Ss+Tt=V

Step2: Put the values of R,S,T and V in the Monge’s subsidiary
equations:

Rdpdy + Tdqdx — Vdxdy = 0 ..(5)
Rdy? — Sdxdy + Tdx* = 0 .. (6)
Step3: Factories (1) into two distinct factors.
Step4: You should use remark 2, while finding intermediate integral.

Step5S: Solve the two intermediate integrals given in step 4 and obtain the
values of p and gq.
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Step6: Putting the values of p and q in dz = pdx + gdy and integrate to
arrive at the required general solution. You should use remark 3, while
integrating dz = pdx + qdy.

SOLVED EXAMPLE

EXAMPLET1: Solve r = a®t
SOLUTION: Let the given equation
r = a’t .. (1)
Comparing it with Rr + Ss + Tt = V, we obtain
R=1,5=0,T =—a?V =0, Hence Monge’s subsidiary equations
Rdpdy + Tdqdx —Vdxdy =0 and R dy?—Sdxdy + Tdx* =0
Since dpdy — a’dqdx =0, dy*—a?dx*=0 ..(2)
From (20, we get
(dy —adx)(dy + adx) =0
Hence two systems of equations are
dpdy —a?*dqdx =0, dy—adx=0 ..(3)
dpdy — a’dqdx =0, dy+adx=0 ..(4)
Now integrating, we have
y—ax =c¢

Eliminating Z—z between the equations of (3), we have
dy—adq =0 sothat p—aq=rc,
Hence,

p—aq = ¢1(y — ax)
Similarly

p+aq = ¢,(y +ax)
Solving the above equations for p, g, we get

1
p= §{¢z(y +ax) + p(y —ax)}, q

1
= %{4)2(3’ +ax) — ¢, (y — ax)}
Putting the values of p,q in dz = pdx + qdy, we obtain

1
dz = E{(Ibz (y + ax) + ¢, (y — ax)}dx
1
+ %{(Ibz (y + ax) — ¢, (y — ax)}dy

1 1
= %%(y + ax)(dy + adx) — %%(y — ax)(dy — adx)

Integrating again
z =Y,y + ax) + Y, (y — ax),P,, P, being arbitrary functions.
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EXAMPLE2: Solve r + (a + b)s + abt = xy.
SOLUTION: Let the given equation
r = a’t .. (1)
Comparing it with Rr + Ss + Tt = V, we obtain
R=t,S=a+b, T =ab,V =xy,Hence Monge’s subsidiary equations
Rdpdy + Tdqdx —Vdxdy =0 and R dy?— Sdxdy + Tdx? =
Since
dpdy + abdqdx — xydqdx = 0, dy? — (a + b)dxdy + abdx? =
0 - (2)
From (2), we obtain
(dy — bdx)(dy —adx) =0
Hence two systems of equations are
dpdy + abdqdx — xydqdx =0, dy —bdx =0 ..(3)
dpdy + abdqdx — xydqdx =0, dy —adx =0 ...(4)
Now integrating, we have
y—bx=c ..(5)
Eliminating Z—z between the equations of (3), we have
dp + abdq —xydx =0 or dp+adq—x(c; + bx)dx =0

Integrating, p + aq — = 2—§x3 = ¢,
— bx b
'p+aq—(yz—)x2—§x3=cz
p+aq— (y) x2+2 x =c, ...(6)

Using (5) and (6),the ﬁrst mtermediate integral corresponding to (3), we
have

p+aq —sz +%x3 = ¢1(y — bx)
Similarly
p+bq—@x + x = ¢,(y — ax)
Solving above equatlons we obtam
p= %x ——(a +b)x° + (a — b)[ag,(y — ax) — b (y — bx)]

1
q =2+ (a=b) " pr(y = bx) = ¢ (y — ax)]
Putting these values in dz = pdx + qdy
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1
dz = @xzdx —g(a + b)x3dx

2
+ (a — b)ag,(y — ax)dx — b, (y — bx)dx]

1
+ gx3dy + (a—b) ¢ (y — bx)dy — ¢, (y — ax)dy]

1 1
dz = g(3x2ydx + x3dy) — g(a + b)x3dx

— (b —a) [¢po(y — bx)dx — ¢, (y — ax)dx]
— (b —a) Mg, (y — bx)dy — ¢, (y — ax)dy]

1 1
dz = g(3x2ydx + x3dy) — g(a + b)x3dx

+ (b —a) ¢, (y — ax)(dy — adx)
— (b —a) '¢,(y — bx)(dy — bdx)

dz = %d(x3y) - % (a+ b)x3dx + (b —a) 1¢p,(y — ax)d(y — ax)

—(b—a)" 1 (y — bx)d(y — bx)

Integrating, z = %(x3y) — i (a+ b)x* + Y, (y — ax) + P, (y — bx)
Where 1, and Y, are arbitrary functions.
EXAMPLE3: Solve t — rsec*y = 2qtany.
SOLUTION: Let the given equation

t —rsecty = 2qtany .. (1)
Comparing (1) with Rr + Ss + Tt = V, we find

R = —sec*y,S =0,T =1,V = 2qtany
Monge’s subsidiary equations are
Rdpdy + Tdqdx —Vdxdy =0 and R dy?— Sdxdy + Tdx? =
0 -(2)
Substituting the values of R, S, T and V' in above equations, we obtain

—sec*ydpdy + dqdx — 2qtanydxdy =0 ...(3)
—sectydy? +dx* =0 . (4)
From (3),
(dx — sec?ydy)(dx + sec’ydy) = 0

So that

dx — sec’ydy =0 ..(5)

dx + sec’ydy = 0
Substituting the value of dx from (5) in (3), we get
—sectydpdy + dqsec?ydy — 2qtanydy.sec’ydy = 0
—dp + cos?ydq — 2qsiny cosydy = 0
dp — (cos?ydq — 2qsiny cosydy) = 0
dp — d(qcos?y) =0
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Now integrating, p — qcos?y = ¢; ..(6)
Integrating (5), we get
x —tany = c, . (7)

From (6) and (7), one integral of (1) s

p — qcos’y = f(x — tany)
Similarly

p + qcos?y = g(x + tany)
Solving above equations for p, q, we find

1 g—f 1 5
P—E(f+g),Q—m—§(g—f)SeC y
Now, dz = pdx + qdy

1 1
dz = E(f + g)dx + 5(9 — f)secydy
1 1
dz = Ef(x — tany)(dx — sec?ydy) + Eg(x + tany) (dx + sec?ydy)

1 1
dz = Ef(x — tany)d(x — tany) + Eg(x + tany) d(x + tany)

Integrating it, z = F(x — tany) + G(x + tany), F, Gbeing arbitrary
functions.
Typell based on R + Ss + Tt = V:

Step1: Write the given equation in the standard form
Rr+Ss+Tt=V

Step2: Put the values of R,S,T and V in the Monge’s subsidiary
equations:

Rdpdy + Tdqdx — Vdxdy = 0 ..(5)
Rdy? — Sdxdy + Tdx? = .. (6)
Step3: Factorise (1) into two distinct factors.

Step4: Taking one factor of step 3 and use (2)to get an intermediate
integral. Don’t find intermediate integral as we did in type 1. If required
use remark 1.

Step5S: Solve the two intermediate integrals given in step 4 in the form of
Lagrange’s equation, namely, Pp + Qq = R. Using the well known as
Lagrange’s method we arrive at the desired general solution of the given
equation.
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SOLVED EXAMPLE

EXAMPLEL: Solve (r —s)y+(s—t)x+q—p=20
SOLUTION: The given equation can be given as
yr+s(x—y)—tx=p—q (1)
Comparing (1) with Rr + Ss + Tt = V, we obtain
R=y,S=x-y,T=—xV=p—q
Monge’s subsidiary equations are
Rdpdy + Tdqdx —Vdxdy =0 and R dy? — Sdxdy + Tdx? =
0 - (2)
ydpdy — xdqdx + (q — p)dxdy =0 ...(3)
ydy? — (x — y)dxdy — xdx* =0 ...(4)
From the above equation
(dy + dx)(ydy — xdx) =0
dy+dx=0 or dy = —dx
and ydx —xdy =0
Using (3) in (1), we have
—ydpdx — xdqdx — (q)dxdx — pdxdy = 0
ydp + xdq + qdx + pdydx = 0
(ydp + pdy) + (xdq + qdx) =0
diyp) +d(xq) =0 = yp+qgx=c;  ..(5)

Integrating it, X+y=c, ... (6)
From (5) and (6), one intermediate integral is

yo+qx=f(x+y)
Which is lagrange’s form and so

dx dy dz

x oy f(x+y)
From first and second fractions, we obtain

2xdx — 2ydy =0

Integrating it, x2+y?t=a
Taking second and third fractions, we have
dy dz
y fGx+y)
Or
dx dz

GZ—a)2 flx+ (- )]

1
_x+(x*-a)2
- (x2 — a)1/2
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dx _dv
x2—a)/2 v
dz —%f(v)dv =0
Integrating again,
z—Fw)=b»b or Z—F[x+(x2—a)%]=b
z—F(x+7y)=hb, as y=(x?*—-a)/?
Hence,z— F(x +y) =G(x?> —y?) or z=F(x+y)+ G(x?—y?)
where F and G are arbitrary function.
EXAMPLE2: Solveq(1+ q@)r—(p+q + 2pq)s+p(1+p)t =0
SOLUTION: The given equation can be given as
ql+q@r—(p+q+2pg)s+p(l+p)t=0 - (1D
Comparing (1) with Rr + Ss + Tt = V, we obtain
R=q(1+q),S=—-(@+q+2pq), T=p(1+p)t,V =0 ..(2)
Monge’s subsidiary equations are
Rdpdy + Tdqdx —Vdxdy = 0 and R dy? — Sdxdy + Tdx? =
0 .(3)
Using (2) in above equation
R dy? — Sdxdy + Tdx? =
(g +q*)dpdy + (p + p*)dqdx =0 ...(4)
and
(q+q®) dy*+ (p+q+2pq)dxdy + (p+p?)dx? =0 ..(5)
=q(1+q)dy? + (p + pg)dxdy + (p + pq)dxdy + p(1 + p)dx?
= q(1+ q)dy? + p(1 + q)dxdy + p(1 + q)dxdy + p(1 + p)dx*
= (1+ q)dy(qdy + pdx) + (1 + p)dx(qdy + pdx)
= (1+ q)dy(qdy + pdx) + (1 + p)dx(qdy + pdx)
= (qdy + pdx)[(1 + q)dy + (1 + p)dx] =0
= qdy +pdx =0 = qdy =—-pdx ..(6)
and
A+q@dy+ (1 +p)dx=0
Putting (6) in (5), we have
(1+ q)dp(qdy) — (1 + p)dq(—pdx) = 0
From (6), (qdy) is equal to(—pdx).
Hence, dividing each term of above equation by (—pdx), we obtain
(1+q)dp— (1 +p)dg=0
dp  dq _ 0
(1+p) (+q
Integrating it, log(1 + p) —log(1 + q) = logc;  ...(7)
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(1+p)
= ..(8
(1 + q) C1 ( )
Using dz = pdx + qdy becomes dz = 0 so thatz = ¢,
From (7) and (8), one integral of (10) is

1
2=/ o 1+p= 1+
p—F()a = f@)

Here the Lagrange’s equations are

dx dy dz
1 —f®» f@-1
Changing 1,1,1 multipliers of each above fractions, we obtain

dx +dy +dz dz

T 1-f@+f@ -1 fl»)-1

= dx+dy+dz=0 sothat x+y+z=c,
From first and third fraction of Lagrange’s equation are

dx — (f(2) — 1) tdz=0
Integrating it, x + F(z) = ¢,
Hence, x+ F(z) = G(x + y + 2), F, G being arbitrary functions.
Typelll basedon Rr + Ss+ Tt =V:
Step1: Write the given equation in the standard form

Rr+S8s+Tt=V
Step2: Put the values of R,S,T and V in the Monge’s subsidiary
equations:
Rdpdy + Tdqdx — Vdxdy = 0 ..(5)
Rdy? — Sdxdy + Tdx* = 0 .. (6)
Step3: RH.S. of (2) reduces to a perfect square and hence it gives only one
factor in place of two as in Type I and Type II.
Step4: Start with only one factor of step 3 and use (2) to obtain an
intermediate integral.
Step5: Re-write the intermediate integral of step 4 in the form of Pp +
Qg = R and using the well known as Lagrange’s method we arrive at the
desired the general solution of the given equation.
SOLVED EXAMPLE

EXAMPLEL1: Solve x>r —2xs +t+q =0
SOLUTION: Now using Monge’s subsidiary equations:

x2dpdy + dq(—xdy) + q(—xdy)dy = 0 (D

Rdy? — Sdxdy + Tdx* =0 - (2)
Now from (1) a, we have

(xdy +dx)*=0 > xdy +dx =0 ..(3)
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C;—x+dy=0 = y+logx =c; ,..(4)
Putting the value of (3) in (1), we obtain
x%dpdy + dq(—xdy) + q(—xdy)dy = 0

dq qdx q
d=(F=57) =0 o d(p-y)=o
Integrating it,
q
——= ..(5
p X C2 ()

From (4) and (5), we obtain

q
p—2~ ¢y +logx) or xp —q = x¢p(y + logx)
Here the Lagrange’s equations are
dx dy dz
x -1 x¢,(y+logx)
Taking the first two fractions of above equations

. (6)

1
;dx+dy=0 = y+logx=c3 ..(7)

Using(7), first and third fractions of (6) written as

dx  dz _

Y ey z—x¢1(c3) = ¢4

z = x¢1(y + logx) = c4

Hence
zZ—x¢p;(y + logx) = ¢p,(y + logx) , ¢4, P, being arbitrary functions.
EXAMPLE2: Solve (y — x)(q*r — 2pgs + p?t) = (p + 9)*(p — q)
SOLUTION: Now using Monge’s subsidiary equations are

(v — x)(q*dpdy + p?dqdx) — (p + @)’(p — Q)dxdy =0 ...(1)
q?dy? + 2pqdxdy + p?dx* = 0 - (2)

Now from (2) , we have
(qdy + pdx)* =0  or qdy + pdx = 0 (3)
dz = pdx + qdy = dz=0 =2z=c¢ . (4)

Using (3) in (1), we given that
(y —x)(qdp —pdq) — (p + ¢)*(p* — q*)(dx —dy) =0

2.5 (p) _ (P*-4*)dx-y) _ ae-y , 48
q*d (q) ——F =0 or pae + (E)Zq_l =0
q
P)q
= log(x —y) + élog (Eg“) = %logcz
q
= (x — y)? —(Z;Z) =, .. (5)

From (4) and (5), an intermediate integral is
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=P EL=¢() o = -D) =@+ D
P{(x = y)? = 1D} —q{(x = »)* + $1(2)} = 0

Here the Lagrange’s equations are
dx _ dy _dz ©)
== —{x-»?*-¢1(2} 0 7
Now the third fraction of (6) is dz = 0 so that z = a, where a ia an
arbitrary constant.
Taking the first two fractions of above equations
dx+dy dx—dy
—2¢1(2) 2(x—y)?
d(x —y)
dx+y) =¢1(a) —=3
y ¢1 (x _ y)z
Integrating, x+y— ¢ (a)(x—y) 1 =b
x+y—¢:1 (@D (x—y)""=b - (7)
From (7) and (6), written as
x+y =1 (Dx—y)" = ¢2(2)
where ¢4, ¢, being arbitrary functions.
TypelV basedon Rr + Ss+ Tt =V:

Let R.H.S. of Rdy? — Sdxdy + Tdx? = 0 neither gives two factors nor a
perfect square (Typel, Typell, Typelll above). In such cases factors
dx,dy,p,1 + p etc. are cancelled as the case may be and an integral of
given equation is given as usual. This integral is then integrated by
methods described in previous chapter.

SOLVED EXAMPLE

EXAMPLET1: Solve (g + 1)s = (p + D)t
SOLUTION: Given (q+1)s—(p+ 1t =0 (D
Comparing (1) with Rr + Ss + Tt = V, we have

R=0, S=q+1, T=—-(p+1), V=0..(2
Monge’s subsidiary equations are

Rdpdy + Tdqdx — Vdxdy = 0 ..(3)
Rdy? — Sdxdy + Tdx* = 0 . (4)
Putting the values of (2), in (3) and (4), we get
—(1+p)dpdx =0 ..(5)
—(q+ 1dxdy — (p+1)dx* =0 .. (6)
Dividing (5) by —(1 + p)dx and (6) by - dx we get
dg =0

@+Ddy+(p+1dx=0
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dy + qdy +pdx +dx =0
dx +dy+dz =0 wheredz = pdx + qdy
Integratingit, x + y+z=c¢;, q=c¢; ...(7)
From (7),an integral of (10) is
q=f(x+y+2) or Z—f]:f(x+y+z)
Integrating above equation w.r.t. y (treating x as constant), we get

z=F(x+y+2z)+ G(x),F,G being arbitrary functions.
EXAMPLE2: Solve pq = x(ps — qr).

SOLUTION: Given xqr —xps + 0.t = —pq (1)
Monge’s subsidiary equations are
xqdpdy + pqdydx = 0 ..(3)
xqdy? + xpdxdy = 0 .. (4)
Dividing (2) by qdy and (3) by xdy, we have
xdp +pdx =0 ..(5)
qdy +pdx =0 ..(6)
Now using dz = pdx + qdy,sodz=0 =>z=¢
Again integrating, xp = c, - (7)
From (6) and (7), we obtain one integral of (1) is
0z 1 0z 1
xp=f(z) = xa=f(2) :ma=;

Integrating it partially w.r.t. x we have
F(x) =logx + G(y).

5.5 MONGE’S METHOD OF INTEGRATING THE
EQUATIONT + Ss + Tt + U(rt — s?) = V:-

Given Rr+Ss+Tt+U(@t—s?)=V (1)
Let, we get
dp =Z—Z+Z—§dy =rdx + sdy
and
dq  0q
dq =a+@dy = sdx + tdy
So

dp — sdy (dg — sdx)
r=——— and t=-—"F7—
dx dy

Substituting these values in (1), and simplifying, we have
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(Rdpdy + Tdqdx — Vdxdy — Udpdq)
— (Rdy? — Sdxdy + Tdx? + Udpdx + Udqdy) = 0
Now Monge’s subsidiary equations are
L = Rdpdy + Tdqdx — Vdxdy — Udpdq = 0 - (2)
M = Rdy? — Sdxdy + Tdx? + Udpdx + Udqdy =0 ...(3)

We cannot factorise Mas we did before, on around of the presence of the
additional term Udpdx + Udqdy. Hence let us factorise M + AL, where 4
is some multiplier to be determined later. Now we obtain

M + AL = Rdy? — (S + AV)dxdy + Tdx? + Udpdx + Udqdy +
ARdpdy + ATdqdx + AUdpdq = 0 .. (4)

Comparing coefficients in (4) and (5), we can be written as

1 A
M + AL = (Rdy + mTdx + kUdp) (dy + adx + Edq) =0 ..(5

Since
%+mT =(S+AV) - (6)
k=mand 2 =U - (7)
Now, the two relations of (7) give m = RAU
Substituting this value of m in (6) and simplifying, we have
AUV +RT)+AUS+U?=0 ..(8)
Which is quadratic in A. Let A; and A, be it roots.

When = 1, , we obtain m = RA,/U.

From (5), we get

(Rd +R/11Td + RA,d )(d + v d +Ud )—0
Y+ Tdx 1dp ) {dy + po-dx +pdq) =

(Udy + 1,Tdx + UAdp)(RAdy + Udx + UAydq) =0 ...(9)

Similarly for A = A,, putting from (5), we have
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(Udy + 2,Tdx + UA,dp)(RA,dy + Udx + UA,dq) = 0 ...(10)

Now one factor of (9) is combined with one factor of (1) to give an
intermediate integral. Exactly similarly the other pair will give rise to
another intermediate integral. In this connection remember that we must
combine first factor of (9) with the second factor of (10) and similarly the
second factor of (9) with the first factor of (10). Thus for the desired
solution the propose method is so combine the factors in the following
manner:

Udy + A1Tdx + UAdp = O} 11
Udx + A,Rdy + UA,dgq =0 - (1)
Udy + 1,Tdx + UA,dp = 0} 12
Udx + A1Rdy + UA;dq = 0 - (12)

Since the equation (11) give two integrals u; = ¢ and v; = d; so that one
intermediate integral is given by

u; = f1(v1) - (13)

Similarly

Uy = f2(v,) - (14)

Since now solve (13) and (14) for p and q and put in dz = pdx + qdy,
which after integration gives the desired general solution.

Remarkl1: There are in all four ways of combining factors of (9) and (10).
By combining the first factors in these equations, we would get udy = 0
on subtraction (after dividing equations by A, and 4, respectively) and this
would not produce any solution. Similarly, combining the second factors
in these equations would give udx = 0 and hence would produce no
solution. Hence for getting integrals of the given equation we must
proceed as explained in (11) and (12).

Remark2: In what follows we shall use the following two results of the 1
quadratic ad® + bA + ¢ = 0.

i. a=b=0,i.e., the coefficient of 22 and A both equal to zero
imply that roots of the equation are equal to oo.
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ii. a=0butbh # 0i.e., the coefficient of A? is zero but that of 1 is

non-zero imply that one root of the equation is oo and the other is
Cc

b

Remark3: when the two values of A are equal, we shall have only one
intermediate integral u; = f;(v;) and proceed as explained in solved
examples of Type I based on Rr + Ss + Tt + U(rt — s?) = V written
below. An integral of a more general form can be given by taking the
arbitrary function occurring in the intermediate integral to be linear. Let
u, = mv; + n, where m and n are some constants. Then integrating it by
Lagrange’s method we find the solution of the obtained equation.

Solved Example

EXAMPLEI1: Solve 57 + 65 + 3t + 2(rt — s?) + 3 = 0.
SOLUTION: Given 57 + 6s + 3t +2(rt —s?) = -3 ..(1)
Comparing the given equation with R 7 + Ss + Tt + U(rt — s?) =V, we
obtain
R=5S5=6T=3,U=2andV = —3. Hence

AUV +RT)+ASU+U?=0

Becomes 922 +1224+4=0 or (31+2)>=0 sothatA, =

2
/12 —_ _g.
Hence

Udy + 11,Tdx + UA,dp = O} 1

Udx + A,Rdy + UA,dq =0 - (D)

2 2
2dy + (—2).3dx + (-2).2dp = 0

and 2dy +(—2).3dx + (—2).2dp = 0
3dy —3dx —2dp =0 and 3dx —5dy — 2dq =0
Integrating, 3y —3x —2p =c¢; and 3y —5x — 29 = ¢, -..(2)
Here the only one intermediate integral is

3y —3x—2p = f(3x — 5y — 2q) ..(3)

where f is an arbitrary function.
From (2), we obtain

p =%(3y—3x—cl) and q =%(3x—5y—cz)

Substituting the value of p and q in dz = pdx + qdy, we get
dz = 3(ydx + xdy) — 3xdx — 5ydy — c;dx — c,dy
2dz = 3(ydx + xdy) — 3xdx — 5ydy — c;dx — c,dy

Integrating, 2z = 3xy — %xz — gyz — X — Ry + ¢35
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which is required the complete integral, c;, c,, c; being arbitrary constants.
EXAMPLE2: Solve 3r + 4s + t + (rt — s?) = 1.
SOLUTION: Given 57 + 6s + 3t +2(rt —s?) = -3 ..(1)
Comparing the given equation with R 7 + Ss + Tt + U(rt — s2) =V, we
obtain
R=3,5=4T=1,U=1,V =1, Hence

AUV +RT)+ASU+U?=0
Becomes 44> +4A+1=0 or (2A+1)2=0 sothati; =1, = —%.

Now there is only one intermediate integral obtained by equations

Udy + 1,Tdx + UAldp =0
Udx + A,Rdy + UA,dq = 0} - (D)
dy+(—%)dx+(—%)dp=0 and dx+(—%).3dy+(—§)dq=0

—2dy+dx+dp =0 and 2dy —2dx +dq =0 ..(2)
Hence the only one intermediate integral is obtained by
—2y+x+p=fQBy—2x+q)
where f is an arbitrary function.
Now from (2), we have
p=2y—x+c¢,q=-3y+2x+c,
Substituting these values of p and q in dz = pdx + qdy, we get
dz =2y —x +cy)dx + (—3y + 2x + c,)dy

dz = 2(ydx + xdy) — xdx + 3ydy + c,dx + c,dy
Integrating z = 2xy — %xz - %yz + ¢1x + ¢y + c¢3 is required complete
integral, ¢y, ¢5, c3 being arbitrary constants.

SELF CHECK OQUESTIONS

1. What do characteristic curves represent in the context of Monge's
method?

2. Why are initial conditions or boundary conditions necessary when
using Monge's method? Explain.

3. Compare Monge's method with other methods used to solve first-
order linear PDEs. Highlight advantages and limitations.

4. What are the characteristics in Monge's method?

5. Can Monge's method be applied to nonlinear partial differential
equations?

5.6 SUMMARY:-

Monge's method, especially when expressed through PDEs, poses
challenges in terms of analytical solutions. In many cases, numerical
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methods are employed to approximate solutions. Additionally, the original
Monge formulation can be restrictive, leading to the introduction of
Kantorovich's relaxed formulation, which is often more amenable to
computational methods. Monge's method and its associated PDEs have
applications in diverse fields, such as optimal resource allocation,
economics, and image processing, where understanding the optimal
transport of mass or information is crucial.

5.7 GLOSSARY:-

o Monge's Method: A technique for solving first-order partial
differential equations (PDEs) using characteristic curves. Also
known as the method of characteristics.

o Partial Differential Equation (PDE): An equation that involves
partial derivatives of a function with respect to two or more
independent variables. Describes the relationship between the
function and its partial derivatives.

o Method of Characteristics: A mathematical technique that
involves finding characteristic curves along which the solution to a
PDE remains constant. Particularly effective for first-order PDEs.

o Characteristics: Curves along which the solution to a PDE remains
constant. Determined by solving a system of ordinary differential
equations (ODEs) derived from the PDE.

o Parameterization: The process of introducing auxiliary variables
to represent the characteristics. This helps in transforming the PDE
into a system of ordinary differential equations (ODEs) along the
characteristics.

o Ordinary Differential Equation (ODE): An equation involving
derivatives of a function with respect to a single independent
variable. Characteristic equations along the characteristics are often
ordinary differential equations.

. Reduction to ODEs: The step in Monge's method where the
original PDE is transformed into a set of ordinary differential
equations along the characteristic curves.

o Compatibility Conditions: Conditions that must be satisfied by the
solutions along different characteristics to ensure the overall
consistency of the solution to the PDE.

. Integration: The final step in Monge's method involves integrating
the ordinary differential equations along the characteristic curves to
determine the solution to the original partial differential equation.
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5.10 TERMINAL QUESTIONS:-

(TQ-1): Solve r = a’t
(TQ-2): Solver =t
(TQ-3): Solve r — tcos?x + ptanx = 0
(TQ-4): Solve (r —s)y+(s—t)x+q—p =0
(TQ-5): Solveq(1+q)r—(p+q+2pq)s+p(1+p)t=0
(TQ-6): Solve the following by Monge’s method.
L (x=—y)ar—xs—ys+yt)=x-y)p-q
ii. xy(t—1)+x*—y*)(s—2)=py—qx
iii. x’r —y?t—2xp+2z=0
iv. (r —t)xy —s(x* —y*) = qx — py
v. q*r+p?t—2pqs = pt —qs
vi. x2r —y?t = xp — yq
(TQ-7): Obtain the integral g?r + p*t — 2pqs = 0 in the form y +
xf(z) = F(z)
(TQ-8): Explain the fundamental principles of Monge's method and its
role in solving partial differential equations. Provide a step-by- step
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walkthrough of the application of Monge's method to a generic partial
differential equation.

(TQ-9): Apply Monge's method to integrate the partial differential
equation Rr+Ss+Tt+ U@t—s?)=V . Provide a step-by-step
explanation of how Monge's method is employed to find the solution, and
discuss any considerations or special cases in the process.

(TQ-10): Apply Monge's method to integrate the partial differential
equation R v + Ss + Tt = V. Provide a detailed walkthrough of the steps
involved, including the derivation of characteristic equations, solving
ordinary differential equations, and reconstructing the solution. Discuss
any considerations or special cases that arise during the process.

5.11 ANSWERS:-

SELF CHECK ANSWERS

1. Characteristic curves represent paths along which the solution to a
partial differential equation remains constant.

2. Initial or boundary conditions are necessary to determine the
specific solution from the general solution obtained through the
method of characteristics.

3. Monge's method is particularly effective for problems with
characteristics that are easy to compute, but it may become
complex for certain scenarios. Other methods, like the method of
characteristics or separation of variables, may be more suitable in
different situations.

4. Characteristics are curves along which the partial differential
equation reduces to an ordinary differential equation.

5. Yes

TERMINAL ANSWERS

(TQ-1):z = P, (y + ax) + P, (y — ax)
(TQ-2):z = P (y + x) + P, (y — x)
(TQ-3):z = F(y — sinx) + G(y + sinx)
(TQ-4):z=F(x +y) + G(x* —y?)
(TQ-5):x+F(z2)=G(x+y+2z)
(TQ-6):

i. Fixy)+z=G(x+y)

ii. z—xy+F(x2+y2)=G(%)

i zy+ ) (2) = 920
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iv. Z=F(x2+y2)+G(§)

V. y=F(2z)+G(x—2z)

vii z=x?H G) + G(xy)
(TQ-7): y + f(xz) = F(2)
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Unit 6: Laplace and Poisson Equations
CONTENTS:
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6.13  Terminal questions

6.14  Answers

6.1 INTRODUCTION:-

In this unit we will study about the Laplace’s and Poisson's equations are
fundamental in mathematical physics, finding applications in diverse
fields such as electromagnetism, fluid dynamics, and structural mechanics.
Solving these equations provides insights into the steady-state behavior of
physical quantities and is crucial in understanding and designing various
engineering and scientific systems.

6.2 OBJECTIVES:-

The objectives of studying Laplace's equation and Poisson's equation are
broad, encompassing both theoretical understanding and practical
applications in fields ranging from physics and engineering to
mathematics. The knowledge gained from these studies is foundational for
solving real-world problems and advancing scientific and technological
innovations.

6.3 LAPLACE EQUATION AND ITS SOLUTION:-
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The Laplace equation is a partial differential equation that describes the
distribution of a scalar field in space. It is named after the French
mathematician Pierre-Simon Laplace, who made significant contributions
to the field of mathematical physics. The Laplace equation is often
denoted as:

VZp =0

Here, V? delta represents the Laplacian operator, which is the diverence of
the gradient of a scalar field ¢. In three-dimensional Cartesian
coordinates, the Laplace equation can be expressed as:

0%¢p 0%¢p 0%¢
d0x? + dy? + 9z2 0

The Laplace equation is a special case of the more general Poisson
equation when the source term is zero.

Obtaining Poisson‘s equation is exceedingly simple, for from the point
form ofGauss‘s law,

V.D=V.€e E =p, (1)

And E=-VV . (2)
Putting the equation (2) into equation (1) obtains

V.(—eVV) =p, ..(3)

for an inhomogeneous medium. For a homogeneous medium, equation (3)
gives

Wv_a%(+WV+a%Q_ Py .
Cox2  0y?  0z2 € - ()

This is called Poisson's equation. Then the equation (4) is

_ov o o

2
vV dx? * dy? * 0z2

..(5)

which is called Laplace's equation and V is called Laplace’s operator.
Note that in taking (€) out of the left-hand side of equation (3) to given
equation (4), we have acquired that (€) is constant throughout the region
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in which V is defined; for an inhomogeneous region, (€) is not constant
and equation (4) does not follow equation (3). Equation (3) is Poisson's
equation for an inhomogeneous medium; it gives Laplace’s Equation for
an homogeneous medium when

py =20

Thus Laplace's equation in Cartesian, Cylindrical, spherical coordinates r
is given below

2y 2 8V OV OV i i

VeV = =T 372 t-o5= 0 (Cartesian Coordinate)
21, _ 10 _V) 10%v | 9%V_ o .

Vv >3 ( 5 2997 +t o 0 (Cylindrical Coordinate)
=2 (r22) + 2 (sin6 3%) _1 v

Vv = r2 6r( r231n9 26 sind + r2sin20 92 0

(Spherical Coordinate)
depending on whether the potential is V(x,y, 2),V(p, ¢, 2) or V(r, 8, ).

Apart from the contexts previously mentioned, Laplace's and Poisson's
equations have applications across various disciplines and phenomena.
Some additional instances Laplace’s and Poisson’s equations include the
following.

1. Electrostatics: From Maxwell’s equations, one has curlE = 0 and
divE = 4mp, where pis the charge density. The first equation implies
E = —gardg for a scalar function ¢ (known as electric potential).
Therefore,
A¢p = div(gardp) = —divE = —4mnp
. which is poisson’s equation (f = —4mp).

