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1.0  Objective:  

 

After reading this unit you will be able to understand: 

* Defining vector.  

*Vector representation, addition, subtraction 

*Orthogonal representation 

*Multiplication of vectors 

*Scalar product, vector product 

 *Scalar triple product and vector triple product  

 

 

1.1 Introduction: 

  
On the basis of direction, the physical quantities may be divided into two main classes.  

1.1.1 Scalar quantities: The physical quantities which do not require direction for 

their representation. These quantities require only magnitude and unit and are added 

according to the usual rules of algebra. Examples of these quantities are: mass, length, 

area, volume, distance, time speed, density, electric current, temperature, work etc.  

1.1.2 Vector quantities: The physical quantities which require both magnitude and 

direction and which can be added according to the vector laws of addition are called vector 

quantities or vector. These quantities require magnitude, unit and direction. Examples are 

weight, displacement, velocity, acceleration, magnetic field, current density, electric field, 

momentum angular velocity, force etc.  

 

1.2 Vector representation: 

  

Any vector quantity say A, is represented by putting a small arrow above the 

physical quantity like 𝐴. In case of print text a vector quantity is represented by bold 

type letter like A. The vector can be represented by both capital and small letters. The 

magnitude of a vector quantity A is denoted by |𝐴| or mod A or some time light forced 

italic letter A. We should understand following types of vectors and their 

representations. 

 

1.2.1 Unit vector 

 A unit vector of any vector quantity is that vector which has unit magnitude. Suppose 

𝐴 𝑖𝑠 𝑎 𝑣𝑒𝑐𝑡𝑜𝑟 then unit vector is defined as 

                𝐴̂  =
𝐴⃗

|𝐴|
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The unit vector is denoted by 𝐴̂ and read as ‘A unit vector or A hat’. It is clear that the 

magnitude of unit vector is always 1. A unit vector merely indicates direction only. In 

Cartesian coordinate system, the unit vector along x, y and x axis are represented by 𝑖̂ , 𝑗̂ and 

𝑘̂ respectively as shown in figure 1.1.  

 

 y 

 

       𝐴 

 

                                        𝑗̂  

 

                                 𝑘̂                            𝑖̂ x 

    z 

 Figure 1.1 

 

Any vector in Cartesian coordinate system can be represented as  

𝐴 = 𝑖̂ Ax +  𝑗̂  Ay + 𝑘̂ Az   

Where 𝑖̂ , 𝑗̂ and 𝑘̂ are unit vector along x, y z axis and,  Ax , Ay , Az  are the magnitudes 

projections or components of 𝐴 along x, y, z axis respectively.  

The unit vector in Cartesian coordinate system can be given as:  

 

                   𝐴̂ =
𝑖̂ Ax + 𝑗̂  Ay + 𝑘̂ Az 

√ Ax 
2+ Bx 

2+ Cx 
2
 

 

1.2.2. Zero vector or Null vector:  

A vector with zero magnitude is called zero vector or null vector. The condition for null 

vector is |𝐴| = 0 

 

1.2.3 Equal vectors: 

If two vectors have same magnitude and same direction, the vectors are called equal vector.  

 

1.2.4 Like vectors: 
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If two or more vectors have same direction, but may have different magnitude, then the 

vectors are called like vectors.  

 

1.2.5 Negative vector: 

A vector is called negative vector with reference to another one, if both have same 

magnitude but opposite directions. 

 

1.2.6 Collinear vectors: 

All the vectors parallel to each other are called collinear vectors. Basically collinear means 

the line of action is along the same line.  

 

1.2.6 Coplanar vector: 

All the vectors whose line of action lies on a same plane are called coplanar vectors. 

Basically coplanar means lies on the same plane. 

 

 

1.2.7. Graphical representation of vectors:  

Graphically a vector quantity is represented by an arrow shaped straight line, with suitable 

length which represents magnitude, and the direction of arrow represents direction of 

vector quantity. For example, if a force 𝐴 is directed towards east and another force 𝐵⃗⃗ is 

directed toward north-west then these forces can be represented as shown in figure 1.2.  

 

 

                                 N                                                                                      𝐵 ⃗⃗⃗⃗ = 15 N  

 

  

W                                                 E                      𝐴⃗⃗⃗⃗  =10 N 

 S 

 

Figure 1.2 

 

1.2.8 Addition and subtraction of vectors:  

The addition of two vectors can be performed by following two laws.  

(A) The parallelogram law:  
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According to this law, if two vectors 𝐴 and 𝐵⃗⃗ are represented by two adjacent sides of a 

parallelogram as show in figure 1.3, then the sum of these two vectors or resultant 𝑅⃗⃗ is 

represented by the diagonal of Parallelogram.  

 

 

 

             𝐵 ⃗⃗⃗⃗                          𝐵 ⃗⃗⃗⃗              𝑅⃗⃗⃗⃗  

 

  𝐴⃗⃗⃗⃗                                                                                          𝐴⃗⃗⃗⃗   

   Figure 1.3 

If vector 𝐴 and 𝐵⃗⃗  are represented by the sides of a parallelogram as shown in figure 1.4 and the 

angle between 𝐴 and 𝐵⃗⃗  is   𝜃, and resultant 𝑅⃗⃗ makes angle 𝛼  with vector 𝐴 then magnitude of 𝑅⃗⃗ 

is  

|𝑅| = √𝐴2 +  𝐵2 +  2𝐴𝐵 cos 𝜃 

The angle  𝛼  is given as  

𝛼 = 𝑡𝑎𝑛−1
𝐵 sin 𝜃

𝐴 + 𝐵𝑐𝑜𝑠 𝜃
 

You should notice that all three vectors  𝐴 , 𝐵⃗⃗ and 𝑅⃗⃗ are concurrent i.e. vectors acting on the same 

point O.  

 

 

                                           𝐵 ⃗⃗⃗⃗              𝑅⃗⃗⃗⃗  

 O α 𝜃 

                                                                                          𝐴⃗⃗⃗⃗   

                                                                                        

Figure 1.4 

(B) Triangle law:  
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According to this law if a vector is placed at the head of another vector, and these two 

vectors represent two sides of a triangle then the third side or a vector drawn for the tail 

end of first to the head end of second represents the resultant of these two vectors. If vectors 

𝐴 and 𝐵⃗⃗  are two vector as shown in figure 1.5, then resultant 𝑅⃗⃗  can be obtained by applying 

triangle law.  

 

 

             𝐵 ⃗⃗⃗⃗                                      𝑅⃗⃗⃗⃗                          𝐵 ⃗⃗⃗⃗                

 

  𝐴⃗⃗⃗⃗                                                                                          𝐴⃗⃗⃗⃗   

   Figure 1.5 

(c) Polygon law of vector addition:  

This law is used for the addition of more than two vectors. According to this law if we have 

a large number of vectors, place the tail end of each successive vector at the head end of 

previous one. The resultant of all vectors can be obtained by drawing a vector from the tail 

end of first to the head end of the last vector. Figure 1.6 shows the polynomial law of vector 

addition different vectors  𝐴 ,𝐵⃗⃗ , 𝐶 , 𝐷⃗⃗⃗ , 𝐸⃗⃗ etc. and 𝑅⃗⃗ is resultant vector. 

 

 

 

 𝐸 ⃗⃗⃗⃗  𝐸 ⃗⃗⃗⃗   

                                                            𝐷 ⃗⃗ ⃗⃗                                                         

 𝑅⃗⃗ 𝐷 ⃗⃗ ⃗⃗  

 𝐶 ⃗⃗⃗⃗  

 𝐶 ⃗⃗⃗⃗  

 𝐵 ⃗⃗⃗⃗        𝐵 ⃗⃗⃗⃗  

  𝐴⃗⃗⃗⃗   𝐴⃗⃗⃗⃗  

Figure 1.6 
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1.2.9 Resolution of vector: 

 A vector can be resolved into two or more vectors and these vectors can be added in 

accordance with the polygon law of vector addition, and finally original vector can be 

obtained. If a vector is resolved into three components which are mutually perpendicular 

to each other then these are called rectangular components or mutual perpendicular 

components of a vector. These components are along the three coordinate axes x, y and z 

respectively as show in figure 1.7.  

 

                                                      y 

 

 

 

 𝐴𝑦                             𝐴                

 

                                                                               𝐴𝑥                                             x                   

   𝐴𝑧  

                                                      

 

                        z                                                    Figure 1.7 

 

If the unit vectors along x, y and x axis are represented by  𝑖̂ , 𝑗̂ and 𝑘̂ respectively then any 

vector 𝐴 can be give as  

𝐴 = 𝑖̂ Ax +  𝑗̂  Ay +  𝑘̂ Az   

𝐴 constitutes the diagonal of a parallelepiped, and  Ax , Ay  and Az  are the edges along x, y 

and z axes respectively.  𝐴  is polynomial addition of vectors  Ax , Ay  and Az . The 

rectangular components Ax , Ay  and Az can be considered as orthogonal projections of 

vector 𝐴 on x, y and z axis respectively. Mathematically, the magnitude of vector 𝐴 can be 

given as: 
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𝑨 = |𝐴| = √ Ax 
2 +  Ay 

2 +  Az 
2
                    

1.2.10 Direction cosines:  

The cosine of angles which the vector 𝐴 makes with three mutual perpendicular axes x, y 

and z are called direction cosine and generally represented by l, m, n respectively. In figure 

1.8 vector 𝐴 makes angle 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 with axis x, y and z respectively. Then 

𝑐𝑜𝑠 𝛼 =
𝐴𝑥

𝐴
=  

𝐴𝑥

√ Ax 
2+ Ay 

2+ Az 
2
 ;  𝑐𝑜𝑠 𝛽 =

𝐴𝑦

𝐴
=

𝐴𝑦

√ Ax 
2+ Ay 

2+ Az 
2
 ;  

 𝑐𝑜𝑠 𝛾 =
𝐴𝑧

𝐴
=

𝐴𝑧

√ Ax 
2+ Ay 

2+ Az 
2
 

Where Ax , Ay and Az  are the projection or intercepts of vector 𝐴 along x, y and z axes 

respectively. The 𝑐𝑜𝑠 𝛼, 𝑐𝑜𝑠 𝛽 and 𝑐𝑜𝑠 𝛾 are called direction cosines.  

𝑙 =  𝑐𝑜𝑠 𝛼;   𝑚 = 𝑐𝑜𝑠 𝛽 ; 𝑛 = 𝑐𝑜𝑠 𝛾 

 Mathematically  

𝑐𝑜𝑠2𝛼 + 𝑐𝑜𝑠2𝛽 + 𝑐𝑜𝑠2𝛾 = 1 or     𝑙2 + 𝑚2 + 𝑛2 = 1 

 

                                         Y 

 𝐴 

                                                   β  

                                                         α  

                                                           γ                                             X 

                            Z 

 

                                                   Figure 1.8 

 

1.2.11 Position vector:  
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In Cartesian co-ordinate system the position of any point P(x, y, z) can be represented by 

a vector r, with respect to origin O then the vector r is called position vector of point P. 

Position vector is often denoted by 𝑟̅ . Figure1.9 shows the position vector of a point P in 

Cartesian coordinate system. If we have two vectors 𝑃⃗⃗ and 𝑄⃗⃗ with position vectors 𝒓𝟏 and 

𝒓𝟐 respectively then 

 𝒓𝟏 = 𝑖̂ x1 +  𝑗̂  y1 +  𝑘̂ z1  

𝒓𝟐 = 𝑖̂ x2 +  𝑗̂  y2 + 𝑘̂ z2  

Where (𝑥1, 𝑦1, 𝑧1)  and (𝑥2, 𝑦2, 𝑧2)  are the coordinates of point P and Q respectively.  

Now the vector PQ can be given as 

PQ = OQ – OP ( ∴ OP + PQ = OQ) 

𝑟̅ =  𝑟2̅ −  𝑟1̅ 

Therefore, vector PQ = position vector of Q − position vector of P 

 

                                                                𝑄 (𝑥2, 𝑦2, 𝑧2) 

                                         Y                                    

                                                       𝑟2                             𝑃 (𝑥1, 𝑦1, 𝑧1) 

                                                                           𝑟1 

                                                           

                                              O                                                        X 

                            Z 

 

Figure1.9 

 

1.3 Multiplication of vectors:  

 

1.3.1 Multiplication and division of a vector by scalar:  
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If a vector P is multiplied by a scalar quantity m then its magnitude becomes m times. For 

example if m is a scalar and 𝐴 is a vector then its magnitude becomes m times. 

Similarly, in case of division of a vector A by a non zero scalar quantity n, its magnitude 

becomes 1/n times. 

  

1.3.2 Product of two vectors:  

There are two distinct ways in which we can define the product of two vectors.  

 

1.3.2.1 Scalar product or dot product:  

Scalar product of two vectors P and Q is defined as the product of magnitude of two vectors 

P and Q and cosine of the angle between the directions of these vectors.  

If  𝜃 is the angle between two vectors 𝑃⃗⃗ and 𝑄⃗⃗, then dot product (read as  𝑃⃗⃗ 𝑑𝑜𝑡 𝑄⃗⃗ ) of two 

vectors is given by- 

 𝑃.⃗⃗⃗⃗⃗  𝑄⃗⃗  = 𝑃𝑄 cos 𝜃  = 𝑃 (𝑄 cos 𝜃) 

           = 𝑃 (𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 𝑄 𝑜𝑛 𝑃) =  𝑃. 𝑀𝑁 

 

The figure 1.10 shows the dot product. The resultant of dot product or scalar product of 

two vectors is always a scalar quantity. In physics the dot product is frequently used, the 

simplest example is work which is dot product of force and displacement vectors. 

                                                                           

                                                                           𝑄⃗⃗             M                  

                                                                           

                                                           

                                              O                                      N             𝑃⃗⃗ 

                            Figure1.10 

Important properties of dot product  

(i) Condition for two collinear vectors:  

If two vectors are parallel or angle between two vectors is 0 or π, then vectors are called 

collinear. In this case  

 𝑃.⃗⃗⃗⃗⃗ 𝑄⃗⃗  = 𝑃𝑄𝑐𝑜𝑠 0𝑜  = 𝑃𝑄 

Then the product of two vectors is same as the product of their magnitudes.  
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(ii) Condition for two vector to be perpendicular to each other:  

If two vectors are perpendicular to each other then the angle between these two vectors is 

900, then  

 𝑃.⃗⃗⃗⃗⃗ 𝑄⃗⃗  = 𝑃𝑄𝑐𝑜𝑠 90𝑜  = 0 

Hence two vectors are perpendicular to each other if and only if their dot product is zero.  

In case of unit vectors  𝑖̂ , 𝑗̂ and 𝑘̂ we know that these vectors are perpendicular to each 

other then 

𝑖̂ . 𝑗̂ =  𝑖̂. 𝑘̂ =  𝑘̂. 𝑖̂ = 0  

similarly 

 𝑖̂ . 𝑖̂ =  𝑗̂. 𝑗̂ =  𝑘.̂ 𝑘̂ = 1  

(iii) Commutative law holds:  

In case of vector dot product the commutative law holds. Then 

 𝑃.⃗⃗⃗⃗⃗ 𝑄⃗⃗  = 𝑄⃗⃗. 𝑃⃗⃗ 

 

(iv) Distributive property of scalar product:  

If P, Q and R are three vectors then according to distributive law 

 

𝑃⃗⃗. (𝑄⃗⃗ + 𝑅⃗⃗) = 𝑃⃗⃗. 𝑄⃗⃗ + 𝑃⃗⃗. 𝑅⃗⃗ 

Example 1.1 Show that vector  𝐴 = 3𝑖 + 6𝑗 − 2𝑘 and 𝐵⃗⃗ = 4𝑖 − 𝑗̂ + 3𝑘 are mutually 

perpendicular.  

Solution: If the angle between 𝐴 and 𝐵⃗⃗ is 𝜃 then 

𝐴 . 𝐵⃗⃗ = 𝐴 𝐵 cos 𝜃 

cos 𝜃 =  
𝐴⃗ .𝐵⃗⃗

𝐴𝐵
 = 

(3𝑖+6𝑗−2𝑘).(4𝑖−𝑗+3𝑘)

√(𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2)  √(𝐵𝑥

2+ 𝐵𝑦
2+ 𝐵𝑧

2
 = 0 

cos 𝜃 = 0, 𝜃 = 900 

Therefore the vectors are mutually perpendicular. 

Example 1.2 A particle moves from a point (3,-4,-2) meter to another point (5,-6, 2) meter under 

the influence of a force 𝐹⃗ = (−3𝑖̂ + 4𝐽 + 4𝑘̂ )  N. Calculate the work done by the force.  
 

Solution: Suppose the particle moves from point A to B. Then displacement of particle is given by 

𝑟 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑡𝑜𝑟 𝑜𝑓 𝐵 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑡𝑜𝑟 𝐴 
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                                            𝑟⃗⃗⃗ = [(5 − 3)𝑖 + (−6 + 4)𝑗 + (2 + 2)𝑘] meter 

                                                         𝑟 = (2𝑖 − 2𝑗 + 4𝑘) meter 

Work done = 𝐹⃗. 𝑟 = [(−3𝑖̂ + 4𝐽 + 4𝑘̂ ).( 2𝑖 − 2𝑗 + 4𝑘) N-meter =2 joule. 

 

1.3.2.2 Vector product or Cross Product          

The vector product or cross product of two vectors is a vector quantity and defined as a vector 

whose magnitude is equal to the product of magnitudes of two vectors and sine of angle between 

them.  

If 𝐴 and 𝐵⃗⃗ are two vectors then cross product of these two vectors is denoted by   𝐴 × 𝐵⃗⃗  (read as 

𝐴 𝑐𝑟𝑜𝑠𝑠 𝐵⃗⃗) and given as  

𝐴 × 𝐵⃗⃗ = 𝐴𝐵𝑠𝑖𝑛∅ 𝑛̂ = 𝐶 

Where ∅ is the angle between vectors 𝐴 and 𝐵⃗⃗ ,  and 𝑛̂ is the unit vector perpendicular to both 𝐴 

and 𝐵⃗⃗⃗⃗ (𝑖. 𝑒. 𝑛𝑜𝑟𝑚𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑔 𝐴 𝑎𝑛𝑑 𝐵⃗⃗). 

Suppose 𝐴 is along x axis and 𝐵⃗⃗ is along y axis then vector product can be considered as an area 

of parallelogram OPQR as shown is figure 1.11 in XY plane whose sides are 𝐴 and 𝐵⃗⃗ and direction 

is perpendicular to plane OPQR i.e. along z axis. The cross product 𝐴 and 𝐵⃗⃗ is positive if direction 

of ∅ (𝐴 𝑡𝑜 𝐵⃗⃗) is positive or rotation is anticlockwise as show in figure 1.11, and negative if the 

rotation of ∅ (𝐴 𝑡𝑜 𝑩⃗⃗⃗) is clockwise (figure 1.12).  

                                                                 

                                         Z                                    

                                                                              R Q 

                                          𝐶               𝐵⃗⃗           y                            

                                                           ∅  

                                              O       𝐴               P                         x 

                                    

Figure1.11 
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                                         z                                                           z                                                           

                                                                    

                           𝐶 = 𝐴 × 𝐵                 𝐵 ⃗⃗⃗⃗        y                                             𝐵 ⃗⃗⃗⃗            y 

                                                          ∅                  ∅ 

                                              O                      𝐴      x                        O                 𝐴             x                  

                                                                                                               𝐶 = 𝐵⃗⃗ × 𝐴 

Figure1.12 

 

Important properties of vector product  

(i) Commutative law does not hold: From the definition of vector product of two vectors 𝐴 and 

𝐵⃗⃗ the vector products are defined as 

𝐴 × 𝐵⃗⃗= AB sin∅ 𝑛̂  

𝐵⃗⃗ × 𝐴 = AB sin∅ (−𝑛̂) = −AB sin∅ 𝑛̂ = − 𝐴 × 𝐵⃗⃗ 

 

Since in case of  𝐵⃗⃗ × 𝐴  the angle of rotation becomes opposite to case  𝐴 × 𝐵⃗⃗ , hence product 

becomes negative.  

Therefore,  𝐴 × 𝐵⃗⃗ ≠ 𝐵⃗⃗ × 𝐴 

(ii) Distributive law holds:  

 In case of vector product the distribution law holds. 

               𝐴⃗⃗⃗⃗ × (𝐵⃗⃗ + 𝐶) = 𝐴 × 𝐵⃗⃗ + 𝐴  × 𝐶 

 

(iii) Product of equal vectors 

If two vectors are equal then the angle between them is zero, and vector product 

becomes  

𝐴 × 𝐴 = |𝐴||𝐴|𝑠𝑖𝑛∅ 𝑛̂ = 0 

                Hence the vector product of two equal vectors in always zero.  

             In case of Cartesian coordinate system if 𝑖̂, 𝑗̂, 𝑘̂are unit vectors along x, y and z axes then  
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𝑖̂ × 𝑖̂ = 𝑗̂ × 𝑗̂ = 𝑘̂ × 𝑘̂ = 0 

(iv) Collinear vectors: Collinear vectors are vectors parallel to each other. The angles 

between collinear vectors are always zero therefore 

𝐴 × 𝐵⃗⃗ = |𝐴||𝐵|𝑠𝑖𝑛∅ 𝑛̂ = 0 

 Thus two vectors are parallel or anti-parallel or collinear if its vector product is 0. 

 

(v) Vector product of orthogonal vector : If two vectors 𝐴 and 𝐵⃗⃗ are orthogonal  to each other 

then angle between such vectors is  ∅ = 90°  therefore   

𝐴 × 𝐵⃗⃗ = 𝐴𝐵 𝑠𝑖𝑛∅ 𝑛̂ 

𝐴 × 𝐵⃗⃗ = |𝐴||𝐵| 𝑛̂ 

                In Cartesian coordinate system if  𝑖̂, 𝑗̂, 𝑘̂ are unit vector along x, y and z axes then  

𝒊̂ × 𝒋̂ = 𝒌̂      𝒋̂ × 𝒌̂ = 𝒊̂ 𝒂𝒏𝒅  𝒌̂ × 𝒊̂ = 𝒋 ̂

𝑗̂ × 𝑖̂ = −𝑘̂   𝑘̂ × 𝑗̂ = −𝑖̂ 𝑎𝑛𝑑  𝑖̂ × 𝑘̂ = 𝑗̂ 

(vi) Determinant form of vector product: If 𝐴and 𝐵⃗⃗ are two vectors given as  

 

𝐴 = 𝐴𝑥𝑖̂ + 𝐴𝑦𝑗̂ + 𝐴𝑧𝑘̂ 

𝐵⃗⃗ = 𝐵𝑥𝑖̂ + 𝐵𝑦𝑗̂ + 𝐵𝑧𝑘̂ 

Then  

𝐴 × 𝐵⃗⃗ = (𝐴𝑥𝑖̂ + 𝐴𝑦𝑗̂ + 𝐴𝑧𝑘̂) × (𝐵𝑥𝑖̂ + 𝐵𝑦𝑗̂ + 𝐵𝑧𝑘̂) 

             = 𝐴𝑥𝐵𝑥𝑖̂ × 𝑖̂ + 𝐴𝑥𝐵𝑦𝑖̂ × 𝑗̂ + 𝐴𝑥𝐵𝑧𝑖̂ × 𝑘̂ + 𝐴𝑦𝐵𝑥𝑗̂ × 𝑖̂ + 𝐴𝑦𝐵𝑦𝑗̂ × 𝑗̂ +

                    +𝐴𝑦𝐵𝑧𝑗̂ × 𝑘̂ + 𝐴𝑧𝐵𝑥𝑘̂ × 𝑖̂ + 𝐴𝑧𝐵𝑦𝑘̂ × 𝑗̂+𝐴𝑧𝐵𝑧𝑘̂ × 𝑘̂ 

                               = 𝐴𝑥𝐵𝑦𝑘̂ − 𝐴𝑥𝐵𝑧𝑗̂ − 𝐴𝑦𝐵𝑥𝑘̂ + 𝐴𝑦𝐵𝑥𝑖̂ + 𝐴𝑧𝐵𝑥𝑗̂ − 𝐴𝑧𝐵𝑦𝑖 ̂

                                      (Since 𝑖̂ × 𝑖̂ = 𝑗̂ × 𝑗̂=𝑘̂ × 𝑘̂ = 0 𝑎𝑛𝑑 𝑖̂ × 𝑘̂ = −𝑗̂, 𝑗̂ × 𝑖̂ = −𝑘̂, 𝑘̂ × 𝑗̂ = −𝑖̂) 

                         = 𝑖̂(𝐴𝑦𝐵𝑧 − 𝐴𝑧𝐵𝑦) − 𝑗̂ (𝐴𝑥𝐵𝑧 − 𝐴𝑧𝐵𝑥) +  𝑘(𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥) 

              𝐴 × 𝐵⃗⃗ = |

𝑖̂ 𝑗̂ 𝑘̂
𝐴𝑥 𝐴𝑦 𝐴𝑧

𝐵𝑥 𝐵𝑦 𝐵𝑧

| 

Physical significance of vector product: 

 In physics, numbers of physical quantities are defined in terms of vector products. Some basic 

examples are illustrated below.  
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(i) Torque: Torque or moment of force is define as  

𝜏 = 𝑟 × 𝑓 

Where 𝜏 is torque, 𝑟  is position vector of a point P where the force 𝑓is applied.  (Figure 

1.13) 

 

                                                                 

                                         Y                                                               

                                                                    𝑓 

                                                          𝑟                P                    

                                                           

                                              O                                                                                                                    

                                                                Figure 1.13 

(ii) Lorentz force on a moving charge in magnetic field: if a charge q is moving in a 

magnetic field 𝐵⃗⃗with a velocity 𝑉⃗⃗at an angle   with the direction of magnetic field then 

force 𝐹⃗experienced by the charged particle is give as;  

𝐹⃗ = 𝑞(𝑉⃗⃗ × 𝐵⃗⃗) 

This force is called Lorentz force and its direction is perpendicular to the direction of both 

velocity and magnetic field B.  

(iii) Angular Momentum: Angular momentum is define as the moment of the momentum 

and given as:  

𝐿⃗⃗ = 𝑟 × 𝑝 

Where 𝑟 is the radial vector of circular motion and 𝑝 is the linear moment of the body under circular 

motion, and 𝐿⃗⃗ is angular momentum along the direction perpendicular to both 𝑟 and 𝑝. The law of 

conservation of angular momentum is a significant property in all circular motions.  

 

1.3.3. Product of three vectors:  
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If we consider three vectors𝐴 , 𝐵⃗⃗𝑎𝑛𝑑 𝐶, we can define two types of triple products known as scalar 

triple product and vector triple product.  

1.3.3.1 Scalar Triple product:  

Let us consider three vectors 𝐴, 𝐵⃗⃗and 𝐶 then the scalar triple product of these three vectors is 

defined as 𝐴.(𝐵⃗⃗ × 𝐶) and denoted as [𝐴𝐵⃗⃗𝐶]. This is a scalar quantity.  

If we consider 𝐴⃗⃗⃗⃗ , 𝐵⃗⃗ and 𝐶 the three sides of a parallelopiped as shown in figure 1.14 then  𝐵⃗⃗ × 𝐶 

is a vector which represents the area of parallelogram OBDC which is the base of the 

parallelogram. The direction of 𝐵⃗⃗ × 𝐶 is naturally along Z axis (perpendicular to both 𝐵⃗⃗ and 𝐶). If 

∅ is the angle between the direction of vectors (𝐵⃗⃗ × 𝐶) and vector 𝐴 , then the dot product of  

vectors (𝐵⃗⃗ × 𝐶) and vector 𝐴 is given as (figure 1.14) 

𝐴 . (𝐵⃗⃗ × 𝐶) = |𝐴||𝐵⃗⃗ × 𝐶|𝑐𝑜𝑠∅ = 𝐴𝐶𝑜𝑠∅(𝐵⃗⃗ × 𝐶) = ℎ. (𝐵⃗⃗ × 𝐶) 

                                               = Vertical height of parallelogram × area of base of parallelogram  

                                               = Volume of parallelogram = [𝐴 𝐵 𝐶].  

 

                                                                 

                                          Z                                    

                                                  A                                                                                                 

                               (𝐵⃗⃗ × 𝐶 )  ∅     𝐴                   C                              D                                                                

                                                           𝐶  

                               Y           O            𝐵⃗⃗            B                                    X 

                                         

                                                              Figure 1.14 

 

Therefore, it is clear that 𝐴 . (𝐵⃗⃗ × 𝐶) represents the volume of parallelepiped constructed by 

vectors 𝐴, 𝐵⃗⃗ and 𝐶 as its sides. Further, it is a scalar quantity as volume is scalar. It can also be 

noted that in case of scalar triple product the final product (volume of parallelepiped) remains same 

if the position of 𝐴, 𝐵⃗⃗ 𝑎𝑛𝑑 𝐶 or dot and cross are interchanged.  
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[𝐴 𝐵 ⃗⃗⃗⃗ 𝐶] = 𝐴. (𝐵⃗⃗ × 𝐶) = 𝐵⃗⃗. (𝐶 × 𝐴) = 𝐶. (𝐴 × 𝐵⃗⃗) = (𝐵⃗⃗ × 𝐶). 𝐴 = (𝐶 × 𝐴). 𝐵⃗⃗ = (𝐴 × 𝐵⃗⃗). 𝐶 

Scalar triple product can also be explained by determinant as 

[𝐴 𝐵 ⃗⃗⃗⃗ 𝐶] = 𝐴. (𝐵⃗⃗ × 𝐶) = |

𝐴𝑥 𝐴𝑦  𝐴𝑧

𝐵𝑥 𝐵𝑦 𝐵𝑧

𝐶𝑥 𝐶𝑦 𝐶𝑧

| 

 

In case of three vectors to be coplanar, it is not possible to construct a parallelepiped by using such 

three vectors as its sides; therefore the scalar triple product must be zero.  

[𝐴 𝐵⃗⃗ 𝐶] = 𝐴. (𝐵⃗⃗ × 𝐶) = 0 

1.3.3.2 Vector triple product:  

The vector triple product of three vectors is define as  

𝐴 × (𝐵⃗⃗ × 𝐶) = (𝐴. 𝐶)𝐵⃗⃗ − (𝐴. 𝐵⃗⃗)𝐶 

The vector triple product is product of a vector with the product of two another vectors. The vector 

triple product can be evaluated by determinant method as given below.  

(𝐵⃗⃗ × 𝐶) = |

𝑖 𝑗 𝑘
𝐵𝑥 𝐵𝑦 𝐵𝑧

𝐶𝑥 𝐶𝑦 𝐶𝑧

| 

              = 𝑖(𝐵𝑦𝐶𝑧 −  𝐵𝑧𝐶𝑦) − 𝑗(𝐵𝑥𝐶𝑧 − 𝐵𝑧𝐶𝑥) +  𝑘(𝐵𝑥𝐶𝑦 − 𝐵𝑦𝐶𝑥) 

𝐴  × (𝐵⃗⃗ × 𝐶) = |

𝑖 𝑗 𝑘
𝐴𝑥 𝐴𝑦 𝐴𝑧

𝐵𝑦𝐶𝑧 −  𝐵𝑧𝐶𝑦 𝐵𝑧𝐶𝑥 − 𝐵𝑥𝐶𝑧 𝐵𝑥𝐶𝑦 − 𝐵𝑦𝐶𝑥

| 

                     = (𝐴. 𝐶)𝐵⃗⃗ − (𝐴. 𝐵⃗⃗)𝐶 

As in cross product the vector 𝐴  × (𝐵⃗⃗ × 𝐶) will be perpendicular to plane containing vectors 𝐴 

and     (𝐵⃗⃗ × 𝐶). Since (𝐵⃗⃗ × 𝐶) is itself in the direction perpendicular to plane containing 𝐵⃗⃗ and 𝐶,  

therefore the direction of 𝐴  × (𝐵⃗⃗ × 𝐶) will be along the plan containing 𝐵⃗⃗ and 𝐶,

ℎ𝑒𝑛𝑐𝑒 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 combination of 𝐵 ⃗⃗⃗⃗ 𝑎𝑛𝑑 𝐶.⃗⃗⃗⃗  

1.4 Summary  
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1. Physical quantities are of two types, scalar and vector. The scalar quantities have 

magnitude only but no direction. The vector quantities have magnitude as well as 

direction. 

2. Two vector quantities can be added with parallelogram law and triangle law. In 

parallelogram law, the resultant is denoted by the diagonal of parallelogram whose 

adjacent sides are represented by two vectors. In triangle law, we place the tail of 

second vector on the head of first vector, and resultant is obtained by a vector whose 

head is at the head of second vector and tail is at the tail of first vector.  

3. For subtraction, we reverse the direction of second vector and add it with first vector. 

4. In case of more than two vectors we simply use Polygon law of vector addition. 

5. Any vector can be resolved into two or more components. By adding all components 

we can find the final vector. 

6. If a vector makes angles 𝛼, 𝛽 and 𝛾 with three mutual perpendicular axes x, y and z 

respectively then 𝑐𝑜𝑠 𝛼, 𝑐𝑜𝑠 𝛽 and 𝑐𝑜𝑠 𝛾 are called direction cosines. 

7. Scalar product of two vectors is defined as  𝑃.⃗⃗⃗⃗⃗ 𝑄⃗⃗  = 𝑃𝑄 cos 𝜃 which is a scalar quantity. 

8. Vector product of two vectors is defined as 𝐴 × 𝐵⃗⃗ = 𝐴𝐵𝑠𝑖𝑛∅ 𝑛̂ which is a vector 

quantity. The direction of vector is perpendicular to 𝐴 and 𝐵⃗⃗. 

9. If two vectors are parallel to each other then they are said to be collinear. For collinear 

vectors  𝑃.⃗⃗⃗⃗⃗  𝑄⃗⃗  = 𝑃𝑄 or  𝑃⃗⃗ × 𝑄⃗⃗ = 0 

10. If the angle between two vectors is 900, then vectors are called orthogonal. In this case 

 𝑃.⃗⃗⃗⃗⃗  𝑄⃗⃗  = 0 

11. Cross product of two vectors can also be calculated by determinant. The determinant 

form of cross product is 

              𝐴 × 𝐵⃗⃗ = |

𝑖 𝑗 𝑘
𝐴𝑥 𝐴𝑦 𝐴𝑧

𝐵𝑥 𝐵𝑦 𝐵𝑧

| 

 

12. Scalar triple product of three vectors can also be calculated by determinant. The 

determinant form of Scalar triple product is 

𝐴.⃗⃗⃗⃗ (𝐵⃗⃗ × 𝐶) = |

𝐴𝑥 𝐴𝑦 𝐴𝑧

𝐵𝑥 𝐵𝑦 𝐵𝑧

𝐶𝑥 𝐶𝑦 𝐶𝑧  

| 

13. Vector triple product is defined as  

                  𝐴 × (𝐵⃗⃗ × 𝐶) = (𝐴. 𝐶)𝐵⃗⃗ − (𝐴. 𝐵⃗⃗)𝐶 

 

 

1.5 Glossary  

Vector- Physical quantity with direction 
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Scalar quantities- Physical quantity without direction 

Collinear – in same line or direction 

Orthogonal- perpendicular to each other 

Coplanar – on same plane 

 

1.6 Reference Books 

1. Mechanics – D.S. Mathur, S Chand, Delhi 

2. Concept of Physics- H C Verma, Bharti Bhawan, Patna 

3. Physics Part-I, Robert Resnick and David Halliday, Wiley Eastern Ltd 

 

1.7    Suggested readings 

1. Modern Physics, Beiser, Tata McGraw Hill 

2. Fundamental University Physics-I, M. Alonslo and E Finn, Addition-Wesley     

Publication 

3. Berkeley Physics Course Vol I, Mechanics, C Kittel et al, McGraw- Hill Company 

 

1.8  Terminal questions 

1.8.1 Short answer type questions  

1. Define unit vector, like vector and equal vectors. 

2. What are direction cosines? Give its significance. 

3. What angle does the vector 3𝑖 + √2𝑗 + 𝑘 make with y axis? 

4. What is the condition for vector to be collinear?  

5. Explain the difference between dot and cross products. 

6. What is angular momentum? How the direction of angular momentum can be decided? 

7. Give some examples of dot product in physics. 

8. Give some examples of cross product in physics. 

9. Define scalar triple product. 

10. How the angle between two vectors can be obtained? 

  

1.8.2 Essay type questions 

1.  If |𝑨 + 𝑩| =  |𝑨 − 𝑩| , show that A and B are perpendicular to each other. 

2. What is the significance of dot product? Give the properties of cross product. 

3. Show that 𝐴 = 5𝑖 + 2𝑗 + 4𝑘 𝑎𝑛𝑑 𝐵 = 2𝑖 + 3𝑗 − 4𝑘 are perpendicular to each other. 

4. What is the vector product? Give the properties of vector product. 

5. Find out the condition if two vectors are collinear.  

6. Find the components of a vector along and perpendicular to  the direction of another 

vector. 
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1.8.3 Numerical question  

1. Calculate the dot product of vectors 𝑨 = 6𝑖 + 7𝑗 + 𝑘 𝑎𝑛𝑑 𝑩 = 𝑖 + 3𝑗 + 2𝑘. 

2. A particle moves from the position (3𝑖 + 3𝑗 + 2𝑘)𝑚𝑒𝑡𝑒𝑟 to another position (-2𝑖 +

2𝑗 + 4𝑘) 𝑚𝑒𝑡𝑒𝑟 under the influence of a force 𝑭 = 3𝑖 + 2𝑗 + 4𝑘 newton.  Calculate 

the work done by the force. 

3. Obtain the projection of a vector 𝑨 = 3𝑖 + 4𝑗 + 5𝑘 along a line which originates at a 

point (2, 2, 0) and passing through another point (-2, 4, 4). 

4. Find the unit vector in the direction of resultant vectors of 𝑨 = 6𝑖 + 7𝑗 + 𝑘 𝑎𝑛𝑑 𝑩 =

𝑖 + 3𝑗 + 2𝑘. 
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UNIT 2: VECTOR CALCULUS 

 

STRUCTURE: 

2.0 Objective  

2.1 Introduction  

2.2 Differentiation of vector  

2.2.1 Properties of vector differentiation  

2.2.2 Partial derivatives  

2.2.3 Del operator  

2.2.4 Scalar and Vector function and fields  

2.2.5 Gradient  

2.2.6 Physical significance  

2.3 Divergence of a vector  

2.3.1 Physical interpretation  

2.4 Curl of a vector function  

2.4.1 Physical significance  

2.4.2 Curl in Cartesian coordinates system   

2.5 Line, surface and volume integration 

2.6 Vector identities  

2.7 Summary 

2.8 Glossary  

2.10 Self assessment questions  

2.11 Reference  

2.12 Suggested reading  

2.13 Terminal questions  

2.14 Answers  
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2.0 Objective:  

In previous unit we studied about the basic concepts of vector like its meaning, significance, 

representation, addition, subtraction etc. Now in this unit, we will learn some further use of 

vectors in physics and mathematics. After reading this unit we will able to understand:  

1. Differentiation of vector  

2. Del operator  

3. Scalar and vector fields  

4. Gradient  

5. Curl  

6. Divergence  

7. Vector identities 

8. Applications in physics  

 

2.1 Introduction:  

Differentiation and integration techniques are frequently used in physics and mathematics. 

Therefore this unit is basically vector calculus. Theses calculus techniques are used to solve 

and explain many physical problems. In this unit we will understand the differentiation and 

integration of vector quantities. Further we define some new terms like gradient, curl, 

divergence, its properties and application. The physical significance of these terms will also be 

discussed in detail.  

2.2 Differentiation of vector:  

Suppose 𝑟 is the position vector of a particle situated at point P with respect to origin O. If 

particle moves with time, then vector 𝑟 varies corresponding to time t, and 𝑟 is said to be vector 

function of scalar variable t and represented as 𝑟 =F(t)  

If P is the position of particle at time t then OP = 𝑟 

If Q is the position of particle at time t+𝛿𝑡 and position vector of Q is (𝑟 + 𝛿𝑟) 

then    𝑃𝑄⃗⃗⃗⃗ ⃗⃗ = 𝑂𝑄⃗⃗⃗⃗⃗⃗⃗-𝑂𝑃⃗⃗⃗⃗ ⃗⃗  

  = 𝑟 + 𝛿𝑟 − 𝑟 

In limiting case if 𝛿𝑡 → 0 then 𝛿𝑟 → 0 and P tends to Q and the chord become the tangent at 

P. Differentiation is define as  

𝑑𝑟

𝑑𝑡
= lim

𝛿𝑡→0

𝛿𝑟

𝛿𝑡
= lim

𝛿𝑡→0

𝑟(𝑡 + 𝛿𝑡) − 𝑟(𝑡)

𝛿𝑡
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When the limit exists only then the function 𝑟 is differentiable. If we further differentiate 

function with respect t then it is called second order differentiation. If should be cleared that 

the derivatives of a vector (say 𝑟) are also vector quantities.  

                                                   Q 

        

                                                      𝑟 + 𝛿𝑟                 𝛿𝑟 

                                                                                       P 

                                                                     𝑟 

                                             O          

 Figure 2.1 

2.2.1 Properties of vector differentiation:  

If 𝐴 and 𝐵⃗⃗ are two vectors, ∅ is a scalar field and 𝐶 is a constant vector then  

(1) 
𝑑

𝑑𝑡
(𝐴 + 𝐵⃗⃗) =

𝑑𝐴⃗

𝑑𝑡
+

𝑑𝐵⃗⃗

𝑑𝑡
 

(2) 
𝑑

𝑑𝑡
(𝐴 × ∅) =

𝑑𝐴⃗

𝑑𝑡
∅ + 𝐴

𝑑∅

𝑑𝑡
 

(3) 
𝑑

𝑑𝑡
(𝐴. 𝐵⃗⃗) = 𝐴.

𝑑𝐵⃗⃗

𝑑𝑡
+

𝑑𝐴⃗

𝑑𝑡
. 𝐵⃗⃗ 

(4) 
𝑑

𝑑𝑡
(𝐴 × 𝐵⃗⃗) = 𝐴 ×

𝑑𝐵⃗⃗

𝑑𝑡
+

𝑑𝐴⃗

𝑑𝑡
× 𝐵⃗⃗ 

(5) 
𝑑𝐶

𝑑𝑡
= 0 

(6) 
𝑑𝑟

𝑑𝑡
=

𝑑𝑟

𝑑𝑠

𝑑𝑠

𝑑𝑡
  if s is scalar function of t.  

(7) 
𝑑

𝑑𝑡
(𝑟2) =

𝑑

𝑑𝑡
(𝑟. 𝑟) = 𝑟

𝑑𝑟

𝑑𝑡
+ 𝑟

𝑑𝑟 

𝑑𝑡
= 2𝑟

𝑑𝑟

𝑑𝑡
,  if 𝑟 is position vector.  

 

Example 2.1: A particle is moving along the curve x = 𝑡2 + 2 , y= 𝑡2 + 1 and z= 3𝑡 + 5. 

Find the velocity and acceleration of particle along the direction 3i+2j+6k at time t=2.  

Solution: 

Curve is define as x = 𝑡2 + 2 , y= 𝑡2 + 1 and z= 3𝑡 + 5. 

The position vector of particle at any time t is given as 

𝑟̅ = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 

𝑟̅ = (𝑡2 + 2 )𝑖 + (𝑡2 + 1)𝑗 + (3𝑡 + 5)𝑘 
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                                          O                              N               B       

                                                           Figure 2.2 

 

Velocity is given as  

𝑑𝑟̅

𝑑𝑡
= 3𝑡2𝑖 + 2𝑡𝑗 + 3𝑘 

at t=2 velocity becomes  

𝑑𝑟̅

𝑑𝑡
= 12𝑖 + 4𝑗 + 3𝑘 

Component of the velocity along the direction 3𝑖 + 2𝑗 + 6𝑘 = 𝐵⃗⃗ (𝑠𝑎𝑦 )  

 

𝑂𝑁 = |𝑣̅| cos 𝜃 . 𝑏̂ = |𝑣̅|  
𝑣̅.𝐵̅

|𝑣̅||𝐵̅|
.

𝐵

|𝐵̅|
 = 

(𝑣̅.𝐵̅)𝐵

|𝐵|2  

   = 
(16 𝑖+4𝑗+3𝑘).(3𝑖+2𝑗+6𝑘)

32+22+62 (3𝑖 + 2𝑗 + 6𝑘) = 
74

49
(3𝑖 + 2𝑗 + 6𝑘) 

 

acceleration  𝑎̅ can be given as 𝑎̅ =  
𝑑𝑟̅

𝑑𝑡
= 6𝑡 𝑖 + 2𝑗  

acceleration  𝑎̅ at t=2 can be given as 𝑎̅ = 12𝑖 + 2𝑗 

 

Component of acceleration along direction 𝐵̅ is given as 

         =  |𝑎̅| cos 𝜃 .  𝑏̂  =  |𝑎̅|
𝑎.̅𝐵̅

|𝑎̅| |𝐵|

𝐵̅

|𝐵|
=  

(𝑎.̅𝐵̅) 𝐵̅

|𝐵|2  

         = 
(12𝑖+2𝑗).(3𝑖+2𝑗+6𝑘)

322+22+62
(3𝑖 + 2𝑗 + 6𝑘) 

        = 
52

49
(3𝑖 + 2𝑗 + 6𝑘) 

 

 

2.2.2 Partial derivative:  

If f is a vector function which depends on variable (x, y, z), then the partial derivatives are defined 

as  

𝜕𝑓

𝜕𝑥
= lim

𝛿𝑥→0

𝑓(𝑥 + 𝛿𝑥, 𝑦, 𝑧) − 𝑓(𝑥, 𝑦, 𝑧)

𝛿𝑥
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𝜕𝑓

𝜕𝑦
= lim

𝛿𝑦→0

𝑓(𝑥, 𝑦 + 𝛿𝑦, 𝑧) − 𝑓(𝑥, 𝑦, 𝑧)

𝛿𝑦
 

𝜕𝑓

𝜕𝑧
= lim

𝛿𝑧→0

𝑓(𝑥, 𝑦, 𝑧 + 𝛿𝑧) − 𝑓(𝑥, 𝑦, 𝑧)

𝛿𝑧
 

In case of partial derivatives with respect to a variable, all the other remaining variables are taken 

as constant.  

Partial derivatives of second order are defined as:  

𝜕2𝑓

𝜕𝑥2 = 
𝜕

𝜕𝑥
(

𝜕𝑓

𝜕𝑥
) 

𝜕2𝑓

𝜕𝑦2 = 
𝜕

𝜕𝑦
(

𝜕𝑓

𝜕𝑦
) 

𝜕2𝑓

𝜕𝑧2=
𝜕

𝜕𝑧
(

𝜕𝑓

𝜕𝑧
) 

2.2.3 Del operator: 

The vector differential operator del is denoted by 𝛁 and is  defined as  

𝛁 = i
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
 

2.2.4 Scalar and vector point functions:  

(1) Field: Field is a region of the space defined by a function.  

(ii) Scalar point function: A scalar function ∅(𝑥, 𝑦, 𝑧) defines all scalar point in the space. For 

example, gravitational potential is a scalar function defined at all gravitational fields in the space.  

(iii) Vector potential function: If a vector function 𝐹⃗(x, y, z) defines a vector at every point in 

space then it is called vector point function. For example gravitational force is a vector function 

defined at a gravitational field in the space.  

2.2.5 Gradient:  

The gradient of a scalar function ∅ is defined as  

grad ∅ = ∇∅ = (i
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
)∅  

            =  i
𝜕∅

𝜕𝑥
+ 𝑗

𝜕∅

𝜕𝑦
+ 𝑘

𝜕∅

𝜕𝑧
 

grad ∅ 𝑖𝑠 𝑎 𝑣𝑒𝑐𝑡𝑜𝑟 𝑞𝑢𝑛𝑎𝑡𝑖𝑡𝑦.  

Total differential d∅ of a scalar function ∅(𝑥, 𝑦, 𝑧) can be expressed as,  
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𝑑∅ =
𝜕∅

𝜕𝑥
𝑑𝑥 +

𝜕∅

𝜕𝑦
𝑑𝑦 +

𝜕∅

𝜕𝑧
𝑑𝑧 

Total differential d∅ of a scalar function ∅ can also be expressed as  

d∅ =
𝜕∅

𝜕𝑥
𝑑𝑥 +

𝜕∅

𝜕𝑦
𝑑𝑦 +

𝜕∅

𝜕𝑧
𝑑𝑧 

      = (𝑖
𝜕∅

𝜕𝑥
+ 𝑗

𝜕∅

𝜕𝑦
+ 𝑘

𝜕∅

𝜕𝑧
) (𝑖𝑑𝑥 + 𝑗𝑑𝑦 + 𝑘𝑑𝑧) 

 𝑑∅ = (∇⃗⃗⃗∅). 𝑑𝑟 = |∇∅||dr|cosθ = (∇⃗⃗⃗∅). dr 𝑟̂, (where 𝑟̂ is a unit vector along d𝑟) 

also 𝜃 is angle between ∇⃗⃗⃗∅ and d𝑟   (The direction of displacement). 

So, 
𝑑∅

𝑑𝑟
 = (∇⃗⃗⃗∅). 𝑟̂ 

Thus , 
𝑑∅

𝑑𝑟
 is the directional derevative of ∅. The rate of change is maximum if 𝑟̂ is along ∇⃗⃗⃗∅ i.e. 

angle between ∇⃗⃗⃗∅ and 𝑟̂ is zero. 

Hence gradient of the scalar field ∅ defines a vector field, the magnitude of which is equal to the 

maximum rate of change of ∅ and the direction of which is the same, as the direction of 

displacement along with the rate of change is maximum. 

Example 2.2: 

 In the heat transfer, the temperature of any point in space is given by = 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 .  Find the 

gradient of T in the direction of vector 4i-3k at a point (2, 2, 2).  

Solution: 

Temperature is define as  

𝑇 = 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥  

gradient of temperature T is given as  

𝑔𝑟𝑎𝑑 𝑇 =  ∇ 𝑇 =  (𝑖
𝜕

𝜕𝑥
+  𝑗 

𝜕

𝜕𝑦
+

𝜕

𝜕𝑧
𝜕) (𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥) 

    ∇ 𝑇 = 𝑖(𝑦 + 𝑧) + 𝑗(𝑥 + 𝑧) + 𝑘(𝑥 + 𝑦) 

 at point (2, 2, 2) the ∇ 𝑇 is (4𝑖 + 4𝑗 + 4𝑘) 

The gradient T in the direction of vector 4i-3k is 

= (4𝑖 + 4𝑗 + 4𝑘). Unit vector along (4𝑖 − 3𝑘) 
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 =(4𝑖 + 4𝑗 + 4𝑘).
(4𝑖−3𝑘)

√42+32
 

 =4/5 

 

2.26 Physical significance of grad ∅ :  

The physical significance of grad ∅  can be explained on the basis of surface defined by scalar 

field ∅. The value of ∅ remains constant on the surface S, as shown in figure 2.3 and it is called a 

level surface or equi-scalar surface. Let us consider two surfaces S and S' defined by scalar function 

∅ and ∅+d∅ respectively. Suppose 𝑛⃗⃗ is normal to the surfaces S and S'. If the coordinates of point 

P and Q are (x, y, z) and (x+dx, y+dy, z+dz) then the distance between P and Q are  

𝑑𝑟 = 𝑖𝑑𝑥 + 𝑗𝑑𝑦 + 𝑘𝑑𝑧  

as the definition of differentiation  

𝑑∅ =
𝜕∅

𝜕𝑥
𝑑𝑥 +

𝜕∅

𝜕𝑦
𝑑𝑦 +

𝜕∅

𝜕𝑧
𝑑𝑧 

= (
𝜕∅

𝜕𝑥
𝑖 +

𝜕∅

𝜕𝑦
𝑦 +

𝜕∅

𝜕𝑧
𝑘) . (𝑑𝑥 𝑖 + 𝑑𝑦 𝑗 + 𝑑𝑧 𝑘) 

𝑑∅ = ∇⃗⃗⃗∅. 𝑑𝑟 

If we consider the point Q approaches to P and finally lies on P then  

𝑑∅ = 0  

∇⃗⃗⃗∅. 𝑑𝑟 = 0 

∇∅ 𝑎𝑛𝑑 𝑑𝑟 𝑎𝑟𝑒 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑢𝑙𝑎𝑟 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑜𝑡ℎ𝑒𝑟.    
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Therefore, ∇∅ is a vector which is perpendicular to the surface S.  

If 𝑛⃗⃗ is normal on the surface S and d𝑛⃗⃗ represents the distance between surfaces S to S' then 𝑑𝑛 =

𝑑𝑟 𝑐𝑜𝑠 𝜃 = 𝑛̂. 𝑑𝑟 

And 𝑑∅ =
𝜕∅

𝜕𝑛
𝑑𝑛 =

𝜕∅

𝜕𝑛
𝑛̂. 𝑑𝑟 

 By using equation (1),   ∇⃗⃗⃗∅. 𝑑𝑟 =
𝜕∅

𝜕𝑛
𝑛.̂ 𝑑𝑟 

∇⃗⃗⃗∅ =
𝜕∅

𝜕𝑛
𝑛̂ 

Thus, ∇∅ is defined as a vector whose magnitude is rate of change of ∅ along normal to the surface 

and direction is along the normal to the surface.  

Example2.3: 

 Find the directional derivative of a scalar function ∅(𝑥, 𝑦, 𝑧) =  𝑥2 +  xy + z 2 at the point A (2,-

1,-1) in the direction of the line AB where coordinate of B are (3, 2, 1).  

Solution: 

The component of ∇∅ along the direction of a vector 𝐴 is called directional derivative of ∅ and 

given as ∇∅ . 𝐴̂  

Now ∇∅ =  (𝑖
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
) (𝑥2 + 𝑥𝑦 + 𝑧2) 

               =(2𝑥 + 𝑦)𝑖 + 𝑥 𝑗 + 2𝑧 𝑘 

gradient at point A (2,-1,-1) 

∇∅ = 3𝑖 + 2 𝑗 − 2 𝑘 

The vector 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝐵 – 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝐴 

                      = (3𝑖 + 2𝑗 + 𝑘) − (2𝑖 − 𝑗 − 𝑘) = 𝑖 + 3𝑗  

Directional derivative of  ∅ in the direction of AB is 

O

S' n

dn

S

Figure 2.3
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∇⃗⃗⃗∅ . 𝐴𝐵̂ = (3𝑖 + 2𝑗 − 2𝑘).
(𝑖 + 3𝑗)

√1 + 9
=

9

√10
 

2.3 Divergence of Vector:  

The divergence is defined as dot product of del operator with any vector point function 𝑓 ⃗⃗⃗ ⃗ or any 

vector 𝐹̅ and given as, 

div. 𝑓 = ∇. 𝑓 = (𝑖
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦 
+ 𝑘

𝜕

𝜕𝑧
). (𝑖𝑓𝑥 + 𝑗𝑓𝑦+𝑘𝑓𝑧)  where 𝑓 =  𝑖𝑓𝑥 + 𝑗𝑓𝑦+𝑘𝑓𝑧  

                      =
𝜕𝑓𝑥

𝜕𝑥
+

𝜕𝑓𝑦

𝜕𝑦
+

𝜕𝑓𝑧

𝜕𝑧
  

Since divergence of a vector 𝑓 is dot product of del operator ∇⃗⃗⃗ and that vector 𝑓, therefore it is a 

scalar quantity.  

 

2.3.1 Physical Significance of Divergence:  

On the basis of fluid dynamics or a fluid flow, the divergence of a vector quantity can be explained. 

Let us consider a parallelepiped of edges dx, dy and dz along the x, y, z directions as shown in 

figure 2.4.  

                                                      Y 

                                                         R                                                  R' 

 

                                    Q                                                      Q'                     

                                            

                                             A          dy                                        B 

                                                   O                  dx                                     O'                 X                   

                                                    dz        

                                   P                                                     P'                       

                                    

                        Z 

Figure 2.4 

Let 𝑣 is the velocity of fluid at A(x, y, z) and given as  

𝑣 = 𝑣𝑥𝑖 + 𝑣𝑦𝑗 + 𝑣𝑧𝑘  

Where the 𝑣𝑥,𝑣𝑦, 𝑣𝑧   𝑎𝑟𝑒 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑜𝑓 𝑣𝑒𝑜𝑙𝑐𝑖𝑡𝑦 𝑎𝑙𝑜𝑛𝑔 𝑥, 𝑦, 𝑧 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠.  
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Amount of fluid entering through the surface O'P'Q'R' per unit time is given as:  

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 × 𝑎𝑟𝑒𝑎 = 𝑣𝑥𝑑𝑦𝑑𝑧 

Amount of fluid flowing out through the surface O'P'Q'R' per unit times is given as 

= 𝑣𝑥+𝑑𝑥 𝑑𝑦𝑑𝑧  

=(𝑣𝑥 +
𝜕𝑣𝑥

𝜕𝑥
𝑑𝑥)𝑑𝑦𝑑𝑧 

Decrease in the amount of fluid in the parallelepiped along x axis per unit time.  

=𝑣𝑥𝑑𝑦𝑑𝑧 − (𝑣𝑥 +
𝜕𝑣𝑥

𝜕𝑥
𝑑𝑥) 𝑑𝑦𝑑𝑧 

= −
𝜕𝑣𝑥

𝜕𝑥
𝑑𝑥𝑑𝑦𝑑𝑧 

Negative sign shows, decrease in the amount of fluid inside the parallelepiped.  

Similarly decrease of amount of fluid along y axis  

=−
𝜕𝑣𝑦

𝜕𝑦
𝑑𝑥𝑑𝑦𝑑𝑧 

Decrease of amount of fluid along z axis  

 = −
𝜕𝑣𝑧

𝜕𝑧
𝑑𝑥𝑑𝑦𝑑𝑧 

Total amount of fluid decrease inside the parallelepiped per unit time= − (
𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
+

𝜕𝑣𝑧

𝜕𝑧
) 𝑑𝑥𝑑𝑦𝑑𝑧) 

Thus the rate of loss of fluid per unit volume =
𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
+

𝜕𝑣𝑧

𝜕𝑧
 

(We can ignore negative sign when we specify that the negative sign indicates decrease in the 

amount of fluid).  

