
1 | P a g e

Title Introduction to Computing

Adaption and Typesetting Dr. Jeetendra Pande,

Assistant Professor- School

of CS & IT, Uttarakhand

Open University, Haldwani

Author

David Evans University of Virginia

ISBN:

Acknowledgement
This textbook has been adapted from “Introduction to Computing : Explorations

in Language, Logic, and Machines” by David Evans available at

http://computingbook.org under Creative Commons Attribution-Noncommercial-

Share Alike 3.0 United States License.

 Uttarakhand Open University, 2020

This work by Uttarakhand Open University is licensed under a Creative Commons

Attribution-Noncommercial-Share Alike 3.0 United States License. It is attributed

to the sources marked in the References, Article Sources and Contributors section.

Published By: Uttarakhand Open University

http://creativecommons.org/licenses/by-sa/4.0/

2 | P a g e

Contents

BLOCK I: Defining Procedures.. 9

Learning Objectives .. 11

Introduction ... 11

1.1 Processes, Procedures, and Computers .. 12

Check your progress I ... 15

1.2 Measuring Computing Power ... 15

1.2.1 Information ... 16

1.2.2 Representing Data ... 20

1.2.3 Growth of Computing Power ... 26

Check your progress II .. 27

1.3 Science, Engineering, and the Liberal Arts .. 28

1.4 Summary and Roadmap ... 32

Check your progress III .. 35

1.5 Answer the following .. 36

Answers to Check your progress III ... 37

Learning Objectives .. 39

Introduction ... 39

2.1 Surface Forms and Meanings .. 39

2.2 Language Construction ... 41

Check your progress I ... 43

2.3 Recursive Transition Networks... 43

Check your progress II .. 45

Check your progress III .. 48

2.4 Replacement Grammars ... 48

Check your progress IV .. 52

Check your progress V.. 57

2.5 Summary .. 57

2.6 Answer the Following ... 57

Answers to Check your progress V .. 59

Learning Objectives .. 61

Introduction ... 61

3.1 Problems with Natural Languages ... 62

3.2 Programming Languages ... 65

3.3 Scheme ... 68

3 | P a g e

3.4 Expressions .. 69

3.4.1 Primitives .. 69

3.4.2 Application Expressions ... 71

Check your progress I ... 73

3.5 Definitions.. 74

3.6 Procedures .. 75

3.6.1 Making Procedures ... 76

3.6.2 Substitution Model of Evaluation ... 77

Check your progress II .. 80

3.7 Decisions .. 80

3.8 Evaluation Rules ... 82

3.9 Summary .. 84

Check your progress III .. 84

3.10 Answer the Following ... 85

Answers to Check your progress III ... 86

Learning Objectives .. 87

Introduction ... 87

4.1 Solving Problems ... 87

4.2 Composing Procedures .. 89

4.2.1 Procedures as Inputs and Outputs ... 90

Check your progress I ... 91

4.3 Recursive Problem Solving.. 92

Check your progress II .. 95

4.4 Evaluating Recursive Applications .. 103

4.5 Developing Complex Programs ... 106

4.5.1 Printing ... 107

4.5.2 Tracing .. 108

4.6 Summary .. 114

Check your progress III .. 115

4.7 Answer the Following ... 115

Answers to Check your progress III ... 116

Learning Objectives .. 117

Introduction ... 117

5.1 Types .. 118

5.2 Pairs.. 120

5.2.1 Making Pairs ... 122

5.2.2 Triples to Octuples.. 123

4 | P a g e

5.3 Lists ... 124

5.4 List Procedures... 127

5.4.1 Procedures that Examine Lists ... 128

Check your progress I ... 129

5.4.2 Generic Accumulators .. 129

5.4.3 Procedures that Construct Lists .. 132

Check your progress II .. 134

Check your progress III .. 137

5.5 Lists of Lists ... 137

5.6 Data Abstraction .. 141

5.7 Summary .. 157

Check your progress IV .. 158

5.8 Answer the Following ... 158

Answers to Check your progress IV ... 161

BLOCK II ... 163

Learning Objectives .. 165

Introduction ... 165

6.1 History of Computing Machines .. 166

Check your progress I ... 170

6.2 Mechanizing Logic .. 170

6.2.1 Implementing Logic ... 171

6.2.2 Composing Operations ... 175

6.2.3 Arithmetic ... 177

Check your progress II .. 181

6.3 Modeling Computing ... 181

6.3.1 Turing Machines ... 185

6.4 Summary .. 189

Check your progress III .. 191

6.5 Answer the Following ... 191

Anwer to Check your progress III .. 191

Learning Objectives .. 193

Introduction ... 193

7.1 Empirical Measurements ... 193

7.2 Orders of Growth ... 199

7.2.1 Big O... 201

7.2.2 Omega ... 205

7.2.3 Theta ... 207

5 | P a g e

7.3 Analyzing Procedures .. 210

7.3.1 Input Size .. 210

7.3.2 Running Time ... 212

7.3.3 Worst Case Input.. 213

7.4 Growth Rates ... 214

7.4.1 No Growth: Constant Time .. 215

7.4.2 Linear Growth... 216

Check your progress I ... 223

7.4.3 Quadratic Growth ... 223

Check your progress II .. 226

7.4.4 Exponential Growth .. 226

7.4.5 Faster than Exponential Growth ... 230

7.4.6 Non-terminating Procedures ... 230

7.5 Summary .. 231

Check your progress III .. 232

7.6 Answer the Following ... 232

Answer to Check your progress III ... 234

Learning Objectives .. 235

Introduction ... 235

8.1 Sorting .. 235

8.1.1 Best-First Sort ... 236

Check your progress I ... 241

8.1.2 Insertion Sort .. 242

Check your progress II .. 243

8.1.3 Quicker Sorting... 243

8.1.4 Binary Trees ... 248

8.1.5 Quicksort .. 255

Check your progress III .. 256

8.2 Searching.. 257

8.2.1 Unstructured Search ... 257

8.2.2 Binary Search ... 258

8.2.3 Indexed Search ... 260

8.3 Summary .. 271

Check your progress IV .. 271

8.4 Answer the Following ... 272

Answers to Check your progress IV ... 273

BLOCK III: Improving Expressiveness.. 275

6 | P a g e

Learning Objectives .. 277

Introduction ... 277

9.1 Assignment .. 277

9.2 Impact of Mutation .. 280

9.2.1 Names, Places, Frames, and Environments 281

9.2.2 Evaluation Rules with State .. 282

Check your progress I ... 286

9.3 Mutable Pairs and Lists .. 287

Check your progress II .. 290

9.4 Imperative Programming ... 290

9.4.1 List Mutators... 290

Check your progress III .. 295

9.4.2 Imperative Control Structures .. 295

9.5 Summary .. 297

Check your progress IV .. 298

9.6 Answer the Following ... 298

Answers to Check your progress IV ... 299

Learning Objectives .. 301

Introduction ... 301

10.1 Packaging Procedures and State .. 302

10.1.1 Encapsulation.. 303

10.1.2 Messages ... 304

10.1.3 Object Terminology .. 308

Check your progress I ... 309

10.2 Inheritance.. 309

10.2.1 Implementing Subclasses .. 311

10.2.2 Overriding Methods ... 316

Check your progress II .. 319

10.3 Object-Oriented Programming... 319

10.4 Summary .. 324

Check your progress III .. 324

10.5 Answer the Following ... 324

Answers to Check your progress III ... 325

Learning Objectives .. 327

11.1 Python .. 328

11.1.1 Python Programs... 330

Check your progress I ... 335

7 | P a g e

11.1.2 Data Types ... 335

11.1.3 Applications and Invocations .. 340

11.1.4 Control Statements .. 341

11.2 Parser.. 343

11.3 Evaluator .. 347

11.3.1 Primitives ... 347

11.3.2 If Expressions... 350

11.3.3 Definitions and Names ... 351

11.3.4 Procedures ... 353

11.3.5 Application .. 354

11.3.6 Finishing the Interpreter .. 356

11.4 Lazy Evaluation ... 357

11.4.1 Lazy Interpreter ... 357

11.4.2 Lazy Programming .. 362

11.5 Summary .. 365

Check your progress II .. 365

11.6 Answer the Following ... 365

Answers to Check your progress II ... 366

Learning Objectives .. 367

Introduction ... 367

12.1 Mechanizing Reasoning ... 367

12.1.1 Godel’s Incompleteness Theorem .. 372

12.2 The Halting Problem .. 374

Check your progress I ... 378

12.3 Universality .. 379

12.4 Proving Non-Computability .. 381

Check your progress II .. 389

12.5 Summary .. 389

Check your progress III .. 389

12.6 Answer the following .. 390

Answers to Check your progress III ... 391

Reference .. 393

8 | P a g e

9 | P a g e

BLOCK I: Defining Procedures

10 | P a g e

11 | P a g e

Computing

Learning Objectives

After the completion of this unit, the learner shall be able to:

• Explain the reasons why everyone should study computing

• Define Information processes, procedures, and algorithm.

• Develop procedures for day-to-day activites

• Outline the definition of a computer.

• Solve binary questions using tree.

• List the unit of Information.

• Represent decimal data into binary form.

• Outline the timeline of the growth of computing power.

• Differentiate between Science, Engineering and Libral Arts.

Introduction

The first million years of hominid history produced tools to amplify, and

later mechanize, our physical abilities to enable us to move faster, reach

higher, and hit harder. We have developed tools that amplify physical force

by the trillions and increase the speeds at which we can travel by the

thousands.

Tools that amplify intellectual abilities are much rarer. While some animals

have developed tools to amplify their physical abilities, only humans have

developed tools to substantially amplify our intellectual abilities and it is

those advances that have enabled humans to dominate the planet. The first

key intellect amplifier was language. Language provided the ability to

transmit our thoughts to others, as well as to use our own minds more

effectively. The next key intellect amplifier was writing, which enabled the

storage and transmission of thoughts over time and distance.

Computing is the ultimate mental amplifier computers can mechanize any

intellectual activity we can imagine. Automatic computing radically

12 | P a g e

changes how humans solve problems, and even the kinds of problems we

can imagine solving. Computing has changed the world more than any

other invention of the past hundred years, and has come to pervade nearly

all human endeavours. Yet, we are just at the beginning of the computing

revolution; today’s computing offers just a glimpse of the potential impact

of computing.

There are two reasons why everyone should study computing:

1. Nearly all of the most exciting and important technologies, arts, and

sciences of today and tomorrow are driven by computing.

2. Understanding computing illuminates deep insights and questions

into the nature of our minds, our culture, and our universe.

Anyone who has submitted a query to Google, watched Toy Story, had

LASIK eye surgery, used a Smartphone, seen a Cirque Du Soleil show,

shopped with a credit card, or micro waved a pizza should be convinced of

the first reason. None of these would be possible without the tremendous

advances in computing over the past half century.

Although this book will touch on on some exciting applications of

computing, our primary focus is on the second reason, which may seem

more surprising. Computing changes how we think about problems and

how we understand the world. The goal of this book is to teach you that

new way of thinking.

1.1 Processes, Procedures, and Computers

Computer science is the study of information processes. A process is a

sequence of steps. Each step changes the state of the world in some small

way, and the result of all the steps produces some goal state. For example,

baking a cake, mailing a letter, and planting a tree are all processes.

Because they involve physical things like sugar and dirt, however, they are

13 | P a g e

not pure information processes. Computer science focuses on processes that

involve abstract information rather than physical things.

The boundaries between the physical world and pure information processes,

however, are often fuzzy. Real computers operate in the physical world:

they obtain input through physical means (e.g., a user pressing a key on a

keyboard that produces an electrical impulse), and produce physical outputs

(e.g., an image displayed on a screen). By focusing on abstract information,

instead of the physical ways of representing and manipulating information,

we simplify computation to its essence to better enable understanding and

reasoning.