2. Steady fluid flow: Suppose that the flow is irrotational (no eddies) so
that curlV = 0, where V = v(x,y,z) is the velocity at the position
(X, y, z), Let us consider independent of time. Assume that the fluid is
incompressible (e.g., water) and that there are no sources or sinks.
Then divV = 0. Hence V = —gardg for some ¢ (known as velocity
potential) and A¢p = —divV = 0,which is Laplace’s equation.

3. Analytic functions of a complex variable: Let we write z = x + iy
and f(z) = u(2) +iv(z) =ulx +iy) + iv(x + iy) , where u and v
are real-valued functions. An analytic function is one that is
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explainable as a power series in z. This means that the powers are
notx™y" but z" = (x + iy )n. Thus
oo

f@) =) ay

n=0
ie.,
oo
u(x+iy) +iv(x +iy) = z a,(x +iy)"
n=0

Now this series show that,

Jdu ov ou ov .

= 3y and 3 = x (These are the Cauchy—Riemann
equations)

Hence we find that
Uxx = Vyx = Uxy = Uyy

So

Au=20
Similarly

Av=0
where A is two dimensional Laplace equation. So the real and
imaginary parts of an analytic function are harmonic.

4. Brownian motion: Imagine Brownian motion in a container D. This
means that particles inside D move completely randomly until they
hit the boundary, when they stop. Divide the boundary arbitrarily into
two pieces, C; and C, . Let u(x,y, z) be the probability that a particle
that begins at the point (x, y, z) stops at some point of ¢;. Then it can
be concluded that

Au=0inD
u=1 on C;, u=0 on C,.
Thus u is the solution of a Dirichlet problem.

6.4 HARMONIC FUNCTION:-

A function ¢(x,y, z) is called Harmonic at a point (x,y, z) if its second
partial derivatives exist, are continuous, and satisfy Laplace's equation
V2V = 0 in the neighborhood of that point. If y is harmonic at every point
within a domain (or open continuum), it is termed harmonic in that
domain. Furthermore, if ¢ is harmonic at all interior points of a closed
region, it is considered harmonic within that closed region. The conditions
for harmonicity encompass the smoothness of the function and the
fulfillment of Laplace's equation across the specified spatial domain. A
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function ¢ (x, y,z) is called at infinity, ¢r,r? Z—f, r? Z—(ﬁ, r? aa—f bounded

for r where 1% = x2 + y? + z2,

If the function Y is harmonic in an unbounded region, then it must be
regular at infinity.

Properties of Harmonic function:

i. If a harmonic function vanishes everywhere on the boundary of a
domain, then it is identically zero everywhere.

. . . . a .

ii. If a function y is harmonic in V and% =0 on S, then Y is
constantin V .

iii. If the Dirichlet problem for a bounded region has a solution, then it
is unique.

iv. If the Neimann problem for a bounded region has a solution, then
it is either unique or differs from one another by a constant.

6.5 UNIQUENESS THEOREM:-

If a solution of Laplace's equation satisfies a obtained set of boundary
conditions, there is only one solution. We say that the solution is unique.
Thus any solution of Laplace's equation which satisfies the same boundary
conditions must be the only solution regardless of the method used. This is
called Uniqueness Theorem. We acquire that there are two solutions and
of Laplace's equation both of which satisfy the prescribed boundary
conditions. Thus

V2V1 S 0 and VZVZ S 0 e (1)
V1 = Vz (2)

we assume that

Vd = Vz - Vl (3)
ViV, =V, - V3V, =0 .. (4)
Vg=0 on the boundary

According to equation (1) and (2), from the divergence theorem
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fVV.A dv = §£A.ds ..(5)

N

Let A =V;.VV,; and use the vector identity
V.A =V.[V,VV,] = V4[V2V,] + YV, VY,
But V2V, = 0, according to (4) and (5), we have
V.V =VV,.Vl, ..(6)

Putting (6) into (5) obtain
14 N

From the above equation, it is evident that the right hand side of (7)
vanishes.

f(vvd) 2qv =0
174

Integrating, (VV/)2=0 = V/;=0
= V4 =V, —V, = constant everywhere in V.
Hence, V; =0 or V; =V,.

This is the uniqueness theorem: If a solution to Laplace's equation can be
found that satisfies the boundary conditions, then the solution is unique.

Theorem: Let u; andu, be harmonic functions with equal boundary
values: u; = u,on 9Q, where Q is some bounded open set. Then u; =
Uyin Q.

SOLUTION: Suppose Au = 0 in . Then putting u = v of into the first
Green’s identity implies

ou
f —dS=f|Vu.|2 dx
200V Q

Since that the latter integral is strictly positive unless is a constant. Set,
then on the boundary of. So that the left hand side of the above integral
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identity is zero. It follows that in, hence. But on, hence The theorem is
prove

6.6 POISSON EQUATION:-

The Poisson equation is a partial differential equation (PDE) that describes
how a scalar field evolves over space. It is a special case of the more
general Laplace equation, and it includes a source term. The Poisson
equation is named after the French mathematician Siméon Denis Poisson,
who made significant contributions to mathematical physics.

The one-dimensional Poisson equation is expressed as:

0%u B

= f(x)

dx?
In two or more dimensions, it takes the form:
Viu = f(x)

Here, V?is the Laplacian operator, u is the scalar field, f(x) is the source
term, x represent the spatial coordinates.

6.7 TWO DIMENSIONAL LAPLACE EQUATION:-

The Laplace equation in two dimensions is a partial differential equation
that involves the second partial derivatives of a function. It is named after
the French mathematician Pierre-Simon Laplace. In two dimensions, the
Laplace equation is expressed as follows:

0°u  0%u

ox2 Tay2 =0

Here, u(x,y) is a function of two variables x and y, and the equation
states that the sum of the second partial derivative of u with respect to x
and the second partial derivative of u with respect to y is equal to zero.

6.8 THREE DIMENSIONAL LAPLACE
EQUATION:-
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The Laplace equation in three dimensions is a partial differential equation
that describes a scalar field's behavior when there are no sources or sinks
of the scalar quantity within the region of interest. In three dimensions, the
Laplace equation is expressed as follows:

0’u 0%*u 0%*u

a2 dy? irro

Here, u(x, y, z) is a function of three variables y, and z. The Laplace
equation states that the sum of the second partial derivative of u with
respect to x, the second partial derivative of u with respect to y, and the
second partial derivative of u with respect to z is equal to zero.

SOLVED EXAMPLE

EXAMPLET1: Let u be a harmonic function in the interior of a rectangle
0 < x <a,0 <y < b inthexy — plane, satisfying Laplace’s equation
0°u 0%u

5x2 +a—yz— 0 ...(»

with u(0,y) =0,u(a,y) =0 ..(2)
u(x,b) =0
and
u(x,0) = f(x)

The determine u for the above problem

SOLUTION: Suppose the equation (1) has the solution form

u(x,y) = X()Y(y) - (4)
Putting this value of u in (1), we have

X'Y+Y"'X=0 or—=-1 ..(5)
X Y

~ x and y are independent, each side of (5), must equal to the same
constant, say,u, the we gat

X' —uX=0 .. (6)
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Y'"+uYy =0 - (7)
Putting the value of (2) in (4), we have
X(0)Y(0)=0 and X@Y()=0 ...(8)
X(0)and X(a) =0
Where we have taken Y (y) # 0, otherwise u = 0 which does no satisfy.
Casel: Let u = 0, then from (6), we obtain
X(x)=Ax+B ..(9)

Using (8),(9) obtain 0 = B and 0 = Aa + B. These give A = B = 0 so
that X (x) = 0.

Casell: Suppose = 4%, 1 # 0. Then the equation(6) is
X(x) = Ae** + Be™** ..(10)

Using (8) and (9) gives, we have
0=A+Band0 = Ae** + Be™** .. (11)
SoA =B =0 and X(x) # 0 and hence u # 0. so we reject u = A2
Caselll: Suppose = —12%, 1 # 0. Then the equation(6) is

X(x) = AcosAx + Bsinlx ..(12)
Using (8), (12) gives 0 = A and 0 = AcosAa + BsinAa so that
A=0 and sinla=0

Where we have taken B # 0, since otherwise X (x) # 0 and hence u # 0
which not satisfy.

Nowsinta=0 = da=nm =2 1= %”,n =1,2,3, ...
Hence

X, (x) = Bpsin(nmx/a)

2.2
Usingu = —1% = — %, (7) reduces to
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Whose solution is Y, (y) = C,e™/® + D, e~"™v/a

Using (3), gives 0 = X(x)Y (b) so that Y(b) = 0, where we obtain taken
X(x) # 0, since otherwise u = 0 which does not satisfy (3)

AgainY(h) =0 = Y,(b)=0
Putting these values of C,, obtained by above equation, we have
Y,(y) = Dn(e—n”J’/aennb/a _ emty/ae—nnb/a)/ennb/a
Y,(y) = Dn(e—nn(b—y)/a _ enn(b—y)/a)/ennb/a

n(b —y)

. }, ase? — e~ = 2sinho

Y,.(y) = 2D, sinh{

s~ Up(x,y) = X, ()Y, (y) = Fsin (nmx/a) sinh {@} are the

solution of (1), we consider more general solution, we have
U(x,y) = Yomeq By sin (nmx/a) sinh {@}
Putting y = 0 in above equation and using (3) and (4), we get

flx) = Z{Fnsin (nmx/a)}sin (nmx/a)

Hence, we have

~ (nmh 2 (¢ nmx
E, sin (—) —| f(x)—dx
alo
E, = ﬁ foa fx) % dx.is required solution.

EXAMPLE2: Solve two dimensional Laplace’s equation in plane polar
coordinates (7, 6)

SOLUTION: Let the Laplace’s equation in R? in terms of the usual (i.e.,
Cartesian) (x, y) coordinate system is:
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0%u " 0%u
dx2 " 3y2

= Uyy + Uyy = 0. (1)

The Cartesian coordinates can be described by the polar coordinates as
follows:

x=rcosf; _
. (2)
y=rsinf.
Let the first partial derivatives of x,y ie.,r, 8, we get
dx dx
— =058, — =-rsinb;
or a0 a)
ay T
<4 sind ol rcosf
or " 90 '

Now we will use Chain Rule since (x, y) the function of (, ), as
expressed as in (2)

ou Ou 0x 6:.* ay

or ox or dy ar
ou du
= —cosf+——sinf using (3)

ox ay
ou

du
= cosO o +sinf . 4
COs A% sin a_}f (4)

Again differentiating, we obtain

0%*u d ou 0 du
Gz = Costg g sin T
d fmdx 0 dudy . 0 6:;6\ 0 duady
= cosf|——— +sinf| ———
dx dx or dva\ ar 0x dy or dv@v or
0%u 9? 9%
= cos‘o‘ﬂf‘; +2C05951]196x(;v +5111286;. (5)
Similarly
aw: . duox  Sudy
80 9x 06 IOy o6
dt ait
= a(—r 51119)+a{1 cos@)
= —r 51119%+1(‘059(;—;:
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@ = —rcos@a——ismﬂia——:smﬂd—ﬂcosﬁii%
ane dx 00 dx dy 00 dy
i Hd i H{aaua\ Gdrrdv] ’Singa 24 Dqg(aaua\ @[:hrdv]
= —rcosf—- — e o ) peinf—Freosl | ————— =
0x dxoxod dydx b dy dxdyadd dyadyad
u . (0u Fu
= —rcosBa—JsmH{a = fsmH]+mmosQ]
0*u u
= il —rcosf
rsinf 1+rcos€(a 3y (- fsmHHa S7c0s )
du du 0%u 0
= r(cos@av\ 1’ sinzﬂﬁﬂcostinQa\d"+c0 961/”]
Dividing both sides with 72, using (4)
1 6%u 10u » 0%u u 0%u
———=—-——+8in“0— —2cosfsinb +cos%0 6
r206%  ror 0 x? 0xoy dy? @)

Finally adding (4) and (5), we get

0%u . 1 6°u  10u N 0%u . 0% u
0r2 r2a02 ror dx2 ay?

and

0%u . 0%u B 0%u . 1 Ot . 1 0%u
dx2 dy2 0r2 ror r2oe?

Hence the Laplace’s equation (1) occur that

1
Uy + Uyy = Uppr +;ur +r—2u99 =0

Hence, this is obtained the Laplace’s equation in the polar coordinate
system.

EXAMPLE3: Solve two dimensional Laplace’s equation in cylindrical
coordinates (7, 0, z)

SOLUTION: Laplace’s equation in three dimensional Cartesian
coordinates (x,y, z) is

02 02 02
szp— lp a¢+alzp—0ie., Yrx + Wyy + 9, = 0...(1)
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And the relations between Cartesian and Cylindrical coordinates are

) . 1Y
x =rcosh,y =rsinf,z=zi.e.,r>?=x>+y%,0 =tan"1=,z=1z
X

sin6

Now Y, =Y,1 + Y0, + P,z = PrcosO — Pg.

r

cos6

Yy, =1, + Y, + 9,2, = Psinb + Yy. -
Y, =y, + g0, + 1,2, = Y,
Also, Py, = (lpx)rrx + (lpx)eex + (lpx)zzx

= (lpx)rrx + (lpx)eex + (lpx)zzx

sin@ sin@\ sin6
= <1prc050 — g —) cos6 — <1prc050 — 1y —) —
r Jy r /., r
_ 29 sinBcosf N sinfBcosO sinBcosf
- l/)rrCOS ll)er r 1/J9 r2 ro r
sin?6 sin?6 sinfcosé
+ Yy — Yoo = 07
5 sinfcosH sin?6 sin?6
Yxx = Yrrc0s°0 — 21yg - + Yoo r2 + Y r
sinBcosf
0 2
Similarly
. sinfcosb cos?6 sin?0
lpyy = Pprsin“0 + 2y T + Vo0 r2 + Y,
sinBcosf
0 2
and Yz = Yyy

Putting these values of iy, ¥y, and Y,, in (1), we given the Laplace’s
equation in cylindrical coordinates (r,68,z) as

1 1 . 0%y 19y 1 9%yY . 0%
wrr+r_2¢09+;lpr+lpzz=0a 1€, ﬁ‘l'__‘l'__‘l’_:o

ror 12002 0z2
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EXAMPLE4: Solve two dimensional Laplace’s equation in spherical
polar coordinates (r, 8, ¢).

SOLUTION: The relations between Cartesian and Cylindrical
coordinates are

x = rsinfcoso, y = rsinfsing, Z = rcoso, i.e.
r?2 = x2? + y?,cosf _Z tangb:X
' r’ x
i =X, =Y, =z
Since =0Ty =01 =7
cosfcos¢ cosOsing sinf
* = T /by = r (bx = r
sing cos¢
= -, = -, = 0
2 rsind Sy rsing &
Now
_ +hnd. + _ g N cosOcos¢ sing
l/)x - l/)rrx 1/)9 X lpd)d)x - lprSln COS¢ lpG- r ¢rsin9
o cosOsing cos¢
lpy = 1/Jr7‘y + 1/J96y + lpzzy = Y,sinbsing + IPQ.T + 1/)¢, <ind
sin@
Y, =, + 1/)4,02 + ¢¢¢z = Prcost — g T
Also
Yy = Ppty +1Pg0y + lqud)x
) cosOcos¢ sing )
= (wrsme cosp + Yg " — Yy rsin@)r sinfcos¢p
) cosOcos¢
+ (wrsme cosp + Py —
sing\ cosOcosg
2
rsinB/g T
) cosOcos¢
+ (d)rsme cosp + Yy —

Sind)) ( sinqb)
1/)4, rsinf o rsing
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) cosOcos¢ cosOcosg sing
= (rrsindcose + o, "~ ~yr

r rsin@

N sing ) 0
Yo sind sinfcos¢

_ cosOcos¢
+ <¢r951n9cosd) + Y,.cosOcosp + YPgg —

sinfcos¢ sing cos@singb) cosOcos¢
Yo T Yoo rsiné ¢ rsin26 T
) ) ] cosOcosg
- <¢r¢sm0cos¢ — Yrsinbsing + Pgy —
cosOsing sing cosg \ sing
—Yo——— Yoo o~ Vo ) — Py
r rsinf rsing/ rsind
cos?fcos? sin?
= P,,-5in?0cos?P + YPyg r—zd) + Yy ¢
sinfcosfcos*¢P sinfcosp
+ 2y — 2y ————
sinfcosOcose cos?fcos?¢p sin?¢
— 2Yg¢ 2 + Y < " +—

N <cos@sin21/) sinfcosO cosz¢>
0

r2sin%6

r2sinf T2
singcos sinpcospcos?6  singcos
N %( $pcosd N ¢pcosp (0] ¢>

T2 r2sin20 r2sin20

cos?¢

l/)¢¢ r2sin20

cos?0sin? d)

Similarly, Pyy = P Sin0sin®d + Pgg
21/Jr9 sancosGsm 0} n 21/Jr sm¢cos¢ n 21/) sznd)cos@cosd) n

72
coszecosz¢ cos?¢ cosecosz¢ 2sin@sinfsin?¢
Yr ( + ) + e ( r2sing r2 ) N
smd)cosd) sind)cosd)cos 6 singcosp
wd) ( r2 + r2sin26 r2sin20 )

ng sinfcos6 sin?¢
0 r + Y,

Yyz l/)rrCOS 6 + IIJGB

Sl‘l’l9C059
. —

r

Putting these values of Yy, ¥y, and ¥, in (1), we given the Laplace’s

equation in cylindrical coordinates (r, 8, ¢) as

cosf

1 .
Vzlp =Yy + r—zll’ee ’ szn29 ¢¢¢ += lpr 25in20 ———=Ye =0,i.e,
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6(61/))+ 1 6(_6 >+ 1 621/)_0
ar\"ar) " sing 96 \°>"™ 36) " sinze P2

EXAMPLES: Obtain a solution of Laplace’s equation in rectangular
Cartesian coordinates (x, y, z) by the method of separation of variables.
SOLUTION: let we know that three dimensional Laplace’s equation
0°u  0°u  0*u _
32 + 3y2 + 957 = 0 (1)

From (1), we have
ulx,y,2) =X)YW)Z(z) ..(2)

where X,Y and Z are functions of x, y and z respectively.
Putting the value of u in (1), we get

X" vy z"

5a + v="7 ..(3)
Since x, y and z are independent variables.
The following three cases arise:
Casel: If equation (3) zero, then

X"=0Y"=02Z"=0
giving,
X=Ax+BY=Cy+D,Z=Ez+F
Hence
u(x,y,z) = (Ax + B)(Cy + D)(Ez + F)

Casell: Let 2~ = 2,2, % = 22 and 23 + 23 = 4. Then (3) give
X" =2X=0,Y'-2Y=0,Z"+212Z=0
X = Ae*M 4+ Be™*M1; Y = CeY2 4 De~*2; and EcosAz +
Fsinlz
Hence
u(lx,y, z) = (Ae""11 + Be‘”l)(Cey’12 + De‘x’lz)(EcosAz + Fsinlz)

A more general solution is obtained by

u(x,y,z) = Z z:(Ae“1 + Be™M) (Ce¥*s + De™*2)(Ecosz

T
+ Fsinlz)
Caselll: LetX? = —1,%, YT = —2% and —(4% + 13) = —12, then

X'"+213X=0Y"+22Yy=0,7"-22Z=0
X = AcosAix + BsinAyx, y = CcosA,y + Dsinl,y
And Z =Ee? + Fe™#
Hence the general solution is written as
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u(x,y,z) = Z Z(A cos A x + Bsindyx ) (CcosA,y + Dsind,y)(Ee?*
21 Az
+ Fe™%%)

SELF CHECK QUESTIONS

1. What is Laplace's equation, and what does it represent in terms of a
scalar field?

2. Explain the physical interpretation of Laplace's equation. In what
types of situations does it commonly arise?

3. How is Laplace's equation written in three dimensions and what is
the Laplacian operator denoted by?

4.  Why are boundary conditions necessary when solving Laplace's
equation? Provide examples of types of boundary conditions.

5. How does Poisson's equation differ from Laplace's equation?

6.9 SUMMARY:-

In this unit we have studied the Laplace and Poisson equations is crucial
in various scientific and engineering fields, providing mathematical tools
for analyzing and predicting the behavior of scalar fields in different
physical situations.

Overall Laplace's equation describes situations where a scalar field is in a
state of equilibrium with no sources or sinks, while Poisson's equation
includes a source term and is used when there are localized sources or
sinks in the field. Both equations are fundamental in physics and
engineering for modeling various phenomena related to heat, potential
fields, and fluid flow.

6.10 GLOSSARY:-

e Laplace Equation: A partial differential equation stating that the
Laplacian of a scalar field is zero.
Viu=0
e Laplacian: A mathematical operator representing the divergence
of the gradient. In Cartesian coordinates,

9% 0% 02

Vi= —+—+
0x? dy? 0z?
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e Equilibrium: A state in which a system is not changing with
respect to time, described by the Laplace equation.

e Scalar Field: A function that assigns a scalar value to every point
in space.

e Poisson Equation: A partial differential equation similar to
Laplace's equation but with a source term.

Viu=f
Where f is the short term.

e Source Term: The term f in the Poisson equation representing an
external influence or source that affects the scalar field u.

e External Influence: Factors from outside the system that affect
the field in the Poisson equation, such as charge density or external
forces.

¢ Distributed Source: A source term f that varies across space,
representing a distribution of sources.

¢ Boundary Conditions: Conditions imposed on the solution of a
differential equation to determine a unique solution. Crucial in
solving both Laplace and Poisson equations.

e Steady-State: A condition where a system's properties do not
change with time. Laplace equation describes such states.

e Equilibrium Solution: The solution to the Laplace equation
representing a stable, unchanging state.

e Numerical Methods: Techniques for approximating solutions to
differential equations, often used for solving Laplace and Poisson
equations in complex geometries.

Understanding these terms is essential for working with Laplace and
Poisson equations, as they form the foundation for studying scalar fields
and their behavior in various physical and engineering applications.

6.11 REFERENCES:-

. Richard Haberman(2012), Applied Partial Differential
Equations with Fourier Series and Boundary Value Problems.

. Walter A. Strauss (2008), Partial Differential Equations: An
Introduction" by Walter A. Strauss:
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e M.D.Raisinghania 20th eddition (2020), Ordinary and Partial
Differential Equations.

e https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=ZL.CHeZEh
CZ8yCri36nSF3A==

e https://referenceglobe.com/knowledge-center/upload-

pdf/positons.pdf
e Robert C. McOwen(2011), Partial Differential Equations: Methods
and Applications.

6.13 TERMINAL QUESTION:-

(TQ-1): Find the potential function ¥ (x, v, z) in the region
0<x<a0<y<b,0z < csatistying the conditions.
i.y=0,onx=0,x=ay=0y=>bz=0.
il. y=f(,y)onz=¢,0<x<aq0<y<bh
(TQ-2): State Laplace equation in Cartesian coordinates.

(TQ-3): Obtain the general solution of Laplace’s equation in cylindrical
coordinates for the case of axial symmetry, namely
0*u 1du 0%u
a2 " pop oz
(TQ-4): Obtain a solution of Laplace’s equation in rectangular Cartesian
coordinates (x, y, z) by the method of separation of variables.
(TQ-5): Let u; andu, be harmonic functions with equal boundary

values: u; = u,on 9Q, where Q is some bounded open set,
then prove that u; = u,in Q.

6.14 ANSWERS:-

SELF CHECK ANSWERS

1. Laplace's equation is A¢p = 0, representing a second-order partial
differential equation that describes a scalar field ¢p where the
Laplacian of ¢ is equal to zero. It represents situations where the
field is in a steady state with no sources or sinks.

2. Laplace's equation commonly arises in physics and engineering to
describe steady-state conditions where there are no sources or
sinks. It can model phenomena such as heat conduction, electric
potential, and fluid flow in equilibrium.

3. In three dimensions, Laplace's equation is written as V?¢p =
0, where 72 is the Laplacian operator, also known as del squared.
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4. Boundary conditions are necessary to obtain a unique solution to
Laplace's equation. Examples include Dirichlet boundary
conditions (specifying function values on the boundary) and
Neumann boundary conditions (specifying the normal derivative
on the boundary).

5. Poisson's equation is A¢p = f, where 4 is the Laplacian operator,
¢ is the scalar field, and f is a given source term. Unlike Laplace's

equation, Poisson's equation accounts for localized sources or sinks
in the field.

(TQ-1):
1. Y(x,y,z) =
Yo=1 21 Gmn Sith(Apnc)sin % sin % sin(Ad;n2),

oo __4cosech(Aqmnz) ra b . mnx . nmy
ii. Gmn = — Joco fyzof(x,y) sin— sin—=dxdy

TERMINAL ANSWERS
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Unit 7: Dirichlet’s Problem and Newmann
Problem for a Rectangular
CONTENTS:

7.1  Introduction
7.2 Objectives
7.3  Laplace’s Equation in cartesian coordinates(x, y)

7.4  Dirichlet Problem for a Rectangule
7.5  Newmann Problem for a Rectangule
7.6  Summary

7.7  Glossary

7.8  References

7.9 Suggested Reading

7.10  Terminal questions

7.11  Answers

7.1 INTRODUCTION:-

The solution of the two-dimensional Laplace equation involves finding a
scalar field u that satisfies the equation =0 within a specified region. This
equation describes the steady-state distribution of a scalar quantity in two
dimensions. The process includes defining the problem's region,
expressing the Laplace equation in Cartesian or other coordinate systems,
specifying boundary conditions, choosing a solution technique (such as
separation of variables or numerical methods), solving for u, and ensuring
the consistency of the solution by checking both the Laplace equation and
the specified boundary conditions. The obtained solution provides insights
into the scalar field's behavior within the region, aiding in the
understanding of physical or mathematical systems.

The solution to the two-dimensional Laplace equation is often expressed
as a mathematical function or series that describes the behavior of the
scalar field u throughout the defined region. The specific solution
technique used will depend on the nature of the problem and the given
boundary conditions.

7.2 OBJECTIVES:-

After studying this unit, you will be able to the Dirichlet and Neumann
problems are boundary value problems in the context of partial differential
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equations (PDEs) that typically arise in the study of physical phenomena
such as heat conduction, fluid flow, and electrostatics. These problems are
often discussed in the context of rectangular domains. Let's look at the
objectives of the Dirichlet and Neumann problems for a rectangular
domain:

e (Given a rectangular region in space and a partial differential
equation [such as the Laplace equation or the Poisson equation(we
have already studied in previous unit)], the Dirichlet problem seeks
to find a solution that satisfies the PDE within the region while
specifying the values of the solution on the boundary of the region.

e Similar to the Dirichlet problem, the Neumann problem seeks a
solution to a PDE within a rectangular region. However, instead of
prescribing the function values on the boundary, the Neumann
problem prescribes the normal derivative (flux) of the solution on
the boundary.

7.3 LAPLACE’S EQUATION IN CARTESIAN
COORDINATS (x,y):-

Laplace's equation in two dimensions using the method of separation of
variables. Three coordinate systems are considered for the analysis: (i)
Cartesian Coordinates, (i) Polar Coordinates, and (iii) Spherically Polar
Coordinates. The previous unit we have already studied the Laplace two
dimensional in Polar Coordinates, and (ii1) Spherically Polar Coordinates
and cylindrical coordinates. In this unit we will study the Cartesian form
of Laplace equation.

Now Let us consider the solution of Laplace equation is given below

0°u 0%u 0 L
ﬁ + a—yz = (D)
Since ulx,y) =Xx)Y(y) . (2)

Putting the value in (1), we get
1d*X 1d%u
———=—-=—=k ..(3)
X dx? Y dx?
where k is known as the separation constant.
Casel: Let k = p? > 0, p being real, from (3), we have obtain
4’ 2X=0 d2X+ 2y =0
dxz POV e TP T
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Whose solutions are respectively

X(x) = ceP* + c,e7PX, Y (y) = c3cospy + cyusinpy
Hence the equation (1) is obtain

u(x,y) = (c1eP* + c,e7P*)(c3cospy + cysinpy) ... (4)
Where ¢; (j = 1,2,3,4) are constants.
Casell: Let k = 0, p being real, from (3), we can be written as
X(x) =csx+ ¢, Y(¥) =7y + ¢
So that
u(x,y) = (csx + cg)(c7y + cg) - (5)
Where ¢; (j = 5,6,7,8) are constants.
Caselll: Let k = —p? < 0, then the case I, the solution of the equation
(1)is
u(x,y) = (cocospy + cyosinpy)(ci1€P* + c127P%) ... (6)

where ¢; (j = 9,10,11,12) are constants.

7.4 DIRICHLET PROBLEM FOR A
RECTANGULE:-

The Dirichlet problem is a classical problem in partial differential
equations that seeks to find a solution to the Laplace's equation within a
given domain, subject to specified boundary conditions.

x=()

o] y= () X

Fig.1

Interior Dirichlet’s problem for a rectangle is explained as

below:

2%u

ay?

the rectangle 0 < x < a,0 < y < b subject to boundary condition
u(0,y) =u(a,y) =ulx,b) =0, u(x,0)=f(x)

Where f(x) is supposed to be expansible in Fourier sine series.

. .92 o .
To obtain the Laplace’s equation 6—;: + = 0 at any interior point of

Let us assume the equation(4) is
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c1eP+c,e™ P ci + ¢, =0 ( czcospy + cusinpy # 0)
Writing ¢; = ¢, = 0 so that u(x, b) = 0, is only trivial solution.
Similarly, the equation (5),it only trivial solution u(x,y) = 0.

Using the B.C.(Boundary Condition) u(0,y) = u(a,y) = 0, now from (6)
that cg = 0 and

croSinpa(cy1e?? + c1,e7PY) =0
Since c¢;9 # 0 = sinpa = 0,i.e,p = %n, n=12...)

Thus, we obtain

nnx
u(x,y) = E sm [an enmty/a 4 bne—nny/a]
’n:

So u(x,b) = 0, then

a
nmb/a —nmb/a _— — n nmb/a
ape + b,e 0= b, Ty e

=33 b 2 ) o200

Where A,, = 2a,exp ( « ) Now we can write

u(x,y) = Z A, sin (?) sinh {M}
n=1

Hence the non homogeneous boundary condition u(x, 0) = f(x) obtain

flx) =Xr_1A,sin ( ) sinh {— %b} is half range Fourier series.

u(x,y) = Z A, sin (?) sinh {M} . (7)
n=1

where 4,, = — mfoa f(x)sin (%) dx ..(8)

7.5 NEUMANN PROBLEM FOR A
RECTANGULE:-

The Neumann problem for a rectangle involves finding a solution to
Laplace's equation inside the rectangle while prescribing the values of the
derivative of the solution (usually the normal derivative) on parts of the
rectangle's boundary.
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Interior Neumann problem for a rectangle is explained as below:

. 0%u 62 o .
To obtain the Laplace’s equat10n Ttz = = 0 at any interior point of

therectangle 0 < x < a,0<y <b subject to boundary condition
Ju(0,y) Jdu(a,y) Jdu(x,0) du(x, b)
= = = 0, —_— f(x)
0x 0x 0x dy
where f(x) is considered to be effective in Fourier cosine series.

Let us suppose the equation (4) can be written as
u(x,y) = (czeP¥ + c,e PY)(c cospx + c,sinpx)

Since the boundary condition % = 0, shows that ¢, = 0 and the
condition 242X
0x
ou(x,0)

=0 = sinpa = Oi.e.,p = %n, (n=0,12..).
Also

Hence the equation can be obtained from the above equations

= (0 obtains ¢, = c3.

B nnx nmy
u(x,y) = Z A, cos . ) cosh {T}
f(x) =Y14, % cos (%) sinh {%} is half Fourier series, then

A, nm h TlTl.'b f x) ( ) d
" sin f(x)cos X
Finally the solution of interior Neumann problem is obtained by

o)

nm nmx\ . _ (nmh
u(x,y) =4,+ ) 4, —cos (T) sinh {T}

n=1
Where A, is arbitrary constant and
nmwx
A, = f f(x) cos( )dx
nm sinh {
SOLVED EXAMPLE
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EXAMPLE1: Find the steady state temperature distribution in a
rectangular plate of sides a and b insulted at the lateral surface and
satisfying the boundary conditions.

u(0,y) =u(a,y)=0for0<y<b

and u(x,b) =0 and u(x,0) =x(a—x) for0<x<a
SOLUTION: First proceed in equation (8), we get
The present problem

ulx,0)=fx)=x(a—x),0<x<a

Ansz f(x)sm )dx

= W—[ (ax — x?) sin (nzx) dx
a nmb

= W[(ax — x? (_E) cos ——

a? nmx
—(a—2x)<— > )sin

n2m? a

3 a
a nmx
+ (—2) (— n3n3> cos —-

0

2 2a3(—-1)" 2a3l_ 4q3

[ + [1 - (—1)"] cosec ™
—_ 3.3 3.3 —_ cosec —
asinh {_ngb} n°mn n°mn a

n3m3

0,if n =2m(even)and m = 1,2,3, ....