Further the rate of loss of fluid per unit volume  

=(𝑖
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
) (𝑣𝑥𝑖 + 𝑣𝑦𝑗 + 𝑣𝑧𝑘) = ∇⃗⃗⃗. 𝑣 = 𝑑𝑖𝑣 𝑣 

Thus, the divergence of velocity vector shows the rate of loss of fluid per unit timer per unit volume.  

If we consider fluid is incompressible, there is not any loss or gain in the amount of fluid, therefore 

𝑑𝑖𝑣 𝑣 = 0 
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If the divergence of a vector is 0, then the vector function is called solenoidal.  

Example 2.4: if u=x2+y2+z2 and  𝑟̅ =  2xi + 3yj + 2zk, then find the div (u𝑟).  

Solution :     Div (u 𝑟) =  ∇. (u 𝑟) 

(𝑖
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
) . [(𝑥2 + 𝑦2 + 𝑧2)(2𝑥𝑖 + 3𝑦𝑗 + 2𝑧𝑘)] 

= 𝑖
𝜕

𝜕𝑥
(𝑥22𝑥)𝑖 + 𝑗

𝜕

𝜕𝑦
(𝑦23𝑦)𝑗 + 𝑘

𝜕

𝜕𝑧
(𝑧2. 2𝑧)𝑘 

= 6𝑥2 + 9𝑦2 + 6𝑧2 

2.4 Curl  

The curl of a vector 𝐹⃗ is defined as 

Curl 𝐹 = ∇ × 𝐹                    (where  𝐹̅=𝐹𝑥𝑖 + 𝐹𝑦𝑗 + 𝐹𝑗𝑘 ) 

=(𝑖
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
) × (𝐹𝑥𝑖 + 𝐹𝑦𝑗 + 𝐹𝑗𝑘) 

In terms of determinant of vector product    

Curl 𝐹̅=|

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐹𝑥 𝐹𝑦 𝐹𝑧

| 

Since curl is vector product of two vectors, therefore it is a vector quantity.  

2.4.1 Physical significance of curl:  

On the basis of angular velocity and linear velocity the curl can be explained.  

Let us consider a particle moving with velocity 𝑣 and 𝑟 is the position vector of particle rotating 

around origin O. Let 𝜔⃗⃗⃗ is the angular velocity of particle then  

𝑐𝑢𝑟𝑙 𝑣 = ∇ × 𝑣 

            = ∇ × (𝜔̅ × 𝑟)                           (∵  𝑣 = 𝜔̅  × 𝑟) 

           = ∇(𝜔𝑥𝑖 + 𝜔𝑦𝑗 + 𝜔𝑧𝑘) × (𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘) 

= ∇ × |
𝑖 𝑗 𝑘

𝜔𝑥 𝜔𝑦 𝜔𝑧

𝑥 𝑦 𝑧
| 
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= ∇ × [(𝜔𝑦𝑧 − 𝜔𝑧𝑦)𝑖 − (𝜔𝑥𝑧 − 𝜔𝑧𝑥)𝑗 + (𝜔𝑥𝑦 − 𝜔𝑦𝑥)𝑘] 

                                                =  [

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜔𝑦𝑧 − 𝜔𝑧𝑦 𝜔𝑧𝑥 − 𝜔𝑥𝑧 𝜔𝑥𝑦 − 𝜔𝑦𝑥

] 

𝑐𝑢𝑟𝑙 𝑣 = 2(𝜔𝑥𝑖 + 𝜔𝑦𝑗 + 𝜔𝑧𝑘) = 2𝜔̅ 

Thus the curl of velocity shows angular velocity which means rotation of particle. Thus curl of a 

vector quantity is connected with rotational properties of vector field. If curl of a vector is zero, 

∇ × 𝑓 = 0 then there is no rotational property and 𝑓 is called irrotational.  

Example 2.5  

Calculate the curl of a vector given by 𝐹 = 𝑥𝑦𝑧𝑖 + 2𝑥2𝑦𝑗 + (𝑥2𝑧2 − 2𝑦2)k. 

Solution:     

𝑐𝑢𝑟𝑙 𝐹 = ∇ × 𝐹 

            = (𝑖
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
) × (𝑥𝑦𝑧𝑖 + 2𝑥2𝑦𝑗 + (𝑥2𝑧2 − 2𝑦2)𝑘) 

             

         = [

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥𝑦𝑧 2𝑥2𝑦 𝑥2𝑧2 − 2𝑦2

] 

         =  −4𝑦𝑖 − (2𝑥𝑧2 − 𝑥𝑦)𝑗 + (4𝑥𝑦 − 𝑥𝑧)𝑘 

Example2.6:  

Show that 𝐹 = (𝑦2 + 2𝑥𝑧2)𝑖 + (2𝑥𝑦 − 𝑧)𝑗 + (2𝑥2𝑧 − 𝑦 + 2𝑧)𝑘⃗⃗ 𝑖𝑠 𝑖𝑟𝑟𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙.  

Solution: 

𝑐𝑢𝑟𝑙 𝐹 = ∇ × 𝐹 

            = (𝑖
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
) × [(𝑦2 + 2𝑥𝑧2)𝑖 + (2𝑥𝑦 − 𝑧)𝑗 + (2𝑥2𝑧 − 𝑦 + 2𝑧)𝑘⃗⃗] 

            = 0 

Therefore 𝐹 is irrotational. 
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2.5 Vector integral:  

2.5.1 Line Integral: The integral of a vector function 𝐹⃗ along a line or curve is called line integral.  

Suppose 𝐹⃗(x, y, z) be a vector function and PQ is a curve and 𝑑𝑙⃗⃗⃗⃗  is a small length of curve then 

line integral of vector 𝐹⃗ along a length 𝑑𝑙⃗⃗⃗⃗  is given as 

 ∫  𝐹⃗. 𝑑𝑙 
 

𝑙  
  

 y 

                                                                F 

                                                           Q              𝑑𝑙 

 

                                                                                      P  

 

                                           O x 

                                                   Figure 2.5  

 

The integral may be closed or open depending on the nature of the curve whether closed or open. 

To compute the line integral of a function F, any method of integral calculus may be employed. In 

case of fore 𝐹⃗ acting on a particle along a curve PQ, the total work done can be calculated as line 

integral of force.  

Work done= ∫ 𝐹⃗. 𝑑𝑙⃗⃗⃗⃗𝑄

𝑝
 

2.5.2 Surface integral:  

Similarly as line integral of F is a vector function and s is a surface, then surface integral of a 

vector function F over the surface s is given as  

Surface integral=∬ 𝐹⃗. 𝑑𝑙⃗⃗⃗⃗  
 

𝑠
   

The direction of surface integral is taken as perpendicular to the surface s.  

If ds is written as ds=dxdy  

Surface integral=∬ 𝐹⃗. 𝑑𝑠
  

𝑠
= ∫  ∫  

 

𝑦

 

𝑥
𝐹. 𝑑𝑥𝑑𝑦  
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Surface integral represents flux through the surface S. 

2.5.3 Volume integral:  

If dV denotes the volume defined by 𝑑𝑥𝑑𝑦𝑑𝑧 then the volume integration of a vector F is define 

as  

Volume integral=∫ 𝐹𝑑𝑉 =
𝑉

∫  ∫  ∫  
 

𝑧

 

𝑦

 

𝑥
𝐹. 𝑑𝑥𝑑𝑦𝑑𝑧  

The volume integral can be explained in terms of total charge inside a volume. Suppose ρ is charge 

density of a volume dV then total charge inside the volume is given as q=∫  
 

𝑣
ρ 𝑑𝑉 

2.6 Vector identities: 

 If ∅1 and ∅2 are two scalar point functions and 𝐴 and 𝐵⃗⃗ are two vectors, then 

∇(∅1 + ∅2) = ∇∅1 + ∇∅2 
  

∇(∅1∅2) = ∅1∇∅2 + ∅2∇∅1         

𝑑𝑖𝑣 (𝐴 + 𝐵⃗⃗) = 𝑑𝑖𝑣 𝐴 + 𝑑𝑖𝑣 𝐵⃗⃗  

𝑑𝑖𝑣 (𝐴. 𝐵⃗⃗) = 𝐴.⃗⃗⃗⃗  𝑑𝑖𝑣 𝐵 + 𝐵.⃗⃗⃗⃗  𝑑𝑖𝑣 𝐴 

𝑐𝑢𝑟𝑙 (𝐴 + 𝐵⃗⃗) = 𝑐𝑢𝑟𝑙 𝐴 + 𝑐𝑢𝑟𝑙 𝐵⃗⃗ 

𝑑𝑖𝑣 (∅ 𝐴) = ∅ 𝑑𝑖𝑣 𝐴 + 𝐴 . 𝑔𝑟𝑎𝑑 ∅ 

𝑐𝑢𝑟𝑙 (∅𝐴) = ∅ 𝑐𝑢𝑟𝑙 𝐴 + 𝑔𝑟𝑎𝑑 ∅ × 𝐴 

𝑑𝑖𝑣 𝑐𝑢𝑟𝑙 𝐴 = 0 

𝑐𝑢𝑟𝑙 𝑔𝑟𝑎𝑑  ∅ = 0 

𝑑𝑖𝑣 (𝐴 × 𝐵⃗⃗) = 𝐵⃗⃗. 𝑐𝑢𝑟𝑙 𝐴 + 𝐴. 𝑐𝑢𝑟𝑙 𝐵⃗⃗  

𝑐𝑢𝑟𝑙 𝑐𝑢𝑟𝑙 𝐴 = 𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝐴 − ∇2 𝐴  

Example2.7 : Prove that  

(1) 𝑑𝑖𝑣 𝑐𝑢𝑟𝑙 𝐴 = 0 

  (2)     𝑐𝑢𝑟𝑙 𝑔𝑟𝑎𝑑  ∅ = 0 

Solution: 

(1) (1) 𝑑𝑖𝑣 𝑐𝑢𝑟𝑙 𝐴 = ∇.∇ × 𝐴 
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                                   = ∇. |

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐴𝑥 𝐴𝑦 𝐴𝑧

| 

                                      =∇. [𝑖 (
𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
) + 𝑗(

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
) + k(

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
)]                                                 

                                     = 
𝜕

𝜕𝑥
(

𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
) +

𝜕

𝜕𝑦
(

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
)+ 

𝜕

𝜕𝑧
(

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
) 

                                      =0 

(2) 𝑐𝑢𝑟𝑙 𝑔𝑟𝑎𝑑  ∅ = ∇ × ∇∅ 

|

|

𝑖 𝑗 𝑘 
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕∅

𝜕𝑥

𝜕∅

𝜕𝑦

𝜕∅

𝜕𝑧

|

|
 

= 𝑖 (
𝜕2∅

𝜕𝑦𝜕𝑧
−

𝜕2∅

𝜕𝑧𝜕𝑦
) + 𝑗 (

𝜕2 ∅

𝜕𝑧𝜕𝑥
−

𝜕2∅

𝜕𝑥𝜕𝑧
) + 𝑘 (

𝜕2∅

𝜕𝑥𝜕𝑦
−

𝜕2∅

𝜕𝑦𝜕𝑥
) = 0 

Example2.8:  

Show that 

(i) 𝑑𝑖𝑣 (𝐴 × 𝐵⃗⃗) = 𝐵⃗⃗. 𝑐𝑢𝑟𝑙 𝐴 − 𝐴 . 𝑐𝑢𝑟𝑙 𝐵⃗⃗  

(ii) 𝑐𝑢𝑟𝑙 𝑐𝑢𝑟𝑙 𝐴 = 𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝐴 − ∇2 𝐴  

Solution (i) 𝑑𝑖𝑣 (𝐴 × 𝐵⃗⃗) =  ∇. (𝐴 × 𝐵⃗⃗) 

                     = (𝑖 ̂ 
𝜕

𝜕𝑥
 + 𝑗̂ 

𝜕

𝜕𝑦
 + 𝑘̂ 

𝜕

𝜕𝑧
). [(AyBz – AzBy) 𝑖̂ + (AzBx - AxBz) 𝑗̂ + (Ax By – AyBx)𝑘̂] 

                     =  
𝜕

𝜕𝑥
 (AyBz – AzBy) + 

𝜕

𝜕𝑦
 (AzBx – AxBz) + 

𝜕

𝜕𝑧
 (AxBy – AyBx) 

                    = Bx(
𝜕𝐴𝑧

𝜕𝑦
 - 

𝜕𝐴𝑦

𝜕𝑧
) + By(

𝜕𝐴𝑥

𝜕𝑧
 - 

𝜕𝐴𝑧

𝜕𝑥
) + Bz(

𝜕𝐴𝑦

𝜕𝑥
 - 

𝜕𝐴𝑥

𝜕𝑦
) – Ax(

𝜕𝐵𝑧

𝜕𝑦
 - 

𝜕𝐵𝑦

𝜕𝑧
) – Ay(

𝜕𝐵𝑥

𝜕𝑧
 - 

𝜕𝐵𝑧

𝜕𝑥
) 

– Az(
𝜕𝐵𝑦

𝜕𝑥
 - 

𝜕𝐵𝑥

𝜕𝑦
) 

                    = (Bx𝑖̂ + By𝑗̂ + Bz𝑘̂). [(
𝜕𝐴𝑧

𝜕𝑦
 - 

𝜕𝐴𝑦

𝜕𝑧
)𝑖̂ + (

𝜕𝐴𝑥

𝜕𝑧
 - 

𝜕𝐴𝑧

𝜕𝑥
)𝑗̂ + (

𝜕𝐴𝑦

𝜕𝑥
 - 

𝜕𝐴𝑥

𝜕𝑦
)𝑘̂] –  

                        (Ax𝑖̂ + Ay𝑗̂ + Az𝑘̂). [(
𝜕𝐵𝑧

𝜕𝑦
 - 

𝜕𝐵𝑦

𝜕𝑧
)𝑖̂ + (

𝜕𝐵𝑥

𝜕𝑧
 - 

𝜕𝐵𝑧

𝜕𝑥
)𝑗̂ + (

𝜕𝐵𝑦

𝜕𝑥
 - 

𝜕𝐵𝑥

𝜕𝑦
)𝑘̂] 

                    = 𝐵.⃗⃗⃗⃗  curl 𝐴 - 𝐴.⃗⃗⃗⃗  curl 𝐵⃗⃗ 

                    = curl 𝐴 . 𝐵⃗⃗ - curl 𝐵⃗⃗ . 𝐴 
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Solution (ii)  

𝑐𝑢𝑟𝑙 𝑐𝑢𝑟𝑙 𝐴̅ =  ∇ × (∇ × 𝐴̅) 

       = (𝑖
𝜕

𝜕𝑥
+ 𝑗 

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
) × |

𝑖 𝑗 𝑘 
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐴𝑥 𝐴𝑦 𝐴𝑧

| 

                 = (𝑖
𝜕

𝜕𝑥
+ 𝑗 

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
) × [𝑖 (

𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
) − 𝑗(

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
) + k(

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
)] 

                = ||

𝑖 𝑗 𝑘 
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

(
𝜕𝐴𝑦

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
) (

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
) (

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
)

|| 

         = 𝑖 [
𝜕

𝜕𝑦
 (

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
) −

𝜕

𝜕𝑧
(

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
)] + 𝑗 [

𝜕

𝜕𝑧
 (

𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
) −

𝜕

𝜕𝑥
(

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
)]  

                                                                         +𝑘 [
𝜕

𝜕𝑥
 (

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
) −

𝜕

𝜕𝑦
(

𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
)] 

        = 𝑖 [
𝜕2𝐴𝑦

𝜕𝑦𝜕𝑥
−

𝜕2𝐴𝑥

𝜕𝑦2 −
𝜕2𝐴𝑥

𝜕𝑧2 +
𝜕2𝐴𝑧

𝜕𝑧𝜕𝑥
] + 𝑗 [

𝜕2𝐴𝑧

𝜕𝑧𝜕𝑦
−

𝜕2𝐴𝑦

𝜕𝑧2 −
𝜕2𝐴𝑦

𝜕𝑥2 +
𝜕2𝐴𝑥

𝜕𝑥𝜕𝑦
] 

                                                          +𝑘 [
𝜕2𝐴𝑥

𝜕𝑥𝜕𝑧
−

𝜕2𝐴𝑧

𝜕𝑥2 −
𝜕2𝐴𝑧

𝜕𝑦2 +
𝜕2𝐴𝑦

𝜕𝑦𝜕𝑧
] 

         = ∑ 𝑖 [(
𝜕2𝐴𝑥

𝜕𝑥2 +
𝜕2𝐴𝑦

𝜕𝑦𝜕𝑥
+

𝜕2𝐴𝑧

𝜕𝑧𝜕𝑥
 ) −  ( 

𝜕2𝐴𝑥

𝜕𝑥2 +  
𝜕2𝐴𝑥

𝜕𝑦2 +
𝜕2𝐴𝑥

𝜕𝑧2 )] 

          = ∑ 𝑖
𝜕

𝜕𝑥
 (

𝜕𝐴𝑥

𝜕𝑥
+

𝜕𝐴𝑦

𝜕𝑦
+

𝜕𝐴𝑧

𝜕𝑧
) − ∑ 𝑖 [(

𝜕2𝐴𝑥

𝜕𝑥2 +
𝜕2𝐴𝑥

𝜕𝑦2 +
𝜕2𝐴𝑥

𝜕𝑧2  )] 

                 = 𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝐴̅ − ∇2 𝐴̅  

2.7 Summary: 

1. Differentiation and integration techniques are used to solve and explain many physical 

problems. Differentiation of a vector is defined as 

  
𝑑𝑟

𝑑𝑡
= lim

𝛿𝑡→0

𝛿𝑟

𝛿𝑡
= lim

𝛿𝑡→0

𝑟(𝑡+𝛿𝑡)−𝑟(𝑡)

𝛿𝑡
 

2. If we further differentiate function with respect t then it is called second order differentiation. If 

should be cleared that the derivatives of a vector (say 𝑟) are also vector quantities. If r is a position 

vector of a particle at time t then 
𝑑𝑟

𝑑𝑡
 denotes its velocity. 

3. Partial derivative is defined as 

𝜕𝑓

𝜕𝑥
= lim

𝛿𝑥→0

𝑓(𝑥 + 𝛿𝑥, 𝑦, 𝑧) − 𝑓(𝑥, 𝑦, 𝑧)

𝛿𝑥
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In case of partial derivative with respect to a variable, all the other remaining variables are taken 

as constant.  

4. Vector differential operator del is denoted by ∇ and defined as  

∇= i
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
 

5. The gradient of a scalar function ∅ is defined as  

grad ∅ = ∇∅ = (i
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
)∅  

6. The divergence is dot product of del operator with any vector point function 𝑓 ⃗⃗⃗ ⃗ and is given as 

div. 𝑓 = ∇. 𝑓 = (𝑖
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦 
+ 𝑘

𝜕

𝜕𝑧
). (𝑖𝑓𝑥 + 𝑗𝑓𝑦+𝑘𝑓𝑧)  where 𝑓 =  𝑖𝑓𝑥 + 𝑗𝑓𝑦+𝑘𝑓𝑧  

                      =
𝜕𝑓𝑥

𝜕𝑥
+

𝜕𝑓𝑦

𝜕𝑦
+

𝜕𝑓𝑧

𝜕𝑧
  

7. The curl of a vector 𝐹⃗ = 𝐹𝑥𝑖 + 𝐹𝑦𝑗 + 𝐹𝑗𝑘 is defined as 

Curl 𝐹 = ∇ × 𝐹⃗ = (𝑖
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
) × (𝐹𝑥𝑖 + 𝐹𝑦𝑗 + 𝐹𝑗𝑘) 

8. The integral of a vector function 𝐹⃗ along a line or curve is called line integral and given as  

∫  𝐹⃗. 𝑑𝑙⃗⃗⃗⃗  
 

𝑙  
  

9. If 𝐹⃗ is a vector function and s is a surface, then surface integral of a vector function 𝐹⃗ over the 

surface S is given as  ∬ 𝐹⃗. 𝑑𝑠 
 

𝑠
   

10. If dV denotes the volume defined by dxdydz then the volume integration of a vector F is 

defined as  ∫ 𝐹𝑑𝑉 =
 

𝑉
∫  ∫  ∫  

 

𝑧

 

𝑦

 

𝑥
𝐹. 𝑑𝑥𝑑𝑦𝑑𝑧  

2.8 Glossary: 

Displacement – net change in location of a moving body.  

Differentiation- instantaneous rate of change of a function with respect to one of its variables 

Integration- The process of finding a function from its derivative. (Reverse of differentiation) 

Partial derivative- derivative of a function with respect to a variable, if all other remaining variables 

are considered as constant  

Operator – An Operator is a symbol that shows a mathematical operation. 

del operator  - vector differentiation operator 
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gradient- derivative of function.(rate of change of a function or slope)  

divergence- rate at which density exits at a given region of space. (flux density) 

Curl- describes the rotation of vector field. 

line integral- Integration along a line. 

surface integral- Integration along a surface. 

volume integral- Integration along a volume. 

1.9 Self Assessment Question (SAQ): 

1. If ∅(𝑥, 𝑦, 𝑧) = (𝑥2 + 𝑦2 + 𝑧2)−5/2 then calculate ∇∅ at a point (1 1 1). 

2. Calculate the gradient of a scalar function  ∅ (𝑥 𝑦 𝑧) = 𝑥2 + 𝑦2 +  𝑒𝑧   at point (1, 2, -2). 

3. If vector 𝐵⃗⃗ = 3𝑥𝑦𝑖 + 5𝑧𝑗 + 2𝑦𝑧2𝑘 represents the magnetic field then calculate the flux at 

point (2, 2, 1). 

4. Fiend the curl of a vector 𝐴 = 3𝑖 + 5𝑦𝑧𝑗 + 5𝑦𝑧2𝑘.  

5. Given a vector function   𝐹⃗ = 𝑦𝑖 + 𝑥𝑗, calculate the line integration ∫  𝐹⃗. 𝑑𝑙⃗⃗⃗⃗  
 

𝑙  
from point 

(1,1,1) to (8, 2, -2) along the line joining these two points. 

6. Show that ∇= 3𝑦4𝑧2𝑖 + 4𝑥3𝑧2𝑗 − 3𝑥2𝑦2𝑘 is a solenoidal vector. 

7. Prove that 𝑑𝑖𝑣 𝑔𝑟𝑎𝑑  ∅ = ∇2∅ 

8. Prove that 𝑑𝑖𝑣 (∅ 𝐴) = ∅ 𝑑𝑖𝑣 𝐴 + 𝐴 . 𝑔𝑟𝑎𝑑 ∅ 

9. Explain the physical meaning of curl. 

10. Explain different type of vector fields. 

 

2.10 Reference Books: 

1. Mechanics – D.S. Mathur, S Chand, Delhi 

2. Concept of Physics- H C Verma, Bharti Bhawan, Patna 

3. Physics Part-II, Robert Resnick and David Halliday, Wiley Eastern Ltd 

2.11 Suggested readings: 

1. Modern Physics, Beiser, Tata McGraw Hill 

2. Fundamental University Physics-I, M. Alonslo and E Finn, Addition-Wesley     

Publication 

3. Berkeley Physics Course Vol I, Mechanics, C Kittel et al, McGraw- Hill Company 

 

 

 

2.12 Terminal questions: 

2.12.1 Short answer type questions  

1. Define gradient of a scalar function ∅. 
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2. Show that ∇∅ is a vector whose magnitude is equal to maximum rate of change of ∅ with respect 

to space variable. 

3. Show that ∇∅ is perpendicular to surface  ∅. 

4. Solve  ∇ (
1

r
)  for  𝑟 ≠ 0 

5. If vector  𝐹⃗ = 6𝑥𝑧𝑖 −  𝑦2j + yzk then calculate ∫  𝐹⃗. 𝑛̂ 𝑑𝑆 
 

𝑆  
where S is the surface of a cube with 

boundaries 𝑥 = 0 𝑡𝑜 𝑥 = 2,     y= 0 𝑡𝑜 𝑦 = 2,   𝑧 = 0 𝑡𝑜 𝑧 = 2. 

6. Obtain the value [𝑔𝑟𝑎𝑑 ∅(𝑟)] × 𝑟 

7. Find the area of parallelogram determined by the vectors (𝑖 + 2j + 3k) and (−3𝑖 − 2j + 4k). 

 Essay type questions 

1.  Define divergence of a vector function and its physical significance. Obtain the expression for 

the divergence of a vector 𝐹⃗. 

2. Define curl of a vector function and its physical significance. Obtain the expression for the curl 

of a vector 𝐹⃗. 

3. Prove that ∇ × (𝐴 × 𝐵⃗⃗) =  (B⃗⃗⃗. ∇⃗⃗⃗)A⃗⃗⃗ −   (A⃗⃗⃗⃗⃗. ∇ ⃗⃗⃗⃗ )𝐵⃗⃗ + 𝐴 𝑑𝑖𝑣 𝐵⃗⃗ − 𝐵⃗⃗ 𝑑𝑖𝑣𝐴 

4. Prove that any vector function can be expressed as the sum of lamellar vector and solenoidal 

vector. 

5. Derive the equation of continuity  

∂ρ

∂t
+ div J = 0 

And show that how this equation express charge conservation. 

6. Show that 𝑢⃗⃗ × 𝑣 is solenoidal if 𝑢⃗⃗ and 𝑣 are irrotational. 
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UNIT 3   ELASTICITY AND ELASTIC CONSTANT 
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3.1 Introduction: 
In this unit 6 you will study the dynamics of rigid bodies. It means that during the motion of the 

body if the relative position of constituent particles remains same then the body is termed as rigid 

body. After the better understanding of rigid body you should try to understand the physical 

concept of non rigid body where the position of the constituent particles in the body changed after 

the application of external force.  

In physics, a rigid body is an idealization of a solid body in which deformation is 

neglected. In other words, the distance between any two given points of a rigid body remains 

constant in time regardless of external forces exerted on it. Even though such an object cannot 

physically exist due to relativity, objects can normally be assumed to be perfectly rigid if they are 

not moving near the speed of light. 

  

3.2 Objective: 
The main objective of this unit is to study in detail about 

A)  The elasticity. 

B) Physical interpretations of elasticity.  

C) Elastic limit, stress, strain, Hooks law,  

D) Different types of elastic constants and their interrelationships.  

 

3.3 Elasticity: 
 

A body's elastic properties refer to its capacity to withstand a deforming force or stress and to 

quickly regain its original size and shape when the stress has been removed. When these forces 

are released, an object made of an elastic material will revert to its original size and shape.  Two 

different sorts of material parameters affect a material's degree of elasticity. The first kind of 

material parameter is referred to as a modulus, and it gauges how much stress (force per unit area) 

is required to produce a specific level of deformation. Modulus is measured in Pascal units 

(Pa).Typically, a greater modulus means that the material is more difficult to distort. The elastic 

limit is measured by the second category of parameter. The stress beyond which the material ceases 

to behave elastically and undergoes irreversible deformation may serve as the limit. The material 

will elastically rebound to a permanently deformed shape if the stress is relieved as opposed to its 

original shape. 

3.3.1. Strain: 

 When a body is under a system of forces or couples in equilibrium then a change is 

produced in the dimensions of the body. 

 This fractional change or deformation produced in the body is called strain. 

 Strain is a dimensionless quantity. 

 Strain is of three types 

https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Physical_body
https://en.wikipedia.org/wiki/Deformation_(engineering)
https://en.wikipedia.org/wiki/Distance
https://en.wikipedia.org/wiki/Point_(geometry)
https://en.wikipedia.org/wiki/Force
https://en.wikipedia.org/wiki/Special_relativity
https://en.wikipedia.org/wiki/Speed_of_light
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(a) Longitudinal strain:- It is defined as the ratio of the change in length to the original length. If 

L is the original length and ΔL is the change in length then ΔL/L is termed as longitudinal strain.  

Experiments have shown that the change in length (ΔL) depends on only a few variables. As 

already noted ΔL is proportional to the applied force F and depends on the substance from which 

the object is made. Additionally, the change in length is proportional to the original length L0 and 

inversely proportional to the cross-sectional area of the wire or rod. For example, a long guitar 

string will stretch more than a short one, and a thick string will stretch less than a thin one. 

 

                                                                     Figure 3.1 
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(b) Volume strain:-It is defined as the ratio of change in volume to the original volume.  

(c) Shearing strain:- If the deforming forces produce change in shape of the body then the strain 

is called shear strain. In practice since θ is much smaller than l so, tanθ≅ θ and the strain is simply 

the angle θ(measured in radians). Thus, shear strain is pure number without units as it is ratio of 

two lengths. 

 

3.3.2 Stress: 

When the external deforming forces act on a body, internal forces opposing the former are 

developed at each section of the body. The magnitude of the internal forces per unit area of the 

section is called stress. In the equilibrium state of the deformed body, the internal forces are equal 

and opposite of the external forces. Therefore, Stress is measured by the external forces per 

unit area of their application.  The dimensions are [ML-1 T-2] and its units are N/m2. The details 

are discussed in the different types of elastic constants. Stress is the force per unit area on a body 

that tends to cause it to change shape. Stress is a measure of the internal forces in a body between 

its particles. These internal forces are a reaction to the external forces applied on the body that 

cause it to separate, compress or slide. External forces are either surface forces or body forces. 

Stress is the average force per unit area that a particle of a body exerts on an adjacent particle, 

across an imaginary surface that separates them. 

The formula for uniaxial normal stress is: 

𝜎 =
𝐹

𝐴
. 

Where σ is the stress, F is the force and A is the surface area.In SI units, force is measured 

in Newtonand area in square meters.  

 

3.3.3 What is elastic limit: 

Elastic limit is the upper limit of deforming force up to which, if deforming force is removed, the 

body regains its original form completely and beyond which if deforming force is increased, the 

body loses its property of elasticity and gets permanently deformed. This mobile friendly 

simulation allows students to stretch and compress spring to explore relationships among force, 

spring constant, displacement and potential energy in a spring. You can use it to promote 

understanding of predictable mathematical relationship that underlies Hooke's law. Playing around 

with this simulation you can get an understanding of restoring force.  

 

3.3.4 Stress- Strain curve: 

In the curve given below, The part OA is a straight line which shows that up to the point A, stress 

is directional proportional to strain.i.e. Hooks law is obeyed up to A. The point A is called the limit 

of proportionality. 

https://simple.wikipedia.org/wiki/Force
https://simple.wikipedia.org/wiki/Surface_area
https://simple.wikipedia.org/wiki/Deformation
https://simple.wikipedia.org/wiki/Particle
https://simple.wikipedia.org/w/index.php?title=Surface_force&action=edit&redlink=1
https://simple.wikipedia.org/w/index.php?title=Body_force&action=edit&redlink=1
https://simple.wikipedia.org/wiki/International_System_of_Units
https://simple.wikipedia.org/wiki/Newton_(unit)
https://simple.wikipedia.org/wiki/Square_metre
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If the stress is further increased, a point B known as elastic limit of the material is reached. This 

point lies near the point A and up to this point; the wire takes back its original length, when the 

load is removed. Hence for the part AB of the curve, stress is necessarily proportional to strain.  

On increasing the load beyond elastic limit, the stress-strain curve takes a bend. Now, at any point 

if the wire is unloaded, it does not regain its original length and gets permanent stretch, which we 

call permanent set. If the wire is now loaded, an entirely new stress-strain curve will represent its 

behavior. 

If the load is further increased, a point C is reached, where the strain is much greater for a small 

increase in the load. This point C is called the Yield Point and the corresponding stress being the 

yield stress. Beyond this point C, the extension increases rapidly without an increase in the load, 

i.e. the material of the wire flows beyond C. This is known as plastic flow.  As the wire becomes 

thin, the stress becomes considerably greater and the wire cannot support the same as before and 

wire is to be prevented from being broken, the load must be diminished. 

After crossing the yield point, the thinning of wire no longer remains uniform and the diameter of 

a section decreases considerably. Now, the wire shows a phenomenon, known as 'necking'. 

Immediately, as this occur, the stress decreases automatically and the portion EF of the curve is 

obtained; ultimately a point F is known as Breaking- point, is reached, at which the wire breaks. 

The stress corresponding to this point is F is known as breaking stress. Here, the stress 

corresponding to E is called the ultimate strength or tensile strength of the given material. The 

tensile strength of the material is defined as the ratio of maximum load to which the specimen wire 

may be subjected by slowly increasing load to the original cross-sectional area of the wire. The 

ultimate strength of a material is, however measured by the stress causing the test specimen to 

break. 

 

                         

  

                                                 Figure 3.2 
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3.4 Hooke's Law: 

Robert Hooke (1635-1703) invented the law as, within the proportional limit stress is directly 

proportional to strain. When studying springs and elasticity, the 17th century physicist Robert 

Hooke noticed that the stress vs strain curve for many materials has a linear region. Within certain 

limits, the force required to stretch an elastic object such as a metal spring is directly proportional 

to the extension of the spring. 

 Hook's law is the fundamental law of elasticity and is stated as “for small deformations 

stress is proportional strain. 

 stress /strain = constant  

 This constant is known as modulus of elasticity of a given material, which depends upon 

the nature of the material of the body and the manner in which body is deformed. 

 Hook's law is not valid for plastic materials. 

 Units and dimension of the modulus of elasticity are same as those of stress. 

 

Example for Understanding: 
  

The spring is a marvel of human engineering and creativity. For one, it comes in so many varieties 

– the compression spring, the extension spring, the torsion spring, the coil spring, etc. – all of 

which serve different and specific functions. These functions in turn allow for the creation of many 

man-made objects, most of which emerged as part of the Scientific Revolution during the late 17th 

and 18th centuries. 

 
Figure 3.3: Illustration of Hooke’s Law, showing the relationship between force and distance 

when applied to a spring. 

 

http://www.universetoday.com/wp-content/uploads/2010/02/Hookes-Law.gif
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As an elastic object used to store mechanical energy, the applications for them are extensive, 

making possible such things as an automotive suspension systems, pendulum clocks, hand sheers, 

wind-up toys, watches, rat traps, digital micromirror devices, and of course, the slinky. Like so 

many other devices invented over the centuries, a basic understanding of the mechanics is required 

before it can so widely used.  

This can be expressed mathematically as F = -kX, where F is the force applied to the spring (either 

in the form of strain or stress); X is the displacement of the spring, with a negative value 

demonstrating that the displacement of the spring once it is stretched; and k is the spring constant. 

Hooke’s law is the first classical example of an explanation of elasticity – which is the property of 

an object or material which causes it to be restored to its original shape after distortion. This ability 

to return to a normal shape after experiencing distortion can be referred to as a “restoring force”. 

Understood in terms of Hooke’s Law, this restoring force is generally proportional to the amount 

of “stretch” experienced. 

   

Figure 3.4 Illustration from Hooke’s 1678 treaties “De potential restitutive (Of Spring)” Source: 

umn.edu 

In addition to governing the behavior of springs, Hooke’s Law also applies in many other situations 

where an elastic body is deformed. These can include anything from inflating a balloon and pulling 

http://www.universetoday.com/wp-content/uploads/2015/02/Hooke1678.jpg
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on a rubber band to measuring the amount of wind force needed to make a tall building bend and 

sway. 

This law has had many important practical applications, with one being the creation of a balance 

wheel, which made possible the creation of the mechanical clock, the portable timepiece, the spring 

scale and the manometer (the pressure gauge). Also, because it is a close approximation of all solid 

bodies (as long as the forces of deformation are small enough), numerous branches of science and 

engineering as also indebted to Hooke for coming up with this law. These include the disciplines 

of seismology, molecular mechanics and acoustics. 

However, like most of the classical mechanics, Hooke’s Law only works within a limited frame 

of reference. Because no material can be compressed beyond a certain minimum size (or stretched 

beyond a maximum size) without some permanent deformation or change of state, it only applies 

so long as a limited amount of force or deformation is involved. In fact, many materials will 

noticeably deviate from Hooke’s law well before those elastic limits are reached. 

Still, in its general form, Hooke’s Law is compatible with Newton’s laws of static equilibrium. 

Together, they make it possible to deduce the relationship between strain and stress for complex 

objects in terms of the intrinsic material properties. For example, one can deduce that a 

homogeneous rod with uniform cross section will behave like a simple spring when stretched, with 

a stiffness (k) directly proportional to its cross-section area and inversely proportional to its length. 

3.5 Elastic Constants: 
 

3.5.1 Young's Modulus of Elasticity: 
 

 Young's Modulus of elasticity is the ratio of longitudinal stress to longitudinal strain, within 

elastic limit. 

 It is denoted by Y. 

 Young's Modulus of elasticity is given by  

 

  

 

 Let us now consider a wire of length l having area of cross-section equal to A.  

 

 
 

                                       Figure 3.4 
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If the force F acting on the wire, stretches the wire by length Δ l then 

  

and 

  

From (1) and (2) we have Young's modulus of elasticity as  

  

 Young's modulus of elasticity has dimensions of force/Area i.e. of pressure. 

 Unit of Young's modulus is N/m2. 

 If area of cross-section of a wire is given by A = πr2 then Young's modulus is  

 

  

again if A = π r2 = 1cm2 and Δ l = l = 1cm then  

Y = F 

Thus, Young's modulus can also be defined as the force required to double the length of 

a wire of unit length and unit area of cross-section. 

 

3.5.2 Bulk Modulus of Elasticity: 
 The ratio of normal stress to volume strain within elastic limits is called Bulk Modulus of 

elasticity of a given material. 

 It is denoted by K. 

 Suppose a force F is applied normal to a surface of a body having cross-sectional area equal 

to A, so as to cause a change in it’s volume. 

If applied force bring about a change ΔV in the volume of the body and V is the original 

volume of the body then, 

  

and  

 

Volume strain = ΔV/V 

  

So, Bulk Modulus of elasticity would be,  
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Thus,  

 
 For gases and liquids the normal stress is caused by change in pressure i. e.,  

normal stress = change in pressure ΔP. 

Thus, bulk Modulus is 

  

here negative sign indicates that the volume decreases if pressure increases and vice-versa. 

 For extremely small changes in pressure and volume, the Bulk Modulus is given by 

 

 
 Reciprocal of Bulk Modulus is called compressibility of the substance. Thus, 

 

  

3.5.3 Modulus of Rigidity (η): 
 

 When a body is sheared, the ratio of tangential stress to the shearing strain within elastic 

limits is called the Modulus of Rigidity and it is denoted by η. 

 If lower face of the rectangular block shown below in the figure, is fixed and tangential 

force is applied at the upper face of area A, then shape of rectangular block changes. 

 

 
 

                                              Figure 3.6 
So,  

shearing strain = θ ≅ tanθ = 
𝑏𝑏 ̕ʹ

𝑙
 = 

𝑥

𝑙
 (where bb̓ = x, displacement of upper face)  

or, 

𝑡𝑒𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 =
𝐹

𝐴
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Thus,  

 

 
 

 

3.5.4 Poisson’s Ratio: 

The ratio of lateral strain to linear strain is called Poisson’s ratio. It is denoted by ‘σ’. The lateral 

strain is defined as the ratio of change in diameter to original diameter. If a wire of length L and 

diameter D, is elongated by pulling to length (L+ l), it’s literal dimension (diameter) decreases to 

(D-d). 

σ = lateral strain/linear strain. 

    =  
(𝑑

𝐷⁄ )

(𝑙
𝐿⁄ )

 

The value of ‘σ’ varies from 1/3 to 1/4 depending upon the material. If 𝜏 is the applied tensile 

stress and 𝛾 is the young’s modulus of the wire, then linear strain is (𝜏/𝛾) and lateral strain is 

𝜎. (𝜏
𝛾⁄ ) 

 

3.5.5 Points you must note about elastic modulus: 

 
1. The value of elastic modulus is independent of stress and strain. It depends only on the 

nature of the material. 

2. Greater value of modulus of elasticity means that the material has more elasticity i.e., 

material is more elastic. 

3. Young's Modulus and Shear Modulus exists only for solids while Bulk Modulus is defined 

for all three stats of matter. 

4. Three modulus of elasticity Y, η and K depends on temperature. Their value decreases 

with the increase in temperature. 

5. In case of longitudinal stress, shape remains unchanged while the volume changes. In 

tensile one volume increases while in compressive one volume decreases. 

6. In shear stress, volume remains the same but shape changes. 

7. In volume stress, volume changes but shape remains the same. 
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3.6 Relation between elastic constants 

3.6.1 Relation between Y, η and σ: 

                       Y = 2η [1+ σ] 

 

3.6.2 Relation between Y, 𝝈 and K: 

                Y =  3K (1-2σ) 

 

3.6.3 Relation between Y, η and K: 

                     Y=9Kη/ (3K+η) 

 

3.7 DERIVATION OF RELATION AMONG ELASTIC CONSTANTS: 

3.7.1 Derivation for the Relation between Y, η and σ: 

Let us establish a relation among the elastic constants Y, η and σ. Consider a cube of material of 

side ‘a' subjected to the action of the shear and complementary shear stresses as shown in the figure 

and producing the strained shape as shown in the figure below. Assuming that the strains are small 

and the angle A C B may be taken as 450. 

 

     Figure 3.7 

Therefore, strain on the diagonal OA = Change in length / original length 
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Since angle between OA and OB is very small hence OA = OB therefore BC, is the change in the 

length of the diagonal OA 

Thus, strain on diagonal OA = BC/OA 

                                             = AC cos 450 / OA 

OA= a/ sin 450 

 = a. √ 2 

Hence, tensile strain = AC/a√ 2  . 1/ √ 2 

          γ=AC / 2a 

but AC = a γ (as tan γ ≅ γ = AC/a) , where γ = shear strain 

Thus, the strain on diagonal = ar /2a = r / 2 

From the definition, If 𝜏 is the applied sharing stress, then  

η = 𝜏/ γ or  

γ = 𝜏/ η 

Thus, the strain on the diagonal= γ /2 = 𝜏 / 2η. 

Now this shear stress system is equivalent or can be replaced by a system of direct stresses at 450 as 

shown below. One set will be compressive, the other tensile, and both will be equal in value to the 

applied shear strain stress 𝜏, thus decreasing diagonal DN and increasing OC in length. 

 

                                    Figure 3.8 

Thus, for the direct state of stress system which applies along the diagonals: 

strain on diagonal = 𝜎1 = σ1/Y - σ. σ2 /Y, ( a compressive strain 𝜏2/ 𝛾 is equivalent to a tensile strain 

𝜏 × (𝜏2/ 𝛾) in the lateral direction OA, increasing it’s length) 
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=𝜏/ Y- σ. (-𝜏)/Y 

= 𝜏/ Y(1+σ). 

Equating the two strains one may get  

𝜏/2η= 𝜏(1+σ)/ Y 

Y= 2η(1+σ). 

We have introduced a total of four elastic constants, i.e Y, η, K and σ. It turns out that not all of 

these are independent of the others. In fact given any two of them, the other two can be found. 

Again     Y= 3K(1-2σ) 

             K = Y/{3(1-2σ)}  

When σ = 0.5, the value of E is infinite, rather than a zero value of E and volumetric strain is zero, 

or in other words, the material is incompressible. 

 

3.7.2 Derivation for the Relation between Y, K and σ: 

Consider a cube subjected to three equal stresses 𝜏 as shown in the figure below, due to which it 

is being expanded in all directions. 

 

                       Figure 3.9 

The total strain in one direction or along one edge due to the application of hydrostatic stress or 

volumetric stress 𝜏 is given as; 

Liner strain along one edge =  
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𝜏/Y - σ.𝜏/Y- σ.𝜏/Y 

𝜏 (1- 2σ) / Y 

volumetric strain = 3 times of linear strain 

                            = 3.𝜏 (1- 2σ)/ Y. 

By definition  

Bulk modulus of elasticity (K) = Volumetric stress / Volumetric strain 

or 

Volumetric strain = 𝜏 / K 

Equating the two strains we get 

 Y= 3K(1-2σ) 

3.7.3 Derivation for the Relation between Y, η and K: 

The relationship between Y, η and K can be easily determined by eliminating σ from the already 

derived relations 

 Y = 2 η ( 1 + σ ) and Y = 3 K ( 1 -2 σ ). 

Thus, the following relationship may be obtained 

 Y = 9Kη/ (3K+η). 

3.7.4 Derivation for the Relation between η, K and σ: 

From the already derived relations, Y can be eliminated 

Y = 2η [1+ σ] 

Y =  3K (1-2 σ) 

Thus, we get 

2η [1+ σ] = 3K (1-2 σ) 

σ= 0.5(3K-2η)(η+3K). 
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3.8 Summary: 

In this unit, you have studied about elastic materials and their elastic properties. To present the 

clear understanding of elasticity and different elastic constants, the elastic limit, Hooke’s law and 

enter relationships between elastic constants have been discussed. The derivations of elastic 

constants in a different way are given in this chapter. Applications of elasticity in the field of 

science and technology have been described. The pictorial understanding of elastic constants such 

as Young modulus Y, Bulk modulus K and Modulus of rigidity η have been discussed. 

3.9 Glossary: 

Elastic – Regain – return into original shape  

Elastic limit – a region to follow Hooke’s law, stress proportional to strain 

Stress – force per unit area – pressure  

Limit- within the defined range 

Shear – some deformation from original one  

Confined- restricted 

Undergo- suffer 

Maintain- sustain 

Resist- refuse to go along with 

Strain – ratio of change in dimension to original dimension  

Compressibility – reciprocal of bulk modulus 

3.10 Terminal Questions: 

3.10.1 Multiple Choice Questions: 

1. Maximum limit up to which stress is applied on body without deformation is called 

a. limit 

b. elastic limit 

c. strain 

d. none of above 
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2. If a 1 m long steel wire having area 5 x 10-5 is stretched through 1 mm by force of 10, 000 N 

then young modulus of wire is 

a. 2 x 1011 N m-2 

b. 3 N m-4 

c. 4 N m-2 

d. 5 N m-2 

 

3. Ratio of stress to strain is 

a. 1 

b. 0 

c. 3 

d. constant 

 

4. Stress is 

a. External force 

b. Internal resistive force 

c. Axial force 

d. Radial force 

 

5. Which of the following is not a basic type of strain? 

 a. Compressive strain 

 b. Shear strain 

 c. Area strain 

 d. Volume strain 

 

6. Tensile Strain is 

 a. Increase in length / original length 

 b.Decrease in length / original length 

 c. Change in volume / original volume 

 d. All of the above 

 

 

7. Compressive Strain is 

 a. Increase in length / original length 

 b. Decrease in length / original length 

 c. Change in volume / original volume 

 d. All of the above 

 

8. Hooke’s law is applicable within 

 a. Elastic limit 

 b. Plastic limit 

 c. Fracture point 

 d. Ultimate strength 

 

9. Young’s Modulus of elasticity is 

 a. Tensile stress / Tensile strain 
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 b. Shear stress / Shear strain 

 c. Tensile stress / Shear strain 

 d. Shear stress / Tensile strain 

10. Maximum limit up to which stress is applied on body without deformation is called 

 a. limit  

 b. elastic limit  

 c. strain  

 d. none of above. 

 

(Ans: 1-b, 2-a, 3-d, 4-b, 5-c, 6-a, 7-b, 8-a, 9-a, 10-b) 

 

1.  If a 1 m long steel wire having area 5 * 10-5 is stretched through 1 mm by force of 10, 000 N 

then young modulus of wire is 

 a. 2X 1011 N m-2   

 b. 3 N m-4 

 c. 4 N m-2 

 d. 5 N m-2 

 

2.  Ratio of stress to strain is 

 a. 1 

 b. 0 

 c. 3 

 d. constant 

3. Which of the following material is more elastic? 

 (a) Rubber 

 (b) Glass 

 (c) Steel 

 (d) Wood 

 4. A load of 1 kN acts on a bar having cross-sectional area 0.8 cm2 and length 10 cm. The stress 

developed in the bar is 

  (a) 12.5 N/mm2 

  (b) 25 N/mm2 

  (c)  50 N/mm2 

  (d)   75 N/mm2 
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5. A brittle material has 

  (a) No elastic zone 

  (b) No plastic zone 

  (c) Large plastic zone 

  (d) None of these 

6. The length of a wire is increased by 1 mm on the application of a certain load. In a wire of the 

same material but of twice the length and half the radius, the same force will produce an elongation 

of 

 

  (a) 0.5 mm 

  (b) 2 mm 

  (c) 4 mm 

  (d) 8 mm. 

 

3.10.2 Solved Problems: 

Question 1. A block of gelatin is 60 mm by 60 mm by 20 mm when unstressed. A force of .245 

N is applied tangentially to the upper surface causing a 5 mm displacement relative to the lower 

surface. The block is placed such that 60X60 comes on the lower and upper surface. Find the 

shearing stress, shearing strain and shear modulus  

 (a) (68.1 N/m2 , .25 , 272.4 N/m2) 

 (b) (68 N/m2 , .25 , 272 N/m2) 

 (c) (67 N/m2 , .26 , 270.4 N/m2) 

 (d) (68.5 N/m2 , .27 , 272.4 N/m2) 

 

Solution: 

Shear stress =F/A=.24536×10−4=68.1N/m2 

 

Shear strain=tanθ=d/h=5/20=.25 

 

Shear modulus 

strain=272.4N/m 

 

Question 2.A steel wire of diameter 4 mm has a breaking strength of 4X105N. The breaking 

strength of similar steel wire of diameter 2 mm is  

 (a)1X105N. 
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 (b) 4X105N. 

 (c) 16X105N. 

 (d) none of the these 

Solution  

Breaking strength is proportional to square of diameter,Since diameter becomes half,Breaking 

strength reduced by 1/4.  Hence A is correct. 

Question 3.What is the SI unit of modulus of elasticity of a substance? 

 (a) Nm-1 

 (b) Nm-2 

 (c) Jm-1 

 (d) Unit less quantity 

 

Solution  

Answer is b  

 

Question 4A thick uniform rubber rope of density 1.5 gcm-3 and Young Modulus 5X10106 Nm-

2 has a length 8 m. when hung from the ceiling of the room, the increase in length due to its own 

weight would be ?  

 (a) .86m 

 (b) .2m 

 (c) .1m 

 (d) .096m 

Solution The weight of the rope can be assumed to act at its mid point. Now the extension x is 

proportional to the original length L. if the weight of the rope acts at its midpoint, the extension 

will be that produced by the half of the rope. So replacing L by L2L2 in the expression for 

Young 's Modulus. Substituting the values, we get  

l=.096ml=.096m  

3.11 Numerical Questions: 
 

Problem 1: A spring stretches 5 cm when a load of 20 N is hung on it. If instead, we put a load of 

30 N, how much will the spring stretch? What is the spring constant? 

 

Solution: There are a couple of ways to solve this problem. 

Way #1: Notice that 30 N = 20 N  + 10 N 

20 N creates a stretch of 5 cm. Since 10 N is half of 20 N, then 10 N will create a stretch that is 

half of 5 cm or 2.5 cm. 

Total stretch = 5 cm  + 2.5 cm = 7.5 cm 

Way #2: Set up a proportion. 
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5 cm is to 20 N as 'new stretch' is to 30 N. 

5 × 30 = new stretch × 20 

150 = new stretch × 20 

new stretch =   7.5 cm  

To get the spring constant, make a couple of good observation. 

20 = 4 × 5 

30 = 4 × 7.5 

F = 4 × x 

F is the force applied and x is the stretch 

The spring constant is k = 4 

 

 

Problem 2: With a weight of 25 kg, a spring stretches 6 cm. Its elastic limit is reached with a 

weight of 150 kg. How far did the spring stretch? 

Since 150 kg divided by 25 kg = 6 kg, 150 kg is 6 times bigger. 

The stretch will then be 6 times bigger than 6 cm or 36 cm. 

 

Problem 3: A spring has a spring constant that is equal to 3.5. What force (in kilograms) will make 

it stretch 4 cm?  

F = k × x 

F = 3.5 × 4 

F = 14 kg  

 

Problem 4: When the weight hung on a spring is increased by 60 N, the new stretch is 15 cm more. 

If the original stretch is 5 cm, what is the original weight? 

We will need some algebra and a proportion to solve this tough word problem. 

Let x be the original weight, then x + 60 is the new weight 

If the original stretch is 5 cm, then the new stretch is 20 cm. 

 

x × 20 = 5 × x + 5 × 60 

 

20x = 5x + 300 

 

15x = 300 

 

Since 15 × 20 = 300, the original weight is 20 N. 
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4.1 Introduction: 
Surface tension is essentially the tendency of liquids to contract in order to provide the least amount 

of surface area. The attraction between each liquid molecule, which tries to stick together and close 

the space between them, is what causes this. 

Liquids interacting with gases or solids have the same force of attraction. In fact, this is the reason 

why water frequently clings to a beaker's sides even after being poured out. Or perhaps a coating 

of oil forms on the water's surface. 

We must first comprehend surface energy in order to comprehend surface tension. The effort put 

forth per unit area to produce and maintain a surface is known as surface energy. This is a result 

of the liquid's molecules' strong attraction to one another. 

 

Let's use a surface tension example to better grasp this. Insects of any size that you may see in 

water do not perish. This is due to the fact that their weight is insufficient to overcome the mutual 

force between the water molecules on the surface. As a result, when an insect moves, it cannot 

produce enough surface energy to release the water's surface tension. 

Surface tension in water is caused by the cohesion of the water molecules. Water atoms adhere to 

one another. However, as one surface comes into contact with air, an even stronger link is created 

between the molecules present on this surface layer since there are less water molecules to cling 

to on the surface. As a result, there is now a significant surface tension that forms a film between 

the air and the water. 

 

4.2 Objective: 
The main objective of this unit is to study in detail about the surface tension and their physical 

interpretations and also to acquaint the student about the elastic limit, stress, strain, Hooks law, 

different types of elastic constants and their interrelationships. However, the deformation in the 

object can occur after the application of external force. The physical interpretation and their 

concerned relations have been interpreted in their subsequent sections. At last the varities of 

problems related to different topics have been discussed for better understanding.  
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4.3. Surface tension:  

Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area 

possible. Surface tension is what allows objects with a higher density than water such as razor 

blades and insects (e.g. water strides) to float on a water surface without becoming even partly 

submerged.  

Surface tension is the energy, or work, required to increase the surface area of a liquid due to 

intermolecular forces. Since these intermolecular forces vary depending on the nature of the liquid 

(e.g. water vs. gasoline) or solutes in the liquid (e.g. surfactants like detergent), each solution 

exhibits differing surface tension properties. Whether you know it or not, you already have seen 

surface tension at work. Whenever you fill a glass of water too far, you may notice afterward that 

the level of the water in the glass is actually higher than the height of the glass. You may have also 

noticed that the water that you spilled has formed into pools that rise up off the counter. Both of 

these phenomena are due to surface tension. 

At liquid air interfaces, surface tension results from the greater attraction of liquid molecules to 

each other (due to cohesion) than to the molecules in the air (due to adhesion). 

There are two primary mechanisms in play. One is an inward force on the surface molecules 

causing the liquid to contract. Second is a tangential force parallel to the surface of the liquid. This 

tangential force is generally referred to as the surface tension. The net effect is the liquid behaves 

as if its surface were covered with a stretched elastic membrane. But this analogy must not be 

taken too far as the tension in an elastic membrane is dependent on the amount of deformation of 

the membrane while surface tension is an inherent property of the liquid air or liquid vapour 

interface. 

Because of the relatively high attraction of water molecules to each other through a web of 

hydrogen bonds, water has a higher surface tension (72.8 millinewtons (mN) per meter at 20 °C) 

than most other liquids. Surface tension is an important factor in the phenomenon of capillarity.  
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Surface tension has the dimension of force per unit lenth, or of energy per unit area.  The two are 

equivalent, but when referring to energy per unit of area, it is common to use the term surface 

energy which is a more general term in the sense that it applies also to solids.  

In material sciences, surface tension is used for either surface stress or surface energy.  

4.3.1. Causes 

Due to the cohesive forces, a molecule located away from the surface is pulled equally in every 

direction by neighboring liquid molecules, resulting in a net force of zero. The molecules at the 

surface do not have the same molecules on all sides of them and therefore are pulled inward. This 

creates some internal pressure and forces liquid surfaces to contract to the minimum area. 

There is also a tension parallel to the surface at the liquid-air interface which will resist an external 

force, due to the cohesive nature of water molecules. 

The forces of attraction acting between molecules of the same type are called cohesive forces, 

while those acting between molecules of different types are called adhesive forces. The balance 

between the cohesion of the liquid and its adhesion to the material of the container determines the 

degree of wetting, the contact angle, and the shape of meniscus. When cohesion dominates 

(specifically, adhesion energy is less than half of cohesion energy) the wetting is low and the 

meniscus is convex at a vertical wall (as for mercury in a glass container). On the other hand, when 

adhesion dominates (when adhesion energy is more than half of cohesion energy) the wetting is 

high and the similar meniscus is concave (as in water in a glass).  

Surface tension is responsible for the shape of liquid droplets. Although easily deformed, droplets 

of water tend to be pulled into a spherical shape by the imbalance in cohesive forces of the surface 

layer. In the absence of other forces, drops of virtually all liquids would be approximately 

spherical. The spherical shape minimizes the necessary "wall tension" of the surface layer 

according to Laplace law.  
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                       Fig. 4.1.: Diagram of the cohesive forces on molecules of a liquid 

Another way to view surface tension is in terms of energy. A molecule in contact with a neighbor 

is in a lower state of energy than if it were alone. The interior molecules have as many neighbors 

as they can possibly have, but the boundary molecules are missing neighbors (compared to interior 

molecules) and therefore have higher energy. For the liquid to minimize its energy state, the 

number of higher energy boundary molecules must be minimized. The minimized number of 

boundary molecules results in a minimal surface area. As a result of surface area minimization, a 

surface will assume a smooth shape. 

4.3.2. Molecular Perspective 

In a sample of water, there are two types of molecules. Those that are on the outside, exterior, and 

those that are on the inside, interior. The interior molecules are attracted to all the molecules around 

them, while the exterior molecules are attracted to only the other surface molecules and to those 

below the surface. This makes it so that the energy state of the molecules on the interior is much 

lower than that of the molecules on the exterior. Because of this, the molecules try to maintain a 

minimum surface area, thus allowing more molecules to have a lower energy state. This is what 

creates what is referred to as surface tension. An illustration of this can be seen in Figure 
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                                       Fig. 4.2.: Water's Polar Property 

The water molecules attract one another due to the water's polar property. The hydrogen ends, 

which are positive in comparison to the negative ends of the oxygen cause water to "stick" together. 