A procedure is a description of a process. A simple process can be

described just by listing the steps. The list of steps is the procedure; the act

of following them is the process. A procedure that can be followed without

any thought is called a mechanical procedure. An algorithm is a mechanical

procedure that is guaranteed to eventually finish.

For example, here is a procedure for making coffee, adapted from the actual

directions that come with a major coffeemaker:

1. Lift and open the coffeemaker lid.

2. Place a basket-type filter into the filter basket.

3. Add the desired amount of coffee and shake to level the coffee.

4. Fill the decanter with cold, fresh water to the desired capacity.

5. Pour the water into the water reservoir.

6. Close the lid.

7. Place the empty decanter on the warming plate.

8. Press the ON button.

Describing processes by just listing steps like this has many limitations.

First, natural languages are very imprecise and ambiguous. Following the

steps correctly requires knowing lots of unstated assumptions. For example,

step three assumes the operator understands the difference between coffee

14 | P a g e

grounds and finished coffee, and can infer that this use of “coffee” refers to

coffee grounds since the end goal of this process is to make drinkable

coffee. Other steps assume the coffeemaker is plugged in and sitting on a

flat surface.

One could, of course, add lots more details to our procedure and make the

language more precise than this. Even when a lot of effort is put into

writing precisely and clearly, however, natural languages such as English

are inherently ambiguous. This is why the United States tax code is 3.4

million words long, but lawyers can still spend years arguing over what it

really means.

Another problem with this way of describing a procedure is that the size of

the description is proportional to the number of steps in the process. This is

fine for simple processes that can be executed by humans in a reasonable

amount of time, but the processes we want to execute on computers involve

trillions of steps. This means we need more efficient ways to describe them

than just listing each step one-by-one.

To program computers, we need tools that allow us to describe processes

precisely and succinctly. Since the procedures are carried out by a machine,

every step needs to be described; we cannot rely on the operator having

“common sense” (for example, to know how to fill the coffeemaker with

water without explaining that water comes from a faucet, and how to turn

the faucet on). Instead, we need mechanical procedures that can be followed

without any thinking.

A computer is a machine that can:

1. Accept input. Input could be entered by a human typing at a

keyboard, received over a network, or provided automatically by

sensors attached to the computer.

2. Execute a mechanical procedure, that is, a procedure where each step

can be executed without any thought.

15 | P a g e

3. Produce output. Output could be data displayed to a human, but it

could also be anything that affects the world outside the computer

such as electrical signals that control how a device operates.

Computers exist in a wide range of forms, and thousands of computers are

hid-den in devices we use every day but don’t think of as computers such as

cars, phones, TVs, microwave ovens, and access cards. Our primary focus

is on universal computers, which are computers that can perform all

possible mechanical computations on discrete inputs except for practical

limits on space and time. The next section explains what it discrete inputs

means; Chapters 6 and 12 explore more deeply what it means for a

computer to be universal.

 Check your progress I

➢ Write a procedure for brushing your teeths.

➢ Write an algorithm for finding the area of a rectangle.

1.2 Measuring Computing Power

For physical machines, we can compare the power of different machines by

measuring the amount of mechanical work they can perform within a given

amount of time. This power can be captured with units like horsepower and

watt. Physical power is not a very useful measure of computing power,

though, since the amount of computing achieved for the same amount of

energy varies greatly. Energy is consumed when a computer operates, but

consuming energy is not the purpose of using a computer.

Two properties that measure the power of a computing machine are:

1. How much information it can process?

2. How fast can it process?

We defer considering the second property until Part II, but consider the first

question here.

16 | P a g e

1.2.1 Information

Informally, we use information to mean knowledge. But to understand

information quantitatively, as something we can measure, we need a more

precise way to think about information.

The way computer scientist’s measure information is based on how what is

known changes as a result of obtaining the information. The primary unit of

information is a bit. One bit of information halves the amount of

uncertainty. It is equivalent to answering a “yes” or “no” question, where

either answer is equally likely beforehand. Before learning the answer,

there were two possibilities; after learning the answer, there is one.

We call a question with two possible answers a binary question. Since a bit

can have two possible values, we often represent the values as 0 and 1.

For example, suppose we perform a fair coin toss but do not reveal the

result. Half of the time, the coin will land “heads”, and the other half of the

time the coin will land “tails”. Without knowing any more information, our

chances of guessing the correct answer are
1

2 . One bit of information

would be enough to convey either “heads” or “tails”; we can use 0 to

represent “heads” and 1 to rep-resent “tails”. So, the amount of information

in a coin toss is one bit.

Similarly, one bit can distinguish between the values 0 and 1:

Example 1.1: Dice

How many bits of information are there in the outcome of tossing a six-

sided die?

17 | P a g e

There are six equally likely possible outcomes, so without any more

information we have a one in six chance of guessing the correct value. One

bit is not enough to identify the actual number, since one bit can only

distinguish between two values. We could use five binary questions like

this:

This is quite inefficient, though, since we need up to five questions to

identify the value (and on average, expect to need 3
1

3 questions). Can we

identify the value with fewer than 5 questions?

Our goal is to identify questions where the “yes” and “no” answers are

equally likely—that way, each answer provides the most information

possible. This is not the case if we start with, “Is the value 6?”, since that

answer is expected to be “yes” only one time in six. Instead, we should start

with a question like, “Is the value at least 4?”. Here, we expect the answer

to be “yes” one half of the time, and the “yes” and “no” answers are equally

likely. If the answer is “yes”, we know the result is 4, 5, or 6. With two

more bits, we can distinguish between these three values (note that two bits

is actually enough to distinguish among four different values, so some

information is wasted here). Similarly, if the answer to the first question is

no, we know the result is 1, 2, or 3. We need two more bits to distinguish

which of the three values it is. Thus, with three bits, we can distinguish all

six possible outcomes.

18 | P a g e

Three bits can convey more information that just six possible outcomes,

how-ever. In the binary question tree, there are some questions where the

answer is not equally likely to be “yes” and “no” (for example, we expect

the answer to “Is the value 3?” to be “yes” only one out of three times).

Hence, we are not obtaining a full bit of information with each question.

Each bit doubles the number of possibilities we can distinguish, so with

three bits we can distinguish between 2 2 2 = 8 possibilities. In general,

with n bits, we can distinguish between 2
n
 possibilities. Conversely,

distinguishing among k possible values requires log2 k bits. The logarithm

is defined such that if a = bc then logb a = c. Since each bit has two

possibilities, we use the logarithm base 2 to determine the number of bits

needed to distinguish among a set of distinct possibilities. For our six-sided

die, log2 6 2.58, so we need approximately 2.58 binary questions. But,

questions are discrete: we can’t ask 0.58 of a question, so we need to use

three binary questions.

Trees. Figure 1.1 depicts a structure of binary questions for distinguishing

among eight values. We call this structure a binary tree. We will see many

useful applications of tree-like structures in this book.

Computer scientists draw trees upside down. The root is the top of the tree,

and the leaves are the numbers at the bottom (0, 1, 2, . . ., 7). There is a

unique path from the root of the tree to each leaf. Thus, we can describe

each of the eight possible values using the answers to the questions down

the tree. For example, if the answers are “No”, “No”, and “No”, we reach

the leaf 0; if the answers are “Yes”, “No”, “Yes”, we reach the leaf 5. Since

19 | P a g e

there are no more than two possible answers for each node, we call this a

binary tree.

We can describe any non-negative integer using bits in this way, by just

adding additional levels to the tree. For example, if we wanted to

distinguish between 16 possible numbers, we would add a new question, “Is

is >= 8?” to the top of the tree. If the answer is “No”, we use the tree in

Figure 1.1 to distinguish numbers between 0 and 7. If the answer is “Yes”,

we use a tree similar to the one in Figure 1.1, but add 8 to each of the

numbers in the questions and the leaves.

The depth of a tree is the length of the longest path from the root to any

leaf. The example tree has depth three. A binary tree of depth d can

distinguish up to 2
d
 different values.

Figure 1.1: Using three bits to distinguish eight possible values

Units of Information.

One byte is defined as eight bits. Hence, one byte of information

corresponds to eight binary questions, and can distinguish among 28 (256)

different values. For larger amounts of information, we use metric pre-fixes,

but instead of scaling by factors of 1000 they scale by factors of 210 (1024).

Hence, one kilobyte is 1024 bytes; one megabyte is 220 (approximately one

mil-lion) bytes; one gigabyte is 230 (approximately one billion) bytes; and

one ter-abyte is 240 (approximately one trillion) bytes.

20 | P a g e

1.2.2 Representing Data

We can use sequences of bits to represent many kinds of data. All we need

to do is think of the right binary questions for which the bits give answers

that allow us to represent each possible value. Next, we provide examples

showing how bits can be used to represent numbers, text, and pictures.

Numbers.

In the previous section, we identified a number using a tree where each

node asks a binary question and the branches correspond to the “Yes” and

“No” answers. A more compact way of writing down our decisions

following the tree is to use 0 to encode a “No” answer, and 1 to encode a

“Yes” answer and describe a path to a leaf by a sequence of 0s and 1s—the

“No”, “No”, “No” path to 0 is encoded as 000, and the “Yes”, “No”, “Yes”

path to 5 is encoded as 101. This is known as the binary number system.

Whereas the decimal number system uses ten as its base (there are ten

decimal digits, and the positional values increase as powers of ten), the

binary system uses two as its base (there are two binary digits, and the

positional values increase as powers of two).

For example, the binary number 10010110 represents the decimal value

150:

Binary: 1 0 0 1 0 1 1 0

Value: 27 26 25 24 23 22 21 20

Decimal Value: 128 64 32 16 8 4 2 1

As in the decimal number system, the value of each binary digit depends on

its position.

21 | P a g e

By using more bits, we can represent larger numbers. With enough bits, we

can represent any natural number this way. The more bits we have, the

larger the set of possible numbers we can represent. As we saw with the

binary decision trees, n bits can be used to represent 2
n
 different numbers.

Discrete Values.
We can use a finite sequence of bits to describe any value that is selected

from a countable set of possible values. A set is countable if there is a

countable way to assign a unique natural number to each element of the set.

All finite sets are countable. Some, but not all, infinite sets are countable.

For example, there appear to be more integers than there are natural

numbers since for each natural number, n, there are two corresponding

integers, n and n. But, the integers are in fact countable. We can enumerate

the integers as: 0, 1, 1, 2, 2, 3,3, 4, and assign a unique natural number

to each integer in turn.

Other sets, such as the real numbers, are uncountable. Georg Cantor proved

this using a technique known as diagonalization. Suppose the real numbers

are diagonalization enumerable. This means we could list all the real

numbers in order, so we could assign a unique integer to each number. For

example, considering just the real numbers between 0 and 1, our

enumeration might be:

1. .00000000000000 . . .

2. 25000000000000 . . .

3. .33333333333333 . . .

4. .6666666666666 . . .

.

57236 .141592653589793 . . .

.

Cantor proved by contradiction that there is no way to enumerate all the real

numbers. The trick is to produce a new real number that is not part of the

enumeration. We can do this by constructing a number whose first digit is

different from the first digit of the first number, whose second digit is

22 | P a g e

different from the second digit of the second number, etc. For the example

enumeration above, we might choose .1468

The k
th

 digit of the constructed number is different from the k
th

 digit of the

number k in the enumeration. Since the constructed number differs in at

least one digit from every enumerated number, it does not match any of the

enumerated numbers exactly. Thus, there is a real number that is not

included in the enumeration list, and it is impossible to enumerate all the

real numbers.

Digital computers operate on inputs that are discrete values. Continuous

val-ues, such as real numbers, can only be approximated by computers.

Next, we consider how two types of data, text and images, can be

represented by com-puters. The first type, text, is discrete and can be

represented exactly; images are continuous, and can only be represented

approximately.