= 8a® cosech (2m—1Dmb),if n=2m—1land m
(2m —1)3n3 a

=123 ..
Putting the above values in equation (8), we obtain

u(x y)
Z (Zm - Db —-y)n cosech (2m — 1nb
(Zm - 1)3

a a

EXAMPLE2: Solve the Poisson’s equation
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0%y 0%y

3x2 oy
with the boundary condition ¢y = 0 on sides x = 0,1,y = 0,1.
SOLUTION: Let us consider the poisson’s equation of the form
Y(x,y) = f(x,y) + g(x,y) where f(x,y) is the solution of Laplace’s

2, 0<x<1,0<y<1

equation g + ZZTZ = 0 and g(x,y) is a particular solution% + Ziy‘g = 2.
It is customary to assume g in the form

g = ABx + Cy + Dx? + Exy + Fy?,
where A,B,C,D.E,F are constants. Then

ZZTLZ-I'ZL},‘Z:Z leadtoD +F =1
Now wetake D =1,F = 0.
Therefore,

glx,y) = —x + x?
Sog=0 =>x=0,1.
Let f(x,y) form the equation
g+giyj;=0, (1) 0<x<10<y<1

Satisfying

fO0,y)=-90,y)=0, f(Ly)=-g(1y)=0
f(x,0)=—-g(x0) =x—x%  f(x,1)=—g(x,1)=x—x?
Using the method of separation of variables, the f(x, y) is
flx,y) = (c1eP? + c,e7PY)(c3cospx + ¢ sinpx)

p? being constant. Since f(0,y) = 0 obtain c¢; = 0, while the condition
f(1,y) =0 = sinp = Oie.,p =nn,(n=1,2,3...).
Then according to superposition principle, we obtain

[oe)

flx,y) = Z sin(nmx) (4,,e™ + B,e ™) ...(1)

n=1
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Now we use non-homogeneous boundary condition f(x,0) = x — x?
obtain

[ee)

x—x?= z a,, sin(nmx)

n=1

Where a, = A, + B, and f(x,1) = x — x2 show to

x—x%= Z sin(nmx){a,, cosh(nmr) + b, sinh(nm)}

n=1
Where b, = A, — B,

Since then follows that this condition

1
an = 2] (x — x?) sin(nmx)dx = [1-(=D"]

n3m3

8

n3m3’

[O, if nis even

if nis odd

and
1
{a,, cosh(nm) + b,sinh(nm)} = 2[ (x — x?) sin(nmx)dx = a,,
0
an(1—cosh(nm))

So that b, =

sinh(nm)
Putting the value of a, and b,, in (1), we obtain

e

B a,sin(nmx) —_— b sinh
fxy) ‘ZW (@, sinh[(1 = y) ()] + bysinh(nry)}

Thus the Poisson’s equation is
Y y) =x —x*

8 a,sin {(2n — 1)mx} )
+ ﬁ; er [sinh[(2n — 1)(1

— 1)3sinh{(2n — 1)}

— y)m] + b,sinh {(2n — 1)my}]
EXAMPLE3: A thin rectangular homogeneous thermally conducted plate
occupies the region 0 <x < a,0 <y <b. The edge y =0 is held at
temperature Tx(x — a), where T is constant and the other edges are
maintained at 0°. The other faces are insulted and there is no source or
sink inside the plate. Find the steady state temperature inside the plate.
SOLUTION: Let the given Laplace’s equation is
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92f  9%f
33y =0 (D

and subject to the given conditions

fQO,y)=-flay)=f(xb)=0, f(x,0)=Tx(x—a)
From the equation (7), we put g(x) =T(x — a), get

floy) = Z A, sm nx) sinh {@}

Where
X
An=—— f(x)sm d
a smh{ f )
2T a nwx
=———— | x(x—a)sin(—)dx
a sinh {ngb}f ( a )
0, if nis even
ATa?{(—D" — 1} 8
=~ = [ s odd
n*nsink (%) n3m3sinh ( Zx) Yniso
Hence
fCe,y)
- (2n—1mb
_ 8Ta? a, cosech {T} (@2n+ Dnx) L @2n+1)(y—-b)n
=—3 ; Zn+ D sin {—a }sm { m }
SELF CHECK QUESTIONS

1. What is Dirichlet's Problem for a rectangle?

2. How are the boundary conditions specified in Dirichlet's Problem
for a rectangle?

3. What type of physical problems can be modeled using Dirichlet's
Problem for a rectangle?

4. What is Neumann's Problem for a rectangle?

5. How are the boundary conditions specified in Neumann's Problem
for a rectangle?

6. Provide an example where Neumann's Problem for a rectangle is
relevant in a real-world scenario.

7. Can Dirichlet's Problem for a rectangle be applied to model
electrical potential distribution?

8. How are Dirichlet's and Neumann's Problems related to partial
differential equations?

9. Question: In the context of Dirichlet's Problem, what is a harmonic
function?
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7.6 SUMMARY:-

In this unit we have studied the concept in Dirichlet's problem and
Neumann's problem of the mathematical concept in potential theory. In
which Dirichlet's problem is involves finding a harmonic function within a
specified region (in this case, a rectangle) with prescribed boundary
values. In simpler terms, it seeks a solution to Laplace's equation inside
the rectangle, subject to given values on its boundary. Neumann's problem
is also a boundary value problem in potential theory, but in this case, it
deals with finding a harmonic function within a specified region
(rectangle) such that its normal derivative on the boundary is equal to
given values. In other words, instead of specifying the function values on
the boundary, Neumann's problem specifies the derivative of the function
with respect to the normal direction on the boundary.

7.7T GLOSSARY:-

e Harmonic Function: A function that satisfies Laplace's equation,
indicating that the sum of its second partial derivatives with respect
to each variable is zero.

e Normal Derivative: The derivative of a function in the direction
perpendicular to the boundary. In Neumann's Problem, the normal
derivative of the harmonic function is specified on the boundary of
the rectangle.

e Potential Theory: A branch of mathematical analysis dealing with
the study of harmonic functions and their applications, often in the
context of gravitational and electric fields.

e Laplace's Equation: A partial differential equation satisfied by
harmonic functions, expressed as the sum of the second partial
derivatives of the function with respect to each variable being
equal to zero.

e Boundary Value Problem: A mathematical problem where the
values of a solution or its derivatives are specified on the boundary
of a given region.

e Neumann Boundary Conditions: Conditions specified on the
boundary of a region for Neumann's Problem, indicating the
normal derivative of the harmonic function.
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Rectangular Domain: The specified region or area where
Neumann's Problem is considered, typically defined by a rectangle
in two-dimensional space.

Mathematical Modeling: The process of translating real-world
problems into mathematical terms, essential in formulating and
solving problems such as Neumann's Problem.

Dirichlet Boundary Conditions: Conditions specified on the
boundary of a region for Dirichlet's Problem, indicating the values
that the harmonic function should take on the boundary of the
rectangle.

Homogeneous Equation: An equation in which the sum of its
terms is zero. Laplace's equation is a homogeneous PDE because it
equates the Laplacian of a function to zero.

Scalar Function: A function that assigns a scalar value (a number)
to each point in space. In Laplace's equation, u(x,y,z) is a scalar
function.

Cartesian Coordinates: A system for locating points in space
using three perpendicular axes (X, y, and z), with the origin (0, 0,
0) at the intersection of these axes.

Laplacian Operator V2: An operator that represents the sum of

the second partial derivatives of a function. In Cartesian
9> 9?7

2
) . 2 @
coordinates, it is expressed as V4 = — + — + —.
i p ax2 ' ayz = 9z2
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7.10 TERMINAL QUESTIONS:-

(TQ-1): Explain the steps involved in solving the Dirichlet problem for a
rectangular domain. Provide an example scenario where this
problem is encountered in real-world applications.

(TQ-2): Discuss the mathematical formulation of the Neumann problem
for a rectangular domain. Provide insights into situations where
Neumann boundary conditions are more appropriate than

Dirichlet conditions.

0%z 0%z .
(TQ-3): Ifﬁ + e 0 and z = sinx at y = 0 for all values of x and

z = 0 at y = oo, for all values of x, show that z = e Y sinx.

(TQ-4): If the edge of the breadth b of an infinitely long rectangular
conducting strip is maintained at constant temperature T, the
remaining edges being maintained at zero temperature. Show that
the steady temperature distribution in the strip is given by

4Ty C 1 . Y\ -en+)™2
T = - Z)Zn+15Ln{(2n+1)7}e b
~—

(TQ-5): A thermally conducting solid bounded by two concentric spheres
of radii a and b, (a <b), is such that the internal boundary is kept
at temperature f1(0) and the outer boundary at f2(0). Find the
steady state temperature in the solid.

7.11 ANSWERS:-

SELF CHECK ANSWERS
1. Dirichlet's Problem for a rectangle involves finding a harmonic
function within the rectangle such that the function values are
specified on the boundary of the rectangle.

2. The boundary conditions typically involve specifying the function
values on all four sides of the rectangle.

3. Heat conduction in a rectangular region, where temperatures are
specified on the boundaries, is an example.

4. Neumann's Problem for a rectangle involves finding a harmonic
function within the rectangle such that the normal derivatives of
the function are specified on the boundary.

5. The boundary conditions involve specifying the normal derivatives
(partial derivatives with respect to the outward normal) on all four
sides of the rectangle.
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6. In fluid dynamics, Neumann's Problem for a rectangle can be
applied to model the flow of a fluid through a rectangular channel
with specified flux on the boundaries.

7. Yes, Dirichlet's Problem for a rectangle can be used to model the
distribution of electric potential in a rectangular region with
specified potentials on the boundaries.

8. Both problems are related to solving Laplace's equation, a second-
order partial differential equation, in different boundary value
contexts.

9. A harmonic function is a twice continuously differentiable function
whose Laplacian is zero everywhere in its domain.

TERMINAL ANSWERS
(TQ-5): (r,0) = Biizg (Anr™ + 257) Pacost
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Problem for Circle
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8.1 INTRDUCTION:-

Dirichlet's problem involves finding a harmonic function within a given
domain that satisfies prescribed boundary values. Specifically, for a circle,
the problem seeks a harmonic function inside the circle such that the
function takes on given values on the circle's boundary. Neumann's
problem focuses on determining a harmonic function within a domain
when the normal derivative on the boundary is given. In the context of a
circle, Neumann's problem aims to find a harmonic function inside the
circle such that its normal derivative on the boundary (circle) matches a
specified function.

These problems are fundamental in the study of partial differential
equations and have broad applications in physics, engineering, and various
scientific disciplines. The solutions to these problems provide insights into
the behavior of harmonic functions and contribute to the understanding of
potential theory.

8.2 OBJECTIVES:-

After studying this unit learner’s will be able to
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¢ Discuss the Dirichlet Problem for a Circle.
e Formulate the mathematical problem explicitly, defining the
domain, the newmann problem for a circle.

By addressing these objectives, mathematicians aim to provide a
comprehensive understanding of Dirichlet's Problem for a circle and
contribute to the broader field of potential theory. The investigation of
harmonic functions within circular domains has far-reaching
implications in mathematical analysis and its applications. Similarly
mathematicians aim to understanding of Neumann's Problem for a
circle, contributing to the broader field of potential theory. The
investigation of harmonic functions within circular domains, especially
with prescribed conditions on the normal derivative, has implications
in various mathematical and physical contexts.

8.3 POLAR COORDINATES(1,0):-

Now we given the Laplace equation is
62u+ 16u+ 1 0%u
or? radr r?067?

=0 (1)

And we put u(r,8) = R(r)0(0) to given that

(ot =————=k ..(Q2)

1/ ,d?R  dR 1d20
arz " ar 0do?

Where k is separation constant.
Casel: Let k = p? > 0, p being real, from (1), we have obtain

2dZR+ dR ZR_0d2@+ 26— o
A T Ty TP R T g TP P T

whose solutions are R = c;eP + c,e™P and © = c3cospl + c,sinpf
respectively. Now from (1), we have

u(r,0) = (c1eP + cye P)(c3cospb + c,sinph)
Casell: Let k = 0, p being real, from (2), we can be written as

d’R 4R _ d%0_
arz T dar - der

r2
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Obtaining the solutions as R = csInr + ¢4, ® = ¢,y + cg. Thus the
equation (1) can be written as
u(r,0) = (csInr + c¢)(c;y + cg) ..(3)

Where ¢; (j = 5,6,7,8) are constants.

Caselll: Let k = —p2 < 0, then the case I, the solution of the equation
(1)is

u(r, ) = (cocos (pInr) + cyosin(pinr))(c1ePf + c1e7P?) .. (4)

where ¢; (j = 1,2, ... ... 12) are constants.

8.4 INTERIOR DIRICHLET PROBLEM FOR A
CIRCLE:-

The interior Dirichlet problem(Poisson’s Formula) for a circle is
described as below:

To find the value of single-valued and continuous function u within and
on the circular region r = a such that u satisfies the Laplace’s equation
(2) for 0<r<a,0<6<2m subject to the boundary condition
u(a,8) = f(0),0 < 6 < 2m, f(0) being a continuous function of 6.

Since the function u is single-valued, it must satisfied the condition is
u=(r,0+2m) =u(r0), 0<6<2nm ..(5)

Let, r = 0, is a point of the domain of definition of the problem and Inr is
undefined at r = 0. Thus the equation (3) and (4) of Laplace’s equation
are ruled out, therefore the equation (5) then obtain

c3 cos(pB) + c,sin(ph) = c3 cos(6 + 2m) + c,sin(0 + 2m)
c3 [cos(pB) — cos(O + 2m)] + cusin(pf) — cusin(0 + 2m) = 0
sinprm[cssinp(0 + m) — cycosp(6 + )] =0
Sincep=n,(n=0,1,2...)

Hence, by using the superposition principle, the equation (1) is
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u(r,0) = Z(Cnr" + D,r ™) (A,cosnb + B, sinnf)
n=1
Since u(r, 0) is be finite at the origin, so we put D,, = 0. Also taking
ag = 24y, a, = 24,Cp, b, = 2B,C,,, (n > 0), the above solution can be
written as

1 co
u(r,0) = > o + Z r"*(a, cos n8 + b,, sinhnf)
n=1

Now u(a, 8) = f(0) obtain

1 oo
f() = > % + Z a™(a, cosnb + b, sinhnh)
n=1

> ao==["f($)dpa, =
1

LI F(@)sinngp dop

1
man

77 f(¢)cosnepdgp, a, =

So. u(r,0) = 27 F(@) {2+ 55 (5) cos(@ - 0)} dop

n

Ifweputc =Y, (l)n cosn(¢p —0) and ¢ =Y (%)n cosn(¢p — 6)

n

n Dei(o-
S R o e
Then c+is=2n= {(Z)el(d) 9)} - 1—(£)ei(¢—9)
Equating real part
" (p)eosto-0) -3
c= () com(@-6) =

2 2
n=1 1—(%)cos(¢—0)+%
Hence the required solution is

1 fz” (a®> =r®)f ()

u(r,0) = o a? — 2arcos(¢ — 0) + r?

do, r<a

This is called Poisson integral formula and obtains the interior Dirichlet
problem for a circle.
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8.5 EXTERIOR DIRICHLET PROBLEM FOR A
CIRCLE:-

The exterior Dirichlet problem for a circle is described as below:

To find the value of single-valued and continuous function u within and

on the circular region r = a such that u satisfies the Laplace’s equation
(1) for 0<r<a,0<6 <2m subject to the boundary condition
u(a,0) = f(0),0 < 0 < 2m, f(0) being a continuous function of 6 and u

1s bounded r — oo,

Since the function u is bounded as r — oo, it must satisfied the condition

1S

[oe)

1
u(r,0) = > o + Z r~"(a, cosné + b, sinh nf) .. (6)
n=1

Now u(a, ) = f(6) obtain

e

1
f@) = > %o + z a "(a, cosnf + b,, sinhnh)

n=1

= ag==[f(p)de,a, == [Z f($)cosnpdep, a, =
L [T f ($)sinng do

So. u(r,0) =2 [ F (@) L+ 32, (%) cosn(e - 60)} d¢
Then the case of interior Dirichlet problem, we get

1 (r? —a®)f(¢)
u(r,6) = _L r2 — 2arcos(¢ — 0) + a? ae,

r>a
2T

This is called the exterior Dirichlet problem for a circle.

8.6 INTERIOR NEWMANN PROBLEM FOR A
CIRCLE:-

The Exterior Interior Neumann for a Circle is described as below:

Department of Mathematics

Uttarakhand Open University Page 158



Advanced Differential Equations I1 MATS08

To obtain the value of single-valued and continuous function u within and
on the circular region r = a such that u satisfies the Laplace’s equation

(I) for 0 <r <a,0 <6 < 2m subject to the boundary condition Z—Z =

3—1: = (0),onr = a where g(6),0 < 6 < 2m and u is bounded 6.

Since the function u is bounded as r = 0, it must satisfied the condition
is

e

u(r,0) = z r"*(a, cos n8 + b, sinhn@) - (1)
n=1
Now

e

1
u(r,0) = 5@ + z r"*(a, cosnb + b, sinhn@)
n=1

Where 4, = %a, A, = a,, B, = b,,,(n > 0). So we have

[oe)

g0 = Z na™ 1(a, cosnd + b, sinnd)

n=1
Which is full-range Fourier series in g(8). Thus

1

na"1rx

an

2n 1 2n
| s@rcosmpdg, b= | g(@)sinngdg

And the equation (1) obtain as

e

1 n a\" a
u(r,0) = Ea + f g (d)){ (;) Ecosn(d) — 9)} do
0

n=1

Substituting

c= Z;‘l‘;l%(%)n cosn(¢p —0) and ¢ = Z;‘{;l%(%)n cosn(¢p — 60)

s = Ay LI(T) pio-0))" = _ap,[1 T ip-6
Then c+is= nzn:ln{(a)el( )} = nln{l ae‘( )}
Equating real part
a
¢ = ——In{a® — 2arcos(¢ — 0) + r?/a?}

2T

Hence the required solution is
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0 = 1 a 2”1 , 2t 0 r? 4
u(r, )—%—gfo n{a —;COSW)— )+§}g(¢) b,

r<a

8.7 SPHERICAL POLAR COORDINATES:-

In the case of axial symmetry about the polar axis (8 = 0), a function
Y(r,0,¢) is said to be independent of ¢ and Laplace’s equation in
spherical polar coordinates is given below

9,00\ 1 9 [ Py
§<T25>+ﬁa—0<51n95) =0 (1)
Now we put Y(r,0) = R(r)0(0) - (2)

Where R and © are the functions of r and 6 and the function ©(6) is
called the zonal surface harmonic. From (1) and (2), we have

1d(2dR)_ 1 d(_gd@)_k
Rar\' ar)” " oesmoao\*"ae)~

Where k is separation constant. Putting k = n(n + 1), we obtain

2dZR+2 dR (n+1R=0 3
o3 ro-—nn =0 ..(3)

and

! d('9d®)+ n+1)0=0 ..(4
singdg > qg) T =0

From (3), we get

B
R(r) = Ar™ +7-r+1 ..(5)
Now again putting 4 = cos@,from (4) we obtain
d doe
—[(1 —;ﬂ)—] +an+ 1O =0
du du

This is called Lagrange’s equation whose solution is

0(60) = CP, (W) + DO (1) - (6)

Department of Mathematics
Uttarakhand Open University Page 160



Advanced Differential Equations I1 MATS08
where the functions P, (1) and Q,,(u) are Lagrange’s functions of the first
and second kind respectively.

Using (5) and (6) in equation(1) and (2) ,we get

o)

By
P,0) = ) (A + =) (CRG + DO (k)
n=0
SELF CHECK QUESTIONS

1. What is Dirichlet's Problem for a circle?

2. State the mathematical formulation of Dirichlet's Problem for a
circle.

3. What is the Neumann Problem for a circle?

4. What is the relationship between Dirichlet's and Neumann
Problems for a circle?

5. Can Dirichlet's Problem have a unique solution for any given
boundary condition?

6. What are the boundary conditions for Dirichlet's Problem and
Neumann Problem for a circle?

8.8 SUMMARY:-

In this unit we have studied the Dirichlet’s Problem and Newmann
Problem for Circle. Both problems involve finding solutions to partial
differential equations within a circular domain, but the Neumann problem
focuses on prescribing the behavior of the normal derivative on the
boundary, while the Dirichlet problem focuses on prescribing the actual
values of the solution on the boundary.

8.9 GLOSSARY:-

Neumann Problem for a Circle:

1. Mathematical Setup:

e  Circular Domain: A region in the two-dimensional

plane defined by a circular boundary.

e Laplace Equation: A partial differential equation
describing the distribution of a scalar field within the
circular domain. It is often denoted as V2u = 0 and
V2u = f(x,y), u is unknown function.
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2. Neumann Boundary Conditions:
e Normal Derivative: The rate of change of the solution
along the normal direction to the circular boundary.
e Neumann Conditions: Prescribed normal derivatives on

the circular boundary, typically represented as Z—Z =g(6),

where 0 is the angle parameter.
3. Solution Procedure:

e Separation of Variables: A mathematical technique used
to simplify the solution process by expressing the solution
as a product of functions of individual variables.

e Conformal Mapping: A transformation method that
preserves angles and shapes, often applied to simplify the
solution process for circular geometries.

4. Circular Boundary: The outer boundary of the circular
domain within which the Neumann problem is defined.

5. Angle Parameter (0): A parameterization of points along the
circular boundary, often measured in radians.

6. Scalar Field (u): The unknown function representing the
physical quantity being studied (e.g., temperature, electric
potential) within the circular domain.

Dirichlet Problem for a Circle:

1. Dirichlet Boundary Conditions:

¢ Dirichlet Conditions: Prescribed values of the solution on
the circular boundary, typically represented as u(8) =
h(6) , where u(@) is the solution at the point
parameterized by the angle 8, and h(8) is a given function
specifying the prescribed values.

2. Solution Procedure:

e Separation of Variables: A mathematical technique used
to simplify the solution process by expressing the solution
as a product of functions of individual variables.

e Conformal Mapping: A transformation method that
preserves angles and shapes, often applied to simplify the
solution process for circular geometries.

3. Circular Boundary: The outer boundary of the circular
domain within which the Dirichlet problem is defined.

4. Angle Parameter (0): A parameterization of points along
the circular boundary, often measured in radians.
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5. Scalar Field (u): The unknown function representing the
physical quantity being studied (e.g., temperature, electric
potential) within the circular domain.

In summary, both Neumann and Dirichlet problems involve
finding solutions to the Laplace or Poisson equation within a
circular domain, with Neumann conditions specifying normal
derivatives and Dirichlet conditions specifying actual values on
the circular boundary. Techniques such as separation of variables
and conformal mapping are commonly used in solving these
problems.
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8.12 TERMINAL QUESTIONS:-

(TQ-1): Show that the Laplace’s equation V?>u = 0 in cylindrical
coordinates satisfying the conditions (i) u = 0asz — 0 (i1)) u
is infinite as p — 0 are of the form.

u= Z Z Gmn/n(mp)e_mZiinqb
m n
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0%v 10V

(TQ-2): Show that the two dimensional Laplace equation ﬁ-l_ -—+

1.
ii.

r or
a2 . ;
riza_ez = 0 has solutions of the form (Ar™ + Br ™)e*"? where
A and B and n are constants. Determine V satisfying the above
equation in the region 0 < r < a,0 < 6 < 2m and satisfying the

boundary conditions.

IV remains finite as r — 0.
V=3,C,cosnf onr = a.

(TQ-3): Discuss the Interior Neumann Problem for a circle formulation

Mathematically

(TQ-4): Explain the concept of spherical polar coordinates in detail,

particularly focusing on their application in Laplace's equation.

(TQ-5): Explore the concepts of the exterior and interior Dirichlet

problem, focusing specifically on their application to a circular
domain.

8.13 ANSWERS:-
SELF CHECK ANSWERS
1. Dirichlet's Problem involves finding a harmonic function inside a

region that takes specified values on the boundary of that region.
For a circle, it is the task of finding a harmonic function within the
circle that matches prescribed values on its boundary.

Let D be the unit disc in the complex plane, and f(0) be a given
continuous function defined on the boundary of D(JD). Dirichlet's
Problem is to find a harmonic function u(z) in D such
thatu(eig) =f(O)V 6 € [0,2m).

The Neumann Problem involves finding a harmonic conjugate of a
given function on the boundary of a region. For a circle, it is the
task of finding a harmonic conjugate for a given function defined
on the circle's boundary.

For a simply connected domain (like a circle), the solutions to
Dirichlet's Problem and Neumann Problem are related through the
Cauchy-Riemann equations. If u(z) is a solution to Dirichlet's
Problem, then its harmonic conjugate v(z) is a solution to the
Neumann Problem, and vice versa.

No, Dirichlet's Problem may not have a unique solution in general.
Uniqueness depends on the regularity of the boundary condition
specified on the boundary of the region.
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6. For Dirichlet's Problem, the boundary condition is a prescribed
function f(6) on the boundary of the circle. For Neumann
Problem, the boundary condition is the derivative of a given
function g(0) on the circle's boundary.
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Unit 9: Diffusion Equation

CONTENTS:
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9.2  Objectives
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9.4  Derivation of Fourier Equation of Heat Conduction

9.5  Telegraph or Transmission Line Equations
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9.11 Three dimensional (heat equation) Diffusion equation
9.12  Summary

9.13  Glossary

9.14 References

9.15 Suggested Reading

9.16 Terminal questions

9.17 Answers

9.1 INTRODUCTION:-

The diffusion equation as a partial differential equation describing the
collective motion of micro-particles resulting from their random
movement within a material. The mention of its applications in
mathematics, particularly in connection with the Markov process, and its
wide-ranging relevance in fields like materials sciences, information
science, life science, and social science highlights the interdisciplinary
nature of the diffusion equation. The term "Brown problems" is
introduced, connecting the diffusion equation to Brownian motion and
indicating a class of problems related to the behavior of particles
undergoing random motion. The discussion on the continuity of the
diffusion equation in both space and time emphasizes the need for
discretization in practical applications. The different approaches to
discretization time alone, space alone, and both time and space are briefly
outlined, with a mention of how discretization may lead to phenomena
such as the random walk.
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This unit, we will study a focus on the study of diffusion equations and
their elementary solutions, suggesting a deeper exploration into the
mathematical aspects and fundamental solutions of the diffusion equation.
This introduction effectively sets the stage for a comprehensive
understanding of this important concept in mathematical modeling and
scientific research.

9.2 OBJECTIVES:-

After studying this unit learner’s will be able to

e Solution of Diffusion equation.
e Explain Diffusion Equation and its Elementary Solution.

These objectives suggest that learners will gain both theoretical and
practical knowledge in solving diffusion equations and understanding their
elementary solutions. The skills acquired can be applied to various fields
where diffusion phenomena are relevant, such as physics, chemistry,
engineering, biology, and environmental science.

9.3 ONE DIMENSIONAL (HEAT EQUATION)
DIFFUSION EQUATION:-

Let us consider that the temperature at any point (x, y, z) of a solid at time
tis u (X, Y, z, t) and the thermal conductivity of the solid is K, the density
of the solid is p and specific heat is o, the heat equation

0%u

F = hZVZu (1)

Where h? = p% =k, k is known as diffusivity, is called the equation of

diffusion or the Fourier equation of heat flow.

Suppose the flow of heat by conduction in a bar OA. Let be taken as the
x — axis. Now an element PQQ’P’ of the bar as shown in figure. Let us
suppose the temperature u(x, t) of the bar at any point P is the function of
x and the time t. Suppose that the bar is increased to an temperature
distribution at the time t = 0 and then heat is allowed to flow of
conduction.
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Fig.1

Let we constitute the following assumption.

1. The bar is homogeneous, i.e.,the mass of the bar unit volume is
constant p.

2. The sides of the bar are offended and the loss of heat from the
sides by conduction or radian can be neglected.

3. The amount of heat crossing any section of bar is obtained by
kAou
ox

ot, where
A = area of cross section of bar

a . .
ﬁ = temperature gradient at the section

ot = time of flow of heat
K = thermal conductivity
Now the element across the section PP’ in term §t

= KA (a”) 5t
B dx/

where the negative sign show the heat flow in the direction o decreasing

temperature
ou

— —KA (—) 5t
ox x+6x

Hence, the quantity of heat is

ou ou
=—-KA (—) 6t — KA (—) ot
ox x ox x+8x

), -@) o

Let the above equation the temperature of the element by a small
quantity 6u. Then the same quantity of heat is again obtained by
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= (pAdx)odu ..(3)
Where o is specific heat of bar.
From (2) and (3), we get
KASt{u(x + 6x,t) —u(x, t)} = (pAdx)odu
Or

Ku(x +6x,t) —ulx,t)  bu
5x ~ P

(4

Now as dx — 0 and 6t — 0, reduces to

0%u su 0°u  Su
or kﬁ = E (5)

0x2 p 5t

where p% = k is called the diffusivity of the material of bar and equation

(5) is known as one dimensional diffusion equation.

9.4 DERIVATION OF FOURIER EQUATION OF
HEAT CONDUCTION:-

Fig.2

From the figure, let P(x,y,z) be any point of the solid and &S be
elementary area of S surrounding P. Let A be the unit outward drawn
vector, normal at P to 6S.

Now, the amount of heat leaving S per unit time

= (.1) 8S (D
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v=—-Kgardu=—-KVu ..(2)

where K is thermal conductivity of the material of the solid body and
u(x,y,z,t) is temperature at P(x, y, z) at the time t.Hence

. 0u . 0u ou
Vu—gardu—l£+]5+k5 ..(3)

From (1) and (2), we get
=—Kiju.’ﬁdS ..(4)
s

Now we consider the gauss divergence theorem, then we can be written as

below
fst.ﬁdSzfﬂ;/V.FdV. ..(5)

Let the total amount of heat leaving the entire surface S per second from
(4) is obtained as

—Kﬂfvv.Vudvz —Kﬂfvvzudv . (6)

Let o be the specific heat of the material of the body, then the total amount
of heat H inside the surface S is obtained by

H = [[f,opuav (7

Hence the rate of decrease of H inside the entire surface S i. e., the amount
of heat leaving the entire volume V across its surface S per second is

0H ou
=5, =~ lf,opu; dv ..(8)

From (6) and (8), we get

[ v = [ o2 a

Ilf, vuav |Kviu—op2|av =0  ..(9

V being arbitrary and integrated in (9), if its integrated is zero everywhere,
ie.,
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Or

where k = :—p is thermal diffusivity of the material.

9.5 TELEGRAPGH OR TRANSMISSON LINE
EQUATIONS:-

Fig.3

As shown in figure 3 considering the fall of potential in a linear element
PQ(—6x) situated at point x, we obtain

ov
—0V = IR8x + Lox (—)
ot

Where R and L are resistance and inductance per unit length respectively.

If there is a capacitance to the earth of C per unit length and conductance
G per unit length , then

—81 = GVx + C5x(aV/dt)

Now 8x — 0, from the above equations,

and
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Trav+ o0
ox or ~0 @

Differentiating (1), w.r.t.x and (2) w.r.t. t , we obtain

v a0
ox2 ' ox " “oxor

Gav+CaZV+ 921
ot dx2  0xot

T 921 .
Eliminating P and Fyew from the above equations , we get

oV _ CL oV + (CR + GL) ov + RGV 3
ox2 ot? ot -~ (3)

Similarly differentiating (1) w.r.t. t and (2) w.r.t. x, we have

0%l _ CL ol + (CR + GL) ol + RGI 4
ox2 ot? ot - ()

Hence this equation is known as telephone equations.

Remarkl: If L = G = 0, the equation (3) and (4), we obtain

2%V Cav
0x2 ot
0% RC ol
dx2 ot

is called telephone equations.

Remark2: If R = G = 0, the equation (3) and (4), we get

o2V ‘L K%
dx2 ot?

0k _ . (9%
ox2 ot2

This is called radio equations.

Remark3: If L = C = 0, the equation (3) and (4), we have
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2%V

— = RGV
o7l = RGI
ox2

This equation called submarine cable.

9.6 BOUNDARY VALUE PROBLEM:-

A boundary value problem (BVP) is a type of mathematical problem that
involves finding a solution to a differential equation subject to certain
conditions on the boundary of the domain in which the equation is
defined. These problems are common in various fields, including physics,
engineering, and applied mathematics. Boundary value problems are
distinct from initial value problems, which involve specifying conditions
at a single point within the domain.

Mathematically, a Boundary Value Problem can be expressed as follows:
Consider a differential equation of the form:
Fx,y,y'y"...,y" =0
subject to boundary conditions:
G y(@),y(b),y'(@),y'(h), . ..,y D (@)y™ P (b) = 0

Here y in unknown function, y' represents the first derivative of y, y" the
second derivative, and so on, up to the n‘"* derivative. The function F
represents the differential equation, and G represent the boundary
condition.