This is why there is surface tension and takes a certain amount of energy to break these 

intermolecular bonds. Same goes for other liquids, even hydrophobic liquids such as oil. There are 

forces between the liquid such as Van der Waals forces that are responsible for the intermolecular 

forces found within the liquid. It will then take a certain amount of energy to break these forces, 

and the surface tension. Water is one liquid known to have a very high surface tension value and 

is difficult to overcome. 

Surface tension of water can cause things to float which are denser than water, allowing organisms 

to literally walk on water (Figure 2). An example of such an organism is the water strider, which 

can run across the surface of water, due to the intermolecular forces of the molecules, and the force 

of the strider which is distributed to its legs. Surface tension also allows for the formation of 

droplets that we see in nature. 

Physical units : Surface tension, represented by the symbol T, is measured in force per unit lenth. 

Its SI unit is newton per meter but the cgs unit of  dyne  per centimeter is also used.  
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4.3.3. Definition: Surface tension can be defined in terms of force or energy.  

In terms of force: Surface tension T of a liquid is the force per unit length. In the illustration on 

the right, the rectangular frame, composed of three unmovable sides (black) that form a "U" shape, 

and a fourth movable side (blue) that can slide to the right. Surface tension will pull the blue bar 

to the left; the force F required to hold the movable side is proportional to the length L of the 

immobile side. Thus the ratio F/L depends only on the intrinsic properties of the liquid 

(composition, temperature, etc.), not on its geometry. For example, if the frame had a more 

complicated shape, the ratio F/L, with L the length of the movable side and F the force required to 

stop it from sliding, is found to be the same for all shapes. We therefore define the surface tension 

as  

                              

The reason for the 1/2 is that the film has two sides (two surfaces), each of which contributes 

equally to the force; so the force contributed by a single side is γL = F/2.  

In terms of energy: Surface tension T of a liquid is the ratio of the change in the energy of the 

liquid to the change in the surface area of the liquid (that led to the change in energy). This can be 

easily related to the previous definition in terms of force if F is the force required to stop the side 

from starting to slide, then this is also the force that would keep the side in the state of sliding at 

a constant speed (by Newton's Second Law). But if the side is moving to the right (in the direction 

the force is applied), then the surface area of the stretched liquid is increasing while the applied 

force is doing work on the liquid. This means that increasing the surface area increases the energy 

of the film. The work done by the force F in moving the side by distance Δx is W = FΔx; at the 

same time the total area of the film increases by ΔA = 2LΔx (the factor of 2 is here because the 
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liquid has two sides, two surfaces). Thus, multiplying both the numerator and the denominator of 

γ = 1/2F/L by Δx, we get  

This work W is, by the usual argument, interpreted as being stored as potential energy. 

Consequently, surface tension can be also measured in SI system as joules per square meter and in 

the cgs system as ergs per cm2. Since mechanical system try to find a state of minimum potential 

energy, a free droplet of liquid naturally assumes a spherical shape, which has the minimum 

surface area for a given volume. The equivalence of measurement of energy per unit area to force 

per unit length can be proven by dimensional analysis.  

4.3.4. Effects 

4.3.4.1. Water 

Several effects of surface tension can be seen with ordinary water:  

A. Beading of rain water on a waxy surface, such as a leaf. Water adheres weakly to wax and 

strongly to itself, so water clusters into drops. Surface tension gives them their near-

spherical shape, because a sphere has the smallest possible surface area to volume ratio.. 

B. Formation of drops occurs when a mass of liquid is stretched. The animation (below) shows 

water adhering to the faucet gaining mass until it is stretched to a point where the surface 

tension can no longer keep the drop linked to the faucet. It then separates and surface 

tension forms the drop into a sphere. If a stream of water were running from the faucet, the 

stream would break up into drops during its fall. Gravity stretches the stream, then surface 

tension pinches it into spheres. 

C. Flotation of objects denser than water occurs when the object is nonwettable and its weight 

is small enough to be borne by the forces arising from surface tension. For example, water 

striders use surface tension to walk on the surface of a pond in the following way. The non-

wettability of the water strider's leg means there is no attraction between molecules of the 

leg and molecules of the water, so when the leg pushes down on the water, the surface 

tension of the water only tries to recover its flatness from its deformation due to the leg. 

This behavior of the water pushes the water strider upward so it can stand on the surface 

of the water as long as its mass is small enough that the water can support it. The surface 
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of the water behaves like an elastic film: the insect's feet cause indentations in the water's 

surface, increasing its surface area and tendency of minimization of surface curvature (so 

area) of the water pushes the insect's feet upward. 

D. Separation of oil and water (in this case, water and liquid wax) is caused by a tension in 

the surface between dissimilar liquids. This type of surface tension is called "interface 

tension", but its chemistry is the same. 

E.  Tears of wineis the formation of drops and rivulets on the side of a glass containing an 

alcoholic beverage. Its cause is a complex interaction between the differing surface 

tensions of water and ethanol it is induced by a combination of surface tension modification 

of water by ethanol together with ethanol evaporating faster than water. 

4.3.4.2. Surfactants 

Surface tension is visible in other common phenomena, especially when surfactants are used to 

decrease it:  

 Soap bubbles have very large surface areas with very little mass. Bubbles in pure water are 

unstable. The addition of surfactants, however, can have a stabilizing effect on the bubbles. 

Surfactants actually reduce the surface tension of water by a factor of three or more. 

 Emulsions are a type of colloid in which surface tension plays a role. Tiny fragments of oil 

suspended in pure water will spontaneously assemble themselves into much larger masses. 

But the presence of a surfactant provides a decrease in surface tension, which permits 

stability of minute droplets of oil in the bulk of water (or vice versa). 

4.3.4.3. Floating objects 

When an object is placed on a liquid, its weight Fw depresses the surface, and if surface tension 

and downward force become equal then it is balanced by the surface tension forces on either side 

Fs, which are each parallel to the water's surface at the points where it contacts the object. Notice 

that small movement in the body may cause the object to sink. As the angle of contact decreases, 

surface tension decreases. The horizontal components of the two Fs arrows point in opposite 

directions, so they cancel each other, but the vertical components point in the same direction and 

therefore add up to balance Fw. The object's surface must not be wettable for this to happen, and 
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its weight must be low enough for the surface tension to support it. If m denotes the mass of the 

needle and g acceleration due to gravity, we have  

 

 

                      Fig. 4.3: Needle Floating on the Surface of Water 

Cross-section of a needle floating on the surface of water. Fw is the weight and Fs are surface 

tension resultant forces. 

4.3.4.4. Liquid surface 

To find the shape of the minimal surface bounded by some arbitrary shaped frame using strictly 

mathematical means can be a daunting task. Yet by fashioning the frame out of wire and dipping 

it in soap-solution, a locally minimal surface will appear in the resulting soap-film within seconds. 

The reason for this is that the pressure difference across a fluid interface is proportional to the 

mean curvature, as seen in the Young Laplace equation. For an open soap film, the pressure 

difference is zero, hence the mean curvature is zero, and minimal surfaces have the property of 

zero mean curvature.  
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4.3.4.5. Contact Angles 

The surface of any liquid is an interface between that liquid and some other medium. The top 

surface of a pond, for example, is an interface between the pond water and the air. Surface tension, 

then, is not a property of the liquid alone, but a property of the liquid's interface with another 

medium. If a liquid is in a container, then besides the liquid/air interface at its top surface, there is 

also an interface between the liquid and the walls of the container. The surface tension between 

the liquid and air is usually different (greater) than its surface tension with the walls of a container. 

And where the two surfaces meet, their geometry must be such that all forces balance. 

4.3.4.6. Special Contact Angles 

Observe that in the special case of a water–silver interface where the contact angle is equal to 90°, 

the liquid–solid/solid–air surface tension difference is exactly zero.  

4.3.4.7. Liquid in a Vertical Tube 

An old style mercury barometer consists of a vertical glass tube about 1 cm in diameter partially 

filled with mercury, and with a vacuum (called Torricelli’s vacuum) in the unfilled volume (see 

diagram to the right). Notice that the mercury level at the center of the tube is higher than at the 

edges, making the upper surface of the mercury dome-shaped. The center of mass of the entire 

column of mercury would be slightly lower if the top surface of the mercury were flat over the 

entire cross-section of the tube. But the dome-shaped top gives slightly less surface area to the 

entire mass of mercury. Again the two effects combine to minimize the total potential energy. Such 

a surface shape is known as a convex meniscus.  

We consider the surface area of the entire mass of mercury, including the part of the surface that 

is in contact with the glass, because mercury does not adhere to glass at all. So the surface tension 

of the mercury acts over its entire surface area, including where it is in contact with the glass. If 

instead of glass, the tube was made out of copper, the situation would be very different. Mercury 

aggressively adheres to copper. So in a copper tube, the level of mercury at the center of the tube 

will be lower than at the edges (that is, it would be a concave meniscus). In a situation where the 

liquid adheres to the walls of its container, we consider the part of the fluid's surface area that is in 
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contact with the container to have negative surface tension. The fluid then works to maximize the 

contact surface area. So in this case increasing the area in contact with the container decreases 

rather than increases the potential energy. That decrease is enough to compensate for the increased 

potential energy associated with lifting the fluid near the walls of the container.  

If a tube is sufficiently narrow and the liquid adhesion to its walls is sufficiently strong, surface 

tension can draw liquid up the tube in a phenomenon known as capillary action. The height to 

which the column is lifted is given by Jurin law. 

                                                             where  

 h is the height the liquid is lifted, 

 γla is the liquid–air surface tension, 

 ρ is the density of the liquid, 

 r is the radius of the capillary, 

 g is the acceleration due to gravity, 

 θ is the angle of contact described above. If θ is greater than 90°, as with mercury in a glass 

container, the liquid will be depressed rather than lifted. 

                                                     

                                      Fig. 4.4:   Diagram of a Mercury Barometer 
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4.4. Cohesive and Adhesive Forces 

There are several other important concepts that are related to surface tension. The first of these is 

the idea of cohesive and adhesive forces. Cohesive forces are those that hold the body of a liquid 

together with minimum surface area and adhesive forces are those that try to make a body of a 

liquid spread out. So if the cohesive forces are stronger than the adhesive forces, the body of water 

will maintain its shape, but if the opposite is true than the liquid will be spread out, maximizing its 

surface area. Any substance that you can add to a liquid that allows a liquid to increase its surface 

area is called a wetting agent. 

 

                                          Fig. 4.5: Meniscus Shape 

In the lab there are also several important points to remember about surface tension. The first 

you've probably noticed before. This is the idea of a meniscus . This is the concave (curved in) or 

convex (curved out) look that water or other liquids have when they are in test tubes. This is caused 

by the attraction between the glass and the liquid. With water, this causes it to climb up the sides 

of a test tube. This attraction is amplified as the diameter of the tubes increases; this is called 

capillary action. This can be seen if you take a tube with a very small diameter (a capillary tube) 

and lower it into a body of water. The liquid will climb up into the tube, even though there is no 

outside force. You may have also seen this when you put a straw into a drink and notice that the 

liquid level inside the straw is higher than it is in your drink. All of this however, requires that the 

adhesive forces (between the liquid and the capillary surface) be higher than the cohesive forces 

(between the liquid and itself), otherwise there will be no capillary action or the opposite can even 
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happen. Mercury has higher cohesive forces than adhesive forces, so the level of the liquid will 

actually be lower in the capillary tubes than compared to the rest of the mercury. 

4.4.1. Cohesion and Adhesion in Liquids 

Children blow soap bubbles and play in the spray of a sprinkler on a hot summer day. An 

underwater spider keeps his air supply in a shiny bubble he carries wrapped around him. A 

technician draws blood into a small-diameter tube just by touching it to a drop on a pricked finger. 

A premature infant struggles to inflate her lungs. What is the common thread? All these activities 

are dominated by the attractive forces between atoms and molecules in liquids both within a liquid 

and between the liquid and its surroundings. 

Attractive forces between molecules of the same type are called cohesive forces. Liquids can, for 

example, be held in open containers because cohesive forces hold the molecules together. 

Attractive forces between molecules of different types are called adhesive forces. Such forces 

cause liquid drops to cling to window panes, for example. In this section we examine effects 

directly attributable to cohesive and adhesive forces in liquids. 

Cohesive forces between molecules cause the surface of a liquid to contract to the smallest possible 

surface area. This general effect is called surface tension. Molecules on the surface are pulled 

inward by cohesive forces, reducing the surface area. Molecules inside the liquid experience zero 

net force, since they have neighbors on all sides. 

Surface tension is proportional to the strength of the cohesive force, which varies with the type of 

liquid. Surface tensionγis defined to be the force F per unit length L exerted by a stretched liquid 

membrane: 

                                                             

Surface tension is the reason why liquids form bubbles and droplets. The inward surface tension 

force causes bubbles to be approximately spherical and raises the pressure of the gas trapped inside 
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relative to atmospheric pressure outside. It can be shown that the gauge pressure Pinside a spherical 

bubble is given by 

                                                               

Where r is radius of bubble. 

Liquid Surface Tensoin (N/m) 

Water 0.0756 

Water 0.0728 

Water 0.0589 

Soapy Water 0.0370 

Ethyl alchohal 0.0223 

Glycerin 0.0631 

Mercury 0.435 

Olive Oil 0.032 

Tissue Fluid 0.050 

Gold  0.058 

Oxygen 0.0756 

Blood Whole  0.0756 

Blood Plasma 0.0756 

 

4.5. Surface Energy Formula 

Surface energy is the energy that exists between the surface molecules of solid materials or 

substances when a comparable attractive force exists. Low to high energies, or vice versa, are 

different. It is impossible to measure surface energy. It occurs as a result of a molecule-molecule 

interaction. A stretched membrane refers to the free surface of a liquid. The surface, which is 
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known as Surface Free Energy, holds some Potential Energy on the liquid surface. Surface energy 

will be discussed in detail in this article. 

The work done on the outer portion of a material when the atoms are not bonded to another atom 

in their immediate vicinity is known as surface energy. Any material’s atoms must be joined to 

other atoms to function properly. This is due to the fact that connected atoms completely encircle 

the material’s physical aspect, which remains constant. When the material reaches the surface, 

however, the atom’s bonds rip open, and there are no bonds on the substance’s outer surface. 

Surface energy is the technical term for this. Higher surface energy indicates that atoms are more 

motivated to rejoin links. 

When a spring is stretched, some work is done on it, and the work is stored as Potential energy, 

also known as Elastic potential energy. There will be no potential energy if the body is in its 

undamaged state. When we talk about free surfaces of liquids, we know that they are stretched 

membranes, thus the surface will store some potential energy due to the stretched surface, which 

is referred to as Surface energy or Surface free energy because it is just at the liquid’s surface. 

Joules/m2 or Newton/meter (N/m) is the SI unit for surface energy. 

4.5.1. Formula of Surface Energy 

The Surface Energy is calculated using the following formula: 

Surface Energy = Work Done / Area 

E = S × ΔA 

Where, 

 E = Surface Energy, 

 S = Surface Tension, 

 ΔA = Increase in Surface Area. 

 Surface Energy Dimensional Formula 

 The surface energy dimensional formula is as follows: [M1L0T-2]. 
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(i)  Work Done in Blowing a Liquid Drop: If a liquid drop is blown up from a radius r1 to r2, 

then work done for that is 

W = S . 4π(r2² – r1²) 

(ii) Work Done in Blowing a Soap Bubble: As a soap bubble has two free surfaces, hence work 

done in blowing a soap bubble so as to increase its radius from r1 to r2 is given by 

W = S . 8π(r2² – r1²) 

(iii) Work Done in Splitting a Bigger Drop into n Smaller Droplets: If a liquid drop of radius 

R is split up into n smaller droplets, all of same size, then radius of each droplet 

r = R (n)-1/3 

Work done, W = 4πS (nr² – R²) = 4πSR² (n1/3 – 1) 

(iv)  Coalescence of Liquid Drops: If n small liquid drops of radius r each combine together so 

as to form a single bigger drop of radius R = n1/3 r, then in the process energy is released. Release 

of energy is given by 

ΔU = S 4π(nr² – R²) = 4πSr²n (1 – n-1/3) 

4.6 Summery: In this unit you have studied about surface tension. The attraction caused by 

the particles of any liquid at their surface that tends to resist the change is called as Surface 

Tension. It is the force applied on the surface of liquid per unit of its length. 

  

4.7 Glossary:  
Minimal: minimum 

 

4.8 Solved Problems 

Question 1: If the Surface Tension of water is 24 × 10-3 N/m and the Increase in Surface Area 

is 20 m. Find its Surface energy. 

Solution: 
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S = 24 × 10-3 N/m, ΔA = 20 m 

Since, 

E = S × ΔA 

∴ E = 24 × 10-3 × 20 

∴ E = 0.480 Joules/m2 

Question 2: Find the Surface Tension if the Surface Energy is 32 × 10-3 Joules/m2 and the 

Surface Area Increase is 12 m. 

Solution: 

E = 32 × 10-3 Joules/m2, ΔA = 12 m 

Since, 

E = S × ΔA 

∴ S = E / ΔA 

∴ S = 32 × 10-3 / 12 

∴ S = 2.666 × 10-3 N/m 

Question 3: If the liquid’s surface tension is 40 × 10-3 N/m and the increase in surface area is 

12 mm, Find out what its surface energy is. 

Solution: 

S = 40 × 10-3 N/m, ΔA = 12 mm = 12 × 10-3 m 

Since, 

E = S × ΔA 
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∴ E = 40 × 10-3 × 12 × 10-3 

∴ E = 0.480 × 10-3 Joules/m2 

Question 4: Assume that the Surface Tension is 9 × 10-3 N/m and the Increase in the Surface 

Area is 23 m then Find its Surface energy. 

Solution: 

S = 9 × 10-3 N/m, ΔA = 23 m 

Since, 

E = S × ΔA 

∴ E = 9 × 10-3 × 23 

∴ E = 0.207 Joules/m2  

Question 5: Find Surface Energy when surface tension is 12 × 10-3 N/m and the Increase in 

Surface Area is 31 m. 

Solution: 

S = 12 × 10-3 N/m, ΔA = 31 m 

Since, 

E 

= S × ΔA 

∴ E = 12 × 10-3 × 31 

∴ E = 0.372 Joules/m2 
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Question 6: Surface tension of water is 20 × 10-3 N/m and surface energy is 0.121 Joules/m2 

then find the increase in surface area. 

Solution: 

S = 20 × 10-3 N/m, E = 0.121 Joules/m2 = 121 × 10-3 Joules/m2 

Since, 

E = S × ΔA 

∴ ΔA = E / S 

∴ ΔA = 121 × 10-3 / 20 × 10-3 

∴ ΔA = 6.05 m 

4.9. SAQ (Self-Assessment Questions) 

SAQ 1: The density of oil is less than that of water, yet a loaded oil tanker sits lower in the water 

than an empty one. Why? 

SAQ 2: Is surface tension due to cohesive or adhesive forces, or both? 

SAQ 3: Is capillary action due to cohesive or adhesive forces, or both? 

SAQ 4: Birds such as ducks, geese, and swans have greater densities than water, yet they are able 

to sit on its surface. Explain this ability, noting that water does not wet their feathers and that they 

cannot sit on soapy water. 

SAQ 5: Water beads up on an oily sunbather, but not on her neighbor, whose skin is not oiled. 

Explain in terms of cohesive and adhesive forces. 

SAQ 6: Could capillary action be used to move fluids in a “weightless” environment, such as in 

an orbiting space probe? 
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SAQ 7: What effect does capillary action have on the reading of a manometer with uniform 

diameter? Explain your answer. 

SAQ 8: Pressure between the inside chest wall and the outside of the lungs normally remains 

negative. Explain how pressure inside the lungs can become positive (to cause exhalation) without 

muscle action. 
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5.1 INTRODUCTION 

A periodic motion or harmonic motion is that repeats itself after a regular interval. The time 

interval after which the motion is repeated is called its time period. Some examples of periodic 

motion are   motion of planets around the sun, motion of a piston inside a cylinder, used in 

automobile engines, motion of a ball in a bowl etc. as shown in figure 1.  

 

 

If in case of periodic motion, the body moves back and forth repeatedly about a fixed position 

(called equilibrium or mean position), the motion is said to be oscillatory or vibratory. For 

instance, the motion of the earth around the sun or the motion of the hands of the clock, are 

examples of periodic motion, but they are not oscillatory in nature. The motion of piston in an 

automobile engine, motion of a ball in a bowl, motion of needle of sewing machine or the bob of 

a pendulum clock are all examples of oscillatory motion. An oscillating body is said to execute 

simple harmonic motion (SHM) if the magnitude of the forces acting on it is directly proportional 

to the magnitude of its displacement from the mean position and the force (called restoring force) 

is always directed towards the mean position. Thus, SHM is actually a special case of oscillatory 

or vibratory motion. We will study SHM in detail in this unit. Some examples of simple harmonic 

motion include (see Fig. 2) are motion of a simple pendulum, a vibrating tuning fork, or a spring-

mass system. 

 

 

 

 

 

 

(a) (c) (b) 

Figure 1: Some examples of periodic motion: (a) motion of the earth around the sun, or moon 

around the earth; (b) motion of a piston in a cylinder which is used in automobile engines; (c) 

motion of a ball in a bowl. 
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5.2 OBJECTIVES 

After studying this unit, you should be able to 

 understand simple harmonic motion 

 understand the amplitude and the time period of an oscillating system 

 write down the general equation of simple harmonic motion and solve it 

 describe how the acceleration, velocity, angular frequency and displacement of an 

oscillating system change with time 

 Damped harmonic motion 

 Forced harmonic motion 

5.3 OSCILLATORY MOTION 

Any oscillating system moves to and fro (back and forth) repeatedly. Oscillations may be very 

complex such as those of a piano string or those of the earth during an earthquake or beating of 

the heart. There are also oscillations which are not very evident to our senses like the oscillations 

of the air molecules that transmit the sensation of sound, the oscillations of the atoms in a solid 

that convey the sensation of temperature or the oscillations of the electrons in the antennas of radio 

and TV transmitters. It would not be an exaggeration to say that we are indeed surrounded by 

oscillations all the time because oscillations are not just confined to material objects such as 

musical instruments but visible light, micro waves, radio waves and X-rays are also the outcome 

of oscillatory   phenomena. Thus, the study of oscillations is essential for the understanding of 

various systems, be it mechanical, acoustical, electrical or atomic.   

The oscillatory motion in a physical system results from two properties – the property of inertia, 

and the property of elasticity. We will begin with two illustrative physical systems which are 

Figure 2: Some examples of SHM: (a) A simple pendulum; (b) a vibrating tuning fork; (c) an 

oscillating spring-mass system. 

(a) (b) (c) 
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described in the following sections. Studying such simple systems will help us in understanding 

the motion of more complicated oscillating systems. 

5.3.1 Simple Pendulum 

Do you remember that in your senior secondary class, you performed an experiment with a simple 

pendulum in your physics laboratory, where you measured the change in time period with the 

length of the string?  

A simple pendulum consists of a heavy point mass, suspended from a fixed support through a 

weightless inextensible string. Here, we must understand that a simple pendulum is an idealized 

model. In practice, a simple pendulum is realized by suspending a small metallic sphere by a thread 

hanging from a fixed support like a stand. Fig. 3 shows a simple pendulum in which a bob of mass 

m is suspended from the fixed support P through a light string of length l. Left to itself, the bob 

occupies the position PO, with the angle 𝜃 = 0, which is known as the mean or equilibrium 

position. From this mean position, the pendulum is drawn towards one extreme A such that the 

angle 𝜃 remains small. In doing so, the bob gains some finite potential energy. When the bob is 

released from A, it begins to move downward towards the mean position O. As a result, its potential 

energy begins to decrease  as the bob approaches O. As the potential energy decreases, the bob 

gains kinetic energy. At the mean position, the bob’s  kinetic energy is maximum and its potential 

energy is minimum. Further. Due to having gained kinetic energy, the bob does not stop at the 

mean position; it overshoots the mean position and reaches the other extreme B. At position B, 

bob’s potential energy becomes maximum and the kinetic energy is zero because its velocity 

becomes zero momentarily. After a momentary rest, the bob once again retraces its path from B to 

O to A. Thus, we see that the bob oscillates in a circular arc with the center at the point of 

suspension P. 

   

𝜃 

B 

O 

A 

P 

Figure 3: A simple pendulum. 
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Under ideal conditions, if there is no air resistance, losses due to friction do not affect the 

oscillatory motion. In such a situation, the pendulum should, in principle, oscillate forever! Each 

complete cycle of its oscillating motion takes it from one side of equilibrium to the other side and 

then back again. 

5.3.2 Spring-Mass System  

Just like simple pendulum, you must also be familiar with the spring pendulum.  

Spring mass-system or spring pendulum consists of a weightless spring of constant k, one end of 

which is fixed rigidly to a wall and the other end is attached to a body of mass m, which is free to 

move horizontally or vertically depending on the system. If it is a loaded spring, it can move to 

and fro vertically. In the case of horizontal spring-mass system, the body is free to move on a 

frictionless horizontal surface, as shown in Fig. 4. When the spring is stretched, the elasticity of 

the spring tries to bring back the mass to its mean position. As the mass reaches the mean position, 

it has attained some velocity. As a result, the mass continues to move in the same direction and 

eventually compresses the spring until it reaches the other extreme position. The compressed 

spring pushes the mass back towards its mean position and the mass retraces its path. Thus, each 

cycle of oscillation takes the mass m from one extreme position to the extreme position on the 

other side of the mean position. 

 

 

Under ideal conditions, that is, if there is no air resistance and if the horizontal surface on which 

the mass is moving is frictionless, the spring – mass system should oscillate forever!  

m 

m 

m 

-x x 

(a) 

(b) 

(c) 

F 

F 

F = 0 

Figure 4: (a) Normal, (b) stretched, (c) compressed configurations of a horizontal spring-mass 

system. 
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We will use spring-mass system, described above, to discuss the characteristics of SHM in the next 

section. You will also learn to calculate the force F shown in Fig. 4. But, before you proceed 

further, you should try to answer some questions based on what you have studied until now. 

Self Assessment Question (SAQ) 1: In practice, the oscillations in a simple harmonic motion or 

a spring-mass system die away gradually and the mass m stops moving. What do you think is the 

reason for that? 

Self Assessment Question (SAQ) 2: What are the two properties that are responsible for the 

oscillations? 

Self Assessment Question (SAQ) 3: Do you think that the minute hand of the clock moves 

periodically? If so, can we also infer that its motion is oscillatory? Explain. 

Self Assessment Question (SAQ) 4: Choose the correct option: 

The motion of Halley’s Comet around the sun is 

(a) Periodic (b) Oscillatory (c) Simple harmonic (d) Translatory. 

(Answer of Selected Self Assessment Questions (SAQs): 4. (a)) 

 

5.4 SIMPLE HARMONIC MOTION 

If the periodic motion is such that the acceleration is of particle is always directly proportional to 

its displacement from its equilibrium position and always directed to equilibrium position (with 

negative direction of displacement), the motion of particle is said to be SHM. 

     𝑎 ∝ (−𝑥)      (1.1) 

 We can also define it as if the force acting on the oscillating body is always in the direction 

opposite to the displacement of the body from the equilibrium or and its magnitude is proportional 

to the magnitude of displacement, the body is said to be executing SHM. 

                                                                  𝐹 ∝ (−𝑥)       (1.2) 

Similarly, for the spring-mass system, Hooke’s Law states that the restoring force is proportional 

to the displacement of the spring in case of stretched as well as compressed configurations. In our 

case, the restoring force exerted by the spring on the body is directed to the left [see Fig. 4 (b)] and 

is given by the following relation: 

𝐹 = −𝑘𝑥 (1.3) 
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Since, the restoring force, F is proportional to the displacement1 and is opposite in sign to the 

displacement, the resulting motion is simple harmonic. Here k is called the spring constant or 

stiffness constant. The SI unit of k is 𝑁𝑚−1. 

Example 1:  If, in a spring-mass system as shown in Fig. 4, the spring constant is 50 𝑁𝑚−1 and 

the block of mass 1 kg is displaced by 0.01 m to the right before being released, calculate the  

(a) restoring force at t = 0, 

(b) restoring force when the block travels to the other extreme, and 

(c) The restoring force in the static equilibrium position. 

Solution: 

(a) If x is taken as positive to the right of the mean position, then the restoring force is given 

by 

𝐹 = −𝑘𝑥 = −(50 𝑁𝑚−1)(0.01 m) = −0.5 𝑁 

(b) Similarly, the restoring force is given by 

𝐹 = −𝑘𝑥 = −(50 𝑁𝑚−1)(−0.01 m) = +0.5 𝑁 

(c) At the mean position, x = 0 

𝐹 = −(50 𝑁𝑚−1)(0) = 0 

 

5.4.1 Basic Characteristics of SHM  

Since we now know what SHM is, let us define some of the basic characteristics of SHM. What 

comes to your mind? The first important characteristic in SHM is the initial displacement that 

actually results in oscillations in the first place. The magnitude of the initial displacement, which 

is also the maximum displacement, is called the amplitude (A) of oscillations. As we mentioned 

before, the energy of the system executing SHM alternates between kinetic and potential forms. 

At the extremities of the oscillations, the kinetic energy is zero as the velocity is zero and the 

potential energy is the maximum. 

Another characteristic of SHM is the time period (T) which is the time taken for one complete 

cycle of oscillation. This is the least time taken by an oscillating object to move from a certain 

position and velocity back to the same position and velocity. Generally, for convenience, we 

measure the time period from either the mean position or the extreme ends.   

Instead of time period, many a times we talk in terms of the frequency (ν) to characterize SHM. 

Frequency is the number of complete oscillations executed per second and is the inverse of the 

time period, i.e. 

𝜈 =
1

𝑇
 (1.4) 
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It is expressed in cycles per second or simply 𝑠−1 or hertz (Hz). We also define a term called 

angular frequency, denoted by ω, which is given by 

𝜔 = 2𝜋𝜈 (1.5) 

It is expressed in radian per second or simply𝑟𝑎𝑑 𝑠−1, since 2𝜋 is the angle around a circle in 

radians and T is in seconds. 

Example 2:  A mass on a spring oscillates along a vertical line, taking 12 s to complete 10 

oscillations. Calculate the time period, and the angular frequency.  

Solution: 

(a) Time period is the time taken for one complete cycle of oscillation; therefore, to complete 

one oscillation, time needed will be 

𝑇 =
(12 𝑠)

(10 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑠)
= 1.2 𝑠 

(b) The frequency is given by 

𝜈 =
1

𝑇
=

1

1.2
 𝐻𝑧 

Therefore, the angular frequency is  

𝜔 = 2𝜋𝜈 =
2𝜋

1.2
= 5.23 𝑟𝑎𝑑 𝑠−1 

Self Assessment Question (SAQ) 5: An object executes simple harmonic motion with an angular 

frequency of 1.26𝑟𝑎𝑑 𝑠−1. Calculate its time period.   

Self Assessment Question (SAQ) 6: If the angular frequency 𝜔 is one revolution per minute. 

Calculate its time period. [Hint: One revolution = (2𝜋) radians] 

(Answer of selected SAQ 6. 𝜔 = 2𝜋/60  𝑟𝑎𝑑/𝑠  and 𝑇 = 1/30 𝑠) 

𝑇 = 2𝜋√
𝑚

𝑘
= 2𝜋√𝑚(

1

𝑘1

+
1

𝑘2

)  

 

5.5 DIFFERENTIAL EQUATION OF SHM 

Let us now express equation (1.3) in the differential form by using Newton’s second law of motion. 

From Newton’s second law of motion, we know that force experienced by a body of mass m can 

be expressed as a function of acceleration, 
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𝐹 = 𝑚𝑎 = 𝑚𝑥̈ = 𝑚
𝑑2𝑥

𝑑𝑡2
 

        (double dot notation 𝑥̈ =  
𝑑2𝑥

𝑑𝑡2 ) 

Therefore, in a spring-mass system, the force can be written as 

𝐹 = 𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑘𝑥 

Or we can say that  

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑘𝑥 = 0 

𝑜𝑟,
𝑑2𝑥

𝑑𝑡2
+

𝑘

𝑚
𝑥 = 0 (1.6) 

The above equation is the differential equation of SHM. k is the force constant (for our case of 

spring-mass system, it is called the spring constant) and has dimensions (𝑀𝐿𝑇−2/𝐿) = 𝑀𝑇−2. 

Therefore, the dimension of 𝑘/𝑚 is 𝑇−2, i.e. square of reciprocal of time. We can replace 𝑘/𝑚 by 

𝜔2. Thus, the equation (1.6) takes the form 

𝑥̈ + 𝜔2𝑥 = 0 (1.7) 

We will find the physical meaning of ω, that it is actually the angular frequency that we already 

defined earlier, when we solve the differential equation (1.7).  

5.5.1 Solution of the Differential Equation of SHM 

The second time derivative of displacement (𝑥̈) can be written as 

𝑥̈ =
𝑑2𝑥

𝑑𝑡2
=

𝑑

𝑑𝑡
(

𝑑𝑥

𝑑𝑡
) 

Multiplying and dividing by 𝑑𝑥 in the numerator and the denominator, we get 

𝑥̈ =
𝑑𝑥

𝑑𝑡

𝑑

𝑑𝑥
(

𝑑𝑥

𝑑𝑡
) 

We already know that 𝑥̇ or 𝑑𝑥/𝑑𝑡 actually define the velocity𝑣. Therefore, the above expression 

can take the following form 

𝑥̈ = 𝑣
𝑑

𝑑𝑥
(𝑣) 

Since, 
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𝑑

𝑑𝑥
(

𝑣2

2
) = 𝑣

𝑑𝑣

𝑑𝑥
 

We get 

𝑥̈ =
𝑑

𝑑𝑥
(

𝑣2

2
) 

 

(1.8) 

From (1.7) and (1.8), we get 

𝑑

𝑑𝑥
(

𝑣2

2
) + 𝜔2𝑥 = 0 

𝑜𝑟  
𝑑

𝑑𝑥
(

𝑣2

2
+ 𝜔2

𝑥2

2
) = 0 

∴ 𝑑(𝑣2 + 𝜔2𝑥2) = 0 (1.9) 

On integrating both the sides, we get 

𝑣2 + 𝜔2𝑥2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝐶1) 

 
(1.10) 

We already know that on the two extremes, when the magnitude of the displacement is equal to 

the amplitude (𝑥 = ±𝐴), the kinetic energy or the velocity is zero (𝑣 = 0). Using this boundary 

condition in equation (1.10), we can calculate the constant (𝐶1). Thus, 𝐶1 is given by 

(0)2 + 𝜔2(±𝐴)2 = 𝐶1 

𝑜𝑟  𝐶1 = 𝜔2𝐴2 

Using this value in equation (1.10) and rearranging the terms, we get 

𝑣2 = 𝜔2(𝐴2 − 𝑥2) 

𝑜𝑟   𝑣 = ±𝜔√(𝐴2 − 𝑥2) 

 
(1.11) 

The above relation is the expression for velocity of a particle executing SHM. We can see how the 

velocity has a maximum magnitude at 𝑥 = 0 or in other words, the mean position. From (1.11), 

the maximum velocity is given by 

|𝑣|𝑚𝑎𝑥 = 𝜔𝐴 
 

(1.12) 

Now, we will determine the expression for the displacement of a particle executing SHM. From 

(1.11), we get 

𝑑𝑥

𝑑𝑡
= ±𝜔√(𝐴2 − 𝑥2) 
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Rearranging the terms, we get  

±
𝑑𝑥

√(𝐴2 − 𝑥2)
= 𝜔𝑑𝑡 

On integrating both the sides, we get corresponding to the ( ) sign 

sin−1
𝑥

𝐴
= 𝜔𝑡 + 𝛿1 

And, corresponding to the ( ) sign 

cos−1
𝑥

𝐴
= 𝜔𝑡 + 𝛿2 

where 𝛿1 and 𝛿2 are dimensionless constants. 

Therefore, we can see that the SHM is defined by a sinusoidal curve 

𝒙(𝒕) = 𝑨 𝐬𝐢𝐧(𝝎𝒕 + 𝜹) (1.13) 

Depending on the value of constant 𝛿 and 𝜔𝑡 the displacement from the equilibrium position and 

velocity of the SHM at any instant can be determined. 

Example 4:  A 50 g mass vibrates in SHM at the end of a spring. The amplitude of the motion is 

12 cm and the period is 0.1 minutes. Find the maximum speed of the mass. What will be the speed 

at𝑥 = 𝐴/2? 

Solution: 

𝜔 = 2𝜋𝜈 = 2𝜋 (
1

0.1 × 60 𝑠
) = 1.047 𝑟𝑎𝑑 𝑠−1 

∴ |𝑣|𝑚𝑎𝑥 = 𝜔𝐴 = (1.047 𝑟𝑎𝑑 𝑠−1)(12 × 10−2 𝑚) 

= 0.1256 𝑚/𝑠 

From equation (1.11), we get 

|𝑣| = 𝜔√𝐴2 − (
𝐴

2
)

2

=
3

4
𝜔𝐴 

=
3

4
(1.047 𝑟𝑎𝑑 𝑠−1)(12 × 10−2 𝑚) = 0.0942 𝑚/𝑠 

Self Assessment Question (SAQ) 7: In the above question, calculate the speed at 𝑥 = 1 𝑐𝑚.    

Self Assessment Question (SAQ) 8: In the above question, at what location will the speed of the 

vibrating mass be 5 cm/s?    
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5.5.2 Angular Frequency of SHM 

We know that the displacement 𝑥(𝑡) should return to its initial value after one time period 𝑇 of the 

motion. Or 

𝑥(𝑡) = 𝑥(𝑡 + 𝑇) 

We also know from trigonometry that the sine or cosine function repeats itself when its argument 

has increased by 2𝜋 𝑟𝑎𝑑. Thus, 

𝜔(𝑡 + 𝑇) = 𝜔𝑡 + 2𝜋 

Or, we get 

𝜔 =
2𝜋

𝑇
= 2𝜋𝜈 (1.14) 

The quantity 𝜔 is therefore, the angular frequency that we defined earlier. Its SI unit is 𝑟𝑎𝑑 𝑠−1. 

From equation (1.6), we know that 

𝜔2 =
𝑘

𝑚
 

∴  𝜔 = √
𝑘

𝑚
 

 

(1.15) 

Example 5: A particle of mass 0.2 kg undergoes SHM according to the equation: 𝑥(𝑡) =

3 sin(𝜋𝑡 + 𝜋/4). [t is in s and x in m] 

(a) What is the amplitude of oscillation? 

(b) What is the time period of oscillation? 

(c) What is the initial value of x? 

(d) What is the initial velocity when the SHM starts? 

(e) At what instants is the particle’s energy purely kinetic? 

Solution:  

(a) Comparing the given equation with 𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝛿), we get the amplitude, 𝐴 = 3 𝑚. 

 

(b) On comparing, we get 𝜔 = 𝜋 𝑟𝑎𝑑 𝑠−1. Therefore, from (1.14), we get the time period as 

𝑇 =
2𝜋

𝜔
=

2𝜋

𝜋
= 2 𝑠 

(c) Initial conditions are at 𝑡 = 0 

𝑥(0) = 3 sin(𝜋/4) = 1.5√2 𝑚 

(d)  
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𝑑𝑥

𝑑𝑡
= 𝑣(𝑡) = 3𝜋 sin(𝜋𝑡 + 𝜋/4) 

𝑣(0) = 3𝜋 sin(𝜋/4) =
3𝜋

√2
 𝑚/𝑠 

 

(e) The energy is purely kinetic when the particle is at the mean position, i.e. when 𝑥(𝑡) = 0. 

Or 

0 = 3 sin (𝜋𝑡 +
𝜋

4
) 

∴ 𝜋𝑡 +
𝜋

4
= 0, 𝜋, 2𝜋, 3𝜋, … 

𝑖. 𝑒.   𝑡 = −
1

4
,
3

4
,
7

4
,
11

4
, … 

 

Rejecting the negative value of t, we get t = 3/4, 7/4, 11/4… At these instants, the particle 

crosses origin and hence its energy is purely kinetic. 

Self Assessment Question (SAQ) 9: How are the following characteristics of SHM affected by 

doubling the amplitude? Explain. 

(a) Time period, and (b) maximum velocity. 

Self Assessment Question (SAQ) 10: Choose the correct option: 

Which of the following functions represent SHM? 

(a) sin(2𝜔𝑡)  (b) sin−1 𝜔𝑡  (c) sin(𝜔𝑡) + 2 cos(𝜔𝑡)  (d) sin(𝜔𝑡) + cos(2𝜔𝑡)   

( Answer SAQ 9. Period remains unchanged. Maximum velocity is doubled. SAQ 10. (a)) 

 

 

Example 6: A copper spring suspended from a fixed point supports a scale pan of mass 0.05 kg at 

equilibrium. The scale pan descends 40 mm to a new equilibrium position when a 1 N weight is 

placed on it. Calculate the 

(a) spring constant, 

(b) the total mass of the scale pan and the 1 N weight. [ 𝑔 can be taken as 10 𝑚𝑠−2] 

(c) The scale pan, with 1 N weight on it, is pulled a distance of 15 mm downwards from 

equilibrium and then released. Calculate the time period of the oscillations, and 

(d) the maximum speed of the scale pan. 

Solution:  
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(a) From equation (1.18), 

𝑘 =
𝐹

𝑑
=

1

0.04
= 25 𝑁/𝑚 

 

(b) Mass of 1 N weight = weight/g = 0.1 kg. Therefore, the total mass = 0.1 + 0.05 = 0.15 kg. 

(c) The time period is given as 

𝑇 = 2𝜋√
0.15

25
= 0.49 𝑠 

 

(d) The amplitude of the oscillations = 15 mm = 0.015 m. Therefore,  

|𝑣|𝑚𝑎𝑥 = 𝜔𝐴 = (
2𝜋

0.49 𝑠
) (0.015 𝑚) = 0.195 𝑚/𝑠 

Self Assessment Question (SAQ) 11: A steel spring, suspended from a fixed point, supports a 0.2 

kg stone hung from its lower end. The stone is displaced downwards from its equilibrium position 

by a distance of 25 mm and then released. The time for 20 oscillations is measured as 22 s. 

Calculate (a) its time period, (b) its angular frequency, (c) its maximum speed, (d) the maximum 

tension in the spring. 

(Answer 11. Hint: The maximum tension in the spring will be when it is stretched to the extreme, 

which is equal to the sum of the difference of the relaxed length and the equilibrium length of the spring, 

and the amplitude of the oscillations; i.e. 𝑑 + 𝐴 = (𝑇0 + ∆𝑇)/𝑘. ) 

 

5.6 SHM as Projection of Circular Motion 

Consider a particle P moving on a circular path of radius r as shown in Fig. 2. We can write the 

coordinates of point P as 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃, where 𝑟 is the radius of the circle and 𝜃 is 

the angle between the line OP and the x-axis. 
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𝑥 = 𝑟 cos 𝜃 𝑦 = 𝑟 sin 𝜃 𝑟𝜃. From Fig. 2, you may note that, as the particle P moves along the 

circular path,, its  y-coordinate (= 𝑟 sin 𝜃) changes because  𝜃 changes from 0 to 2𝜋. Thus, we 

can see that the y-coordinate of the particle P executes SHM. Similarly, you should convince 

yourself that the x-coordinate (= 𝑟 cos 𝜃) of the particle P will also execute SHM. However, the 

phases of the two harmonic motions differ by 𝜋/2 as cos 𝜃 = sin(𝜃 + 𝜋/2). 

Therefore, the projection of a uniform circular motion on a diameter of the circle is a simple 

harmonic motion. This representation of SHM is known as the rotating vector representation. 

5.7 VELOCITY AND ACCELERATION IN SHM 

From your school mathematics, you may recall that, if we know the expression for the 

displacement of a particle, we can obtain expressions for its velocity and acceleration using 

differential calculus. In the previous Section, we obtained the expression for the velocity of the 

particle executing SHM by differentiating the expression for displacement, x(t): 

𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝛿) 

𝑑𝑥

𝑑𝑡
= 𝑣(𝑡) = 𝐴𝜔 cos(𝜔𝑡 + 𝛿) 

From the above expression, you may note  that the amplitude of velocity or maximum velocity is 

given by 

|𝑣|𝑚𝑎𝑥 = 𝜔𝐴 

In previous section, we obtained an expression for the velocity in terms of displacement and other 

parameters of SHM:  

𝑣(𝑥) = ±𝜔√(𝐴2 − 𝑥2) 

r 

𝜃 

x-axis 

y-axis 

O 

P 
+r 

-r 

𝜃 𝜋/2 

3𝜋/2 

𝜋 

2𝜋 

𝑦 = 𝑟 sin 𝜃 

Figure 5: A particle P moving on a circular path. Its projection on the diameter generates a sinusoidal 

curve. 
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To show that the above two expressions for the velocity are equivalent, we write 𝑥(𝑡) =

𝐴 sin(𝜔𝑡 + 𝛿):  

𝑣 = ±𝜔√𝐴2{1 − sin2(𝜔𝑡 + 𝛿)} 

From basic trigonometry, we know that 1 − sin2 𝜃 = cos2 𝜃 is an identity. Therefore, we get 𝑣 =

±𝐴𝜔 cos(𝜔𝑡 + 𝛿). 

Further, to obtain the expression for the acceleration of the particle executing SHM, we shall 

differentiate the expression for displacement twice, i.e. 

𝑑2𝑥(𝑡)

𝑑𝑡2
= 𝑎(𝑡) 

𝑜𝑟  
𝑑2{𝐴 sin(𝜔𝑡 + 𝛿)}

𝑑𝑡2
= 𝑎(𝑡) 

∴ 𝑎(𝑡) = −𝐴𝜔2 sin(𝜔𝑡 + 𝛿) (1.16) 

The acceleration can also be expressed in terms of the displacement of the particle,  i.e.  

𝑎(𝑡) = −𝐴𝜔2𝑥(𝑡) (1.17) 

From equation (1.17), you may note  that the acceleration in SHM is always directed towards the 

mean position. The magnitude of acceleration is minimum at the mean position and maximum at 

the extremes. 

|𝑎|𝑚𝑖𝑛 = 0     𝑎𝑡 𝑚𝑒𝑎𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
|𝑎|𝑚𝑎𝑥 = 𝜔2𝐴     𝑎𝑡 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑠 

(1.18) 

Using the expression for acceleration, we can determine the restoring force acting on the oscillating 

object: 

𝐹(𝑡) = 𝑚𝑎(𝑡) = −𝑚𝐴𝜔2 sin(𝜔𝑡 + 𝛿) ( 1.19) 

At any position x, it is given by 

𝐹(𝑥) = −𝑚𝜔2𝑥 (1.20) 

We also know that 𝐹 = −𝑘𝑥 in case of spring-mass system. Comparing it with equation (1.20) 

gives us the familiar expression for angular velocity 

𝜔 = √
𝑘

𝑚
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5.8 TRANSFORMATION OF ENERGIES IN SHM  

While discussing the motion of simple oscillatory systems, we discovered that the energy of the 

oscillation alternates between potential and kinetic forms; the potential energy being minimum at 

the mean position and maximum at the extremities. On the other hand, the kinetic energy is 

maximum at the mean position and minimum at the extremities. While the sum of potential energy 

(U) and kinetic energy (K), which is the total mechanical energy (E) of the oscillator, remains 

constant. Let us now derive an expression for the potential, kinetic and total mechanical energy in 

SHM.  

5.8.1 Potential Energy 

We shall derive the elastic potential energy of the simple spring – mass system  that we studied in 

Unit 1. The value of the elastic potential energy of the spring-mass system  depends entirely on 

how much the spring is stretched or compressed, i.e. the displacement 𝑥(𝑡) of the mass from its 

equilibrium position𝑥(𝑡)Further, the elastic  potential energy dU gained by the system is equal to 

the work done against the force in  moving it through a distance dx. In other words, 

𝑑𝑈 = −𝐹(𝑥)𝑑𝑥 (1.21) 

Replacing 𝐹(𝑥) = −𝑚𝜔2𝑥 in the above equation, we get 

𝑑𝑈 = 𝑚𝜔2𝑥 𝑑𝑥 

Thus, the total elastic potential energy at a point 𝑥 will be equal to the total work done in moving 

the oscillator from the mean position (𝑥 = 0). Therefore, integrating the above expression from 0 

to x, we get 

𝑈 = 𝑚𝜔2 ∫ 𝑥 𝑑𝑥

𝑥

0

 

𝑜𝑟   𝑈 =
1

2
𝑚𝜔2𝑥2 

∴ 𝑈 =
1

2
𝑘𝑥2 =

1

2
𝑘𝐴2 sin2(𝜔𝑡 + 𝛿) (1.22) 

Let us also calculate the average potential energy of the spring-mass system over one complete 

cycle. This can be determined by integrating it over time from 0 to T, i.e. one time period. Thus, 
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〈𝑈〉 =
1

2
𝑘𝐴2 [

∫ sin2(𝜔𝑡 + 𝛿)𝑑𝑡
𝑇

0

∫ 𝑑𝑡
𝑇

0

 ] 

=
1

2
𝑘𝐴2 [

1

2
 ] 

∴ 〈𝑈〉 =
1

4
𝑘𝐴2 

 
(1.23) 

5.8.2 Kinetic Energy 

The kinetic energy of the spring-mass system is entirely associated with the moving object. Its 

value depends on how fast the object is moving, that is, on 𝑣(𝑡). Hence, 

𝐾 =
1

2
𝑚𝑣2 

∴ 𝐾 =
1

2
𝑚𝜔2𝐴2 cos2(𝜔𝑡 + 𝛿) =

1

2
𝑘𝐴2 cos2(𝜔𝑡 + 𝛿) (1.24) 

Therefore, the average kinetic energy, which can be calculated by integrating it over time from 0 

to T, i.e. one time period,  will be 

〈𝐾〉 =
1

2
𝑘𝐴2 [

∫ cos2(𝜔𝑡 + 𝛿) 𝑑𝑡
𝑇

0

∫ 𝑑𝑡
𝑇

0

 ] 

=
1

2
𝑘𝐴2 [

1

2
 ] 

∴ 〈𝐾〉 =
1

4
𝑘𝐴2 

 
(1.25) 

Thus, we find that the average potential energy of the spring-mass system is equal to its average 

kinetic energy. 

5.8.3 Total Mechanical Energy 

Using equations (1.22) and (1.24), we can determine the total mechanical energy at a particular 

instant, by summing the potential and the kinetic energies, 

𝐸 = 𝑈 + 𝐾 

=
1

2
𝑘𝐴2 sin2(𝜔𝑡 + 𝛿) +

1

2
𝑘𝐴2 cos2(𝜔𝑡 + 𝛿) 

=
1

2
𝑘𝐴2[sin2(𝜔𝑡 + 𝛿) + cos2(𝜔𝑡 + 𝛿)] 
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From trigonometry, we know that sin2 𝜃 + cos2 𝜃 = 1 is an identity. Thus, 

𝐸 =
1

2
𝑘𝐴2 (1.26) 

The  total mechanical energy of the oscillator (spring-mass system) is indeed a constant and is 

independent of time or position.  

The potential energy and kinetic energy of a linear oscillator are shown as the function of time in 

the figure below. Note that all the energies are positive and that the potential energy and the kinetic 

energy peak twice during every period. 

 

 

Next, in Fig. 5, we show the variation of potential energy and kinetic energy of a linear oscillator 

as the function of displacement. Note that, at 𝑥 = 0, that is, at the mean position, the energy is all 

kinetic while at the extremities, i.e.at  𝑥 = ±𝐴, it is all potential. 

 

 

Self Assessment Question (SAQ) 12: Choose the correct option: 

En
er

gy
 

displacement 0 −𝐴   

𝐸 = 𝑈 + 𝐾 

𝑈(𝑥) 

𝐾(𝑥) 

𝐸 = 𝑈 + 𝐾 

time 

𝐾(𝑡) 

𝑈(𝑡) 

En
er

gy
 

T/2 

Figure 6: Potential energy, kinetic energy and total energy as functions of time, for SHM. 

Figure 7: Potential energy, kinetic energy and total energy as functions of position, for SHM. 
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A body is in SHM. The motion is represented graphically. The valid representation of the position 

will be 

(a) A square wave 

(b) A straight line 

(c) A sinusoidal curve 

(d) A (𝑦 = 𝑥2) curve 

(e) A curve of the form 𝑦 = 5|sin 𝜑| 

Self Assessment Question (SAQ) 13: In the previous question, what will be the valid 

representation of the velocity? 

Self Assessment Question (SAQ) 14: In the previous question, what will be the valid 

representation of the acceleration? 

Self Assessment Question (SAQ) 15: Choose the correct option: 

For a particle executing SHM, which of the following statements does not hold good? 

(b) The total energy of the particle always remains the same. 

(c) The restoring force is always directed towards a fixed poin.t 

(d) The restoring force is maximum at the extreme positions. 

(e) The acceleration of the particle is minimum at the mean position. 

(f) The velocity of the particle is minimum at the mean position. 

 

(SAQ) 16: Two simple harmonic motions are represented by the equations 𝑥1 = 10 sin(3𝑡 + 𝜋/4) 

and 𝑥2 = 5 cos(9𝑡 + 𝜋/3). Their amplitudes are of the ratio _____________. 

(SAQ) 17: Choose the correct option: 

A body is in SHM. The motion is represented graphically. The valid representation of the position 

will be 

(f) A square wave 

(g) A straight line 

(h) A sinusoidal curve 

(i) A (𝑦 = 𝑥2) curve 

(j) A curve of the form 𝑦 = 5|sin 𝜑| 

(SAQ) 18: In the previous question, what will be the valid representation of the velocity? 

(SAQ) 19: In the previous question, what will be the valid representation of the acceleration? 
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(SAQ) 20: Choose the correct option: 

For a particle executing SHM, which of the following statements does not hold good? 

(g) The total energy of the particle always remains the same. 

(h) The restoring force is always directed towards a fixed poin.t 

(i) The restoring force is maximum at the extreme positions. 

(j) The acceleration of the particle is minimum at the mean position. 

(k) The velocity of the particle is minimum at the mean position. 

(Answers 16. Ratio of amplitudes = 10:5 or 2:1, 17. (c) , 18. (c) , 19. (c), 20. (e) ) 

Example 7: Show that the sine and the cosine functions describing the displacement of the 

oscillating body executing SHM are equivalent.  

Solution: The general expression for displacement is given by 

𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝛿) 

Defining another arbitrary constant 𝛿1 such that (𝜋/2 + 𝛿1) = 𝛿, the above expression may be 

written as 

𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝜋/2 + 𝛿1) = 𝐴 cos(𝜔𝑡 + 𝛿1) 

Therefore, we can say that the sine and the cosine forms are equivalent. The value of phase 

constant, however, depends on the form chosen. 

Example 8: A particle starts at 𝑡 = 0 from the mean position with a velocity 𝑣 = 3𝜋 𝑚/𝑠 in the 

positive direction. If the time period of the oscillation is 2 sec., write the expression for the 

displacement of the particle. 

(a) What minimum time does the particle take to go from mean position to a point P, which 

lies midway between the mean position and the right extreme position? 

(b) What minimum time does the particle take to reach the right extreme position from the 

mean position? 

Solution: From equation (1.14), we know that 

𝜔 =
2𝜋

𝑇
=

2𝜋

2 𝑠
= 𝜋 𝑟𝑎𝑑 𝑠−1 

Let 𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝛿) be the expression for the displacement of the particle executing SHMon. 

Therefore, the velocity is given by 

𝑑𝑥

𝑑𝑡
= 𝑣(𝑡) = 𝐴𝜔 cos(𝜔𝑡 + 𝛿) 
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Applying the initial conditions, at 𝑡 = 0 

𝑥(0) = 0 𝑚;   𝑣(0) = 3𝜋 𝑚/𝑠 

On the above expressions for displacement and velocity, we get 

0 = 𝐴 sin(𝛿) 

∴ 𝛿 = 0, 𝜋 

And 

3𝜋 = 𝐴𝜔 cos(𝛿) 

Hence, 𝛿 = 0 is possible but 𝛿 = 𝜋 is not possible. Therefore, 𝛿 = 0 is a possible solution. 

Substituting it in the above equation, we get 

3𝜋 = 𝐴𝜔 cos(0) = 𝐴𝜔 

𝐴 =
3𝜋

(𝜋 𝑟𝑎𝑑 𝑠−1)
= 3 𝑚 

Therefore, the equation of motion is 𝑥(𝑡) = 3 sin(𝜋𝑡) 

(a) The particle is at the mean position at 𝑡 = 0. Let us assume that the particle  reaches the 

point P (midway between the mean position and the right extreme) from its mean position 

in time t. Thus, we have,  𝑥(𝑡) = 𝐴/2 = 1.5 𝑚.  

Thus, 1.5 = 3 sin(𝜋𝑡) or t  = 1/6 s. 

(b) 𝑥(𝑡) = 𝐴 = 3 𝑚. Thus, sin(𝜋𝑡) = 1 or t = 0.5 s. 

Example 9:  A block, whose mass is 680 g, is fastened to a spring whose spring constant k is 65 

N/m. The block is pulled a distance x = 11 cm from its equilibrium position at x = 0 on a frictionless 

horizontal surface and released from rest at t = 0. 

(a) What force does the spring exert on the block just before the block is released? 

(b) What are the angular frequency, the frequency, and the period of the resulting oscillation? 

(c) What is the amplitude of the oscillation? 

(d) What is the maximum speed of the oscillating block? 

(e) What is the magnitude of the maximum acceleration of the block? 

(f) What is the phase angle for the motion? 

(g) What is the total mechanical energy of the  oscillator? 

(h) What is the potential energy of this oscillator when the block is halfway to its end-point? 

(i) What is the kinetic energy of the oscillator when the block is halfway to its end-point? 