Text. The set of all possible sequences of characters is countable. One way

to see this is to observe that we could give each possible text fragment a

unique number, and then use that number to identify the item. For example

we could enumerate all texts alphabetically by length (here, we limit the

characters to low-ercase letters): a, b, c, . . ., z, aa, ab, . . ., az, ba, . . ., zz,

aaa, . . .

Since we have seen that we can represent all the natural numbers with a se-

quence of bits, so once we have the mapping between each item in the set

and a unique natural number, we can represent all of the items in the set.

For the representation to be useful, though, we usually need a way to

construct the cor-responding number for any item directly.

So, instead of enumerating a mapping between all possible character

sequences and the natural numbers, we need a process for converting any

text to a unique number that represents that text. Suppose we limit our text

23 | P a g e

to characters in the standard English alphabet. If we include lower-case

letters (26), upper-case letters (26), and punctuation (space, comma, period,

newline, semi-colon), we have 57 different symbols to represent. We can

assign a unique number to each symbol, and encode the corresponding

number with six bits (this leaves seven values unused since six bits can

distinguish 64 values). For example, we could encode using the mapping

shown in Table 1.1. The first bit answers the ques-tion: “Is it an uppercase

letter after F or a special character?”. When the first bit is 0, the second bit

answers the question: “Is it after p?”.

Table 1.1: Encoding characters using bits.

a 000000 A 011010 space 110100

b 000001 B 011011 , 110101

c 000010 C 011100 . 110110

d 000011 newline 110111

 F 011111 ; 111000

p 001111 G 100000 unused 111001

q 010000

 Y 110010 unused 111110

z 011001 Z 110011 unused 111111

This is one way to encode the alphabet, but not the one typically used by

computers. One commonly used encoding known as ASCII (the American

Standard Code for Infor-mation Interchange) uses seven bits so that 128

different symbols can be encoded. The extra symbols are used to encode

more special characters.

Once we have a way of mapping each individual letter to a fixed-length bit

se-quence, we could write down any sequence of letters by just

concatenating the bits encoding each letter. So, the text CS is encoded as

011100 101100. We could write down text of length n that is written in the

57-symbol alphabet using this encoding using 6n bits. To convert the

number back into text, just invert the mapping by replacing each group of

six bits with the corresponding letter.

24 | P a g e

Rich Data. We can also use bit sequences to represent complex data like

pic-tures, movies, and audio recordings. First, consider a simple black and

white picture:

Since the picture is divided into discrete squares known as pixels, we could

en-code this as a sequence of bits by using one bit to encode the color of

each pixel (for example, using 1 to represent black, and 0 to represent

white). This image is 16x16, so has 256 pixels total. We could represent the

image using a sequence of 256 bits (starting from the top left corner):

0000011111100000

0000100000010000

0011000000001100

0010000000000100

. . .

0000011111100000

What about complex pictures that are not divided into discrete squares or a

fixed number of colors, like Van Gogh’s Starry Night?

25 | P a g e

Different wavelengths of electromagnetic radiation have different colors.

For example, light with wavelengths between 625 and 730 nanometers

appears red. But, each wavelength of light has a slightly different color; for

example, light with wavelength 650 nanometers would be a different color

(albeit imperceptible to humans) from light of wavelength 650.0000001

nanometers. There are arguably infinitely many different colors,

corresponding to different wavelengths of visi-ble light.
3
 Since the colors

are continuous and not discrete, there is no way to map each color to a

unique, finite bit sequence.

On the other hand, the human eye and brain have limits. We cannot actually

perceive infinitely many different colors; at some point the wavelengths are

close enough that we cannot distinguish them. Ability to distinguish colors

varies, but most humans can perceive only a few million different colors.

The set of colors that can be distinguished by a typical human is finite; any

finite set is countable, so we can map each distinguishable color to a unique

bit sequence.

A common way to represent color is to break it into its three primary

components (red, green, and blue), and record the intensity of each

component. The more bits available to represent a color, the more different

colors that can be represented.

Thus, we can represent a picture by recording the approximate color at each

point. If space in the universe is continuous, there are infinitely many

points. But, as with color, once the points get smaller than a certain size

they are im-perceptible. We can approximate the picture by dividing the

canvas into small regions and sampling the average color of each region.

The smaller the sample regions, the more bits we will have and the more

detail that will be visible in the image. With enough bits to represent color,

and enough sample points, we can represent any image as a sequence of

bits.

26 | P a g e

1.2.3 Growth of Computing Power

The number of bits a computer can store gives an upper limit on the amount

of information it can process. Looking at the number of bits different

computers can store over time gives us a rough indication of how

computing power has increased. Here, we consider two machines: the

Apollo Guidance Computer and a modern laptop.

The Apollo Guidance Computer was developed in the early 1960s to

control the flight systems of the Apollo spacecraft. It might be considered

the first personal computer, since it was designed to be used in real-time by

a single operator (an astronaut in the Apollo capsule). Most earlier

computers required a full room, and were far too expensive to be devoted to

a single user; instead, they pro-cessed jobs submitted by many users in turn.

Since the Apollo Guidance Computer was designed to fit in the Apollo

capsule, it needed to be small and light. Its volume was about a cubic foot

and it weighed 70 pounds. The AGC was the first computer built using

integrated circuits, miniature electronic circuits that can perform simple

logical operations such as performing the logical and of two values. The

AGC used about 4000 integrated circuits, each one being able to perform a

single logical operation and costing $1000. The AGC consumed a

significant fraction of all integrated circuits produced in the mid-1960s, and

the project spurred the growth of the integrated circuit industry.

The AGC had 552 960 bits of memory (of which only 61 440 bits were

modifiable, the rest were fixed). The smallest USB flash memory you can

buy today (from SanDisk in December 2008) is the 1 gigabyte Cruzer for

$9.99; 1 gigabyte (GB) is 2
30

 bytes or approximately 8.6 billion bits, about

140 000 times the amount of memory in the AGC (and all of the Cruzer

memory is modifiable). A typical low-end laptop today has 2 gigabytes of

RAM (fast memory close to the processor that loses its state when the

machine is turned off) and 250 gigabytes of hard disk memory (slow

memory that persists when the machine is turned off); for under $600 today

27 | P a g e

we get a computer with over 4 million times the amount of memory the

AGC had.

Improving by a factor of 4 million corresponds to doubling just over 22

times. The amount of computing power approximately doubled every two

years between the AGC in the early 1960s and a modern laptop today

(2009). This property of exponential improvement in computing power is

known as Moore’s Law. Gordon Moore, a co-founder of Intel, observed in

1965 than the number of components that can be built in integrated circuits

for the same cost was approximately doubling every year (revisions to

Moore’s observation have put the doubling rate at approximately 18 months

instead of one year). This progress has been driven by the growth of the

computing industry, increasing the resources available for designing

integrated circuits. Another driver is that today’s technology is used to

design the next technology generation. Improvement in computing power

has followed this exponential growth remarkably closely over the past 40

years, although there is no law that this growth must continue forever.

Although our comparison between the AGC and a modern laptop shows an

impressive factor of 4 million improvement, it is much slower than Moore’s

law would suggest. Instead of 22 doublings in power since 1963, there

should have been 30 doublings (using the 18 month doubling rate). This

would produce an improvement of one billion times instead of just 4

million. The reason is our comparison is very unequal relative to cost: the

AGC was the world’s most ex-pensive small computer of its time,

reflecting many millions of dollars of government funding. Computing

power available for similar funding today is well over a billion times more

powerful than the AGC.

 Check your progress II

➢ 1 Byte = ___ Bits.

➢ Draw a binary tree with a depth of four.

➢ Represent decimal number 245 in binary.

28 | P a g e

1.3 Science, Engineering, and the Liberal Arts

Much ink and many bits have been spent debating whether computer

science is an art, an engineering discipline, or a science. The confusion

stems from the nature of computing as a new field that does not fit well into

existing silos. In fact, computer science fits into all three kingdoms, and it is

useful to approach computing from all three perspectives.

Science. Traditional science is about understanding nature through

observation. The goal of science is to develop general and predictive

theories that allow us to understand aspects of nature deeply enough to

make accurate quantitative predications. For example, Newton’s law of

universal gravitation makes predictions about how masses will move. The

more general a theory is the better. A key, as yet unachieved, goal of

science is to find a universal law that can describe all physical behavior at

scales from the smallest subparticle to the entire universe, and all the

bosons, muons, dark matter, black holes, and galaxies in between. Science

deals with real things (like bowling balls, planets, and electrons) and at-

tempts to make progress toward theories that predict increasingly precisely

how these real things will behave in different situations.

Computer science focuses on artificial things like numbers, graphs,

functions, and lists. Instead of dealing with physical things in the real

world, computer science concerns abstract things in a virtual world. The

numbers we use in computations often represent properties of physical

things in the real world, and with enough bits we can model real things with

arbitrary precision. But, since our focus is on abstract, artificial things

rather than physical things, computer science is not a traditional natural

science but a more abstract field like mathematics. Like mathematics,

computing is an essential tool for modern science, but when we study

computing on artificial things it is not a natural science itself.

29 | P a g e

In a deeper sense, computing pervades all of nature. A long term goal of

computer science is to develop theories that explain how nature computes.

One ex-ample of computing in nature comes from biology. Complex life

exists because nature can perform sophisticated computing. People

sometimes describe DNA as a “blueprint”, but it is really much better

thought of as a program. Whereas a blueprint describes what a building

should be when it is finished, giving the dimensions of walls and how they

fit together, the DNA of an organism encodes a process for growing that

organism. A human genome is not a blueprint that describes the body plan

of a human, it is a program that turns a single cell into a complex human

given the appropriate environment. The process of evolution (which itself is

an information process) produces new programs, and hence new species,

through the process of natural selection on mutated DNA sequences.

Understanding how both these processes work is one of the most interesting

and important open scientific questions, and it involves deep questions in

computer science, as well as biology, chemistry, and physics.

The questions we consider in this book focus on the question of what can

and cannot be computed. This is both a theoretical question (what can be

computed by a given theoretical model of a computer) and a pragmatic one

(what can be computed by physical machines we can build today, as well as

by anything possible in our universe).

Engineering.

Engineering is about making useful things. Engineering is often

distinguished from crafts in that engineers use scientific principles to create

their designs, and focus on designing under practical constraints. As

William Wulf and George Fisher put it:

Whereas science is analytic in that it strives to understand nature, or what

is, engineering is synthetic in that it strives to create. Our own favourite

description of what engineers do is “design under constraint”. Engineering

30 | P a g e

is creativity constrained by nature, by cost, by concerns of safety,

environmental impact, ergonomics, reliability, manufacturability,

maintainability– the whole long list of such “ilities”. To be sure, the

realities of nature is one of the constraint sets we work under, but it is far

from the only one, it is seldom the hardest one, and almost never the

limiting one.

Computer scientists do not typically face the natural constraints faced by

civil and mechanical engineers—computer programs are massless and not

exposed to the weather, so programmers do not face the kinds of physical

constraints like gravity that impose limits on bridge designers. As we saw

from the Apollo Guidance Computer comparison, practical constraints on

computing power change rapidly — the one billion times improvement in

computing power is unlike any change in physical materials
5
. Although we

may need to worry about manufacturability and maintainability of storage

media (such as the disk we use to store a program), our focus as computer

scientists is on the abstract bits themselves, not how they are stored.

Computer scientists, however, do face many constraints. A primary

constraint is the capacity of the human mind—there is a limit to how much

information a human can keep in mind at one time. As computing systems

get more complex, there is no way for a human to understand the entire

system at once. To build complex systems, we need techniques for

managing complexity. The primary tool computer scientists use to manage

complexity is abstraction. Abstraction is a way of giving a name to

something in a way that allows us to hide unnecessary details. By using

carefully designed abstractions, we can construct complex systems with

reliable properties while limiting the amount of information a human

designer needs to keep in mind at any one time.