The solution to a Boundary Value Problem seeks to find a function y(x)
that satisfies both the differential equation and the specified boundary
conditions within the obtained domain [a, b].

9.7 METHOD OF SEPERATION OF VARIABLES
OR PRODUCT METHOD:-

The method you're describing is known as the method of separation of
variables, commonly used in solving partial differential equations (PDEs).
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Suppose a partial differential equation (PDE) involving n independent
variables n independent variable x4, x5, ..... X, and one dependent variable
u.Then we first assume that the solution to this PDE can be represented as
a product of functions of the form

u(xy, X, e x) = X1(x1), X5 (x3), oo .. X (%) ..(1)

where X; is a function of x; only (i = 1,2, ... ....n). On putting of (1) into
the given equation, we shall obtain n ordinary differential equations one in
each of unknown functions X;(= 1,2, ....,n). The entire procedure will be
clear from the solved examples.

9.8 THE PRINCIPLE OF SUPERPOSITION:-

The general linear homogeneous partial differential equation of the second
order is

0%u 0%u 0%u ou ou
C—+D—+E—+Fu=0G ..(1)

4 d0x? +B d0xdy + dy? ox dy

Let us suppose that

1. Uq, Uy, «.v .. Uy, ... 18 an infinite set of solutions of (1) in region
R in xy — plane .
il. The infinite series u; +u, + -+ u, + -+~ converges and is

differentiable term by term in R. Then by the principle of
superposition, the function u, defined by u = Y7, u, is also a
solution of (1) in R.

9.9 INITIAL AND BOUNDARY CONDITIONS:-

The conditions which are obtained for time t = 0 are called initial
conditions (I.C). The conditions obtained at the boundary of the region or
intervals are called boundary condition (B.C).

Let us suppose u(x,t) and v(x,y,t) are functions of two and three
variable respectively. Then, we have
ou ou

a = Uy = ux(x' t)) E = U = ut(x' t)
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(au)xzn = u, (7, t), <a_u)t=0 = u,(x,0)

ax

v ov
a = vx(x; y: t), (E)tzo = vt(xr y: 0) etc.
2
EXAMPLE: Obtain the general solution of heat flow equation k 271; = %

by the method of separations of variables

. 2%u  du
SOLUTION: Given kﬁ == ..(1)

Now from (1), we get

ulx,t) = X(x)T(t) - (2)
Now then find, on putting in (1), we get

" _ ’ X_”_T_’
kX"T = XT' or ~ = ..(3)

where the dashes denote derivatives with respect to the relevant variable.
From (3), we have

X'"—uX=0 . (4)
and
T' = ukT ..(5)
Since the three cases according as u is zero, +ve or —ve.
Casel: Suppose u = 0, then the solution of (4) and (5) are
X=aix+a, and T =aj

Casell: Let 1 be +ve, say A2. Then from (4) and (5) becomes respectively
X" — 22X =0and T' = A%kT, we obtain
X =be™ +be™™ and T =bse’ T

Caselll: Let u be —ve, say —A2. Then from (4) and (5) becomes
respectively X" + 22X = 0 and T' = —A%kT, we get

. _ 22
X = cycosAx + cysindx and T = c;e KT

Hence , u(x,t) = A;x + A,
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u(x, t) = (Bye™ + Bye~x)e°kt
u(x, t) = (CycosAx + Cysindx)e 2kt

where A1 = a1a3,A2 = a,as, Bl = b1b3, Bz = b2b3, Cl = (C1C3 and
C, = c,c3 are new arbitrary constants.

9.10 TWO DIMENSIONAL (HEAT EQUATION)
DIFFUSION EQUATION:-

The two-dimensional heat equation describes how temperature distribution
evolves over time in a two-dimensional space. It is a partial differential
equation that represents the diffusion of heat in two spatial dimensions.
The general form of the two-dimensional heat equation is given by:

0*u 0%u 10u

to =T (1
0x2  dy? kot (D
° u(x,y,t) is the temperature distribution at the point(x, y) and t.
o % is the partial derivative of u with respect to time, representing

the rate of change of temperature.

%u %u . .
* - and 3,z are the second partial derivatives of u w.r.t. x and y

respectively, representing the spatial variations of temperature in
each dimension.

o %is the thermal diffusivity, a material property that characterizes

how quickly heat can spread through the medium.
Problem: Obtain the solution of the two- dimensional diffusion equation

026 N 0?60 106 )
ax2  dy? kot (1)

Sol: Let that the equation (1) has solutions of the form

6(x,y,t) = X()Y(y)T(t) - (2)
Putting this value of 8 in (1), we obtain

X'YT+XY'T=2xYT' or 4+ =12 (3
k X Y kT
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Since x, y and t are independent variables, (3) is true if

n 2 YII 2 T’ 2
—=-—n4,—=—-—m* and —=— (4
X Ty kT p ( )

with
n? + m? = p?
Now solving differential equation obtained by (4) (8 — 0 as t — o0)
X, (x) = A, cosnx + B,sinnx, Y,,(y) = C,cos my + D,,sin my,
And
T, (t) = E,e Pkt = e~ +m*kt
Hence

Onm (x,v,t) = Fy (A, cosnx + B, sinnx) X (C,cos my +

D,,sin my)e~®*+m*kt

9.11 THREE DIMENSIONAL (HEAT EQUATION)
DIFFUSION EQUATION:-

The three-dimensional heat equation describes how temperature
distribution evolves over time in a three-dimensional space. It is a partial
differential equation that represents the diffusion of heat in three spatial
dimensions. The general form of the three-dimensional heat equation is
given by:

62u+62u+62u_16u .
0x2  dy?  0z2 kot - (1)

Suppose the equation (1) has solution of the form is given by

u(x,y,z,t) =Xx)Y(y)Z(2)T(t) - (2)

where X,Y,Z and T are respectively the functions of x, y, z and t alone.
Putting the value of u in (1), we obtain

1
X"YZT + XY"ZT + XYZ"T = % XYZT'
XII YII ZII 1 TI

X+Y+Z=E? ..(3)
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Since x, y, z, t are independent variables, so
S R 220 _ _pp T

_n2 X 2
= Tnh,=mmt, = l,kT— p° ...(4)

where
n? +m? + 12 = p? ..(5)

Again from (4), we obtain
X, (x) = A,,cosnx + B,sinnx, Y,(y) = C,cos my + D,,sin my

Z,(z) = E;coslz + F;sinlz

and
Tp(t) = Gpe—pzkt — Hnmle—(n2+m2+lz)kt
Unmu (X, ¥, 2,t) = Hymi (A cosnx + B,sinnx)(C,cos my +
D,,sin my)(E, cos Iz + F;sinlz)e~(n*+m*+1*)kt .. (6)

are the solutions of (1). Hence the equation (10 is obtained by

u(x,y, zt) = Z Z Zunml(x, y,2,t).

n=1m=11=1
SELF CHECK QUESTIONS
1. What is the diffusion equation?

2. What does the diffusion coefficient (D) represent in the diffusion
equation?

3. What is the one-dimensional diffusion equation?

4. What is the two-dimensional diffusion equation?

5. What is the three-dimensional diffusion equation?

6. What are boundary value problems (BVPs) in the context of the

diffusion equation?

7. What is the general form of the diffusion equation, and what does
it describe?

8. In the context of the diffusion equation, what does the term ou/ot
represent?

9.12 SUMMARY:-

The unit covers various aspects of the diffusion equation, exploring its
applications in different dimensions. It begins by examining the general
diffusion equation and then delves into specific cases such as the one-
dimensional, two-dimensional, and three-dimensional diffusion equations.
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The unit also discusses boundary value problems (BVP), providing a
comprehensive understanding of the mathematical models and solutions
associated with diffusion processes in different scenarios. Overall, the unit
encompasses a thorough study of diffusion phenomena, offering insights
into their mathematical formulations and solutions across various
dimensions and boundary conditions.

9.13 GLOSSARY:-

o Diffusion Equation: A partial differential equation that describes
the distribution of a quantity (e.g., temperature, concentration) over
time and space as it spreads through a medium.

e One-Dimensional Diffusion Equation: A specific form of the
diffusion equation applied to situations where the spreading of a
substance occurs in only one spatial dimension.

e Two-Dimensional Diffusion Equation: A variant of the diffusion
equation used to model the diffusion process in two spatial
dimensions.

e Three-Dimensional Diffusion Equation: The diffusion equation
adapted for situations where the spreading of a substance occurs in
three spatial dimensions.

e Boundary Value Problems (BVP): A type of mathematical
problem associated with finding a solution to a differential equation
that satisfies certain conditions at the boundaries of the domain.

e Concentration Profile: The spatial distribution of the concentration
of a substance over a given area or volume as it undergoes diffusion.

o Diffusivity (D): A parameter that represents the rate at which a
substance diffuses through a medium. It is a measure of how easily a
substance spreads.

e [Initial Condition: The concentration distribution at the starting
point in both space and time for a diffusion process.

e Dirichlet Boundary Condition: A type of boundary condition
where the concentration of the diffusing substance is specified at
certain points on the boundary of the domain.

e Neumann Boundary Condition: A type of boundary condition
where the flux (rate of flow) of the diffusing substance is specified at
certain points on the boundary.
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Steady-State Solution: A solution to the diffusion equation where
the concentration profile does not change with time, indicating a
constant state of diffusion.

Transient Solution: A solution to the diffusion equation that
considers changes in concentration over time, capturing the dynamic
nature of the diffusion process.

Finite Difference Method: A numerical technique commonly used
to solve differential equations, including the diffusion equation, by
approximating derivatives with finite differences.

Analytical Solution: A solution to the diffusion equation obtained
through mathematical analysis and manipulation of the equation,
providing an exact expression for the concentration profile.
Numerical Simulation: The use of computational methods to

approximate solutions to the diffusion equation when analytical
solutions are difficult or impossible to obtain.

These terms collectively contribute to the understanding and analysis of
diffusion phenomena in different dimensions and under various
conditions.
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9.16 TERMINAL QUESTIONS:-

(TQ-1): Solve B.V.P. 2% = 43—; ifu(0,y) = 8e~3.

(TQ-2): Solve by the method of separation of variables
0%z ) dz 0z 0
0x? ox + dy
(TQ-3): If both the ends of a bar of length a are at temperature zero and
the initial temperature is two be prescribed function f(x) in the
bar, then find the temperature at subsequent time ¢t.
(TQ-4): A rod of length [ with insulted sides, is initially at a uniform
temp U, . Its are suddenly cooled to 0°C and are kept at that
temperature. Find the temperation u(x, t).

(TQ-5): Find the meth of separation of variables the solution u(x, t) of
the boundary value problem.
au 02U
E=3<ﬁ>,t>0,0<x<2,
U@,t) =0,0(2,t) =0,t >0;U(x,0) =x,0 <x < 2.
(TQ-6): A rectangular plate bounded by the lines x = 0,y = 0,x
a,y = b has an initial distribution given by
V = Asin(mx/a)sin(mx/b). The edges are kept at zero
temperature and the plane faces are impervious to heat. Find
the temperature at any point.

9.17 ANSWERS:-

SELF CHECK ANSWERS

1. The diffusion equation describes the spread of substances through
a medium and is mathematically expressed as dC/dt = DV?C,
where C is concentration, t is time, D is the diffusion coefficient,
and V2 is the Laplacian operator.

2. The diffusion coefficient (D) represents the rate at which a

substance diffuses through a medium, indicating how quickly
molecules spread and mix.

3. The one-dimensional diffusion equation is dC/dt = DJ*C/dx?,
where C is concentration, t is time, D is the diffusion coefficient,
and 0%C/dx” is the second partial derivative of concentration with
respect to spatial coordinate x.
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4. The two-dimensional diffusion equation is dC/dt =
D(0%*C/0x* + 93%*C/dy?), where C is concentration, t is time, D is
the diffusion coefficient, and 9°C /0x? and 0*C/dy* are the second
partial derivatives of concentration with respect to spatial
coordinates x and y, respectively.

5. The three-dimensional diffusion equation is dC/dt =
D(0%*C/ox* + 93*C/dy* + 0°C/dz*), where C is concentration,
t is time, D is the diffusion coefficient, and 9*C /0x?, 0*C /dy?, and
0°C/0z* are the second partial derivatives of concentration with
respect to spatial coordinates x, y, and z, respectively.

6. Boundary value problems (BVPs) involve specifying conditions on
the boundaries of the spatial domain in addition to the initial
conditions. These conditions could be Dirichlet conditions
(specifying the value of u at certain boundaries) or Neumann
conditions (specifying the derivative of u at certain boundaries).

7. The general form of the diffusion equation is du/dt = DV?u,
where u is the scalar field representing the quantity undergoing
diffusion, t is time, and D is the diffusion coefficient. It describes
how the quantity u spreads over time due to concentration
differences.

8. 0Ju/dt represents the rate of change of the quantity u with respect
to time. It quantifies how the concentration of the diffusing
substance changes over time.

TERMINAL ANSWERS

(TQ-1): u(0,y) = 8e~“*+y),
(TQ-2): z(x,y) = {De[“m]x + Ee[”m]x} eky.

(TQ'4): u(x,t) = 4% 270—,01=1 Eym_qSin (Zml—l) X e‘czzm—ﬂ:
(TQ-5): U(x, ) = 5y
(TQ-6): u(x,y,t) = Asin (=) sin (2) o T kt(Gzt52)

2 )e—3n2n2t/4
. N1
sin—-

S
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Unit 10: Wave Equation
CONTENTS:

10.1  Introduction
10.2 Objectives
10.3  Derivation of one dimensional wave equation

10.4  Derivation of two dimensional wave equation
10.5 Derivation of three dimensional wave equation
10.6 D’ Alembert’s Solution of wave equation

10.7 Summary

10.8 Glossary

10.9 References

10.10  Suggested Reading

10.11  Terminal questions

10.12  Answers

10.1 INTRODUCTION:-

A wave is initiated when a vibrating source periodically disturbs the first
particle of a medium. This disturbance creates a wave pattern that travels
through the medium from particle to particle. The frequency of vibration
for each individual particle matches the frequency of the source, and the
period of vibration for each particle is equal to the source's period. In one
complete period, the source displaces the first particle upwards, returns it
to rest, moves it downwards, and brings it back to rest, completing one full
back-and-forth cycle, which constitutes a single wave cycle

The wave equation is a crucial second-order linear partial differential
equation used to describe various types of waves in classical physics, such
as mechanical waves (e.g., water waves, sound waves, seismic waves) and
light waves. It finds applications in fields like acoustics, electromagnetic,
and fluid dynamics. The historical development of the wave equation
involved contributions from notable scientists like Jean le Rond
D'Alembert, Leonhard Euler, Daniel Bernoulli, and Joseph-Louis
Lagrange. The equation was first discovered in 1746 by d'Alembert in one
dimension, and Euler later extended it to three dimensions. The wave
equation can be derived in different physical settings, such as the vibration
of a string or using Hooke's Law in the theory of elasticity.

The study of wave equations and their elementary solutions is a key focus
in this unit.
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10.2 OBJECTIVES:-

After studying this unit learner’s will be able to

e Discuss about wave equation.
e Explain wave equations and its elementary solutions to wave
equation.

The objectives of studying wave equations include providing a
mathematical foundation to describe and understand diverse wave
phenomena such as mechanical and electromagnetic waves. These
equations are crucial for modeling physical systems exhibiting wave-like
behavior, enabling predictions of wave propagation through different
media. In the realm of elasticity, the wave equation offers insights into
material deformation under stress. Studying and deriving elementary
solutions contribute to a deeper understanding of fundamental wave
patterns. The practical applications of wave equations in engineering
involve designing and analyzing structures and systems that involve wave
propagation, impacting fields like acoustics, optics, and fluid dynamics.
Furthermore, technological advancements, particularly in areas like
medical imaging and telecommunications, are driven by the principles
elucidated by the study of wave equations. Interdisciplinary collaboration
across various scientific domains is encouraged, emphasizing the broad
and versatile implications of wave equations in advancing scientific
knowledge and technological innovation.

10.3 DERIVATION OF ONE DIMENSIONAL
WAVE EQUATION:-

The wave equation is a second-order linear partial differential equation
that mathematically describes the behavior of waves. It expresses how a
physical quantity, often represented by the variable u, varies with both
time (t) and space (x) and is commonly written as:
2 2
0“u ,0%U

= C"—

at? 0x?

a2 . o ) .
Here, 6—tgrepresents the second partial derivative of u with respect to time,

2

e . .. d%u, .
indicating the acceleration of the wave in time. a—leS the second partial
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derivative of u with respect to space, representing the curvature of the
wave in space. The variable c is the velocity of the wave.

Fig.1

Let us consider an elastic string which is stretched to length fixed at end
point O and A. Let that the string is distorted and further suppose that at
time t = 0. Let OA be taken as x-axis and let a perpendicular line through
O be taken as the u — axis .

Let we constitute the following assumption.

1. The string is homogeneous, i.e., the mass of the string per unit
length is constant p.

2. The entre motion takes place in the x — plane.

3. The string is perfectly elastic and it does not produce resistance to
bending.

4. The string makes small transverse vibration so that the absolute

. ] . .
values of deflection u and the slope % at any point of the string are

small.

5. The tension in the string is large so that the force due to weight of
the string could be neglected.
Suppose the motion of the small portion PQ of length §s of the
string. By hypothesis the string produces no resistance to bending
so the tensions T; and T, at P and Q will act along tangent at P
and Q respectively. Since there is no motion in horizontal
direction, we obtain

Tycosa = T,cosB =T (constant)  ..(1)

Now PQ is pds and acceleration of this element in vertical direction is
a2 . . . . ,
6—;; . The resultant vertical force acting on PQ is T, sin § — Ty sina. Hence
P = mf, then

0%u

T, sin B — Tysina = (pds) FT5)
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_ . Tisina  (pdx) 0%u Ss = 5
(T, sinB)/ T =TT 32 s = 6x

(pbx) 0%u
T o0t?

(2

tanf — tana =

Since
tana = (0u/0x), = u(x,t)
tanf = (0u/0x) 6, = u(x + 6x,t)
Putting the values of tana and tanf in equation (2), we get

u(x +6x,t) —u(x,t) po*u
ox - T ot?

Now putting éx — 0, in above equation

0°u _p 0%u 0°u _ , 0%u
a2 Toaxz O 8z © ox?

Where c? = T/p and is positive quantity.

10.4 DERIVATION OF TWO DIMENSIONAL
WAVE EQUATION:-

Suppose the membrane be distorted and further let at time t = 0, it be
released and allowed to vibrate. Let A'B'C’'D’ be the shape of an element
of the membrane at any time t.Let ABCD be the projection of A'B'C'D' on
the xy = plane.

Let we constitute the following assumption.

1. The membrane is homogeneous, i.e., the mass of the membrane
per unit area is constant p.

2. The entire motion takes place in a direction perpendicular to
xy — plane.

3. The string is perfectly elastic and it does not produce resistance to
binding.

4. The tension T per unit length developed by stretching the
membrane is the same at all points and in all directions.

5. The deflection u(x,y,z) is small as compared to size of the
membrane. All angles of inclination are small.
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6. The slopes du/dx and du/dy are small so that their higher
powers can be neglected.

fig.2
From the above figure 2, the vertical component equal to

= (TSy)sinp — (Tdy)sina
= (Téy)(sinf — sina)
= (Téy)(tanB — tana)
~ a and f3 are so small.

-aon[(3). ..~ G

Similarly

=wso|(5) -G

Now the area of element A'B'C'D’ is &x, 8y so that its mass is pdxdy.

. . . N 0%u
Again the acceleration in vertical direction is —.. Hence,

i
-am[3), -G8 J+- o3 -C9)]
= (pdxéy) %
Or

u(x +6x,y,t) —ulx,y,t) ulx,y+06y,t)—ulx,yt) p 0%u
5x 5y T T 0t2

Now putting §x — 0,5y — 0, in above equation obtain
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0%u N 0°u _pd*u
ax2  dy? T Ot?

0%u 0’u  0%u
dt? dx?  dy?

where ¢2 = T/p. Hence which is required the two dimensional equation

Or

of wave eequation.

10.5 DERIVATION OF THREE DIMENSIONAL
WAVE EQUATION:-

The present module focuses on solving the three-dimensional
homogeneous wave equation in various coordinate systems—Cartesian,
cylindrical, and spherical polar. The primary technique employed is the
separation of variables. This mathematical method involves expressing the
solution as a product of functions, simplifying the partial differential
equation. The module explores solutions in different coordinate systems,
utilizing the separation of variables approach.

Furthermore, the module delves into Duhamel's principle for addressing
the inhomogeneous wave equation. Duhamel's principle provides a
strategy for obtaining solutions to inhomogeneous linear partial
differential equations. It involves solving the related homogeneous
equation and incorporating the effects of the inhomogeneous term using an
integral representation.

Solution by Separation of Variables Method:

a. Cartesian Coordinates: The three-dimensional wave equation in
Cartesian coordinates describes the propagation of a wave in three-
dimensional space. In Cartesian coordinates (x,y, z), the form of
three dimensional wave equation is

0%u 2<62u 0%u 62u>

otz 0x? + dy? + 0z?
Substituting (x,y,z) = X(x),Y(y), Z(2), t(t), we have

10%X 10% 10%Z 1 0°T w?

X 9x2 +76y2 +Zaz2 “Tczatz | 2

So that
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192X 10%  10°Z w®
=n

2 2
102X 10%Y .,

—_— =_p

Xdxz Y oy?
Thus, we have the following four ordinary differential equations to define

X,Y,Zand T, viz,

d2X+ 2X—Odzy+ 2Y—0dzZ+ 2Z—0dZT+ T=0
dxz PTG T TN gt =Ry O =

2 2
Where g% = n? —p?,r? =5 —n? sothatp? +q* + 1% = 3.

Thus, the complete solution of these equations can readily be acquired
Hence, the complete solution of the equation (1) is given below

u(x,y,z,t) = {c; cos(px) + ¢, sin(px) Y{cs cos(gx)
+ ¢, sin(gx) Hcs cos(rz) + cgsin(rz)Hc, cos(wt)

+ cgsin(wt)} ..(2)

. . 4 . 2n
is periodic of period —.

b. Cylindrical Polar Coordinates: In cylindrical coordinates

(7,6, z), the form of three dimensional wave equation is

0%u 0°u 1ou 1 0%°u 0%u
=t = =+
ot2 or?2 r ot r? 002 02z2

Substituting (x,y,z) = X(x),Y(y),Z(2),t(t), we have
2

1/d’R 10R N 1 62®+1622_ 1 aZT_ w
R\dr? r or 20 002 Zdz2 Tc?at? 2
So that
1/d’R 10R 4 1 626)_ 10%Z wz_ 5
R\dr? r or r2@ 002  Z0dz2 2 n
1 d2R+18R b2 = 1 82@_ 5
R\dr? r or = 20 692_m
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Thus, we have the following four ordinary differential equations to define

R,0,Z and T, viz,

d’R 10R m? 920
——+(n?——=|R=0,— +m?0 =0,

dr2+r or T2 002
0%7Z d*T
27 __ 2 —
ﬁ-l_q Z—O,F+w T=0

2
Where 12 = == n? and m assume is supposed to be a positive integer.

Then the complete solution of above equation
u(r,0,z,t) = {c1)m(nr) + c2Yp(nr)Hes cos(mb)

+ ¢4 sin(mO)}cs cos(qz) + cgsin(qz)Hc, cos(wt)
+ cgsin(wt)} .. (2)

. . 4 . 2n
is periodic of period —.

a. Spherical Polar Coordinates: In spherical polar coordinates
(r,0,¢) , the form of three dimensional wave equation is

0%u ) (azu 2 0u 1 4 ou 1 62u>

otz or? * r or * r2sind 90 (sind) a6 * r2sin?6 d¢?
Substituting (1,8, ¢,t) = R(r),0(0), 0(¢), t(t), we have

1 d2R+1aR N 1 d(_9)<_9d®)+1 1 0%@
SIS 4g @ r2sin?6 d¢p?

R\drz "7 or r2sinB0 do
1 OZT_ w?
T Tc2t2 2
So that
r?sin?6 d2R+ 10R w? +sin9 d ( _ 9d®)
R dr? r or c? ® do s de
10%0 w? 5
== =m
Qo2 2
r? (d?R 16R+a)2R B 1 d (,9d®)+ m?
R\dr? 1r or c? "~ Osind do st de sin?0
=nn+1)
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Thus, we have the following four ordinary differential equations to define
R,0,0 and T, viz,

d?R 20R w? +n(n+1) R
dr? ' r or c? r2

sinf d de m?
=0,— (sm@—) nn+1) ———=-r0=0,
sin?6

"0 d@ doe
d2%0 d*T
bl 20 — () == 2m _
ad)z+m® 0d2+wT 0

2
Where 72 = C— —n? and m assume is supposed to be a positive integer.

Then the complete solution of above equation

u(r,0,z,t) = {clj 1(117") +c,Y 1(ur)}{c3 Pl*cos 6

+ C4Qn cosO}cs cos(me) + cgsin(me) Hc, cos(wt)
+ cgsin(wt)} ..(2)

. . 4 . 2n
is periodic of period —.

10.6 D’ALEMBERT’S SOLUTION OF WAVE
EQUATION:-

Let the given wave equation is

9%¢ 1 (9%
W —_ 7(?) ...(1)

Suppose u and v be two independent variables such that
u=x+ct and v=x—ct . (2)

From (2), we have

6¢ 6¢8u 8(])617 a¢ d¢
dx Oudx  ovox ou  0v

0p_29 09

ox oJu Ov

So that
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d 6+6 3
ax-outow ~(3)

From(3), we get

e =5sa0) = (5 30) e+ )

Again,
¢ _ 0 du u 99 o ov a¢ dp
9t ouodt ovor ‘ou ‘ov
9 (6¢ 6¢)
ot Ju Jdv
So

5t =ae(oe) = (= 0) (e 30)

1 (az¢) _ 9% 9%¢ + 32¢
2\9t2)  9u? oudv w2

2
Putting the value of — ( ¢) and — reduces to (1), we obtain

0% 52¢+32¢_32¢ 52¢+32¢
ou? oudv ov: ou? oJudv 0Ov2

0%¢ _
oudv
Integrating it, we have
d¢

Where F(u) is an arbitrary function of u.

Integrating (3) w.r.t. u, we get

b = f Fw) du + g) = f() + g(v) = Fx + ct) + g(x — ct)
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SOLVED EXAMPLE

2 2
EXAMPLET1: Obtain the general solution of wave equation ZTLZL =Lt2u

c2 gt?
SOLUTION: Given

0%2u 1 0%u
Fr i res - (D)

Let the solution of (1) be the form

ulx,t) = X(x)T(t) - (2)
From (1) and (2), we get
X"t — lXT” or X—” = T—”
c? X T
X'"—uX =
T" —c?uT =0
Solving the above equation, we have
1. whenu =0,then X = a;x +a,, X =azt+a,
il. when p is negative sign and —A2, then

X = blelx + bze_lx,T = bgeCAt + b4€_dt

iil. when p is positive sign and A2, then
X = cyc05Ax + ¢, sinAx, T = czcoscpt + cusincpt
The various possible solution are
u(x, t) = (a1x + ay)(ast + a,)
u(x, t) = (bye™ + bye ) (bzeM + be~M)
u(x, t) = (cycoslx + c,sinix)(c3coscpt + cysincpt)

EXAMPLE2: A string is stretched between two fixed points (0,0) and
(1,0) and released at rest from the positions u = Asinmx. Show that the
formula for its subsequent displacement u(x,t) is given by u(x,t) =
A cos(mct) sinmx, c? being diffusivity.

SOLUTION: The given
0’u 1 90%u
Fr - (D)
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Since u(0,t) =0 and u(l,t) =0

u(x,t) = Asintx =0 and (%) =0
t=0

From the above equation, we obtain
oo
u(x,t) = z C,, cos(nmct) sin (nmx)
n=1

1 . .
where C,=2 fo Asinmx sinnmx dx

It is obvious that C, = 0 for n = 2,3, .....but C; = 4 [, Asin’mx dx =
A

Hence u(x,t) = A cos(nct) sinmx, c? being diffusivity.

EXAMPLE3:show that the deflection of vibrating
stringm (its ends beingfixed and c* = 1), corresponding to zero initial
velocity and initial deflection F(x) = A(sinx — sin2x).

SOLUTION: The given

0%u  0%u )
ﬁ=P(GSC =1) (1)

Since g(x) =0 and F(x) = A(sinx — sin2x)

Hence by (1), we get (as D,, = 0)

From the above equation, we obtain

(nmct) sin(nmx)

u(x,t) = Yooy C, cOS . l

=Y, C,cosntsinnx asc =

landmT =1

sin(nmx)
l

where C, = % ) 01 F(x) dx

1
= Ef A(sinx — sin2x).sin(nx) dx
0

20 (1 _ 21 (Y _
= —f A(sinx).sin(nx) dx = —f A(sin2x).sin(nx) dx
T Jo T Jo

It is obvious that C,, = 0 forn = 3,4,5...... but C; = 4,C, = A
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Hence u(x,t) = C;cost sinx + C, cos2tsin2x = A(sinx — sin2x) being
diffusivity.

SELF CHECK QUESTIONS

What is the one-dimensional wave equation?

State the boundary conditions for a string fixed at both ends.

What are the initial conditions for the wave equation on a string?

Provide D'Alembert's formula for the solution of the one-

dimensional wave equation.

5. State the boundary conditions for a membrane (two-dimensional
surface) vibrating at both edges.

6. Provide a general solution for the two-dimensional wave equation.

b=

10.7 SUMMARY:-

In this unit we have studied the wave one dimensional equation, wave two
dimensional equation, wave three dimensional equation, D’ Alembert’s
principle of wave equation. The wave equation is a partial differential
equation that describes how waves propagate through a medium. It is a
fundamental equation in physics and engineering, commonly used to
model various wave phenomena such as sound waves, electromagnetic
waves, and mechanical waves. The wave equation is a mathematical
description of how waves propagate through a medium. In its one-
dimensional form, it relates the second partial derivative of the wave
displacement with respect to time to the second partial derivative of the
displacement with respect to space, multiplied by the square of the wave

. . . 2%u 5 0%u
speed c. The equation, typically written as 2z = o

curvature of the wave at a given point and time is linked to its spatial
curvature and the speed at which it travels. The wave equation is
fundamental in understanding wave phenomena across various scientific
disciplines, including acoustics, optics, and electromagnetism.

signifies how the

10.8 GLOSSARY:-

e Wave Equation: A mathematical formula describing the behavior of
waves as they propagate through a medium.

e u(x,t): Represents the wave displacement as a function of position
x and t.
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. ZZTZ: The second partial derivative of u with respect to time,
representing the acceleration of the wave.

e V2u: The Laplacian operator applied to u, involving second spatial
derivatives. It characterizes the spatial variation of the wave.

e c:The wave speed, indicating how fast the wave propagates through
the medium.

e Propagation:The movement or spread of a wave through a medium.

e Medium:The substance or material through which a wave travels
(e.g., air, water, or a solid).

e Laplacian Operator V? : A mathematical operator that represents
the sum of second partial derivatives with respect to spatial
coordinates.

e Acceleration of the Wave: Describes how the wave changes its
speed or direction over time.

e Spatial Variation: Refers to the changes in the wave's amplitude or
shape across different positions in space.

¢ One-Dimensional Wave Equation: Describes wave propagation in
a single spatial dimension (e.g., along a straight line).

e Two-Dimensional Wave Equation: Describes wave behavior in
two spatial dimensions (e.g., on a surface).

e Three-Dimensional Wave Equation: Extends the wave equation to
describe wave propagation in three spatial dimensions.

e Separation of Variables: A mathematical technique used to solve
partial differential equations by assuming that the solution can be
expressed as a product of functions, each dependent on only one
variable.

e Solution: The expression or set of functions that satisfy the wave
equation.

e Partial Differential Equation (PDE): An equation that relates
partial derivatives of a multivariable function.

e Dependent Variables: The variables in a function that are being
studied or analyzed.

e Independent Variables: Variables in a function that are assumed to
be independent of each other.

e Temporal Variable (t): The variable representing time in the
context of the wave equation.

e Spatial Variables (x,y,z) : The variables representing spatial
coordinates in the context of the wave equation.
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e Mode Shapes: The spatial components of the solution, representing
different patterns of the wave.

e Eigenvalue: A parameter in the solution that represents a constant
scaling factor for a mode shape.

e Separation Constant: A constant introduced during the separation
of variables process, often denoted by A or k.

e Boundary Conditions: Constraints applied to the solution to match
the specific conditions of the physical system.

e Superposition Principle: The principle that states the sum of
individual solutions to a linear partial differential equation is also a
solution.