Solution:  

(a) From Hooke’s law 

𝐹 = −𝑘𝑥 = −(65)(0.11) = −7.2 𝑁 

(b) For the givem spring-mass system, the angular frequency is  
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𝜔 = √
𝑘

𝑚
= √

65

0.68
= 9.78 𝑟𝑎𝑑/𝑠 

Thus, the frequency is  

𝜈 =
𝜔

2𝜋
=

9.78

2𝜋
= 1.56 𝐻𝑧 

And the time period is 

𝑇 =
1

𝜈
=

1

1.56
= 0.64 𝑠 

(c) Since the block is released from rest at 11 cm distance from its equilibrium point, the 

kinetic energy it possesses at this point is zero. We already know that at the position of 

maximum displacement, the energy is all potential and the kinetic energy is zero. Hence, 

the amplitude A should be equal to 11 cm or 0.11 m. 

 

(d) The maximum speed is given by 

|𝑣|𝑚𝑎𝑥 = 𝜔𝐴 = (9.78)(0.11) = 1.1 𝑚/𝑠 

(e) The maximum acceleration is when the block is at the ends of its path. At those points the 

force acting on the block has its maximum magnitude. 

|𝑎|𝑚𝑎𝑥 = 𝜔2𝐴 = (9.78)2(0.11) = 11 𝑚𝑠−2 

 

(f) At 𝑡 = 0, when the block is released, the displacement of the block has maximum value 

equal to the amplitude and the velocity of the block is zero. Using these initial conditions, 

we get 

1 = sin 𝛿 

And 

0 = cos 𝛿 

The smallest angle that satisfies both these conditions is 𝛿 = 𝜋/2. 

Note: Any angle (2𝑛𝜋 + 𝜋/2) rad, where n is an integer, will also satisfy these conditions. 

 

(g) We already know that the total energy will be constant. 

𝐸 =
1

2
𝑘𝐴2 =

1

2
(65)(0.11) = 0.393 𝐽 

(Comment: correct the above equation: it should be (0.11)2 ) 

(h) The potential energy is given by 

𝐸 =
1

2
𝑘𝑥2 =

1

2
𝑘 (

𝐴

2
)

2

 

=
1

8
𝑘𝐴2 =

1

4
𝐸 = 0.098 𝐽 

(Comment: check the arithmetic  above; it will change in view of correction in (g) above) 
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(i) The kinetic energy can be determined by subtracting the potential energy component from 

the total energy 

𝐾 = 𝐸 − 𝑈 

= 0.393 − 0.098 = 0.295 𝐽  

Thus, we see at this position during the oscillation, about 25% of the energy is in the 

potential form and the rest 75% is in kinetic form. 

 

5.9 DAMPED HARMONIC OSCILLATOR  

Every physical system experiences damping, and damping depends upon the system under 

consideration. A familiar example is a spring – mass system executing longitudinal oscillations in 

a horizontal surface. The mass which has to move on the horizontal surface experiences frictional 

force from the surface and this frictional force opposes its motion. So, the friction due to the surface 

acts like damping force for the oscillating spring-mass system. In general, inclusion of damping 

force makes mathematical analysis somewhat difficult. But for simplicity, it is customary to model 

it by an equivalent viscous damping. In our discussion, we make the simplifying assumption that 

velocity of the moving part of the system is small so that the damping force can be taken to be 

linear in velocity.  

For studying the effect of damping on a one dimensional oscillator, we can consider the 

representative case of a spring-mass system, as shown in figure below. 

 

Figure 8: A damped spring-mass system 

The spring-mass system in which the oscillating mass is executing oscillations in a viscous 

medium which causes its amplitude progressively decreasing to zero is called a damped harmonic 

oscillator. Obviously, in case of such an oscillator, in addition to the restoring force –kx, a resistive 

or damping force also acts upon it. This damping force is proportional to the velocity, v (= dtdx /

). We, therefore, can write the differential equation of the damped harmonic oscillator as 

kx
dt

dx

dt

xd
m  

2

2
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or   0
2

2

 x
m

k

dt

dx

mdt

xd 
             - - - - - - - - - - - - - - - - - - - - - - - - - (1.27) 

This can further be written as 

02
2

02

2

 x
dt

dx
b

dt

xd
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (1.28) 

where 
2

0
m

k
 is the natural frequency of oscillating particle (i.e. its frequency in the absence of 

damping), b
m

2


 (k is the damping constant of the resistive medium) 

Above equation is called the differential equation of a damped harmonic oscillator. 

5.9.1 SOLUTION OF THE DIFFERENTIAL EQUATION OF 

DAMPED HARMONIC OSCILLATOR         

The above differential equation is a second order linear homogeneous differential equation. 

Therefore, it will have at least one solution of type tAex   

Here α and t both are arbitrary constants. 

Therefore, 

αtαAe
dt

dx
      and αtAeα

dt

xd 2
2

2
                   

Substituting these values in the differential equation (6) above we get 

02
2

0

2  ttt AeAebAe                               

Or            

02
2

0

2   b

This is a quadratic equation in α having its solution of the form 

2

0

2   bb  

Thus the original differential equation is satisfied by following two values of x 

tbb
Aex

)( 2
0

2 
  
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    and 
tbb

Aex
)( 2

0
2 

  

Since the equation being a linear one, the linear sum of two linearly independent solutions will 

also be a general solution. 

Therefore,  

tbbtbb
eAeAx

)(

2

)(

1

2
0

22
0

2  
            - - - - - - - - - - - - - - - - - - (1.30) 

Here A1 and A2 are arbitrary constants. 

Or  
t

t
t

t

eAeAx








 2
2

2
1            - - - - - - - - - - - - - - - - - - - - -- - (1.31) 

where  b = 
2

1
 and 2

0

2   b  

The values of the constants A1 and A2 can be determined as given below: 

Differentiating Eq. (1.31) with respect to t, we get   

t
t

t
t

eAeA
dt

dx 



 








 2
2

2
1 )

2

1
()

2

1
(            - - - - - - - - - - - -  - - ( 1.32) 

Now at t=0, displacement must be maximum, i. e. xmax=a0=A1+A2 and 0
dt

dx
 

Putting t=0 in Eq. (1.32) 

0)
2

1
()

2

1
( 21  AA 





 

0)()(
2

1
2121  AAAA 


 

 0)()(
2

1
210  AAa 


 

    



2

)( 0
21

a
AA   

Or 
2

)( 0
21

a
AA                            - - -  - - - - - - - - - - - -  - ( 1.33) 

As we know 021 aAA   
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Adding it with (1.33), we get  











2

1
1

2

0

1

a
A  

And 1211 )( AAAA   











2

1
1

2

0
0

a
a  











2

1
1

2

0a
 

Putting these values in equation (1.31), we get- 


























 



tt

t

ee
ea

x 


 2

1
1

2

1
1

2

2
0        - - --  - - - - - - - -  (1.34) 

For analysis purpose, above equation may be written as 
































tbtb

t

ee
ea

x
)()(

2
0

2
0

22
0

2

2

1
1

2

1
1

2





        - - - - - - - - (1.35) 

Now Eq. (1.35) can be discussed according to following three cases. 

   CASE I: WHEN b (OR 
2

1
)>ω0, CASE OF OVERDAMPING 

In such case √( b2 – ω0
2 ) is a real quantity, with a positive value. This means that each term in 

the R. H. S. of Eq. (13), has an exponential term with a negative power. Therefore, the 

displacement of the oscillator, after attaining a maximum, dies off exponentially with time. 

Thus, after some time, there will be no oscillations. Such kind of oscillatory motion is called 

overdamped or aperiodic motion. Such kind of motion we see in case of dead beat 

galvanometer. 

 CASE II: WHEN b (OR 
2

1
)= ω0, CASE OF CRITICAL DAMPING 

In such case √( b2 – ω0
2 )= 0 .Therefore, each term on R. H. S. of Eq. (1.35 13) becomes infinite.  

Still we can assume that, √( b2 – ω0
2 ) = h ( where h is a very small quantity but not zero 

obviously). 
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Therefore Equation (8) gives-  

x = A1 e
(-b+h)t + A2 e

(-b-h)t 

    = e-bt (A1 e
ht + A2 e

-ht) 

       = e-bt [A1(1 + ht + 
!2

22th
+

!3

33th
+ . . . . . . . . . . . ) + A2(1 - ht + 

!2

22th
-

!3

33th
+ . . . . . . . . .)] 

Neglecting the terms containing higher powers of h, we obtain-  

   x =  e-bt [A1(1 + ht) + A2(1 - ht)] 

          =  e-bt [(A1 + A2 )+ (A1 - A2 )ht] 

               =  e-bt [M+ Nt]                          - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (1.36) 

Here (A1 + A2 ) = M and (A1 -  A2 )h = N 

Further at t = 0, x = xmax = a0 

And 0
dt

dx
 

Therefore, the above equation becomes   

 a0 = M 

Differentiating Eq. (1.36), we get  

dt

dx
=

dt

d
( M e-bt) + 

dt

d
( Nte-bt) 

    0 = - b M e-kt +  Ne-bt  - Nte-bt 

    = -bM + N 

Or N = ba0   

Putting these values of M and N in equation (1.36) above 

 x  =  e-bt (a0+ ba0t) 

    = a0e
-bt (1+ bt) 

   = a0
2

t

e


(1+ 
2

t
) 
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   = a0
2

t

e


 +  a0
2

t

e


(
2

t
) 

An important feature of the above expression is that its second term decays less rapidly as 

compared to its first term. In such cases, the displacement of the oscilator first increases, then 

quickly return back to its equlibrium position. This kind of oscillatory motion is known as just 

aperiodic (it just ceases to oscillate), or non oscillatory. This case is known as the critical 

damping. 

Critical damping finds many applications in many pointer type instruments like, galvenometers, 

where the pointer moves to and stays at, the correct position, without any further oscillations. 

 CASE III: WHEN b  (OR 
2

1
) < ω0 ,CASE OF WEAK (UNDER) DAMPING 

In such cases, the quantity √( b2 – ω0
2 ) will be imaginary one. 

Let √(b2 – ω2 ) = iω, where i = √(-1) and ω= √( ω0
2– b2) is a real quantity 

Putting the values –  

x = A1e
(-b+iw)t + A2e

(-b-iw)t    

   =e-bt[A1(cos ωt + i sinωt) + A2(cos ωt - isinωt)]  

 =e-bt[cos ωt (A1+ A2)+ sin ωt{i (A1- A2)}] 

= e-bt[A cos ωt + B sin ωt] 

 where  (A1 +  A2) = A and  i(A1 -  A2) = B 

= e-kt[ a0 cos ωt . 
0a

A
 + a0 sin ω t . 

0a

B
] 

Considering a right angle triangle as below in Fig. 3.                              
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Figure 6 

 

Therefore, we can write 

  sin φ= 
0a

A
, cos φ=

0a

B
 

so the above expression can be rewritten as- 

 x = e-bt[ a0 {cos ωt . sin φ + sin ω t .cos φ}] 

    = a0e
-bt sin (ωt + φ) 

or  𝑥 = 𝑎0𝑒−𝑏
𝑡

2𝑥 sin(𝜔𝑡 + 𝜑)  

This is the equation of a damped harmonic oscillator with amplitude a0e
-bt or 𝑥 = 𝑎0𝑒−𝑏

𝑡

2𝑥 . 

The sine term in the equation suggests that the motion is oscillatory whereas, the exponential term 

implies that the amplitude is decreasing gradually.   

Therefore, we may conclude that the damping produces two effects: 

(i) The frequency of damped harmonic oscillator, 




2
 is smaller than its natural frequency





2

0 , or damping somewhat decreases the frequency or increases the time period of 

oscillator. 

(ii) The amplitude of the oscillator does not remain constant at a0, which represents 

amplitude in the absence of damping, but decays exponentially with time, according to 

the value of term e-bt. 
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Figure 9: Decay of amplitude of a damped harmonic  motion with time 

5.9.2 CHARACTERIZING WEAK DAMPING 

1 RELAXATION TIME, τ  

It refers to the time in which the amplitude of a weakly damped system reduces to 1/e times of the 

original value. In other words, it is the time in which the mechanical energy of an oscillator decays 

to 1/e times its initial value. 

The energy of a damped harmonic oscillator is given by 



t

eEE


 0  

Here E0= the initial value of energy 

      E= Energy at time t 

At 
e

E
Et 0,  

                                                                                           (1.37)
 

2 LOGRATHMIC DECREMENT 

Due to damping, the amplitude of a damped harmonic oscillator decreases exponentially with time. 

Suppose that an and an+1 be the two successive amplitudes of the oscillations of the particles on 

two sides of the equilibrium position respectively. The time interval between these two successive 

amplitudes clearly would be T/2 - half the time period (T) of oscillations. We can further write-  
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an = a0e-bkt 

and an+1=a0e
-b(t+

2

T
) 

     Therefore,   
𝑎𝑛

𝑎𝑛+1
= 𝑒

𝑏𝑡

2 = 𝑑           (1.38) 

Here d is a constant, and it refers to decrease in successive amplitudes. It is known as the decrement 

for that motion. 

Further, on taking the natural log of Eq.(1.38), we obtain 

  ln d= 
2

kT

        (1.39)
 

or, d=eλ 

The constant λ, which is the natural logarithm of decrement or the ratio between two successive 

amplitudes of the oscillations, is referred to as logarithmic decrement for that oscillatory motion. 

3 QUALITY FACTOR  

As the name suggests, quality factor is a measures the quality of a harmonic oscillator, as far as 

damping is concerned.“Lesser the damping, better will be the quality of harmonic oscillator as an 

oscillator”. Therefore, an harmonic oscillator with low damping will have high value of its quality 

factor, Q. It is also referred to as the figure of merit of a harmonic oscillator and is defined as the 

2π times the ratio between the energy stored and the energy lost per period. Being a ratio, it is a 

dimensionless quantity.  

Thus Q = 2π
periodperlostEnergy

storedEnergy
 

       =
PT

E2
 (Here P= Average loss of energy per cycle = 



E
) 

And since, 



T

2
, we have  







/E

E

P

E
Q

      (1.40)
 

In case of low damping, ω=ω0 and we can rewrite the above equation as 

0Q  

But, as we know 
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m

k
0  and 




m
 , so that, 



kmm

m

k
Q  .

      (1.40a)
 

Clearly, if γ is small (i.e. if the damping is low), the value of Q will be large. 

Further, the energy of a damped harmonic oscillator is  



t

eEE


 0         
(1.40b)

 

 

Hence, at t , we have 

e

E
eEE 01

0      

Example 10: A Harmonic oscillator is represented by the equation  

Ckx
dt

dx

dt

xd
m  

2

2

 

With m = 0.25 kg,  =0.070 kg/s and k =85 N/m, calculate the period of oscillation. 

Solution 10: The period of oscillation of a damped oscillator is given as 
2

2

2













mm

k

T




 

2

25.02

07.0

25.0

85

2
















=0.34 seconds 

 

 

Example 11: For the harmonic oscillator given in problem 1, calculate (i) the number of 

oscillations in which its mechanical energy will drop to one-half of its initial value. Also calculate 

its quality factor. 

Solution 11- The average energy associated with a damped harmonic oscillator is given by 
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m

t

m

t

bt

e
E

E

eEeEE















0

0

2

0

 

2

1

0




E

E
for havewe,  

2

1



m

t

e



 

Taking natural algorithm on both sides and rearranging the terms, we can rewrite it as 

s
m

t 48.2
070.0

693.025.02ln






 

No of oscillation in this time interval= nsoscillatio7
34.0

48.2
  

(ii) The quality factor Q is given as 



 m
Q d 0

2
  

Since 



m

b
andd

21
0   

66
07.0

25.043.18



Q  

 

 

 

Example 13: The amplitude of a damped harmonic oscillator reduces from 25 cm to 2.5 after 100 

complete oscillations, each of period 2.3 seconds. Calculate logarithmic decrement of the system.  

 

Solution 13:  Here, the amplitude ration of oscillation separated by 100 oscillations is 

  10
5.2

25


cm

cm
 

Therefore, logarithmic decrement =
1

100
ln 10 =

2.3

100
= 0.023 
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5.10 FORCED HARMONIC OSCILLATOR 

A damped harmonic oscillator on which an external periodic force is applied is called a forced 

damped harmonic oscillator. Such an oscillator is also called  a driven harmonic oscillator. In such 

an oscillator, the frequency of the  externally applied periodic force is  not necessarily the same as 

the natural frequency of the oscillator. In such a case, there is a sort of tussle between the damping 

forces tending to retard the motion of the oscillator and the externally applied periodic force which 

tend to continue the oscillatory motion. As a result,  after some initial erratic movements, the 

oscillator  ultimately succumbs to the applied or the driving force and settles down to oscillating 

with the driving frequency and a constant amplitude and phase so long as the applied force remains 

operative. 

5.10.1 DIFFERENTIAL EQUATION FOR FORCED DAMPED HARMONIC 

OSCILLATOR 

When an external periodic force F(t) is applied to a damped harmonic oscillator,  the differential 

equation for the oscillator will have one additional term for the applied time dependent periodic 

force and we can write  

𝑚
𝑑2𝑥

𝑑𝑡2 
+ 𝛾

𝑑𝑥

𝑑𝑡
+ 𝜔0

2𝑥 + 𝐹(𝑡) = 0                          ( 1.41 ) 

If the applied external force is represented as 𝐹(𝑡) = 𝑓𝑐𝑜𝑠(𝑛𝑡), where f and n are constants, then 

Eq. (1.41)  becomes 

𝑚
𝑑2𝑥

𝑑𝑡2 
+ 𝛾

𝑑𝑥

𝑑𝑡
+ 𝜔0

2𝑥 = 𝑓 cos(𝑛𝑡)                     (1.42 ) 

We can further simplify the equation as  

𝑑2𝑥

𝑑𝑡2 
+ 2𝑏

𝑑𝑥

𝑑𝑡
+ 𝜔0

2𝑥 = a cos(𝑛𝑡)                        (1.43) 

where a = f/m, 2b = γ and ω0
2 = k/m is the natural frequency of the oscillator 

Eq. (1.43) represents the differential equation for damped forced harmonic oscillator. 

5.10.2 SOLUTION OF DIFFERENTIAL EQUATION  

You may note that the differential equation (Eq. (1.43) for the damped forced harmonic oscillator 

is a linear inhomogeneous second order ordinary differential equation; the inhomogeneous term is 

represented by the externally applied time dependent periodic force. 
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The solution to this equation comprises two parts: the general solution and the particular solution. 

Let us learn about them now.  

5.10.3 GENERAL SOLUTION 

The general solution of the differential equation for damped forced harmonic oscillator comprises 

of two terms - one representing the homogeneous ordinary differential equation part and the other 

representing the particular integral part.  

If Xi is a particular solution of an inhomogeneous differential equation, and Xn is a solution of a 

complementary homogeneous equation then X(t) = Xi(t) + Xn(t) is a general solution. 

Thus, the general solution of this linear inhomogeneous ODE can be expressed as 

𝑥(𝑡) =  𝑥𝐻(𝑡) +  𝑥𝑝(𝑡)                                (1.44) 

𝑥𝐻(𝑡) is the solution of the corresponding homogeneous part of the equation. The homogeneous 

part is same as the differential equation for the solution of damped harmonic oscillator and its 

solution is given as  

𝑥𝐻(𝑡) =  
1

2
𝑎0𝑒−𝜆𝑡 ⌈(1 +

𝜆

√𝜆2 − 𝜔0
2  

) 𝑒
√(𝜆2− 𝜔0

2  )𝑡
+  (1 −  

𝜆

√𝜆2 −  𝜔0
2   

) 𝑒
−√(𝜆2− 𝜔0

2  )𝑡
⌉ 

    

  (1.45) 

To obtain the particular solution, 𝑥𝑝(𝑡), let us assume the solution of the form 

𝑥𝑝(𝑡) = 𝐴𝑐𝑜𝑠(𝑛𝑡 −  ∅)                                                                   (1.46) 

Ø is the possible phase difference between the applied force and the displacement of the oscillator 

and n is the frequency of the applied force. 

Now we have to obtain dx/dt and d2x/dt2 and substitute in Eq. (1.43). We have 

𝑑𝑥

𝑑𝑡
=  −𝐴𝑛𝑠𝑖𝑛(𝑛𝑡 −  ∅) 

𝑑2𝑥

𝑑𝑡2
=  −𝐴𝑛2𝑐𝑜𝑠(𝑛𝑡 −  ∅) 

Substitution in Eq. (1.43) gives 

−𝐴𝑛2cos(𝑛𝑡 −  ∅) − 2𝜆𝐴𝑛sin(𝑛𝑡 −  ∅) + 𝐴𝜔0
2cos(𝑛𝑡 − ∅) = acos[(𝑛𝑡 −  ∅) +  ∅]       (1.47) 

Expanding the R.H.S gives 
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−𝐴𝑛2cos(𝑛𝑡 −  ∅) − 2𝑏𝐴𝑛sin(𝑛𝑡 −  ∅) + 𝐴𝜔0
2cos(𝑛𝑡 − ∅)

= 𝑎[cos(𝑛𝑡 −  ∅)cos∅ − sin(𝑛𝑡 −  ∅)sin                                                (1.48) 

Rearranging we get 

𝐴(𝜔0
2 −  𝑛2)cos(𝑛𝑡 −  ∅) − 2𝑏𝐴𝑛sin(𝑛𝑡 −  ∅) = 𝑎[cos(𝑛𝑡 −  ∅)cos∅ − sin(𝑛𝑡 −  ∅)sin∅ 

If this equation is to hold true, then the coefficient of cos(nt – Ø) and sin(nt – Ø) on either sides 

must be equal 

i.e.  𝐴(𝜔0
2 −  𝑛2) = 𝑎cos∅  𝑎𝑛𝑑  2𝑏𝑛 = 𝑎sin∅ 

Squaring and adding these two we get 

𝐴2(𝜔0
2 −  𝑛2)2 + 4𝑏2𝑛2 = 𝑎2                      (1.49) 

Hence   

𝐴2 =
𝑎2

(𝜔0
2 −  𝑛2)2 + 4𝑏2𝑛2

                      (1.50) 

The amplitude of driven or forced oscillator is given as  

𝐴 =  
𝑎

√  (𝜔0
2 −  𝑛2)2 + 4𝑏2𝑛2     

            (1.51) 

We have taken only the positive value of the square root. The negative value will mean opposite 

phase but then Ø will also change by π and there would, therefore be no effect on the value of A. 

Further, the phase is given by 

 tan∅ =
2𝑏𝑛

(𝜔0
2−  𝑛2)

                                                                    (1.52) 

 

The particular solution of Eq. (1.43) is thus given by 

𝑥𝑝(𝑡) =
𝑎

√  (𝜔0
2 −  𝑛2)2 + 4𝑏2𝑛2     

cos(𝑛𝑡 −  ∅)                 (1.53)      

Thus, we can write the general solution as  

𝑥(𝑡) =  
1

2
𝑎0𝑒−𝑏𝑡 ⌈(1 +

𝑏

√𝑏2 −  𝜔0
2  

) 𝑒
√(𝑏2− 𝜔0

2  )𝑡
+  (1 −  

𝑏

√𝑏2 −  𝜔0
2   

) 𝑒
−√(𝑏2− 𝜔0

2  )𝑡
⌉

+
𝑎

√  (𝜔0
2 −  𝑛2)2 + 4𝑏2𝑛2     

cos(𝑛𝑡 −  ∅)                                               (1.54) 
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Where  
𝑎0

2
  and Ø need to be determined by initial conditions. 

5.10.4 STEADY STATE SOLUTION 

When the tussle between the damping and the externally applied forces ends and  the oscillator has 

settled down to oscillate with the frequency of the applied periodic force, it is said to be in the 

steady state. In the steady state, the homogeneous term vanishes as t → ∞ whereas the particular 

solution does not. Thus we have a distinction between the transient state , which is a function of 

the initial conditions, and a steady state , which depends on the external force. Thus, we can write 

the steady state solution as  

𝑥(𝑡) =  
𝑎

√  (𝜔0
2 −  𝑛2)2 + 4𝑏2𝑛2     

cos(𝑛𝑡 −  ∅)                    (1.55)  

𝑥(𝑡) =  𝐴cos(𝑛𝑡 −  ∅)                                                                 (1.56) 

where 𝐴 =  
𝑎

√  (𝜔0
2− 𝑛2)2+4𝑏2𝑛2     

           =  
𝑓

𝑚√  (𝜔0
2− 𝑛2)2+4𝑏2𝑛2     

                      (1.57) 

 

 

 

Figure 10: The variation of amplitude of oscillation of a forced oscillator with the frequency of the externally 

applied periodic force 

 



INTRODUCTORY PHYSICS  PHY(N)GE 
 

121 
 

5.10.5. EXAMPLE OF FORCED OSCILLATIONS - A DRIVEN 

LCR CIRCUIT 

Consider an LCR circuit consisting of an inductor, L, a capacitor, C, and a resistor R, connected in 

series with a sinusoidal voltage source, V(t), as shown in Fig 2 below. 

 

Figure 11: A driven LCR circuit 

Let I(t) be the instantaneous current flowing through this circuit, Now, as per  Kirchoff’s second 

circuital law, the sum of the potential drops across the various components of a closed circuit 

loop is equal to zero. Thus, since the potential drop across an emf is minus the associated 

voltage, we obtain 

𝐿
𝑑2𝑄

𝑑𝑡2
+ 𝑅

𝑑𝑄

𝑑𝑡
+  

𝑄

𝐶
= 𝑉                                             (1.58) 

Where 
𝑑𝑄

𝑑𝑡
= 𝐼 and 

𝑑2𝑄

𝑑𝑡2 =  𝐼̇. Suppose that the emf is such that its voltage oscillates sinusoidally at 

the angular frequency ω ( > 0) with a peak value V0 (> 0) so that 

V(t) = V0 sin (ωt)                                                   (1.59) 

Substituting (1.59) in (1.58), we get  

𝐿𝐼̇ + 𝑅𝐼 +  
𝑄

𝐶
= 𝑉0sin (𝜔𝑡)                                                (1.60) 

Dividing equation (1.60 21) by L and differentiating with respect to time, we get 

𝐼̈ + 𝛾𝐼̇ + 𝜔0
2𝐼 =

𝜔𝑉0

𝐿
cos (𝜔𝑡)                                   (1.61) 
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Where 𝜔0 =  
1

√𝐿𝐶
 and  𝛾 =  

𝑅

𝐿
 

Equation (1.61) is similar to the differential equation representing a driven damped harmonic 

oscillator. The current driven in the circuit by the oscillating emf is given as  

I(t) = I0 cos (ωt - Ø)                                            (1.62) 

where      𝐼0 =  
𝜔𝑉0

𝐿√  (𝜔0
2− 𝜔2)

2
   + 𝛾2𝜔2    

                    (1.63)  

                                                   ∅ =  𝑡𝑎𝑛−1 (
𝛾𝜔

𝜔0
2− 𝜔2)                             (1.64) 

In the expression for I0,  the denominator √  (𝜔0
2 −  𝜔2)2    +  𝛾2𝜔2      functions as the effective 

resistance in the circuit. It is called the impedance of the circuit. 

5.10.6 RESONANCE 

In general, resonance may be defined as a tendency of a vibrating / oscillating system to respond 

most strongly to a driving force whose frequency is close to its own natural frequency of vibration 

/ oscillation. 

For a weakly damped forced (driven) oscillator, after a transitory period, the object will oscillate 

with the same frequency as that of the driving force. The plot of amplitude x(ω) versus angular 

frequency is shown in Fig. 3 below. If the angular frequency is increased from zero, the amplitude, 

x(ω) will increase until it reaches a maximum when the angular frequency of the driving force is 

the same as the natural frequency of the undamped oscillator. This phenomenon is called 

resonance. 

 

Fig. 12: Plot of amplitude x(ω) with driving angular frequency ω of a weekly damped 

harmonic oscillator 

From Eq.(18), it is clear that, for a damped forced harmonic oscillator, the amplitude of the 

oscillator in the steady state depends not only on the amplitude of the driving force, but also on 
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the  relation between the frequency, n of the driving force and the natural frequency, ω of the 

oscillator, as well as on the damping parameter  b. 

For n → 0 we have A → a/ω. For n → ∞ we obtain A → 0. In between these two extremes, the 

amplitude may reach a maximum which we refer to as the resonance frequency. 

To obtain an expression for resonance frequency, we differentiate the denominator of Eq. (1.57) 

with respect to n and then equate it to zero. 

𝑑

𝑑𝑛
[𝜔0

2 −  𝑛2)2 + 4𝑏2𝑛2] =  −4𝑛[𝜔2 −  𝑛2] + 8𝑏2𝑛 = 0 

The non - trivial solution is: 

 n = nr =  √𝜔0
2 − 2𝑏2                                                                                       (1.65)  

This is the resonance frequency. 

As we have already studied that resonance is defined mathematically using the differential    Eq.(2 

6) for a forced driven harmonic oscillator where the resonance is defined as the existence of a 

solution that is unbounded as t → ∞. This corresponds to what we call as pure resonance. It occurs 

exactly when the natural internal frequency matches the natural external frequency, in which case 

all solutions of the differential equation are unbounded. 

The notion of pure resonance is easy to understand both mathematically and physically, because 

frequency matching characterizes the event. This ideal situation never happens in the physical 

world, because damping is always present. In the presence of damping only bounded solutions 

exist for Eq. (1.65 26). 

 

5.11 SUMMARY 

In this unit, we have studied about what is meant by the periodic motion, the oscillatory motion 

and SHM. We studied about the restoring force that comes in to play due to the displacement from 

the mean or the equilibrium position and how the restoring force is proportional to the magnitude 

of the displacement in case of SHM. We studied the two simple systems, simple pendulum and 

spring-mass system, which are both examples of SHM.  Using the knowledge of Newton’s second 

law of motion, we wrote the equation of motion for SHM and derived the solution of the 

differential equation used to describe SHM.  

This unit also describes damped and forced harmonic oscillator. We studied that the differential 

equation for damped and forced harmonic oscillator is a second order non homogeneous linear 

ordinary differential equation. We obtained the differential equation and discussed the solution 
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which has two components: one is the general solution and the other being the steady state solution. 

The general solution has two parts. Further, the steady state solution is obtained in the time domain 

t → ∞. For the forced oscillator in steady state, we studied the concept of resonance. 

5.12 GLOSSARY 

Displacement – net change in location of a moving body; in case of SHM, it is measured from the 

equilibrium position. 

Force – anything that can change the state of motion of an object. 

Frequency – the number of complete cycles per second made by a vibrating object. 

Hooke’s Law – the extension of a spring is proportional to the tension in the spring. 

Velocity – speed in a given direction. 

Wavelength – the distance between two adjacent wave-crests. 

Angular acceleration – it is the rate of change of angular velocity. In SI units, it is measured in 

(𝑟𝑎𝑑/𝑠2), and is usually denoted by the Greek letter alpha (α). 

Angular amplitude – it is the maximum angle (disregarding the direction) that a rotating body goes 

through from the equilibrium position 

Angular displacement – it is the angle that a rotating body goes through.  

Angular velocity – it is defined as rate of change of angular displacement. SI units is (𝑟𝑎𝑑/𝑠). 

Kinetic energy – energy of an object due to motion. 

Potential energy – energy due to position.  

Mechanical energy – it is the sum of the kinetic energy and the potential energy. 

Dissipative- continuously loosing energy / amplitude 

Damping: reduction in the amplitude of oscillation as a result of energy being drained from the 

system to overcome frictional or other resistive foeces 

Overdamped – Having high value of damping effects 

Underdamped- Having small value of damping 

Friction- resistance 

Driven or forced Oscillator- An oscillator to which an external periodic force is applied  

Transient state- The state of the driven harmonic oscillator prior to achieving the steady state.  

Steady state- The state of the harmonic oscillator which is independent of the initial state and 

depends only upon the driving frequency and the damping ratio. 
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Resonance- The condition when the oscillator under the influence of external driving force 

oscillates with greater amplitude at a specific preferential frequency.  
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5.15 TERMINAL QUESTIONS 

1. A horizontal spring-mass system of spring constant k and mass M executes SHM with frequency 

ν. When the block is passing through its equilibrium position, an object of mass m is put on it 

and the two move together. Find the new frequency of vibration. 

2. A particle executes SHM with amplitude of 0.5 cm and frequency of 100 𝑠−1. What is the 

maximum speed of the particle? 

3. A weight suspended from a spring oscillates up and down. The restoring force in the weight is 

zero at (a) highest point, (b) lowest point, (c) middle point, (d) none of these.  

4. A person goes to bed at sharp 10:00 pm every day. Is it an example of periodic motion? If yes, 

what is the time period? If no, why? 

5. A particle moves on the x-axis according to the equation 𝑥 = 𝐴 + 𝐵 sin 𝜔𝑡. Is the motion SHM? 

If yes, what is the amplitude? 

6. Select the correct statement(s). More than one choice may be correct. 

(a) A simple harmonic motion is necessarily periodic. 

(b) A simple harmonic motion is necessarily oscillatory. 

(c) An oscillatory motion is necessarily periodic. 

(d) A periodic motion is necessarily oscillatory. 

7. Write notes on: 

      (i) SHM       (ii) Spring-Mass System   (iii) Time period   (iv) Angular Frequency  
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8. For a particle executing SHM along x-axis, the restoring force is given by 

 (a) – 𝐴𝑘𝑥 (b) 𝐴 cos 𝑘𝑥 (c) 𝐴 exp(−𝑘𝑥) (d) 𝐴𝑘𝑥 

9. The potential energy of a particle executing SHM is given by 

 (a) 𝑈 = 𝑘/2(𝑥 − 𝑎)2 (b) 𝑈 = 𝑘𝑥 + 𝑘𝑥2 + 𝑘𝑥3 (c) 𝑈 = 𝐴 exp(−𝑏𝑥) (d) 𝑈 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

10. A particle executes simple harmonic motion of amplitude A along the x-axis. At 𝑡 = 0, the 

position of the particle is 𝑥 = 𝐴/2 and it moves along the positive x-direction. Find the phase 

constant if the equation is written as 𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝛿). 

11. A body of mass 2 kg, suspended through a vertical spring, executes SHM of period 4 s. If the 

oscillations are stopped and the body hangs in equilibrium, find the potential energy stored in 

the spring. [𝑔 = 10 𝑚𝑠−2] 

12. The work done by the spring-mass system  during one complete oscillation is equal to 

(a) The total energy of the system 

(b) Kinetic energy of the system 

(c) Potential energy of the system 

(d) Zero 

13. A particle of mass m is hanging vertically by an ideal spring of force constant k. If the mass is 

made to oscillate vertically, its total energy is 

(a) maximum at the extreme position 

(b) maximum at the mean position 

(c) minimum at the mean position 

(d) none of the above 

14. Write short notes on: 

      (i) Acceleration in SHM       (ii) Energy Variation in SHM    

     (iii) Phasor model of SHM 

15. Why does the amplitude of oscillations go on decreasing in case of damped harmonic 

oscillator? Assuming damping to be proportional to the velocity, find an expression for the 

frequency of oscillations. 

16. A system executing damped harmonic motion is subjected to an external periodic force. 

Investigate the forced vibration and obtain the condition of resonance. 

  

17. Show that the ratio of two successive maxima in the displacement of a damped harmonic 

oscillator is constant. 

18. If the amplitude of a damped harmonic oscillator decreases to 1/e of its initial value after n( ≫ 

1) periods, show that the ratio of the period of oscillation to the period of the oscillation with no 

damping is 
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19. A spring-mass system is subjected to restoring and frictional forces of magnitude kx and 
dt

dx
  

respectively. It oscillates with a frequency of 0.5 Hz. Its amplitude reduces to half in 2 seconds. 

Calculate the damping coefficient   and spring constant k, in terms of mass, m. Also write the 

differential equation of motion. 

 

20. The quality factor of a tuning fork of frequency 512 Hz is 6 x 104. Calculate the time in which 

its energy drops to E0e
-1. How many oscillations will the tuning fork make in this time.  

 

21. A particle of mass m moves under the influence of external periodic force F sin pt along x axis 

in addition to the restoring force –kx (also along x - axis)  and damping force – βxi along x 

axis . Set up the differential equation of motion and find the steady-state solution. 

22. Show that in case of a system undergoing a forced oscillation, the response is independent of 

its mass if n << ω0 and is independent of spring constant if n >> ω0 

23. A damped harmonic oscillator consists of a block (m = 2 kg), a spring (k = 30 N/m), and a 

damping force (F = -bv). Initially, it oscillates with amplitude of 25 cm; because of the 

damping, the amplitude falls to three-fourths of this initial value at the completion of four 

oscillations.  

         (a) What is the value of b?  

         (b) How much energy has been “lost” during these four oscillations?  

 

Answers of Selected Terminal Questions: 

1.  Original frequency of SHM,  

𝜈 =
1

2𝜋
√

𝑘

𝑀
 

The new frequency of SHM,  

𝜈𝑛𝑒𝑤 =
1

2𝜋
√

𝑘

𝑚 + 𝑀
 

Therefore,  

𝜈𝑛𝑒𝑤 = 𝜈√
𝑀

𝑚 + 𝑀
 

2.  |𝑣|𝑚𝑎𝑥 = 𝜔𝐴 = (2𝜋 × 100)(0.5 × 10−2) = 𝜋 𝑚/𝑠 
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3.  (c) because at the equilibrium or mean position the restoring force is zero. 

4. Yes. Time period = 24 hours. 

5. No. SHM is a special case of oscillatory motion, where a body moves back and forth 

repeatedly about a fixed position. Here nothing like that happens! 

6. (a), (b)   8.  (a), 9.  (a) 

10.  At 𝑡 = 0, 𝑥 = 𝐴/2. Therefore, 𝐴/2 = 𝐴 sin 𝛿 or 𝛿 = 𝜋/6 or 5𝜋/6. The velocity is given by 

𝑑𝑥

𝑑𝑡
= 𝑣(𝑡) = 𝐴𝜔 cos(𝜔𝑡 + 𝛿) 

At 𝑡 = 0, 𝑣 = 𝐴𝜔 cos 𝛿. Now, cos 𝜋/6 = √3/2 and cos 5𝜋/6 = −√3/2. We are given that the 

velocity is positive at 𝑡 = 0, therefore the phase constant cannot be 5𝜋/6. 

∴ 𝛿 = 𝜋/6 

11. The body hangs in equilibrium at the end of a spring as shown below. 

 

Now the potential energy stored in the equilibrium position in the spring will be because of the 

elongation in the spring, i.e.  

𝑈 =
1

2
𝑚𝜔2𝑑2 

So, now our task is to calculate d. We know the frequency of the oscillation and the mass m of the 

block. By applying force balance, we have 

𝑇0 = 𝑚𝑔 
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Also, we know that the tension provides the restoring force,  

𝑇0 = −𝑘𝑑 

From the two equations, we get 

𝑑 =
𝑚𝑔

𝑘
=

𝑚𝑔

𝑚𝜔2
=

𝑔

𝜔2
 

Therefore, the potential energy will be 

𝑈 =
1

2
𝑚𝜔2 (

𝑔

𝜔2
)

2

=
1

2
𝑚

𝑔2

𝜔2
 

=
1

2
𝑚

𝑔2

(
2𝜋
𝑇 )

2 =
1

2
(2)

(10)2

(
2𝜋
4 )

2 

∴ 𝑈 = 40.5 𝐽 

12. (d) , 13. (d) The total energy remains constant.  

19.  = 0.693, k= 9.98, 098.9693.0
2

2

 x
dt

dx

dt

xd
,  

20. t= 18.7 s, n = 9570,  

23: (a) We assume that b is small compared to √km and we take T = 2п/√(m/k) ≈ 1.62 s. It is 

given that at t = 4T, the amplitude falls to 3A/4, i.e. 

e-bt/2m = 3/4 
-2bT/m = ln(3/4) 

or b = 0.18 kg/s. 

(b) Energy lost during these four oscillations = ½ k(A2 – (3A/4)2) = 7kA2/32 = 0.410 J 
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6.1 INTRODUCTION 

The transportation of energy through the disturbance in medium or through electromagnetic 

vectors is called waves. The waves transfer energy but there may not be any transportation of 

matter in the process. For example, when a violinist plays violin, its sound is heard at distant 

locations. The sound waves carry with them energy, with which they are able to move the 

diaphragm of the ear. When a stone is dropped in the still water in a lake, ripples are formed on 

the surface of the water body and the water waves move steadily in the outward direction. 

Electromagnetic waves are vibrating electric and magnetic fields that travel through space without 

the need for a medium. The electromagnetic waves include the visible light that, for example, 

comes from a bulb in our houses and the radio waves that come from a radio station. The other 

types of electromagnetic waves are microwaves, infrared light, ultraviolet light, X-rays and gamma 

rays. Seismic waves are vibrations of the earth, which become quite significant in the events such 

as earthquakes.  

Although, these various processes of transport of energy are different yet they have a common 

feature, which we shall from now on refer to as the wave motion. In simple terms, we can say that 

the wave motion involves the transfer of disturbance (energy) from one point to the other with 

particles of the medium oscillating about their mean positions. The particles themselves oscillate 

only over a short distance about their initial positions, and as a result a wave moves through the 

medium. The medium as a whole does not go in the direction of the motion of the wave.   

In the present unit, we will learn about wave motion including the formation and propagation of 

waves, characteristic features of a wave and the distinction between longitudinal and transverse 

waves. 

6.2 OBJECTIVES 

After studying this unit, you should be able to understand  

  the meaning of wave, its formation and propagation of waves, 

 different types of waves, transverse longitudinal waves and their uses, 

 representation of a wave graphically at a fixed position and at a fixed time, 

 amplitude, wavelength, frequency and speed of a wave, 

 wave in a stretched string 

 longitudinal waves in different mediums and give examples, and  

6.3 WAVE FORMATION AND PROPAGATION 

Let us first consider the example of water wave, which is the most familiar kind of wave that we 

can generate and observe easily. When we drop a stone in a lake or a water tub, we observe circular 
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ripples that spread out from the point where the stone strikes the water surface, as shown in Fig. 

1. 

 

Figure 1: Waves generated on the water surface. 

Looking at these ripples, you may wrongly get an impression that water moves with them. But, if 

you observe carefully, you will notice that water actually does not move along with the ripples that 

are generated. You can easily verify this fact by placing a paper boat or a dry leaf on the water 

surface and observing how it moves. You will notice that the paper boat or the dry leaf just bounces 

up and down at the same place on the surface of water and does not move with the ripples. This 

means that water particles do not have any translational motion. However, water particles do 

undergo oscillatory motion caused due to dropping of the stone in the still water. The disturbance 

caused at the point of contact of the stone with water surface is progressively transferred to adjacent 

water particles due to the oscillatory motion. The term “disturbance” refers to the deformation in 

the shape of the water surface (or any other medium such as air, string etc.) with respect to its 

undisturbed surface. 

6.3.1 Mechanical Wave:  

 Mechanical wave can be produced using a thin and long elastic string with its one end fixed to a 

wall. By holding the other end of the string with your hand so that the string is stretched and taut 

and quickly moving your hand up and down once, you may observe a disturbance travelling along 

the length of the string (Figure 2). If you keep your hand moving up and down, you will observe 

a series of disturbances moving along the string giving rise to a wave.    
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Figure 2: A mechanical wave. 

From the above descriptions of waves, one may conclude that: 

1- A wave is generated due to two simultaneous, at the same time, distinct motions. The first 

one is the oscillatory motion of the particles of the medium and the second is the linear 

motion of the disturbance. 

2- In wave motion, the propagation of a disturbance does not take place due to the physical 

movement of the particles in the medium. The disturbance actually propagates because of 

the transfer of energy from one particle to the other progressively. Thus, we may conclude 

that the waves transport energy and not the matter.    

The oscillations of the particle of a medium and the propagation of wave in the medium are 

intimately connected. To appreciate the nature of this relationship, refer to Figure 3, which shows 

a thin elastic string tied to a spring-mass system executing vertical oscillations. The other end of 

the string is tied to a rigid support. We assume that the motion of the spring-mass system is without 

any friction and that the vertical oscillations by the mass are without any lateral movement. Figure 

4, further breaks down the waveform shown in Figure 3b and shows the snapshots of the waveform 

on the string taken at intervals of T/8, i.e. at time t = 0, T/8, T/4, 3T/8, T/2, 5T/8, 3T/4, 7T/8 and 

T. The arrows attached to each of the nine particles indicate the directions along which these 

particles are about to move at a given instant. At t = 0, all the particles are at their mean position 

as shown in Figure 4a.  
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Figure 3: (a) A vertically oscillating spring-mass system fastened to a string, and (b) waveform of the 

motion of the string. 

 

The particles in the string begins to oscillate due to the transfer of mechanical energy and 

momentum from the spring-mass system and their motion is sustained due to the elasticity of the 

medium, in this case string. One particle transfers its energy and momentum to another particle 

and then it transfers its energy and momentum to the third particle and so on. This process 

continues as long as the spring-mass system keeps oscillating. When the energy that initially 

activated particle 1 reaches particle 9 at time T, we say that a wave has been generated in the string. 

We notice that all the particles in the string oscillate up and down about their respective mean 

positions with time period T and the wave moves along the string with the same time period. 

In our discussion until now, we have considered the propagation of mechanical waves on strings 

and springs for introducing the wave motion. Mechanical waves require material medium such as 

water, air, etc. to transfer mechanical energy and momentum from one point to another. Therefore, 

seismic waves, water waves, sound are all examples of mechanical waves. One should note here 

that sound waves travelling in air columns and on a string, both are examples of mechanical waves, 

but there is an important difference between the two. While the former is an example of 

longitudinal waves, the latter are transverse waves. We will briefly study about these waves in the 

next section.   
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Figure 4: Snapshots of the motion of the particles 1 to 9 in the string beginning at the instant t = 0 

and up to the instant t = T at intervals of T/8. 

6.3.2 Transverse Waves 

In transverse waves, the particles of the medium oscillate perpendicular to the direction in which 

the wave travels. Travelling waves on a taut string, which we discussed in the previous section, 

are transverse waves. When the one end of the string is rigidly fixed and the other end is given 

periodic up and down jerks, the disturbance propagates along the length of the rope but the particles 

oscillate up and down. The disturbance travels along the rope in the form of crests (upward peak) 

and troughs (valley) as shown in Figure 3. 

Secondary seismic waves are an example of transverse waves. They travel more slowly than the 

primary seismic waves. Secondary seismic waves shake the material they travel through from side 

to side. Transverse waves require that there should be a shearing force in the medium. Hence, they 
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can be propagated only in the medium which will support a shearing stress, i.e. mainly solids. For 

this reason, mechanical transverse waves cannot pass though a liquid because liquid molecules 

slide past each other. Electromagnetic waves, which do not require any medium to propagate, are 

also an example of transverse waves. The electric and the magnetic field of an electromagnetic 

wave vibrate at right angles to the direction of propagation and also at right angles to each other. 

8.3.3 Longitudinal Waves  

In longitudinal waves, the oscillation of the particles is parallel to the direction in which the wave 

travels. Disturbance travelling in a spring parallel to its length, a pressure variation propagating in 

a liquid are examples of longitudinal waves. Longitudinal waves do not require shearing stress and 

hence can travel in any elastic medium – solid, liquid and gas. 

Consider a stretched spring. If one end of the spring is suddenly given an in and out oscillation 

parallel to the length of the spring, the coils of the spring start exerting forces on each other and 

the compression and the expansion points travel along the length of the spring. The coils oscillate 

right and left parallel to the spring as shown in Figure 5. Compressions, which is the crowding 

together of the molecules, and rarefactions, which is the spreading out of the molecules away from 

each other, travel along the spring. The pressure at the compression point is higher and the pressure 

at a rarefaction point is lower.  

 

Figure 5: Longitudinal wave generated in a stretched spring. 

The spring in the above example can be replaced by a long tube of air with a piston at the left end. 

The piston is set into oscillation along the length of the tube. The molecules of air oscillate right 

and left, i.e. parallel to the wave propagation as shown in Figure 6a.  

Sound waves are also longitudinal waves as shown in Figure 6b. A loudspeaker supplied with 

alternating current creates sound waves because the diaphragm of the loudspeaker is forced to 

move to and fro. The diaphragm compresses the surrounding air in front of it as it moves forward 

and then it moves back before creating another compression. Effectively, the air which is the 

medium of propagation in this case, moves to and fro as the sound waves pass through it. Primary 

seismic waves are another example of longitudinal waves. They travel faster than the secondary 

waves, and can travel through solids and liquids as they push and pull on the medium they travel 

though. 
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Figure 6: (a) Longitudinal waves generated in a tube of air with a piston at one end. (b) Sound waves 

in air. 

Water waves are a combination of longitudinal and transverse waves. Each particle near the surface 

moves in a circular orbit, so that a succession of crests and troughs occur. At a crest, the water at 

the surface moves in the direction of the wave and at trough, it moves in the opposite direction.  

Self Assessment Question (SAQ) 1: What type of mechanical waves do you expect to exist in (a) 

vacuum, (b) air, (c) water, (d) rock? 

Self Assessment Question (SAQ) 2: Choose the correct option: 

Elastic waves in solid are 

(a) Transverse (b) Longitudinal  

(c) Either transverse or longitudinal (d) Neither transverse and longitudinal. 
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Self Assessment Question (SAQ) 3: Give evidence in support of the fact that sound is a 

mechanical wave. 

Self Assessment Question (SAQ) 4: Choose the correct option: 

Mechanical waves on the surface of a liquid are 

(a) Transverse (b) Longitudinal (c) Torsional (d) Both transverse and longitudinal.  

6.4 WAVE PROPERTIES 

In the preceding sections, we saw that when a wave moves, the displacements of the particles 

change with time as well as with the position. In one complete cycle of oscillation, the particles in 

the medium are displaced in one direction from their mean position to a position of maximum 

displacement, come back to the mean position and move in the opposite direction to the other 

extreme, and again come back to their mean position. In the following sections, we will be 

discussing some of the terms that are useful in characterizing the waves.    

6.4.1 Wave Speed  

The speed of a wave is the distance it covers in one second. It should be carefully noted that the 

wave speed is completely different from the particle speed. Particle speed is the speed of the 

vibrating particles in the medium. On the other hand, wave speed is the speed with which the 

disturbance (or wave) propagates in the medium.  

6.4.2 Wave Frequency 

The frequency with which the particles of the medium (through which the wave is passing) 

oscillate is known as wave frequency. In transverse waves, frequency is the number of crests (or 

troughs) that pass through a point in one second. In longitudinal waves, frequency is the number 

of compressions (or rarefactions) that pass through a point in one second. It is denoted by the 

symbol 𝑓. The SI unit of frequency is hertz (Hz), which is equal to 1 cycle per second.  

We already know that the wave motion requires a source which moves or vibrates with a particular 

frequency. So an important point to keep in mind is that the frequency of a wave is a property of 

the source, not of the medium through which it propagates.  

 

6.4.3 Time Period 

The time period of the oscillation of the particles in the medium is the time period of the wave and 

is depicted in Figure 7. It is denoted by the symbol T. The frequency of a wave is the reciprocal of 

the time period, i.e. 
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𝑓 =
1

𝑇
 

    
(1) 

 
Figure 7: The vibration graph of a wave. 

6.4.4 Amplitude 

The amplitude of the wave is equal to the maximum positive displacement of the particles from 

their mean position. Thus, the amplitude of the wave is the same as the amplitude of the oscillating 

particles. It is depicted in Figures 7 and 8 and is denoted by the symbol A. 

 

 
Figure 8: The waveform graph of a wave. 

 

6.4.5 Wavelength 

The distance between any two points in the same state of motion defines the wavelength of a wave. 

Physically, this means that the wavelength is equal to the distance between two consecutive crests 

(or troughs) and is depicted in Figure 8. Wavelength is denoted by the symbol . The wave speed 

is given by 
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𝜈 =


𝑇
 

    

(2) 

Since, the frequency f of a wave is the reciprocal of its period T, the above equation can also be 

written as 

𝜈 = 𝑓 (3) 

The above equation predicts that in a given medium, the wave speed of a wave of given frequency 

is constant. Note that equation (3) holds for a transverse as well as a longitudinal wave.  

Thus, we can see that the wavelength and the time period represent the spatial and the temporal 

properties of a wave, respectively. When a wave propagates in a medium, it travels with the same 

amplitude, time period (or frequency) as those of the particles oscillating in the medium. Hence, 

we can infer that in a wave, the variation with the position and the time follows the same pattern 

as that of the oscillating particles. This means that we can represent wave motion both graphically 

as wells as mathematically. In the graphical representation, the information can be displayed in the 

following two ways: 

1- Keeping the position x fixed and varying the time t. 

2- Keeping the time t fixed and varying the position x. 

The first type of graph is referred to as the vibration graph of a wave. The vibration graph shows 

the wave behavior at one position in the path of a wave with time. One can obtain it by fixing a 

slit at one spot and observing the motion of the wave at different times. Figure 7 shows the 

vibration graph of a wave. The vibration graph of a wave can be represented as 

𝑦(𝑡) = 𝐴 sin (
2𝜋𝑡

𝑇
) (4) 

On the other hand, when the time is kept fixed and the position can vary, the graph obtained is 

called a waveform graph. It is analogous to a snapshot at any instant of time, such as t = T. A 

waveform graph displays the wave behavior simultaneously at different locations as shown in 

Figure 8. We can represent the waveform graph of a wave as 

𝑦(𝑥) = 𝐴 sin (
2𝜋𝑥


) (5) 

Although, there are similarities in the shapes of vibration and waveform graphs, they should not 

be confused. While the vibration graph tells us about the shape of the wave, its amplitude and time 

period, the waveform graph gives us information about the shape of the wave, its amplitude and 

wavelength.  
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Example 1:  An observer standing at sea coast observes 54 waves reaching the coast per minute. 

If the wavelength of the waves is 10 m, find the velocity. What type of waves did he observe? 

Solution: 

Since, 54 waves reach the shore per minute, 

𝑓 =
54

60
= 0.9 𝐻𝑧 

And as the wavelength of waves is 10 m, therefore, 

𝜈 = 𝑓 = 0.9 × 10 = 9 𝑚/𝑠 

The waves on the surface of water are combined transverse and longitudinal waves called ripples. 

In case of surface waves, the particles of the medium move in elliptical paths in a vertical so that 

the vibrations are simultaneously back and forth and up and down as shown in Figure 9. 

 

Figure 9: Ripples at different times. At a crest, the surface water moves in the direction of the wave 

and at trough, it moves in the opposite direction. 

 

Example 2:  A light pointer fixed to one prong of a tuning fork touches a vertical plate. The fork 

is set vibrating and the plate is allowed to fall freely. 8 complete oscillations are counted when the 

plate falls through 0.1 m. What is the frequency of the tuning fork? Take g = 9.8 m/s2. 

Solution: 

Time taken by the plate to fall 0.1 m freely under gravity is given by 
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𝑡 = √
2ℎ

𝑔
= √

2(0.1)

9.8
=

1

7
𝑠 

And in this time, 8 oscillations are recorded on the plate. Therefore, the number of oscillations per 

second, or in other words, the frequency of the tuning fork will be  

𝑓 = 7 × 8 = 56 𝐻𝑧 

 

Example 3:  Certain radar emits 9400-MHz radio waves in groups 0.08 μs in duration. The time 

needed for these groups to reach a target, be reflected and return back to the radar is indicative of 

the distance of the target. The velocity of these waves, like other electromagnetic waves is 𝑐 =

3 × 108 𝑚/𝑠. Find    

(a) the wavelength of these waves, 

(b) the length of each wave group, which governs how precisely the radar can measure 

distances of the target, and 

(c) the number of waves in each group. 

Solution: 

(a) Since, 1 MHz = 106 Hz, 

9400 𝑀𝐻𝑧 = 9.4 × 109 𝐻𝑧 

Therefore, the wavelength 

 =
𝑐

𝑓
=

3 × 108 𝑚/𝑠

9.4 × 109 𝐻𝑧
= 3.19 × 10−2 𝑚 

(b) The length 𝑠 of each wave group is  

𝑠 = 𝑐𝑡 = (3 × 108 𝑚/𝑠)(8 × 10−8 𝑠) = 24 𝑚 

(c) There are two ways to find the number of waves 𝑛 in each group: 

𝑛 = 𝑓𝑡 = (9.4 × 109 𝐻𝑧)(8 × 10−8 𝑠) = 752 𝑤𝑎𝑣𝑒𝑠 

       Or 

𝑛 =
𝑠


=

24 𝑚

3.19 × 10−2 𝑚
= 752 𝑤𝑎𝑣𝑒𝑠 

 

Self Assessment Question (SAQ) 5: Choose the correct option: 

Which of the following cannot travel through vacuum? 
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(a) Light waves, (b) heat waves, (c) X-rays, or (d) sound waves.  

Self Assessment Question (SAQ) 6: A body vibrating with a certain frequency sends waves of 

wavelength 15 cm in medium A and 20 cm in medium B. If the velocity of wave in A is 120 m/s, 

that in B will be ____________ m/s. 

Self Assessment Question (SAQ) 7: Challenge Question: 

An anchored boat is observed to rise and fall through a total range of 2 m once every 4 s as 

waves whose crests are 30 m apart pass it. Find 

(a) the frequency of the waves, 

(b) their velocity, 

(c) their amplitude, and 

(d) the velocity of an individual water particle at the surface. 

Self Assessment Question (SAQ) 8: An object oscillates in a simple harmonic motion with a 

frequency of 100 Hz. Calculate its time period.   

Self Assessment Question (SAQ) 9: Sound travels in air with a speed of 332 m/s. The upper limit 

of audible range is 20,000 Hz. Calculate the corresponding wavelength in cm. 

 

6.5 MATHEMATICAL DESCRIPTION OF WAVE MOTION 

If a mathematical equation describes a wave, it must be able to give the position of any particle of 

the medium at any given instant of time. Consider a transverse wave travelling toward right in a 

tight string lying on the x-axis. Figure 10 shows the snapshots of a wave travelling along the 

positive x-axis at the instant t = 0 and at time t. If the wave velocity is v, then as the wave travels 

the y-coordinate of point C (at x’) at t = 0 is the same as the y-coordinate of point D (at x = x’ + 

vt) at time t, i.e. 