Liberal Arts. The notion of the liberal arts emerged during the middle ages

to distinguish education for the purpose of expanding the intellects of free

people from the illiberal arts such as medicine and carpentry that were

31 | P a g e

pursued for economic purposes. The liberal arts were intended for people

who did not need to learn an art to make a living, but instead had the luxury

to pursue purely intellectual activities for their own sake. The traditional

seven liberal arts started with the Trivium (three roads), focused on

language:6

• Grammar — “the art of inventing symbols and combining them to

express thought”

• Rhetoric — “the art of communicating thought from one mind to

another, the adaptation of language to circumstance”

• Logic — “the art of thinking”

The Trivium was followed by the Quadrivium, focused on numbers:

• Arithmetic — “theory of number”

• Geometry — “theory of space”

• Music — “application of the theory of number”

• Astronomy — “application of the theory of space”

All of these have strong connections to computer science, and we will touch

on each of them to some degree in this book.

Language is essential to computing since we use the tools of language to

de-scribe information processes. The next chapter discusses the structure of

language and throughout this book we consider how to efficiently use and

combine symbols to express meanings. Rhetoric encompasses

communicating thoughts between minds. In computing, we are not typically

communicating directly between minds, but we see many forms of

communication between entities: interfaces between components of a

program, as well as protocols used to enable multiple computing systems to

communicate (for example, the HTTP protocol defines how a web browser

and web server interact), and communication between computer programs

and human users. The primary tool for understanding what computer

programs mean, and hence, for constructing programs with particular

32 | P a g e

meanings, is logic. Hence, the traditional trivium liberal arts of language

and logic permeate computer science.

The connections between computing and the quadrivium arts are also

pervasive. We have already seen how computers use sequences of bits to

represent numbers. Chapter 6 examines how machines can perform basic

arithmetic operations. Geometry is essential for computer graphics, and

graph theory is also important for computer networking. The harmonic

structures in music have strong connections to the recursive definitions

introduced in Chapter 4 and recurring throughout this book.
7
 Unlike the

other six liberal arts, astronomy is not directly connected to computing, but

computing is an essential tool for doing modern astronomy.

Although learning about computing qualifies as an illiberal art (that is, it

can have substantial economic benefits for those who learn it well),

computer science also covers at least six of the traditional seven liberal arts.

1.4 Summary and Roadmap

We can use sequences of bits to represent any natural number exactly, and

hence, represent any member of a countable set using a sequence of bits.

The more bits we use the more different values that can be represented;

with n bits we can represent 2
n
 different values.

We can also use sequences of bits to represent rich data like images, audio,

and video. Since the world we are trying to represent is continuous there are

in-finitely many possible values, and we cannot represent these objects

exactly with any finite sequence of bits. However, since human perception

is limited, with enough bits we can represent any of these adequately well.

Finding ways to represent data that are both efficient and easy to

manipulate and interpret is a constant challenge in computing. Manipulating

sequences of bits is awkward, so we need ways of thinking about bit-level

33 | P a g e

representations of data at higher levels of abstraction. Chapter 5 focuses on

ways to manage complex data.

Computer scientists think about problems differently. When confronted

with a problem, a computer scientist does not just attempt to solve it.

Instead, computer scientists think about a problem as a mapping between its

inputs and desired outputs, develop a systematic sequence of steps for

solving the problem for any possible input, and consider how the number of

steps required to solve the problem scales as the input size increases.

The rest of this book presents a whirlwind introduction to computer science.

We do not cover any topics in great depth, but rather provide a broad

picture of what computer science is, how to think like a computer scientist,

and how to solve problems.

Part I: Defining Procedures.

The computer frees humans from having to actually carry out the steps

needed to solve the problem. Without complaint, boredom, or rebellion, it

dutifully ex ecutes the exact steps the program specifies. And it executes

them at a remark-able rate — billions of simple steps in each second on a

typical laptop. This changes not just the time it takes to solve a problem, but

qualitatively changes the kinds of problems we can solve, and the kinds of

solutions worth considering. Problems like sequencing the human genome,

simulating the global climate, and making a photomosaic not only could not

have been solved without computing, but perhaps could not have even been

envisioned. Chapter 3 introduces programming, and Chapter 4 develops

some techniques for constructing programs that solve problems. To

represent more interesting problems, we need ways to manage more

complex data. Chapter 5 concludes Part I by exploring ways to represent

data and define procedures that operate on complex data.

Part II: Analyzing Procedures.

Part II considers the problem of estimating the cost required to execute a

procedure. This requires understanding how machines can compute

34 | P a g e

(Chapter 6), and mathematical tools for reasoning about how cost grows

with the size of the inputs to a procedure (Chapter 7). Chapter 8 provides

some extended examples that apply these techniques.

Part III: Improving Expressiveness.

The techniques from Part I and II are sufficient for describing all

computations. Our goal, however, it to be able to define concise, elegant,

and efficient procedures for performing desired computations. Part III

presents techniques that enable more expressive procedures.

Part IV: The Limits of Computing.

We hope that by the end of Part III, readers will feel confident that they

could program a computer to do just about any-thing. In Part IV, we

consider the question of what can and cannot be done by a mechanical

computer. A large class of interesting problems cannot be solved by any

computer, even with unlimited time and space.

Themes. Much of the book will revolve around three very powerful ideas

that are prevalent throughout computing:

Recursive definitions. A recursive definition define a thing in terms of

smaller instances of itself. A simple example is defining your ancestors as

(1) your parents, and (2) the ancestors of your ancestors. Recursive

definitions can define an infinitely large set with a small description. They

also provide a powerful technique for solving problems by breaking a

problem into solving a simple in-stance of the problem and showing how to

solve a larger instance of the problem by using a solution to a smaller

instance. We use recursive definitions to define infinite languages in

Chapter 2, to solve problems in Chapter 4, to build complex data structures

in Chapter 5. In later chapters, we see how language interpreters themselves

can be defined recursively.

35 | P a g e

Universality. Computers are distinguished from other machines in that

their behavior can be changed by a program. Procedures themselves can be

described using just bits, so we can write procedures that process

procedures as inputs and that generate procedures as outputs. Considering

procedures as data is both a powerful problem solving tool, and a useful

way of thinking about the power and fundamental limits of computing. We

introduce the use of procedures as inputs and outputs in Chapter 4, see how

generated procedures can be pack-aged with state to model objects in

Chapter 10. One of the most fundamental results in computing is that any

machine that can perform a few simple operations is powerful enough to

perform any computation, and in this deep sense, all mechanical computers

are equivalent. We introduce a model of computation in Chapter 6, and

reason about the limits of computation in Chapter 12.

Abstraction. Abstraction is a way of hiding details by giving things names.

We use abstraction to manage complexity. Good abstractions hide

unnecessary de-tails so they can be used to build complex systems without

needing to under-stand all the details of the abstraction at once. We

introduce procedural abstraction in Chapter 4, data abstraction in Chapter 5,

abstraction using objects in Chapter 10, and many other examples of

abstraction throughout this book.

Throughout this book, these three themes will recur recursively,

universally, and abstractly as we explore the art and science of how to

instruct computing machines to perform useful tasks, reason about the

resources needed to execute a particular procedure, and understand the

fundamental and practical limits on what computers can do.

 Check your progress III

a. A procedure is a description of a _______.

b. A procedure that can be followed without any thought is called a _______.

c. An ________ is a mechanical procedure that is guaranteed to eventually

finish.

d. The picture is divided into discrete squares known as _________.

36 | P a g e

1.5 Answer the following

1. Define Information Process.
2. Define a computer.
3. Draw a binary tree with the minimum possible depth to:

(a) Distinguish among the numbers 0, 1, 2, . . . , 15.

(b) Distinguish among the 12 months of the year.

4. The examples all use binary questions for which there are two

possible answers. Suppose instead of basing our decisions on bits,

we based it on trits where one trit can distinguish between three

equally likely values. For each trit, we can ask a ternary question (a

question with three possible answers).

a. How many trits are needed to distinguish among eight possible

values? (A convincing answer would show a ternary tree with

the questions and answers for each node, and argue why it is

not possible to distinguish all the values with a tree of lesser

depth.)

b. Devise a general formula for converting between bits and trits.

How many trits does it require to describe b bits of

information?

5. What is the difference between an algorithm and a procedure.

Define.

6. How many bits are needed:

a. To uniquely identify any currently living human?

b. To uniquely identify any human who ever lived?

c. To identify any location on Earth within one square

centimeter?

d. To uniquely identify any atom in the observable

universe?

7. Define a mechanical procedure.

8. What is an algorithm?

Answers to Check your progress II

1. 8

2.

3. 11110101

37 | P a g e

 Answers to Check your progress III

a. procedure

b. mechanical procedure.

c. algorithm.

d. pixels

38 | P a g e

39 | P a g e

Language

Learning Objectives

After the completion ofthis unit, the learner shall be able to:

• Define language and Natural Language

• Describe simple communication system

• List components of a language

• Compose different strings using Recursive transition networks

• Apply Backus-Naur Form (BNF) notation to define a grammar.

• Derive a path through an RTN using stack;

Introduction

The most powerful tool we have for communication is language. This is

true whether we are considering communication between two humans,

between a human programmer and a computer, or between a network of

computers. In computing, we use language to describe procedures and use

machines to turn descriptions of procedures into executing processes. This

chapter is about what language is, how language works, and ways to define

languages.

2.1 Surface Forms and Meanings

A language is a set of surface forms and meanings, and a mapping between

the surface forms and their associated meanings. In the earliest human

languages, the surface forms were sounds but surface forms can be anything

that can be perceived by the communicating parties such as drum beats,

hand gestures, or pictures.

A natural language is a language spoken by humans, such as English or

Swahili. Natural languages are very complex since they have evolved over

many thou-sands years of individual and cultural interaction. We focus on

40 | P a g e

designed languages that are created by humans for some a specific purpose

such as for ex-pressing procedures to be executed by computers.

We focus on languages where the surface forms are text. In a textual

language, the surface forms are linear sequences of characters. A string is a

sequence of zero or more characters. Each character is a symbol drawn

from a finite set known as an alphabet. For English, the alphabet is the set

{a, b, c, . . . , z} (for the full language, capital letters, numerals, and

punctuation symbols are also needed).

A simple communication system can be described using a table of surface

forms and their associated meanings. For example, this table describes a

communication system between traffic lights and drivers:

Surface Form Meaning

Green Go

Yellow Caution

Red Stop

Communication systems involving humans are notoriously imprecise and

subjective. A driver and a police officer may disagree on the actual meaning

of the Yellow symbol, and may even disagree on which symbol is being

transmitted by the traffic light at a particular time. Communication systems

for computers demand precision: we want to know what our programs will

do, so it is important that every step they make is understood precisely and

unambiguously.

The method of defining a communication system by listing a table of

<Symbol, Meaning >

pairs can work adequately only for trivial communication systems. The

number of possible meanings that can be expressed is limited by the

number of entries in the table. It is impossible to express any new meaning

since all meanings must already be listed in the table!

41 | P a g e

Languages and Infinity. A useful language must be able to express

infinitely many different meanings. Hence, there must be a way to generate

new surface forms and guess their meanings (see Exercise 2.1). No finite

representation, such as a printed table, can contain all the surface forms and

meanings in an infinite language. One way to generate infinitely large sets

is to use repeating patterns. For example, most humans would interpret the

notation: “1, 2, 3, . . . ” as the set of all natural numbers. We interpret the “.

. . ” as meaning keep doing the same thing for ever. In this case, it means

keep adding one to the preceding number. Thus, with only a few numbers

and symbols we can describe a set containing infinitely many numbers. As

discussed in Section 1.2.1, the language of the natural numbers is enough to

encode all meanings in any countable set. But, finding a sensible mapping

between most meanings and numbers is nearly impossible. The surface

forms do not correspond closely enough to the ideas we want to express to

be a useful language.

2.2 Language Construction

To define more expressive infinite languages, we need a richer system for

constructing new surface forms and associated meanings. We need ways to

de-scribe languages that allow us to define an infinitely large set of surface

forms and meanings with a compact notation. The approach we use is to

define a language by defining a set of rules that produce exactly the set of

surface forms in the language.