These terms provide a foundation for understanding the key elements

and concepts associated with the wave equation and its applications in

diverse scientific fields.

10.9 REFERENCES:-

e Peter Szekeres (2004),A Course in Modern Mathematical Physics:
Groups, Hilbert Space and Differential Geometry.

e Mary L. Boas (2005), Mathematical Methods in the Physical
Sciences.

e David J. Griffiths (2017),Introduction to Electrodynamics.

10.10 SUGGESTED READING:-

e M.D.Raisinghania (1988), Advanced Partial Differential
Equations.

e file:///C:/Users/user/Desktop/1462442159E-
textofChapter6Module2.pdf

e file:///C:/Users/user/Desktop/1462442186E-
textofChapter6Module3.pdf
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10.11 TERMINAL QUESTIONS:-

. 9%u 1 9%u
(TQ-1): Solve the wave equation_— = ———

originally plucked at the middle point by giving at it initial displacement d
from the main position.

if the string of length 2a is
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(TQ-2): A string is stretched between two fixed points (0,0) and (0, 1)
and are released at the rest form the deflection given by

21
—x0<x<-=

FOo =4, 2
— (l — x) <x<l

Show that the deflection of strmg at any tlme t is given by

ct) nmx 1
u(x, t) = Zn 1Cy cos T l sstm—, puta = -.
(TQ-3): Prove that
u(x,y,t) = Aj,c08A,t sinmx sin2my = cos(nt\/g) sinmx sin2my,
the deflection of the square membrane of each side unity and ¢ = 1, if the
intial velocity is zero and initial deflection is f(x,y) = Asinmx sin2my.

(TQ-4): Show that for a rectangular membrane of sides a and b vibrating
with its boundaries fixed, eigen values and eigen function are

given by
m2 n?
Amn =TT _+ﬁ ,

Umn = [Amncos(/lmnt) + anSin(Amnt)]
max _ nmy

sin——sin—— m=123,n=123..
a b

(TQ-5): A string is stretched between two fixed points (0,0) and (1,0)
and released at rest from the positions u = Asinmx. Show that
the formula for its subsequent displacement u(x,t) is given by
u(x, t) = Acos(mct) sinmx, c? being diffusivity.

(TQ-6):show that the deflection of vibrating string

n(its ends beingfixed and c?> = 1), corresponding to zero
initial velocity and initial deflection F (x) = A(sinx — sin2x).

10.12 ANSWERS:-

SELF CHECK ANSWERS

1. The one-dimensional wave equation is a partial differential
equation that describes the motion of a wave along a one-
dimensional medium. It is typically written as:

0*u _ ,0%u

—=cC
at? dx?
where u(x, t) represents the displacement of the wave as function

Department of Mathematics
Uttarakhand Open University Page 199



Advanced Differential Equations I1 MATS08

of position x and time ¢, and c is the wave speed.
2. The boundary conditions for a string fixed at both ends are

typically given as:
u(0,t) =0,
This condition represents the fixed end at x = 0.
u(L,t) =0

This condition represents the fixed end at x = L, where L is the
length of the string.

3. The initial conditions for the wave equation on a string involve
specifying the initial displacement and velocity of the string at
each point x. Mathematically, this can be expressed as:

u(x,0) = f(x)

where f(x) is the initial displacement function, and

Ju (x,0) =
Eu x,0) = g(x)
where g(x) is the initial value function.

4. D'Alembert's formula for the solution of the one-dimensional wave
equation is given by:

b = f Fuw) du + g) = F() + g(v) = fx + ct) + g(x — ct)

Here, u(x,t) is the displacement of the wave at position x and
time t, f (x) is the initial displacement function, g(x) is the initial
velocity function, c is the wave speed, and s is a dummy variable
of integration.

5. Boundary conditions for a membrane typically include u(x,y,t) =
0 at the edges of the membrane, representing fixed boundaries.

6. The general solution for the two-dimensional wave equation
involves a superposition of two-dimensional waves and can be
complex. However, one common approach is to express it as a sum
of sinusoidal functions, similar to the Fourier series, representing
different spatial frequencies and their time evolution.
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Unit 11: Green’s Function

CONTENTS:

11.1 Introduction

11.2  Objectives

11.3 Simple homogeneous differential equations
11.4 Sturm Lioville’s Operator

11.5 Dirac delta function

11.6  Green’s Function

11.7 One dimensional Green’s Function and its properties
11.8 Forms of Green’s Function

11.9 Green's Function in Three Dimensions

11.10 Green’s Function for Possion’s equation

11.11 Green’s Function for Laplace Equation

11.12 Green’s Function for Heat Conduction Equation
11.13  Green’s Function for Wave Equation

11.14 Summary

11.15 Glossary

11.16  References

11.17 Suggested Reading

11.18 Terminal questions

11.19  Answers

11.1 INTRODUCTION:-

Fig. George Green

Green’s functions, named after the British mathematician George Green,
are a powerful mathematical tool developed in the 1830s. These functions
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play a crucial role in solving differential equations, particularly those
containing inhomogeneous terms or source terms. The methods involving
Green's functions allow us to relate the solution of a differential equation
to an integral operator.

George Green (14 July 1793 to 31 May 1841) was a British mathematical
physicist known for his significant contributions to the field. In his work,
An Essay on the Application of Mathematical Analysis to the Theories of
Electricity and Magnetism," Green introduced crucial concepts that laid
the groundwork for modern physics. These concepts include a theorem
similar to the contemporary Green's theorem, the idea of potential
functions as currently employed in physics, and the introduction of what
are now known as Green's functions. Green's groundbreaking work
marked the first mathematical theory of electricity and magnetism, serving
as the foundation for subsequent advancements by scientists like James
Clerk Maxwell and William Thomson. Green's contributions have had a
lasting impact on the understanding and development of theories in
electromagnetism.

11.2 OBJECTIVES:-

After studying this unit, you will be able to

e To provide a systematic way to find solutions to differential
equations by representing the response of a system to a delta-
function input.

e To solve boundary value problems in partial differential equations
(PDEs).

e To find solutions to Laplace's equation in a given domain with
specified boundary conditions.

e To solving the Poisson equation, which arises when there are
distributed sources within the domain.

e To find solutions to the heat conduction equation under specific
sinitial and boundary conditions.

11.3 SIMPLE HOMOGENEOUS DIFFERENTIAL
EQUATIONS:-

Suppose the differential equation
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&y

dx?

This can be explained very easily and we will get the solution as
y=Ax+B
which is the equation for a straight line.

Similarly consider another homogeneous equation given below

d?y
W-I_ kzy =0

y = Asinkx + Bcoskx

Therefore, homogeneous equations can be solved using straightforward
methods. But if we replace them with source terms like

d?y ;
—= = Inx
dx?

dZ

d_x}zl + k?y = tanx

then the problem become difficult to solve.

11.4 STURM LIOUVILLE OPERATOR:-

The Sturm-Liouville operator is a differential operator frequently
encountered in the study of second-order linear differential equations.
Specifically, it is defined as follows:

d d
L) = — (P 2) + 9@y =0
For

&y

dx?
Since p(x) = 1and q(x) = 0 and for

d?y
W-I_ kzy =0
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p(x) =1 and q(x) = k? and any differential operator can be replaced
into Sturm Liouville operator form.

11.5 DIRAC DELTA FUNCTION:-

The Dirac delta function, denoted as 6(x), is a mathematical function that
is often used in engineering and physics to model idealized impulses or
concentration of mass or charge at a single point. It was introduced by the
physicist Paul Dirac. The Dirac delta function is not a conventional
function in the traditional sense; rather, it is a distribution or generalized
function.The Dirac delta function is defined by its behavior under
integration. Formally, for any well-behaved function f(x), the defining
property of the Dirac delta function is given by:

f_o:o&(x)dx =1

This means that the integral of the Dirac delta function over the entire real
line is equal to 1.

The Dirac delta function also has the property known as the sifting
property:

fooS(x—a)f(x)dx =1

Here, a is a constant, and the integral "sifts out" the value of the function
f (x) at the point x = a.

It's important to note that the Dirac delta function is not a conventional
function with a graph. Instead, it is a mathematical tool used to represent
idealized impulses or concentration of values at specific points. The Dirac
delta function plays a crucial role in signal processing, control theory,
quantum mechanics, and other fields where the modeling of impulses or
concentrated forces is essential.

11.6 GREEN’S FUNCTION:-

Green’s function is a mathematical concept used in the context of linear
differential equations, especially in the study of boundary value problems.
Given a linear, inhomogeneous differential equation of the form:

LIw)X] = f(X) - (1)
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where X = (x,y,z) is a vector in three (or higher) dimensions and L is a
linear differential operator, X with constant coefficients a u(X) is the
unknown function, and f(X) is a given function, the Green's function
G(X,¢) for the differential operator L is defined as the solution to the
equation:

LGX, ) =6X—-98) - (2)
Here, 6(X — &) is the Dirac delta function, and £(x,y, z) is a parameter.
The Green's function is often associated with a specific set of boundary
conditions.
Multiplying (2) by f(¢) and integrating over the volume V of & — space so
that dV = d¢ dn d{., we can be written as

f LG OF @)V = f 5(X — OF(©)dV = F(X)
174 \%4

L{ f G(X, f)f(f)dV} ) .3
\%4

Comparing the equations (1) and (3), the solution of (3) in the given form
uen = [ GUOFOV ()
14

Hence, the equation (4) is valid for any finite number of components of X.
Green's functions are particularly useful in solving to any linear, constant
coefficient non homogeneous partial differential equations in any numbers
of independent variables and boundary value problems. They offer a
systematic method for finding solutions by breaking down a complex
problem into simpler problems with localized source terms.

Generally, a Green’s function is an integral kernel that can be used to
explain the differential equations from a large number of families
including simpler examples such as ordinary differential equations with
initial or boundary value conditions, as well as more difficult examples
such as inhomogeneous partial dssifferential equations (PDE) with
boundary conditions.

Now another approach the problem is to look for the operator L™1
provided it exists. The "inverse operator" of L, denoted as L™1, could be
considered an operator that, when applied to the Green's function. The
inverse operator can be written as an integral operator of the form

u(X) = L (FO0) = j G(X, O F(E)dV
%4
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where G (X, §) is known as the green function and the operator | for any
number of independent variables.

11.7 ONE DIMENSIONALGREEN’S FUNCTION
AND ITS PROPERTIES:-

Let
LGX, ) =6(X-9%)
Now taking the SL(Sturm Liouville) operator is

d d
E(p(X)EG(X' f)) +q(X)G(X,$) =8(X=$)

Integrating over X = X—€ to X+€

X+€ d d X+€
jX_E a(P(X)EG(X,E)) dX+L_E (g(X)G(X,8))dX

X+€
=f S(X — §)dX
X—€

where € is constant. Hence taking second part is zero, we get

(X+E)( da dG )_
P dxxie dXxx_e
Since the limit €— 0, we have
daG
(X+€) —p(X—€) =1
P dXx+e P dxy_e
dG, dG; 1

dX dx  p()
This property proves that the values of Green Function must be different
for X less than € an dX greater than €. So let the Green Function before €
as G;(X, &) and Green Function after t as G;(X,&). We had taken the
second integral as zero which means that
G,(X,X+€) -G, (X, X—€)=0

At X =€, G, = G4 so the Green Function is

1. Continuous at boundary

2. Derivatives of the Green function are discontinuous.
These are the two properties of one dimensional Green’s function.

11.8 FORMS OF GREEN’S FUNCTION:-

Now is to find G; and G,, we have
Gl(X, t) = Clul(X)
G2 (X, t) = Coup(X)
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where C; and C, are the function of { are to be irreducible. so the
continuity of green function leads that
Czuz(X) - Clul(X) = 0 e (1)
Discontinuity of Green function is obtained that
Cou',(X) — Ciu'y (X) = —m - (2)
Multiplying (2) by u’,(X) and (1) by u’; (X) and subtracting then ,we get
Cou,(Xu'1 (X) — Cruy (XDu'1(X) — Cu'1 (XD uy (X) + Cru'y (Xu (X)

U (X) _
-~ p(X)
X
Cr (X' (X) = Crt's (K)up (X) = 1;2(;))
Ci(upu'y —u'quy) =u2(X)
1 2% 1 142 p(X)
If W = u,u’y — u';u,(is known as Wronskian), then
w0 w0
LwpCO’ Tt wp ()
Hence
~ u(Xup(X)
0= 00
w0, (X)
G

Then we obtain the solutions as given below

y(X) = fat G, (X, t)f(H)dt + ftb G, (X, t)f (t)dt is required solution.
SOLVED EXAMPLE

EXAMPLET1: Derive the Green’s function for the operatorj—xz2 with the

boundary conditions y(0) = 0 and y(1) = 0.
SOLUTION: Let the given equation

d?y
Tz
For the homogeneous equation
d’y
dx?
% (Z—Z) = 0’% = 0 is constant. Now integrating, we get
y=Ax+B

= First these implies y(0) = 0,B = 0,u;(x) = Ax,u,(t) =
At,u'1(x) = A
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= Second these implies y(1) =0,A+ B =0,B = —A,u,(x) = Ax —
A,u,(t) = At — t,u',(x) = A, then the Wronskian is
W = uzu,1 - ulluZ = AZ

Forx <t
G, t) = *111(1,11112 (t)
G (x,t) =x(t—1)
Forx >t
Gy(x,t) = M

Gy(x,t) =t(x—1)
2
EXAMPLE?2: Derive the Green’s function for the operator% with the

boundary conditions y(0) = 0 and y(a) = 0.
SOLUTION: Let the given equation

d’y
dx?
% (Z—i/) =0, Z—i/ = 0 is constant. Now integrating, we get
y=Ax+B
= y0)=0= B=0
u, (x) = Ax
u, (t) = At
u(x)=A
= y@)=0= Aa+B =0
B=-4

u,(x) = Ax — Aa
u,(t) = At — Ba
u,(x)=A
The Wronskian is given as below
W =uu'y —u'yu, = A?
= AxA, — A{(Ayx — Aja)
= A1xA; — A1Ax + A A a
W = A%a
Forx <t

6y = 00
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G (x,t) = x(t——l)
Forx >t
G,(x,1) = U (?4”1 ()
G, (x,t) = M

2
EXAMPLES3: Derive the Green’s function for the operator% with the

boundary conditions y(0) = 0 and y'(a) = 0.
SOLUTION: Let the given equation

d’y
yrie
So it’s a solution is
y=Ax+B
The first BC obtains y(0) =0 =0 = A X 0 + B, hence
B=0
uy(x) = Ax
u, (t) = At
u;(x) =A
The second BC gives y(a) = 0=
A=0
u,(x) =B
u,(t) =B

The Wronskian is given as below
W =uu'y —u'yu, = A?
= AxA, — A{(Ayx — Aja)
= A1xA; — A1A,x + A A a

W = —AB
Forx <t
Gi(x,t) = —“ﬁzjg)(t)
Gy(x,t) = —x
Forx >t
Gy(x,0) = —“2];2’3)@
Gy(x,t) = —t

2
EXAMPLE4: Deduce Green’s function of the operator(% + kz) with

the boundary conditions y(0) = 0 and y(L) = 0.
SOLUTION: Let the given equation
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d?y
E-F k? = f(x)

So it’s a solution is
y = Asinkx + Bcoskx

u, (x) is defined as the value of y at applying first boundary condition and
u,(x) is defined as the value of y at applying second boundary condition.

y(0)=0 =
B=0
u; (x) = Asinkx
u, (t) = Asinkt
u'y(x) = Akcoskx
Similarly
y(L)=0 =
0 = AsinkL + BcoskL
_ AsinkL
 coskL
] sinkL sinkxcoskL — sinkLcoskx
u,(x) = Asinkx — A v coskx = A ( o )
Asink(x — L)
u2(x) = coEkL )
Asink(t — L
U (1) = coskL
, Akcosk(x — L)
Wy () = coskL
Then the Wronskian is
2
W = cfslle (sinkL)
Forx <t
sinkxsink(t — L)
G0 = ksinkL
Forx >t
G, (0 0) = sink(x — L)sinkt

ksinkL

Hence which is required solution.
EXAMPLES: Deduce Green’s function of the operator(y” + ﬁ) = f(x)
with the boundary conditions y(0) = 7 = 0.
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SOLUTION: Let the given equation

So it’s a solution is

X x
y = Asinz + Bcos =

2
y(0)=0>=
B=0
x
uq (x) =Asin§
t
u, (t) =Asin§
' )—A1 1
u(x) = 2coszx
Similarly
y(m) =0 =
A=0
x
u,(x) = Bcosz
t
u,(t) = Bcos—=
2
u'y(x) = —stinzx
Then the Wronskian is
W =u,u'; —u'qu,
W= AB
2
Forx <t
G,(x,t) = —2si ! ‘
1(x,t) = smzxcos2
Forx >t
G,(x,t) = =2 L st lt
2(x,t) = —Zcos S xsin-

EXAMPLESG: Find the Green function (% — kzy) = f(x);y(£o) =0

X
SOLUTION: Now its solution is
y = Ae®* + Be~k*
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Then the first condition y = (+0) =0 =
0=Ae” +Be™ ™

Ae® = 0,4 =0, sothat u,(x) = Be ®, u,(t) = Be™* ,u,(t) =
—kBe™kt
The second conditiony = (—o0) =0 =

0=Ae ® + Be™

Ae® = 0,4 = 0, sothat u,(x) = Ae®*,u,(t) = Ae*t ,u,(t) = kAe**

Then the Wronskian is
W =uu'; —u'qu,
W = —2kAB
Forx <t
o k(t=k)
G, (x,t) = T
Forx >t
e —k(t=k)
Gy(x,t) = — T
11.9 GREEN'S FUNCTION IN THREE
DIMENSIONS:-

In three dimensions, the Poisson's equation for Green's function is:
VZG = 5(7:)2 - Fl)

Here , v = (x,, z) is the position vector, and §(7, — ;) is the Dirac
delta function in three dimensions.

The solution to this equation depends on the specific geometry and
boundary conditions of the problem. For simple cases, such as a point
source, the Green's function can be expressed analytically. However, in
more complex scenarios, numerical methods or specialized techniques
may be employed to determine the Green's function.

11.10 GREEN’S FUNCTION FOR POSSION’S
EQUATION:-

Suppose by the definition of Green Function

Ly(x) = f(x)
LG(x,t) =6(x = 06)
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y(x) = f G(x,0) F(O)dt

Now from the Poisson’s equation is

p
VZp=—L
¢ e
Since V2G = §(#, — 7)) [Three dimension greens function for

Poisson’s equation]
The we obtain the definition

- > o p(r )
0 = [ 67 E
0
But from electrodynamics we have
SN p(ry) 3
¢(Tz) - -]-47_[(:_0'772 _Fll d 7"1

Comparing we can be written as
G((H,7y) =

This is required Greens function for Poisson’s equation.

11.11 GREEN’S FUNCTION FOR LAPLACE

EQUATION:-

1

dmeo |7, — 7

Suppose P be any point within the volume V and we are to Complete
u(P). Let OP = r and Q be another point in V' = V —Y or on the
boundary S’ of V. — ¥ such that 00 = ¢

Fig. 1

From this figure So we have

I 1 1
u_|7‘—f| - ()

If u and ¥’ are twice continuously differentiable functions in V, then we

have
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ffj(”vz ' “Vzu)d”‘j]<u——u—>ds' (2

d
where n” is the unit normal vector to dS’ drawn outwards from S’ and£

denotes differentiation in that direction, S’ being the boundary region V '
Now V2u' = V2u = 0 within V — Y, have describing (2) , we obtain

JJs (u—— ’Z—Z)d5+ffa(uaa—1:l’—u gZ)da— 0 (o is the surface
of )

Or J fs[u® an(|r a) |ris| Sl ds+ 1L [ (Ir a)
ﬁa;—ﬂ do =0 - (3)

Now if Q lies on o, then mzé and :_n(lrifl) =Eiz and do =

€2 sinfdfd¢, then

u(®) =u(l)+r.Vu

&) = u(r) + 6u+ 6u+ du
u(é) =u(r xax yay Zaz
- ()+e<'9 U | sinsing 2+ 96“)
=u(r sinfcosd o sinfsing 3y cos 57
ou(§) | du(r)
lan + - + 0(¢)

Again

j“”(f aan(lriﬂ)] do = ff[u(r)+0(€)]-é €2 sinfdfde

= u(r) fj sinfdfd¢ + 0(€)

2 s
= u(r) L_O Lzosmé?dé?dd) +0(€)

= 4nu(r) + 0(€) .. (4)

and
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]” (f)an I — )]dd
2l

=0(€) ..(5)

Putting the value of (4) and (5) in (3) ,we obtain

1 o[ 1 1 ou(®)
u(r)_Eij[”(5)%(|r—f|>_|r—g| ~—|ds  .-(6)

du (f)

€2 sinfdfd¢

Fig.2

From the above figure , we obtain

1 9 d (1
4rtu(r) + 0(e) +ffl|r_§| ISS) _u(f)%(lr_ﬂ)l ds

fj[l 0ui¥) %u(f)l ds'=0

Now € = 0 as R = oo, we see that the (6) is also valid for exterior

Derchlet problem. So the Green’s equation G (7, £) by the definition

1
60§ =HO O+

Where H(r, &) satisfied the relations
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92 92 92 ,
(@+$+6—62)H(r,§) =0inV

G(r,&) =H(ré) +ﬁ= OonS

(D)

Since

1 0 G (r,
u(r) = E,f f lG(r, &) 1;51{) — ;:l E)l ds ..(8)
s

Hence it follows that if we can describe the function G (r, §) satisfied (7)
and (8) , we get

1 oG (r,
ut) =5 [ [u® @8 4
)

is required solution.

11.12 GREEN’S FUNCTION FOR HEAT
CONDUCTION EQUATION:-

The Green's function for the heat conduction equation is a mathematical
concept used in the field of partial differential equations (PDEs),
specifically in the context of heat conduction. The heat conduction
equation describes how temperature changes over time and space in a
given medium. This problem here is to discover the solution u(r, t) of the
heat conduction equation in the volume V bounded by the surface S by the
use of Green’s function technique

The one-dimensional heat conduction equation is typically expressed as:

ou _ 2 ou(r,t) _ , d%u(rt)
Pl kV°T or prani k Py ey

where u(x, t) is the temperature distribution as a function of both position
x and time ¢, k is the thermal diffusivity of the material.

The subject to the boundary condition
u(r,t) = U(r,t), res .. (2)
and the initial condition is

u(r,0) = f(r), rev ..(3)
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Let us consider determine the Green’s function G(r,&,t — 1), t > T, where
T is a parameter satisfying the following conditions is given as

i  Lokvie
at
ii. The boundary condition is G(r,é,t —m) =0, €S
iil. The initial condition is lim,_,; G = 0 V¥ V except at a point and
G is singular solution of the given form
1 {r—¢}
Gr ét—1) = —_— ...(4
¢ 2 8{mk(t — 1)}3/2 exp {4k(t ) (4)
G 2
Hence — = —kV*G
at
From (1) and (2), we can be written as
du
— =kV?T, t<t
Jat
u(r,t) =U(r, 1), res
9 — o, % _ 20, _ leuV2
Also > (uG) =G S T U= kGV*u — kuv-G

So [\ [, f == wG)av}dr = k f;~{f f, [ (GV*u — uv?G)dV}dr

Now solving the L.H.S. part of above equation

:fff{f()t_e%(ua)dv} dr
|74
- f Vf f (@)t <dr}dv

[ | [t emsc - wGrems)av (5
|4

But {u(r, 7)};=t—e = (&, t — €). Since we can assume (¢, t — €) = u(r, 7).
Using the initial condition (3), we have

u(r,r)ffvfG(r,f,t—r)rzt_edV—foG(r,f,t)f(f)dV

From (4), we have obtain
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jLJG(r'f't—T)T=t_EdV
8{7tk(€)}3/2ff f { —f|2} dV =1,ase >0

Again from (10), we get

k[ S, f 6V —uvGyavydr = k [} ([, (6= - uSD)av}dr

aG
UG, 6)5-dS

Since G = 0 on S, taking limit € — 0, hence the L.H.S. above equation

| (5]

Finally ,

0= [ [ [roscsow [ alf [ucogd

11.13 GREEN’S FUNCTION FOR WAVE
EQUATION:-

Before describing Green’s function for wave equation, we prove the
following theorem, which is due to Helmholtz.

Helmholtz Theorem:

Let u(r) be a function of r = (x,y,z) possessing continuous partial
derivatives of first and second order in a region V bounded by a closed

surface S and satisfies the spatial form of the wave equation V?u + c?u =
ov.

1 exp (iclr = &) au(§) exp(iclr —¢&|)
TJV”{ W on O < =2l >}

_(u(r), rev

B {OJ r & V " (1)
Proof: Suppose u(r) be the solution of the Helmholtz equation VZu +
c?u =0 in the closed region V bounded by the surface S and let all

singularities of u lie outside V .So now the singularity solution is

u = %I;—ED Green’s theorem
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fff(uvz T—u'Vu)dV = ff(u——u—)dS - (2)

where i is outward drawn unit normal to S, we obtain of equation (2) is

given by
fj f(quu’ — u’vzu) dv
v

-J [ [ (P25

_expliclr — &)
r—¢]

_ . eXp(iCIr—fl)} expliclr =€) l
f{[fl cu{ 200 + =g (c*u)| dV

=0( [r=¢#0)

(—czu)l av

Since, from (2), we get

ff{u(f);_n<exp(i6|r—€l)>_eXp (iC|T—€|)612§)}dS: 0..(3)
S

lr =< u($)

If P is inside V, we draw a small sphere ), with radius € to contain P.
Next, we apply Green's theorem to the region V' — )’ that is limited by S
on the outside and ¢ on the inside. Next

0 (exp(iclr — D) exp(iclr —&]) du()
(f jfj L')[”@%( Ir—¢| )‘ u(®) on | *

=0( [r—=¢&|#0)inV =Y

So the o

exp(iclr —¢J) d (exp(iclr —¢J)
on |[r —&] “de €
B ( 1 )exp(tclr—fl)
ic —

lr— ¢l |r — €]
Again from (3) ,we obtain
j J’ lu(f) ai(exp(iclr - fl)) _exp(iclr — &1) qu(§) s
S

2] w@  on
f f [w—— u(®)

ou(E)] expliclr — €1)

- an] Y . (d
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Now

u(@® = u(r) + 0(e), Z—Z - (S—Z)P + 0(€),dS =€ sinf dOdep

Again from (4), we get

0 (exp(iclr — &)\ exp(iclr — &|) ou(é)
”5[”@%< ] )‘ «@  on “

e

[ur) + 0(&)] - 7532~ o

exP(lCIT - fl)
E)] =g 2 sinf dOd¢
= —4mu(r)
Hence
1 exp (ic|lr — &) au(f) exp(iclr — &|)
TJV”{ W o O ( =gl >}
_ {u(r), reV
0, ré&vV
is required solution.
SELF CHECK QUESTIONS

1. What is a Green's function?

2. How is the Green's function used in solving differential equations?

3. What is the significance of the Green's function in boundary value
problems?

4. How does the Green's function relate to the concept of impulse
response in control systems?

5. What is the connection between Green's functions and eigenvalue
problems?

6. How is the Green's function used to solve the Poisson equation in
electrostatics?

7. Can the Green's function be used for non-linear differential
equations?

8. What is the physical interpretation of the Green's function in the
context of heat conduction?

9. How does the choice of boundary conditions affect the
determination of the Green's function?

10. When the use of Green’s is functions particularly advantageous in
problem-solving?
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11.14 SUMMARY::-

In this unit we have studied the green's function, simple homogeneous
differential equations, Sturm Liouville’s operator, Dirac delta function,
one dimensional Green’s function and its properties, forms of green’s
function, green's function in three dimensions, Green’s function for
Poisson’s equation, Green’s function for Laplace equation and Green’s
function for heat conduction equation. Green's function is a mathematical
tool used in the field of partial differential equations to find solutions for a
given differential equation with specific boundary or initial conditions. It
is particularly valuable for linear, homogeneous differential equations.
Green's function provides a powerful and systematic approach for solving
linear partial differential equations by breaking down complex problems
into simpler components and addressing them through integral
representations. It is widely applied in various scientific and engineering
disciplines to analyze and solve problems involving waves, heat transfer,
electromagnetism, and other physical phenomena.

Overall, the unit covered the foundational aspects of Green's function, its
application to different types of differential equations, and its role in
solving problems related to heat conduction, potential theory, and
boundary value problems. Students gained a comprehensive understanding
of these mathematical tools and their practical applications in various
physical phenomena.

11.15 GLOSSARY:-

Here's a glossary defining key terms related to Green's Function:

e Green's Function: A mathematical function used to solve
differential equations, representing the response of a linear system
to a point source or initial condition.

e Differential Equation: An equation involving derivatives that
describes the relationship between a function and its derivatives.
Green's function is often employed to solve linear differential
equations.

e Linear System: A system that exhibits linearity in its response,
meaning the output is directly proportional to the input. Green's
function is particularly useful for linear systems.
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e Homogeneous Equation: A differential equation in which the
right-hand side is zero. Green's function is often applied to the
homogeneous form of differential equations.

e Inhomogeneous Equation: A differential equation with a non-
zero term on the right-hand side, representing an external source or
forcing function. Green's function is used to find solutions to
inhomogeneous equations.

¢ Boundary Conditions: Conditions specified at the boundaries of a
system or domain, influencing the form of the Green's function for
a particular problem.

e Initial Conditions: Conditions specified at the initial time or
starting point of a process, influencing the form of the Green's
function for problems involving time evolution.

e Dirac Delta Function: A mathematical function, often denoted as
d(x), representing an idealized impulse or point source. Green's
function is frequently associated with the Dirac delta function in
problems with point sources.

e Convolution: A mathematical operation that combines two
functions to produce a third, expressing how one function modifies
the other. Convolution is often used in the context of Green's
function.

o Integral Representation: The expression of a solution to a
differential equation as an integral involving the Green's function
and the given source or initial condition.

e Wave Equation: A partial differential equation describing the
behavior of waves. Green's function is commonly used to solve
wave equations.

e Heat Conduction Equation: A partial differential equation
describing the distribution of heat in a material over time. Green's
function can be applied to solve heat conduction problems.

e Electrostatics: The study of stationary electric charges and their
interactions. Green's function is used to solve problems related to
electric potential in electrostatics.

e Linear Operator: An operator that satisfies the properties of
linearity, playing a key role in the definition and application of
Green's function.

e Convolution Integral: The mathematical operation used to
combine the Green's function with the source or initial condition in
integral representations of solutions to differential equations.

This glossary provides definitions for terms associated with Green's
Function, offering clarity on concepts related to its application in solving
differential equations and analyzing physical systems.
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11.18 TERMINAL QUESTIONS:-

2
(TQ-1): The Green’s function for the operator% with the boundary

condition y(0) = 0 and y'(1) = 0.
(TQ-2): Define Green’s function in one and three dimensions.
(TQ-3): Explain how the method of Green’s function is useful in
obtaining the solutions of Poisson’s equation.
(TQ-4): Explain the Green’s function for the Heimholtz equation
(V2 + c®u(x,y,z = 0) for the half-space z > 0 and hence solve
it.
(TQ-5): Find the Green’s function for the Heat flow problem in a finite
rod described by
ou 0%u
E =k W ) 0<x<L
u(x,0)=f(x),0<x<1I,
u(x,0) =u(L,t)=0, t>0.

(TQ-6): For the sphere of radius a and centre at the origion, show that
V2 (%) = —476(r) is the Dirac-delta function.
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(TQ-7): Prove that Green’s function G (r, §) has the symmetric property.

11.19 ANSWERS:-

SELF CHECK ANSWERS

1. A Green's function is a mathematical tool used in solving
differential equations. For a linear, inhomogeneous differential
equation, the Green's function represents the response of the
system to an impulse function at a specific point.

2.  The Green's function is used to obtain the particular solution to an
inhomogeneous differential equation by convolving it with the
forcing function. It allows us to express the solution as a weighted
sum of the Green's function evaluated at different points.

3. In boundary value problems, the Green's function provides a
method for solving the problem by converting it into an integral
equation. It simplifies the solution process by breaking down the
problem into simpler, localized contributions.

4. The Green's function is analogous to the impulse response in
control systems. It describes how a system responds to an impulse
input, and the convolution of the Green's function with a given
input represents the system's response to that input.

5. In some cases, solving eigenvalue problems is related to finding
the eigenfunctions and eigenvalues of the Green's function. This
connection is particularly evident in problems involving partial
differential equations.

6. In electrostatics, the Green's function can be used to solve the
Poisson equation by representing the charge distribution as a
distribution of point charges. The solution is then expressed as an
integral involving the Green's function and the charge distribution.

7.  The traditional Green's function approach is primarily applicable to
linear differential equations. For non-linear equations, alternative
methods, such as perturbation techniques or numerical methods,
are often employed.