𝑦(𝑥, 𝑡) = 𝑦(𝑥 ′, 0) (6) 

From equation (5), we have  

𝑦(𝑥 ′, 0) = 𝐴 sin (
2𝜋𝑥 ′


) = 𝐴 sin (

2𝜋(𝑥 − 𝑣𝑡)


) (7) 
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Figure 10 

Therefore, from equations (6) and (7), we have 

𝑦(𝑥, 𝑡) = 𝐴 sin (
2𝜋(𝑥 − 𝑣𝑡)


) 

Replacing 𝑣 by /𝑇 in the above equation, the displacement y(x, t) of any particle located at some 

x-coordinate at any instant of time t is given by 

𝑦(𝑥, 𝑡) = 𝐴 sin (
2𝜋𝑥


−

2𝜋𝑡

𝑇
) (8) 

Equation (8) is known as the wave equation. It can also be written in the following equivalent 

form: 

𝑦(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 − 𝑡) (9) 

where 𝑘 = 2𝜋/ is known as the wave number, which signifies how quickly the wave oscillates 

is space, and  = 2𝜋/𝑇 is known as the angular frequency, which tells us how quickly the wave 

oscillates in time. 

Also, since the wave velocity is given as /𝑇, from equations (8) and (9), we can write 

𝑣 =


𝑘
 (10) 

Equation (9) or its other equivalent forms describes a monochromatic wave, since it has a single 

constant frequency. Note that these equations describe 1-dimensional transverse as well as 

longitudinal sinusoidal waves travelling in the positive x-direction. This leads to one important 
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difference between the displacement of the particles of the medium and the displacement y(x, t) of 

any point on the waveform: while the former changes periodically, the latter remains constant. As 

the wave travels, the entire waveform shifts. Hence, the displacement of a point on the waveform 

remains the same and this holds for all points on the waveform.  

The following equation can easily be derived by replacing 𝑣 with −𝑣, if we want to describe a 

wave travelling in the negative x-direction. 

𝑦(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 + 𝑡) (11) 

 

Example 4:  A wave is represented by 

𝑦(𝑥, 𝑡) = [8 𝑐𝑚] sin[(10 𝑟𝑎𝑑/𝑐𝑚)𝑥 − (10 𝑟𝑎𝑑/𝑠)𝑡] 

Determine the amplitude, wavelength, angular frequency, wave number and the velocity of the 

wave. 

Solution: 

Comparing the given wave equation with equation (10.9), we find that the wave is travelling in the 

positive x-direction, with amplitude A = 8 cm, angular frequency  = 10 𝑟𝑎𝑑/𝑠 and the wave 

number k = 10 rad/cm.  

From the definition of the wave number, we have 

𝑘 =
2𝜋


 

⇒  =
2𝜋

𝑘
=

2𝜋

10
= 0.63 𝑐𝑚 

Further, using equation (10.10), we have   

𝑣 =
𝜔

𝑘
=

10 𝑟𝑎𝑑/𝑠

10 𝑟𝑎𝑑/𝑐𝑚
= 1 𝑐𝑚/𝑠 

 

Example 5:  A transverse wave is travelling along a string from left to right. The figure below 

represents the shape of the string at a given instant. At this instant 
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Figure 11 

(a) Which points have an upward velocity? 

(b) Which points have a downward velocity? 

(c) Which points have zero velocity? 

(d) Which points have maximum magnitude of velocity? 

Solution: 

For a wave travelling in positive x-direction, the particle velocity 𝑣𝑝 at any instant is given by 

𝑣𝑝 = (
𝑑𝑦

𝑑𝑡
)

𝑥
 

⇒ 𝑣𝑝 = −𝐴 cos(𝑘𝑥 − 𝑡) 

 

(12) 

Further, the slope of the wave is given as 

𝑑𝑦

𝑑𝑥
= 𝐴𝑘 cos(𝑘𝑥 − 𝑡) 

(13) 

 

From equations (12) and (13), we get that the particle velocity 𝑣𝑝 is equal to the negative of the 

product of the wave velocity with the slope of wave at that point, 

𝑣𝑝 = −


𝑘
× (𝑠𝑙𝑜𝑝𝑒) = −𝑣 × (𝑠𝑙𝑜𝑝𝑒) 

(14) 

 

(a) For upward velocity, 𝑣𝑝 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, so the slope must be negative which is at points D, E 

and F. 

(b) For downward velocity, 𝑣𝑝 = 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, so the slope must be positive which is at points 

A, B and H. 

(c) For zero velocity, the slope must be zero which is at C and G. 

(d) For maximum magnitude of velocity, |𝑠𝑙𝑜𝑝𝑒| = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 which is at A and E. 
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Self Assessment Question (SAQ) 10: A simple harmonic wave having an amplitude A and time 

period T is represented by the equation 𝑦 = 5 sin 𝜋(𝑡 + 4) 𝑚. What are the values of A (in m) 

and T (in s)? 

Self Assessment Question (SAQ) 11: Choose the correct option: 

Waves whose crests are 30 m apart reach an anchored boat once every 3 s. The wave velocity (in 

m/s) is 

(a) 0.1  (b) 5  (c) 10  (d) 900   

 

Answer of Selected Self-Assessment Questions (SAQs): 

1. (a) no wave, (b) longitudinal, (c) longitudinal, (d) either transverse or longitudinal 

2. (c) ,  3. Sound requires medium for propagation. , 4. (d);  5. (d); 6. 160 m/s;  

7. (a) 𝑓 =
1

𝑇
=

1

4
= 0.25 𝐻𝑧 

(b) 𝑣 = 𝑓 = (0.25 𝐻𝑧)(30 𝑚) = 7.5 𝑚/𝑠 

(c) The amplitude is half the total range, so A = 1 m. 

(d) As each wave passes, the water particles at the surface move in circular orbits of radius r = A 

= 1 m (see Figure 9). The circumference of such an orbit is 𝑠 = 2𝜋𝑟 = 2𝜋(1 𝑚) = 6.28 𝑚. 

The waves have time period of 4 s, which means that each surface water particle must move 

through its 6.28 m orbit in 4 s. The velocity of such a water particle is, therefore, 

𝑣𝑝 =
𝑠

𝑇
=

6.28 𝑚

4 𝑠
= 1.57 𝑚/𝑠 

Note that the wave velocity here is nearly five times greater than the water particle velocity. This 

signifies that the motion of a wave can be much faster than the motions of the individual 

particles of the medium in which the wave travels. 

8. 0.01 s;  9. 1.66 cm 

10. The wave is travelling in the negative x-direction and the wave equation is given as 

𝑦(𝑥, 𝑡) = 𝐴 sin (
2𝜋𝑥


+

2𝜋𝑡

𝑇
) 

Comparing with the above wave equation, the amplitude A = 5. Comparing the second term inside 

the sine term in the above equation, we get  
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2𝜋

𝑇
= 𝜋 ⇒ 𝑇 = 2 

11. (c) 

 

6.6 Waves on a Stretched String: 

Consider a uniform stretched string, having mass per unit length m. Under equilibrium conditions, 

it can be considered to be straight. The x-axis is chosen along the length of the stretched string in 

its equilibrium state. Let the string be displaced perpendicular to its length by a small amount so 

that a small section of length Δx is displaced through a distance y from its mean position, as shown 

in Figure 12. When the string is released, it results in wave motion. Let’s see how. 

 

Figure 12: Forces acting on a small element of a string displaced perpendicular to its length. 

We have studied that the wave disturbance travels from one particle to another due to their masses 

(or inertia) and the factor responsible for the periodic motion of the particle is the elasticity of the 

medium. For a stretched string, the elasticity is measured by the tension F in it and the inertia is 

measured by mass per unit length or linear mass density, m.  

Suppose that the tangential force on each end of a small element AB, as shown in Figure 1, is F; 

the force on the end B is produced by the pull of the string to the right and the one at A is due to 

the pull of the string to the left. Due to the curvature of the element AB, the forces are not directly 

opposite to each other. Instead, they make angles 𝜃1 and 𝜃2 with the x-axis. This means that the 

forces pulling the element AB at opposite ends, though of equal magnitude, do not exactly cancel 

each other. In order to calculate the net force along the x- and y-axes, the forces are resolved into 

rectangular components. The net force in the x and the y directions are respectively given by 

𝐹𝑥 = 𝐹 cos 𝜃2 − 𝐹 cos 𝜃1 
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𝑎𝑛𝑑     𝐹𝑦 = 𝐹 sin 𝜃2 − 𝐹 sin 𝜃1 

For small angle approximation, cos 𝜃 ≈ 1 and sin 𝜃 ≈ 𝜃 ≈ tan 𝜃. This implies that if the 

displacement of the string perpendicular to its length is relatively small, the angles 𝜃1 and 𝜃2 will 

be small and there is no net force in the x-direction, and the element AB is only subjected to a net 

upward force 𝐹𝑦. Under the action of this force, the string element will move up and down. 

Therefore, the y-component of the force on element AB can be written as 

𝐹𝑦 = 𝐹 tan 𝜃2 − 𝐹 tan 𝜃1 

We know that the tangent of an angle actually defines the slope at that point. In other words, the 

tangent define the derivative dy/dx. Using this result, the y-component of force on the element can 

be approximated as 

𝐹𝑦 = 𝐹 (
𝑑𝑦

𝑑𝑥
|

𝑥+𝛥𝑥
−

𝑑𝑦

𝑑𝑥
|

𝑥
) 

 

(15) 

Note that the perpendicular displacement y(x, t) of the string is both a function of the position x 

and time t. However, equation (15) is valid at a particular instant of time. Therefore, the derivative 

in this expression should be taken by keeping the time fixed. Therefore, equation (15) can be 

rewritten as 

𝐹𝑦 = 𝐹 (
𝜕𝑦

𝜕𝑥
|

𝑥+𝛥𝑥
−

𝜕𝑦

𝜕𝑥
|

𝑥
) 

 

(16) 

For the sake of convenience, let us put 

𝑓(𝑥) =
𝜕𝑦

𝜕𝑥
|

𝑥
        𝑎𝑛𝑑         𝑓(𝑥 + 𝛥𝑥) =

𝜕𝑦

𝜕𝑥
|

𝑥+𝛥𝑥
 

in equation (16). Thus, equation (16) becomes 

𝐹𝑦 = 𝐹[𝑓(𝑥 + 𝛥𝑥) − 𝑓(𝑥)] 
 

(17) 

To simplify the above expression, we make use of Taylor series expansion of the function 

𝑓(𝑥 + 𝛥𝑥) about the point x: 

𝑓(𝑥 + 𝛥𝑥) = 𝑓(𝑥) +
𝜕𝑓

𝜕𝑥
|

𝑥
𝛥𝑥 +

1

2

𝜕2𝑓

𝜕𝑥2
|

𝑥

𝛥𝑥2 + ⋯ 

Since, 𝛥𝑥 is small , we can ignore the second and the higher order terms in 𝛥𝑥 to obtain, 

𝑓(𝑥 + 𝛥𝑥) = 𝑓(𝑥) +
𝜕𝑓

𝜕𝑥
|

𝑥
𝛥𝑥 



INTRODUCTORY PHYSICS  PHY(N)GE 
 

150 
 

                           = 𝑓(𝑥) +
𝜕

𝜕𝑥
(

𝜕𝑦

𝜕𝑥
) 𝛥𝑥 

⇒ 𝑓(𝑥 + 𝛥𝑥) − 𝑓(𝑥) =
𝜕2𝑦

𝜕𝑥2
𝛥𝑥 

Inserting the above result in equation (10.3), we get 

𝐹𝑦 = 𝐹
𝜕2𝑦

𝜕𝑥2
𝛥𝑥 

This equation gives the net force on the element AB. We use Newton’s second law of motion to 

obtain the equation of motion of this element, by equating this force to the product of mass and 

acceleration of the element AB. The mass of the element AB is 𝑚 𝛥𝑥. Therefore, we can write 

𝑚 𝛥𝑥
𝜕2𝑦

𝜕𝑡2
= 𝐹

𝜕2𝑦

𝜕𝑥2
𝛥𝑥 

⇒
𝜕2𝑦

𝜕𝑥2
=

𝑚

𝐹

𝜕2𝑦

𝜕𝑡2
 (18) 

Note that even though equation (18) has been obtained for a small element AB, it can be applied 

to the entire string, since there is nothing special about this particular element of the string. In other 

words, equation (18) can be applied to all the elements of the string.  

Now, let us go back to the sinusoidal wave propagating on the string described by the equation 

𝑦(𝑥, 𝑡) = 𝐴 sin(𝑡 − 𝑘𝑥) 

If this mathematical form is consistent with equation (18), then we can be sure that such a wave 

can indeed move on the string. To check this, we calculate the spatial and the temporal partial 

derivatives of particle displacement y(x, t): 

𝜕2𝑦

𝜕𝑥2
= −𝑘2𝐴 sin(𝑡 − 𝑘𝑥) 

𝑎𝑛𝑑      
𝜕2𝑦

𝜕𝑡2
= −2𝐴 sin(𝑡 − 𝑘𝑥) 

Substituting these partial derivatives in equation (18 10.4), we get 

−𝑘2𝐴 sin(𝑡 − 𝑘𝑥) =
𝑚

𝐹
[−2𝐴 sin(𝑡 − 𝑘𝑥)] 
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⇒
𝐹

𝑚
= (



𝑘
)

2

 

 
(19) 

But, we know that /𝑘 is the wave speed v, therefore, from the above relation, we get 

𝑣 =


𝑘
= √

𝐹

𝑚
 (20) 

The above relation tells us that velocity of a transverse wave on a stretched string depends on 

tension and mass per unit length of the string. Using equation (20), we can write equation (18) as 

⇒
𝜕2𝑦

𝜕𝑥2
=

1

𝑣2

𝜕2𝑦

𝜕𝑡2
 (21) 

This result expresses one-dimensional wave equation. It holds as long as we deal with small 

amplitude waves. Elasticity provides the restoring force and the inertia determines the response of 

the medium.  

6.7 Longitudinal Waves in a Uniform Rod 

Consider a cylindrical metal rod of uniform cross-sectional area. When the rod is struck with a hammer at 

one end, the disturbance will propagate along it with a speed determined by its physical properties. For 

simplicity, we assume that the rod is fixed at the left end as shown in Figure 13. 

 
Figure 13: Uniform cylindrical rod fixed at left end. 

  



INTRODUCTORY PHYSICS  PHY(N)GE 
 

152 
 

 

Figure 14: Longitudinal wave propagating in a uniform cylindrical rod. Element PQ in (a) 

equilibrium state, and (b) deformed state. 

We choose x-axis along the length of the rod with origin O at the left end. We divide the rod in a 

large number of small elements, each of length Δx. Let us consider one such element PQ, as shown 

in Figure 3a. Since, the rod has been struck at end O lengthwise, the section at P, which is at a 

distance 𝑥1 from O, will be displaced along x-axis. Since, the force experienced by different 

sections of the rod is a function of distance, the displacements of particles in different sections will 

also be function of position. Let us denote is by ξ(x).  

Figure 3b shows the deformed state of the rod and displaced position of the element under 

consideration. Let us denote the x-coordinate of the element in the displaced position by 𝑥1 +

ξ(𝑥1) so that ξ(𝑥1) represents the displacement of the particles in the section P. Similarly, the new 

x-coordinate of the particles initially located in the section at Q (x = 𝑥2) be denoted by 𝑥2 + ξ(𝑥2), 

so that ξ(𝑥2) signifies the displacement of the particles in section at Q. Hence, the change in length 

of the element is ξ(𝑥2) − ξ(𝑥1). Using Taylor series expansion of ξ(𝑥2) around 𝑥1 and retaining 

the first order terms, just like we did in the case of the string, we can write 

ξ(𝑥2) − ξ(𝑥1) = (
𝜕ξ

𝜕𝑥
)

𝑥=𝑥1

∆𝑥 

The linear strain produced in the element PQ can be expressed as 
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𝜀(𝑥2) =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
=

(
𝜕ξ
𝜕𝑥)

𝑥=𝑥1

∆𝑥

∆𝑥
 

⇒ 𝜀(𝑥2) = (
𝜕ξ

𝜕𝑥
)

𝑥=𝑥1

 (22) 

The net force 𝐹′ − 𝐹 on the element P’Q’ at points  P’ and Q’, as shown in Figure 3b, is toward 

right. Due to this force, the element under consideration will experience stress, which is the 

restoring force per unit area. You may recall that the ratio of stress to longitudinal strain defines 

the Young’s modulus Y, 

𝑌 =
𝑆𝑡𝑟𝑒𝑠𝑠

𝑆𝑡𝑟𝑎𝑖𝑛
 

⇒ 𝑆𝑡𝑟𝑒𝑠𝑠 = 𝑌 × 𝑆𝑡𝑟𝑎𝑖𝑛 

In view of the spatial variation of force, we can say that the sections P and Q of the element under 

consideration will develop different stresses. Therefore, we can write 

𝜎(𝑥1) = 𝑌 (
𝜕ξ

𝜕𝑥
)

𝑥=𝑥1

 

𝑎𝑛𝑑         𝜎(𝑥2) = 𝑌 (
𝜕ξ

𝜕𝑥
)

𝑥=𝑥2

 

The net stress on the element PQ is 

𝜎(𝑥2) − 𝜎(𝑥1) = 𝑌 [(
𝜕ξ

𝜕𝑥
)

𝑥=𝑥2

− (
𝜕ξ

𝜕𝑥
)

𝑥=𝑥1

] 

              = 𝑌[𝑓(𝑥2) − 𝑓(𝑥1)] 

where we have put 𝑓(𝑥) = 𝜕ξ/𝜕x.. As before, using Taylor series expansion for 𝑓(𝑥2) about 𝑥1, 

we can easily see  

𝜎(𝑥2) − 𝜎(𝑥1) = 𝑌 (
𝜕f

𝜕𝑥
) ∆𝑥 

= 𝑌
𝜕

𝜕𝑥
(

𝜕ξ

𝜕𝑥
) ∆𝑥 

⇒ 𝜎(𝑥2) − 𝜎(𝑥1) = 𝑌 (
𝜕2ξ

𝜕𝑥2
) ∆𝑥 (23) 
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If the cross-sectional area of the rod is A, the net force on the elements in the x-direction is given 

by 

𝐹(𝑥2) − 𝐹(𝑥1) = 𝐴[𝜎(𝑥2) − 𝜎(𝑥1)] 

⇒ 𝐹(𝑥2) − 𝐹(𝑥1) = 𝑌 (
𝜕2ξ

𝜕𝑥2
) ∆𝑥 (24) 

Under dynamic equilibrium condition, the equation of motion of the element PQ, using Newton’s 

second law of motion, can be written as 

𝑌 (
𝜕2ξ

𝜕𝑥2
) ∆𝑥 = 𝜌𝐴∆𝑥 (

𝜕2ξ

𝜕𝑡2
) (25) 

where 𝜌 is the density of the material of the rod and 𝜌𝐴∆𝑥 signifies the mass of the element PQ. 

On simplification, we find that the displacement ξ(x, t) satisfies the equation 

𝜕2ξ

𝜕𝑡2
=

𝑌

𝜌

𝜕2ξ

𝜕𝑥2
 (26) 

which is of the form of wave equation (21 10.7) with 

𝑣 = √
𝑌

𝜌
 (27) 

Equations (26) and (27) show that the deformation propagates along the rod as a wave and the 

velocity of the longitudinal waves is independent of the cross-sectional area of the rod.   

6.8 Longitudinal Waves in a Gas 

Since a gaseous medium lacks rigidity, transverse waves cannot propagate in it; only solids can 

sustain transverse waves. However, longitudinal waves can propagate in all media such as gas, 

solid and liquid in the form of compressions and rarefactions. We now discuss longitudinal waves 

in a gaseous medium. 

Sound waves in air columns perhaps are the most familiar one-dimensional waves in a gas. These 

can be easily excited by placing a vibrating tuning fork at the open end of an air column. What is 

the basic difference between longitudinal waves in a solid rod that we studied in the last section 

and a gas column? We know that gases being compressible, the pressure variations in a gas are 

accompanied by fluctuations in the density, while the density of a solid rod remains essentially 

constant.  



INTRODUCTORY PHYSICS  PHY(N)GE 
 

155 
 

In order to understand the propagation of one-dimensional longitudinal waves in a gas, consider a 

gas column in a long pipe or cylindrical tube of uniform cross-sectional area A. As before, we 

conveniently choose x-axis along the length of the tube and divide the column of the gas into small 

elements or slices, each of small length Δx. Figure 15 shows one such volume element PQRS. 

Thus, the volume of this element is V = AΔx. 

 

Figure 1: (a) Equilibrium state of the column PQRS of a gas contained in a long tube of cross-sectional 

area A, and (b) displaced position of column under pressure difference. 

Under equilibrium condition, pressure and density of the gas remains the same throughout the 

volume of the gas, independent of the x-coordinate. Let the equilibrium pressure be denoted by 

𝑝0. If the pressure of the gas in the tube is changed, the volume element PQRS will be set in motion 

giving rise to a net force. Let us choose the origin of the coordinate system so that the particles in 

plane PQ are at a distance 𝑥1 and those in plane SR are at a distance 𝑥2 from it. Figure 4b shows 

the displaced position of the volume element when PQ is shifted to P'Q' and SR is shifted to S'R̓' 

Let the new coordinates be denoted by 𝑥1 + 𝜓(𝑥1) and 𝑥2 + 𝜓(𝑥2), respectively. It means that 

𝜓(𝑥1) and 𝜓(𝑥2) respectively, denote the displacements of the particles originally at 𝑥1 and 𝑥2. 

Therefore, the change in thickness 𝛥𝑙 is given by 

𝛥𝑙 = 𝜓(𝑥2) − 𝜓(𝑥1) 

If 𝛥𝑙 is positive, there is increase in length, and hence the volume of the element also increases 

and vice versa. Using Taylor series expansion for 𝜓(𝑥2) about 𝜓(𝑥1), we can write 

𝛥𝑙 = 𝜓(𝑥2) − 𝜓(𝑥1) = (
𝜕𝜓

𝜕𝑥
) 𝛥𝑥 

This means that the change in volume 𝛥𝑉 is 

𝛥𝑉 = 𝐴𝛥𝑙 = 𝐴𝛥𝑥 (
𝜕𝜓

𝜕𝑥
) 
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The volume strain, which is defined as the change in volume per unit volume, is given by 

𝛥𝑉

𝑉
=

𝐴𝛥𝑥

𝐴𝛥𝑥
(

𝜕𝜓

𝜕𝑥
) =

𝜕𝜓

𝜕𝑥
 (28) 

This increase in volume of the element is due to the decrease in pressure and vice versa. 

It should be noted that until now all the steps that have been followed are identical to the case of 

the solid rod. However, as mentioned earlier, due to comparatively large compressibility of the 

gas, change in volume is accompanied by changes in density. This implies that the pressure in the 

compressed/rarefied gas varies with distance. To proceed further, let us suppose that the pressure 

at P’Q’ is 𝑝0 + 𝑝(𝑥1
′ ). Hence, the pressure difference across the ends of the element P’Q’R’S’ can 

be expressed in terms of the pressure gradient, 

𝑝(𝑥2
′ ) − 𝑝(𝑥1

′ ) = (
𝜕𝑝(𝑥)

𝜕𝑥
)

𝑥=𝑥1
′

∆𝑥 

                            =
𝜕(𝑝0 − ∆𝑝)

𝜕𝑥
∆𝑥 

Since, 𝑝0 is a constant 

⇒ 𝑝(𝑥2
′ ) − 𝑝(𝑥1

′ ) = −
𝜕(∆𝑝)

𝜕𝑥
∆𝑥 (29) 

To express the above result in a familiar form, we note that ∆𝑝 is connected to the bulk modulus 

of elasticity by the relation 

𝐸 =
𝑆𝑡𝑟𝑒𝑠𝑠

𝑉𝑜𝑙𝑢𝑚𝑒 𝑆𝑡𝑟𝑎𝑖𝑛
= −

∆𝑝

∆𝑉/𝑉
 

The negative sign is included to account for the fact that when the pressure increases, the volume 

decreases. This ensures that E is positive. We can write the above relation as 

∆𝑝 = −𝐸 (
∆𝑉

𝑉
) 

On substituting for ∆𝑉/𝑉 from equation (28 10.14), we get 

∆𝑝 = −𝐸 (
𝜕𝜓

𝜕𝑥
) 

Using equation (29 10.15), we find that the pressure difference at the ends of the displaced column 

is given by 
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𝑝(𝑥2
′ ) − 𝑝(𝑥1

′ ) = −
𝜕

𝜕𝑥
(−𝐸

𝜕𝜓

𝜕𝑥
) ∆𝑥 = 𝐸 (

𝜕2𝜓

𝜕𝑥2
) ∆𝑥 

The net force acting on the volume element is obtained by multiplying this expression for pressure 

difference by the cross-sectional are of the column, 

𝐹 = [𝑝(𝑥2
′ ) − 𝑝(𝑥1

′ )]𝐴 

= 𝐸𝐴∆𝑥 (
𝜕2𝜓

𝜕𝑥2
) 

Under the action of this force, the volume element under consideration shall be set in motion. 

Using Newton’s second law of motion, we find that the equation of motion of the element under 

consideration can be expressed as 

𝜌∆𝑥𝐴
𝜕2𝜓

𝜕𝑡2
= 𝐸𝐴∆𝑥 (

𝜕2𝜓

𝜕𝑥2
) 

⇒
𝜕2𝜓

𝜕𝑡2
=

𝐸

𝜌

𝜕2𝜓

𝜕𝑥2
 (30) 

If we identify the speed of the longitudinal wave as 

  

𝑣 = √
𝐸

𝜌
 (31) 

equation (30) becomes identical to equation (21). One must note that the wave speed is determined 

only by the bulk modulus of elasticity and density – two properties of the medium through which 

the wave is propagating. 

When a longitudinal wave propagates through a gaseous medium such as air, the volume elasticity 

is influenced by the thermodynamic changes that take place in it. These changes can be isothermal 

or adiabatic. Newton gave the first theoretical expression of the velocity of sound wave in a gas. 

He assumed that when sound wave travels through a gaseous medium, the temperature variations 

in the regions of compression and rarefaction are negligible. For sound waves propagating in air, 

Newton assumed that isothermal changes take place in the medium. For an isothermal change, the 

volume elasticity equals atmospheric pressure, 

𝐸 = 𝐸𝑇 = 𝑝 

Then we can write, 



INTRODUCTORY PHYSICS  PHY(N)GE 
 

158 
 

𝑣 = √
𝑝

𝜌
 (32) 

This is known as the Newton’s formula for velocity of sound. For air at STP, ρ = 1.29 kgm−3 and 

p = 1.01 × 105 Nm−2. Hence, velocity of sound in air at STP, using the Newton’s formula comes 

out to be 

𝑣 = √
1.01 × 105 𝑁𝑚−2

1.29 𝑘𝑔𝑚−3
= 280 𝑚/𝑠 

But experimental results paint a different picture and show that the speed of sound in air at STP is 

actually around 332 m/s, which is about 15% higher than the value predicted by Newton’s formula. 

This implies that something was wrong with the assumption of isothermal change.  

The discrepancy was resolved when Laplace pointed out that sound waves produced adiabatic 

changes; the regions of compression are hotter while the regions of rarefaction are cooler, i.e. local 

changes in temperature occur when sound propagates in air. Since, the thermal conductivity of a 

gas is small and these thermal change occur so rapidly that the heat developed in compression and 

cooling produced in rarefaction is not transferred out during the short time-scale.  The time-scale 

is the time required by sound to travel from compression to rarefaction. However, the total energy 

of the system is conserved. This means that the adiabatic changes occur in air when sound 

propagates. 

For an adiabatic change, 𝐸𝑠 is γ times the pressure, where γ is the ratio of specific heat capacities 

of a gas at constant pressure and at constant volume, i.e.  

𝐸𝑠 = γp 

Then, equation (32 10.18) becomes 

𝑣 = √
𝛾𝑝

𝜌
 (33) 

This is known as the Laplace’s formula. For air, γ = 1.4 and the velocity of sound in air at STP 

based on equation (33 10.19) comes out to be 331 m/s, which is in close agreement with the 

experimentally measured value, thereby establishing the correctness of Laplace’s explanation.  

At a given temperature, p/ρ is constant for a gas. So, equation (33 10.19) shows that the velocity 

of a longitudinal wave is independent of pressure.  

The question arises that why is the thermal energy unable to flow from a compression to a 

rarefaction and equalize the temperature creating isothermal conditions? To answer this question, 

we notice that to attain this condition, thermal energy must flow through a distance of one-half 
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wavelength in a time much shorter than one-half of the period of oscillation of the particles. 

Thermodynamically, this means that we would need, 

𝑣𝑠𝑜𝑢𝑛𝑑 ≪ 𝑣𝑡ℎ𝑒𝑟𝑚𝑎𝑙 

One may recall from kinetic theory of gases that the root mean square speed of air molecules is 

given by 

𝑣𝑟𝑚𝑠 = √
2𝑘𝐵𝑇

𝑚
 (34) 

where m is the mass of air molecules and T is the absolute temperature in K. We can similarly 

write the expression for the speed of sound 

𝑣𝑠𝑜𝑢𝑛𝑑 = √
𝛾𝑘𝐵𝑇

𝑚
 (35) 

As liquids, in general, are incompressible, the speed of sound in liquids must be significantly 

higher than in gases. For example, in water whose 𝐸 = 2.22 × 109 𝑁𝑚−2, using equation (31) the 

wave speed comes out to be about 1500 m/s. Even though water is about 1000 times denser than 

air, sound propagates faster in water than air.    

Example 1: Transverse waves are generated in two uniform steel wires A and B of diameters 0.001 

m and 0.0005 m, respectively, by attaching their free end to a vibrating source of frequency 500 

Hz. Find the ratio of the wavelengths if they are stretched with the same tension.  

Solution: The density ρ of a wire of mass M, length L and diameter d is given by 

𝜌 =
𝑀

𝐿 (
𝜋𝑑2

4 )
=

𝑚

(
𝜋𝑑2

4 )
 

where 𝑚 is the linear mass density (mass per unit length). Now, we know that the velocity of a 

transverse wave in a stretched wire is given by 

𝑣 = √
𝐹

𝑚
 

Since, the tension is the same for both the steel wires A and B, therefore, we have 

𝑣𝐴

𝑣𝐵
= √

𝑚𝐵

𝑚𝐴
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⇒
𝑣𝐴

𝑣𝐵
=

𝑑𝐵

𝑑𝐴
  

Since, both the wires are made of steel, and have the same densities. Also, we know that the wave 

velocity v = f , where f is the frequency of the source, therefore the above relation can be written 

as 

𝐴

𝐵
=

𝑑𝐵

𝑑𝐴
=

0.0005

0.001
=

1

2
 

 

Self Assessment Question (SAQ) 12: Using dimensional analysis, show that the wave speed v is 

given by 

𝑣 = 𝐾√
𝐹

𝑚
 

where K is a dimensionless constant, F is the tension in the string and m is the linear mass density 

of the string. 

Self Assessment Question (SAQ) 13: A one meter long string weighing one gram is stretched 

with a force of 10 N. Calculate the speed of transverse wave.  

Self Assessment Question (SAQ) 14: For a steel rod, 𝑌 = 2 × 1011 𝑁𝑚−2 and ρ = 7800 kg/m3. 

Calculate the speed of the longitudinal waves. 

Self Assessment Question (SAQ) 15: In a laboratory experiment (room temperature being 150C) 

the wavelength of a note of sound of frequency 500 Hz is found to be 0.68 m. If the density of air 

at STP is 1.29 kg/m3, calculate the ratio of the specific heats of air. 

Self Assessment Question (SAQ) 16: Write the expressions for speed of mechanical waves in 

(a) a string, (b) rod, (c) liquid, (d) gas 

Self Assessment Question (SAQ) 17: Explain why the velocity of sound is generally greater in 

liquids than in gases. 

Self Assessment Question (SAQ) 18: Choose the correct option. 

The speed of sound in air is 

(a) ∝ √𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑎𝑖𝑟 

(b) ∝ 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑎𝑖𝑟 

(c) ∝ 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑎𝑖𝑟 
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(d) 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑎𝑖𝑟 

 

Self Assessment Question (SAQ) 19: Choose the correct option: 

Velocity of sound is measured in hydrogen and oxygen gases at a given temperature. The ratio of 

the two velocities will be: 

(a) 1:4, (b) 4:1, (c) 1:1, (d) 32:1 

Answer of Selected Self Assessment Questions (SAQs): 

12. We have to check if the following dimensional formula for wave speed is correct or not, i.e. 

it has units of velocity or not.  

𝑣 = 𝐾√
𝐹

𝑚
 

- K is the dimensionless constant. 

- F has units of N or kg m/s2. Therefore, 

[𝐹] =
[𝑀][𝐿]

[𝑇]2
 

- m has units of kg/m. Therefore,  

[𝑚] =
[𝑀]

[𝐿]
 

Hence, it can be shown that the formula for the wave speed is dimensionally correct. 

[𝑣] = √

[𝑀][𝐿]
[𝑇]2

[𝑀]
[𝐿]

=
[𝐿]

[𝑇]
 

13. We know that the velocity of a transverse wave on a stretched string is related to tension and 

mass per unit length of the string by the following relation 

𝑣 = √
𝐹

𝑚
= √

10 𝑁

0.001 𝑘𝑔/𝑚
 

⇒ 𝑣 = 100 𝑚/𝑠 
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14. We know that the velocity of a longitudinal wave in a uniform solid rod is related to the 

Young’s modulus of the material of the rod and its density by the following relation 

𝑣 = √
𝑌

𝜌
= √

2 × 1011 𝑁𝑚−2

7800 𝑘𝑔/𝑚3
 

⇒ 𝑣 = 5060 𝑚/𝑠 

15. Velocity of sound at 150C = f = 500 X 0.68 = 340 m/s. 

Velocity of sound at 00C is given as 

= (340 𝑚/𝑠)√
273 𝐾

(273 + 15) 𝐾
= 331 𝑚/𝑠 

Since, the velocity of sound in air in a gas is given by 

𝑣 = √
𝛾𝑝

𝜌
 

⇒ 𝛾 = 𝑣2 (
𝜌

𝑝
) 

= (331
𝑚

𝑠
)

2

(
1.29 𝑘𝑔/𝑚3

1.01 × 105 𝑃𝑎
) = 1.39 

16. (a) √
𝐹

𝑚
    (b) √

𝑌

𝜌
     (c) √

𝐸

𝜌
, (d) √

𝛾𝑝

𝜌
   ; 17. Refer to the text; 18. (d); 19. (b) 

 

Example 2: A uniform rope of length 12 m and mass 6 kg hangs vertically from a rigid support. 

A block of mass 2 kg is attached to the free end of the rope. A transverse pulse of wavelength 0.06 

m is produced at the lower end of the rope. What is the wavelength of the pulse when it reaches 

the top of the rope? [𝑔 = 9.8 𝑚𝑠−2] 

Solution: As the rope has mass and a mass is also suspended from the lower end, the tension in 

the rope will be different at different points. We know that the speed of a transverse wave is given 

by  

v = √
F

m
 

Therefore, the ratio of speeds of transverse wave at the top and at the bottom of the rope is 
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vT

vB
= √

FT

FB
= √

(6 + 2) × 9.8 N

2 × 9.8 N
 

⇒
vT

vB
= 2 

Since, the frequency is the characteristic of the source producing the waves, we have frequency of 

the wave at the top is the same as the frequency at the bottom of the rope. Since, wave speed 𝑣 =

𝑓, we have  

T = 2B = 2 × 0.06 = 0.12 m 

 

6.9 SUMMARY 

In this unit, we have studied about the different waves that are familiar to us and are part of our 

everyday life. Then we studied what is meant by the wave motion, the formation and propagation 

of waves in a medium. We learned about the difference between transverse and longitudinal waves, 

and how to represent a wave at a fixed position and at a fixed time graphically. We wrote the 

mathematical expression of a progressive wave corresponding to a given set of wave parameters 

and travelling along +x /–x directions.  

We defined the terms that are needed to describe a wave such as amplitude, time period, 

wavelength, frequency, wave number, angular frequency, wave velocity etc and understood how 

they are related to each other. Finally, we derived the relationship between the velocity of a particle 

in the medium and the velocity of the wave at any instant.  

6.10 GLOSSARY 

Amplitude – the maximum displacement of a wave from equilibrium (e.g. height of a transverse 

wave from the middle). 

Displacement – net change in location of a moving body. It is measured from the equilibrium 

position. 

Elasticity – ability of a material to regain its shape after being distorted. 

Force – any interaction that, when unopposed, can change the state of motion of an object. 

Frequency – the number of complete cycles per second made by a wave. The SI unit of frequency 

is the hertz (Hz), which is equal to 1 cycle per second. 

Longitudinal waves – waves in which the vibrations are parallel to the direction of travel of the 

wave. 
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Microwaves – electromagnetic waves of wavelength between about 0.1 mm and 10 mm. 

Molecule – the smallest amount of a compound or element that can exist independently.  

Momentum – mass multiplied by velocity. 

Pressure – force per unit area applied at right angles to a surface. The SI unit of pressure is the 

pascal (Pa), which is equal to 1 N/m2. 

Radio waves – electromagnetic waves of wavelength longer than about a millimeter. 

Sound – vibrations in a substance that travel through the substance. 

Speed – the ratio of distance traveled and time. The SI unit of speed is m/s. 

Transverse waves – waves in which the vibrations are at right angles to the direction of propagation 

of wave. 

Ultraviolet radiation – electromagnetic waves between the violet end of the visible spectrum 

(wavelength ~400 nm) and X-rays (wavelength less than ~1 nm). 

Velocity – speed in a given direction. 

Wavelength – the distance between two adjacent wave-crests. 

X-rays – electromagnetic waves of wavelength less than about 1 nm. 
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6.13 TERMINAL QUESTIONS 
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1. A tuning fork vibrating at 300 Hz is placed in a tank of water. (a) Find the frequency and 

wavelength of the sound waves in the water. (b) Find the frequency and wavelength of the 

sound waves produced in the air above the tank by the vibrations of the water surface. The 

velocity of the sound is 4913 ft/s in water and 1125 ft/s in air. 

2. The visible region of the electromagnetic spectrum begins from 400 nm. Calculate the 

corresponding frequency.    

3. The equation for the displacement of a stretched string is given by 

𝑦 = 4 sin 2𝜋 [
𝑡

0.02
−

𝑥

100
] 

where y and x are in cm and t is in seconds. Determine the  

(a) direction in which the wave is propagating 

(b) amplitude 

(c) time period 

(d) frequency 

(e) angular frequency 

(f) wavelength 

(g) velocity of wave 

(h) wave number 

4. What quantity is carried off by all types of waves from their source to the place where they are 

eventually absorbed? 

5. A wave of frequency f1 and wavelength 1 goes from a medium in which its velocity is v to 

another medium in which its velocity is 2v. Find the frequency and wavelength of the wave in 

the second medium. 

6. A violin string is vibrating at a frequency of 440 Hz. How many vibrations does the string make 

while its sound travels 200 m in air? 

7. Lower the frequency of a wave 

(a) higher is its velocity. 

(b) longer is its wavelength 

(c) smaller is its amplitude  

(d) shorter is its period 

     8. Which of the following is an entirely longitudinal wave? 
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(a) Water wave 

(b) Sound wave 

(c) Electromagnetic wave 

(d) A wave in a stretched string 

    9. Sound cannot travel through 

(a) vacuum  

(b) liquid  

(c) gas 

(d) solid  

10. Of the following properties of a wave, the one that is independent of the others is 

(a) velocity 

(b) frequency 

(c) wavelength 

(d) amplitude 

11. Write notes on: 

      (i) Wave Formation and Propagation       (ii) Transverse and Longitudinal Waves    

 (iii) Wave Properties  

12. What is meant by wave equation? Derive the wave equation when a wave is travelling in the 

negative x-direction. 

ANSWERS 

Selected Terminal Questions: 

1.  (a) In the water, the frequency of the sound waves is the same as the frequency of their source, 

and their wavelength is  

1 =
𝑣1

𝑓
=

4931 𝑓𝑡/𝑠

300 𝐻𝑧
= 16.4 𝑓𝑡 

(b) In the air, the frequency of the sound waves is the same as the frequency of their source, but 

the wavelength differs from that in the water 
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2 =
𝑣2

𝑓
=

1125 𝑓𝑡/𝑠

300 𝐻𝑧
= 3.75 𝑓𝑡 

2.  𝑓 = 𝑐/ = (3 × 108 𝑚/𝑠)/(400 × 10−9 𝑚) 

= 7.5 × 1014 𝐻𝑧 

3.  (a) As there is a negative sign between t and x terms, the wave is propagating along the 

positive x-axis. 

(b) A = 4 cm 

(c) T = 0.02 s 

(d) f = 1/T = 50 Hz 

(e)  = 2πf = 100π rad/s 

(f)  = 100 cm 

(g) v = f = 50 m/s 

(h) k = 2π/ = π/50 cm-1 

4. Energy 

5. The frequency of the wave remains constant, therefore, f2 = f1. The wavelength meanwhile 

will change according to the relation 

𝑣1

1
=

𝑣2

2
 

⇒ 2 =
𝑣2

𝑣1
1 = 21 

6. The speed of sound wave (v) in air about 330 m/s. Therefore, the wavelength of the sound 

wave produced by the violin string will be given as 

 =
𝑣

𝑓
=

330 𝑚/𝑠

440 𝐻𝑧
= 0.75 𝑚 

Hence, to travel 200 m, the number of vibrations will be 

=
200

0.75
= 266 

7. (b); 8. (b); 9. (a); 10. (d) 
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UNIT 7:                        LISSAJOUS FIGURES 

Structure of the Unit 

7.1 Introduction 

7.2 Objectives 

7.3 Two Mutually Perpendicular Harmonic Vibrations 

      7.3.1 Oscillations Having Same Frequencies 

      7.3.2 Oscillations Having Different Frequencies i.e.(1:2) (Lissajous Figures) 

7.4 Demonstration of Lissajous figures 

7.5 Uses of Lissajous figures  

7.6 Summary 

7.7 References  

7.8 Suggested Readings 

7.9 Terminal Questions 
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7.1 INTRODUCTION 

In this unit, we will discuss the superposition of two harmonic oscillations that are orthogonally 

perpendicular to one another and we will also study how Lissajous figures can be used to represent 

the path of the resulting motion. In order to obtain the resultant of two or more harmonic 

oscillations, we will use a very important principle called the superposition principle which states 

that, “ The resultant of two or more harmonic displacements is simply the algebraic sum of the 

individual displacements”. In this unit, we shall discuss the validity of this principle. 

7.2 OBJECTIVES 

After studying this unit, the learners will be able to explain about  

 The Lissajous figures for the resultant of two mutually perpendicular harmonic oscillations 

with same frequencies 

 The Lissajous figures for the resultant of two mutually perpendicular harmonic oscillations 

with frequency ratio(1:2) 

 Demonstration of Lissajous figures 

 Uses of Lissajous figures 

7.3 TWO MUTUALLY PERPENDICULAR HARMONIC 

VIBRATIONS 

In general, it's essential to find a way to combine the effect of two oscillations acting on the same 

body simultaneously. You will learn how to accomplish this situation of two separate SHMs in 

this part that as follows. 

7.3.1 Oscillations Having Same Frequencies 

 Now we consider a particle moving under the simultaneous influence of two perpendicular 

harmonic oscillations of equal frequency, one along the x-axis, the other along the y-axis. Let A1 

and A2 respectively be the amplitudes of the x and y oscillations. For simplicity, let us assume that 

the phase constant of the x oscillation is zero and that of the y oscillation is 𝛿, so that is the phase 

difference between them. Thus, the two rectangular SHMs can be written as 

                                             𝑥 = 𝐴1 cos 𝜔𝑡                                                 (1) 

                                            𝑦 = 𝐴2 cos(𝜔𝑡 + 𝛿)                                      (2)                             
 

Here x and y are the displacements along two mutually perpendicular directions. The resultant 

motion of the particle  at any time t can be obtained as discussed below: As this motion is in two 

dimensional and the resultant path traced by the particle can be obtained by eliminating t from the 

above equation (1) and (2) which comes out to be an ellipse. 
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From equation (1), we can write  

cos 𝜔𝑡 =
𝑥

𝐴1
  ; which gives   sin 𝜔𝑡 = √1 − (

𝑥

𝐴1
)

2

 

Putting these values in equation (2), we have  

𝑦 = 𝐴2 cos(𝜔𝑡 + 𝛿) = 𝐴2[cos 𝜔𝑡 cos 𝛿 − sin 𝜔𝑡 sin 𝛿] 

= 𝐴2 [(
𝑥

𝐴1
) cos 𝛿 − (√1 − (

𝑥

𝐴1
)

2

) sin 𝛿] 

Or, 

(
𝑥

𝐴1
cos 𝛿 −

𝑦

𝐴2
)

2

= (1 − (
𝑥

𝐴1
)

2

) sin2 𝛿 

By simplifying the above equation one can write it as  

∴
𝑥2

𝐴1
2 +

𝑦2

𝐴2
2 −

2𝑥𝑦 cos 𝛿

𝐴1𝐴2
= sin2 𝛿 (3) 

 

As we can see,  This general equation (3)  is an equation of an ellipse,  whose axes are incline to 

the coordinate axes. Thus,we came to conclusion that  the resultant motion of the particle is along 

an elliptical path.  

Equation (3) shows that x remains between −𝐴1 and 𝐴1 and that of y remains between −𝐴2 and 

𝐴2. Thus, the particle always remains inside the rectangle defined by 

𝑥 = ±𝐴1   𝑎𝑛𝑑   𝑦 = ±𝐴2 

The ellipse given by equation (3) is shown in the figure below: 

Now we shall consider some special cases  

(a) The two component SHMs are in phase, 𝛿 = 0 

(b) The two component SHMs are out of phase, 𝛿 = 𝜋 

(c) The phase difference between the two component SHMs, 𝛿 = 𝜋/2 

(d) The phase difference between the two component SHMs, 𝛿 = 3𝜋/2 
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Fig.1: Elliptical path 

 

Let us now discuss the resultant motion of the particle under  by taking into the consideration the 

above special cases. 

(a) When the two superposing SHMs are in phase, 𝛿 = 0 and equation (3) reduces to 

𝑥2

𝐴1
2 +

𝑦2

𝐴2
2 −

2𝑥𝑦

𝐴1𝐴2
= 0 

Or, 

(
𝑦

𝐴2
−

𝑥

𝐴1
)

2

= 0 

∴ 𝑦 =
𝐴2

𝐴1
𝑥 (4) 

Equation (4) is an equation of a straight line passing through the origin and having a positive slope 

of  
𝐴2

𝐴1
 and passing through the origin.The figure below shows the path followed by the particle in 

this case. The particle moves on the diagonal (shown by the dotted line) of the rectangle. 

2𝐴1 

2𝐴2 
0 

y-axis 

x-axis 
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Equation (4) can also be obtained directly from equations (1) and (2) putting 𝛿 = 0.  

The displacement of the particle on this straight line at any time t is  

𝑥 =  𝐴1𝑐𝑜𝑠𝜔𝑡 

𝑦 =  𝐴2𝑐𝑜𝑠𝜔𝑡 

Then one can write in simpler terms  

𝑟 = √𝑥2 + 𝑦2 

= √(𝐴1 cos 𝜔𝑡)2 + (𝐴2 cos 𝜔𝑡)2 = √𝐴1
2 + 𝐴2

2 cos 𝜔𝑡 

Thus, we can see that the resultant motion is also SHM with the same frequency and phase as the 

component motions.  

 

(b) Now we shall consider the case when the  two superposing SHMs are out of phase i.e., the 

phase difference between them is 𝛿 = 𝜋.  

Then from equation (3), we can wtite it as  

𝑥2

𝐴1
2 +

𝑦2

𝐴2
2 +

2𝑥𝑦

𝐴1𝐴2
= 0 

Or, 

2𝐴1 

2𝐴2 
0 

y-axis 

x-axis 

   Figure2: Superpostion of two perpendicular SHMs of the same frequency for the phase difference 𝜹 = 𝟎. 
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(
𝑦

𝐴2
+

𝑥

𝐴1
)

2

= 0 

∴ 𝑦 = −
𝐴2

𝐴1
𝑥 (5) 

This equation (5) represents a pair of coincident straight lines passing through the origin and 

having a  negative slope −
𝐴2

𝐴1
.The figure below shows the path followed by the particle.  

 

 

Equation (5) can also be obtained directly on the basis of equations (1) and (2) and putting 𝛿 = 𝜋. 

Further, the displacement of the particle on this straight line path at a given time t is  

𝑟 = √𝑥2 + 𝑦2 = √(𝐴1 cos 𝜔𝑡)2 + (𝐴2 cos(𝜔𝑡 + 𝜋))2 

= √(𝐴1 cos 𝜔𝑡)2 + (−𝐴2cos)2 = √𝐴1
2 + 𝐴2

2 cos 𝜔𝑡 

Thus, one  can see that the resultant motion is also SHM with the same frequency having amplitude 

of the resultant SHM is √𝐴1
2 + 𝐴2

2. 

 

 

 

 

 

2𝐴1 

2𝐴2 
0 

y-axis 

x-axis 

Figure 3: The straight line path traced by the resultant motion of the particle with phase difference, 𝜹 = 𝝅. 
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(c)  Now we shall discuss one interesting case, when the phase difference between the two 

component SHMs is 𝛿 = 𝜋/2.  

 
 

 

 

 

From equation (3), we have 

𝑥2

𝐴1
2 +

𝑦2

𝐴2
2 = 1 (6) 

The above equation is a standard equation of an ellipse with its axes along the x-axis and the y-

axis and with its center at the origin. The lengths of the major and the minor axes are 2𝐴1 and 2𝐴2, 

respectively. The path traced by the particle (shown by the dotted line) is depicted in Fig. 4. 

In case the amplitudes of the two individual SHMs are equal, 𝐴1 = 𝐴2 = 𝐴, i.e. the major and the 

minor axes are equal, then the ellipse reduces to a circle.  

𝑥2 + 𝑦2 = 𝐴2 (7) 

Thus, the resultant motion of a particle due to superposition of two mutually perpendicular SHMs 

of equal amplitude and having a phase difference of 𝜋/2 is a circular motion. The circular motion 

may be clockwise or anticlockwise depending on which component leads the other. 

 

Figure 4: The resultant motion of the particle when the phase difference, 𝜹 = 𝝅/𝟐.  
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(d)     we shall consider the case when the when the phase difference between the two component 

SHMs is 𝛿 = 3𝜋/2.  

𝑥 =  𝐴1𝑐𝑜𝑠𝜔𝑡 

𝑦 =  𝐴2cos (𝜔𝑡 +
3𝜋

2
)= 𝐴2 𝑠𝑖𝑛𝜔𝑡 

Which gives 

𝑥2

𝐴1
2 +

𝑦2

𝐴2
2 = 1 

We have an ellipse of the same form as obtained for the case(c) but the motion is now counter-

clockwise. In optics such a vibration is called as left-handed elliptically polarized vibrations. 

 

7.3.2 Oscillations Having Different Frequencies (Lissajous Figures) 

When the frequencies of the two perpendicular SHMs are not equal, the resulting motion becomes 

more complicated. The patterns, that are traced by a particle which is subjected simultaneously to 

two perpendicular SHMs of different frequencies, are known as Lissajous figures, after J.A. 

Lissajous (1822-1880) who made an extensive study of these motions. We shall also study with 

few examples to illustrate the shape of the Lissajous figure for some of the special cases. 

(I)Analytical Method :- 

 For this case let us consider that frequency 𝜔2 of the y oscillation is twice the frequency 𝜔1 of the 

oscillation, i.e., 𝜔1 =  𝜔      and  𝜔2 = 2𝜔 . Then the two SHMs are then given by  

  

                                           𝑥 = 𝐴1 cos 𝜔1𝑡                                                          (8) 

                                            𝑦 = 𝐴2 cos(𝜔2𝑡 + 𝛿)                                                (9) 

The phase difference between them at any instant t, is given by 

∆𝜑 = (𝜔2𝑡 + 𝛿) − 𝜔1𝑡 

                                                     = (𝜔2 − 𝜔1)𝑡 + 𝛿                                           (10) 

Given that the superimposed orthogonal oscillations have different frequencies, one of them will 

change more quickly than the other and move ahead of the other in phase. As a result, there are 

many stages in the pattern of the resulting motion. It evolves with time as a result of the change in 

the phase difference, which is similarly a function of time. Though the broad outline of the 

resulting oscillation is similar to that found for the situation of equal frequencies, i.e. the motion 

is confined within a rectangle with sides 2A1 and 2A2. 

                                                  𝑥 = 𝐴1 cos 𝜔𝑡                                                              (11) 
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                                                𝑦 = 𝐴2 cos(2𝜔𝑡 + 𝛿)                                                     (12) 

If we eliminate t from these two equations(11) and (12), we can determine the equation of the 

trajectory  of the particle. 

From the equation(11), one can write 

cos 𝜔𝑡 =
𝑥

𝐴1
 

And, expanding the equation(12), we have 

𝑦 = 𝐴2 cos(2𝜔𝑡 + 𝛿) 

𝑦 = 𝐴2[𝑐𝑜𝑠2𝜔𝑡 𝑐𝑜𝑠𝛿 − 𝑠𝑖𝑛2𝜔𝑡 𝑠𝑖𝑛𝛿] 

= 𝐴2[(2 cos2 𝜔𝑡 − 1) cos 𝛿 − 2 sin 𝜔𝑡 cos 𝜔𝑡 sin 𝛿] 

Substituting y (𝑥/𝐴1) for cos 𝜔𝑡 in the above expression, we get 

𝑦

𝐴2
= {2 (

𝑥

𝐴1
)

2

− 1} cos 𝛿 − 2 (
𝑥

𝐴1
) √1 − (

𝑥

𝐴1
)

2

sin 𝛿 

After rearranging the terms, we can have the expression as  

(
𝑦

𝐴2
+ cos 𝛿) − 2 (

𝑥

𝐴1
)

2

cos 𝛿 = −2 (
𝑥

𝐴1
) √1 − (

𝑥

𝐴1
)

2

sin 𝛿 

If we square both side to the above expression simply it , we get 

                                      (
𝑦

𝐴2
+ cos 𝛿)

2

+
4𝑥2

𝐴1
2 (

𝑥2

𝐴1
2 − 1 −

𝑦

𝐴2
cos 𝛿) = 0                                  (13) 

The above equation is of fourth degree, which, in general, represents a closed curve having two 

loops. For a given value of 𝛿, the curve corresponding to the above equation(13) can be traced 

using the knowledge of coordinate geometry. 

Now let us discuss the case when𝛿 = 0. Thus, we havecos 𝛿 = 1. The above equation (13) reduces 

to 

(
𝑦

𝐴2
+ 1)

2

+
4𝑥2

𝐴1
2 (

𝑥2

𝐴1
2 − 1 −

𝑦

𝐴2
) = 0 

∴ (
𝑦

𝐴2
+ 1 −

2𝑥2

𝐴1
2 )

2

= 0 
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This represents two coincident parabolas with their vertices at (0, −𝐴2) as shown in Fig.6(using 

dotted lines). The equation of each parabola is being represented as  

𝑦

𝐴2
+ 1 −

2𝑥2

𝐴1
2 = 0 

                          𝑜𝑟                                    𝑥2 =
𝐴1

2

2𝐴2
(𝑦 + 𝐴2)                                                        (14) 

 

 

Graphical method : -  

The analytical method discussed above becomes very cumbersome when 𝛿  takes other value than 

zero. In such cases, the resultant motion can be constructed quite conveniently by using graphical 

method. 

For understanding how the lissajous figures can be formed using graphical method let us discuss 

with an example as shown below 

Example: A particle is subjected to two mutually perpendicular simple harmonic oscillations, 

𝑥 = 2 cos 𝑡 

𝑦 = cos(𝑡 + 4) 

Trace the trajectory of the particle using graphical method. 

Solving the above case we have set up a table of values(i.e. Table 1) to see what is happening. We 

give each point a "point number" so that it is easier to understand when we graph the curve. 

Table.1 

2𝐴2 
0 x-axis 

y-axis 

2𝐴1 

Fig.5: Superposition of two mutually perpendicular SHMs with frequencies in the ratio 1:2 and phase 

difference equal to zero(𝜹 = 𝟎). 



INTRODUCTORY PHYSICS                                                                                               PHY(N)GE                                                                                    

 

178 
 

t 0 𝜋/4 𝜋/2 3𝜋/4 𝜋 5𝜋/4 3𝜋/2 7𝜋/4 2𝜋 

x 2 1.4 0 -1.4 -2 -1.4 0 1.4 2 

y -0.6 0.1 0.7 1 0.7 -0.1 -0.8 -1 -0.7 

Pt.no. 1 2 3 4 5 6 7 8 9 

 

From the above table1, the resulting curve, with the numbered points included, is shown in the 

following figure. Point 1 is actually equivalent to Point 9. 

 

Figure. 6 

7.4 DEMONSTRATION OF LISSAJOUS FIGURES  

A visual record of Lissajous figures can be obtained be means of a cathode-ray oscillograph (as 

shown in Fig.8). Here, two rectangular oscillations are simultaneously imposed upon a beam of 

cathode rays by connecting two sources of electrical oscillations to horizontal plates XX and 

vertical plates YY of the oscillograph. Thus the beam of cathode rays is subjected simultaneously 

to two perpendicular deflections. The beam falls on a fluorescent screen on which the Lissajous 

figure corresponding to the resultant motion can be seen. If the frequencies of the electrical 

oscillations are not exactly in a simple ratio, the figure will be seen to change its form slowly. For 

more complicated frequency ratios, very beautiful patterns are obtained in oscillograph. 
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Fig. 8: The Cathode Ray Oscillograph 

7.5 USES OF LISSAJOUS FIGURES 

 Lissajous figures can be used to determine the ratio of two exactly commensurate frequencies. 

The Lissajous figure is steady and, by inspection, we can find the ratio of the frequencies of the 

component oscillations. Let 𝜈1 and 𝜈2 be the frequencies of the oscillations along x and y axes 

respectively and let 𝑡𝑐 be the time during which a complete cycle of the figures is described. Then, 

during one cycle, the number of oscillations made by the particle parallel to the x-axis will be 𝜈1𝑡𝑐  

and that of the oscillations parallel to the y-axis will be 𝜈2𝑡𝑐.Hence 
𝜈1

𝜈2
=  

𝜈1𝑡𝑐

𝜈2𝑡𝑐
 . 