Components of Language. A language is composed of:

• primitives — the smallest units of meaning.

• means of combination — rules for building new language elements

by combining simpler ones.

The primitives are the smallest meaningful units (in natural languages these

are known as morphemes). A primitive cannot be broken into smaller parts

whose meanings can be combined to produce the meaning of the unit. The

means of combination are rules for building words from primitives, and for

building phrases and sentences from words.

42 | P a g e

Since we have rules for producing new words not all words are primitives.

For example, we can create a new word by adding anti- in front of an

existing word. The meaning of the new word can be inferred as “against the

meaning of the original word”. Rules like this one mean anyone can invent

a new word, and use it in communication in ways that will probably be

understood by listeners who have never heard the word before.

For example, the verb freeze means to pass from a liquid state to a solid

state; antifreeze is a substance designed to prevent freezing. English

speakers who know the meaning of freeze and anti- could roughly guess the

meaning of antifreeze even if they have never heard the word before.1

Primitives are the smallest units of meaning, not based on the surface

forms. Both anti and freeze are primitive; they cannot be broken into

smaller parts with meaning. We can break anti- into two syllables, or four

letters, but those sub-components do not have meanings that could be

combined to produce the meaning of the primitive.

Means of Abstraction. In addition to primitives and means of combination,

powerful languages have an additional type of component that enables

economic communication: means of abstraction.

Means of abstraction allow us to give a simple name to a complex entity. In

English, the means of abstraction are pronouns like “she”, “it”, and “they”.

The meaning of a pronoun depends on the context in which it is used. It

abstracts a complex meaning with a simple word. For example, the it in the

previous sentence abstracts “the meaning of a pronoun”, but the it in the

sentence before that one abstracts “a pronoun”.

1 1Guessing that it is a verb meaning to pass from the solid to liquid state would also be reasonable.

This shows how imprecise and ambiguous natural languages are; for programming computers, we
need the meanings of constructs to be clearly determined.

43 | P a g e

In natural languages, there are a limited number of means of abstraction.

English, in particular, has a very limited set of pronouns for abstracting

people. It has she and he for abstracting a female or male person,

respectively, but no gender-neutral pronouns for abstracting a person of

either sex. The interpretation of what a pronoun abstract in natural

languages is often confusing. For example, it is unclear what the it in this

sentence refers to. Languages for programming computers need means of

abstraction that are both powerful and un-ambiguous.

 Check your progress I

➢ According to the Guinness Book of World Records, the longest word in

the English language is floccinaucinihilipilification, meaning “The act or

habit of describing or regarding something as worthless”. This word was

reputedly invented by a non-hippopotomonstrosesquipedaliophobic

student at Eton who combined four words in his Latin textbook. Prove

Guinness wrong by identifying a longer English word. An English speaker

(familiar with floccinaucinihil-ipilification and the morphemes you use)

should be able to deduce the meaning of your word.

➢ Merriam-Webster’s word for the year for 2006 was truthiness, a word

invented and popularized by Stephen Colbert. Its definition is, “truth that

comes from the gut, not books”. Identify the morphemes that are used to

build truthiness, and explain, based on its composition, what truthiness

should mean.

2.3 Recursive Transition Networks

This section describes a more powerful technique for defining languages.

The surface forms of a textual language are a (typically infinite) set of

strings. To define a language, we need to define a system that produces all

strings in the language and no other strings. (The problem of associating

meanings with those strings is more difficult; we consider it in later

chapters.)

44 | P a g e

A recursive transition network (RTN) is defined by a graph of nodes and

edges. The edges are labeled with output symbols—these are the primitives

in the language. The nodes and edge structure provides the means of

combination.

One of the nodes is designated the start node (indicated by an arrow

pointing into that node). One or more of the nodes may be designated as

final nodes (indicated by an inner circle). A string is in the language if there

exists some path from the start node to a final node in the graph where the

output symbols along the path edges produce the string.

Figure 2.1 shows a simple RTN with three nodes and four edges that can

produce four different sentences. Starting at the node marked Noun, there

are two possible edges to follow. Each edge outputs a different symbol, and

leads to the node marked Verb. From that node there are two output edges,

each leading to the final node marked S. Since there are no edges out of S,

this ends the string. Hence, the RTN can produce four strings corresponding

to the four different paths from the start to final node: “Alice jumps”,

“Alice runs”, “Bob jumps”, and “Bob runs”.

Recursive transition networks are more efficient than listing the strings in a

language, since the number of possible strings increases with the number of

possible paths through the graph. For example, adding one more edge from

Noun to Verb with label “Colleen” adds two new strings to the language.

The expressive power of recursive transition networks increases

dramatically once we add edges that form cycles in the graph. This is where

45 | P a g e

the recursive in the name comes from. Once a graph has a cycle, there are

infinitely many possible paths through the graph!

Consider what happens when we add the single “and” edge to the previous

net-work to produce the network shown in Figure 2.2 below.

Now, we can produce infinitely many different strings! We can follow the

“and” edge back to the Noun node to produce strings like “Alice runs and

Bob jumps and Alice jumps” with as many conjuncts as we want.

 Check your progress II

➢ Draw a recursive transition network that defines the language of the whole

numbers: 0, 1, 2, . . .

Sub networks. In the RTNs we have seen so far, the labels on the output

edges are direct outputs known as terminals: following an edge just

produces the symbol on that edge. We can make more expressive RTNs by

allowing edge labels to also name sub networks. A sub network is identified

by the name of its starting node. When an edge labelled with a sub network

is followed, the network traversal jumps to the sub network node. Then, it

can follow any path from that node to a final node. Upon reaching a final

node, the network traversal jumps back to complete the edge.

For example, consider the network shown in Figure 2.3. It describes the

same language as the RTN in Figure 2.1, but uses sub networks for Noun

and Verb. To produce a string, we start in the Sentence node. The only edge

out from Sentence is labelled Noun. To follow the edge, we jump to the

Noun node, which is a separate sub network. Now, we can follow any path

46 | P a g e

from Noun to a final node (in this cases, outputting either “Alice” or “Bob”

on the path toward End Noun.

Suppose we replace the Noun sub network with the more interesting version

shown in Figure 2.4.This sub network includes an edge from Noun to N1

labelled Noun. Following this edge involves following a path through the

Noun subnet-work. Starting from Noun, we can generate complex phrases

like “Alice and Bob” or “Alice and Bob and Alice” (find the two different

paths through the network that generate this phrase).

To keep track of paths through RTNs without sub networks, a single marker

suffices. We can start with the marker on the start node, and move it along

the path through each node to the final node. Keeping track of paths on an

RTN with sub networks is more complicated. We need to keep track of

where we are in the current network, and also where to continue to when a

final node of the current sub network is reached. Since we can enter sub

networks within sub networks, we need a way to keep track of arbitrarily

many jump points.

A stack is a useful way to keep track of the sub networks. We can think of a

stack like a stack of trays in a cafeteria. At any point in time, only the top

tray on the stack can be reached. We can pop the top tray off the stack, after

which the next tray is now on top. We can push a new tray on top of the

stack, which makes the old top of the stack now one below the top.

47 | P a g e

We use a stack of nodes to keep track of the sub networks as they are

entered. The top of the stack represents the next node to process. At each

step, we pop the node off the stack and follow a transition from that node.

Using a stack, we can derive a path through an RTN using this procedure:

1. Initially, push the starting node on the stack.

2. If the stack is empty, stop. Otherwise, pop a node, N, off the stack.

3. If the popped node, N, is a final node return to step 2.2

4. Select an edge from the RTN that starts from node N. Use D to

denote the destination of that edge, and s to denote the output

symbol on the edge.

5. Push D on the stack.

6. If s is a sub network, push the node s on the stack. Otherwise, output

s, which is a terminal.

7. Go back to step 2.

Consider generating the string “Alice runs” using the RTN in Figure 2.3.

We start following step 1 by pushing Sentence on the stack. In step 2, we

pop the stack, so the current node, N, is Sentence. Since Sentence is not a

final node, we do nothing for step 3. In step 4, we follow an edge starting

from Sentence. There is only one edge to choose and it leads to the node

labelled S1. In step 5, we push S1 on the stack. The edge we followed is

labelled with the node Noun, so we push Noun on the stack. The stack now

contains two items: [Noun, S1]. Since Noun is on top, this means we will

first traverse the Noun sub network, and then continue from S1.

48 | P a g e

As directed by step 7, we go back to step 2 and continue by popping the top

node, Noun, off the stack. It is not a final node, so we continue to step 4,

and select the edge labelled “Alice” from Noun to End Noun. We push End

Noun on the stack, which now contains: [End Noun, S1]. The label on the

edge is the terminal, “Alice”, so we output “Alice” following step 6. We

continue in the same manner, following the steps in the procedure as we

keep track of a path through the network. The full processing steps are

shown in Figure 2.5.

 Check your progress III

➢ Show the sequence of stacks used in generating the string “Alice and Bob

and Alice runs” using the network in Figure 2.3 with the alternate Noun

sub network from Figure 2.4.

2.4 Replacement Grammars

Another way to define a language is to use a grammar. This is the most

common way languages are defined by computer scientists today, and the

way we will use for the rest of this book.

A grammar is a set of rules for generating all strings in the language. We

use the Backus-Naur Form (BNF) notation to define a grammar. BNF

grammars are exactly as powerful as recursive transition networks

(Exploration 2.1 explains what this means and why it is the case), but easier

to write down.

BNF was invented by John Backus in the late 1950s. Backus led efforts at

IBM to define and implement Fortran, the first widely used programming

language. Fortran enabled computer programs to be written in a language

more like familiar algebraic formulas than low-level machine instructions,

enabling programs to be written more quickly. In defining the Fortran

language, Backus and his team used ad hoc English descriptions to define

the language. These ad hoc descriptions were often misinterpreted,

motivating the need for a more precise way of defining a language.

49 | P a g e

Rules in a Backus-Naur Form grammar have the form:

nonterminal ::=> replacement

The left side of a rule is always a single symbol, known as a non terminal

since it can never appear in the final generated string. The right side of a

rule contains one or more symbols. These symbols may include non

terminals, which will be replaced using replacement rules before generating

the final string. They may also be terminals, which are output symbols that

never appear as the left side of a rule. When we describe grammars, we use

italics to represent non terminal symbols, and bold to represent terminal

symbols. The terminals are the primitives in the language; the grammar

rules are its means of combination.

We can generate a string in the language described by a replacement

grammar by starting from a designated start symbol (e.g., sentence), and at

each step selecting a non terminal in the working string, and replacing it

with the right side of a replacement rule whose left side matches the non

terminal. Wherever we find a non terminal on the left side of a rule, we can

replace it with what appears on the right side of any rule where that non

terminal matches the left side. A string is generated once there are no non

terminals remaining.

Here is an example BNF grammar (that describes the same language as the

RTN

in Figure 2.1):

1. Sentence ::=> Noun Verb

2. Noun::=> Alice

3. Noun::=> Bob

4. Verb ::=> jumps

5. Verb ::=> runs

Starting from Sentence, the grammar can generate four sentences: “Alice

jumps”,

“Alice runs”, “Bob jumps”, and “Bob runs”.

50 | P a g e

A derivation shows how a grammar generates a given string. Here is the

derivation of “Alice runs”:

Sentence ::=>Noun Verb using Rule 1

::=>Alice Verb replacing Noun using Rule 2

::=>Alice runs replacing Verb using Rule 5

We can represent a grammar derivation as a tree, where the root of the tree

is the starting non terminal (Sentence in this case), and the leaves of the tree

are the terminals that form the derived sentence. Such a tree is known as a

parse. Here is the parse tree for the derivation of “Alice runs”:

BNF grammars can be more compact than just listing strings in the

language since a grammar can have many replacements for each non

terminal. For example, adding the rule, Noun ::=> Colleen, to the grammar

adds two new strings (“Colleen runs” and “Colleen jumps”) to the

language.