8. In heat conduction problems, the Green's function represents the
temperature distribution resulting from a localized heat source. It
provides insights into how the system responds to a sudden change
in temperature at a specific point.

9. The choice of boundary conditions is crucial in determining the
Green's function. Different boundary conditions lead to different

Department of Mathematics
Uttarakhand Open University Page 224



Advanced Differential Equations I1 MATS08

Green's functions, and selecting appropriate conditions is essential
for obtaining meaningful solutions to specific problems.

10. Green's functions are particularly advantageous in problems where
the boundary conditions are well-defined, and the system can be
decomposed into localized responses. They provide a systematic
and efficient approach to solving differential equations in such
cases.
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Unit 12: Finite differences of PDEs
CONTENTS:

12.1 Introduction

12.2  Objectives

12.3  Classification of second order of partial differential
equations

12.4  Finite difference Approximations to Derivatives

12.5  Elliptic Equation

12.6  Method of first order Approximation value of Laplace
equation

12.7  Solution of Poisson’s Equation

12.8  Parabolic Equation

12.9  An Schmidt Explicit Method

12.10 Crank- Nicolson Method

12.11 DU Fort and Frankel Method

12.12 Hyperbolic Equation

12.13  Solution of Wave Equation

12.14 Summary

12.15 Glossary

12.16  References

12.17  Suggested Reading

12.18 Terminal questions

12.19  Answers

12.1 INTRODUCTION:-

Most of branches branches of applied mathematics, such as fluid
dynamics, boundary layer flow, elasticity, heat transfer, and
electromagnetic theory, commonly deal with problems formulated as
partial differential equations (PDEs). However, the complexity of
these problems often limits the applicability of analytic methods, and
only a small subset can be solved analytically. The solutions obtained
through analytic methods are typically intricate and demand advanced
mathematical techniques. Careful examination of the mathematical
structures of PDEs reveals numerous challenges in demonstrating
solutions for these problems. As a result, numerical methods,
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particularly the finite difference method, emerge as practical tools for
approximating solutions to PDEs in these diverse applied fields.simple
and efficient numerical methods provide a practical approach to
obtaining sufficiently approximate solutions for partial differential
equations (PDEs). While there are various numerical methods
available, the finite difference method stands out as a popular and
widely used technique. In this method, partial derivatives and
boundary conditions in the PDE are replaced by their finite difference
approximations. This transformation results in converting the given
PDE into a system of linear equations. Despite the iterative methods
used for solving these linear equations being relatively slow, they
consistently yield good results in approximating solutions to complex
PDE problems.

In this unit focuses on addressing the solution of Laplace's equation
and introduces numerical methods—Schmidt method, Crank-Nicolson
method, and Frankel method. These methods are specifically designed
for solving one-dimensional heat equations and wave equations. The
content delves into the application of these techniques to efficiently
compute solutions for mathematical problems related to heat
propagation and wave behavior in one-dimensional scenarios.

12.2 OBJECTIVES:-

After studying this unit, you will be able to

e To discuss the classification Second order of PDE:s.

e To solve the finite difference approximations to partial
derivatives.

e To solving the notation for functions of several variables.

e To discuss about the solution of Laplace equation, Heat
equation, wave equation.

12.3 CLASSIFICATION OF SECOND ORDER
OF PARTIAL DIFFERENTIAL EQUATIONS:

Let us consider the general second order linear partial differential
equation in two independent variable of the form is
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A62u+862u+662u+F< ou 6u)_0 %
0x2 0x0y dy? X2 ox’dy)
This can be written as

Auyy + Buyy, + Cuyy + Duy + Euy, + Fu =G .. (2)

where A, B, C are constant and the functions of x and y.
Now equating from (1), we have
A’= B? —4AC

Thus the equation (1) is called:

i. Elliptic if A< 0Oi.e., B2 — 4AC < 0
ii.  Parabolic if A= Oi.e., B2 —4AC—0
iii.  Hyperbolic if A> 0i.e., B2 — 4AC > 0

In the following, we restrict our-self to three simple particular cases of
equation (1) can be written as

Pu du_ = 0: Laplace Equati
W-I_W_ or Uy, +uy, = 0: Laplace Equation

Pu 1 0%u .
ﬁ = C_ZW oruy,, — uyy = 0: Wave Equatlon
#u 10u .

92 —2gp O Uax = Ut Heat Equation

ii.
iii.

If we categorize these equations, we describe that the Laplace equation
is elliptic whereas the wave equation is hyperbolic and Heat equation
is parabolic respectively.

In the study of partial differential equations, usually three types of
problems arise:

(i) Dirchlet’s Problem: Finding a function u(x,y) that
satisfies the Laplace equation in region R is necessary
given a continuous function f on its boundary C, That is,
finding u(x, y) such that

Uyx + Uy, =010 R} 3)

u=fonC

(ii) Cauchy problem:
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U — Uyy = Ofort >0

u(x,0) = f(x)
ou(x,0) ..(4)
Uy = U fOrt > 0}
iii ..(5
(iii) u(x’ 0) — f(x) ( )
In partial differential equations, the form of the equation is
always connected with a particular type of boundary
conditions. In this case, the problem is called well defined
or well-posed. The problems defined in equation (3) to (5)
are well —posed. If we connect Laplace equation with
Cauchy boundary conditions, the problem is called ill-
posed. Thus we have
Uyxy +Uyy =0
u(x,0) = f(x) ..(6) 1isanill-posed.
uy(x,0) = g(x)
12.4 FINITE-DIFFERENCE

APPROXIMATIONS TO DERIVATIVES:-

Let x and y are two independent variable of the obtained partial
differential equation, so the xy —plane be divide into set of equal
rectangles of lengths Ax = h and Ay = k, we get

x = ih) i = iO; ily iz, ......
y=jk, j=10%1,%2,....

The points of interaction of horizontal and vertical lines are known as
mesh point, lattice points or grid points. The jth mesh point is denoted
by P(x;,y;) or P(ih,jk). The value of u at this mesh point is denoted

byu;ji.e, u ;= u(xi,yj) = u(ih, jk).
u, (ih, jk) = @ + 0(h), (forward difference approximation)

u, (ih, jk) = % + 0(h), (backward difference approximation)
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u, (ih, jk) = % + 0(h?) , (central difference approximation)
Similarly,

u, (ih, jk) = % + 0(k), (forward difference approximation)
u, (ih, jk) = % + 0(k), (backward difference approximation)

u, (ih, jk) = % + 0(k?) , (central difference approximation)

The second order partial differential derivatives are approximated as
follows:

Uy ik, jk) = 222 _ZZ;J T 0(h?) ,(central difference
approximation)
Uy (ih, jk) = Lij _1_2:;’j Tt L 0(k?) (central difference
approximation)

Hence the above equations used to approximate a partial differential
equation to a system of difference equations.

12.5 ELLIPTIC EQUATION:-

The elliptic equation is a type of partial differential equation (PDE)
that often arises in physics and engineering, particularly in problems
involving steady-state conditions or equilibrium. The general form of a
most elliptic equation, often referred to as the Poisson equation, is
obtained by:

Viu=20
and Poisson’s equation is

Viu = f(r)

The Poisson equation is a special case of the more general elliptic
equation. Elliptic equations are characterized by their elliptic, positive-
definite operators, and they appear in various physical phenomena,
such as heat conduction, electrostatics, fluid flow, and structural
mechanics. The solution to the elliptic equation represents the
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distribution of the unknown field u in the given domain, subject to the
specified boundary conditions. The boundary conditions are essential
for determining a unique solution to the problem.

12.6 METHOD OF FIRST APPROXIMATION
VALUE OF LAPLACE EQUATION:-

In previous unit we have already studied of Laplace’s equation. Let the
Laplace equation in two dimension is

0°u  9%u

ﬁ‘Fa—yZ:OOT uxx+uyy=0 (1)
Suppose a rectangular region R for which u(x,y) is called the
boundary.

Bz L= &aa &
Fig.1

From figure, changing the derivatives in (1) by their difference
approximations, we obtain,

1 1
2 [wie1,j = wij + i ] + 2 [wij1 = uij +uijea] =0
Or
1
U =7 [wisyj + Wipr + Uijor + Ui jsa] - (2)

g7+ 1

F 9
+ 1.7
T4 1,7 22,

v

Ty r—1

Fig.2
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Hence, the equation (2) s called Standard S-point formula. This
formula is presented in figure 2.

Sometimes a formula similar to (2) is used, which is obtained by

1
U =7 [Uigjor + Uissjor + Uissjor + Uicrjor] - (3)

Fig.3

This formula obtains the value of u; ; which is the average of its values

at the four neighboring mesh points at the end points of diagonal of the
square. So that the formula (3) is called Diagonal 5-point formula is
shown as figure 3.

Let we first use the diagonal 5-points formula (3) to find the initial
values of u at the interior mesh points and compute U3 3, Up 4, Uy 4, Us 2
and u, , in this order given below

Uz 3 = —[bys + bsq1 + bss + byq]

e ALl NG QS

Upg =~ [bys + Uz3 + U35 + Uy 3]

=

Uy = —[bss + bs3 + b3 + U3 3]

NN

e

Ugp = —[uszz + b5,3 + b5,1 + b3 4]

Uy

U = =~ [b13 +uzs + b3,1 + by4]

o~

Now we compute the values of u at the remaining interior points
Uy 3, U3 4, Us3, Uz, by standard S-points formula (2), we obtain

Department of Mathematics
Uttarakhand Open University
Page 233



Advanced Differential Equations I1 MATS08

1
U2z, =7 [b13 + U3z + Upy + Uy

1
Usa =7 [Uz4 + Ugs + D35 + Us 3]

Uy 3 = Z [u3,3 + bs 3 + Uy g + Uy o]

1
Uz, = Z [u3,3 + Uz + b3,1 + Uy 5]

After writing all the nine values of u;; once, their accuracy is
improved by using either of the following iterative methods.

a. Iterative method: if initial approximations of the variable u
are known, they can be refined or updated using established
iterative methods. Numerous iterative techniques exist, each
with varying rates of convergence. The text implies a focus on
discussing several of some methods and their respective
convergence properties.

1
— 2
Uij =7 [wie1j + Uirrj + Uijor + Ui jar — h2gy 5]

b. Jacobi’s method: This method obtains

(n+1) _ l
i,j - 4
()

where u; ; is nth approximate value of u; ;.

[u(n) IO I O N ) hzgi,j]

i-1,j i+1,j i,j ij-1

c. Gauss-Seidel method: The Gauss-Seidel method is an iterative
numerical technique used to solve a system of linear equations.
It is particularly useful for solving systems with a large number
of equations. This method gives

1

(n+1) _ -
i g [u
d. Successive Over-Relaxation (SOR) method: In this method,
the iteration scheme is accelerated by introducing a scalar,

called re-laxation factor. This acceleration is made by making
(n+1) (n) (n+1
wo T Wi iJj

given from any iteration method, such as Jacobi’s or Gauss-

(n+1) (n) (n+1) (n)
im1,) T Ui T U e YU, — h?gi,]

corrections on [u ] Suppose u ) is the value
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Seidel’s method. Then the updated value of wu;; at the (r +
1)th iteration is obtain by

(n+1) — u(n+1) _ (1 _ w)u(n)

Uij ij @ i

where w is called relaxation factor.

If w > 1 then the method is known as over-relaxation
method.

If w = 1 then the method is nothing but the Gauss-Seidal
iteration method.

Hence, for the Poisson’s equation, the Jacobi’s over-relaxation
scheme is given as

1
(n+1) _ (n+1) (n) (n+1) (n) 2
ij Zw[ui—l,j tug Ul U, —h gi.]’] +(1

- w)ug?

u

and the Gauss-Seidel’s over-relaxation scheme is obtain as
below

1
(n+1) _ (n+1) n) (n+1) m) 2

12.7 SOLUTION OF POISSON’S EQUATION:-

Its method of solution is similar to that of the Laplace equation. Here
the standard five-point formula for (1) takes the form

0%u N 0%u .

axz ayz _f(x'y) ( )

[imrj + Uisn; + Ugjor + Ug ] = 2G5 F(Y) - (2)

By putting (2) at each interior mesh point, we arrive at linear equations
in the nodal values u; ;. These equations can be solved by the Gauss-
Seidal method.

SOLVED EXAMPLE
EXAMPLET1: Solve Laplace’s equation for the square region shown
in figure the boundary values being as indicated.
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SOLUTION: In this figure that the boundary values are symmetric
about AC. Hence u; = u, and find u,, u,, u3.So that

u2+u3+2+4_4’u120

Hence
Y
c l 1 2 B
’ ! !! = ]I = 714
0 o e
(o] 4 5 A *
Fig.4
1
u1 :Z(uz +u3 + 6)
The iteration formula is given as
1
ugnﬂ) =7 (uy +uz; +6)
Similarly
1 5
(n+1) _ (n+1)
u, = Eul + >
and
1 1
(n+1) _ (n+1)
Uy = Eul + 5
For the first iteration, suppose u, = 5, ugo) = 1. Hence

1
ﬁ”=16+1+6)=3

1 5
(€]
=_(3N+==4
U, 2()+2
1 1
w_1 1_
Ug —2(3)+2 2

For the second iteration, we obtain

1
u? =2 (4+2+6)=3
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1 5
ugz) =E(3)+§=4

1 1
()
==B)+=-=2
u;” =53 +5
Since the values are unchanged, we deduce that u; = 3,u,=4, uz = 2

and u, = 3.

EXAMPLE2: Solve the elliptic equation uy, + u,, = 0 (Laplace
equation) for the following square mesh with boundary values as
shown.

0 500 1000 500
& 0
1000 7 7 7 1000
2000 = o s e B 2000
1000 1000
uy ug ug
(o] L2 J
500 1000 500 0
Fig.5
SOLUTION: From the above figure, it is clear that uq, u,, us ... .......9

values of u at the interior mesh points.
Since
Uy = Uy, Ug = Uy, Ug = Ug
Uz = Uq, Ug = Uy, Ug = Us.
Therefore, by standard 5-points formula

1
Ug = Z(ZOOO + 2000 + 1000 + 1000) = 1500

by diagonal 5-points formula

1
uy =7 (0 + 1000 + 5 +2000)

1
u, = Z(O + 1000 + 1500 + 2000) = 1125
Again by standard 5-points formula

1
u, =—(1125+ 1125+ 1000 + 1500) = 1128
4

1
u, =—(2000 + 1500 + 1125 + 1125) = 1438
4

Now we use the following formule
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[1000 + u? + 500 + u?]

u§n+1) —

PR

ugnﬂ) = Z [ul* + ul' + 1000 + u?]

u{" = [2000 +ul + Ul +ul

1
u" = 4["“+u + ultt +ul

First iteration:

1

uj = 7 [1000 + 1128 + 500 + 1438] = 1032
1

uj =2 [1032 4+ 1125 4+ 1000 + 1500] = 1164
1

uj = 2 [2000 + 1500 + 1032 + 1125] = 1414
1

ug = 2 [1414 + 1438 + 1164 + 1138] = 1301

Second iteration:

1
=2 [1000 + 1164 + 500 + 1414] = 1020
1
ui = 2 [1020 + 1032 4+ 1000 + 1301] = 1088
1
uZ = 2 [2000 + 1301 + 1020 + 1032] = 1338

1
ué = 2 [1338 + 1414 + 1088 + 1164] = 1251

Third iteration:

u3 %[1000 + 1088 + 500 + 1338] = 982
us = %[982 + 1020 + 1000 + 1251] = 1088
ul = %[2000 + 1251 + 982 + 1020] = 1313
ué = %[1313 + 1338 + 1063 + 1088] = 1201

Forth iteration:

uj = %[1000 + 1063 + 500 + 1313] = 969

uy %[969 + 982 + 1000 + 1201] = 1038

u; = %[2000 + 1201 + 969 + 982] = 1288
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[1288 + 1313 + 1038 + 1063] = 1176

-Mr—‘

u

Similarly
ud =957, ud=1026, u} = 1276, ud = 1157
u® =951, u$=1016, u$ = 1266, ul = 1146
u] =946, uj =1011, uj = 1260, ul = 1138
u¥ =943, u$=1007, ud =1257, u®=1134
uj =941, wuj =1005, uj = 1255, u2 = 1131
10=940, u3°=1003, ui®=1252, ui®=1129
11=939, ul'=1002, ui1 = 1252, uil =1128
12 =939, u}%?=1001, = 1251, ui* =1126
Here 11" and 12" iteration is very close
So
u; =939,u, = 1001 ,u, = 1251, us = 1126
EXAMPLE3: Solve the equation u,, + u,, = 0 (Laplace equation)
defined in the domain of figure 6 by
a. Jacobi’s method
b. Gauss-Seidel’s method
c. Gauss-Seidel’s successive over relaxation method.
SOLUTION:

u, s

[ u,

|

Fig.6
From the figure
a. Jacobi’s method: Now we investigate the approximate values
of So
Uq, Uy , Uz, Uy as follows

1

up =7[0+0+0+1] =025
1

uj =7[0+0+0+1] =025
1

uj=7[1+1+0+0]=05
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1
ui=z[1+1+0+0]=0.5

Hence the iterations have been continued using above jacobi’s method
and seven successive are obtained below:

U Uy Uz Uy
0.1875 0.1875 0.4375 0.4375
0.15625 0.15625 0.40625 0.40625
0.14062 0.14062 0.39062 | 0.39062
0.13281 0.13281 0.38281 0.38281
0.12891 0.12891 0.37891 0.37891
0.12695 0.12695 0.37695 0.37695
0.12598 0.12598 0.37598 0.37598

b. Gauss-Seidel’s method: Similarly five successive iterative
are obtained below:

U Uy Uz Uy
0.25 0.3125 0.5625 0.46875
0.21875 0.17187 0.42187 | 0.39844
0.14844 0.13672 0.38672 | 0.38086
0.13086 0.12793 0.37793 0.37646
0.12646 0.12573 0.37573 0.37537

¢. Gauss-Seidel’s successive over relaxation method(SOR):
With w = 1,1, three successive iterative obtained by using

(SOR) are given as
U Uz Uz Uy
0.275 0.35062 | 0.35062 | 0.35062

0.16534 | 0.10683 0.38183 | 0.37432
0.11785 | 0.12181 0.37216 | 0.37341

12.8 PARABOLIC EQUATION:-

A parabolic equation is a type of partial differential equation (PDE)
that describes a time-dependent process. The general form of a one
dimensional Parabolic Equation, often known as the Heat Equation,
is given by:

ou 0%u

E =a ﬁ (1)
With the initial condition u(x, 0) = f(x) and the boundary condition
u(0,t) = ¢(t),u(1,t) = Y(t). Here, u(x, t) is the unknown function
representing the distribution of some quantity (e.g., temperature) over
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space (x) and time(t). The coefficient o is a positive constant that
determines the rate of diffusion or spread of the quantity.

12.9 AN SCHMIDT EXPLICIT METHOD:-

The explicit method is a numerical technique used for solving partial
differential equations (PDEs) or systems of ordinary differential
equations (ODEs). In the context of solving PDEs, such as the heat
equation or the wave equation, the explicit method is a finite
difference approach where the solution at a given time step is
expressed explicitly in terms of the solution at previous time steps.

Suppose a rectangular mesh in the x — t plane with spacing h along
x direction and k along time t direction. Representing a mesh point
(x,t) = (hi,jk) as simply i, j, we obtain

ou  Ujjp1 — U S Uim1j = 2Ujj + Uiy
—=—"  ~kc .
dat k h

Where x; = ih and t; = jk;j =0,1,2, .....
From above equation
Wi = afUig; — (1= 20U + ujpgj] - (2)

kc? . . . .
where a = h—CZ.Thus the equation (2) is a relation between the function

values at the two time levels j + 1 and j. Hence it is called as 2-Level
Formula.The Schematic form as shown in figure 7.

G, j+1)

(unknown

G+ 1)t level

th level
a1, 0 [G.H ﬂ:#],j) #

h h "
i1 i i+1

Fig.7
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Hence the equation is known as Schmidt Explicit Formula.This

formulais valid fora >0and1 —2a =>0i.e., 0<a < %When

1 . .
a =, equation (2) can be written as

1 1
Uij+1 = 5Ui-1 + 5 Uit

1
=5 (ui—l,j + ui+1,j)

Then this equation is called Bendre-Schmidt Formula.

12.10 CRANK-NICOLSON METHOD:-

The Crank-Nicolson implicit method is a specific numerical technique
used for solving partial differential equations (PDEs), particularly
those that describe parabolic phenomena. It is an extension of the
Crank-Nicolson method, which itself is a combination of implicit and
explicit methods. The implicit aspect of the Crank-Nicolson method
makes it unconditionally stable and well-suited for solving PDEs.

The above Schmidt explicit method is computational simple and it has
1
2

limitation. This method is stable is 0 < « S% i.e.,0< h—g < or

h? . .
k < %C—Z and h must be kept small in order to obtain reasonable

accuracy.

In this method the obtained partial differential equation replaced by the
mean of itd finite-difference representations on the (j + 1)th and jth
time rows. From (2) given that

2
Wije1 = Upj €7 [Uirj41 — 2Uijp1 T Ui—q j1

k 2 h?
Uiyr,j — 2Ug5 + Uj—q

hZ

Or

—aui_1j41 + (2 + 20U 541 — QU141
= aui_l'jﬂ + (2 - Za)ul-,j + aui_,_l'j (3)
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2

kc
where a = =

Now equation (3) contains three unknowns and the right side contains
three known provital values of u, which is shown in figure 8 given
below

f‘\

(+1)% level (Unknown value of )
(i+1,j+1)

—"(’_T?(”)—F— J% level (known values of u)

@+, )

Fig.8

So the equation (3) is called 2-level implicit formula and is also
called Crank-Nicolson implicit formula.

For j = 0 and i = 1,23 .......n, equation (1.19) generates n
simultaneous equations for n unknown pivotal values along the first
time row in term of known initial values and boundary values. Thus,
for this problem initial and boundary conditions are required.

Similarly, for j = 1, presents n unknown values of u along the second
time row in term of calculated values along the first etc. Then the
solution of set of simultaneous equations is called as an implicit
scheme.

12.11 DU FORT AND FRANKEL METHOD:-

0 o%u . . . .
If we change a—ltl and ﬁ in (2) by central difference approximations
U Ujjy1 — Ui
Jt 2k
0%u 2 Uj—q1,j — Zui,]- + Ujtq,j

axz € h2
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We obtain

Uijrr = Wij1 [ui—l,j — 2u;; + ui+1,j]
2k h?

Or
Wijrr = Ujj-1 T 205[“1’—1,j + 2y, + ui+1,j] .. (4)
2
where a = % This is known as 3-level time formula and is also

known as Richardson Scheme.If we replaces u;; by the average of

. 1 . .
Ujjqandu;jyqie, u; ;= > [ui,j“ + ui,]-_l] putting in (4), we get

t 1\
F + 1)t [evel
7+ D (6] )k Jeve
@ th level
G— 1.7 +(r+ Ln’
( — Dthlevel
GJji—-1
h h
= X
(@] i—1 i i+1
Fig.9

Ui jer = Uy, + 20wy + (Wi jer + Ui jo1) + Uit )]

1-2a 2a
s = () s+ () sy + en] )

The equation (5) is called 3-level formula is known as Du Fort-
Frankel.

2
EXAMPLE: Solve the partial differential equation % = ZTZ subject to
conditions
u(x,0) = sinmx, 0<x<1
u(0,t) =u(1,t) =0
using

(1) Schmidt method
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(i1) Crank-Nicolson Method
(i1i1) Du Fort-Franke Method

Carry out computations for the two levels, taking h = %, k=—
1

SOLUTION: Here c2 = 1,h = %,k ==

_kcz_l(%) 1

T T (/32 4

and
T V3
Uy o = sin(mh) sing = —
2t V3
Uy, = sin(2mh) = Sin? ==

And another boundary u are zero as shown in figure 10.

T A

(1,1 2. D

4 32 J32 @
Fig.10
(i) Schmidt method:
Uijpr = Qioqj + (1 — 20)u;j + auyq )

Ujjr1 = 2 [ui—l,j + 2u;; + ui+1,j] . (D

Forj=0,1andi =12

1
U1 = 2 [uo,o + 2uy 0 + uz,o]

1 V3 V3
=—|0+2—+—| = 0.650
tr = I et l
1
Uy = 1 [0 + 2(0.65) + 0.65] = 0.488
1
Upyp = 1 [(0.488) + 2(0.65) + 0] = 0.447
(ii) Crank-Nicolson Method:
1 5 1
~ 7 ti-1j+ + S Uij+1 ~ 7 Uit j+1
1 3
= Zul‘_llj + Eui'j + Zui_,_l'j (2)
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Putting the value j = 0,1 and i = 1,2 in (2) ,we obtain
10uy; — 1 = 2V3 (3
—tuyq + 10U, = V3 (4
10uy , —uy, = 4.718 ..(5)
—Uup, + 10u,, = 4.718 ...(6)
Solving (3) and (4), (5) and (6), we have
.5

2
=2 " 0674
%11~ Tgg
773
Upq = 29—9 = 0.674

11(4.718)
Uy = —go— = 0524

11(4.718) _ 0.524
99 o

(i) Du Fort-Franke Method:

1-2a«a 2a
o1 = (1) Wims + (5 ) sy + ]

=3 [Wij—1 + Uim1j + Uigr,]

Forj=1andi = 1,2, we get

Uzo =

<o it + 2]
u1,2:§ Ui T Up1 T U

1[V3
and
1
Uy = 3 [uz,o tuq+ u3,1]
1[V3

12.12 HYPERBOLIC EQUATION:-

A hyperbolic equation is a type of partial differential equation (PDE)
that describes wave-like phenomena and is characterized by its
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hyperbolic partial differential operators. The general form of a
hyperbolic equation is often written as:

ou 0%u

E =C 2 ﬁ (1)
The hyperbolic nature of these equations arises from the fact that
solutions typically involve the propagation of information at finite
speeds, similar to wave propagation. Examples of hyperbolic equations
include the one-dimensional wave equation and the telegraph equation.
These equations are fundamental in describing phenomena such as
acoustic waves, electromagnetic waves, and certain types of fluid flow.

12.13 SOLUTION OF WAVE EQUATION:-

Let us consider the wave equation
0%u 0%u
F = C2 W (1)
Subject to the initial conditions:
u(x,0) = f(x),u(x,0) =gx) for0<x <1
And the boundary conditions:
u(0,t) = (), us(1,t) =Y (t) for0 <t < o
Again consider a rectangular mesh in xt — plane spacing h along
x —ax is and the spacing k along t — axis. Also (x,t) = (ih, jk).
Then
0%u  (wi_1; — 2uyj + Uy ,j)
0x2 h?

and
0%u  (uij—1 — 2uyj + Ujjy)
ot? k?
Substituting these value in (10) , we get

(Uijo1 — 2w+ U jpq) €2
2 = ﬁ(ui—l,j — 2uy; + Ujpq,5)

Or
Ui = 20— a®)uyj + @ (Wimgj + Upr, ) — Upjoa
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i

W)

G + 1)th Jevel

1€

Jthlevel
G — 1) level
O & F—1_ _im il i
Fig.9
Since we obtain
Mt M g
Ui j1 = Upjoq + 2kg(x) att =0
U =1+ 2kg(x)att =0, forj=0 - (2)
Also u(x,0) = f(x), this becomes
U1 = f(x) ..(3)

From (2) and (3), we get
iy = £(0) + 2kg (%)
Also the boundary condition become
up; = ¢(t) and u;; = P(t)
The equation (2) is called 3-level time formula which is convergent
whena < 1li.e.,kc < h.
Remarks:
o Ifa=1i.e.,ck = h, then equation (2) becomes to
Upjrr = Uj—g,j + Ujpr,j — Ujja
e For a = 1, the value of u given from (3) is stable and coincides
with the solution of (1).
e For a < 1, the solution is stable but inaccurate.
e For a < 1, the solution is unstable.
e Fora <1, the formula (2) is converges.
EXAMPLE: The transverse displacement u(x,t) of a point at

distance x from one end and at any time t of a vibrating string satisfies
.92 2u . .
the equation a_tlzl = c? ﬁ, with boundary conditions:
u(0,t) =0 = u(4,¢t)
And initial conditions:

ulx,0) =x(4-x),0<x<4

ou
E=0att=0and0£x£4
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Solve this equation numerically for one half period of vibration, taking
h=1land=-=.
2
KEUHOMhmw2=£h:Lk:%
ok _2G)_

h 1
Therefore, 3-level time the formula (2) becomes

Upjer = Uj—q,j + Ujgr,j — Wij .. (1)
u(0,t) =0 =u(4,t)
U =0=1u; =0Vj
Also u(x,0) = x(4 — x)
Uo=i(4—i)fori=123
So we obtain
U0 = 3, Uz = 4,u390 =3

Also M _Qatt=0,0<x<4

ot
u(x,0) =0
Ujj+1— Ui j-1
2k =0
Ujj1 — Upj-1 =0
Uip = U1 forj=0
Now substituting j = 0 in (1), we have

1
Uin =5 (wi-10 + Uis10) - (2)
Substituting i = 1,2,3 in (2), we obtain

1
ul‘l =E(0+4‘) =2

1
u2’1=§(3+3)=3

1
U,3’1 =§(4‘+0) =2

Againput j = 1in (1), we given
Uy =Ugg Uy —U=0+3—-3
U, =2+2-4=0
Uz, =3+0-3=0

Since the length of vibrating string = 4(=[)
Its period = z?l = 2(2—4) = 4 so half of its period = 2.
SELF CHECK QUESTIONS

1. What is the main difference between partial differential
equations (PDEs) and ordinary differential equations (ODEs)?
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2. Name three common numerical methods for solving PDEs.

3. How does the finite difference method approximate derivatives
in the context of PDEs?

4. Define numerical stability in the context of solving PDEs

numerically.

Provide an example of a first-order partial differential equation.

Give an example of a second-order partial differential equation

Differentiate between elliptic, hyperbolic, and parabolic PDEs

Why are boundary and initial conditions important in

classifying PDEs?

9. What is the main difference between implicit and explicit
numerical methods in the context of solving PDEs?

®© NN

10. Name one advantage of using implicit methods for solving
PDE:s.

11. How is time stepping handled in implicit methods for parabolic
PDEs?

12. Briefly explain the solution process for implicit methods in
solving parabolic PDEs.

13. How would you apply an implicit method to solve the heat
equation for a material with variable thermal conductivity over
time?

12.14 SUMMARY :-

In this unit we have studied the finite-difference approximations to
derivatives, elliptic equation, method of first approximation value of
Laplace equation, solution of Poisson’s equation, parabolic equation,
an Schmidt explicit method, crank-Nicolson method, du fort and
frankel method, hyperbolic equation and solution of wave equation.
solving a partial differential equation involves formulating the
equation, identifying its type, incorporating boundary or initial
conditions, applying appropriate solution techniques such as separation
of variables or transforms, solving resulting ordinary differential
equations or algebraic equations, verifying the solution, and
interpreting the results in the context of the given problem. The
solution of a partial differential equation (PDE) refers to the
mathematical expression or set of functions that satisfies the given
PDE and its associated boundary or initial conditions.
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12.15 GLOSSARY:-

e Partial Differential Equation (PDE): An equation that
involves partial derivatives of an unknown function with
respect to two or more independent variables.

e Elliptic PDE: A type of PDE where the solution represents a
steady-state situation, often associated with Laplace's equation.

e Parabolic PDE: A type of PDE describing phenomena that
evolve over time, such as the heat equation.

e Hyperbolic PDE: A type of PDE associated with wave-like
behavior and phenomena where information travels at a finite
speed, as seen in the wave equation.

¢ Boundary Conditions: Specifications on the behavior of the
solution at the boundaries of the spatial domain.

e Initial Conditions: Specifications on the behavior of the
solution at the initial time for problems involving time
evolution.

e Separation of Variables: A technique used to simplify PDEs
by assuming the solution is a product of functions, each
dependent on only one variable.

e Fourier Transform: A mathematical transform used to
analyze and solve PDEs, particularly for problems involving
spatial variables.

e Laplace Transform: A mathematical transform often applied
to PDEs involving time, converting the problem into an
algebraic equation.

e Green's Function: A mathematical function used to solve
inhomogeneous linear PDEs, providing a way to represent the
influence of a localized source.

¢ Fundamental Solution: The solution to a PDE with a point
source or impulse, often used as a building block for
constructing solutions to more complex problems.

¢ Characteristic Curves: Curves along which the solution of a
hyperbolic PDE can be specified, helping to understand the
behavior of solutions.

e Numerical Methods: Techniques such as finite difference,
finite element, or spectral methods used to approximate
solutions to PDEs on a computer.
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Stability Analysis: Examination of the behavior of a numerical
method to ensure that small errors do not grow uncontrollably.
Consistency and Convergence: Properties of numerical
methods ensuring that as the discretization becomes finer, the
numerical solution approaches the true solution.