 In other words, the ratio of the frequencies of the x and y oscillations will be equal to the inverse 

ratio of the maximum number of intersections of the Lissajous figure on the two lines parallel to 

the x and y axes respectively. 

Lissajous figures may also be used to compare two nearly equal frequencies. If the frequencies of 

the two component oscillations are not exactly equal, the Lissajous figure will change gradually, 

as discussed earlier in this unit. We have seen that, if 𝜈1 and 𝜈2 are nearly equal frequencies and 

fe is the time for a complete cycle of change of Lissajous figure 

𝜈1 − 𝜈2 = ±
1

𝑡𝑐
 

The sign may be determined by observing the direction of change of the pattern to find out which 

of the two oscillations gains over the other. 
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7.6 SUMMARY 

After studying this unit, the learners have learnt about  

 The  resultant of two mutually perpendicular harmonic oscillations with same frequencies 

 The Lissajous figures for the resultant of two mutually perpendicular harmonic oscillations 

with frequency ratio(1:2) 

 Demonstration of Lissajous figures 

 Uses of Lissajous figures 

    7.7 REFERENCES 

1. Oscillations and Waves, Satyaprakash- Pragati Prakashan,Meerut. 

2. Concepts of Physics, Part I, H C Verma – Bharati Bhawan, Patna 

3. The Physics of Waves and Oscillations, N K Bajaj –  Tata McGraw-Hill, New Delhi 

4. Fundamentals of Physics, David Halliday, Robert Resnick, Jearl Walker –  John Wiley & 

Sons 

    7.8 SUGGESTED READINGS 

1. Waves and Oscillations, R.N.Chaudhuri, New Age International(P)Limited,Publishers. 

2. Fundamentals of Physics, David Halliday, Robert Resnick, Jearl Walker –  John Wiley & 

Sons 

3. Berkeley Physics Course Vol 3, Waves, C Kittel et al, McGraw- Hill Company 

7.9 TERMINAL QUESTIONS 

1. A particle is subjected to three simple harmonic oscillations, one along the x-axis, second 

along the y-axis and the third along the z-axis. The three motions are given by 

𝑥 = 𝐴 sin 𝜔𝑡 

𝑦 = 𝐵 sin 𝜔𝑡 

𝑧 = 𝐶 sin 𝜔𝑡 

           Calculate the amplitude of the resultant motion. 

2. A body is executing simple harmonic motion, and its displacement at time t is given by 

𝑥 = 5 sin 3𝜋𝑡 

              Plot the displacement, velocity, and acceleration for two complete periods. 
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3. A particle is under the influence of two simultaneous SHMs in mutually perpendicular 

directions given by 

𝑥 = cos 𝜋𝑡 

𝑦 = cos
𝜋𝑡

2
 

           determine the trajectory of the resulting motion of the particle. 

4. Write short note on Lissajous’ figures. How are they demonstrated experimentally?  

5. Describe and obtain formulae for the superposition of two mutually perpendicular SHMs 

with equal frequencies. 

6. Determine the  the shape of the Lissajous figure for the resultant motion, if a particle is 

subjected to the following SHMs:  

𝑥 = 2 sin 2𝜋𝑡 

𝑦 = 3 sin 𝜋𝑡 

7. A particle is simultaneously subjected to two simple harmonic motions in the same 

direction in accordance with the following equations: 

𝑦1 = 8 sin 2𝜋𝑡    𝑎𝑛𝑑    𝑦2 = 4 sin 6𝜋𝑡    

           Show graphically the resultant path of the particle. 

8. Construct the Lissajous figures for the following component oscillations. If you are using 

graphical method, you may have to take more than 9 points to get the complete graph in 

some cases. 

(a) 𝑥 = 2  sin 𝑡 , 𝑦 = cos 2𝑡 

(b) 𝑥 = sin 𝑡 , 𝑦 = cos(𝑡 + 𝜋/4) 

(c) 𝑥 = sin 𝜋𝑡 , 𝑦 = 2 sin (𝜋𝑡 +
𝜋

2
) 
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8.1 INTRODUCTION 

The law of conservation of energy serves as the foundation for the first law of thermodynamics. 

Although it aids in the measurement of changes in various entities, like heat, internal energy, 

work completed, etc., it is unable to demonstrate the viability of a reaction occurring 

spontaneously in real life. There are numerous instances of processes that the first law fully 

permits but which are not practical. For instance, water kept in a bucket won't automatically 

freeze. If we adhere to the first law of thermodynamics, it is conceivable for a portion of water 

to absorb heat energy from the remaining water and evaporate. Due to a loss of heat energy, 

the remaining water will freeze. Practically speaking, though, this is not possible. This leads us 

to the conclusion that more rules must be established in order to completely understand the 

process's spontaneity. The second law of thermodynamics puts some limitations on the 

efficiency of the process which helps in enabling us to determine the process' viability. This 

law is crucial to understand how refrigerators and heat engines operate. After studying this 

chapter, you will understand that the second law of thermodynamics suggests a refrigerator's 

performance coefficient cannot be infinite and a heat engine's efficiency cannot be unity. In the 

last section of this unit, we will study about the entropy and its physical significance which 

plays an important role in studying thermodynamics. 

 

8.2 OBJECTIVES 

By the end of this unit, you will be able to - 

● Explain Basic function of heat Engine  

● Explain heat engine and its various parts 

● Differentiate between reversible and irreversible processes 

● Evaluate efficiency of heat engines 

● Learn about Carnot cycle and Carnot engine 

● Entropy and its physical significance 

● Change in entropy in reversible and irreversible process 

 

8.3 HEAT ENGINE 

 

Any device which converts heat continuously into mechanical work is called a heat engine. 

This idea of conversion of heat into work has come from very early times when it was observed 

that bodies when heated develop power. Thus for instance, when water is boiled in a vessel 

closed by a lid, the steam generated inside throw the lid off, showing thereby that high pressure 

steam can be made to do work. Similarly the gun powder and other explosives do work in 

breaking rocks etc. Likewise, the high velocity winds, caused by the heating of parts of earth's 

surface by the sun, do work in driving wind mills and in propelling ships with the aid of sail 

etc. 

 

All these simple and elementary facts indicate that transference of heat to a body results in 

mechanical work and have developed in due course of time to provide us respectively several 
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types of modern heat engines-the steam engine, internal combustion engines and gas turbines. 

We shall now discuss their essential thermodynamics. For any heat engine there are three 

essential requirements: 

 

(i) SOURCE: A hot body, at a fixed temperature T₁ from which the heat engine can 

draw heat, is called source. 

(ii)  SINK: A cold body, at a fixed lower temperature T₂, to which any amount of heat 

can be rejected, is called sink. 

(iii) WORKING SUBSTANCE: The material, which on being supplied with heat, 

performs mechanical work, is called the working substance. 

Thus in a heat engine, the working substance takes in heat from the source, converts a part of 

it into external work, gives out the rest to the sink and returns to its initial state. This series of 

operations constitute a cycle.This has been shown in Fig.1. The work can be continuously 

obtained by performing the same cycle over and over again.  

 

 
                                                 Fig.1: Heat Engine 

 

Let Q be the amount of heat absorbed by the working substance from the source, Q2 that 

rejected by it to the sink and W the net amount of work done by it. The net amount of heat 

absorbed by the substance is then Q-Q Remembering that the working substance returns to its 

initial condition, the change in internal energy du is zero.  

By the application of first law of thermodynamics. 

                                                                      𝑊 =  𝑄1 − 𝑄2                               ……………(1) 

 

8.3.1 Efficiency of Heat Engine  
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The thermal efficiency of the engine, 𝜂, is defined as the ratio of the net work obtained in the 

cycle (output) to the heat absorbed by the working substance from the source (input), ie. 

    

                                                             𝜂       =    
 Work output  

Heat input 
  

                                                                        =     
𝑊

𝑄1
  

            =   
 𝑄1−𝑄2     

𝑄1  
 

                                                              𝜂       =  1 −
𝑄2

𝑄1
                                         ………..(2) 

From equation(2) it is clear that 𝜂 will be unity (efficiency 100%) if 𝑄2 is zero or in other words 

if an engine could be built to operate in such a way that no heat is at all rejected by the working 

substance in a cycle, there will be hundred percentage conversion of heat into work. 

 

8.4 REVERSIBLE PROCESS 

 

A reversible process is one which can be retraced in opposite order by slightly changing the 

external conditions. The working substance in the reverse process passes through all the stages 

as in the direct process in such a way that all changes occurring in the direct process are exactly 

repeated in the opposite order and inverse sense and no changes are left in any of the bodies 

participating in the process or in the surroundings. If heat is absorbed by the substance in the 

direct process, the same quantity will be given out by it in the reverse process, and if work is 

done by the substance in the direct process, an equal amount of work will be done on the 

substance in the reverse process. Thus there is no wastage of energy at all in the reversible 

process. 

Example of Reversible Processes 

As an example of a reversible process, consider a gas enclosed in a cylinder, made of perfectly 

conducting material and immersed in a large tank of water of a constant temperature. Let the 

gas be compressed very slowly such that its temperature remains unchanged throughout. 

Obviously to do so small pauses will have to be given in between various small compressions 

to enable the heat generated by compression to pass out into the surrounding water. If now after 

reducing considerably the volume of the gas, it is allowed to expand isothermally and the 

expansions be just as infinitely small as compressions with similar pauses in between, heat will 

flow in from the enclosing water to compensate for the loss during expansion and will keep the 

temperature of the gas unchanged. Exactly the same amount of heat will be received during the 

expansion as will be given up during compession. Thus all the stages of the process are retraced 

in the opposite direction and inverse order and hence the slow isothermal expansion and 

compression of a gas is reversible process. In fact all isothermal and adiabatic operations are 

reversible when carried out very slowly. Similarly an extremely slow contraction or extension 

of a spring is also reversible if the work done by the spring in each step of infinitesimal 

contraction is exactly equal to that done on the spring in each corresponding step during 

extension. 
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 8.5 IRREVERSIBLE PROCESS 

  

The processes which can not be retraced or exactly repeated in the opoosite order by 

reversing the controlling factors are known as irreversible processes. 

Examples of Irreversible Processes  

An example of irreversible process is the conduction of heat from a hot body to colder one. 

Production of heat by friction or by the passage of current through an electrical resistance are 

also irreversible processes, because heat will again be produced (and not absorbed) if the 

direction of motion or the direction of flow of current are reversed. The Joule-Thomson effect 

is also an irreversible process as the fall in temperature take place whether the gas crosses the 

porous plug in one direction or in the reverse direction. Rapid isothermal and adiabatic changes 

are irreversible. 

 

8.6 CONDITIONS OF REVERSIBILITY  

(i) The substance undergoing a reversible change must not lose heat by conduction, convection 

or radiation or in overcoming friction. No heat must at all be converted into magnetic or 

electrical energy. Hence for reversibility complete absence or dissipative effects such as 

friction, electrical resistance, magnetic hysteresis etc. is a must. 

(ii) The changes in the pressure and volume of the working substance must take place at an 

infinitely slow rate; so that when the substance is receiving heat its temperature differs from 

the hotter body by only an infinitesimal amount and when it is losing heat the temperature again 

differs by an infinitesimal amount from the colder body. Thus all reversible processes must 

take place infinitely slowly. 

These conditions are never strictly realized in practice because no mechanical process is 

frictionless and no insulator or conductor is perfect. Thus rigorous reversibility is an ideal 

conception while irreversibility is the rule. However, the conditions necessary for reversibility 

can be fulfilled approximately and such processes may be regarded as reversible within the 

limits of experimental errors. 

 

8.7 CARNOT’S ENGINE AND CARNOT'S CYCLE 

 

A heat engine is a practical arrangement to convert heat into mechanical work. Sadi Carnot 

conceived an ideal theoretical engine free from all the imperfectness of actual engines and 

hence never realized in actual practice. His imaginary engine is, however, taken as a standard 

against which the performance of actual engines is judged. The plan of Carnot's ideal engine is 

shown in Fig.2.  
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Fig.2: Schematic representation of Carnot Heat Engine 

 

It consists of: 

(i) A cylinder with perfectly non-conducting walls but perfectly conducting base 

containing air (which is supposed to behave like a perfect gas) as the 'working 

substance' and fitted with a perfectly insulating and frictionless piston upon which 

weights can be placed.  

(ii) A hot body of infinitely large heat capacity maintained at a constant high 

temperature T₁ absolute serving as the 'source' of heat.  

(iii) A cold body of infinitely large heat capacity maintained at a lower constant high 

temperature  𝑇2 absolute serving as the 'sink'. 

(iv) A perfectly insulating platform serving as a 'stand' for the cylinder. 

The cylinder may be placed on any of the three bodies (ii), (iii) and (iv) and may be moved 

from one to the other without friction, i.e., without doing any work. 

 

8.7.1 Carnot's Cycle 

 

The working subtance is subjected to cycle of four operations, consisting of two isothermal 

operations and two adiabatic operations. 

Such a cycle is known as Carnot’s cycle and is represented on the P-V (indicator) diagram of 

Fig.3. 
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Fig.3: Carnot’s Cycle Diagram 

 

Let us now consider the four oprations of the Carnot's cycle. Let the cylinder contain one gm. 

mol. of the working substance and the original condition of the substance be represented by 

point A on the indicator diagram, where it has temperature T1, pressure P1 and volume V1. 

Operation 1: Isothermal Expansion: The cylinder is placed on the source and the load 

(pressure) on the piston is slowly decreased. The working substance thus expands doing 

external work in raising the piston. This would make the substance fall in temperature, but as 

it is in contact with the source, it takes in necessary heat by conduction through the base to 

expand isothermally at the constant temperature T₁ of the source. This operation is represented 

by the isothermal curve AB on the indicator diagram. Let the quantity of heat absorbed in this 

process be Q1. Then in accordance with the first law of thermodynamics, Q1 must be equal to 

the external work done by the gas in expanding isothermally from A to be B at temperature T1, 

(as internal energy remains unchanged) and with the property of indicator diagram is 

represented by the area ABGEA. Hence 

𝑄1 =  𝑊1 = ∫ PdV   
𝑉2

𝑉1

=  𝑅𝑇1 ∫  
𝑉2

𝑉1

𝑑𝑉

𝑉
=  𝑅𝑇1𝑙𝑜𝑔𝑒

𝑉2

𝑉1
 

                                                                       = Area ABGEA.                        ...(3) 

 

Operation 2: Adiabatic Expansion: The cylinder is removed from the source, put on the 

perfectly non-conducting stand and by further decreasing the load on the piston, the substance 

is allowed to expand. The expansion is completely adiabatic because no heat can enter or leave 

the substance through the insulating cylinder. The substance performs external work in raising 

the piston at the expense of its internal energy and its temperature, therefore, falls. The gas is 

thus allowed to expand adiabatically until its temperature falls to T2. the temperature of the 
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sink. It has been represented by the adiabatic curve BC on the indicator diagram. If P3. Va be 

the pressure and volume of the substance at C, then work done by substance from B to C 

(adiabatic process) 

 

 

 𝑊2 = ∫ PdV   
𝑉3

𝑉2

=  𝐾 ∫  
𝑉2

𝑉1

𝑑𝑉

𝑉𝛾
 

Already know that for adiabatic process 𝑃𝑉𝛾 =  𝐾(𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

 

=  
𝐾𝑉3

1−𝛾
− 𝐾𝑉2

1−𝛾

1 − 𝛾
 

                                                             =  
P3V3−P2V2

1−γ
         [∵∵ P2𝑉2

𝛾
=  P3V3

𝛾
= K ] 

                                                             =  
𝑅𝑇2−𝑅𝑇1

1−γ
               [∵ P2𝑉2 = R𝑇1  , P3𝑉3 = R𝑇2 ] 

                                                             =  
𝑅(𝑇2−𝑇1)

1−γ
  

                                                              = Area BCHGB                                                ...(4) 

Operation 3: Isothermal Compression: The cylinder is removed from the non-conducting 

stand and placed on the sink at temperature T2. The load on the piston is slowly increased so 

that the gas is compressed until its pressure and volume become P4, V4 represented by the point 

D. The heat developed due to compression immediately passess into the sink through the 

conducting base and the temperature of the working substance remains constant at T2, the 

temperature of the sink which remains unchanged due to its infinite heat capacity. This 

compression is represented by the isothermal CD on the indicator diagram. The quantity of 

heat Q2 rejected to the sink during this process is equal to the work done W3 on the working 

substance in compressing it isothermally from C to D. Hence, 

𝑄2 =  𝑊3 = ∫ PdV   
𝑉4

𝑉3

=  −𝑅𝑇2 ∫  
𝑉3

𝑉4

𝑑𝑉

𝑉
=  −𝑅𝑇2𝑙𝑜𝑔𝑒

𝑉3

𝑉4
 

                                                                       = Area CHFDC.                                       ...(5) 

 

 

Operation 4: Adiabatic Compression: The cylinder is again transferred to the insulating stand 

and the load on the piston is again slightly increased so that the substance undergoes a slow 

adiabatic compression and its temperature rises. This compression is continued until the 

temperature rises to T1, and the substance comes back to its original pressure P1, and volume 

V1. Thus the internal energy of the substance is the same as at the beginning of the process. 

This compression is represented by the adiabatic DA on the indicator diagram. The work done 

on the substance during this adiabatic compression from D to A is 

 

 𝑊4 = ∫ PdV   
𝑉1

𝑉4

=  𝐾 ∫  
𝑉1

𝑉4

𝑑𝑉

𝑉𝛾
 

Already know that for adiabatic process 𝑃𝑉𝛾 =  𝐾(𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 
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=  
𝐾𝑉1

1−𝛾
− 𝐾𝑉4

1−𝛾

1 − 𝛾
 

                                                             =  
P1V1−P4V4

1−γ
         [∵ P1𝑉1

𝛾
=  P4V4

𝛾
= K ] 

                                                             =  
𝑅𝑇1−𝑅𝑇2

1−γ
               [∵ P1𝑉1 = R𝑇1  , P4𝑉4 = R𝑇2 ] 

                                                             = - 
𝑅(𝑇1−𝑇2)

1−γ
                                      ………..(6) 

                                             = Area DFEAD. 

Work done by the engine per cycle : During the above cycle of operations, the working 

substance takes in an amount of heat Q1 from the source and rejects Q2 to the sink. Hence the 

net amount of heat absorbed by the substance 

                                                                          =  𝑄1 −  𝑄2 

 

At the same time, the net work done by the engine in one complete cycle 

 

=  𝐴𝑟𝑒𝑎 𝐴𝐵𝐺𝐸𝐴 +  𝐴𝑟𝑒𝑎 𝐵𝐶𝐻𝐺𝐵 −  𝐴𝑟𝑒𝑎 𝐶𝐻𝐹𝐷𝐶 −  𝐴𝑟𝑒𝑎 𝐷𝐹𝐸𝐴𝐷 

 

=  𝐴𝑟𝑒𝑎 𝐴𝐵𝐶𝐻𝐸𝐴 −  𝐴𝑟𝑒𝑎 𝐶𝐻𝐸𝐴𝐷𝐶 

 

=  𝐴𝑟𝑒𝑎 𝐴𝐵𝐶𝐷. 

 

Thus the work done in one cycle is represented on a P-V diagram by the area of the cycle. The 

net work done by the engine per cycle may also be given as 

𝑊 = 𝑊1 +  𝑊₂ +  𝑊3 +  𝑊4 

                                            =  𝑅𝑇1𝑙𝑜𝑔𝑒
𝑉2

𝑉1
+  

𝑅(𝑇2−𝑇1)

1−𝛾
 − 𝑅𝑇2𝑙𝑜𝑔𝑒

𝑉3

𝑉4
 −  

𝑅(𝑇1−𝑇2)

1−γ
    

                                                     𝑊 =  𝑅𝑇1𝑙𝑜𝑔𝑒
𝑉2

𝑉1
− 𝑅𝑇2𝑙𝑜𝑔𝑒

𝑉3

𝑉4
                    ………….(7) 

 

Now, since points A and D lie on the same adiabatic DA 

T1𝑉1
𝛾−1

=  T2V4
𝛾−1

 

 

        Then  

                                                     
T2

T1
= (

V1

V4
)

γ−1

                                          ………..(8) 

 

The points B and C also lie on the same adiabatic BC. 

T1𝑉2
𝛾−1

=  T2V3
𝛾−1

 

 

                                                
T2

T1
= (

V2

V3
)

γ−1

                                ……………..(9) 

By equating the equations (8) and (9) , we have  

                                           (
V1

V4
)

γ−1

=  (
V2

V3
)

γ−1

                             …………..(10) 
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𝑉1

𝑉4
=  

V2

V3
 

 𝑖. 𝑒.
𝑉2

𝑉1
=  

V3

V4
 

 

If we put the above value in equation(7), then we have  

                                                     𝑊 =  𝑅𝑇1𝑙𝑜𝑔𝑒
𝑉2

𝑉1
− 𝑅𝑇2𝑙𝑜𝑔𝑒

𝑉2

𝑉1
                     

 

                                                       𝑊 =  𝑅(𝑇1 − 𝑇2)𝑙𝑜𝑔𝑒
𝑉2

𝑉1
                      ………….(11) 

As we know that the net amount of heat absorbed by the substance in the cycle is (𝑄1 − 𝑄2), 

and since initial and final states of the substance are the same, its internal energy remains 

unchanged and hence from first law of thermodynamics 

 

𝑊 = 𝑄1 − 𝑄2  

 

                                                  𝑊 = 𝑄1 − 𝑄2 =  𝑅(𝑇1 − 𝑇2)𝑙𝑜𝑔𝑒
𝑉2

𝑉1
                     …………….(12) 

It is clear from the above equation that heat has been converted into work by the system and 

any amount of work can be obtained by simply repeating the cycle. 

 

8.7.2  Efficiency of the Engine:  

 

The efficiency of the engine is given by 

𝜂 =  
Heat converted into work

Heat taken in from the source
 

 

𝜂 =  
𝑄1 − 𝑄2 

𝑄1 
 

=
                𝑅(𝑇1 − 𝑇2)𝑙𝑜𝑔𝑒

𝑉2

𝑉1
                   

𝑅𝑇1𝑙𝑜𝑔𝑒
𝑉2

𝑉1
                   

  

 

                                 𝜂 = 1 −
𝑄2

𝑄1
 =  

𝑇1−𝑇2

𝑇1
 = 1 −

𝑇2

𝑇1
                                   ……….(13) 

This expression shows that efficiency of the engine depends upon the temperatures 𝑇1 and 𝑇2 

of the source and sink respectively and greater the difference between 𝑇1 and 𝑇2, the greater is 

the efficiency. Since, however, 𝑇1 >(𝑇1 -𝑇2), the efficiency is always less than 1 or 100%.  

The efficiency may also be expressed in terms of adiabatic expansion ratio p. We have seen 

above that considering two adiabatics BC and DA, we can get 

 
𝑉3

𝑉2
=  

V4

V1
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Each one of these ratio is the adiabatic expansion ratio p; and hence 

𝑉3

𝑉2
=  

V4

V1
=  

1

𝜌
 

 

 

 

 

Substituting it is equation (8) or (9), we have 

𝑇2

𝑇1
=  (

1

𝜌
)

𝛾−1

 

 

And, therefore, efficiency 

 

                                                       𝜂 = 1 − (
1

𝜌
)

𝛾−1

                                 ………..(14) 

 

 

8.8 ENTROPY 

 

The concept of entropy (literal meaning 'transformation') was first introduced by Claussius in 

1854 while working on the formulation and application of the second law of thermodynamics. 

It is a very important thermodynamic quantity and has proved very useful in the study of 

behaviour of heat engines. 

 

Consider a number of isothermals 𝐼1, 𝐼2, 𝐼3... etc. at temperatures 𝑇1, 𝑇2, , 𝑇3, ... etc.. on an 

indicator diagram (Fig.4). Let 𝐴1, and 𝐴2 be two adiabatics which intersect these isothermals 

in points A and B, C and D, E and F etc. Then all along the adiabatics 𝐴1 and 𝐴2 there is a 

change in volume and temperature with change in pressure. Let ABCD and DCEF represents 

the Carnot's reversible cycle. Considering the cycle ABCD, let  𝑄1 be the heat absorbed from 

A to B at temperature T₁ and let 𝑄2 be the heat rejected from C to D at temperature 𝑇2, then 

from the theory of a Carnot engine 
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Fig.4: Entropy diagram 

 

 

Similarly considering the cycle DCEF, if 𝑄2 be heat drawn at T₂ and 𝑄3  heat liberated at T3. 

 

In going from one adiabatic to the other, heat energy is either absorbed or liberated. The amount 

of heat absorbed or liberated is not constant but depends upon the temperature. Higher the 

temperature, the more is the heat absorbed or liberated and vice versa. In general, if Q is the 

amount of heat absorbed or rejected at a temperature T in going from one adiabatic to the other, 

then 

𝑄

𝑇
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

This constant ratio is called the change in entropy between the states represented by the two 

adiabatics. 

 Let 𝑆1 and 𝑆2 (arbitrary quantities) be respectively the entropy for the adiabatics 𝐴1 and 𝐴2 

then 

                                  𝑆2 − 𝑆1 =
𝑄

𝑇
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                   ……….(15) 

 

If the adiabatics lie very close to each other and dQ is the quantity of heat absorbed or rejected 

at a temperature T in going from one adiabatic to the other, then change in entropy. 

                                                   𝑑𝑆 =
𝑑𝑄

𝑇
                                        ………..(16) 

 

Hence, in general, the change in entropy in passing from one adiabatic to another 

                                         ∫ 𝑑𝑆
𝑆2

𝑆1
= 𝑆2 − 𝑆1 =  ∫

𝑑𝑄

𝑇

𝐴2

𝐴1
                    …………..(17) 

The expression ∫
𝑑𝑄

𝑇

𝐴2

𝐴1
=  ∫ 𝑑𝑆

𝑆2

𝑆1
  is a function of the thermodynamic coordinates of a system 

and refers to the value of the functions at the final states minus the value at the initial state. 

This function is represented by the symbol S and is called entropy. Hence entropy of a system 

is a function of the thermodynamical coordinates defining the state of the system viz., the 
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pressure, temperature, volume or internal energy, and its change between two states is equal to 

the integral of the quantity 𝑑𝑄/𝑇 between the states along any reversible path joining them. dS 

is an exact differential as it is differential of an actual function. 

Further it can be easily seen that since during an adiabatic change no heat energy is given to or 

removed from the system 𝑑𝑄 =  0, so that the change in entropy 𝑑𝑄/𝑇 =  0. It means there is 

no change of entropy during an adiabatic process, or the entropy remains constant during an 

adiabatic reversible process. It is why the adiabatic curves on the P-V diagram are called as 

isentropics - curves of constant entropy. Therefore the entropy of substance is that physical 

quantity which remains constant when the substance undergoes a reversible adiabatic process. 

 

8.8.1 Physical Concept of Entropy 
 

It is difficult to form a physical concept of entropy as there is nothing physical to represent it 

and it can not be felt like temperature or pressure. But since 

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  
𝐴𝑚𝑜𝑢𝑡 𝑜𝑓 ℎ𝑒𝑎𝑡 𝑎𝑑𝑑𝑒𝑑 𝑜𝑟 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 
 

 

We may say that heat energy has the same dimensions as the product of entropy and 

absolute temperature. Since the gravitational potential energy of a body is 

proportional to the product of its mass and height above some zero level hence if we 

may take temperature (measured from absolute zero) equivalent to height we may 

regard entropy as analogous to mass or inertia. In this way, we may think of entropy 

as thermal inertia which bears to heat motion a relation similar to that which mass 

bears to linear motion or moment of inertia bears to rotational motion. 

 

Unit of entropy 

 

It depends on the unit of heat employed and the absolute temperature. It is measured in calories 

(or ergs or Joules) per degree Kelvin i.e. cal./K or Joule/K. 

 

8.9 CHANGE OF ENTROPY IN A REVERSIBLE PROCESS 

 

Let us consider a complete reversible process - a Carnot's cycle ABCD shown in Fig.5. In the 

isothermal expansion from A to B, the working substance absorbs an amount of heat 𝑄₁ at a 

constant temperature 𝑇₁ of the source. When heat is absorbed by the system, 𝑄₁ is positive, and 

hence entropy change is positive because T is positive. Hence gain in entropy of working 

substance from A to B = 
𝑄1

𝑇1
.(Source loses this heat 𝑄₁at temperature 𝑇₁ ; so its entropy 

decreases by (
𝑄1

𝑇1
).  

During the adiabatic expansion from B to C, there is no change in entropy (since heat is neither 

taken in nor given out). 
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 During the isothermal compression from C to D, the working substance gives out a quantity 

of heat 𝑄2 at constant temperature  𝑇2 of sink and so the loss in its entropy from C to D= 
𝑄2

𝑇2
. 

(The sink gains this heat Q₂ at temperature 𝑇2, so its entropy increases by 
𝑄2

𝑇2
.). Again during 

the adiabatic compression from D to A, there is no change in entropy. Thus the net gain in the 

entropy of working substance in the whole cycle ABCDA 

=  
𝑄1

𝑇1
−

𝑄2

𝑇2
 

But since in a complete reversible Carnot's cycle 

𝑄1

𝑇1
=  

𝑄2

𝑇2
 

Therefore 

𝑄1

𝑇1
−

𝑄2

𝑇2
= 0 

 

It means that the total change in entropy of the working substance in a complete cycle of 

reversible process is zero. Similarly the change in entropy of the combined system of source 

and sink is also zero. Thus in a cycle of reversible process, the entropy of the system remains 

unchanged or the change in entropy of the system is zero, i.e.  

  ∮ 𝑑𝑆 =  
𝑄1

𝑇1
−

𝑄2

𝑇2
= ∑

𝑄

𝑇
= 0 

 

where the integral sign with a circle refers to a complete cycle. 

 

8.10 CHANGE OF ENTROPY IN AN IRREVERSIBLE PROCESS 

Suppose the working substance in an engine performs an irreversible cycle of changes, 

absorbing an amount of heat Q1 at a temperature T₁ from the source and rejecting the quantity 

of heat Q₂ at a temperature T₂ of the sink. Then the efficiency of this cycle is given by 

𝑄1 − 𝑄2

𝑄1
= 1 −

𝑄2

𝑄1
 

 

According to Carnot's theorem, this efficiency is less than that of a reversible engine working 

between the same two temperatures T, and T2 for which 

𝜂 = 1 −
𝑇2

𝑇1
 

 

Thus 

1 −
𝑄2

𝑄1
 < 1 −

𝑇2

𝑇1
 

 

 

Or     
𝑄2

𝑄1
>

𝑇2

𝑇1
 or  

𝑄2

𝑇2
>

𝑄1

𝑇1
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From above we can write as  

𝑄2

𝑇2
−

𝑄1

𝑇1
> 0 

Considering the whole system, the source losses the entropy by an amount 
𝑄1

𝑇1
and the sink gains 

an entropy 
𝑄2

𝑇2
. Therefore, the net change in entropy for the whole system is  

𝑄2

𝑇2
−

𝑄1

𝑇1
 

which is clearly greater than zero or positive. Thus there is an increase in entropy of the system 

during an irreversible process. 

 

We may make this point still more clear by taking another concrete example for an irreversible 

process like conduction or radiation of heat. Let a system consist of two bodies at temperatures 

T1 and T2 respectively, where T₁> T2. Since heat always flows from a higher to a lower 

temperature, both by conduction and radiation, let Q be the quantity of heat thus transmitted. 

 

Decrease in entropy of hotter body = 
𝑄

𝑇1
 

Increase in entropy of colder body = 
𝑄

𝑇2
 

Therefore, the net increase in entropy of the system 

=  
𝑄

𝑇2
−  

𝑄

𝑇1
 

which is a positive quantity since 𝑇1 >  𝑇2 We may, therefore, generalise the result and say that 

the entropy of a system increases in all irreversible processes. This is known as the law or 

principle of increase of entropy. 

 

8.11 PRINCIPLE OF INCREASE OF ENTROPY OR 

DEGRADATION OF ENERGY 

 

We have seen above that the entropy of a system remains constant in reversible cyclic processes 

but increases inevitably in all irreversible processes. Since a reversible process represents a 

limiting ideal case, all actual processes are inherently irreversible. It means that as cycle after 

cycle of operation is performed, the entropy of the system increases and tends to a maximum 

value. This is the principle of increase of entropy and may be stated as "The entropy of an 

isolated or self-contained system either increases or remains constant according as the 

processes it undergoes are irreversible or reversible. Analytically it may be expressed as dS ≥ 

0, where the equality sign refers to reversible processes and the inequality sign to irreversible 

processes. Therefore, the necessary and sufficient condition of equilibrium of a self contained 

system is that its entropy should be maximum, for then S can not increase and ds can not be 

greater than zero. 

 

 

 

8.11.1 Entropy and Unavailable Energy  
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Now since all physical operations in the universe are irreversible, for every such operation 

performed, a certain quantity of energy of the universe becomes unavailable for useful work 

and is added to the universe in the form of heat through friction, conduction or radiation. In 

this way, in a distant future, on account of irreversibility, all energies existing in different froms 

will be converted into heat energy and will not be available for conversion into mechanical 

work, i.e., the availale energy of the universe will tend towards zero. It will correspond to a 

state of maximum entropy and all temperature difference between various bodies of the 

universe will be equalized due to convection etc. No heat engine will then be able to work in 

this state, because no heat flow would be possible due to the uniformity of temperature 

throughout the universe. This is spoken as the principle of degradation of energy and implies 

that although the total amount of energy is conserved, it is transformed into a form which is 

unavailable for work. Thus the energy is 'running downhill' and the universe is marching 

towards a stage of stagnancy to a die a 'heat-death'. 

 

In a reversible process (eg. Carnot cycle) 

 

𝑄1 →Heat absorbed at temperature 𝑇1  

𝑄2→ Heat rejected at temperature 𝑇2 

 

Available energy = 𝑄1 - 𝑄2 

 

Unavailable energy = Q2 

 

But in Carnot cycle  

𝑄1

𝑇1
=  

𝑄2

𝑇2
 

 

Or      

𝑄2 =  𝑇2

𝑄1

𝑇1
 

 

Thus at constant temperature T₂, the unavailable energy 𝑄2 depends upon the value of which 

is the increase in entropy or reversible process at temperature 𝑇1. Thus entropy is the measure 

of unavailable energy in a system. 

. 

8.11.2 Entropy and Disorder 

With an increase in entropy, the thermal agitation and hence disorder of the molecules of 

substance increases, i.e., growth of entropy implies a transition from order to disorder. Thus 

the principle of increase of entropy is intimately connected with the less ordered state of affairs. 

According to it, a high entropy system should be in great disorder or chaos. Thus the entropy 

of a substance in gaseous state is more than in the liquid state because the molecules are more 

free to move about in great disorder in a gas than in a liquid. Moreover the entropy is more in 

the liquid state than in the solid state, as the Molecules are more free to move in a liquid state 
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than in a solid. Hence when ice is converted into water and then into steam, the entropy and 

disorder of molecules increase. On the other hand, when the steam is converted into water and 

then into ice, the entropy and disorder of molecules continually decrease. Thus when 

temperature of a system is lowered, the amount of entropy and disorder in it decrease. Entropy 

of a substance is, therefore, said to be a measure of the degree of disorder prevailing among its 

molecules, just as temperature is a measure of the degree of hotness of a substance. At the 

absolute zero of temperature the thermal motion completely disappears so that the disorder and 

hence entropy tend to zero and the molecules of a substance are in perfect order i.e., well 

arranged (third law of thermodynamics). 

 

We may now summarize the above arguments and say that the entropy of any isolated system 

increases and approaches, more or less rapidly, to the inert state of maximum entropy. We may 

recognize this fundamental law of physics to be an inherent tendency of nature to proceed from 

a more ordered state to a less ordered one or from a less disordered to a more disordered state, 

or we may state in other words that the ultimate destiny of universe is not order but chaos. 

 

8.12 FORMULATION OF THE SECOND LAW IN TERMS OF 

ENTROPY 

The first law of thermodynamics implies, according to Clausius, that the energy of the universe 

remains constant (the law of conservation of energy): the second law was summed up by him 

by saying that the entropy of the universe tends to a maximum (law of increase of entropy). 

We may, therefore, attempt to enunciate the general statement of second law in terms of entropy 

in the following words. Every physical or chemical process in nature takes place in such a way 

so as to increase the entropy of the system. 

In order to formulate the second law mathematically, let 𝑆𝐴  and 𝑆𝐵  be the entropies of a 

substance in initial and final states A and B respectively, measured from some arbitrary zero. 

The entropy change is then given by  

𝑆𝐵 −  𝑆𝐴 =  ∫
𝑑𝑄

𝑇

𝐵

𝐴

 

 

If, any how, the two states A and B are infinitesimally close, the above equation may be put 

as 

𝑑𝑆 =  
𝑑𝑄

𝑇
 

Or 𝑑𝑄 = 𝑇. 𝑑𝑆  which is the required mathematical formulation of second law of 

thermodynamics. 

 

 

 

 

8.13 SUMMARY 

In this unit, you have studied about how to  
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 Explain Basic function of heat Engine  

 Explain heat engine and its various parts 

 Differentiate between reversible and irreversible processes 

 Evaluate efficiency of heat engines 

 Learn about Carnot cycle and Carnot engine 

 Entropy and its physical significance 

 Change in entropy in reversible and irreversible process  
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2. Heat, Thermodynamics and Statistical Physics, Brij Lal and Subrahmanyam, 

S.Chand Pub., New Delhi. 

3. Thermodynamic and statistical physics, Sharma and Sarkar, Himalaya Publishing 
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8.16 TERMINAL QUESTIONS 

 

1. What do you understand by a heat engine and its efficiency? 

2. Describe Carnot’s cycle. Calculate the work done in cycle of operation. Deduce the 

efficiency of a Carnot engine. 

3. Describe Carnot’s cycle and show that all reversible engines working between the same 

two temperatures have the same efficiency? 

https://www.topperlearning.com/answer/define-efficiency-of-a-heat-/p7xd71l00
https://www.sarthaks.com/?qa=blob&qa_blobid=7653012838987211422
https://www.mphysicstutorial.com/2020/11/whta-is-entropy-entropy-in-statistical.html
https://www.mphysicstutorial.com/2020/11/whta-is-entropy-entropy-in-statistical.html


INTRODUCTORY PHYSICS  PHY(N)GE 
 

200 
 

4. . Explain entropy. Give its general concept and physical significance. Prove that the 

entropy of a system increases in an irreversible process. 

5.  Give the definition of entropy. Prove that the entropy of a system remains constant in 

a reversible process. 

6. “The entropy of a substance is a unique function of its state,” explain 

7. Prove that the dimensions of entropy are the same as the ratio of heat and temperature. 

8. Show that in a reversible cyclic process, the entropy change is zero. 

9. Explain the principle of increase of entropy. 

10.  Discuss T-S diagram and hence establish the expression for efficiency of an engine. 

11. For the following processes in an ideal gas state whether the change in entropy is 

positive, negative or zero? 

(i) Reversible adiabatic expansion 

(ii) Reversible isothermal compression 

(iii) Reversible isobaric expansion 

(iv) Joule’s free expansion 
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9.1 INTRODUCTION 

The first law of thermodynamics is based on the principle of energy conservation. Though it 

assists us in identifying changes in various entities such as heat, internal energy, work done, 

and so on, it fails to provide the practical feasibility of a reaction proceeding spontaneously. 

There are numerous examples of processes that are absolutely permissible under the first law 

but are not feasible in practise. For example, water in a bucket, cannot freeze on its own. 

According to the first rule of thermodynamics, a portion of water may absorb heat energy from 

the rest of the water and evaporate. Due to the loss of some heat energy, the remaining water 

will freeze. However, this is not feasible in practise. This leads us to the conclusion that more 

rules must be established in order to fully comprehend the process's spontaneity.  

The original formulation of the second law of thermodynamics is extremely concerned with 

the theoretical characteristics of heat engines, particularly the Carnot cycle. The second law of 

thermodynamics asserts that processes proceed in a specified direction, whereas the first law 

does not, i.e. the direction of a specific spontaneous transition may be determined using the 

second law of thermodynamics. The fact that a procedure satisfies the first law does not 

guarantee that it will occur. As a result, another principle is required to determine whether the 

process will occur or not. 

Some thermodynamic system parameters, such as internal energy and entropy, cannot be 

measured directly. As a result, thermodynamic relations can connect these properties to those 

that can be observed, such as pressure, temperature, compressibility, and so on. Unmeasurable 

qualities in thermodynamic relationships can be represented as partial derivatives including 

both intensive and extensive variables. A thermodynamic relation is a rule that can be 

established by simple thermodynamic reasoning and applies to the majority of systems. 

Maxwell’s relations are useful because they connect quantities that appear unrelated. They 

enable us to connect data gathered in diverse ways or to replace a difficult measurement with 

another. 

9.2 OBJECTIVES 

By the end of this unit, you will be able to – 

 Learn about some thermodynamic terms required for second law of thermodynamics 

 Know different statements given for second law of thermodynamics. 
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 Understand different statements of the second law of thermodynamics and their 

equivalence 

 State and prove Carnot theorem    

 Explain heat engine and its various parts 

 Explain thermal conductivity 

 Learn about Maxwell thermodynamic relation 

 Understand Maxwell's relations 

 Characteristics of black body radiation 

 Understand the black body radiation intensity versus wavelength curves: their shape 

and temperature dependence 

 Understand the assumptions made by Max Planck to describe electromagnetic radiation 

emitted by a black body. 

 Quantization of energy and Planck's hypothesis. 

 Derivation of Planck’s law. 

 

9.3 LIMITATIONS OF FIRST LAW OF THERMODYNAMICS 

Before discussing about the second law of thermodynamics, the limitations of the first law will 

be discussed. 

The first law of thermodynamics establishes the relationship between heat absorbed and work 

done by a system in a specific process. This law, however, does not specify the direction of 

heat transfer. This law states that extracting heat from ice by cooling it to a low temperature 

and then using it to warm water is not conceivable. While it is known from experience that heat 

cannot be transferred from a lower temperature to a higher temperature until some work is 

done. While heat naturally flows from higher to lower temperatures. 

The first law states that energy does not change with a specified change of condition in an 

isolated system. However, it does not provide any information on the specified change, such 

as whether it will occur spontaneously or not. 

According to the first law, the system's total energy is conserved, which means that one form 

of energy can be completely converted into another form of energy. However, as demonstrated 

by Joule's experiment, heat energy cannot be entirely turned into work energy, whereas work 
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energy can be totally changed into heat energy. As a result, heat and work energy are not 

interchangeable forms of energy. As a result, the second law of thermodynamics, is required. 

The second law of thermodynamics gives the direction of a spontaneous process. It introduces 

a new concept of entropy that governs the criterion of spontaneity. 

9.4 SECOND LAW OF THERMODYNAMICS 

The first law of thermodynamics states that mechanical work and heat are equivalent when one 

is completely converted into the other (W=Q). Therefore the principle of energy conservation 

applied to a thermodynamic system. 

However, if we propose extracting a specific amount of heat from a body and completely 

converting it into work, the first law is not violated. However, in practice, this is shown to be 

impossible. If this were conceivable, we could use heat extracted from the ocean's water to 

propel ships across it. Thus, the first law simply states that if a process occurs, energy will be 

conserved. It doesn't say whether the process is feasible or not. Similarly, when a hot body and 

a cold body come into contact, the first law remains intact, regardless of whether heat transfers 

from the hot to the cold body or vice versa. We know from experience that heat never flows. 

Various statements of the Second Law of Thermodynamics  

The second law of thermodynamics can be expressed in a variety of forms, with the most 

notable formulations being by Rudolf Clausius (1854), Lord Kelvin (1851), Max Planck 

(1926), and others. Although these statements differ, each one predicts the direction in which 

a change will occur spontaneously. Now we will go over these statements in further detail. 

9.4.1 CLAUSIUS STATEMENT OF THE SECOND LAW 

Rudolf Clausius, a German physicist, established the second law of thermodynamics in 1850. 

He discovered the link between heat transfer and work done. His formulation of second law is 

also known as Clausius statement.  “Clausius” statement made use of the “passage of heat" 

concept. This statement claims that no device can be built that functions in a cycle and produces 

no effect other than the transfer of heat from a lower temperature (cold region) body to a higher 

temperature (hot region) body. In other words, heat cannot flow naturally from cold to hot 

regions unless some external activity is done on the system, such as in a refrigerator. 



INTRODUCTORY PHYSICS  PHY(N)GE 
 

205 
 

Clausius also stated that “the entropy increases towards a maximum and the energy of the 

universe is constant”. 

9.4.2  KELVIN-PLANCK’S STATEMENT 

Lord Kelvin gave a definition for the second law of thermodynamics. It states that it is 

impossible to construct a thermodynamic cycle device that can accept heat from a single heat 

source and create a net quantity of work. It also claims that no mechanical action can be derived 

from any portion of matter by cooling it below the temperature of the coldest of the surrounding 

objects.  

If the system violates the Clausius statement, it will also violate the Kelvin statement. As a 

result, both assertions are identical. 

9.4.3 EQUIVALENCE OF KELVIN-PLANCK AND CLAUSSIUS 

STATEMENTS 

We can demonstrate that these two second law statements are equivalent. 

Assume there is a refrigerator R (Fig 9.1) that transfers an amount of heat Q2 from a cold body 

to a hot body without any external energy supply. As a result, it contradicts Clausius' assertion. 

Assume an engine E operating between the same hot and cold bodies absorbs heat Q1 from the 

hot body, transforms a portion (W = Q1-Q2) into work, and returns the remaining heat Q2 to 

the cold body. The presence of engine E alone does not constitute a violation of the law. 

However, when the refrigerator R and the engine E are joined, they produce a system that 

absorbs heat Q1-Q2 from the hot body and transforms it entirely into work without giving any 

amount to the cool body. This clearly contradicts the Kelvin-Planck statement. 

 

 

 

 

 

Figure 9.1: Block diagram of a refrigerator R.         Figure 9.2: Block diagram of Engine E. 
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Similarly, suppose there is an engine E (Fig. 9.2) that takes in an amount of heat Q1 from a hot 

body and entirely converts it into work W(=Q1) without transferring any heat to the cold body. 

It contradicts the Kelvin-Planck statement. Assume a refrigerator R operating between the same 

hot and cold bodies absorbs heat Q2 from the cold body, has work W (=Q1) done on it by an 

external source, and returns heat Q1+Q2 to the hot body. The refrigerator R alone does not 

constitute a violation of the law. However, when E and R are combined, they create a 

mechanism that transmits a certain quantity of heat Q2 from a cold body to a hot body with no 

external energy source. This definitely contradicts Clausius' assertion. 

The second law of thermodynamics is an addition to the first. The first law simply states that 

no device may release more energy than it receives. It makes no mention of any limitations or 

conditions required for energy supply. The second law, on the other hand, does it. For example, 

heat absorbed by a substance cannot be completely converted into work, nor can heat move 

spontaneously from a colder to a hotter body. These occurrences are not governed by the first 

law, but they are disallowed by the second. 

Application of the Second Law of Thermodynamics 

Here are several applications and uses for the Second Law of Thermodynamics: 

According to the law, heat always flows from a warmer body to a colder body. This rule applies 

to all heat engine cycles, including Otto, Diesel, and others, as well as all working fluids used 

in the engines. As a result of this rule, automobiles have developed. 

Refrigerators and heat pumps that employ the Reversed Carnot Cycle are further applications 

of this concept. If you want to transfer heat from a lower temperature body to a higher 

temperature body, you have to provide external work. The original Carnot Cycle, in contrast to 

the Reversed Carnot Cycle, which utilises effort to transfer heat from a lower-temperature 

reservoir to a higher-temperature reservoir, uses heat to perform work. 

Limitations of Second Law of Thermodynamics 

Let us now discuss the flaws or shortcomings of the Second Law of Thermodynamics: 

The second law of thermodynamics is a concept that restricts the occurrence of many processes 

that we know from experience do not occur while being authorised by other physical laws. For 

example, water in a glass at room temperature never spontaneously cools to form ice cubes, 

releasing energy into the environment. 
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The second rule predicts the end of the universe by implying that the cosmos will end in a 

condition of "heat death," in which everything is the same temperature. When everything at the 

same temperature, no work can be done and all energy is lost as random atom and molecule 

motion, which is the most severe level of disorder. 

9.5 CARNOT THEOREM 

The second law of thermodynamics provides two key implications that may be combined into 

a theorem known as Carnot's theorem. "The efficiency of a Carnot reversible engine is 

maximum and is independent of the nature of the working substance," according to this 

theorem. 

Or 

"All reversible heat engines operating between the same two temperatures have the same 

efficiency, and no irreversible heat engine operating between the same two temperatures can 

be more efficient than Carnot's reversible heat engine." 

 

 

 

 

 

 

 

Figure 9.3: Block Diagram of two heat engines, EA and ER, between a source at temperature T1 

and a sink at temperature T2. 

Now we will prove this Carnot Theorem. Consider the operation of two heat engines, EA and 

ER, between a source at temperature T1 and a sink at temperature T2 (Fig. 9.3). Let EA represent 

any heat engine and ER represent a reversible heat engine. Assume EA's efficiency A is larger 

than ER's efficiency ηR. To show the Carnot theorem, we must contradict our assumption. Let 

the rates of working of the engine EA be Q1A and that of ER be Q1R such that-  
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Q1A=Q1R=Q1 

As assumed, ηA > ηR 

As we all know, 

𝜂 =
𝑊𝑛𝑒𝑡

𝑄1
 

So we can write,  
𝑊𝐴

𝑄1𝐴
>  

𝑊𝑅

𝑄1𝑅
 

Therefore, WA > WR    ( QA = QR)A 

Let us reverse ER. Since ER is a reversible heat engine, therefore, the magnitude of heat 

transferred and work done will remain the same but their directions will reverse (Fig. 9.4). 

Figure 9.4                                                        Figure 9.5 

Since WA > WR some part of WA which is equal to WR in magnitude can be fed to drive the 

reversed heat engine ER. Since, Q1A=Q1R=Q1, the heat discharged by ER may be supplied to EA 

thus the source may be eliminated. The net result is that EA and ER together constitute a heat 

engine which operating in a cycle produces a net work done WA-WR (Fig. 9.5) while 

exchanging heat with a single reservoir at temperature T2, thus violating the Kelvin-Planck 

statement. Hence our assumption is wrong. 

Therefore, ηA < ηR and this proves the Carnot theorem. 
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9.6 THERMAL CONDUCTIVITY 

Thermal conductivity is a transfer of heat from one portion of the body to another as a result 

of a temperature gradient To determine thermal conductivity, draw three parallel lines at E, X, 

and F that are normal to the direction of heat flow and separated by mean free path; if two 

temperatures are equal, T1=T2, there is no exchange of energy (Figure 9.6). 

 

Figure 9.6: Heat conduction from one part of body to another. 

If T1 is greater than T2, there is an exchange of energy from E to F, therefore the number of 

electrons per unit area per unit time is 
6

nu
 and each electron has energy 

2

1

2

mu
. 

Thus, Energy transferred from E to F 

2

1

6 2

munu


 

13

6 2

Bk Tnu


 

1

1

4
Bnuk T

 

Likewise, the energy transferred from F to E 

1

1

4
Bnuk T  

As a result, the net energy transferred from E to F per unit area per unit time is calculated. 
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1 2

1
( )

4
Bnuk T T   

As a result, the net energy transferred from E to F per unit area per unit time is calculated. 

1 2( )

2

K T T




  

On solving  

1 2

1 2

( ) 1
( )

2 4

T T
K nuk T T




 

 

1

2
BK nuk

          (1)
 

where 
Bk is Boltzmann constant. 

Dividing (1) by
2

6

ne u

kT


  , we get  

21
/

2 6
B

K ne u
nuk

kT





  

or 23( / )B

K
k e T




         (2)
 

or 
K

T


 , or 
K

LT


 . 

This is known as the Wiedemann-Franz relation, and the proportionality constant L is known 

as the Lorenz number. Thermal conductivity is relatively high in metals, and metals that are 

excellent electrical conductors are also excellent thermal conductors. Metals' thermal and 

electrical conductivities are proportionate at a given temperature, however increasing the 

temperature improves thermal conductivity while decreases electrical conductivity. The 

Wiedemann-Franz Law considers this conduct. 

The relationship is qualitatively based on the fact that both heat and electrical transfer involve 

free electrons in the metal. Thermal conductivity improves with average particle velocity 

because it increases energy forward transport. However, as particle velocity rises, electrical 

conductivity reduces because collisions deflect electrons from forward charge transfer. This 
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indicates that the thermal to electrical conductivity ratio is related to the kinetic temperature 

and is determined by the average velocity squared. 

9.7 DERIVATION OF THE HEAT EQUATION IN ONE 

DIMENSION 

Before deriving heat equation one should have the brief idea about heat. So, at first we will 

discuss about the heat and then derive the heat equation in one dimension. 

Heat 

Heat is a type of energy that passes from one medium to another, and it usually travels from 

the conductor's hotter part to its cooler portion. There are several methods for transferring heat 

depending on the medium of the conductor. Heat is transported through solids by conduction, 

liquids and gases via convection, and electromagnetic waves via heat radiation. The one-

dimensional heat equation is a partial differential equation that represents how the distribution 

of heat changes over time in a solid material as it spontaneously flows from higher temperature 

to lower temperature, which is a specific instance of diffusion. 

9.7.1 DERIVATION OF THE HEAT EQUATION IN ONE DIMENSION 

A rod of unlimited length can be used to demonstrate the derivation of the heat equation in one 

dimension. The heat equation for the given rod will be a parabolic partial differential equation, 

which describes the distribution of heat in a rod over the period of time. Heat energy is 

transmitted from the conductor's hooter region to the conductor's lower region. 

2

2

2

2

2

2

z

u

y

u

x

u

t

u



















  

where, α is a real coefficient of the equation which represents the diffusivity of the given 

medium. 

Derivation of the Heat Equation in One Dimension 

The quantity of heat energy necessary to increase the temperature of the supplied rod by ∂T 

degrees is shown by CM . ∂T. 
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This is known as the conductor's specific heat. Where, C is the conductor's positive physical 

constant of heat and M is the mass of the conductor. 

The rate at which heat energy is transferred in the conductor's surface is exactly proportional 

to the surface area and temperature gradient at the conductor's surface, and this constant of 

proportionality is known as thermal conductivity of heat, indicated by K. 

Consider a finite-length rod with a cross-sectional area A and a mass density ρ. 

The function's temperature gradient is expressed as: 

),( tdxx
x

T





 

The rate of heat energy transfer from the provided rod's right end is stated as 

KA ),( tdxx
x

T





 

The rate of heat energy transfer from the left end is denoted as 

KA x
x

T
(




, t) 

Because the temperature gradients are positive from both ends, the conductor's temperature 

must rise. 

As the heat flows from the hot region to a cold region of the given rod, heat energy should enter 

from the right end of the rod and transferred to the left end of the rod. 

So, according to the requirement, the equation is as follows: 

dttx
x

T
KAtdxx

x

T
KA ),(),(









 

The temperature change in the provided rod may now be expressed as 

dttx
x

T
),(




 

The rod of the mass can be given as: 

Density = mass/volume 
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𝜌 =
𝑀

𝐴
. 𝑑𝑥 

𝑀 = 𝜌𝐴. 𝑑𝑥 

The heat equation may be written as 

dttx
x

T
tdxx

x

T
KAdttx

x

T
AdxC ),(),,(),(














  

Dividing both sides of the above equation by dx and dt and taking limits of it dx and it ->0, 

),(),(
2

2

tx
x

T
KAtx

x

T
AC









  

The equation will be, 

),(),(
2

2
2 tx

x

T
tx

x

T









  

Where, 

 CK /2   is the thermal diffusivity of the given rod. 

Hence the above-derived equation is the Heat equation in one dimension. 

9.7.2 Application of the Heat Equation 

The heat equation is used to change automobile engines since it tells you about the specific 

heat of the conductor, which provides you an idea about the engine's rate of heat absorption 

and ability to hold the heat. 

The hot water bag is most commonly used in the medical industry to provide pain treatment to 

patients. Heat is transported from the hotter to the cooler area in this situation. 

9.8  MAXWELL’S THERMODYNAMIC RELATIONS 

If we know the mass of a homogeneous system and any two of the thermodynamic variables 

P, V, T, U, and S, we may calculate its state entirely. Thus, if V and T are provided, the internal 

energy U of a system is totally defined. U, in other words, is a function of the two variables V 

and T. There are specific relationships among the five thermodynamic variables, four of which 
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are important and are known as "Maxwell's thermodynamic relations." Now let us deduce these 

relationships. 