Recursive Grammars. The real power of BNF as a compact notation for

describing languages, though, comes once we start adding recursive rules to

our gram-mar. A grammar is recursive if the grammar contains a non

terminal that can produce a production that contains itself.

Suppose we add the rule,

Sentence ::=> Sentence and Sentence

to our example grammar. Now, how many sentences can we generate?

Infinitely many! This grammar describes the same language as the RTN in

Figure 2.2. It can generate “Alice runs and Bob jumps” and “Alice runs and

Bob jumps and Alice runs” and sentences with any number of repetitions of

“Alice runs”. This is very powerful: by using recursive rules a compact

51 | P a g e

grammar can be used to define a language containing infinitely many

strings.

Example 2.1: Whole Numbers

This grammar defines the language of the whole numbers (0, 1, . . .) with

leading zeros allowed:

Here is the parse tree for a derivation of 37 from Number:

Circular vs. Recursive Definitions. The second rule means we can replace

More Digits with nothing. This is sometimes written as e to make it clear

that the replacement is empty: More Digits ::=> €.

This is a very important rule in the grammar—without it no strings could be

generated; with it infinitely many strings can be generated. The key is that

we can only produce a string when all non terminals in the string have been

replaced with terminals. Without the More Digits ::=> € rule, the only rule

we would have with More Digits on the left side is the third rule: More

Digits ::=> Number.

The only rule we have with Number on the left side is the first rule, which

re-places Number with Digit More Digits. Every time we follow this rule,

we replace More Digits with Digit More Digits. We can produce as many

Digits as we want, but without the More Digits ::=> € rule we can never

stop.

52 | P a g e

This is the difference between a circular definition, and a recursive

definition. Without the stopping rule, More Digits would be defined in a

circular way. There is no way to start with More Digits and generate a

production that does not contain More Digits (or a non terminal that

eventually must produce More Digits). With the More Digits ::=> € rule,

however, we have a way to produce something terminal from More Digits.

This is known as a base case — a rule that turns an otherwise circular

definition into a meaningful, recursive definition.

Condensed Notation. It is common to have many grammar rules with the

same left side non terminal. For example, the whole numbers grammar has

ten rules with Digit on the left side to produce the ten terminal digits. Each

of these is an alternative rule that can be used when the production string

contains the non-terminal Digit. A compact notation for these types of rules

is to use the vertical bar (j) to separate alternative replacements. For

example, we could write the ten Digit rules compactly as:

Digit ::=> 0 | 1 | 2 | 3 | 4 | 5 |j 6 | 7 | 8 | 9

 Check your progress IV

➢ Suppose we replaced the first rule (Number ::=> Digit More Digits) in the

whole numbers grammar with: Number ::=> More Digits Digit.

(a) How does this change the parse tree for the derivation of 37? Draw the

parse tree that results from the new grammar.

(b) Does this change the language? Either show some string that is in the

language defined by the modified grammar but not in the original

language (or vice versa), or argue that both grammars generate the

same strings.

Exploration 2.1: Power of Language Systems

53 | P a g e

Section 2.4 claimed that recursive transition networks and BNF grammars

are equally powerful. What does it mean to say two systems are equally

powerful?

A language description mechanism is used to define a set of strings

comprising a language. Hence, the power of a language description

mechanism is determined by the set of languages it can define.

One approach to measure the power of language description mechanism

would be to count the number of languages that it can define. Even the

simplest mechanisms can define infinitely many languages, however, so

just counting the number of languages does not distinguish well between

the different language description mechanisms. Both RTNs and BNFs can

describe infinitely many different languages. We can always add a new

edge to an RTN to increase the number of strings in the language, or add a

new replacement rule to a BNF that replaces a non terminal with a new

terminal symbol.

Instead, we need to consider the set of languages that each mechanism can

de-fine. A system A is more powerful that another system B if we can use

A to define every language that can be defined by B, and there is some

language L that can be defined using A that cannot be defined using B. This

matches our intuitive interpretation of more powerful — A is more

powerful than B if it can do everything B can do and more.

The diagrams in Figure 2.6 show three possible scenarios. In the leftmost

picture, the set of languages that can be defined by B is a proper subset of

the set of languages that can be defined by A. Hence, A is more powerful

than B. In the centre picture, the sets are equal. This means every language

that can be de-fined by A can also be defined by B, and every language that

can be defined by B can also be defined by A, and the systems are equally

powerful. In the rightmost picture, there are some elements of A that are not

elements of B, but there are also some elements of B that are not elements

54 | P a g e

of A. This means we cannot say either one is more powerful; A can do

some things B cannot do, and B can do some things A cannot do.

To determine the relationship between RTNs and BNFs we need to

understand if there are languages that can be defined by a BNF that cannot

be defined by a RTN and if there are languages that can be defined by a

RTN that cannot be defined by an BNF. We will show only the first part of

the proof here, and leave the second part as an exercise.

For the first part, we prove that there are no languages that can be defined

by a BNF that cannot be defined by an RTN. Equivalently, every language

that can be defined by a BNF grammar has a corresponding RTN. Since

there are infinitely many languages that can be defined by BNF grammars,

we cannot prove this by enumerating each language and showing its

corresponding RTN. Instead, we use a proof technique commonly used in

computer science: proof by construction. We show an algorithm that given

any BNF grammar constructs an RTN that defines the same language as the

input BNF grammar.

Our strategy is to construct a sub network corresponding to each non

terminal. For each rule where the non terminal is on the left side, the right

hand side is converted to a path through that node’s sub network.

Before presenting the general construction algorithm, we illustrate the

approach with the example BNF grammar from Example 2.1:

Number ::=> Digit More Digits

More Digits ::=> €

More Digits ::=> Number

55 | P a g e

Digit ::=> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The grammar has three non terminals: Number, Digit, and More Digits. For

each non terminal, we construct a sub network by first creating two nodes

corresponding to the start and end of the sub network for the non terminal.

We make Start-Number the start node for the RTN since Number is the

starting non terminal for the grammar.

Next, we need to add edges to the RTN corresponding to the production

rules in the grammar. The first rule indicates that Number can be replaced

by Digit More Digits. To make the corresponding RTN, we need to

introduce an intermediate node since each RTN edge can only contain one

label. We need to traverse two edges, with labels Start Digit and Start More

Digits between the Start Number and End Number nodes. The resulting

partial RTN is shown in Figure 2.7.

For the More Digits non terminal there are two productions. The first means

More Digits can be replaced with nothing. In an RTN, we cannot have

edges with unlabeled outputs. So, the equivalent of outputting nothing is to

turn Start-More Digits into a final node. The second production replaces

More Digits with Number. We do this in the RTN by adding an edge

between Start More Digits and End More Digits labelled with Number, as

shown in Figure 2.8.

56 | P a g e

Finally, we convert the ten Digit productions. For each rule, we add an edge

between Start Digit and End Digit labelled with the digit terminal, as shown

in Figure 2.9.

This example illustrates that it is possible to convert a particular grammar to

an RTN. For a general proof, we present a general an algorithm that can be

used to do the same conversion for any BNF:

1. For each non terminal X in the grammar, construct two nodes, Start

X and

End X, where End X is a final node. Make the node Start S the start node of

the RTN, where S is the start non terminal of the grammar.

2. For each rule in the grammar, add a corresponding path through the

RTN. All BNF rules have the form X ::=> replacement where X is a

non terminal in the grammar and replacement is a sequence of zero

or more terminals and non terminals: [R0, R1, . . . , Rn].

a. If the replacement is empty, make Start X a final node.

b. If the replacement has just one element, R0, add an edge from Start

X to End X with edge label R0.

c. Otherwise:

i. Add an edge from Start X to a new node labelled Xi,0 (where i

identifies the grammar rule), with edge label R0.

ii. For each remaining element Rj in the replacement add an edge

from Xi,j 1 to a new node labeled Xi,j with edge label Rj. (For

example, for element R1, a new node Xi,1 is added, and an edge

from Xi,0 to Xi,1 with edge label R1.)

iii. Add an edge from Xi,n 1 to End X with edge label Rn.

Following this procedure, we can convert any BNF grammar into an RTN

that defines the same language. Hence, we have proved that RTNs are at

least as powerful as BNF grammars.

57 | P a g e

To complete the proof that BNF grammars and RTNs are equally powerful

ways of defining languages, we also need to show that a BNF can define

every language that can be defined using an RTN. This part of the proof can

be done using a similar strategy in reverse: by showing a procedure that can

be used to construct a BNF equivalent to any input RTN. We leave the

details as an exercise for especially ambitious readers.

 Check your progress V

a. A _______ is a sequence of string zero or more characters.

b. Each character is a symbol drawn from a finite set known as an ______.

c. A _______ is a set of rules for generating all strings in the language.

2.5 Summary

Languages define a set of surface forms and associated meanings. Since

useful language must be able to express infinitely many things, we need

tools for defining infinite sets of surface forms using compact and precise

notations. The tool we will use for the remainder of this book is the BNF

replacement gram-mar which precisely defines a language using

replacement rules. This system can describe infinite languages with small

representations because of the power of recursive rules. In the next chapter,

we introduce the Scheme programming language that we will use to

describe procedures.

2.6 Answer the Following

1. Define a Language.

2. Explain Recursive Transition Network with the help of an example.

3. Define grammer.

4. What is parse tree?

5. Define a base case.

6. What is proof by construction? Explain.

58 | P a g e

7. According to the Oxford English Dictionary, Thomas Jefferson is

the first person to use more than 60 words in the dictionary.

Jeffersonian words include: (a) authentication, (b) belittle, (c)

indecipherable, (d) inheritability, (e) odometer, (f) sanction, (g)

vomit-grass, and (h) shag. For each Jeffersonian word, guess its

derivation and explain whether or not its meaning could be inferred

from its components.

8. How many different strings can be produced by the RTN below:

9. Recursive transition networks.

a. How many nodes are needed for a recursive transition

network that can produce exactly 8 strings?

b. How many edges are needed for a recursive transition

network that can produce exactly 8 strings?

c. Given a whole number n, how many edges are needed for a

recursive transition network that can produce exactly n

strings?

10. Identify a string that cannot be produced using the RTN from Figure

2.3 with the alternate Noun sub network from Figure 2.4 without the

stack growing to contain five elements.

11. The procedure given for traversing RTNs assumes that a subnet-

work path always stops when a final node is reached. Hence, it

cannot follow all possible paths for an RTN where there are edges

out of a final node. Describe a procedure that can follow all possible

paths, even for RTNs that include edges from final nodes.

12. The grammar for whole numbers we defined allows strings with

non-standard leading zeros such as “000” and “00005”. Devise a

grammar that produces all whole numbers (including “0”), but no

strings with unnecessary leading zeros.

59 | P a g e

13. Define a BNF grammar that describes the language of decimal

numbers (the language should include 3.14159, 0.423, and 1120 but

not 1.2.3).

14. The BNF grammar below (extracted from Paul Mockapetris, Do-

main Names - Implementation and Specification, IETF RFC 1035)

describes the language of domain names on the Internet.

Domain ::=> Sub Domain List

Sub Domain List ::=> Label j Sub Domain List . Label

Label ::=> Letter More Letters

More Letters ::=> Letter Hyphens Letter Digit j e

Letter Hyphens ::=> L D Hyphen j L D Hyphen Letter Hyphens

L D Hyphen ::=> Letter Digit j -

Letter Digit ::=> Letter j Digit

Letter ::=> A | B | . . . | Z | a | b | . . . | z

Digit ::=> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

a. Show a derivation for www.virginia.edu in the grammar.

b. According to the grammar, which of the following are valid domain

names:

(1) tj, (2) a.-b.c, (3) a-a.b-b.c-c, (4) a.g.r.e.a.t.d.o.m.a.i.n-

 Answers to Check your progress V

a. string

b. alphabet.

c. grammar

60 | P a g e

61 | P a g e

Programming

Learning Objectives

After the completion of this unit, the learners shall be able to:

• Identify the limitations of natural languages for programming

• Identify the charachteris of a language for programming computers

• Differentiate between a compiler and an interpreter

• Know the steps involed in running a Scheme program

• List Selected Scheme Primitive Procedures.