Verification and Validation: The process of confirming that a
numerical solution accurately represents the physical or
mathematical problem it is intended to model.

Sensitivity Analysis: Evaluation of how changes in input
parameters or conditions affect the solution of a PDE.
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12.18 TERMINAL QUESTIONS:-
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0%u

F
(TQ-1):Solve a—lt‘ =
t=0for0<x<landu=0atx=0and x =1 for t> 0, by the
Gauss-Seidel method.

subject to the initial condition u = sinmx at

2 2
(TQ-2): Solve the equation ZTLZL-I_ZTZ =0 in the domain of the
following figure by
1 1
o Uy H3 0
o | M3 o
0 o
Fig.10

a. Jacobi’s method
b. Gauss-Seidel method.

2 2
(TQ-3): Solve the Laplace equation ZTZ + ZTZ = 0 for the square mesh

with boundary value shown in the following figure:
0 0 1

0 2
0 .
0 2

0] 8] 1

Fig.11
. 0%u  9%*u . .

(TQ-4): Solve the Laplace equation =T 37 = 0 in the domain of
figure:

" 1 4 9 16

Y 1y ug ug 14

" 1y g ug 12

0 10

) Ha us
0 8

0.5 2 4.5

Fig.12
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(TQ-5): Find the solution of parabolic equations

du 0%u

ot 0x?
Gives that u(0,t) = u(4,t) =0 and u(x,0) = 4x — x? = 0 taking
h = 1. Find the values of u upto t = 5.

2
(TQ-6): Solve the heat equation Ju_ o7u subject to conditions

ot dx2
u(0,t) =u(1,t) =0 and
1
2x, 0<x<-
u(x,0) = 1 2
2(1 —x), 5 <x<1

2 2
(TQ-7): Evaluate the pivotal values of equation 371; = 16‘;712‘ taking

h = 1uptot = 1.25. The boundary conditions are

u(0,t) = u(5,t) =0,u(x,0) =0

and u(x,0) = x%(5 —x)

2 2
(TQ-8): The function satisfied the equation ZTZ = ZTZ and the
conditions:

1
u(x,0) = §sinnx,ut(x, 0)=0for0<x<1

u(0,t) =u(l,t) =0fort=0

Use the explicit scheme to calculate u forx =0to 1 andt = 0 to 0.5
withh = 0.1,k = 0.1

12.19 ANSWERS:-

SELF CHECK ANSWERS

1. PDEs involve functions of multiple independent variables,
while ODEs involve functions of a single independent variable.

2. Finite Difference Method, Finite Element Method, and Finite
Volume Method.
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It approximates derivatives by discretizing the domain into a
grid and replacing derivatives with finite difference
approximations.

Numerical stability refers to the ability of a numerical method
to produce accurate results without amplifying errors over
time.

Example: u, + u,, = 0, (Transport Equation).

6. Example: u,, +u,, =0 (Laplace's Equation) or u; —

10.

11.

12.

13.

c?u,, = 0 (Wave Equation).

Elliptic PDEs have a steady-state solution, hyperbolic PDEs
describe wave-like behavior, and parabolic PDEs involve
diffusion over time.

Boundary and initial conditions specify the behavior of the
solution at the boundaries and at the initial time, helping in
uniquely determining the solution.

In implicit methods, future values depend on both current and
future states, while in explicit methods, they depend only on
current states.

Implicit methods are unconditionally stable, allowing for larger
time steps without the constraint imposed by stability
conditions in explicit methods.

Implicit methods use backward differencing in time, resulting
in a system of equations that must be solved at each time step.
Implicit methods involve solving a system of linear equations,
often done using iterative numerical techniques such as the
Crank-Nicolson method.

The implicit method would involve discretizing both the spatial
and temporal derivatives, resulting in a system of equations to
solve for the temperature distribution.

TERMINAL ANSWERS

(TQ-2):a. u, = 0.12598, u, = 0.12598,,u; = 0.37598,

u, = 0.37598
b. u, =0.12646, u, = 0.12573,,u; = 0.37573,
u, = 0.37573

(TQ-3): u; = 26.66, u, = 33.33,,u3 = 43.33, u, = 46.66
(TQ-4): u; = 1.57, u, =3.71,,u3 = 6.57,u, = 2.06,us = 4.69,

ug = 8.06, u; = 2.00,ug = 4.96,uy = 9.00

(TQ-5):
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\ 0 1 2 3 4
o | o | 3 4 3 o
N T — 2 3 2 0
2 0 15| & 15 0
8 . 5 1 3 | 16 1 0
. % | B 075 | 1 0-75 0
5 0 0 0-75 05 0
(TQ-6):
Nlot1]| 28 (4|5 )67 8191lw
j
0 | 0 [009|016 021|024 025/024/|021|016]009]| 0
1|0 |008|015|020  023]024|023][020]015]008]| 0
2| 0 [0075] 014 | 019 | 022 | 023 | 022 | 019 | 0-14 [ 075 | ©
31 0 |007]/013]018/021 022|021 018013007 0
(TQ-7):
i 0 1 2 3 4 5
j |
0 0 4 12 18 16 0
1 0 6 11 14 9 0 |
2 0 7 8 2 -9 0
| 3 0 2 «9 -8 -7 0
4 0 -9 - 14 ~ 11 -6 0
5 0 - 16 -18 ~19 ~ 4 0
(TQ-8)
x|
i 0 0-1 0-2 0-3 0-4 0-5.
L 01 | o ] 0037 | 007 0096 | 0113 | 0119
02 | o ] 0031 | 0059 | 0082 | 0096 | 0101
03 | 0 ] 00238 | 0043 | 0059 0-07 0-074
0-4 l 0 | 0012 | 0023 | 0031 | 0037 | 0039
06 | @.. | -0 .1 D 0 0 0
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Unit 13: Applications to Integral Equations
CONTENTS:

13.1  Introduction
13.2 Objectives
13.3  Integral Equation

13.4  Linear and Non-Linear Integrals

13.5  Some Special Type of Linear Integrals

13.6 Special or Degenerate Kernel

13.7 Some Important Results

13.8 Glossary Application of Laplace Transform in solving
Volterra Integral Equation

13.9 Summary

13.10  References

13.11  Suggested Reading

13.12  Terminal questions

13.13  Answers

13.1 INTRODUCTION:-

The theory of Integral Equations holds a significant position within the
realm of Mathematics, serving as a powerful tool for addressing a wide
range of initial and boundary value problems associated with both
ordinary and partial differential equations. This mathematical framework
allows for the reduction of complex problems to integral equations of
diverse types. The evolution of integral equations is deeply intertwined
with the historical development of mathematics, particularly in the field of
applied mathematics.

The origins of integral equations can be traced back to N.H. Abel in 1826,
who pioneered the reduction of a physical problem involving the descent
of a particle along a smooth vertical curve under the influence of gravity
within a specific time interval. Abel's groundbreaking work paved the way
for further advancements, including V. Volterra's contributions in 1896.
Volterra extended the theory by developing a general solution for a class
of linear integral equations, particularly those with a variable upper limit
of integration, now commonly referred to as Volterra integral equations.
Building upon these foundations, I. Fredholm in 1900 made significant
strides in the theory of integral equations. His focus was on integral
equations with constant limits of integration, and these equations are now
recognized as Fredholm integral equations. This historical progression
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highlights the collaborative efforts of notable mathematicians in shaping
the theory of integral equations, showcasing its evolution and application
within the broader context of mathematical and applied sciences.

In this unit we will studied about the integral equations and their
application.

13.2 OBJECTIVES:-

The objectives of applications to integral equations can vary depending on
the specific context and problem being addressed. The integral equations
encompass a broad range of goals, including modeling physical
phenomena, finding analytical and numerical solutions, studying linear
operators, addressing optimization and inverse problems, analyzing
singularities, handling boundary value problems, and contributing to
advancements in mathematical methods. These applications have far-
reaching implications across various scientific and engineering disciplines.
After studying this unit, you will be able to

e Formulate physical, engineering, or scientific problems as integral
equations.

e Address boundary value problems through integral equations.

e Apply integral transforms to simplify integral equations.

The applications of integral equations are broad and impactful, providing
powerful tools for understanding, modeling, and solving complex
problems across various scientific and engineering disciplines.

13.3 INTEGRAL EQUATION:-

An integral equation is one in which function to be established appears
under the integral sign. The most general form of a linear integral equation
is

b
F(t) = G(t) + A f K (t, w)F (uw)du

where the upper limit may be either variable or fixed. The function G (t)
and K(t,u) are called functions, while F(t) is to be determined. The
function is called K (¢, u) is called the kernel of the integral equation.

If a and b are constants, the equation is called the Fredholm integral
equation. If a is a constant while b=t, it is called a Volterra integral
equation.
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13.4 LINEAR AND NONO-LINEAR INTEGRAL
EQUATIONS:-

A linear integral equation is an equation in which the unknown function
and its derivatives appear linearly (to the power of one) within the integral
expression. The equation can be expressed as a linear combination of the
unknown function and its integrals. If integral equation is not linear then it
is called non-linear integral equation.

For Example:

f(x) =f K(x,t) g(t)dt (1)

a

b
9(0) = F(x) + j K(x,6) gt ...(2)
b
90 = j Ko () de ()

where a<x<b, a<t<h.

The above integral equation (1), (2) are linear while the equation (3) is
non-linear.
The general form of a linear integral equation is

a(x)gx) = f(x) +AfK(x, t)g)dt ..(4)
Q

where the function f,a@ and K are known functions, while g is to be
determined, A is non-zero real and complex parameter. The function
K(x,t) is known as kernel of the integral equation and the domain Q of
the auxiliary variable t.

An integral equation, which linear involve the linear operator
U 1= [ K@l 1de
Q
Having the kernel K (x,t). It satisfied the linearity condition

L{c19:1(t) + c29,(0)} = ¢, L{g1 ()} + c1L {g.(£)}

where L{g(t)} = |, o K(x, t)g(t)dt and cy, ¢, are constants.

13.5 SOME SEPECIAL TYPES OF INTEGRAL
EQUATIONS:-
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il

Volterra Integral equation of first and second kinds: A linear
integral equation is called Volterra Integral equation if the upper
limit of integration is a variable. e.g.

a(x)g(x) = £(x) + f Ko, ) g(Odt ...(5)

where a is a constant, f(x),a(x) and K (x, t) are known functions
while g(x) is unknown function, 1 is a non-zero real or complex
parameter and the equation (5) is called Volterra Integral
equation.
a. If a =0, the unknown function g appears only under
the integral sign , then from (5), we have

)+ AL K(x,t) g(t)dt =0 .. (6)
is known as Volterra Integral equation of first kind.

b. If @ = 0, the equation (5) say, we get

g =f) +A[ K(x,0) g(©)dt ...(7)

is known as Volterra Integral equation of Second
kind.

c. Ifa=1,f(x) =0, the equation (5) reduces to

glx) = Af K(x,t) g(t)dt

is called the homogeneous Volterra Integral
equation of Second kind.

Fredholm Integral equation of first, second and third kinds:
A linear integral equation is called Fredholm Integral equation if
the upper limit of integration is fixed. e.g.

b
a(x)gx) = f(x) +Af K(x,t)gt)dt ..(8)

where a and b is a constants, f(x), a(x) and K(x,t) are known
functions while g(x) is unknown function, A is a non-zero real or
complex parameter and the equation (5) is called Fredholm
Integral equation of third kind.
a. If «a =0, the equation (8) unknown function g only
under the integral sign , then, we obtain
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b
fO)+A[ K(xt)gt)dt =0 . (9)
is known as Fredholm Integral equation of first kind.

b. If @ = 1, the equation (9) say, we get

g(0) = f() + [, K(x,t) g©)dt ... (10)

is known as Fredholm Integral equation of first kind.

c. Ifa=1,f(x)=0,theequation (8) reduces to

b
9G0) =2 j K(x, t) g(t)dt

is called the Homogeneous Integral Equation of
Second kind.

iii.  Singular Integral equation: A singular integral equation is
defined as an equation in which one or both of the integration
limits extend to infinity, or the kernel (the function defining the
integral) becomes infinite at one or more points within the integral
under consideration.

For Example:

f(x) = fxsin(x, t) g(t)dt
g@)=ﬂﬂ+f K(x,6) g(D)dt

f(x)=fx%g(t)dt, 0<r<1
flx) = x% ) 0<a<l1

are singular integral equations.

iv.  Integral equation of convolution type: An integral equation

mm=fuwwjxw—omom

in which the kernel K (t — x) is a function of the difference t —
x only, and corresponding Fredholm integral equation
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b
900 = F(0) +2 f K(x - g(0)dt

are called integral equation of the convolution type.

13.6 SPECIAL OR DEGENERATE KERNEL:-

i.  Separable or Degenerate Kernel: A kernel K(x,t) is considered
separable or degenerate if it can be expressed as the sum of a finite
number of terms, and each term is a product of a function that
depends solely on x and a function that depends solely on t. In
mathematical terms, a separable or degenerate kernel is represented
as:

n

K(x0) = ) a; (b(0)
i=1
Here, a;(x) represents a function of x only, b;(t) represents a
function of t represents a function of x only and the sum is taken
over a finite number of term (n).

ii. Symmetric Kernel: A complex-valued function K(x, t) is termed
symmetric or Hermitian if it satisfies the conditionK (x,t) = K(x, t),
where the bar denotes the complex conjugate. In the case of a real
kernel, this symmetry condition simplifies to K(x,t) = K(x,t),
aligning with the conventional definition of symmetry.

13.7 SOME IMPORTANT RESULTS:-

i. Convolution(or Falting): The convolution of F(t) and G(t) is
denoted and described as

FxG= ftF(x)G(t —x)dx

FxG= ftF(t—x)G(x)dx

ii. Convolution theorem or convolution property: If L{F(t) =
f(s)} and L{G(¢t) = g(s)}, then
t

L f(5)g(s)) = f F(t—x)G()dx = F+G

So
L(F  G) = f(s)g(s) = L[F(©)] X L[G(D)]

i.e.,

Department of Mathematics
Uttarakhand Open University
Page 262



Advanced Differential Equations I1 MATS08

L{]}tﬂGa—xﬁu}=L{j3%t—ﬂ6@ﬁh}=f@hﬂﬂ

iii. The Abel Integral Equation: An integral equation is the form

t F(u)
. mdu = G(t)

is called Abel’s integral equation, where F(t) is unknown
function, G(t) is known function and « is constant i.e., 0 < a <
1.

iv. Integro-differential equation: An integro-differential equation
is a type of mathematical equation that involves both
differential operators and integral operators. These equations
combine elements of differential equations and integral
equations, making them more complex and challenging to solve
than either type alone.

An equation in which various derivatives of known function
F(t) can also be written as

t

F%w=mw+a@+jxa—wmww
0
is an integro-differential equation, where F(t) is unknown

function, G(t) and K (t — u) is known function. This solution of
such equation subject to given initial conditions can be easily
written.

13.8 APPLICATION OF LAPLACE TRANSFORM
IN SOLVING VOLTERRA INTEGRAL
EQUATION:-

Application of Laplace Transform in solving Volterra integral equation
with convolution of kernel and the working rule is given by

i. Suppose the volterra integral equation of first kind of the form is
given as given below

G(t) = AftK(t, w)F(u)du

Or
G(t) = AK(t) = F(t) (1)
Suppose

LG} = g(s), L{F(O}=f(s) and LIK@®©} =k(s) ..(2)
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From (1), we get
L{G(®)} = AL{K (¢) * F(1)}

Or
L{G(®)} = 1 L{K ()} x L{F (D)}

Since from (2), we obtain

g(s)
" 3)

g(s) = Ak(s)f(s) or f(s) =

Now according the inverse Laplace transform of both sides of (3), we have

_ [ g(s) 1 {90)
Lt =L == F(t) =L71
) {Ak(s)} or  F(® {MS)
ii. Suppose the volterra integral equation of second kind of the form

is obtained below
F(E) = G(¢£) + A] K(t — w)F(u)du
F(t) =G(t) + /11((01:) * F(t) .. (D)

Now suppose L{G(t)} = g(s),L{F(t)} = f(s) and
L{K(t)} = k(s) - (2)

Putting the Laplace transform of both sides of (1), we obtain
L{F()} = L{G(8)} + AL{K (¢) * F (D)}
L{F®)} = L{G()} + AL{K ()} x L{F (t)}

So
f(s) =g(s) + Ak(s)f(s) or [1—2k(s)1f(s) = g(s)

Hence
f(s)=g(s)/[1— Ak(s)]

Again the inverse transform of both sides of above equation is

F(t) = L7H{g(s)/[1 — 2k(s)]}

SOLVED EXAMPLE
EXAMPLET1: Solve the integral equation F(t) = 1 + |, Ot fw)sin(t —

u) du and verify your solution.
SOLUTION: Given
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Fit) =1+ ftf(u)sin(t —u)du - (1D

From (1) can be written as
F(t) =14 F(t) = sint -.(2)
Let L{F(t) = f(s)} obtaining the Laplace transformation of (2), we have

L{F(t)} = L{1} + L{F(t) * sint}

1
L{F(t)} = (;) + L{F(t)} x L{sint}, by convolution theorem

f)=3+f() x5= so (1-5=)f(s) =2

s2+1 s2+1

(s?+1) 1 1
f&=—g—=5"3
Applying the inverse transform of both sides of (3), we obtain
1 1
Hren =1+ ]
S S
2 tZ e (2)

t
F(t)=1+§=1+7
Verification of (2): The equatioﬁ (2) satisfies the given integral equation

(1), we have
2

u
F(u) =1+ 7
Take R.H.S. of (1), we obtain

t uZ
=1+f (1+—>sin(t—u)du
0 2

u? ‘ t
=1+|(1+= —w| - —wd
+ l( + 2>cos(t u.)l0 foucos(t u) du

t? t
=1+1+ 5~ cost — {[—usin(t —w]g — f
0

1. (=sin(t —u)) du}
= 2+?—cost—f sin(t —u) du
0

t? t?
=2 +?—cost— [cos (t —u)]s =2 +?—cost— (1 — cost)

2

t
=2+ 5 = F(t), using (2)

=L.H.S.of (2)
Hence the equation (2) is the solution of obtained integral equation (1).
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EXAMPLE2: Solve by the method of Laplace transform: 3sin2x =
y(x) + f;c (x —t) y(t) dt and verify your solution.

SOLUTION: Take special note of the fact that x is used in place of t and t
is used in place of u in the current problem. Therefore, the standard
solution and outcomes should be adjusted accordingly.

By applying the convolution definition, the following equation can be
found:

y(x) = 3sin2x — y(x) * x - (1D
Let L{y(x) = f(s)}. Applying the Laplace transform of both sides of (1),
we obtain

L{y(x)} = 3L{sin2x} — L{y(x) * x} - (2)
f(s) =3 x (i)~ Ly} x Lix)
6 f(s)
fO=aia
652
f(s) =

(s2+4)(s2+1)

(1 1
flo) = {(52 +1) (s2+ 4)}

Taking inverse Laplace integral transform of both sides of (2), we have

sin2t

y(x) =2 {sint — } = 2sint — sin2t

. . t F(uw)

EXAMPLES3: Solve the Abel’s integral equation fo du=1+t+
t_
2 N GD)
SOLUTION: Let the given equation
ft Fw d 1+t+t2 (D)
——du =
0+ (t—u)

t /2% F(t) =1+t +t? by the definition of convolution.
Let L{F(t)} = f(s). Applying the Laplace transform to both sides of (1),
we obtain

1
L {t_i} x L{F(t)} = L{1} + L{t} + L{t*},  using convolution theorem

1
f(s) =j—;(l+sl—2!+sz—3!) =%(l1+l3+l5) asF(l) =+

S 52 sz sz

Applying the inverse transform of both sides , we obtain
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1 [ ¢-1/2 ¢1/2 2¢3/2
NG lr(1/2> TG/ TG

1 |¢-1/2 £1/2 2¢3/2
=— + +

VRV (@) xvE (3)x (3) xR
Thus F(t) = (%) X [t‘% 4265 + (g) X tg]

EXAMPLE4: Solve the integro- differential equation

F(t) =

t
F'(t) = sint + f F(t — u)cosudu

0
Where F(0) = 0.

SOLUTION: Let the given equation
t

F'(t) = sint + f F(t — u)cosudu
0

Or
F'(t) = sint + F(t) * cost, by the definition of convolution
Also, obtained that
F(0)=0
Let L{F(t)} = f(s). Taking Laplace transform of both sides of (1), we get
L{F'(t)} = L{sint} + L{F (t) * cost}

sL{F(t)} - F(0) = + L{F(t)} X L{cost}

(1+ s2)
SF(8) = e + £ (9) * | ), using (2)
1 1
<1+1+52>Sf(s) 1452
1
f(s) = 53

Now,

1) = 17 ]

1 t2  t?

— 1) = —

F@y =1 {53} 20 27
SELF CHECK QUESTIONS

1. Define the following
a. Singular integral equation
b. The Abel’s integral equation
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c. Integro-differential equation

d. Integral equation of convolution type.

e. Fredholim and Volterra integral equation of first and second
kinds.

2. State whether the following statements are true or false.

a. The presence of a singularity in the kernel function always
leads to a solution that is not well-defined.

b. A unique solution to a Fredholm integral equation of the
second kind is guaranteed if and only if the constant A is an
eigenvalue of the integral operator.

c. The kernel function in a double integral Fredholm integral
equation of the second kind depends on both the independent
variables x and y as well as the unknown function u(x,y).

d. A Fredholm integral equation of the second kind involves an
integral of the unknown function over the same domain as the
kernel function.

e. In a Volterra integral equation, the limits of integration are
fixed constants.

13.9 SUMMARY:-

Integral equations are mathematical equations that involve unknown
functions within integrals. They come in linear and nonlinear forms, with
applications in physics, engineering, and other fields. Solving these
equations helps model relationships with spatial or temporal dependencies
using various numerical and analytical methods.

Integral equations play a crucial role in mathematical modeling, providing
a powerful tool for describing relationships between quantities that
involve integration. They have applications in diverse fields, and their
solutions contribute to our understanding of various natural phenomena.

13.10 GLOSSARY:-

e Integral Equation: A mathematical equation that involves an
unknown function within an integral. It expresses a relationship
between a function and the integral of that function.

e Kernel: The function that defines the integrand in an integral
equation. It represents the interaction between different parts of the
unknown function.

¢ Fredholm Equation: An integral equation where the kernel is a
given function. Fredholm equations often arise in the study of
linear integral equations.
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e Volterra Equation: An integral equation where the kernel
depends on the solution itself. Volterra equations are often
encountered in problems with nonlinear dependencies.

e Linear Integral Equation: An integral equation in which the
unknown function appears linearly. The linearity simplifies the
analysis and solution methods.

e Nonlinear Integral Equation: An integral equation in which the
unknown function appears nonlinearly. Nonlinear integral
equations are more complex and may require specialized
techniques for solution.

e Definite Integral Equation: An integral equation with constant
limits of integration. The definite integral defines the range over
which the integration occurs.

e Integro-Differential Equation: An equation that includes both
derivatives and integrals of the unknown function. These equations
capture both spatial and temporal dependencies.

e Method of Moments: A numerical technique for solving integral
equations by matching the moments of the kernel. It involves
choosing specific functions to satisfy certain conditions.

e Collocation Method: A numerical approach that selects specific
points in the domain to evaluate the integral equation. The
equation is satisfied at these selected points.

¢ Quadrature Methods: Numerical techniques that approximate
integrals using weighted sums at discrete points. These methods
are often used for solving integral equations numerically.

e Analytical Methods: Techniques involving algebraic and calculus
manipulations to find exact solutions to integral equations. These
methods provide closed-form expressions for the solutions.

e Numerical  Methods: Computational ~ techniques  for
approximating solutions to integral equations, including
discretization and iterative methods. These methods are employed
when analytical solutions are not feasible.

e Application Areas: Physics, engineering, biology, and economics
are among the fields where integral equations find applications.
They are used to model a wide range of physical and natural
phenomena involving integration.

13.11 REFERENCES:-

e Lokenath Debnath and Dambaru Bhatta(2007), Integral
Transforms and Their Applications.
e Jerzy Trzeciak (2008), Integral Equations and Operator Theory.

Department of Mathematics
Uttarakhand Open University
Page 269



Advanced Differential Equations I1 MATS08

e Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, and Frank
Neubrander(2018), Integral Equations: A General Theory.
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Solution-Of-Integral-Equations-Of-The-Second-Kind-Cambridge-

1997.pdf

13.13TERMINAL QUESTIONS:-

(TQ-1): Give the definition and complete classification of linear integral
equation.
(TQ-2): Show that the function g(x) = 1 is a solution of the Fredholm

integral equation.
1

glx) = f x(e*t — 1) g(t)dt =e* — x
0

(TQ-3): Show that the function g(x) = % is a solution of the integral

equation
1
g(t)
dt =+/x
o Vx —t
(TQ-4): Show that the function g(x) = n—\l/y is a solution of the integral
equation
1
t
g(®) gt = 1
o Vx —t

(TQ-5): Show that the homogeneous integral equations
i. g(x) =2 folx(tx/z — x\t)g(t)dt
i g()=2af x(3x—2)t g(t)dt
(TQ-6): Solve the integral equation F(t) =t + 2 [ Ot F(u)cos (t — u)du.
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(TQ-7): Solve the integral equation F(t) = t? + 2 | Ot F(u)sin (t — u)du.
(TQ-8): Solve the following integral equations:
Ft)=et-2 fOtF(u)cos (t —w)du.
b. e *=y(x)+2 fox cos(x — t) y(t)dt
c. F(t) =asint —2 fOtF(u)cos (t —w)du
d t= fotet_“F(u)du
(TQ-9): Solve the following Abel’s equation

t F(u) _ 2
N T du=1+t+t

b [ du=1(1+1)

(t-u)1/3

c. G(t)= fot(f_(gadu,o <a<l1

(TQ-10): Solve the integral equation F'(t) =t + 2 fot F(t —u)cosudu,
if F(0) = 4.

(TQ-11): Show that the function g(x) = e* (Zx — g) is a solution of the
Fredholm equation.

(TQ-12): Show that the function g(x) = (1 + x2)73/2 is the solution of
Volterra integral equation.

(TQ-13): Show that the function g(x) = sin (mx/2) is the solution of the
Fredholm integral equation.

13.13 ANSWERS:-

SELF CHECK ANSWERS

a. Singular Integral Equation: A singular integral equation is a
type of integral equation in which the kernel (the function inside
the integral) becomes singular at some point or over some
interval. Singular integral equations often arise in various
branches of mathematics and physics, and their solutions may
require specialized techniques to handle the singularities.

For Example:

Flx) = j “sinCu,6) g(©)dt
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b.

900 = ) + f K(x,6) g(0)dt

flx) = j-x%g(t)dt, 0<r<1
f(x)=jx(xg_(—tzwdt, 0<ac<l

are singular integral equations.

Abel’s Integral Equation: Abel's integral equation is a specific
type of integral equation named after the Norwegian
mathematician Niels Henrik Abel. The equation typically
involves an unknown function and an integral containing the
product of the unknown function and another function. Abel's
integral equation arises in various mathematical and physical
contexts, and solving it often requires specific methods
depending on the given conditions.

An integral equation is the form

t F(u)
. mdu = G(t)

is called Abel’s integral equation, where F(t) is unknown
function, G (t) is known function and « is constant i.e., 0 < a <
1.

Integro-Differential Equation: An integro-differential equation
is an equation that combines both differential and integral
operators. It involves a function and its derivatives along with an
integral of the function. Integro-differential equations are used to
model a wide range of phenomena in physics, engineering, and
applied mathematics. Solving integro-differential equations can
be challenging and may require a combination of techniques
from differential equations and integral equations.

An equation in which various derivatives of known function
F(t) can also be written as

t
F'(t) =F(t)+G(t) + f K(t —uw)F(u)du
0
is an integro-differential equation, where F(t) is unknown

function, G(t) and K (t — u) is known function.

Integral Equation of Convolution Type: An integral equation
of convolution type involves a convolution operation within the
integral. The convolution of two functions is a mathematical
operation that expresses the integral of the product of the
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functions, after one is reversed and shifted. Convolution-type
integral equations often appear in signal processing, image
processing, and other areas where the interaction between
different signals or functions is essential.

An integral equation

900 = fG) + 2 j K(x - g(t)de

in which the kernel K (t — x) is a function of the difference t —
x only, and corresponding Fredholm integral equation

b
900 = F() + 2 f K(x - 0)g(t)de

are called integral equation of the convolution type.

o o0 o
= 4

TERMINAL ANSWERS
(TQ-6):F(t) =2+t —2et +2eft=2+t—2e'(1—1t)
2 4 4

(TQ-7): F(t) =2+ + 2=+ 2e‘t = t2 + =
(TQ-8):a. F(t) = e (1 —t)?

b. y(x) = e *(1 — x)?

c. F(t) = ae t x % = ate”t

dF(t)=1-t

1

(TQ-1):a. F(1) = (3) x [t_% + 265+ (%) x t%]

YA

b, F(t) = (3\/§t§(2+3t)>

41
¢ F(t) = 221t — w)* ' F (w)du}
(TQ-10): F(t) =4+5=+—

sinta
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Unit 14: Finite Element Method
CONTENTS:

14.1  Introduction

14.2 Objectives

14.3 Finite Elements
144  Triangular Element

14.5 Rectangular Element
14.6 Galerkin Method

14.7 Variational Forms
14.8 Summary

14.9 Glossary

14.10  References

14.11  Suggested Reading
14.12  Terminal questions
14.13  Answers

14.1 INTRODUCTION:-

In Unit 12, we have discussed the finite difference method for finding
solutions of partial differential equations. In particular, we have solved the
Laplace equation, Poisson equation and one-dimensional heat and wave
equations. The introduction provides an overview of the finite element
method as a widely used numerical technique for solving partial
differential equations (PDESs). It highlights the method's applicability to
both initial and boundary value problems in both ordinary and partial
differential equations. However, the focus of the discussion in this unit is
on boundary value problems, specifically addressing the finite element
methods for solving Laplace and Poisson equations in two dimensions.
Furthermore, the introduction emphasizes the advantages of the finite
element method over the finite difference method, particularly in handling
boundary conditions. It notes that the finite element method offers relative
ease in managing boundary conditions, especially for irregularly shaped
boundaries, compared to the finite difference method, which requires the
development of special formulas for boundary treatment.

In this unit outlines the initial topics covered, starting with the definition
of triangular and rectangular finite elements commonly employed in two-
dimensional problems. It also introduces Galerkin's finite element method,
a weighted residual method, and illustrates its application to solving the
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Dirichlet’s boundary value problem for the Poisson equation and Laplace
equation. Additionally, the unit discusses the variational formulation of
the Laplace and Poisson equations, providing a comprehensive foundation
for further exploration of finite element methods in solving partial
differential equations.

14.2 OBJECTIVES:-

After studying this unit you should be able to

e To break down a given two-dimensional domain into triangular
and rectangular finite elements.

e To develop the finite element Galerkin method specifically tailored
for solving Laplace and Poisson equations with Dirichlet boundary
conditions.

14.3 FINITE ELEMENTS:-

Finite element method (FEM) is a numerical technique used to solve
partial differential equations (PDEs) and integral equations. It's widely
employed in engineering and physics for simulating physical phenomena
like heat transfer, fluid flow, and structural mechanics. The method
subdivides a complex system into smaller, simpler parts called finite
elements. Equations governing the behavior within each element are
formulated, resulting in a system of algebraic equations. These equations
are then solved to approximate the behavior of the entire system. FEM is
versatile, allowing for the analysis of structures with irregular shapes and
complex material properties. In finite element methods, we produce
difference equations by using the variational principle or weighted
residual methods. The closed domain R, where they obtained partial
differential equation holds, is divided into a finite number of non-
overlapping subdomains Ry, R, ... ..... R,,. These subdomains are known as
the finite elements.
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e\ e2 e3
H b
Fig.2
£ 6,;4: 63
i
Fig.3

We exploitation the straight line elements in the one dimensional case, that
is in solving ordinary differential equations (see in figure 1). In Fig. 1, the
interval [a, b] is subdivided into three straight line elementseq,e,, e; .
commonly, in two dimensions, we use the triangular or rectangular
elements (see Figs.2, 3). In Fig.2, we have eight triangular elements
numberedey, €;, €5 ... ... .... €g. In Fig.3, we have four rectangular elements
numbered e4, e,, €3,e,. The curved boundaries are handled in a natural
manner.