Now from the first law of thermodynamics 

  dQ = dU + dW 

  dQ = dU + PdV     (Since dW = PdV) 

or  dU = dQ − PdV 

and from the second law of thermodynamics 

  dQ = TdS 

Substituting the value of dQ in first equation 

  dU = TdS − PdV                 (3) 

Let U, S and V be the functions of two independent variables x and y. [Here x and y may be 

any two variables out of S, T, P and V], then 

  dU = (
∂U

∂x
)

y
 dx + (

∂U

∂y
)

x
 dy 

  dS = (
∂S

∂x
)

y
 dx + (

∂S

∂y
)

x
 dy 

  dV = (
∂V

∂x
)

y
 dx + (

∂V

∂y
)

x
 dy 

Substituting these values of dU, dS and dV in equation (3), we get 

 (
∂U

∂x
)

y
 dx + (

∂U

∂y
)

x
 dy = T [(

∂S

∂x
)

y
 dx + (

∂S

∂y
)

x
 dy]  − P [(

∂V

∂x
)

y
 dx + (

∂V

∂y
)

x
 dy] 

or  (
∂U

∂x
)

y
 dx + (

∂U

∂y
)

x
 dy = [T (

∂S

∂x
)

y
 − P (

∂V

∂x
)

y
 ] dx + [T (

∂S

∂y
)

x
 − P (

∂V

∂y
)

x
 ] dy 

Equating the coefficients of dx and dy on both sides, we have 

  (
∂U

∂x
)

y
 =  T (

∂S

∂x
)

y
 − P (

∂V

∂x
)

y
         (4) 

  (
∂U

∂y
)

x
 = T (

∂S

∂y
)

x
 − P (

∂V

∂y
)

x
         (5) 
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Differentiating equation (4) with respect to y and equation (5) with respect to x, we get 

  
∂2U

∂y∙∂x
 = (

∂T

∂y
)

x
(

∂S

∂x
)

y
 + T

∂2S

∂y∙∂x
 − (

∂P

∂y
)

x
(

∂V

∂x
)

y
− P

∂2V

∂y∙∂x
   

  
∂2U

∂x∙∂y
 = (

∂T

∂x
)

y
(

∂S

∂y
)

x
 + T

∂2S

∂x∙∂y
 − (

∂P

∂x
)

y
(

∂V

∂y
)

x
− P

∂2V

∂x∙∂y
 

As dU is a perfect differential, therefore, 

  
∂2U

∂y∙∂x
 =  

∂2U

∂x∙∂y
 

  (
∂T

∂y
)

x
(

∂S

∂x
)

y
 + T

∂2S

∂y∙∂x
 – (

∂P

∂y
)

x
(

∂V

∂x
)

y
− P

∂2V

∂y∙∂x
   

   =  (
∂T

∂x
)

y
(

∂S

∂y
)

x
 + T

∂2S

∂x∙∂y
 − (

∂P

∂x
)

y
(

∂V

∂y
)

x
− P

∂2V

∂x∙∂y
   (6) 

Since dS and dV are also perfect differentials, we have 

  
∂2S

∂y∙∂x
 =  

∂2S

∂x∙∂y
 and 

∂2V

∂y∙∂x
 =  

∂2V

∂x∙∂y
  

Therefore, equation (6) becomes: 

  (
∂T

∂y
)

x
(

∂S

∂x
)

y
  – (

∂P

∂y
)

x
(

∂V

∂x
)

y
   =  (

∂T

∂x
)

y
(

∂S

∂y
)

x
 − (

∂P

∂x
)

y
(

∂V

∂y
)

x
         (7) 

 This is the general expression for Maxwell’s thermodynamic relations. In place of the 

independent variables x and y, any two of the four variables S, T, P and V can be substituted 

so that there may be one mechanical variable (P or V) and one thermal variable (S or T). Thus 

there may be four sets of possible substitutions (S, V), (T, V), (S, P) and (T, P), providing the 

four Maxwell’s thermodynamic relations. 

Maxwell’s First Relation: Substitute x = S and y = V in equation (7), so that 

  
∂S

∂x
 = 1,

∂S

∂y
 = 0 

  
∂V

∂x
 = 0,

∂V

∂y
 = 1 

Putting these values in equation (7), we get 
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  (
∂T

∂y
)

x
 =  − (

∂P

∂x
)

y
 

But ∂y =  ∂V (as y = V) and ∂x =  ∂S (as x =S). Hence 

  (
∂T

∂V
)

S
 =  − (

∂P

∂S
)

V
        (i) 

This is Maxwell’s first thermodynamic relation. 

Maxwell’s Second Relation: Substitute x = T and y = V in equation (7), so that 

  
∂T

∂x
 = 1,

∂T

∂y
 = 0 

  
∂V

∂x
 = 0,

∂V

∂y
 = 1 

Putting these values in equation (7), we get 

  0 = (
∂S

∂y
)

x
 − (

∂P

∂x
)

y
 

or  (
∂S

∂y
)

x
 =  (

∂P

∂x
)

y
 

But ∂y =  ∂V (as y = V) and ∂x =  ∂T (as x =T). Hence 

  (
∂S

∂V
)

T
 =  (

∂P

∂T
)

V
        (ii) 

This is Maxwell’s second thermodynamic relation. 

Maxwell’s Third Relation: Substitute x = S and y = P in equation (7), so that 

  
∂S

∂x
 = 1,

∂S

∂y
 = 0 

  
∂P

∂x
 = 0,

∂P

∂y
 = 1 

Putting these values in equation (7), we get 

  (
∂T

∂y
)

x
 − (

∂V

∂x
)

y
  = 0 

  (
∂T

∂y
)

x
 = (

∂V

∂x
)

y
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But ∂y =  ∂P (as y = P) and ∂x =  ∂S (as x = S). Hence 

  (
∂T

∂P
)

S
 = (

∂V

∂S
)

P
        (iii) 

This is Maxwell’s third thermodynamic relation. 

Maxwell’s Fourth Relation: Substitute x = T and y = P in equation (7), so that 

  
∂T

∂x
 = 1,

∂T

∂y
 = 0 

  
∂P

∂x
 = 0,

∂P

∂y
 = 1 

Putting these values in equation (7), we get 

   − (
∂V

∂x
)

y
  = (

∂S

∂y
)

x
 

But ∂y =  ∂P (as y = P) and ∂x =  ∂T (as x = T). Hence 

  (
∂S

∂P
)

T
 = − (

∂V

∂T
)

P
        (iv) 

This is Maxwell’s fourth thermodynamic relation. 

 The four main thermodynamic relations are (i), (ii), (iii), and (iv), and any of these 

relations, depending on its applicability, can be employed to solve a given problem. 

9.9 CLAUSIUS-CLAPEYRON LATENT HEAT EQUATION 

The second thermodynamic relation of Maxwell is represented as: 

                          (
∂S

∂V
)

T
= (

∂P

∂T
)

V
 

By Multiplying by T both sides, we have  

  T (
∂S

∂V
)

T
= T (

∂P

∂T
)

V
 

But,  𝑇𝜕𝑠 =  𝜕𝑄 (from second law of thermodynamics). Hence 

  (
∂Q

∂V
)

T
= T (

∂P

∂T
)

V
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At constant temperature, (
𝜕𝑄

𝜕𝑉
)

𝑇
 denotes the amount of heat absorbed or released per unit change 

in volume. This means that under constant temperature, heat received or released causes just a 

change in the volume of the material. As a result, the amount of heat absorbed or expelled at 

constant temperature must be the latent heat, and the volume change must be attributable to a 

change in state. Let L be the latent heat when a unit mass of material changes its volume from 

V1 to V2 at constant temperature, then 

 ∂Q = L and ∂V = V2 − V1 

Substituting these values in the above expression 

  (
L

V2−V1
)

T
= T (

∂P

∂T
)

V
 

or  
L

V2−V1
= T

dP

dT
 

or  
dP

dT
=

L

T (V2−V1)
        

This is the Clausius-Clapeyron latent heat equation. 

9.10 BLACK BODY AND BLACK BODY RADIATION 

A totally black-body is one that absorbs all incident heat radiations of any wavelength. It does 

not reflect or transmit any of the incident radiations and hence looks black whatever the colour 

(wavelength) of the incident radiation. 

When a black-body is put in an isothermal enclosure, it will emit the whole radiation of the 

enclosure after it has reached thermal equilibrium with it. These radiations are unaffected by 

the composition of the material. Clearly, the radiation from an isothermal container is similar 

to that from a black-body at the same temperature. As a result, the heat radiations in an 

isothermal enclosure are referred to as black-body radiation. In practise, no material has all of 

the qualities of a black-body. Lamp-black and platinum black are quite similar to the colour 

black. However, bodies that are near to a completely black-body can be built. Ferry's and 

Wien's black-bodies are two such instances. We'll go over everything in more depth later. 
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9.11 ENERGY DISTRIBUTION IN BLACK BODY RADIATION 

For many years, black body radiation was unidentified. This section explores how the problem 

was solved, leading to the discovery of new physical rules that serve as the foundation of 

quantum mechanics. 

Lummer and Pringsheim made the first attempt in 1899. As shown in Figure 9.7, they plotted 

some curves between E (spectral emissive power) and (wavelength) at various temperatures. 

These charts are known as Black Body radiation spectral energy distribution curves. The 

figures show that the energy of black body radiation is not distributed uniformly throughout all 

wavelengths of light. The graph indicates that certain wavelengths get more energy than others. 

 

 

Figure 9.7: spectral energy distribution of black-body radiation versus wavelength 

9.11.1 EXPERIMENTAL OBSERVATIONS AND CHARACTERISTICS 

OF BLACK-BODY RADIATION 

1. It is obvious from the figure that the graph is continuous, which implies that radiation for all 

wavelengths is emitted at all temperatures, although the spectrum emissive strength varies with 

wavelength. In other words, the distribution of energy in a black-body radiation spectrum is 

not uniform. 
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2. The spectral energy density Eλ for each λ increases with temperature, or when an object's 

temperature rises, it emits more energy at all wavelengths. 

3. For a certain temperature, Eλ initially increases with λ, but after reaching a predetermined 

maximum value, it decreases. The greatest value is represented by Eλm and the wavelength at 

which Eλ is maximum is marked by λm. 

4. As seen from the graph, the wavelength (λm) corresponding to maximum emission, shifts 

towards lower wavelength with increase in temperature. It was Wein who first discovered 

mathematically that 

 𝜆𝑚 ∝  
1

𝑇
 

or 𝜆𝑚 =  
𝑏

𝑇
 

or mT = b  (constant)  

Where b is the Wein's constant, which has a value of 2.968 X 10-3 metre kelvin.   

The above equation is known as wein’s displacement law. This is an essential rule because it 

allows us to calculate the temperature of distant hot entities such as stars. 

Wein's displacement law may also be represented in terms of frequency as: 

𝜈𝑚 =
𝑐𝑇

𝑏
 

The graph also shows that the value corresponding to the peak of the curve grows significantly 

with temperature. It was found that 

𝐸𝜆𝑚 ∝ 𝑇5 

 

6. The total energy emitted by the body at a given temperature is represented by the area under 

the curve, and the area under the curve at a given temperature is given mathematically by 

 

∫ 𝐸𝜆𝑑𝜆
∞

0
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This is the total emissive power of a Black Body. It was found that area under the curve is 

directly proportional to the fourth power of absolute temperature, hence 

𝐸 ∝ 𝑇4 

or,     𝐸 = 𝜎𝑇4 

Where σ is Stephan’s constant and has the value  

𝜎 = 5.67 × 10−8 watt/m2/K4 

This law is known as Stephan-Boltzmann’s law. 

The black-body spectrum is always smaller on the left (i.e., on the shorter wavelength or higher 

frequency side). 

The black-body spectrum is determined only by the body's temperature and not by its 

composition. If their temperatures are the same, an iron bar, a ceramic pot, and a piece of 

charcoal will all radiate the same black-body spectrum. 

9.11.2 BLACK-BODY  

When a smooth surface completely reflects all the incident rays, as is approximately the case 

with many metallic surfaces, it is termed 'reflecting'. When a rough surface reflects all incident 

rays completely and uniformly in all directions, it is called 'white'. A rough surface having the 

property of completely absorbing the incident radiation is described as 'black'.  

A perfectly black-body is an idealized physical body which absorbs all the radiations that fall 

on it, irrespective of the wavelength or angle of incidence.  

A black body in thermal equilibrium has two notable properties: It is an ideal emitter: at every 

frequency, it emits as much energy as or more energy than any other body at the same 

temperature. It is a diffuse emitter, the energy is radiated isotropically, independent of 

direction. 

The blackbody radiation spectrum shows three significant properties of blackbodies: 

A black-body with a temperature greater than absolute zero produces energy in all wavelengths 

stretching to infinity (curves never intersect on the x-axis). A hotter black-body emits more 
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energy across all wavelengths than a cooler one. The shorter the wavelength at which the 

highest energy is radiated, the greater the temperature. 

9.11.3 QUANTUM THEORY OF RADIATION  

In 1901, Max Planck postulated the quantum theory of radiation. According to his theory, 

radiation energy is always in the form of small bundles of energy called quanta, indicating that 

energy is absorbed or released discontinuously. Each quantum has a fixed energy that is 

determined by the frequency of the radiation, as provided by the relation 

E=hν 

Here, E represents the energy of each quantum in joules, f represents the frequency of radiation  

in s-1, and h represents the Planck constant, h=6.62610-34J-s. 

also   E=hcω  

where ω is known as wave number (ω=1/λ m-1) 

A body's energy released or absorbed is always a whole multiple of a quantum, implying that 

a body cannot absorb or emit energy in fractions of a quantum. This is referred to as energy 

quantization. 

9.12 PLANCK RADIATION FORMULA  

Planck proposed the following hypothesis in order to develop a theory/law that may properly 

explain the distribution of energy in a black body radiation: 

1. A blackbody radiation chamber is composed of a number of oscillating particles (of 

molecular dimensions) known as Planck's oscillators or Planck's resonators, which are made 

up of harmonic oscillators or resonators (energy emitters). 

An oscillator emits radiation of frequency ν when it drops from one energy state to the next 

lower one, and it jumps to the next higher state when it absorbs radiation of frequency ν. Each 

discrete bundle has energy hν or multiples of hν. It is given by 

εn = nh 

where, n = 0,1,2,3, …. 
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and   h (Planck’s constant) = 6.6 x 1034 J-s 

As a result, radiation energy is discrete rather than continuous. Oscillator energy levels are so 

like 0, 0, hν, 2hν, 3hν, 4hν………., nhν. 

 

9.12.1 DERIVATION OF PLANCK’S RADIATION LAW 

Assume that the body contains N0, N1, N2, N3, ……..Nn vibrating particles (Planck's resonator). 

The energy of the aforesaid particles may be expressed as 0, ε, 2ε, 3ε, 4ε,……..nε according to 

Planck's hypothesis. 

As a result, the total number of vibrating particles is 

N=N0+N1+N2+N3+…..Nn 

Similarly total energy of the body 

E=0+ε+2ε+ 3ε+4ε+……..nε 

Therefore, average energy of a particle is given by 

𝜀̅ =
𝐸

𝑁
 

The number of particles in the nth oscillating system may be represented as according to 

Maxwell's distribution law. 

𝑁𝑛 = 𝑁0𝑒−
𝑛𝜀
𝑘𝑇 

 

In the above equation ε represents the average energy per oscillator, k is the Boltzmann constant 

and T is the absolute temperature.  

Extending Maxwell distribution formula to the present system, the total number of particles 

can be written as 

𝑁 =  𝑁0 + 𝑁0𝑒−
𝜀

𝑘𝑇 + 𝑁0𝑒−
2𝜀
𝑘𝑇 + 𝑁0𝑒−

3𝜀
𝑘𝑇 + ⋯ … … .. 
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or 𝑁 =  𝑁0 [1 + 𝑒−
𝜀

𝑘𝑇 + 𝑒−
2𝜀

𝑘𝑇 + 𝑒−
3𝜀

𝑘𝑇 + ⋯ … … ].  

Using the mathematical expression  

1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ … … . =
1

1 − 𝑥
 

and putting  𝑥 = 𝑒−
𝜀

𝑘𝑇 , 

The preceding equation may be rewritten as: 

𝑁 =
𝑁0

1 − 𝑒−
𝜀

𝑘𝑇

 

 

Similarly, total energy of the body may be expressed as: 

𝐸 =  0 + 𝜀. 𝑁0𝑒−
𝜀

𝑘𝑇 + 2𝜀. 𝑁0𝑒−
2𝜀
𝑘𝑇 + 3𝜀. 𝑁0𝑒−

3𝜀
𝑘𝑇 + ⋯ 

𝐸 =  𝑁0𝜀𝑒−
𝜀

𝑘𝑇 [1 + 2𝑒−
𝜀

𝑘𝑇 + 3𝑒−
2𝜀
𝑘𝑇 + 4𝑒−

3𝜀
𝑘𝑇 + ⋯ … … ]. 

Using the mathematical formula: 

1 + 2𝑥 + 3𝑥2 + 4𝑥3 + ⋯ … + 𝑛. 𝑥𝑛−1 =
1

(1 − 𝑥)2
 

Above equation can be written as  

𝐸 =
𝑁0𝜀𝑒−

𝜀
𝑘𝑇

(1 − 𝑒−
𝜀

𝑘𝑇)
2  =

𝑁0𝜀𝑒−
𝜀

𝑘𝑇

(1 − 𝑒−
𝜀

𝑘𝑇)
2

𝑁0

(1 − 𝑒−
𝜀

𝑘𝑇)

 

Thus we have got expressions for total energy and total number of particles. Substituting these 

in the expression of average energy we get: 

𝜀̅  =
𝜀𝑒−

𝜀
𝑘𝑇

(1 − 𝑒−
𝜀

𝑘𝑇)
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                                              =
𝜀

(𝑒
𝜀

𝑘𝑇−1)
  

=
ℎ𝜈

(𝑒
ℎ𝜈
𝑘𝑇 − 1)

 

The above equation gives the average energy of oscillator. 

It should be noted that the average energy derived from quantum physics differs from the 

average energy gained from conventional physics, where the average energy per mode is kT. 

In the frequency range ν and ν+dν the energy density (total energy per unit volume for a 

particular frequency range) can be obtained by multiplying the number of Planck’s oscillators 

lying in that particular range multiplied with the average energy of the Planck’s oscillator. So 

we need to calculate the number of oscillators per unit volume lying in the frequency range ν 

and ν+dν. 

Here we can clearly see that the average energy per mode is kT as suggested by Rayleigh Jeans 

law. Whereas the Planck's quantum radiation law suggests its value equal to 
//( 1)h kTh e   .  

9.12.2 DEDUCTION OF WEIN’S LAW FROM PLANCK’S LAW 

We know from the Planck’s radiation law 

5 /

8

1he kT

hc d
E d

e
 

 






 

At very small temperature T is small and for shorter wavelength 𝑒
ℎ𝑐

𝜆𝑘𝑇⁄ becomes large 

compared to unity and hence Planck’s law reduces to  

𝐸𝜆 𝑑𝜆 =
8𝜋ℎ𝑐

𝜆5
 . 𝑒

−ℎ𝑐
𝜆𝑘𝑇⁄ .  𝑑𝜆 

This is the required Wein’s law, hence Planck’s law reduces to Wein’s law for shorter 

wavelengths. 

9.12.3 DEDUCTION OF RAYLEIGH-JEANS LAW FROM PLANCK’S 

LAW 

We know from Planck's radiation law: 
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𝐸
𝜆  =

8𝜋ℎ𝑐  

𝜆5 .
𝑑𝜆

𝑒
ℎ𝑐

𝜆𝑘𝑇⁄
−1

 

At very large temperature, T is large and also for longer wavelengths  𝑒
ℎ𝑐

𝜆𝑘𝑇⁄  can be 

approximated as(1 +
ℎ𝑐

𝜆𝑘𝑇
) (the first two terms of Taylor series expansion 𝑒𝑥 = 1 +

𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯ , −∞ < 𝑥 < ∞) 

i.e. 

2

/ 1
1 ... 1

2!

he kT he hc hc
e

kT kT kT



  

 
      

 
 

Hence Planck’s law reduces to 

𝐸𝜆𝑑 =
8𝜋ℎ𝑐  

𝜆5
.

𝑑𝜆

(1 +
ℎ𝑐

𝜆𝑘𝑇
− 1)

 

=
8𝜋ℎ𝑐  

𝜆5

𝜆𝑘𝑇

ℎ𝑐
𝑑𝜆 

=
8𝜋𝑘𝑇  

𝜆4
𝑑𝜆 

This is the required Rayleigh-Jeans law. As a result, at longer wavelengths, Planck's law is 

reduced to Rayleigh-Jeans law. 

Both Wein's law and Rayleigh Jeans law are included into Planck's law. 

9.13 SUMMARY 

In this unit we have learned about the second law of thermodynamics. The second law clearly 

explains that it is impossible to convert heat energy to mechanical energy with 100 per cent 

efficiency. There are two statements on the second law of thermodynamics, and they are 

Kelvin-Plank statement and Clausius statement. It states that the heat cannot transfer from cold 

regions to hot regions spontaneously until some external work is done on the system. Kelvin 

statement states that it is impossible to construct a device operating in a thermodynamic cycle 

to receive heat from a single heat source and produce a net amount of work. 

The concept of an ideal black-body has significance in the study of thermal and electromagnetic 

radiation energy transmission across all wavelength bands. A black body emits the most 
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radiation relative to any other body at a given temperature. As a result, the black body is utilised 

as a reference for comparing radiation from real physical bodies. A black body is an ideal body 

since it absorbs all of the incident radiation and is also an excellent emitter. The study of black 

body radiation has several uses, including calculating the temperature of far-off stars. 

9.14  GLOSSARY 

Internal Energy Energy contained within the system. 

Enthalpy Total heat content of the system. 

Entropy Lack of order or predictability; gradual decline into disorder. 

Specific Heat Amount of heat per unit mass required raising the temperature by 10 C. 

Heat Capacity Amount of heat needed to raise the system’s temperature by 10 C. 

Latent Heat 

 

Thermal conductivity 

Thermodynamics 

Energy released or absorbed by a thermodynamic system during an 

isothermal process. 

The thermal conductivity of a material is a measure of its ability to conduct 

heat. 

Thermodynamics is the study of the relations between heat, work, 

temperature, and energy 
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3. Heat and Thermodynamics, Zemansky and Dittnon.  

9.17 TERMINAL QUESTIONS 

LONG ANSWER TYPE 

1.  Give Kelvin-Planck and Clausius statements of the second law and show their 

equivalence. 

2.  What do you understand by Carnot Theorem? 

3.  What is the purpose of the second law of thermodynamics? 

4. Define a black-body and write its properties. 

5. State and explain Maxwell’s equations in detail. 

6. Explain Ampere’s circuital law. Give its significance. Derive its differential form. 

7.         Explain Maxwell’s correction in Ampere’s circuital law. 

8. Explain the concept of Maxwell’s displacement current and show how it led to the              

modification of the Ampere’s law. 

SHORT ANSWER TYPE 

1. What are the hypothesis of Planck’s law? 

2. Derive Planck’s radiation law. 

3. What are the applications of Maxwell’s equation? 

4. Define temperature gradient. 

5. What is the Maxwell equation? 

6. What are the means of heat transfer? 

7. What does thermal conductivity depend on? 

8. What are the examples of Wien’s displacement law? 

9. What are the characteristics of Black Body radiations? 

10. Define Wien’s constant. 

11. What is displacement current in Maxwell’s equation? 

12. Are all four Maxwell’s equations independent? 

13. What is Black Body radiation? 

14. Who derived the expression for Black Body radiation? 

15. Define temperature and the scales to measure temperature. 
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16. What is meant by the term thermal conductivity? 

17. What are the factors affecting thermal conductivity? 

Multiple Choice based questions: 

1. A black body radiation  

a) depends on the temperature of the medium 

b) is function of the temperature of the object 

c) is radiation emmitted by a black body at non-uniform temperature 

d) all of the above 

 

2. The mathematical description of blackbody intensity curve is given by 

a) Wien’s law 

b) Planck’s law 

c) Rayleigh-Jeans law 

d) Stefan-Boltzmann law 

 

3. The blackbody radiation is  

a) longitudinal wave  

b) electromagnetic wave 

c) sound wave 

d) transverse wave 

 

4. Maxwell’s fourth equation is based on ________. 

a) Ohm’s law 

b) Ampere’s circuital law 

c) Coulomb’s law 

d) Faraday’s law 

 

5. The Planck’s constant h has the dimensions equal to 

a) M L 2 T -1 

b) M L T -1 

c) M L T -2 

d) M L T 
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6. Maxwell’s first equation is based on _________. 

a) Gauss’s law for magnetism 

b) Gauss’s law for electrostatic 

c) Faraday’s law 

d) Ampere’s circuital law 

 

7. Heat transfer through electromagnetic waves is known as ______. 

a) Radiation 

b) Conduction 

c) Convention 

d) None of the options 

 

8. The physical quantity which describes the direction and rate of the temperature change 

around a particular location is known as ______. 

a) Thermal equilibrium 

b) Isothermal property 

c) Temperature gradient 

d) Temperature quotient 

 

9. In Planck’s resonators particles can vibrate with  

a) only one frequency. 

b) frequency of red light. 

c) frequencies lies in sound wave range. 

d) all frequencies of electromagnetic wave spectrum following quantization of energy. 

 

10. During phase transitions like vaporization, melting and sublimation 

a) pressure and temperature remains constant 

b) volume and entropy changes 

c) both of the mentioned 

d) none of the mentioned 

 

11. The value of Planck’s constant is 

a) 1.6 × 10−27𝑘𝑔 

b) 1.38 × 10−23𝑚2𝑘𝑔 𝑠−2𝐾−1 
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c) 6.626 × 10−34𝐽𝑠 

d) 9.1 × 10−31𝑘𝑔 

 

12. The average energy of a Planck’s oscillator is 

a) −ℎ𝜐/(1 −  𝑒
ℎ𝜐

𝑘𝑇)  

b) ℎ𝑣/(𝑒
ℎ𝜐

𝑘𝑇 − 1)  

c) ℎ𝜐/(𝑒
1

𝑘𝑇 − 1)  

d) ℎ𝜐/(1 −  𝑒
ℎ𝜐

𝑘𝑇)  

 

13. The relationship at which maximum value of monochromatic emissive power occurs, 

that is, the relation between the wavelength and temperature of a black body, 

(Wavelength) MAX T = constant is termed as 

a) Planck’s law 

b) Wein’s law 

c) Lambert’s law 

d) Kirchhoff’s law 

 

14. Four similar pieces of copper were heated at the same temperature and then left in the 

environment to cool. Also, these pieces were painted with different colours of paints. 

Which among the following paints will give fast cooling? 

a) White 

b) Black 

c) Rough 

d) Yellow 

 

15. As the wavelength of the radiation declines, the strength of the black body 

radiations_____ 

a) Increases 

b) Decreases 

c) First decreases then increases 

d) First increases then decreases 

 



INTRODUCTORY PHYSICS  PHY(N)GE 
 

232 
 

16. The phenomenon in which hot bodies emit radiation is known as? 

a) X-rays 

b) Black-body radiation 

c) Visible light 

d) Gamma radiations 

 

17. A black body may not be a perfect emitter of radiations but it’s a perfect absorber of 

radiations. 

a) False 

b) True 

 

 

Answer 

 

1. b); 2. b); 3. b),d); 4. b); 5. a); 6. b); 7. a); 8. c); 9. d); 10. c); 11. c); 12. b); 13. b); 

14. b); 15. d); 16. b); 17. a) 
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UNIT 10              GAUSS’S THEOREM, APPLICATIONS 
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10.16 Terminal Questions 

10.17 Answers 
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10.1 INTRODUCTION 

The word electrostatics contains two terms electro and statics thereby meaning charge in 

stationary state. Electrostatics is the study of forces between charges, as described by 

Coulomb's Law. We develop the concept of an electric field surrounding charges. We know 

from our early research that the reciprocal interaction of charged entities may be viewed as a 

result of the force that one exerts on the other, despite the fact that there is no material link 

between them. This activity was seen uncomfortable and annoying from a distance. Faraday 

developed the field idea in the nineteenth century to describe the reciprocal interactions of two 

charged entities. Maxwell later elaborated on this topic. This section will teach you about 

electric fields, electric field intensity (strength) in various instances, and electric potential. 

In this chapter, we will study about the charges, their properties, quantization and conservation 

of electric charge and Coulomb’s law. We will also study electric flux, Gauss’s law and the 

applications of Gauss’s law. The various concepts have been presented in a simple and clear 

manner. 

10.2 OBJECTIVES 

After studying this unit, you should be able to- 

 know about charges and their properties 

 learn quantization of charge 

 define Coulomb’s law 

 know about Coulomb’s law and their applications in daily life 

 learn about electric field, potential and dipoles 

 understand electric flux 

 understand Gauss’s law and its applications 

 

10.3 COULOMB’S LAW 

Coulomb's law describes the strength of the electrostatic force (attraction or repulsion) between 

two charged objects. It is defined as a mathematical concept that defines the electric force 

between charged objects. Columb’s Law states that the force between any two charged particles 
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is directly proportional to the product of the charge but is inversely proportional to the square 

of the distance between them. 

History of Coulomb’s Law 

Charles Augustin de Coulomb a French mathematician in 1785 first describes a force between 

two charged bodies in mathematical equations. He stated that the charge bodies repel or attract 

each other accordingly based on their charge, i.e. opposite charge attracts each other and similar 

charge repels. He also states the mathematical formula for the force between them, which is 

called Columb’s Law. 

Coulomb’s Law Formula 

Let us suppose that two charges, q1 and q2. The force of attraction/repulsion between the 

charges is represented by the letter 'F,' while the distance between them is represented by the 

letter 'r.' Then Coulomb's law is mathematically represented as- 

 

F is proportional to the product of the magnitudes of the in-contact charges, i.e. F α q1q2. 

F is inversely proportional to the square of the distance between the two in contact charges,  

F α 1/ r2 

  

Figure 10.1. Pictorial Representation for Coulomb’s Law. 

 

Let’s put the two together as follows: 

F⃗ =
1

4πε0

q1q2

r2
r̂ 
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The permittivity of empty space is defined as the constant 𝜀0. In SI units, where force is 

measured in Newtons (N), distance is measured in metres (m), and charge is measured in 

coulombs (C), 

𝜀0= 8.85 × 10−12 C2/N.m2 

Comparison of Coulomb’s Force and Gravitational Force 

Along with Coulomb’s force, gravitational force also acts between two charged bodies. The 

comparison between Coulomb’s force and Gravitational force is shown below- 

S. No. Coulomb’s force Gravitational force 

1. The Coulomb’s force (electrical force) 

between two charged bodies of charges 

q1 and q2 at separation r is given as- 

Fe = 
1

4πε0K

q1q2

r2  

The gravitational force acting between two 

bodies of masses m1 and m2 at separation r 

is given as- 

1 2

2g

Gm m
F

r
 , where G is known as Universal 

Gravitational Constant and G = 6.67 x 10-11 

N-m2/Kg2 

2. The Coulomb force may be attractive 

or repulsive in nature. 

The gravitational force is always attractive 

in nature. 

3. 

 

The Coulomb force depends upon the 

medium between the charges. 

The gravitational force is independent of 

medium between the masses. 

4. The Coulomb force is much stronger. The gravitational force is much weaker than 

the Coulomb force. 

 

Applications of Coulomb’s Law 

Coulomb's Law is a fundamental physical law. It is used for a variety of reasons, some of which 

are listed here. 

• It calculates the distance and force between two charges. 

• It is utilised to keep the charges in a constant equilibrium. 

• The electric field is calculated using Columbus' law. 
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Electric field is given by, 

E = F / Q            

unit (N/C) 

where, 

E is the Strength of the electric field 

F is the Electrostatic force 

Q is the Test charge measured in coulombs 

Limitations of Coulomb’s Law 

Coulomb's Law has certain restrictions, which are discussed further down in the 

article. 

 Coulomb's Law applies to point charges that are at rest only. 

 Coulomb's Law is only relevant when the inverse square law is applied. 

 Coulomb's Law is only applicable to charges that are considered spherical. 

 Coulomb's Law does not apply to charges with arbitrary forms since we cannot 

know the distance between the charges. 

10.4 ELECTRIC CHARGE AND ELECTRIC FIELD 

Electric charge  

The term "electricity" is derived from the Greek word "Elektron," which meaning "amber." 

The magnetic and electric forces present in materials, atoms, and molecules affect their 

properties. The word "electric charge" refers to just two kinds of entities. An experiment 

revealed two types of electrification: similar charges repelling one another and unlike charges 

attracting one another. The polarity of charge distinguishes between these two types of charges. 

An investigation on frictional electricity-generated electric charges demonstrated that 

conductors help in the transmission of electric charge whereas insulators do not. Metals, the 

Earth, and human bodies are all conductors, but porcelain, nylon, and wood are all insulators, 

resisting the flow of electricity through them significantly. 

Basic properties of electric charge 

We have seen that there are two kinds of charges, positive and negative, and that their effects 

tend to cancel each other out. We will now go over some of the additional features of an electric 
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charge. When the sizes of charged bodies are exceedingly small in comparison to the distances 

between them, they are referred to as point charges. All of the body's charge content is supposed 

to be concentrated at one place in space. 

 Additivity of charges: If a system has two point charges, q1 and q2, the total charge 

of the system is calculated simply by adding q1 and q2, i.e., charges add up like real 

numbers or are scalars like a body's mass. If a system has n charges q1, q2, q3,..., qn, 

then the total charge is q1 + q2 + q3 +... + qn. Charge, like mass, has magnitude but no 

direction. There is, however, one distinction between mass and charge. A body's mass 

is always positive, but a charge might be positive or negative. 

 Charge is conserved: It is not possible to create or destroy net charge carried by any 

isolated system although the charge carrying particles may be created or destroyed in a 

process. 

 Quantisation of charge: Experimentally it is established that all free charges are 

integral multiples of a basic unit of charge denoted by e. Thus charge q on a body is 

always given by q = ne, 

 where n is any integer, positive or negative. The fact that electric charge is always an 

integral multiple of e is termed as quantisation of charge. 

Electric Field 

An electric charge generates an electric field, which is an area of space surrounding an 

electrically charged particle or object in which the charge feels compelled. The electric field 

exists in all directions in space and may be studied by introducing another charge into it.  

An Electric field can be considered an electric property associated with each point in the 

space where a charge is present in any form. An electric field is also described as the electric 

force per unit charge. Electric fields are usually caused by varying magnetic fields or electric 

charges. Electric field strength is measured in the SI unit volt per metre (V/m). 

A vector field that may be associated with each point in space, the force per unit charge exerted 

on a positive test charge at rest at that place, is described mathematically as an electric field. 

The electric field formula is as follows: 

𝐸 =
𝐹

𝑄
 

Where, 
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E is the electric field. 

F is the force. 

Q is the charge. 

The direction of the field is assumed to be the direction of the force acting on the positive 

charge. The electric field extends radially from the positive charge and in the opposite direction 

from the negative point charge. 

 

 

Figure 10.2. Representation of Electric field lines. 

 

The electric charge or time-varying magnetic fields create the electric field. On an atomic scale, 

the electric field is responsible for the attractive forces that hold the atomic nucleus and 

electrons together. 

Properties of Electric Field 

The following are some of the fundamental features of an electric field: 

 Due to the negative source, the electric field is always directed towards the charge at 

any position. 

 When a positive source exists, the electric field always points away from the charge. 

 If the given charge is positive, the force will have the same direction as the electric 

field. 

 If the given charge is negative, the force will be directed in the opposite direction as the 

electric field. 

The electric field is the sum of positive and negative charges. The electric field is created when 

these charges exert a force on their surroundings. These electric fields can have either an 

attracting or repulsive effect. As an example: An electrically charged glass rod draws items 

such as scraps of paper as it comes into touch with them. After being electrically charged, the 

rod develops the property of attracting. The physical importance of the electric field is 
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investigated under two main situations: static conditions and electromagnetic non-static 

settings. The electric field's property is determined by its charges. 

 

10.5 ELECTRIC FIELD INTENSITY 

In order to determine the intensity (strength) of electric field at a point in the electric field, let 

us place an infinitesimal positive test charge q0 at that point. The force acting on this test charge 

is measured, and this force divided by the test charge yields the electric field strength. The test 

charge is considered to be so little that it causes no change in the original electric field. As a 

result, the electric field strength (or intensity) is defined as follows: 

“The intensity of electric field at a point in an electric field is the ratio of the force acting 

on the test charge placed at that point to the magnitude of the test charge”. It is a vector 

quantity and its direction is along the direction of force. 

Thus, if F is the force acting on a test charge q0 at a location in an electric field, the strength of 

the electric field E at that point is given by- 

E⃗⃗ =
F⃗ 

q0
 

Assuming that the test charge q0 is infinitesimal, the definition of electric field intensity may 

be stated as- 

0 0
0

lim
q

F
E

q
  

The force F is a vector quantity, whereas the test charge q0 is a scalar quantity. As a result, the 

intensity of the electric field dE will be a vector quantity with the same direction as the direction 

of the force F, i.e. the direction in which the positive charge put in the electric field tends to 

move. If the test charge is negative, the direction of the electric field E will be the opposite of 

the force acting on the negative charge. 

Obviously, the unit of intensity (strength) of an electric field is Newton/metre. 

If we know the intensity of an electric field E at a given point in an electric field, we can use 

the following equation to calculate the force F acting on a charge q placed at that point: 
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F  = qE                                                                     

The intensity (strength) of an electric field is obviously measured in Newton/metre. 

If we know the strength of an electric field E at a particular site in an electric field, we can use 

the equation below to compute the force F acting on a charge q placed at that location: 

10.6 ELECTRIC LINES OF FORCE 

We studied the electrostatic force experienced by a charge in an electric field. If the charge is 

free, it will move in the opposite direction of the force. If the direction of the force varies 

continually, the direction of motion of the charge likewise changes continuously, i.e. it goes 

along a curved route. The 'electric line of force' is the route of a free positive charge in an 

electric field. As a result, "an electric line of force is a smooth imaginary curve drawn in an 

electric field along which a free, isolated unit positive charge moves." The direction of the 

force operating on a positive charge deposited at any point on the electric line of force is given 

by the tangent formed at that location." 

The intensity (strength) of an electric field may now be defined in terms of electric lines of 

force as follows- 

“The intensity of electric field at any point is defined as a vector quantity whose magnitude is 

measured by the number of electric lines of force passing normally through per unit small area 

around that point and whose direction is along the tangent on line of force drawn at that point”.  

 

Figure 10.3: Electric lines of force. 

10.6.1 Properties of Electric Lines of Force 

 The lines of force begin with a positive charge and conclude with a negative charge. 

 Electric field lines are never closed loops. 

 They are always perpendicular to the charge's surface. 

 The lines of force are never crossed. 



INTRODUCTORY PHYSICS  PHY(N)GE 
 

242 
 

 Electric force lines do not travel through the conductor. 

 The relative proximity of lines of force in distinct regions of space indicates the 

respective intensities of the electric field in those places. 

 Electric force lines contract lengthwise. 

 Force lines impose lateral pressure on one another. 

10.7 PHYSICAL SIGNIFICANCE OF ELECTRIC FIELD 

The electric field is a vector quantity which may vary from point to point in magnitude and 

direction. The magnitude of electric field at any point is a measure of electric force on a unit 

positive test charge, assuming that the test charge does not perturb the field of the system and 

its direction is that of electrostatic force on the test charge. This implies that the electric field 

is the characteristic of the charges of system and is independent of the test charge. The test 

charge is simply introduced for measurement of electric field in a suitable manner. 

The true physical significance of electric field appears only when we keep in view that 

electrostatic interaction is only a part of general fundamental force known as electromagnetic 

interaction. When two charges q1 and q2 are in accelerated motion, then either accelerated 

charge (say q1) produces electromagnetic wave which propagates with speed of light; reaches 

on another charge (say q2) and causes a force on it. 

Thus, the force between two distant charges is not instantaneous but appears with a time delay. 

Thus electric field (as well as magnetic field) is detected by their interaction forces; but they 

are not simply mathematical terms but are regarded as physical quantities which may be 

measured by the forces exerted by them on single charges or diploes. 

 

10.8 ELECTRIC POTENTIAL 

The electric field produced by a charge may be represented in two ways:  

I. by the intensity of the electric field E at a point in the field and  

II. by the electric potential V. 



INTRODUCTORY PHYSICS  PHY(N)GE 
 

243 
 

The strength of the electric field E is a vector quantity, whereas V is a scalar quantity. Both of 

these variables are linked. The electric potential is a crucial parameter in the study of electric 

fields. They are both distinctive features of a point in space. 

We know that a free positive charge in an electric field tends to flow in the direction of the 

electric field. Work is done against the Coulomb's force of repulsion when a positive test charge 

is introduced in the opposite direction of the electric field. The potential at infinity is assumed 

to be 0 in order to establish absolute potential at any place. 

“The electric potential at any point in an electric field is defined as the work done by 

external force in carrying unit positive test charge from infinity to that point, without any 

acceleration”. 

If W represents the work done in moving a positive test charge q0 from infinity to any location 

in an electric field, then the electric potential at that point is- 

V = 
W

q0
                                                                

The electric potential is a scalar quantity. Joule/Coulomb is its SI unit. Volt is another unit. 

If q0 =1 coulomb, W= 1 Joule, then 

V = 
1 Joule

1 Coulomb
 = 1 volt 

1 volt is the electric potential at a location in an electric field if the work done in carrying one 

coulomb of electric charge from infinity to that point is one joule, provided the charge of one 

coulomb has no effect on the initial electric field. 

10.8.1 Potential Difference 

Potential difference between any two points in the presence of the electric field is defined as 

the amount of work done in moving a unit positive charge without acceleration from one point 

to another along any path between the two points. It is given as (dV): 

𝑑𝑉 =
𝑑𝑤

𝑑𝑞
 

The potential difference between points A and B, on the other hand, is defined as the shift in 

the potential energy of a charge q divided by the charge changed from A to B. 
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VA – VB = 
WBA

q0
       

Because the work WBA and the charge q0 are both scalar quantities, the potential difference VA 

- VB is likewise a scalar number. The unit of work done WBA is Joule and the unit of charge q0 

is coulomb. Therefore, the unit of potential difference is Joule/Coulomb. 

Now we can define 1 volt potential difference. If WBA= 1 Joule, q0 = 1 Coulomb then 

VA – VB = 
1 Joule

1 Coulomb
  = 1 volt 

i.e. if 1 joule of work is done in carrying a test charge of 1 Coulomb from one point to the other 

in an electric field, then the potential difference between those points will be 1 volt. 

10.8.2 Physical Significance of Electric Potential 

Positive charge always flows from greater potential to lower potential, just as liquid flows from 

higher pressure (or higher level) to lower pressure (or lower level) and heat flows from higher 

temperature to lower temperature. There is no relationship between the direction of charge flow 

and the quantity of charge, as there is in the case of liquid or heat flow. Thus, electric potential 

is the physical quantity that governs the direction of positive charge flow. When two 

conducting bodies with uneven potentials come into touch, the charge continues to flow from 

one to the other until their potentials equalize. Positive charge always flows from greater 

potential to lower potential, and negative charge always flows from lower to higher potential. 

When two conductors are kept in touch, electrons move from lower to higher potential until 

their potentials become equal. 

10.9 ELECTRIC FLUX 

Electric flux is the property of an electric field that quantitatively explains the number of 

electric lines of force (or electric field lines) that intersect with the given area. Electric field 

lines are considered to originate on positive electric charges and terminate on negative charges. 

In simple words, the total number of electric field lines passing a given area in a unit of time is 

defined as the electric flux. The SI base unit of electric flux is voltmeters (V m). Let us imagine 

the flow of water with a velocity v in a pipe in a fixed direction, say to the right. If we take the 

cross-sectional plane of the pipe and consider a small unit area given by ds from that plane, the 

volumetric flow of the liquid crossing that plane normal to the flow can be given as vds. When 
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the plane is not normal to the flow of the fluid but is inclined at an angle θ, the total volume of 

liquid crossing the plane per unit time is given as vds. cosθ. Here, dscosθ is the projected area 

in the plane perpendicular to the flow of the liquid. Similar to the example above, if the plane 

is normal to the flow of the electric field, the total flux is given as: 

 Φ = 𝐸𝐴 

When the same plane is tilted at an angle θ, the projected area is given as Acosθ, and the total 

flux through this surface is given as: 

Φ = 𝐸𝐴𝑐𝑜𝑠θ 

 

Figure 10.4. Direction of the electric flux. 

Electric flux is a scalar quantity. Its unit is Newton-metre2Coulomb-1. 

10.10 GAUSS’S THEOREM 

The mathematical relationship between the charge enclosed in a material and electric flux is 

defined by the Gauss theorem. Gauss's law states that the total electric flux emerging out of a 

closed surface is equal to 1/ε0 times the charge enclosed by the closed surface, where εo is 

the permittivity of the free space. By Gauss law, it can be said that if no charges are enclosed 

by a surface, then the net electric flux remains zero. Gauss’s law is considered true for any 

closed surface, despite the shape or size. 

Mathematically,  

Φ =
𝑄

𝜀o
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Figure 10.5. Illustration of the Gauss law. 

The electric flux from any closed surface originates due to the positive charges and terminates 

at the negative charges of the electric field enclosed by the surface. The charges existing outside 

the surface do not contribute to the total electric flux. The applications of Gauss Law are mainly 

to find the electric field due to infinite symmetries such as: 

 Uniformly charged Straight wire. 

 Uniformly charged Infinite plate sheet. 

 Uniformly charged thin spherical shell. 

10.11 APPLICATIONS OF GAUSS’S THEOREM 

It is quite interesting that Gauss' theorem gives a straightforward approach for determining the 

strength of an electric field in symmetrical instances. Consider an imaginary Gaussian surface 

symmetrical to a given charge, compute electric flux through it, and equate this flux to the 1/ɛ0 

charge encompassed by the surface. Let us now look at several interesting applications of 

Gauss' theorem. 

10.11.1 Electric Field due to a Point-charge 

Every charge in the universe exerts a force on every other charge in the universe” is a bold yet 

true statement of physics. One way to understand the ability of a charge to influence other 

charges anywhere in space is by imagining the influence of the charge as a field. Note that this 
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‘influence’ is simply the electrostatic force that a charge is able to exert over another. However, 

when describing fields, we require a quantity (scalar or vector), that is independent of the 

charge it is acting on and only dependent on the influence and the spatial distribution. 

So, in a simple way, we can define the electrostatic field considering the force exerted by a 

point charge on a unit charge. In other words, we can define the electric field as the force per 

unit charge. 

 

Figure 10.6. Nature of electric field lines of positive and negative charges. 

 

When a glass rod is rubbed with a piece of silk, it acquires the property of attracting objects 

like pieces of paper, towards it. This happens due to the discharge of electric charges by rubbing 

of insulating surfaces. Electric charge is a property that accompanies fundamental particles, 

wherever they exist. When an electric charge q₀ is held in the vicinity of another charge Q, q₀ 

either experiences a force of attraction or repulsion. We say that this force is set up due to the 

electric field around the charge Q. Therefore, we can say that the electric field of charge Q acts 

as a space by virtue of which the presence of charge Q modifies the space around itself leading 

to the generation of force F on any charge q₀ held in this space. The concept of the field was 

first introduced by Faraday and the force that occurred due to this field is mathematically 

expressed as, 

𝐹 =
𝑘𝑄𝑞1

𝑟2
 

Where r is the distance between the test charge and the source charge, q1 is the test charge, Q 

is the source charge and k is the constant which is expressed as: 
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𝑘 =
1

4πϵ0
 =9×109 Nm2 C−1 

 

The electric field due to a given electric charge Q is defined as the space around the charge in 

which electrostatic force of attraction or repulsion due to the charge Q can be experienced by 

another test charge q.   

The electric field intensity at any point is the strength of the electric field at that point. It is 

defined as the force experienced by a unit positive charge placed at a particular point. Here, if 

force acting on this unit positive charge +q₀ at a point r, then electric field intensity is given by: 

 

𝐸⃗ (𝑟) =
𝐹 (𝑟)

𝑞𝑜
 

 

Hence, E is a vector quantity and is in the direction of the force and along the direction in which 

the test charge +q tends to move. Its unit is NC-1. 

 

10.11.2 Electric Field due to a charged spherical shell      

Let us consider a charged spherical shell. To find an electric field outside the spherical shell, 

we take a point P outside the shell at a distance r from the center of the spherical shell. A 

Gaussian spherical surface of radius r and center O. To determine the electric field due to a 

uniformly charged thin spherical shell is possible to obtain with the help of Gauss’s law. In this 

article, let’s learn about Electric fields due to spherical shells at the surface, inside and outside 

by using Gauss law. To determine the electric field due to a uniformly charged thin spherical 

shell, the following three cases are considered: 

Case 1: At a point outside the spherical shell where r > R. 

Case 2: At a point on the surface of a spherical shell where r = R. 

Case 3: At a point inside the spherical shell where r < R. 

Let us consider each case separately to determine the electric field. 

Case 1: At a point outside the spherical shell where r > R. 

Let P be the point outside the shell at a distance r from the center. Since the surface of the 

sphere is spherically symmetric, the charge is distributed uniformly throughout the surface. A 



INTRODUCTORY PHYSICS  PHY(N)GE 
 

249 
 

spherical Gaussian surface with the radius r and total charge enclosed on this Gaussian surface 

Q is selected. If Q > 0, then the electric field is radially pointed outward and if Q < 0, then the 

electric field is radially pointed inward. 

 

Figure 10.7. Illustration of the Gaussian surface for r > R shell. 

From Gauss law, we know that: 

∮ 𝐸⃗ . 𝑑𝐴 =
𝑄

ϵ0
 

𝐸⃗ ∮𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑠𝑢𝑟𝑓𝑎𝑐𝑒  𝑑𝐴 =
𝑄

ϵ0
 

𝐸⃗  (4π𝑟2)=
𝑄

ϵ0
 

𝐸⃗ =
1

4πϵ0

𝑄

𝑟2
𝑟̂ 

We can say that the electric field at a point outside the shell will remain the same if the entire 

charge Q is concentrated at the center of the spherical shell. 

Case 2: At a point on the surface of a spherical shell where r = R. 

Let P be the point at the surface of the shell at a distance r from the center. In this case, r = R; 

since the surface of the sphere is spherically symmetric; the charge is distributed uniformly 

throughout the surface. From Gauss law, we know that, 

∮ 𝐸⃗ . 𝑑𝐴 =
𝑄

ϵ0
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𝐸⃗ ∮𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑠𝑢𝑟𝑓𝑎𝑐𝑒  𝑑𝐴 =
𝑄

ϵ0
 

𝐸⃗  (4π𝑟2)=
𝑄

ϵ0
 

𝐸⃗ =
1

4πϵ0

𝑄

𝑅2
𝑟̂ 

 

Case 3: At a point inside the spherical shell where r < R. 

Let P be the point inside the spherical shell at a distance r from the centre. In this case, r < R. 

From Gauss law, we know that 

∮ 𝐸⃗ . 𝑑𝐴 =
𝑄

ϵ0
 

𝐸⃗ ∮𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑠𝑢𝑟𝑓𝑎𝑐𝑒  𝑑𝐴 =
𝑄

ϵ0
 

𝐸⃗  (4π𝑟2)=
𝑄

ϵ0
 

𝐸⃗ =
1

4πϵ0

𝑄

𝑟2
𝑟̂ 

We know that the Gaussian surface does not enclose any charge, therefore, Q = 0. 

Thus, E = 0 

 

Hence, we can say that the electric field due to the uniformly charged thin spherical shell is 

zero at all the points inside the shell. 
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Figure 10.8. Illustration of the Gaussian surface for r < R shell. 

 

10.12 SUMMARY 

In this unit, you have learned about electric charge, how it was found, and its properties. You 

have learned that motion has no influence on a body's charge, i.e. the charge on a body or 

particle is constant whether it is at rest or traveling at any velocity. Charge is conserved, which 

means it cannot be generated or destroyed but can only be moved from one body to another. 

You have also studied charge quantization, which states that electric charge cannot be split 

endlessly. Coulomb's law, its validity requirements, and its significance is also discussed. "The 

force of attraction or repulsion between two point charges is directly proportional to the product 

of the charges and inversely proportional to the square of the distance between them," 

according to Coulomb's law. This force is directed along the line connecting the two charges." 

Concept of electric field intensity, electric potential, electric field lines, potential differences 

are also studied in detail. You have also learned about the Gauss Law and its application to 

find the electric field due to infinite symmetries. 

To check the progress, self-assessment questions (SAQs) are given place to place. 

10.13 GLOSSARY  

Conserved- preserved 

Electric force- the force experienced by a charge placed at a point in an electric field 

Electric flux - the measure of flow of the electric field through a given area. 
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Significance – importance, noteworthiness, a concealed or real meaning. 

Quantization - the process of mapping continuous infinite values to a smaller set of discrete 

finite values. 

Electric Field - a region around a charged particle or object within which a force would be 

exerted on other charged particles or objects. 

Electric potential - the amount of work needed to move a unit charge from a reference point to 

a specific point against an electric field. 

Potential difference - the difference of electrical potential between two points. 
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10.16 TERMINAL QUESTIONS 

1. What is an electric field? 

2. When is the electric field said to be uniform? 

3. Explain quantization of charge. Hence define elementary charge. 
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4. When is the electric field said to be non-uniform? 

5. Does a charge experience a force due to its own field? 

6. Does Coulomb’s law of electric force obey Newton’s third law of motion? 

7. Give the importance of Coulomb’s law. 

8. Give comparison of Coulomb’s force and Gravitational force. 

9. What do you mean by electric flux? What is its unit?  

10. Write down the significance of electric flux. 

11. State the Gauss’s theorem in electrostatics. 

12. Proof Gauss’s theorem in electrostatics 

13. Why do two electric field lines never intersect? 

14. The test charge used to measure the electric field intensity at a point should be 

infinitesimally small. Why? 

15. Is electric field intensity a scalar or a vector quantity? 

16. Define electric intensity at a point in an electric field. 

17. Write any two properties of electric field lines. 

18. Define the potential difference between two points. 

19. Explain the statement the potential difference between two points is 1 volt' 

20. Why is a series arrangement not used for connecting domestic electrical appliances in a 

circuit? 

Multiple Choice Based Questions: 

 

1. Electric Field intensity is a…. 

a) Dimensionless quantity 

b) vector quantity 

c) scalar quantity 

d) all of the above 

 

2. Potential difference between two points is equal to 

a) electric charge /time 

b) work done/time 

c) work done/charge 

d) work done X charge 
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3. Gauss law is related to _____ fluxes? 

a) Electric 

b) Magnetic 

c) Chemical 

d) Both a and b 

 

4. Gauss law is applicable for ___ type of surface? 

a) Closed 

b) Open 

c) Feedback 

d) Both a and c 

 

5. Gauss law is related to _____ law? 

a) Coulombs law 

b) Charles law 

c) Ohms law 

 d) Farads law 

 

6. Electric potential difference between two points in an electric circuit carrying 

some current is the _____ done to move a ______ charge from one point to the 

other. 

a) Force, small 

b) Work, Large 

c) Mass, unit 

d) Work, unit 

 

7. The work done in moving a unit charge across two points in an electric circuit 

is a measure of: 

(a) current 

(b) potential difference 

(c) resistance 

(d) power 
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8. Two electric field lines ______ 

a) Always intersect each other 

b) Never intersect 

c) May intersect sometimes 

d) Are always perpendicular to each other 

 

9. Which among the following is false about electric field lines? 

a) They are continuous 

b) They attract each other 

c) They remain parallel in a uniform electric field 

d) They diverge from positive charge 

 

10. The electric field lines passing through a certain area is known as: 

a) Electric flux 

b) Electric field 

c) Electrostatics 

d) Electric field lines 

 

11. Flux will be minimum when the electric field lines are: 

a) Parallel to area the vector. 

b) Perpendicular to the area vector. 

c) At an acute angle to the area vector. 

d) None of the above. 

 

12. System International unit of electric flux is: 

a) Nm2C-1 

b) NmC 

c) Nm2C 

d) N2mC 

 

13. If there existed only one type of charge q on the Earth, then what is the electric 

flux related to Earth? 

a) Zero through any surface of Earth. 

b) Infinite flux on Earth. 
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c) Zero if the charge is placed outside Earth and q/ε0 if the charge is placed inside the 

earth. 

d) Cannot be defined. 

 

True/False 

14. Electric potential difference between two points is the work done to move a 

unit charge from one point to the other. 

a) True 

b) False 

 

15. Work done in moving a unit positive charge from one point to other in an 

electric circuit is called potential difference. 

a) True 

b) False 

 

 

10.17 ANSWERS 

1: b), 2: c), 3: d), 4: a), 5: a), 6: d), 7: b), 8: b), 9: b), 10: a), 11: b), 12:  a), 13: c), 14: a), 15: a).  
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11.1 INTRODUCTION 

The magnetic effects can be produced by a magnet or by a current carrying conductor. The region 

around a magnet or current carrying conductor, in which a magnetic needle experiences a torque 

and rests in a definite direction, is called ‘magnetic field’. A charge moving in a magnetic field 

experiences a deflecting force. Of course, if a charge moving through a point experiences a 

deflecting force, then a magnetic field is said to exist at that point. This field is represented by a 

vector quantity B⃗⃗  , called magnetic field or magnetic induction.  The magnetic induction can be 

defined in terms of lines of induction as the number of lines of induction passing through a unit 

area placed normal to the lines measures the magnitude of magnetic induction or magnetic flux 

density B⃗⃗ . Obviously, in a region smaller is the relative spacing of the lines of induction, the greater 

is the magnetic induction. The tangent to the line of induction at any point gives the direction of 

magnetic induction B⃗⃗  at that point. The lines of induction simply represent graphically how B⃗⃗  

varies throughout a certain region of space. In the present unit, you will study the force on a moving 

charge in simultaneous electric and magnetic fields, Biot-Savart law, magnetic force between 

current elements, Ampere’s circuital law and its applications. 

11.2 OBJECTIVES 

After studying this unit, you should be able to- 

 understand Lorentz force 

 apply Biot-Savart law 

 apply Ampere’s circuital law 

 solve problems using Biot-Savart law and Ampere’s circuital law 

11.3 LORENTZ FORCE 

Let us consider a charged particle of charge q which is moving with velocity v⃗  in a magnetic field 

B⃗⃗ , then the magnetic force acting on that charged particle is given by - 

F⃗ = q(v⃗ × B⃗⃗ )                                                                                           …..(1) 

The direction of F⃗  will be perpendicular to both the direction of velocity v⃗  and the direction of 

magnetic field B⃗⃗ . Its exact direction is given by the law of vector product of two vectors. 

The magnitude of magnetic force is given as- 

F = qvB sinθ                                                                                            …..(2) 

where θ is the angle between velocityv⃗  and magnetic fieldB⃗⃗ . 
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   v⃗  

                                            θ 

                                  +q                            B⃗⃗  

                                                 Figure 1 

If the angle between velocity v⃗  and magnetic field B⃗⃗  is 900 then- 

Fmax = qvB sin 900 = qvB  

i.e. if velocity v⃗  and magnetic field B⃗⃗  are at right angle then the magnetic force acting on the 

charged particle is maximum that is equal to qvB. 

If θ = 00 or 1800 i.e. velocity v⃗  and magnetic field B⃗⃗  are parallel to each other then- 

F = qvB sin 00 = 0 

i.e. if the charged particle is moving parallel to the magnetic field, it does not experience any force. 

If v = 0, then F = 0. This means that if the charged particle is at rest in the magnetic field, then it 

does not experience any force. 

If a charged particle is moving in space where both an electric field E⃗⃗  and a magnetic field B⃗⃗  are 

present, then the total force acting on the charged particle is called the Lorentz force. 