• Evaluate expression by breaking down into its subexpressions using

the grammar rules

• Demonstrate general mechanism for making a procedure

• Use If expression for writing procesoure for making decisions

Introduction

What distinguishes a computer from other machines is its programmability.

Without a program, a computer is an overpriced door stopper. With the

right program, though, a computer can be a tool for communicating across

the conti-nent, discovering a new molecule that can cure cancer, composing

a symphony, or managing the logistics of a retail empire.

Programming is the act of writing instructions that make the computer do

some-thing useful. It is an intensely creative activity, involving aspects of

art, engi-neering, and science. Good programs are written to be executed

efficiently by computers, but also to be read and understood by humans.

The best programs are delightful in ways similar to the best architecture,

elegant in both form and function.

The ideal programmer would have the vision of Isaac Newton, the intellect

of Albert Einstein, the creativity of Miles Davis, the aesthetic sense of

Maya Lin, the wisdom of Benjamin Franklin, the literary talent of William

62 | P a g e

Shakespeare, the oratorical skills of Martin Luther King, the audacity of

John Roebling, and the self-confidence of Grace Hopper.

Fortunately, it is not necessary to possess all of those rare qualities to be a

good programmer! Indeed, anyone who is able to master the intellectual

challenge of learning a language (which, presumably, anyone who has

gotten this far has done at least for English) can become a good

programmer. Since programming is a new way of thinking, many people

find it challenging and even frustrating at first. Because the computer does

exactly what it is told, a small mistake in a program may prevent it from

working as intended. With a bit of patience and persistence, however, the

tedious parts of programming become easier, and you will be able to focus

your energies on the fun and creative problem solving parts.

In the previous chapter, we explored the components of language and

mecha-nisms for defining languages. In this chapter, we explain why

natural languages are not a satisfactory way for defining procedures and

introduce a language for programming computers and how it can be used to

define procedures.

3.1 Problems with Natural Languages

Natural languages, such as English, work adequately (most, but certainly

not all, of the time) for human-human communication, but are not well-

suited for human-computer or computer-computer communication. Why

can’t we use natural languages to program computers?

Next, we survey several of the reasons for this. We use specifics from

English, although all natural languages suffer from these problems to

varying degrees.

Complexity. Although English may seem simple to you now, it took many

years of intense effort (most of it subconscious) for you to learn it. Despite

63 | P a g e

using it for most of their waking hours for many years, native English

speakers know a small fraction of the entire language. The Oxford English

Dictionary contains 615,000 words, of which a typical native English

speaker knows about 40,000.

Ambiguity. Not only do natural languages have huge numbers of words,

most words have many different meanings. Understanding the intended

meaning of an utterance requires knowing the context, and sometimes pure

guesswork.

For example, what does it mean to be paid biweekly? According to the

American Heritage Dictionary2, biweekly has two definitions:

1. Happening every two weeks.

2. Happening twice a week; semiweekly.

Merriam-Webster’s Dictionary3 takes the opposite approach:

1. occurring twice a week

2. occurring every two weeks : fortnightly

So, depending on which definition is intended, someone who is paid

biweekly could either be paid once or four times every two weeks! The

behavior of a pay-roll management program better not depend on how

biweekly is interpreted.

Even if we can agree on the definition of every word, the meaning of a

sentence is often ambiguous. This particularly difficult example is taken

from the instruc-tions with a shipment of ballistic missiles from the British

Admiralty:4

2 AmericanHeritage,Dictionary of the English Language (Fourth Edition),HoughtonMifflinCompany,

2007 (http://www.answers.com/biweekly).
3 Merriam-Webster Online, Merriam-Webster, 2008 (http://www.merriam-webster.com/dictionary/

biweekly).
4 Carl C. Gaither and Alma E. Cavazos-Gaither, Practically Speaking: A Dictionary of Quotations

on Engineering, Technology and Architecture, Taylor & Francis, 1998.

64 | P a g e

It is necessary for technical reasons that these warheads be stored upside

down, that is, with the top at the bottom and the bottom at the top. In order

that there be no doubt as to which is the bottom and which is the top, for

storage purposes, it will be seen that the bottom of each warhead has been

labeled ’TOP’.

Irregularity. Because natural languages evolve over time as different

cultures interact and speakers misspeak and listeners mishear, natural

languages end up a morass of irregularity. Nearly all grammar rules have

exceptions. For example, English has a rule that we can make a word plural

by appending an s. The new word means “more than one of the original

word’s meaning”. This rule works for most words: word 7!words, language

7!languages, person 7!persons.
4

It does not work for all words, however. The plural of goose is geese (and

gooses is not an English word), the plural of deer is deer (and deers is not

an English word), and the plural of beer is controversial (and may depend

on whether you speak American English or Canadian English).

These irregularities can be charming for a natural language, but they are a

con-stant source of difficulty for non-native speakers attempting to learn a

language. There is no sure way to predict when the rule can be applied, and

it is necessary to memorize each of the irregular forms.

Uneconomic. It requires a lot of space to express a complex idea in a

natural lan-guage. Many superfluous words are needed for grammatical

correctness, even though they do not contribute to the desired meaning.

Since natural languages evolved for everyday communication, they are not

well suited to describing the precise steps and decisions needed in a

computer program.

As an example, consider a procedure for finding the maximum of two

numbers. In English, we could describe it like this:

65 | P a g e

To find the maximum of two numbers, compare them. If the first num-ber is

greater than the second number, the maximum is the first number.

Otherwise, the maximum is the second number.

Perhaps shorter descriptions are possible, but any much shorter description

probably assumes the reader already knows a lot. By contrast, we can

express the same steps in the Scheme programming language in very

concise way (don’t worry if this doesn’t make sense yet—it should by the

end of this chapter):

(define (bigger a b) (if (> a b) a b))

Limited means of abstraction. Natural languages provide small, fixed sets

of pronouns to use as means of abstraction, and the rules for binding

pronouns to meanings are often unclear. Since programming often involves

using simple names to refer to complex things, we need more powerful

means of abstraction than natural languages provide.

3.2 Programming Languages

For programming computers, we want simple, unambiguous, regular, and

eco-nomical languages with powerful means of abstraction. A programming

lan-guage is a language that is designed to be read and written by humans to

create programs that can be executed by computers.

Programming languages come in many flavors. It is difficult to

simultaneously satisfy all desired properties since simplicity is often at odds

with economy. Ev-ery feature that is added to a language to increase its

expressiveness incurs a cost in reducing simplicity and regularity. For the

first two parts of this book, we use the Scheme programming language

which was designed primarily for simplic-ity. For the later parts of the

book, we use the Python programming language, which provides more

expressiveness but at the cost of some added complexity.

66 | P a g e

Another reason there are many different programming languages is that

they are at different levels of abstraction. Some languages provide

programmers with detailed control over machine resources, such as

selecting a particular location in memory where a value is stored. Other

languages hide most of the details of the machine operation from the

programmer, allowing them to focus on higher-level actions.

Ultimately, we want a program the computer can execute. This means at the

lowest level we need languages the computer can understand directly. At

this level, the program is just a sequence of bits encoding machine

instructions. Code at this level is not easy for humans to understand or

write, but it is easy for a processor to execute quickly. The machine code

encodes instructions that direct the processor to take simple actions like

moving data from one place to another, performing simple arithmetic, and

jumping around to find the next in-struction to execute.

For example, the bit sequence 1110101111111110 encodes an instruction in

the Intel x86 instruction set (used on most PCs) that instructs the processor

to jump backwards two locations. Since the instruction itself requires two

locations of space, jumping back two locations actually jumps back to the

beginning of this instruction. Hence, the processor gets stuck running

forever without making any progress.

The computer’s processor is designed to execute very simple instructions

like jumping, adding two small numbers, or comparing two values. This

means each instruction can be executed very quickly. A typical modern

processor can exe-cute billions of instructions in a second.
5

Until the early 1950s, all programming was done at the level of simple

instruc-tions. The problem with instructions at this level is that they are not

easy for humans to write and understand, and you need many simple

instructions be-fore you have a useful program.

67 | P a g e

A compiler is a computer program that generates other programs. It

translates an input program written in a high-level language that is easier

for humans to create into a program in a machine-level language that can be

executed by the computer. Admiral Grace Hopper developed the first

compilers in the 1950s.

An alternative to a compiler is an interpreter. An interpreter is a tool that

trans-lates between a higher-level language and a lower-level language, but

where a compiler translates an entire program at once and produces a

machine language program that can be executed directly, an interpreter

interprets the program a small piece at a time while it is running. This has

the advantage that we do not have to run a separate tool to compile a

program before running it; we can sim-ply enter our program into the

interpreter and run it right away. This makes it easy to make small changes

to a program and try it again, and to observe the state of our program as it is

running.

One disadvantage of using an interpreter instead of a compiler is that

because the translation is happening while the program is running, the

program exe-cutes slower than a compiled program. Another advantage of

compilers over interpreters is that since the compiler translates the entire

program it can also analyze the program for consistency and detect certain

types of programming mistakes automatically instead of encountering them

when the program is run-ning (or worse, not detecting them at all and

producing unintended results). This is especially important when writing

critical programs such as flight con-trol software — we want to detect as

many problems as possible in the flight control software before the plane is

flying!

Since we are more concerned with interactive exploration than with

performance and detecting errors early, we use an interpreter instead of a

compiler.

68 | P a g e

3.3 Scheme

The programming system we use for the first part of this book is depicted in

Figure 3.1. The input to our programming system is a program written in a

programming language named Scheme. A Scheme interpreter interprets a

Scheme program and executes it on the machine processor.

Scheme was developed at MIT in the 1970s by Guy Steele and Gerald

Sussman, based on the LISP programming language that was developed by

John McCarthy in the 1950s. Although many large systems have been built

using Scheme, it is not widely used in industry. It is, however, a great

language for learning about computing and programming. The primary

advantage of using Scheme to learn about computing is its simplicity and

elegance. The language is simple enough that this chapter covers nearly the

entire language (we defer describing a few aspects until Chapter 9), and by

the end of this book you will know enough to implement your own Scheme

interpreter. By contrast, some programming lan-guages that are widely used

in industrial programming such as C++ and Java require thousands of pages

to describe, and even the world’s experts in those languages do not agree on

exactly what all programs mean.

69 | P a g e

Although almost everything we describe should work in all Scheme

interpreters, for the examples in this book we assume the DrRacket

programming environ-ment which is freely available from http://racket-

lang.org/. DrRacket includes interpreters for many different languages, so

you must select the desired lan-guage using the Language menu. The

selected language defines the grammar and evaluation rules that will be

used to interpret your program. For all the ex-amples in this book, we use a

version of the Scheme language named Pretty Big.

3.4 Expressions

A Scheme program is composed of expressions and definitions (we cover

definitions in Section 3.5). An expression is a syntactic element that has a

value.

The act of determining the value associated with an expression is called

evaluation. A Scheme interpreter, such as the one provided in Dr Racket, is

a machine for evaluating Scheme expressions. If you enter an expression

into a Scheme

interpreter, the interpreter evaluates the expression and displays its value.

Expressions may be primitives. Scheme also provides means of

combination for producing complex expressions from simple expressions.

The next subsections describe primitive expressions and application

expressions. Section 3.6 describes expressions for making procedures and

Section 3.7 describes expres-sions that can be used to make decisions.

3.4.1 Primitives

An expression can be replaced with a primitive:

Expression ::=> Primitive Expression

http://racket-lang.org/
http://racket-lang.org/

70 | P a g e

As with natural languages, primitives are the smallest units of meaning.