In each of the finite element methods, within each finite element e, the
solution is approximated by a function w that is continuous and defined in
terms of the nodal values belonging to that element. At the boundaries of
the elements, which are referred to as interfaces, it is crucial to ensure
continuity and compatibility between neighboring elements. At interfaces
between finite elements in the finite element method, a fundamental
requirement is that the approximating function and its partial derivatives
up to an order one less than the highest order derivative occurring in the
partial differential equation or its variational form must be continuous.
After ensuring continuity at the interfaces, the next step involves
substituting the approximate solution w into the partial differential
equation or its variational form.

Once substituted, the weighted residual method is applied. In the finite
element method, an alternative approach involves substituting the solution
w into the variational form of the partial differential equation. Solving
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this system provides the approximate solution of the partial differential
equation at the nodal points within the domain R. For simpler networks or
domains, it's worth noting that the difference equations derived by the
finite difference and finite element methods can be identical. In this unit,
as mentioned earlier, the focus is on solving Laplace and Poisson
equations in two dimensions. For such problems, simple finite elements
like triangular and rectangular elements can be used effectively. These
elements simplify the discretization process and facilitate the assembly of
the global system of equations, leading to efficient numerical solutions.

14.4 TRIANGULAR ELEMENTS:-

Absolutely, line segment elements are commonly used for solving
ordinary differential equations, representing one-dimensional domains.
When it comes to solving partial differential equations (PDEs) in two
dimensions, triangular and rectangular elements are the fundamental
choices. Assemblage of triangles can always represent a two dimensional
domain of any shape. Normally, we use equilateral triangles

i d

Fig.4

Suppose the triangular element of corners at (x;, yi)(xj, yj)(xk, Y ), taken
in anticlockwise direction. This element is known as three node triangle.
From the figure (4), we get
Ut(x,y)=a; +ax+azy ..(1)

At the nodes, we have

Ui = a; + axx; + azy;

Ui = a1 + ax; + azy;

Uy = a1 + axx, + azyy
Now the solution of a4, a, and a; , we obtain

1x yi| [ Ui
1 Xj Vi a,| = U]
1 Xk Yk as Uk
Using Cramer’s rule, we obtain
A Ay A;

al :ﬂ,az :ﬁ,a?} :ﬁ
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Where A is the area of triangle.

= (x; — xk)(}’j - Yk) - (xj - xk)()’i - Vk)
Ui x; Y
A= U x5 5
Uk Xk Yk

= U;(xjy — xxy;) — Ui (xiye — xie i) + Up (295 — x;91)

1 Uy
A= |1 Uy
1 Uk vk
= Ui(yj = vi) = Uy = v) + Up(vi — ;)
1 Xi Ui
A3= 1 X; U]
1 Xk Uk
= Ui(x; — x) — Uj(xg — x;) + Up(x; — x7)
Putting the values of a4, a, and a3 in equation (1), we obtain

1
Ut(x,y) = ﬂ(Al + Ayx + Azy)

= N{ (0, y)U; + Nf (¢, y)U; + N (6, ) Uy . (2)
where

NE (x,y) = % [y = xy;) + (3 — yi)x + o — 2]
NE() = 5z [y — 590 + O = y0x + (i~ 3]
N¢ (x,y) = % [Caeyi = xiyi) + (v — v)x + (3 — x:)y]
Nf (x,y) = % [y = xi3) + () = vi)x + G — 2]

1
Nf(x,y) = ﬂ[(xkyi —xiyi) + ke — y)x + (x; — x0)y] ¢ ()

Ng(x,y) = i [Ceryi — xiyi) + (3’1' - )’j)x + (xj - xi)Y] )
where Nf, Nje, Ni are known as Shape Function of the approximation.
Putting x = x;,y = y; in equation (2), we obtain

U®(x,y:) = U;
= N{ (x;, y)U; + NF (x;, y) Uj + Nig (x;, ¥ Uy
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Hence,
N (e y) =1
Nf (x,y) =0
Nf (xy) =0

Similarly, putting x = x;,y = y; and x = X,y = yj in equation (2), we
get
Nf(xi,yi) = NF(x, yi) = Ng(x,y) = 1
and NE(xp,yr) =0, forn#r,r =1i,j,k
So we can write the equation (3), we get
Ui
Ue(x,y) = [N, NS NE] | U | = [INCI[U°] ... (4)
Uk
where [N¢] = [Nf,Nf,N¢] and [U®] = [U; U; Ui ]"

If the domain contain is obtained by
k

K
UGxy) = D US(xy) = ) NI[U°]
e=1 e=1
So the elements that we are considering here are known as conforming
elements.

14.5 RECTANGULAR ELEMENTS:-

Let the domain R divided into rectangular elements. Assume that the sides
of the element are parallel to x and y axes respectively. Hence, we choose
the piecewise polynomial in the form
Ulx,y)=ay+ax+azy+a, ..(1)
Let i,j,k and n the rectangular element of corners
P (x;,vi), Q(xj, yj), R(xy,vx) and S(xi,y,) taken in anticlockwise
direction. This element is known as three node triangle.
From the figure (4), we obtain
Ui =aq + axx; +azy; + azx;y; - (2)
Ui = a1 + azx; + azy; + azx;y; ..(3)
Up = aq + ayx, + azyr + agxyye - (4)
Up=aq +ayx; +azy, +asxyy, ...(5)
Subtracting from (5) and (2), we have
i —ydas +x;(yi —yn)as = U — Uy

Ui—Up
Yi=¥Vn (6)

Subtracting from (4) and (3), we have

as +aux; =
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i —yn)az +x;(yi —yp)ay = U;j — Uy
Uj—Ug

as + a,x; = — . (7)
From (6) and (7), we have
U—U,—-U; + U
@l =) == y:-l—y;
. Ui =Up—U; + Uy
=
(% — %) (Vi — yn)
Hence ,
Ul - Un
as; = — AyuX;
° (yl - Yn) e
From (3) and (2), we have
(xl- - xj)az + yj(xi - xj)a4 = Ui - U]
Uj-U
az + a4x; = y]i—y: . (7)
Hence ,
Ui - Un
A3 = ——— — A,Y;
G O

Now from (2), we get
a; = U; — apx; — azy; — agx;y;
Putting these above values in (1), then
Ulx,y) =a; + a,x +azy + auxy
= NfU; + NfU; + NJU, + N3U,

Where

ve = E=%)0 —ym)
l (xi - xj)()’i = Yn)

ve = E=%)0 =y
T (g = x) i — )

NE = (x—x)(y —¥)
(xj - xi)()’n - i)

Ne = (x —x)(y —y)

(x: = %) O — ¥
Note: that the nodes are P(x;, y;), Q(x]-, yj), R(xy, yi) and S(xi, vi).
So
At the nodes P(x;, y;), we get
NfQepy) = LNF(x,¥) =0, Ng(x,y) =0 Ng(x,y) =0
At the nodes Q(x;, y;), we have
NG, y) = 0,Nf (xpy) =1, NeCey) =0, Ng(xy) =0
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At the nodes R(x;, y;), we obtain
Nf(x,y) = O,Nf (xi,y) =0, Ng(xpy) =1, Niglxy) =0
At the nodes S(x;, y;), we obtain
NG, yi) = 0,Nf (i) =0, Ne(xy) =0, Ngley) =1
Therefore, the shape functions have the value 1 at the node where it is
explained and have the value 0 at all the other nodes.
Hence, if the sides of the rectangle are not parallel to the axes, then shape
functions satisfy the condition

NE(xs, ) =1 or r=s

NE(xs, ) =0 or r#s
Let R be a two-dimensional domain. Suppose a typical node , known as
an apex node. The nodes marked in Fig.2 and 3 are apex nodes. In Fig.2,
the apex i is common to six triangular elements. In Fig.3, the apex i is
common to four rectangular elements. The piecewise approximating
function U (x, y) over the whole domain R can be given below

n
UGxy) = ) NG,
i=1

where M is the number of nodes contained in R , N; are the interpolating
functions and U; are the values at the nodes.

The focus shifts to applying finite element methods for solving Laplace
and Poisson equations within a two-dimensional domain. Finite element
methods offer flexibility in approaching these equations, either by
extremizing the variational form of the partial differential equation or by
directly employing a weighted residual method. Galerkin's method, a
popular approach, falls under the weighted residual approach category.
The subsequent section delves into Galerkin's method, culminating in the
derivation of the finite element Galerkin’s method. While the discussion
primarily revolves around two-dimensional boundary value problems, it's
emphasized that the method holds potential for generalization to any
dimension. This groundwork sets the stage for a deeper exploration of
finite element techniques in solving differential equations within various
spatial domains.

14.6 GALERKIN METHOD:-

Let the boundary problem is is given as

Lw) =f(xy); x,y€R (1)
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Bi[ul = f(x,y); x,y €R . (2)

where L is the second order linear differential operator, r is the boundary
of R and B; are the boundary conditions. We acquire the solution of the
partial differential equation in the form is given as

which depends on the parameters a4, a, ... ... a, am and ¢;(x, y) are basis
functions.

So ¢;(x,y) satisfies the inhomogeneous boundary conditions and
¢;(x,y),i=12.... satisfy the homogeneous boundary condition given
below

B; = gi'Bi[¢j] =0,j=12,..,n
Thr error is

E(x,y,a) = Liw(x,y,@)] = f(x,y)

where a = [ay, a, ....a,]". In the Galerkin method, the error is minimized
by making it orthogonal to the chosen set of functions over the entire
domain ¢;(x,y),i = 1,2 .......,n. In other words,

ffE(x,y,a) ¢j(x,y)dxdy =0,j =1,2,...,n
R

This obtain n X n system of equations for the solution of a4, a, ....a,.
Let's apply the method to solve the boundary value problem defined by
Eqns. (16) and (17). Assuming k as the number of nodes in an element, we
express the approximation within an element e as (remainder of the
equation).

k
U(x,y) = ZNiUi = N°eU*®
i=1

where N€ = [Ny, N,,....N,] and U® = [Uy, Uy, ....U,]" .The residual is
E=LU)-f.
Here, we choose the weight function as N;. Therefore

ff[L(U) — fINidxdy = 0,i = 1,23 ...,k ...(3)
R
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Since

]f[L(U) — FlNidxdy = 0,i =123 .. k,j =123 ..n
€j

where N; represents the shape functions within the element and U; denotes
the values of the variable at the nodes within the element.

Fig.5

Let's apply this method to solve the Dirichlet boundary value problem for
the Poisson equation, which is described by

LU+ G(x,y) =Uy + Uy, + G(x,y) =0inR ...(4)
U(x,y)=0onT

Let R contain n elements, each element with k nodes. We express the
approximation across the entire domain as

U(x,y) = ?=1Ni (fo)Ui (5)

Putting U(x,y) in the Eqn.(4) and using Eqn.(3), we get

zn: U j{(Ni)xx + (N)yy IN; dxdy
i=1 Lg

=123..,n ..(6)

Ui+fj6(x,y)1\/j dxdy = 0,j
R

Let R be the domain as obtained in Fig.5.

The curve CDA: x = hy(y).
The curve ABC:x = h,(y).
Therefore, R is assumed as
R: q1<y<gq,g,(x)<y<g,(x) . (7)
we can also state that R is enclosed by the curves DAB and BCD.
The curve DAB :y = g, ().
Equation of curve BCD : y = g,(y).
Therefore, R is also described as
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R: gq1<x<gq,g9,(x) <x<g,(x) .. (8)

by integrating the first term of Eqn.(6) and utilizing the definition of R as
provided in Eqn.(8), we obtain (refer to Fig. 5).

T o)
ff(Ni)xx dexdy = f f (Vi) xx dexdy
R X

yzpl(x) =h1(y)

Py

- f ,[th(y) [V M]:Zjl)(y) dy — f f(Ni)x(Nj)x dxdy

=h
. 1) R

= p ) Nr = [ [ W Nydxdy ()
r R

The first integral represents integration along the boundary r (a line
integral). Likewise, the definition of R from Eqn.(8), the second term of
Eqn.(6) yields:

ff(zvi)xx N dxdy = jg(zvl-)y N;dI — f f(zvl-)y(zvj)y dxdy ...(10)
R r R

The contributions of the first term on the right-hand side of Eqns (9) and
(10) are zero for all elements inside. Only elements with a portion of the
boundary as sides have contributions from the natural boundary
conditions. When no natural boundary conditions are specified, these
contributions are considered zero. For the boundary value problems under
study, we set these terms to zero. Thus, from Eqns. (6), (9), and (10), we
derive:

Zn: U f {(Ni)x(Nj)x + (Ni)y(lvj)y} dxdy|U; = ffGNJ dxdy = 0,
i=1 L )

=123..,n (11

For the Laplace equation V2U = 0, G(x,y) =0 on the right-hand side of
Eqgn. (11). The integrals are computed for each element, and then the
element equations are combined. The equation at each node i (or apex i)
is constructed from the contributions of all elements sharing it. The
coefficient matrix of the resulting system forms a band matrix.

EXAMPLE: Find the solution of the boundary value problem
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ViU=x*4y%0<x<1,0<y<1
U =%(x4 +y4) on the boundary

using the Galerkin method with (i) triangular elements, (iii) rectangular
elements and one internal node (h = 1/2).

SOLUTION:
i.  Triangular Elements: The mesh is obtained in Fig 6. At the six
triangular elements eq, e,, e3,e, and es. So the boundary values
are

Fig.7 Triangular elements

1 1
UZZU(O,O),U:;:U(E,O):EZUS
U-—U@l)—17—u Uy = U(L1) = -
20 7\"2) 192 TR T e

Comparing these equations with (4), we obtain

Glx,y) =—(x* +y?)
Now from (11), we get

iznl: Lf f {(Nn)x(Ni)x + (Nn)y(Nj)y} dxdy| U, + ;! j(xz +y2) dxdy

=0,j=123..,1n (D)

Let's determine the contribution of each element. The apex node is
consistently denoted by i, while the remaining nodes are labeled j and k in
an anti-clockwise direction. The shape functions N;, N; and Nj are written

as
1
N; = o [(vie — xy;) + (v; — vie)x + (e — )]

1
N; = A [Ccryi — xiyi) + ke — yi)x + (% — x)Y]
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1
Ny = oA [Ceeyi — xivi) + (v — )% + (x5 — x;)y]

Where A= area of triangle

Now
Element e;: i = (5,3),j = (0,0),k = (3,0),A=1
P
‘-’___-’!
= Ll3
U, k
Fig. 8
1 1\ /1 1
m=alzyl=2 n=4|(5)(3)+(3) ] =1-2
MY LN
k=45x -5 Y= x—-y)

Now we obtain
(N = 0,(N)y =2,(N), = -2, (), =

(N x =2, (Nk)y = -
So putting these values in (1), we given

l]jéldxdy Uy + fj(O)dxdy U, + jf—l}dxdy Us
e, e €1

[ [+ y)@nandy

€1

f [ ryaxay = f I | ram dy|ax

Now the integrating it, we have

Now
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2(3)(5) = 3% - 3(m3) * 32

4/\160) — 2°' 2\192/) " 320
13

+ 1920

4(1)u 4(1)u +
g/t 8

1

2

Element e,:

Fig.9

1, %),Azg(From fig.9)

;) +<1—%)y] =1—-2x+2y
D@12
)@+ (G = -vex

N—— N———
I +
/ /—\ P

1
2

=
Il
NS
—

We obtain

(Ni)x = -2, (Ni)y =2, (Nj)x =0, (N])y = -2

(Nidx =2, (Nk)y =0

Putting these values in equation (1), we get
If f{(—Z)(Z) + (2)(2)}dxdy|U; + ff(—Z)(Z)dxdy Us

+ j f(Z)(—Z)dxdy Ug

| €2

+ jf(xz +y2)(1 = 2x + 2y)dxdy
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Now

] [ e yaxay = j | reyay|ax

x=1,2 |y=x—-1/2

Now the integrating it, we have

5(5)v: - +() (52)

Element e5:

4(1)(17)_}_11_(} 23
8/\192/) 480 ' 960

Ug

Fig.10

. 1 1
i =(1,2),k = (1,1), A= (From fig.10)

=i Qe -2
=l (-3l

k=4Z)\z) 27 2)7| = Y
We obtain

(N)x = =2,(N)y = 0, (N])x =2, (N])y =—2

(Ni)x = 0,(Ny), = 2
So putting these values in (1), we given

ljjéldxdy U, + jj—4dxdy Ug + (0)Uq
€3 €3

f f(x2 + y2)(1 — x)dxdy

es3
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Now, [, [fCeydxdy= [ ,[f,,f(y)dy|dx

Now the integrating it, we have

4(1)U 4(1)U+(39>—1U 1<17>+39_1U 7
g/ 1 8/7% 960/ 271 2\192) 960 2! 1920

Element ey:
k 3
| BV N
u, L
)

Fig.11
i = G%)k =(1,1), k= (%,1),A=%(From fig.11)
Ny =2(1-y)
N; = —-1+2x
Ny =2(—x+y)

We obtain
(NDx = 0,(N)y = -2, (N])x =2 (Nl)y =0

(Ni)x = =2, (Nk)y =2

So putting these values in (1), we have
f f 4dxdy|U; + f f —4dxdy | Ug(0)Uq
ey ez

+ ff(x2+y2)(1—y)dxdy

€3

| [ reyxay - j I f fxy) dy|dx
L

ey x=1/2

Now
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Now the integrating it, we have

4<1>U 4(1)<17)+(39)—1U 7
g/ 1 8/\192 960/~ 2 ' 1920

Element es:

Ju,

Fig.12

. (11 .
i=z2)i=

We obtain

(3.1).k = (0, ), A= (From fig.12)

(NDx =2,(Ny),, = =2, (N])x =0, (Nl)y —

(Ni)x = =2, (Nk)y =0

So putting these values in (1), we given

fdexdy U, + ff—lldxdy Ug + ff—lldxdy Us
es es es

f f(x2 +y2)(1 — 2x + 2y)dxdy

es

Now

f [ reyaxdy = f

The integrating it, we have
8(5) v -+(3) () +
8 8/\192

4(1)<17>+<11>—U 23
8/\192 480/~ ' 960
Department of Mathematics
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Element eg:
ug, u,
3 i
k
u,
Fig.13
. 1 1)\ . 1 1
L= (E;E)'] = (01 E)'k = (Or O)IA: g(From ﬁg 13)
Ni = 2x
N; = —2x + 2y
N,=1-2y

We obtain
Nz = 2,(Ni)y = 0,(N;), = =2,(N;), =

(Ni)x =0, (Nk)y = -2

Putting these values in equation (1), we have

jféldxdy U, + jj—4dxdy Us, (0)U, ff(x2+y2)2xdxdy
€6 €e

€6

Now

1/2[ 1/2
f [ reyaxdy = f I | e ay|ax
Now the integrating it, we have

+(5)v-+(3) (52)+ 5e) = 2% * 152
g/ 1 8/\192 960/~ 2 ' 1920

Adding all the contributions yields the node 1's difference equation.
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11 1
<—+1+—+1+—>U1

2 2 2
13 23 7 7 23 13
+ ( — - — - + ) =0
1920 960 1920 1920 960 1920
4U L _ 0
b4
1
Hence , U, = %

(x*+y*)

The function u(x,y) = satisfies both the differential equation and

the boundary condition for the given problem, making it the exact
solution. Interestingly, this exact solution coincides with the finite element
solution.

1.  Rectangular elements:

YA~
8 9
7
€y iy
s . 6
. e, e, X
O 3 4 x
Fig.14

In Fig.14, the mesh shows four rectangular elements contributing at 1.
Boundary values remain consistent, with an additional value U, =

U(1,0) = L= U,. The apex node is labeled as i, while the remainin
12 p g

nodes j,k and m are numbered counterclockwise. Shape functions The
shape functions N;, Nj, Ny and N,, are written as(from equation 14)

(x = x) (¥ — yn)

Ne = (xi - xj)(yi — ¥n)
voo )=y
T (= x) i — )
N, = (x—x)(y —y)
(xj - xi)()’n - i)

N, = (x —x)y — )

(xi - xj)(yn - i)
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Element eq: i = G,%),i = (0, %),k =(0,0), n= (%,0) A=% (From
fig.15)

We obtain
_G6-00-0 _
1 OI6)
(x=3) -0
N; = =-202x—-1)y
GG
j i
k m

u
Ug4 3

Fig.15

e
DD
-0k}

" @)

Substituting these values in equation (1), we have

=@x-DEy-1

—= =22y —-1)x

jj16(x2 + y2)dxdy| U,

€1

+ f f {(—4y)(4y) — 2(2x — 1)4x}dxdy | Us

[ €1

+ f j{2(2y — 14y + 2(2x — 1)2x}dxdy | U,

[ €1

+ f f {2(2y = D4y — 4x4y}dxdy| Us

€1

+ j j (x? + y?)(4xy)dxdy

€1
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Now

1/21 1/2
fff&yMMy—~flff@wﬂwm

The integrating it, we have

16 (z5)v: - (5) (552) -

Element e;:

0-(8)(33)+ (G8) =30 +7
6/\192 64) 31 72

u, u

Fig.16

i = (1,1),1' = (l,o),k = (1,0), n = (1%) A= = (From fig.16)

2°2 2

N; = 4(x - Dy, N;=2(x—1D(2y—1)
N = -(2x -1 (2y —1), Ny =22x -1y
From (1), we get

ff{(—lly)z + 16(x — 1)?}dxdy| U,

+ f f{—2(2y —D4y) +4(x - D(-D(x

€z

_ 1)}dxdyl U,

ff&e@y—DGAw—zax—no4Xx

€z

- 1)}dxdyl U, + j j(xz +y2)(—4)(x — 1)ydxdy
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| [ reyaxay - f 1f/2f<x,y)dy dx
e x=1/2 | \y=0

The integrating it, we have

5)v-6) -0 w-m

Element e5:
m k

u,

u,

i o
Fig.17
i=(33).i=(13) k=01, n=51) (From fig17)
Ni=4(x-1D(y -1, Ny=2(x—-D(y—1)
Ne=—-(x—-1)Q2y—-1), Ny=-2(x-1)2y—1)
Equation (1), we get

ff{16(y — 1?2 +16(x — 1)*}dxdy| U,

€3

+ f j{—1616(y - 1)?=22x - Dx - DA (x

€3

_ 1)}dxdyl Ug

+ ”{z(zy — D@y — 1) +22x - D@ (x

€3

_ 1)}dxdyl Uy

+ f f{—Z(Zy — D@ -1 —-4Cx - DB (x

- 1)}dxdyl Ug + j j(xz + ¥y (@) (x — 1)(y — 1)dxdy

€3

The integrating it, we have
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1,17 11 2 1
( Ju ( )(192) ( )( )-5(352) * 192 =5 36
Elemente,:
i=(32).i=(31).k=(01), n=(03) (Fromfig.18
Ni=—-4-Dl -1, ;=2y—-1)
Ny =-2x-1Q2y—-1), Ny=-2Qx—-1Dy—-1)
Equation (1), we have

N -

Fig.18

ff{m(y Z1)2 + 16(x)} dxdy | U,

[ [eey-veno-0

+2(2x — 1)(4x)(—4x)}dxdyl U,

| |2y - veno -1

€4

—2(2x — 1)(—4x)}dxdyl U,

[ |40 -nen0-1
—2(2x — 1)(—4x)}dxdyl Uq

n f f @2 +y2) (~8) (D) (¥ — Ddxdy

The integrating it, we have
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(5)v- ) (2) - G) () -5 (2) * 52 =5 72

Adding all contributions, we get

<2+2+2+2)U+1 1 1 1 o
3°'3 3 3/°Y'772 144 36 144
8U 1—o
371 36

1. : .
We have U; = 50 s required solution.

In Example 1, coincidentally, the finite element solution matches the exact
solution. However, in practice, achieving accurate solutions often requires
a large number of elements, whether triangular or rectangular. This
increases computational complexity. Typically, we start with a certain
number of elements, M, then gradually increase it, monitoring
convergence of solution values at nodes to determine when to stop
computations. Finite element methods can be applied to extremize the
variational form of partial differential equations. Here, we present the
variational form of Laplace's and Poisson's equations.

14.7 VARIATIONAL FORMS:-

Let us suppose a functional in one independent variable x in the form is
given by

X2

V(uw) = f F(Oo,u, Uy, Uy ) dx ... (1)

X1

The objective is to find u(x), referred to as an extremal, to maximize the
functional in Eqn.(1). According to the theory of variations, it can be
demonstrated that the u(x) which maximizes (1) also satisfies the Euler-
Lagrange equation.

oF d(aF)+d2(6F)_0 )
ou dx\ou,/) dx2\ou,,/ - (2)

Hence, solving the partial differential Eqn.(2) maximizes the functional in
Eqn.(1), and the function maximizing (1) is the solution of Eqn.(2).

Department of Mathematics
Uttarakhand Open University Page 297



Advanced Differential Equations I1 MATS08

Geometric analysis helps determine if it minimizes Eqn.(1) or not. Now,
let's examine a functional with two independent variables, x and y:

V(w) = f f F (%, Y, U, Uy, Uy, Uy, Uy, Uyy) dA ... (3)
R

The corresponding Euler-Lagrange equation can be obtained as given
below

dF 0 (0F d (O0F 0% / OF 0% ( OF
ou  Ox (E) ~ dy <6uy> * 0x? <6uxx> * ay? <6uyy>
0% ( oF
+wm(ww>=° (8

The function being varied must have continuous first-order derivatives and
satisfy certain boundary conditions.

e, =0 ma GO =0

X1 X1

These conditions referred to as the natural boundary conditions of the
problem are constraints that arise naturally from the physical or
mathematical context of the problem.

EXAMPLE: Consider a functional as

V) = ] f [(3—2)2 + (g—;)z _2uf(x, y)l dA  ..(5)
R

Using Equation (4), the Euler-Lagrange equation can be expressed as:

) d zau 0 [2 dul
f ox1"ax] oyl ayl
Uy +Uyy + f(x,¥) =0 ..(6)

We obtain a special case of the Poisson equation known as Laplace's
equation. If the source term f is set to zero, then this equation can be

written as
ve=[ |G +@) e .o
R
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and it is known as Euler-Lagrange equation is the Laplace equation
Uyx + Uy, = 0.Eqns.() and (38) are respectively called the variation

formulations of the Laplace equation uy, +u,, =0 and Poisson’s
Equation uy, +u,, + f(x,y) = 0.

Note that the variational formulation of a partial differential equation
typically involves lower-order partial derivatives, which can simplify
solving the problem. However, it's often challenging to derive the
variational form directly from the equation. For boundary value problems,
if the differential operator is self-adjoint, both the classical variational
principle and Galerkin’s method yield the same matrix system. This
equivalence holds for the Laplace and Poisson equations. However, if the
operator isn’t self-adjoint, the difference equations from the two methods
differ. Since this unit focuses on solving the Laplace and Poisson
equations, Galerkin's method suffices for our purposes.

SELF CHECK QUESTIONS

1. What is the Finite Element Method (FEM)?

2. What are the key steps involved in applying the Finite Element
Method?

3. What is the purpose of meshing in the Finite Element Method?

4. What is the role of shape functions in the Finite Element Method?

5. How are boundary conditions applied in the Finite Element
Method?

6. What are the advantages of the Finite Element Method?

7. What are some limitations of the Finite Element Method?

14.8 SUMMARY:-

In this unit, we've covered the following key points:

¢ Finite Element Methods (FEM) solves partial differential equations
by dividing the domain into finite elements.

e Different types of elements (line, triangular, rectangular) are used
based on the dimensionality of the problem.

e Solutions are approximated using piecewise continuous
polynomials defined by nodal values.

¢ Difference equations can be derived using variational principles or
weighted residual methods.
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e The Finite Element Galerkin method, a weighted residual method,
doesn't require the variational form.

e For self-adjoint partial differential equations, both variational
principles and Galerkin's method yield the same matrix system.

Overall the Finite Element Method (FEM) is a numerical technique used
to solve partial differential equations by dividing the problem domain into
smaller elements. It approximates the solution within each element using
piecewise functions called shape functions, allowing for accurate
representation of complex geometries and boundary conditions. The
method involves discretizing the domain, formulating element equations,
assembling a global system of equations, applying boundary conditions,
solving the system, and post-processing to obtain desired results. FEM is
versatile; handling various types of problems, but requires careful meshing
and can be computationally intensive for large systems.

14.9 GLOSSARY:-

¢ Finite Element Method (FEM): A numerical technique for
solving partial differential equations by dividing the domain into
smaller, simpler elements.

e Finite Element: A small sub-domain within the problem domain,
often represented by simple geometrical shapes like triangles or
rectangles.

e Shape Function: Functions used to approximate the behavior of
the unknown field within each finite element.

e Mesh: The discretization of the problem domain into finite
elements.

e Nodal Values: Values of the unknown field at the vertices of the
finite elements.

e Variational Principle: A mathematical principle used to derive
the weak form of partial differential equations, which is often
utilized in FEM.

e Weighted Residual Method: A technique for deriving difference
equations in FEM by minimizing the residual error in a weighted
sense.

¢ Galerkin Method: A specific weighted residual method where the
trial functions are chosen from the same function space as the
residual.
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¢ Boundary Conditions: Constraints imposed on the solution at the
boundaries of the problem domain.

e Assembly: The process of combining local element equations into
a global system of equations.

e Post-processing: The analysis of numerical results obtained from
solving the system of equations.

e Self-adjoint: A property of a differential operator where the
adjoint operator is the same as the original operator.

These terms provide a basic understanding of the concepts and
terminology used in Finite Element Method.

14.10 REFERENCES:-

e Kenneth H. Huebner(1982),The Finite Element Method for
Engineers.

e Klaus-Jiirgen Bathe(1996), Finite Element Procedures.

e Daryl L. Logan, (1986),A First Course in the Finite Element
Method.

e Susanne C. Brenner and L. Ridgway Scott( 2007),The
Mathematical Theory of Finite Element Methods.

e Veerarajan T., (2014),Finite Element Method: Basic Concepts and
Applications.

e David V. Hutton (2004), Fundamentals of Finite Element Analysis.

14.11 SUGGESTED READING:-

e https://egyankosh.ac.in/bitstream/123456789/12562/1/Unit-12.pdf

e S.S.Sastry (Fifth edition 2012) Introductory Methods of Numerical
Analysis.

e https://www.lkouniv.ac.in/site/writereaddata/siteContent/20200403
2250572068siddharth_bhatt_engg Numerical_Solution_of Partial
_Differential Equations.pdf

14.12 TERMINAL QUESTIONS:-

(TQ-1): By Galerkin’s method to solve the boundary value problems.

dzy 2
1.E+y=x, y(0)=y(1)=0

Department of Mathematics
Uttarakhand Open University Page 301



Advanced Differential Equations I1 MATS08

.. dzy _ 2 _ _
il.— — 64y + 10 = x*, y0)=y(1)=0

dx?
(TQ-2): Find the boundary value problem
VZu=40<x<1,0<y<1
u =x%+y? on the boundary
Using the Galerkin method with

(1) Rectangular elements,
(i1) Triangular elements and one internal node (h = 1/2)

(TQ-3): Find the boundary value problem
Viu=x2+2y%20<x<10<y<1
u == (x* + 2y*) on the bound
> y undary.

Using the Galerkin method with

(1) Rectangular elements,
(i1) Triangular elements and one internal node (h = 1/2)
14.13 ANSWERS:-
SELF CHECK ANSWERS

1. The Finite Element Method (FEM) is a numerical technique used
for solving partial differential equations by dividing the problem
domain into smaller, simpler elements, where the solution is
approximated by piecewise functions over each element.

2. The key steps in applying the Finite Element Method include:

¢ Discretization of the domain into elements.
e Formulation of element equations based on the governing
differential equations.
e Assembly of the global system of equations from the element
equations.
e Application of boundary conditions.
e Solution of the resulting system of equations.
e Post-processing to obtain desired quantities of interest.
3. Meshing is the process of dividing the problem domain into
smaller elements. It helps in simplifying the problem, as each
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element can be analyzed individually, and also allows for accurate
representation of complex geometries.

Shape functions are used to approximate the behavior of the
unknown field within each finite element. They define the
variation of the field within an element in terms of nodal values,
facilitating the interpolation of values at any point within the
element.

Boundary conditions are typically applied by modifying the global
system of equations to incorporate the known values or constraints
at the boundaries of the domain. This is done during the assembly
of the system of equations, ensuring that the solution satisfies the
prescribed boundary conditions.

Some advantages of the Finite Element Method include its ability
to handle complex geometries, its versatility in dealing with
various types of boundary conditions and material properties, and
its capability to provide accurate solutions for a wide range of
engineering problems.

Limitations of the Finite Element Method include the need for
careful meshing, particularly in regions of high gradients or
singularities, the computational cost associated with solving large
systems of equations, and the potential for numerical instabilities if
not applied correctly.

TERMINAL ANSWERS

(TQ-1): i. v(x) = ~ 2 x(1-x —ixz(l —x), i. v(x)= gx(l -

x)

(TQ-2): u, = u G 1) =2
1

(TQ-3): u; = u( —) ==

123

2
11

2’2 64
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