The electric force acting on charged particle, eF qE                                                  .....(3) 

The magnetic force acting on the charged particle, ( )mF q v B   

 

The total force acting on the charged particle, e mF F F   

                                                                             = q E⃗⃗  + q(v⃗ × B⃗⃗ ) 

orF⃗  = q[E⃗⃗  + (v⃗ × B⃗⃗ )]              .....(4) 

The force given by equation (4) is called the Lorentz force and the equation is known as Lorentz 

force equation. 

If a charged particle enters perpendicular to both the electric and magnetic fields, then it may 

cancel each other and therefore, the charged particle will pass undeflected. In this situation, 
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F⃗  = q[E⃗⃗  + (v⃗ × B⃗⃗ )] = 0 

or                                               E⃗⃗  = - (v⃗ × B⃗⃗ )                                                                 .....(5) 

In magnitude, E = v ×B     or   v = 
E

B
                                                                    .....(6) 

Thus a charged particle entering in simultaneous electric and magnetic field may pass undeflected. 

Such an arrangement of simultaneous electric and magnetic fields is called velocity-selector. 

Because the charged particle of only specified velocity given by v = E/B can pass undeflected. The 

particle of velocity v < E/B will be deflected towards electric force and those with velocity v > 

E/B will be deflected towards magnetic force. 

 

11.4 MAGNETIC INDUCTION AND BIOT-SAVART LAW 
Magnetic induction or magnetic flux density describes magnetic field at a point near a magnet or 

current carrying conductor in space. The magnetic induction is a vector quantity and generally 

denoted by B. The field B is closely related to the magnetic field H, often called the magnetic field 

intensity, and generally denoted by H. Sometimes, authors refer to B as the magnetic field. 

Oersted’s experimentally showed that a current-carrying conductor produces a magnetic field 

around it.  

French scientists Biot and Savart, in the same year 1820, performed a series of experiments to 

study the magnetic fields produced by various current-carrying conductors and formulated a law 

to determine the magnitude and direction of the magnetic fields so produced. This law is known 

as ‘Biot-Savart law’. Let us consider a conductor of an arbitrary shape carrying electric current i 

and P a point in vacuum at which the magnetic field is to be determined. Let us divide the conductor 

into infinitesimal current-elements. Let us consider a small current element XY of length dl.  
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According to Biot-Savart law, the magnetic field dB produced due to this current element at point 

P at a distance r from the element is- 

(i) directly proportional to the current flowing in the element i.e. dB ∝ i 

(ii) directly proportional to the length of element i.e. dB ∝ dl  

(iii) directly proportional to sin of angle between current element and the line joining 

current element to point P i.e. dB ∝ sin θ 

(iv) inversely proportional to the square of the distance of the element from point P i.e. dB 

∝
1

r2 

Combining these, we get- 

dB ∝
idlsinθ

r2  

or dB =
μ

4π

idlsinθ

r2 .....(7) 

where, 
μ

4π
 is a dimensional constant of proportionality whose value depends upon the units used 

for the various quantities. It depends on the medium between the current element and point of 

observation (P). Here, μ is called the permeability of medium. Equation (7) is called Biot-Savart 

law. The product of current i and the length of element dl i.e. idl is called the current element. 

Current element is a vector quantity; its direction is along the direction of current.  

If you place the conductor in vacuum or air, then μ is replaced by μ0and thus  Biot-Savart law can 

be written as- 

                                             dB = 
μ0

4π

idlsinθ

r2 .....(8) 

μ0 is called the permeability of free space or air.Its value in the SI system is assigned as- 

μ0 = 4π × 10-7 weber/ampere-meter (WbA-1m-1) 

Thus,
μ0

4π
= 10-7 WbA-1m-1 

μ0 or 
μ0

4π
 may also be expressed in Newton/Ampere2 (N/A2).  

The direction of magnetic field is perpendicular to the plane containing current element and the 

line joining point of observation to current element. Therefore, in vector form, Biot-Savart law can 

be expressed as- 

𝑑𝐵⃗  = 
μ0

4π

id l ×r⃗ 

r3  .....(9) 
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The resultant magnetic field at P due to the whole conductor can be found by integrating equation 

(9) over the entire length of the conductor. Thus 

B⃗⃗  = ∫𝑑B⃗⃗  

Direction of magnetic field dB: The direction of magnetic field 𝑑𝐵⃗  is perpendicular to both the 

current element idl  and the position vector r  of point P relative to current element and may be 

found by the law of vector cross product or by Maxwell’s right hand screw rule. Thus in figure 2  

the direction of magnetic field at point P is shown by × (cross) i.e. vertically inward (downward 

perpendicular to the plane of the paper) and at point P’, the direction of magnetic field is shown by 

•(dot) i.e. vertically outward(upward perpendicular to the plane of the paper). 

11.4.1 Maxwell’s Right Hand Screw Rule: 

If we hold the screw driver in our right hand and rotate a screw in such a way that the point of 

screw moves along the direction of electric current in the conductor, then the direction of rotation  

of the thumb will be the direction of magnetic lines of force. 

 

 

 

                                                                  i 

 Magnetic lines of force 

 

Current carrying conductor 

 

 

 

                                                              Figure 3 

11.4.2 Comparison of Coulomb’s Law and Biot-Savart Law 

A current generates a magnetic field in the surrounding space while a stationary charge generates 

an electric field.  Coulomb’s law gives the electric field due to a distribution of charges while Biot-
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Savart law gives the magnetic field due to a current element. According to Coulomb’s law, the 

magnitude of electric field at a point distant r due to a charge element dq is given as- 

                                                                  dE = 
1

4𝜋𝜀0

𝑑𝑞

𝑟2  

According to Biot-Savart law, the magnitude of magnetic field at a point distant r due to a current 

element i dl is given as- 

                                                                 dB = 
μ0

4π

idlsinθ

r2  

where θ is the angle between the length of the element and the line joining the element to the point. 

We, thus, see that Biot-Savart law is the magnetic equivalent of Coulomb’s law and both are 

inverse square laws. However, these two laws differ in certain respect. The charge element dq is a 

scalar while the current element i dl is a vector ( idl ) whose direction is in the direction of the 

current. According to Coulomb’s law, the magnitude of electric field depends only upon the 

distance of the charge element from the point. According to Biot-Savart law, the magnitude of 

magnetic field at the point also depends upon the angle between the current element and the line 

joining the current element to the point. Secondly, according to Coulomb’s law, the direction of 

electric field is along the line joining the charge element and the point. According to Biot-Savart 

law, the direction of magnetic field is perpendicular to the current element as well as to the line 

joining the current element to the point. 

Example 1:  An electron moving with velocity 5×107 m/sec enters a magnetic field of 1 Wb/m2 at 

an angle of 900 to the magnetic field. Estimate the magnetic force acting on the electron. 

Solution: Here v = 5×107 m/sec, B = 1 Wb/m2, θ = 900 , q = e = 1.6×10-19 C 

Using  F = qvB sinθ 

F = 1.6×10-19×5×107×1×sin900 

= 8×10-12 Newton 

Example 2:A proton is moving northwards with a velocity of 3×107 m/sec in a uniform magnetic 

field of 10 Tesla directed eastward. Find the magnitude and direction of the magnetic force on the 

proton. Charge on proton= 1.6×10-19 C 

Solution: Given v = 3×107 m/sec, B= 10Tesla, q = 1.6×10-19 C 

The magnetic force on proton F = qvB sinθ 

 = 1.6×10-19×3×107×10×sin 900 = 1.6×10-19×3×107×10×1 = 4.8×10-11 Newton 
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The magnetic field is directed eastward and the direction of motion of proton is northward i.e. the 

direction of flow of current is northward. By Fleming’s left-hand rule, the force on the proton will 

be directed vertically downwards. 

Self Assessment Question (SAQ) 1:An electron is moving vertically upward with a speed of 

2×108 m/sec. Find out the magnitude and direction of the force on the electron exerted by a 

horizontal magnetic field of 0.50 Wb/m2 directed towards west? Also calculate the acceleration of 

the electron. 

Self Assessment Question (SAQ) 2:An electron moving with velocity v⃗  along +x-axis enters a 

uniform magnetic field B⃗⃗  directed along + y-axis. What is the magnitude and direction of the force 

on the electron? 

Self Assessment Question (SAQ) 3:A 2 MeV proton is moving perpendicular to a uniform 

magnetic field of 2.5 Tesla. Find the force on the proton. The mass of proton = 1.65×10-27 Kg. 

Self Assessment Question (SAQ) 4: Choose the correct option- 

The force on a charged particle moving in a magnetic field is maximum when the angle between 

direction of motion and field is- 

(i) 450(ii) 1800(iii) zero                        (iv) 900 

Self Assessment Question (SAQ) 5: Choose the correct option- 

A moving electric charge produces- 

(i) electric field only (ii) magnetic field only     (iii) both electric and magnetic fields    (iv) neither 

of these two fields 

11.5 MAGNETIC FORCE BETWEEN TWO PARALLEL 

CURRENT CARRYING CONDUCTORS 

Let us consider two long, straight and parallel current carrying conductors PQ and RS separated 

by a distance r. Let i1 and i2 be the currents flowing in two conductors in the same direction 

respectively. Now, let us find expression for the force acting between the conductors. 

The magnitude of the magnetic field at a point P on conductor RS is – 

                                                                   B = 
μ0

4π

2i1

r
 

By Maxwell’s right hand screw rule, the direction of this field is perpendicular to the plane of the 

page directed downward. 
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      P                               R 

 

 

 

                                          i1 i2 

 

 

 

                                            Q                      r  

                                             

                                                              Figure 4 

 

Obviously, the conductor RS is situated in magnetic field B perpendicular to its length. It, 

therefore, experiences a magnetic force. Using formula, F = iBl sinθ, the magnitude of magnetic 

force acting on a length l of conductor RS is given as- 

F = i2 B l sinθ = i2
μ0

4π

2i1

r
l sin 900 

Or                                                        F = 
μ0

4π

2i1i2l

r
                                                        .....(10) 

The force per unit length of conductor RS is given by- 

                                                            F/l = 
μ0

4π

2i1i2

r
                                                      .....(11) 

By Fleming’s left hand rule, the direction of this force is towards conductor PQ if i2 is flowing in 

the same direction as i1(Figure 4). Similarly, the force per unit length of conductor PQ due to 

current i2 in conductor RS will be same i.e. F/l = 
μ0

4π

2i1i2

r
 and is directed towards conductor RS . 

Thus, if the currents are in the same direction, then the nature of the force is attractive. The two 

conductors will have a tendency to move towards each other. If the two ends of the conductors are 

fixed, then the shape of two conductors will be concave. 
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If the direction of currents in two conductors is opposite, the force on two conductors will be 

outwards i.e. repulsive in nature (Figure 5) and now the conductors will repel to each other. If the 

ends of two conductors are fixed, then the shape of these conductors will be convex.  

                                               P                                              R 

 

 

 

                                          i1 i2 

 

 

 

                                             Q S 

 

 r 

                                                               Figure 5 

 

 

11.5.1 Definition of Ampere:  

The force of attraction or repulsion between two long, parallel and straight conductors in vacuum 

has been used to define ampere. 

                                                              F/l = 
μ0

4π

2i1i2

r
 

Let i1= i2 = 1 Amp. and r = 1 meter,  then  

                                                                F/l = 
μ0

4π

2i2

r
 = 1 ×10-7× 

2×(1)2

1
 

= 2 × 10-7 N/meter  

Thus, 1 ampere is the current which when flowing in each of two infinitely long parallel conductors 

1 meter apart in vacuum produces between them a force of exactly 2 × 10-7 N/meter of length. 
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Example 3: Estimate the force per unit length on a long straight wire carrying a current of 4 Amp 

due to a parallel wire carrying a current of 6 amp. If the direction of currents in two wires is same, 

then find the nature of force acting between them. The distance between the wires is 3 cm. 

Solution: Given i1 = 4 amp, i2 = 6 amp, r = 3 cm = 3 × 10-2 m 

Using formula F/l = 
μ0

4π

2i1i2

r
, we get- 

Force per unit length F/l =  1× 10-7×
2×4×6

3×10−2 

= 1.6×10-4 N/m-1 

Since the direction of currents in two wires is same, therefore the force acting between them is 

attractive in nature. 

Example 4:Two parallel wires, 1 m apart, carry currents of 1 amp and 3 amp in opposite directions. 

Calculate the magnitude and nature of force acting between them on a length of 2 m. 

Solution: Given r = 1 m,  i1 = 1 amp, i2 = 3 amp, l = 2 m 

Using F = 
μ0

4π

2i1i2l

r
, we get- 

F = 1× 10-7×
2×1×3

1
×2  

= 12×10-7 N/m  (repulsive i.e. away from each other) 

Self Assessment Question (SAQ) 6:The parallel wires each of length 200 cm and carrying a 

current of 0.4 amp in the same direction, are kept 40 cm apart in air. Find the force per unit length 

on each wire. 

Self Assessment Question (SAQ) 7:“Two parallel wires carrying current in the same direction 

repel each other”. Is this statement true or false? Give reason. 

11.6 AMPERE’S CIRCUITAL LAW 

According to Ampere’s circuital law, “The line integral of magnetic induction around a closed 

path is equal to μ0 times the net current enclosed by the path” i.e. 

∮ B⃗⃗ . dl⃗⃗  ⃗ = μ0 i                                                      .....(12) 

where i is the current enclosed by the path. 

Let us suppose that the magnetic field induction B arises due to a long wire carrying a current of i 

ampere. Now let us consider a circular path of radius r centred on this current carrying wire. 
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                                                                      Figure 6 

 

The magnitude of magnetic induction at any point P on the circular path is given by- 

                                                              B = 
μ0

4π

2i

r
                                                              .....(13) 

For all points on the circular path, the magnetic induction B⃗⃗  has the same magnitude given by 

equation (13) and it is parallel to the tangent to the circular path. Therefore, the line integral of the 

magnetic induction B around the circular pathcentred on the current carrying wire is given by- 

∮ B⃗⃗  dl = ∮ B⃗⃗ dl = ∮
μ0

4π

2i

r
rdθ 

                                                                = 
μ0

4π
2i ∮ δθ 

= 
μ0

4π
2i (2π) = μ0 i 

Thus we have-                                         ∮ B⃗⃗ . dl⃗⃗  ⃗ = μ0 i 

The sign of integral depends upon the direction in which the current is enriched. The sign is 

positive if the path followed for line integral is parallel to B and negative if the path followed is 

anti-parallel. 
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If the path enclosing the current is not circular but is irregular of any shape, then we divide the 

path into large number of small elements. Ampere’s law holds for closed path of any shape.  

11.6.1 Differential form of Ampere’s Law 

Ampere’s circuital law can be expressed in terms of magnetic field intensity (H⃗⃗ ). We know that- 

B⃗⃗  = μ0H⃗⃗  

Therefore from equation (12) we have- 

∮μ0H⃗⃗ . dl⃗⃗  ⃗ = μ0 i       

Or                                                     ∮ H⃗⃗ . dl⃗⃗  ⃗ =  i                                                         .....(14) 

But current     i = ∬J . dS⃗⃗⃗⃗  .....(15) 

Where J  is the current density and dS⃗⃗⃗⃗  is small element of area at the point of current density J  inside 

the closed path. 

Therefore, equation takes the form as- 

∮ H⃗⃗ . dl⃗⃗  ⃗ = ∬J . dS⃗⃗⃗⃗   .....(16) 

Using Stoke’s theorem, we have- 

∮ H⃗⃗ . dl⃗⃗  ⃗ = ∬curl H.⃗⃗  ⃗ dS⃗⃗⃗⃗  

Therefore, equation (16) becomes- 

∬curl H.⃗⃗  ⃗ dS⃗⃗⃗⃗  =∬J . dS⃗⃗⃗⃗  

i.e.                                                   ∬(curlH⃗⃗  - J ).dS⃗⃗⃗⃗  = 0                                             .....(17) 

As the surface is arbitrary, therefore integrand must vanish i.e. 

                                                    curl H⃗⃗  - J  = 0 

or                                                 curl H⃗⃗ =J                                                                    .....(18) 

Multiplying both sides by μ0 in equation (18), we get- 

μ0curl H⃗⃗ =μ0J  

or                                              curl μ0H⃗⃗  = μ0J  
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or                                              curl B⃗⃗  = μ0J                                                                    .....(19) 

Equation (18) or (19) is the differential form of Ampere’s circuital law. The above relation (19) 

indicates that the magnetic induction at a point is derived from the given value of J  at that point by 

integration. However this equation is not enough to derive B⃗⃗  at a point because for the same value 

of J  at the point another term may be added to B⃗⃗ . We, therefore, need another condition. 

11.6.2 Applications of Ampere’s Law 

Magnetic Field due to Long Straight Current Carrying Wire 

Let us consider a long straight wire carrying a current i. From the symmetry of wire, it is clear that 

the magnetic lines of force are concentric circles centred on the wire 

 

 

 

                                                            i 

dl⃗⃗  ⃗ 

 P 

 

r 

 

                                                           Figure 7 

Let P be a point at distance r from the wire at which magnetic field is to be required. Let us consider 

a circular path of radius r passing through P. By symmetry, the value of magnetic field is same at 

each point on the circular path. B⃗⃗  and dl⃗⃗  ⃗ are always directed along the same direction. Therefore, 

the line integral of B⃗⃗  along the boundary of circular path is- 

∮ B⃗⃗ . dl⃗⃗  ⃗ = ∫Bdl cos 00 = B ∫dl = B (2πr) 

Using Ampere’s circuital law- 

∮ B⃗⃗ . dl⃗⃗  ⃗ = μ0 i 
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Putting for  ∮ B⃗⃗ . dl⃗⃗  ⃗, we get- 

                                                       B (2πr) = μ0 i 

Or                                                     B = 
μ0

2π

i

r
 

Or                                                    B = 
μ0

4π

2i

r
 

This is the required magnetic field. 

11.7 MAXWELL CORRECTION IN AMPERE’S LAW 

Let us examine the validity of this equation for time varying fields. Since divergence of curl of 

any vector quantity is always zero, therefore div curl H⃗⃗  = 0. Then equation (18) curl H⃗⃗ =J    implies- 

                                                                     div J  = 0                                      .....(20) 

We knowthe equation of continuity- 

                                                                   div J  + 
∂ρ

∂t
 = 0                                .....(21) 

or                                                               div J  = - 
∂ρ

∂t
                                    .....(22) 

Here ρ is the charge density. 

From equations (20) and (22), we get- 

∂ρ

∂t
 = 0 

or                                                                   ρ = constant 

i.e. charge density is static. Thus we conclude that Ampere’s circuital law ∮ H⃗⃗ . dl⃗⃗  ⃗ =  i is valid only 

for steady state conditions and is insufficient for the cases of time varying fields. Hence to include 

time varying fields, Ampere’s law must be modified. Maxwell investigated mathematically how 

one could alter Ampere’s equation ∮ H⃗⃗ . dl⃗⃗  ⃗ =  i so as to make it consistent with the equation of 

continuity. 

Maxwell assumed that the definition of current density J  is incompleteand hence something say 

Jd⃗⃗⃗  must be added to it.Thus, the total current density, which must be solenoidal, becomesequal to J  

+ Jd⃗⃗⃗  . Using this assumption, equation (18) curl H⃗⃗ =J becomes- 

                                                                curl H⃗⃗ =J   + Jd⃗⃗⃗                                       .....(23) 
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Now let us identify Jd⃗⃗⃗   . Let us take divergence of equation (23) as- 

                                                div curl H⃗⃗ = div (J   +  Jd⃗⃗⃗    )                                      .....(24) 

But we know that the divergence of curl of any vector quantity is always zeroi.e. div curl H⃗⃗   = 0, 

therefore, the above equation takes the form as- 

                                                     div (J   +  Jd⃗⃗⃗    )  = 0   

or                                                  div J  + div  Jd⃗⃗⃗   = 0 

or                                               div  Jd⃗⃗⃗   = - div J                                                         .....(25) 

We know the  equation of continuity- 

                                                                   div J  + 
∂ρ

∂t
 = 0                                 

or                                                               div J  = - 
∂ρ

∂t
 

Putting for div J  in equation (25), we get- 

                                                                   div  Jd⃗⃗⃗   =  
∂ρ

∂t
                                                  .....(26) 

But by differential form of Gauss theorem we have- 

                                                                    div D⃗⃗  = ρ                                                     .....(27) 

where D⃗⃗  is electric displacement vector. 

Using equation (27) in equation (26), we get- 

                                                                  div  Jd⃗⃗⃗   =  
∂(div D⃗⃗ )

∂t
 

= div (
∂D⃗⃗ 

∂t
) 

or                                                                     Jd⃗⃗⃗      =    (
∂D⃗⃗ 

∂t
)                                          .....(28)   

Therefore, the modified form of Ampere’s law becomes- 

                                                                     curl H⃗⃗ = J   +  Jd⃗⃗⃗    = J   + (
∂D⃗⃗ 

∂t
)           .....(29) 

The additional term which Maxwell added in Ampere’s circuital law to include time varying fields 

is called ‘displacement current’ because it arises when electric displacement vector D⃗⃗  changes with 
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time. By the addition of this term Maxwell assumed that this term i.e.  displacement current is as 

effective as the conduction current J  for producing magnetic field. 

Characteristics of displacement current 

(a) Displacement current is a current only in the sense that it produces a magnetic field. It has 

none of the other properties of current since it is not related with the motion of a charge.  

(b) Displacement current has a finite value even in a perfect vacuum where there is no charge 

at all. 

(c) The magnitude of displacement current is equal to the rate of change of electric 

displacement vector i.e. Jd⃗⃗⃗      =    (
∂D⃗⃗ 

∂t
) 

(d) Displacement current in a good conductor is negligible as compared to the conduction 

current at any frequency less than optical frequencies. 

Example 5:A 50 V voltage generator at 20 MHz is connected to the plates of air dielectric parallel 

plate capacitor with plate area 2.8 cm2 and distance of separation is 0.02 cm. Find the maximum 

value of displacement current density and displacement current. 

Solution: Vo = 50 Volt, f = 20 MHz = 20×106 Hz, S = 2.8 cm2 = 2.8×10-4 m2 , d = 0.02 cm = 2×10-

4 m 

V = Vo sin ωt = Vo sin 2πft = 50 sin ( 2π×20×106 t ) 

Displacement current density Jd⃗⃗⃗      =    (
∂D⃗⃗ 

∂t
) 

                                                        = 
∂(ε0E⃗⃗ )

∂t
 = 

∂

∂t
(ε0

V

d
) 

= 
ε0

d

∂V

∂t
 

 = 
ε0

d

∂{50 sin ( 2π×20×106 t )}

∂t
 

= 
ε0

d
{50cos (2π × 20 × 106 t)}× 2π × 20 × 106 

= 
8.85×10−12

2×10−4 {50 cos(2π × 20 × 106 t)}× 2π × 20 × 106 

 = 277.8 cos ( 4π×107 t) Amp/m2 

Displacement current id = Jd×S= 277.8 cos ( 4π×107 t)×2.8×10-4 

=0.0778×2.8 cos( 4π×107 t) Amp  

Self Assessment Question (SAQ) 8:Choose the correct option- 
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The concept of displacement current was proposed by- 

(i) Faraday                       (ii) Gauss                           (iii) Ampere                   (iv) Maxwell 

Self Assessment Question (SAQ) 9:Choose the correct option- 

Maxwell’s modified Ampere’s law is valid- 

(i) only when electric field does not change    (ii) only when electric field varies with time 

(iii) in both of the above situations        (iv) none of these 

Self Assessment Question (SAQ) 10:Choose the correct option- 

The displacement current arises due to- 

(i) negative charges only   (ii) positive charges only    (iii) both negative and positive charges  (iv) 

time varying electric field 

Self Assessment Question (SAQ) 11:Choose the correct option- 

Displacement current goes through the gap between the plates of a capacitor when the charge of a 

capacitor is- 

(i) zero             (ii) decreasing            (iii) increasing         (iv) remaining constant 

Self Assessment Question (SAQ) 12:Choose the correct option- 

Displacement current is a current only in the sense that- 

(i)  it produces a magnetic field (ii) it produces electric field      (iii) it produces both fields   (iv) 

none of these 

11.8 SUMMARY 

In this unit, you have studied about Lorentz force and Biot-Savart law. You have studied that a 

current carrying conductor produces magnetic field around it. You have also studied about the 

magnetic force between two current carrying conductors and established its expression and 

deduced the definition of ampere. You have seen that the conductors attract each other if currents 

in them are in the same direction and repel each other if currents are in opposite directions. In this 

unit, you have studied and analyzed Ampere’s circuital law and Maxwell’s correction in it. 

According to Ampere’s circuital law, the line integral of magnetic induction around a closed path 

is equal to μ0 times the net current enclosed by the path. You have also seen that Ampere’s law 

holds for closed path of any shape. You have known about displacement current and its peculiar 

characteristics. To present the clear understanding and to make the concepts of the unit clear, many 
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solved examples are given in the unit. To check your progress, self assessment questions (SAQs) 

are given place to place. 

11.9 GLOSSARY 

Magnetic field- the region surrounding a magnetic 

Magnetic induction- a vector which specifies the magnitude and direction of magnetic field at    a 

point 

Simultaneous – concurrent, coincident 

Electric force- the force experienced by a charge placed at a point in an electric field  

Magnetic force- the force experienced by a charge in a magnetic field 

Infinitesimal- minute, tiny 

Vacuum- emptiness, vacuity 

Characteristics- features, qualities 

11.10 TERMINAL QUESTIONS 

1. Explain the magnitude and direction of the force acting on a charge moving in a magnetic field. 

When is the force maximum and when minimum?   

2. Explain Biot Savart law. 

3. Establish the expression for magnetic force acting between two long, parallel and straight 

current carrying conductors. 

4. Both  the electric and magnetic field can deflect an electron. What is the difference between 

these deflections? 

5.  Explain Ampere’s circuital law. Give its significance. Derive its differential form. 

6.  Explain Maxwell’s correction in Ampere’s circuital law. 

7. Explain the concept of Maxwell’s displacement current and show how it led to the modification 

of the Ampere’s law. 

8. Obtain the generalized form of Ampere’s circuital law. Comment on the concept of the 

displacement. 

9.  Throw the light on characteristics of displacement current. 
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10. Using Ampere’s circuital law, establish the expression of magnetic field due to a long current 

carrying wire. 

11. Give a comparison between Coulomb’s law and Biot-Savart law.  

11.11 ANSWERS 

Self Assessment Questions (SAQs): 

1. Given v = 2×108 m/sec, B = 0.50 Wb/m2 , q = e = 1.6×10-19 C, m= 9×10-31 Kg 

Using F = qvB sinθ, we get- 

F = 1.6×10-19×2×108×0.50×sin 900 = 1.6×10-11 N  (towards north, Using Fleming’s left    hand 

rule) 

Using  F = ma 

Or a = F/m = 1.6×10-11/ 9×10-31 = 1.8 ×1019 m/sec2 

2.  Using F = qvB sinθ = evB sin 900 = evB 

    Using Fleming’s left hand rule, the direction of the force is along –z- axis. 

3. Given K = 2MeV = 2×106×1.6×10-19= 3.2×10-13 J, B = 2.5 T, m = 1.65×10-27 Kg 

    K = 
1

2
 mv2   or v = √

2K

m
 = √

2×3.2×10−13

1.65×10−27  = 6.23×104 m/sec2 

    Using F = qvB sinθ = 1.6×10-19×6.23×104×2.5×sin 900 = 7.88×10-12 N 

4. (iv) 900 

5. (iii) both electric and magnetic fields     

6. Given l = 200cm = 2 m, i1 = i2 = 0.4 amp, r = 40 cm = 0.4 m  

    F/l = 
μ0

4π

2i1i2

r
 = 1× 10-7×

2×0.4×0.4

0.4
 = 8×10-8 N/m (attractive) 

7. The statement is false because one current carrying wire will experience force of attraction due 

to the magnetic field produced by the other current carrying wire. 

8.  (iv) Maxwell 

9. (iii) in both of the above situations 

10. (iv) time varying electric field 
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11. (ii) decreasing            (iii) increasing 

12. (i)  it produces a magnetic field 

Terminal Questions: 

4. The force exerted by a magnetic field on a moving charge is perpendicular to the motion of the 

charge; hence the work done by this force on the charge is zero and therefore the kinetic 

energy of the charge does not change. In an electric field the deflection is in the direction of 

the field, hence the kinetic energy changes. 
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12.1 INTRODUCTION 

Devices in which a controlled flow of electrons can be obtained are the basic building blocks of 

all the electronic circuits. Before the discovery of transistor in 1948, such devices were mostly 

vacuum tubes (also called vacuum valves) like the vacuum diode which has two electrodes, viz., 

anode (often called plate) and cathode; triode which has three electrodes – cathode, plate and grid; 

tetrode and pentode (respectively with 4 and 5 electrodes). In a vacuum tube, the electrons are 

supplied by a heated cathode and the controlled flow of these electrons in vacuum is obtained by 

varying the voltage between its different electrodes. Vacuum is required in the inter-electrode 

space; otherwise the moving electrons may lose their energy on collision with the air molecules in 

their path. In these devices the electrons can flow only from the cathode to the anode (i.e., only in 

one direction). Therefore, such devices are generally referred to as valves. These vacuum tube 

devices are bulky, consume high power, operate generally at high voltages (~100 V) and have 

limited life and low reliability. The seed of the development of modern solid-state semiconductor 

electronics goes back to 1930’s when it was realized that some solid-state semiconductors and 

their junctions offer the possibility of controlling the number and the direction of flow of charge 

carriers through them. Simple excitations like light, heat or small applied voltage can change the 

number of mobile charges in a semiconductor. Note that the supply and flow of charge carriers in 

the semiconductor devices are within the solid itself, while in the earlier vacuum tubes/valves, the 

mobile electrons were obtained from a heated cathode and they were made to flow in an evacuated 

space or vacuum. No external heating or large evacuated space is required by the semiconductor 

devices.  

 

12.2 OBJECTIVES 

After studying this unit, you should be able to- 

 Get definition of  semiconductor  

 Understand different types of semiconductor 

 Know various energy bands and charge carriers in semiconductor  

 Understand working, characteristic and function of p-n junction diode 

 

12.3. CLASSIFICATION OF METALS, CONDUCTORS AND 

SEMICONDUCTORS 

On the basis of the relative values of electrical conductivity (σ) or resistivity (ρ = 1/σ), the solids 

are broadly classified as: (i) Metals: They possess very low resistivity (or high conductivity). ρ ~ 

10–2 – 10–8 Ω m and σ ~ 102 – 108 Ω-1 m–1 (ii) Semiconductors: They have resistivity or 

conductivity intermediate to metals and insulators. ρ ~ 10–5 – 106 Ω m and σ ~ 105 – 10–6 Ω-1 m–1 

(iii) Insulators: They have high resistivity (or low conductivity). ρ ~ 1011 – 1019 Ω m and σ ~ 10–
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11 – 10–19 Ω-1 m–1. The values of ρ and σ given above are indicative of magnitude and could well 

go outside the ranges as well. Our interest in this chapter is in the study of semiconductors, which 

could be: (i) Elemental semiconductors: Si and Ge (ii) Compound semiconductors: Examples are: 

(a) Inorganic: CdS, GaAs, CdSe, InP, etc. (b) Organic: anthracene, doped pthalocyanines, etc. In 

this chapter, we will restrict ourselves to the study of inorganic semiconductors, particularly 

elemental semiconductors Si and Ge. The general concepts introduced here for discussing the 

elemental semiconductors, by-and-large, apply to most of the compound semiconductors as well.  

12.4  WHAT ARE SEMICONDUCTORS? 

Semiconductors are a group of materials having conductivities between those of metals 

and insulators. Two general classifications of semiconductors are the elemental 

semiconductor materials, found in group IV of the periodic table, and the compound 

semiconductor materials, most of which are formed from special combinations of group 

III and group V elements.  

12.5  TYPES OF SEMICONDUCTORS 

On the basis of the absence or presence of impurity atoms the semiconducting materials may be 

classified as intrinsic or extrinsic semiconductors respectively. 

12.5.1    Intrinsic Semiconductors 

To understand why Si, Ge, and GaAs are the semiconductors of choice for the electronics 

industry requires some understanding of the atomic structure of each and how the atoms 

are bound together to form a crystalline structure. The fundamental components of an 

atom are the electron, proton, and neutron. In the lattice structure, neutrons and protons 

form the nucleus and electrons appear in fixed orbits around the nucleus.  

12.5.2   Extrinsic Semiconductors 
 

The conductivity of an intrinsic semiconductor depends on its temperature, but at room 

temperature its conductivity is very low. As such, no important electronic devices can be 

developed using these semiconductors. Hence there is a necessity of improving their conductivity. 

This can be done by making use of impurities. 

 

When a small amount, say, a few parts per million (ppm), of a suitable impurity is added to the 

pure semiconductor, the conductivity of the semiconductor is increased manifold. Such materials 

are known as extrinsic semiconductors or impurity semiconductors. The deliberate addition of a 

desirable impurity is called doping and the impurity atoms are called dopants. Such a material is 

also called a doped semiconductor. There are two extrinsic materials of immeasurable importance 

to semiconductor device fabrication: n -type and p -type materials. 
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12.5.3 Types of Extrinsic Semiconductors 

 

(a) n - type semiconductor 

 
An n -type material is created by introducing impurity elements that have five valence electrons 

(pentavalent), such as antimony, arsenic, and phosphorus. Each is a member of a subset group of 

elements in the Periodic Table of Elements referred to as Group V because each has five valence 

electrons. 

Thus, the pentavalent dopant is donating one extra electron for conduction and hence is known as 

donor impurity. Since the inserted impurity atom has donated a relatively “free” electron to the 

structure: Diffused impurities with five valence electrons are called donor atoms. It is important to 

realize that even though a large number of free carriers have been established in the n -type 

material, it is still electrically neutral since ideally the number of positively charged protons in the 

nuclei is still equal to the number of free and orbiting negatively charged electrons in the structure. 

In a doped semiconductor the total number of conduction electrons 𝑛𝑒 is due to the electrons 

contributed by donors and those generated intrinsically, while the total number of holes 𝑛ℎ is only 

due to the holes from the intrinsic source. But the rate of recombination of holes would increase 

due to the increase in the number of electrons. As a result, the number of holes would get reduced 

further. Thus, with proper level of doping the number of conduction electrons can be made much 

larger than the number of holes. These semiconductors are, therefore, known as n-type 

semiconductors. For n-type semiconductors, we have, 𝑛𝑒 >>𝑛ℎ. 

 

(b) p - type Semiconductor 

The p -type material is formed by doping a pure germanium or silicon crystal with impurity 

atoms having three valence electrons. The elements most frequently used for this purpose are 

boron, gallium, and indium. Each is a member of a subset group of elements in the Periodic 

Table of Elements referred to as Group III because each has three valence electrons. 

Note that there is now an insufficient number of electrons to complete the covalent bonds of the 

newly formed lattice. The resulting vacancy is called a hole and is represented by a small circle or 

a plus sign, indicating the absence of a negative charge. Since the resulting vacancy will readily 

accept a free electron: The diffused impurities with three valence electrons are called acceptor 

atoms. The resulting p -type material is electrically neutral, for the same reasons described for the 

n -type material. 

 

It is obvious that one acceptor atom gives one hole. These holes are in addition to the intrinsically 

generated holes while the source of conduction electrons is only intrinsic generation. For p-type 
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semiconductors, the recombination process will reduce the number (𝑛𝑖)of intrinsically generated 

electrons to 𝑛𝑒. We have, for p-type semiconductors 𝑛ℎ  >> 𝑛𝑒. 

 

For p-type semiconductor, the acceptor energy level 𝐸𝐴 is slightly above the top 𝐸𝑉  of the valence 

band as shown in Figure 8. With very small supply of energy an electron from the valence band 

can jump to the level 𝐸𝐴 and ionize the acceptor negatively. (Alternately, we can also say that with 

very small supply of energy the hole from level 𝐸𝐴 sinks down into the valence band. Electrons 

rise up and holes fall down when they gain external energy.) At room temperature, most of the 

acceptor atoms get ionized leaving holes in the valence band. Thus at room temperature the density 

of holes in the valence band is predominantly due to impurity in the extrinsic semiconductor. 

 

12.6 p-n JUNCTIONS 

When a p-type semiconductor is suitably joined to n-type semiconductor, the contact surface is 

called p-n junction. Most semiconductor devices contain one or more p-n junctions. The p-n 

junction is of great importance because it is in effect, the control element for semiconductor 

devices. A thorough knowledge of the formation and properties of p-n junction can enable the 

reader to understand the semiconductor devices. A clear understanding of the junction behavior is 

important to analyse the working of other semiconductor devices. We will now try to understand 

how a junction is formed and how the junction behaves under the influence of external applied 

voltage. 

 

12.7 p-n JUNCTION FABRICATION AND PROPERTIES 

In actual practice, the characteristic properties of p-n junction will not be apparent if a p-type block 

is just brought in contact with n-type block. In fact, p-n junction is fabricated by special techniques. 

One common method of making p-n junction is called alloying. In this method, a small block of 

indium (trivalent impurity) is placed on an n-type germanium slab as shown in Figure (15 i). The 

system is then heated to a temperature of about 500ºC. The indium and some of the germanium 

melt to form a small puddle of molten germanium-indium mixture as shown in Figure (15 ii). The 

temperature is then lowered and puddle begins to solidify. Under proper conditions, the atoms of 

indium impurity will be suitably adjusted in the germanium slab to form a single crystal. The 

addition of indium overcomes the excess of electrons in the n-type germanium to such an extent 

that it creates a p-type region. As the process goes on, the remaining molten mixture becomes 

increasingly rich in indium. When all germanium has been redeposited, the remaining material 

appears as indium button which is frozen on to the outer surface of the crystallized portion as 

shown in Figure. This button serves as a suitable base for soldering on leads. 
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Properties of p-n Junction 

At the instant of p-n-junction formation, the free electrons near the junction in the n region begin 

to diffuse across the junction into the p region where they combine with holes near the junction. 

The result is that n region loses free electrons as they diffuse into the junction. This creates a layer 

of positive charges (pentavalent ions) near the junction. As the electrons move across the junction, 

the p region loses holes as the electrons and holes combine. The result is that there is a layer of 

negative charges (trivalent ions) near the junction. 

 

                                                        

                                                           

                                                                          Figure 12.1: Fabrication of p-n junction. 
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These two layers of positive and negative charges form the depletion region (or depletion layer). 

The term depletion is due to the fact that near the junction, the region is depleted (i.e. emptied) of 

charge carries (free electrons and holes) due to diffusion across the junction.  

It may be noted that depletion layer is formed very quickly and is very thin compared to the n 

region and the p region. For clarity, the width of the depletion layer is shown exaggerated. 

Once p-n junction is formed and depletion layer created, the diffusion of free electrons stops. In 

other words, the depletion region acts as a barrier to the further movement of free electrons across 

the junction. The positive and negative charges set up an electric field. 

The electric field is a barrier to the free electrons in the n-region. There exists a potential difference 

across the depletion layer and is called barrier potential (𝑉0). The barrier potential of a p-n 

junction depends upon several factors including the type of semiconductor material, the amount of 

doping and temperature. The typical barrier potential is approximately: For silicon, 𝑉0 = 0.7 V ; 

For germanium, 𝑉0 = 0.3 V. 

                             

                        

       Figure 12.2:  p-n junction.                                  Figure 12.3: Potential distribution curve. 

12.8 p-n JUNCTION DIODE 

Biasing of p-n junction diode: In electronics, the term bias refers to the use of dc voltage to 

establish certain operating conditions for an electronic device. In relation to a p-n junction, there 

are following two bias conditions 



INTRODUCTORY PHYSICS  PHY(N)GE 
 

285 
 

1. Forward Biasing 

2. Reverse Biasing 

 

Figure 12.4: (a) Semiconductor diode (b) Symbol for p-n junction diode. 

1. Forward Biasing 

When external d.c. voltage applied to the junction is in such a direction that it cancels the potential 

barrier, thus permitting current flow, it is called forward biasing. 

To apply forward bias, connect positive terminal of the battery to p-type and negative terminal to 

n-type as shown in Figure. The applied forward potential establishes an electric field which acts 

against the field due to potential barrier. Therefore, the resultant field is weakened and the barrier 

height is reduced at the junction as shown in Figure. As potential barrier voltage is very small (0.1 

to 0.3 V), therefore, a small forward voltage is sufficient to completely eliminate the barrier. 

                                                

Figure 12.5: Forward Biasing of p-n junction diode. 
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Once the potential barrier is eliminated by the forward voltage, junction resistance becomes almost 

zero and a low resistance path is established for the entire circuit. Therefore, current flows in the 

circuit. This is called forward current.  
2. Reverse Biasing 

When the external d.c. voltage applied to the junction is in such a direction that potential barrier is 

increased, it is called reverse biasing. 

                                                    

Figure 12.6: Reverse Biasing of p-n junction diode. 

 

To apply reverse bias, connect negative terminal of the battery to p-type and positive terminal to 

n-type as shown in Figure. It is clear that applied reverse voltage establishes an electric field which 

acts in the same direction as the field due to potential barrier. Therefore, the resultant field at the 

junction is strengthened and the barrier height is increased as shown in Figure. The increased 

potential barrier prevents the flow of charge carriers across the junction.  

 

12.9. Zener Diode 

It is a special purpose semiconductor diode, named after its inventor C. Zener. It is designed to 

operate under reverse bias in the breakdown region and used as a voltage regulator. The symbol 

for Zener diode is shown in Figure 27. Zener diode is fabricated by heavily doping both p-, and n- 

sides of the junction. Due to this, depletion region formed is very thin (<10−6m) and the electric 

field of the junction is extremely high (~ 5 × 106 V/m) even for a small reverse bias voltage of 

about 5V.  
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Figure 12.7:  Circuit symbol of Zener diode. 

The breakdown or zener voltage depends upon the amount of doping. If the diode is heavily doped, 

depletion layer will be thin and consequently the breakdown of the junction will occur at a lower 

reverse voltage. On the other hand, a lightly doped diode has a higher breakdown voltage. When 

an ordinary crystal diode is properly doped so that it has a sharp breakdown voltage, it is called a 

zener diode. A typical Zener diode characteristic is shown in Figure. The maximum reverse 

current, 𝐼𝑍(max) which the Zener diode can withstand is dependent on the design and construction 

of the diode. A design guideline that the minimum Zener current, where the characteristic curve 

remains at 𝑉𝑧  (near the knee of the curve), is 0.1/𝐼𝑍(max).   

 

Figure 12. 8: Zener diode characteristics. 

 

        Figure 12.9: V ≥ 𝑽𝒁                                      Figure 12.10: Equivalent circuit of Zener for "ON" 

state. 
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Figure 12.11:1 𝑽𝒁 > V > 0.                           Figure 12.12: Equivalent circuit of Zener for "OFF" 

state. 

The power handling capacity of these diodes is better. The power dissipation of a zener diode 

equals the product of its voltage and current.  

 

𝑃𝑍 =  𝑉𝑍𝐼𝑍  

The amount of power which the zener diode can withstand (𝑉𝑍𝐼𝑍(max) ) is a limiting factor in power 

supply design. 

Equivalent Circuit of Zener Diode  

 

The analysis of circuits using zener diodes can be made quite easily by replacing the zener diode 

by its equivalent circuit.  
 

(i) “On” state. When reverse voltage across a zener diode is equal to or more than break 

down voltage 𝑉𝑍, the current increases very sharply. In this region, the curve is almost 

vertical. It means that voltage across zener diode is constant at 𝑉𝑍  even though the 

current through it changes. Therefore, in the breakdown region, an ideal zener diode 

can be represented by a battery of voltage 𝑉𝑍 as shown in Figure (i). Under such 

conditions, the zener diode is said to be in the “ON” state. 

 

(ii) “OFF” state. When the reverse voltage across the zener diode is less than 𝑉𝑍 but 

greater than 0 V, the zener diode is in the “OFF” state. Under such conditions, the 

zener diode can be represented by an open-circuit as shown in Fig.32. 

 

Zener Diode as Voltage Stabilizer 

A zener diode can be used as a voltage regulator to provide a constant voltage from a source whose 

voltage may vary over sufficient range. The circuit arrangement is shown in Figure (i). The zener 
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diode of zener voltage 𝑉𝑍 is reverse connected across the load 𝑅𝐿 across which constant output is 

desired. The series resistance R absorbs the output voltage fluctuations so as to maintain constant 

voltage across the load. It may be noted that the zener will maintain a constant voltage 𝑉𝑍 (=𝐸0) 

across the  

Load so long as the input voltage does not fall below 𝑉𝑍. When the circuit is properly designed, 

the load voltage 𝐸0 remains essentially constant (equal to 𝑉𝑍) even though the input voltage 𝐸𝑖 

and load resistance 𝑅𝐿 may vary over a wide range. 

Suppose the input voltage increases. Since the zener is in the breakdown region, the zener diode 

is equivalent to a battery 𝑉𝑍 as shown in Fig.34. It is clear that output voltage remains constant at 

𝑉𝑍(= 𝐸0). The excess voltage is dropped across the series resistance R.  

This will cause an increase in the value of total current I. The zener will conduct the increase of 

current in I while the load current remains constant. Hence, output voltage 𝐸0 remains constant 

irrespective of the changes in the input voltage 𝐸𝑖.  Now suppose that input voltage is constant but 

the load resistance 𝑅𝐿 decreases. This will cause an increase in load current. The extra current 

cannot come from the source because drop in R (and hence source current I) will not change as the 

zener is within its regulating range.  

 

 

 

Figure 12.13: Zener as a Voltage Regulator.        Figure 12.14: Equivalent circuit of zener as a 

voltage         regulator. 

The additional load current will come from a decrease in Zener  current 𝐼𝑍. Consequently, the 

output voltage stays at constant value. 

      Voltage drop across  R = 𝐸𝑖 − 𝐸0 

Current through R,   I = 𝐼𝑍  + 𝐼𝐿 

Applying Ohm’s law, we have, 
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𝑅 =  
𝐸𝑖 −  𝐸0

𝐼𝑍 +  𝐼𝐿
 

12.10 TUNNEL DIODE 

The tunnel diode was first introduced by Leo Esaki in 1958. Its characteristics, shown in Figure, 

are different from any diode discussed thus far in that it has a negative-resistance region. In this 

region, an increase in terminal voltage results in a reduction in diode current. 

The tunnel diode is fabricated by doping the semiconductor materials that will form the p-n 

junction at a level 100 to several thousand times that of a typical semiconductor diode. This 

results in a greatly reduced depletion region, of the order of magnitude of 10−6cm, or typically 

about 1/100 the width of this region for a typical semiconductor diode. It is this thin depletion 

region, through which many carriers can “tunnel” rather than attempt to surmount, at low 

forward-bias potentials that accounts for the peak in the curve of Figure. For comparison 

purposes, a typical semiconductor diode characteristic is superimposed on the tunnel-diode 

characteristic of Figure 35. 

This reduced depletion region results in carriers “punching through” at velocities that far exceed 

those available with conventional diodes. The tunnel diode can therefore be used in high-speed 

applications such as in computers, where switching times in the order of nanoseconds or 

picoseconds are desirable. We know that an increase in the doping level reduces the Zener 

potential. Note the effect of a very high doping level on this region in Figure. The semiconductor 

materials most frequently used in the manufacture of tunnel diodes are germanium and gallium 

arsenide. The ratio 𝐼𝑃 >  𝐼𝑉is very important for computer applications. For germanium, it is 

typically 10:1, and for gallium arsenide, it is closer to 20:1.  

 

                                                                      

 

 

 

 

 

 

Figure 12.15: Circuit symbol of Tunnel diode.          Figure 12.16: Tunnel diode characteristics. 
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The peak current 𝐼𝑃 of a tunnel diode can vary from a few microamperes to several hundred 

amperes. The peak voltage, however, is limited to about 600 mV. For this reason, a simple VOM 

with an internal dc battery potential of 1.5 V can severely damage a tunnel diode if applied 

improperly. 

12.11 PHOTO DIODE AND LED 

We have seen so far, how a semiconductor diode behaves under applied electrical inputs. Now we 

learn about semiconductor diodes in which carriers are generated by photons (photo-excitation). 

All these devices are called optoelectronic devices. We shall study the functioning of the following 

optoelectronic devices: 

(i) Photodiodes used for detecting optical signal (photo detectors). 

(ii) Light emitting diodes (LED) which convert electrical energy into light. 

(iii) Photovoltaic devices which convert optical radiation into electricity (solar cells). 

 

(i) Photo Diode 

 

A Photodiode is again a special purpose p-n junction diode fabricated with a transparent window 

to allow light to fall on the diode. It is operated under reverse bias. When the photodiode is 

illuminated with light (photons) with energy (hν) greater than the energy gap (Eg) of the 

semiconductor, then electron-hole pairs are generated due to the absorption of photons. The diode 

is fabricated such that the generation of e-h pairs takes place in or near the depletion region of the 

diode. Due to electric field of the junction, electrons and holes are separated before they recombine. 

The direction of the electric field is such that electrons reach n-side and holes reach p-side. 

Electrons are collected on n-side and holes are collected on p-side giving rise to an emf.  

 

Principle: When a rectifier diode is reverse biased, it has a very small reverse leakage current. 

The same is true for a photo-diode. The reverse current is produced by thermally generated electron 

hole pairs which are swept across the junction by the electric field created by the reverse voltage. 

In a rectifier diode, the reverse current increases with temperature due to an increase in the number 

of electron-hole pairs. A photo-diode differs from a rectifier diode in that when its p-n junction is 

exposed to light, the reverse current increases with the increase in light intensity and vice-versa. 

This is explained as follows. When light (photons) falls on the p-n junction, the energy is imparted 

by the photons to the atoms in the junction. This will create more free electrons (and more holes). 

These additional free electrons will increase the reverse current. As the intensity of light incident 

on the p-n junction increases, the reverse current also increases. In other words, as the incident 

light intensity increases, the resistance of the device (photo-diode) decreases.  

The circuit diagram used for the measurement of I-V characteristics of a photodiode is shown in 

Fig. 12.17(a) and a typical I-V characteristics in Fig. 12.17 (b). 
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Figure 12.17: (a) An illuminated photodiode under reverse bias, (b) I-V characteristics of a 

Photodiode for different illumination intensity I4 > I3 > I2 > I1. 

 

Photo-diode package. Figure 41 (i) shows a typical photo-diode package. It consists of a p-n 

junction mounted on an insulated substrate and sealed inside a metal case. A glass window is 

mounted on top of the case to allow light to enter and strike the p-n junction. The two leads 

extending from the case are labelled anode and cathode. The cathode is typically identified by a 

tab extending from the side of the case. Figure 18 (ii) shows the schematic symbol of a photo-

diode. The inward arrows represent the incoming light. 

 

                        

 
Figure 12.18: Photo diode. 
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Characteristics of Photo-diode There are two important characteristics of photodiode. 

 

(i) Reverse current -Illumination curve. Figure 12.19 shows the graph between reverse current 

(𝐼𝑅) and illumination (E) of a photo-diode. The reverse current is shown on the vertical axis and is 

measured in μA. The illumination is indicated on the horizontal axis and is measured in mW/𝑐𝑚2. 

Note that graph is a straight line passing through the origin. 𝐼𝑅 = m E where m = slope of the 

straight line. The quantity m is called the sensitivity of the photo-diode. 

 

(ii) Reverse voltage -Reverse current curve. Figure 12.20 shows the graph between reverse 

current (𝐼𝑅) and reverse voltage (VR) for various illumination levels. It is clear that for a given 

reverse-biased voltage, the reverse current 𝐼𝑅 increases as the illumination (E) on the p-n junction 

of photo-diode are increased. 

 
 

Figure 12.19: Reverse current 𝑰𝑹 versus                                 Figure 12.20: Reverse current 𝑰𝑹 versus             

 illumination E of photo diode.                                                       reverse voltage 𝑽𝑹 

 

Applications of Photo diode: Some common applications include alarm system and counter 

circuits.  

 (ii) Light Emitting Diode 

It is a heavily doped p-n junction which under forward bias emits spontaneous radiation. The diode 

is encapsulated with a transparent cover so that emitted light can come out. When the diode is 

forward biased, electrons are sent from n → p (where they are minority carriers) and holes are sent 

from p → n (where they are minority carriers). At the junction boundary the concentration of 

minority carriers increases compared to the equilibrium concentration (i.e., when there is no bias). 

Thus at the junction boundary on either side of the junction, excess minority carriers are there 

which recombine with majority carriers near the junction. On recombination, the energy is released 
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in the form of photons. Photons with energy equal to or slightly less than the band gap are emitted. 

When the forward current of the diode is small, the intensity of light emitted is small. As the 

forward current increases, intensity of light increases and reaches a maximum. Further increase in 

the forward current results in decrease of light intensity. LEDs are biased such that the light 

emitting efficiency is maximum.  The V-I characteristics of a LED is similar to that of a Si junction 

diode. But the threshold voltages are much higher and slightly different for each colour. The 

reverse breakdown voltages of LEDs are very low, typically around 5V. So care should be taken 

that high reverse voltages do not appear across them. LEDs that can emit red, yellow, orange, 

green and blue light are commercially available. The semiconductor used for fabrication of visible 

LEDs must at least have a band gap of 1.8 eV (spectral range of visible light is from about 0.4 μm 

to 0.7 μm, i.e., from about 3 eV to 1.8 eV). The compound semiconductor Gallium Arsenide – 

Phosphide (GaAs1–xPx) is used for making LEDs of different colours. GaAs0.6P0.4 (Eg ~ 1.9 eV) is 

used for red LED. GaAs (Eg ~ 1.4 eV) is used for making infrared LED. These LEDs find extensive 

use in remote controls, burglar alarm systems, optical communication, etc. Extensive research is 

being done for developing white LEDs which can replace incandescent lamps. LEDs have the 

following advantages over conventional incandescent low power lamps:  

(i) Low operational voltage and less power. 

(ii) Fast action and no warm-up time required. 

(iii) The bandwidth of emitted light is 100 Å to 500 Å or in other words it is nearly (but not exactly) 

monochromatic. 

(iv) Long life and ruggedness. 

(v) Fast on-off switching capability. 

 

The increasing use of digital displays in calculators, watches, and all forms of instrumentation has 

contributed to an extensive interest in structures that emit light when properly biased. The two 

types in common use to perform this function are the light-emitting diode (LED) and the liquid-

crystal display (LCD). The light-emitting diode is a diode that gives off visible or invisible 

(infrared) light when energized. In any forward-biased p – n junction there is, within the structure 

and primarily close to the junction, a recombination of holes and electrons. This recombination 

requires that the energy possessed by the unbound free electrons be transferred to another state. In 

all semiconductor p – n junctions some of this energy is given off in the form of heat and some in 

the form of photons. 

 

Advantages of LED 

The light-emitting diode (LED) is a solid-state light source. LEDs have replaced incandescent 

lamps in many applications because they have the following advantages: 

(i) Low voltage 

(ii) Longer life (more than 20 years) 

(iii) Fast on-off switching 
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12.12 SUMMARY  

Semiconductors are the basic materials used in the present solid state electronic devices like diode, 

transistor, ICs, etc. Metals have low resistivity (10–2 to 10–8 Ωm), insulators have very high resistivity 

(>108 Ωm–1), while semiconductors have intermediate values of resistivity. Semiconductors are elemental 

(Si, Ge) as well as compound (GaAs,CdS, etc.). Pure semiconductors are called ‘intrinsic semiconductors’. 

The presence of charge carriers (electrons and holes) is an ‘intrinsic’ property of the material and these are 

obtained as a result of thermal excitation. The number of electrons (ne) is equal to the number of holes (nh 

) in intrinsic conductors. Holes are essentially electron vacancies with an effective positive charge. 

In n-type semiconductors, ne >> nh while in p-type semiconductors nh >> ne. n-type semiconducting Si or 

Ge is obtained by doping with pentavalent atoms (donors) like As, Sb, P, etc., while p-type Si or Ge can be 

obtained by doping with trivalent atom (acceptors) like B, Al, In etc. For insulators Eg > 3 eV, for 

semiconductors Eg is 0.2 eV to 3 eV, while for metals Eg ≈ 0. Zener diode is one such special purpose 

diode. In reverse bias, after a certain voltage, the current suddenly increases (breakdown voltage) in a Zener 

diode. This property has been used to obtain voltage regulation. p-n junctions have also been used to obtain 

many photonic or optoelectronic devices where one of the participating entity is ‘photon’:(a) Photodiodes 

in which photon excitation results in a change of reverse saturation current which helps us to measure light 

intensity; (b) Solar cells which convert photon energy into electricity; (c) Light Emitting Diode and Diode 

Laser in which electron excitation by a bias voltage results in the generation of light. 

 

12.13 GLOSSARY 

LED: Light emitting diode 
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12.15 Terminal question  

 
1. The number of silicon atoms per m3 is 5 × 1028. This is doped simultaneously with 5 × 1022 

atoms per m3 of Arsenic and 5 × 1020 per m3 atoms of Indium. Calculate the number of 

electrons and holes. Given that ni = 1.5 × 1016 m–12. Is the material n-type or p-type? 

2. In an intrinsic semiconductor the energy gap Eg is 1.2eV. Its hole mobility is much smaller 

than electron mobility and independent of temperature. What is the ratio between conductivity 

at 600K and that at 300K? Assume that the temperature dependence of intrinsic carrier 

concentration ni is given by     

where n0 is a constant. 

3. A p-n photodiode is fabricated from a semiconductor with band gap of 2.8 eV. Can it detect a 

wavelength of 6000 nm? 

4. In a p-n junction diode, the current I can be expressed as I =  I0 exp{ (eV/2kBT) – 1} where I0 

is called the reverse saturation current, V is the voltage across the diode and is positive for 

forward bias and negative for reverse bias, and I is the current through the diode, kB is the 

Boltzmann constant (8.6×10–5 eV/K) and T is the absolute temperature. If for a given diode 

I0 = 5 × 10–12 A and T = 300 K, then 

        (a) What will be the forward current at a forward voltage of 0.6 V? 

        (b) What will be the increase in the current if the voltage the diode is increased to 0.7 V? 

         (c) What is the dynamic resistance? 

        (d) What will be the current if reverse bias voltage changes from 1 V to 2 V? 
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