Hence, the value of a primitive is its pre-defined meaning.

Scheme provides many different primitives. Three useful types of

primitives are described next: numbers, Booleans, and primitive procedures.

Numbers. Numbers represent numerical values. Scheme provides all the

kinds of numbers you are familiar with including whole numbers, negative

numbers, decimals, and rational numbers.

Example numbers include:

150 0 12

3.14159 3/4 999999999999999999999

Numbers evaluate to their value. For example, the value of the primitive

expression 1120 is 1120.

Booleans. Booleans represent truth values. There are two primitives for

representing true and false:

Primitive Expression ::) true j false

The meaning of true is true, and the meaning of false is false. In the Dr

Racket interpreter, #t and #f are used to represent the primitive truth values.

So, the value true appears as #t in the interactions window.

71 | P a g e

Primitive Procedures. Scheme provides primitive procedures

corresponding to many common functions. Mathematically, a function is a

mapping from inputs to outputs. For each valid input to the function, there

is exactly one associated output. For example, + is a procedure that takes

zero or more inputs, each of which must be a number. Its output is the sum

of the values of the inputs. Table 3.1 describes some primitive procedures

for performing arithmetic and com-parisons on numbers.

3.4.2 Application Expressions

Most of the actual work done by a Scheme program is done by application

ex-pressions that apply procedures to operands. The expression (+ 1 2) is an

Appli-cationExpression, consisting of three subexpressions. Although this

example is probably simple enough that you can probably guess that it

evaluates to 3, we will show in detail how it is evaluated by breaking down

into its subexpressions using the grammar rules. The same process will

allow us to understand how any expression is evaluated.

72 | P a g e

The grammar rule for application is:

Expression ::=> ApplicationExpression

ApplicationExpression ::=> (Expression MoreExpressions)

MoreExpressions ::=> € | Expression MoreExpressions

This rule produces a list of one or more expressions surrounded by

parentheses. The value of the first expression should be a procedure; the

remaining expressions are the inputs to the procedure known as operands.

Another name for operands is arguments.

Here is a parse tree for the expression (+ 1 2):

Following the grammar rules, we replace Expression with

ApplicationExpression at the top of the parse tree. Then, we replace

ApplicationExpression with (Expression MoreExpressions). The

Expression term is replaced PrimitiveExpression, and finally, the primitive

addition procedure +. This is the first subexpres-sion of the application, so

it is the procedure to be applied. The MoreExpres-sions term produces the

two operand expressions: 1 and 2, both of which are primitives that evaluate

to their own values. The application expression is eval-uated by applying

the value of the first expression (the primitive procedure +) to the inputs

given by the values of the other expressions. Following the meaning of the

primitive procedure, (+ 1 2) evaluates to 3 as expected.

73 | P a g e

The Expression nonterminals in the application expression can be replaced

with anything that appears on the right side of an expression rule, including

an Ap-plicationExpression.

We can build up complex expressions like (+ (10 10) (+ 25 25)). Its parse tree

is:

This tree is similar to the previous tree, except instead of the subexpressions

of the first application expression being simple primitive expressions, they

are now application expressions. (Instead of showing the complete parse

tree for the nested application expressions, we use triangles.)

To evaluate the output application, we need to evaluate all the

subexpressions. The first subexpression, +, evaluates to the primitive

procedure. The second subexpression, (* 10 10), evaluates to 100, and the

third expression, (+ 25 25), evaluates to 50. Now, we can evaluate the

original expression using the values for its three component subexpressions:

(+ 100 50) evaluates to 150.

 Check your progress I

➢ Predict how each of the following Scheme expressions is evalu-ated. After

making your prediction, try evaluating the expression in DrRacket. If the

result is different from your prediction, explain why the Scheme

interpreter evaluates the expression as it does.

(a) 1120

74 | P a g e

(b) (+ 1120)

(c) (+ (+ 10 20) (⃰ 2 0))

(d) (= (+ 10 20) (⃰15 (+ 5 5)))

(e) +

(f) (+ + <)

➢ For each question, construct a Scheme expression and evaluate it in

DrRacket.

(a) How many seconds are there in a year?

(b) For how many seconds have you been alive?

(c) For what fraction of your life have you been in school?

3.5 Definitions

Scheme provides a simple, yet powerful, mechanism for abstraction. A

defini-tion introduces a new name and gives it a value:

Definition ::=> (define Name Expression)

After a definition, the N ame in the definition is now associated with the

value of the expression in the definition. A definition is not an expression

since it does not evaluate to a value.

A name can be any sequence of letters, digits, and special characters (such

as , >, ?, and !) that starts with a letter or special character. Examples of

valid names include a, Ada, Augusta-Ada, gold49, !yuck, and

yikes!n%@n#. We don’t recommend using some of these names in your

programs, however! A good pro-grammer will pick names that are easy to

read, pronounce, and remember, and that are not easily confused with other

names.

After a name has been bound to a value by a definition, that name may be

used in an expression:

Expression ::=> NameExpression

NameExpression ::=> Name

75 | P a g e

The value of a NameExpression is the value associated with the Name.

(Alert readers should be worried that we need a more precise definition of

the meaning of definitions to know what it means for a value to be

associated with a name. This informal notion will serve us well for now, but

we will need a more precise explanation of the meaning of a definition in

Chapter 9.)

Below we define speed-of-light to be the speed of light in meters per

second, define seconds-per-hour to be the number of seconds in an hour,

and use them to calculate the speed of light in kilometers per hour:

>(define speed-of-light 299792458)

>speed-of-light

299792458

>(define seconds-per-hour (60 60))

>(/ (⃰ speed-of-light seconds-per-hour) 1000)

1079252848 4/5

3.6 Procedures

In Chapter 1 we defined a procedure as a description of a process. Scheme

pro-vides a way to define procedures that take inputs, carry out a sequence

of ac-tions, and produce an output. Section 3.4.1 introduced some of

Scheme’s prim-itive procedures. To construct complex programs, however,

we need to be able to create our own procedures.

Procedures are similar to mathematical functions in that they provide a

map-ping between inputs and outputs, but they differ from mathematical

functions in two important ways:

State. In addition to producing an output, a procedure may access and mod-

ify state. This means that even when the same procedure is applied to the

same inputs, the output produced may vary. Because mathematical func-

tions do not have external state, when the same function is applied to the

76 | P a g e

same inputs it always produces the same result. State makes procedures

much harder to reason about. We will ignore this issue until Chapter 9, and

focus until then only on procedures that do not involve any state.

Resources. Unlike an ideal mathematical function, which provides an

instan-taneous and free mapping between inputs and outputs, a procedure

re-quires resources to execute before the output is produced. The most

impor-tant resources are space (memory) and time. A procedure may need

space to keep track of intermediate results while it is executing. Each step

of a procedure requires some time to execute. Predicting how long a

procedure will take to execute and finding the fastest procedure possible for

solving some problem are core problems in computer science. We consider

this throughout this book, and in particular in Chapter 7.

For the rest of this chapter, we view procedures as idealized mathematical

func-tions: we consider only procedures that involve no state and do not

worry about the resources required to execute our procedures.

3.6.1 Making Procedures

Scheme provides a general mechanism for making a procedure:

Expression ::=> ProcedureExpression

ProcedureExpression ::-> (lambda (Parameters) Expression)

Parameters ::=> € | Name Parameters

Evaluating a ProcedureExpression produces a procedure that takes as inputs

the Parameters following the lambda. The lambda special form means

“make a pro-cedure”. The body of the resulting procedure is the Expression,

which is not evaluated until the procedure is applied.

A ProcedureExpression can replace an Expression. This means anywhere

an Ex-pression is used we can create a new procedure. This is very

powerful since it means we can use procedures as inputs to other

77 | P a g e

procedures and create proce-dures that return new procedures as their

output!

Here are some example procedures:

(lambda (x) (*x x))

Procedure that takes one input, and produces the square of the input value

as its output.

(lambda (a b) (+ a b))

Procedure that takes two inputs, and produces the sum of the input values as

its output.

(lambda () 0)

Procedure that takes no inputs, and produces 0 as its output. The result of

applying this procedure to any argument is always 0.

(lambda (a) (lambda (b) (+ a b)))

Procedure that takes one input (a), and produces as its output a procedure

that takes one input and produces the sum of a and that input as its output.

This is an example of a higher-order procedure. Higher-order procedures

produce procedures as their output or take procedures as their arguments.

This can be confusing, but is also very powerful.

3.6.2 Substitution Model of Evaluation

For a procedure to be useful, we need to apply it. In Section 3.4.2, we saw

the syntax and evaluation rule for an ApplicationExpression when the

procedure to be applied is a primitive procedure. The syntax for applying a

constructed procedure is identical to the syntax for applying a primitive

procedure:

Expression ::=> ApplicationExpression

ApplicationExpression ::=> (Expression MoreExpressions)

MoreExpressions ::=> € | Expression MoreExpressions

To understand how constructed procedures are evaluated, we need a new

eval-uation rule. In this case, the first Expression evaluates to a procedure

78 | P a g e

that was created using a ProcedureExpression, so the

ApplicationExpression becomes:

ApplicationExpression ::=>

((lambda (Parameters)Expression) MoreExpressions)

(The underlined part is the replacement for the ProcedureExpression.)

To evaluate the application, first evaluate the MoreExpressions in the

applica-tion expression. These expressions are known as the operands of the

applica-tion. The resulting values are the inputs to the procedure. There

must be ex-actly one expression in the MoreExpressions corresponding to

each name in the parameters list. Next, associate the names in the

Parameters list with the corre-sponding operand values. Finally, evaluate

the expression that is the body of the procedure. Whenever any parameter

name is used inside the body expression, the name evaluates to the value of

the corresponding input that is associated with that name.

Example 3.1: Square

Consider evaluating the following expression:

((lambda (x) (* x x)) 2)

It is an ApplicationExpression where the first subexpression is the

ProcedureEx-pression, (lambda (x) (* x x)). To evaluate the application,

we evaluate all the subexpressions and apply the value of the first

subexpression to the values of the remaining subexpressions. The first

subexpression evaluates to a procedure that takes one parameter named x

and has the expression body (* x x). There is one operand expression, the

primitive 2, that evaluates to 2.

To evaluate the application we bind the first parameter, x, to the value of

the first operand, 2, and evaluate the procedure body, (* x x). After

substituting the parameter values, we have (* 2 2). This is an application of

79 | P a g e

the primitive multiplication procedure. Evaluating the application results in

the value 4.

The procedure in our example, (lambda (x) (* x x)), is a procedure that

takes a number as input and as output produces the square of that number.

We can use the definition mechanism (from Section 3.5) to give this

procedure a name so we can reuse it:

(define square (lambda (x) (* x x)))

This defines the name square as the procedure. After this, we can apply

square to any number:

>(square 2)

4

>(square 1/4)

1/16

>(square (square 2))

16

\

Example 3.2: Make adder

The expression

((lambda (a)

(lambda (b) (+ a b)))

3)

evaluates to a procedure that adds 3 to its input. Applying that procedure to

4,

(((lambda (a) (lambda (b) (+ a b))) 3)

4)

evaluates to 7. By using define, we can give these procedures sensible

names:

(define make-adder

(lambda (a)

(lambda (b) (+ a b))))

Then, (define add-three (make-adder 3)) defines add-three as a procedure

that takes one parameter and outputs the value of that parameter plus 3.

80 | P a g e

Abbreviated Procedure Definitions. Since we commonly define new

proce-dures, Scheme provides a condensed notation for defining a

procedure5:

Definition ::) (define (Name Parameters) Expression)

This incorporates the lambda invisibly into the definition, but means

exactly the same thing. For example,

(define square (lambda (x) (x x)))

can be written equivalently as:

(define (square x) (x x))

 Check your progress II

➢ Define a procedure, cube, that takes one number as input and produces as

output the cube of that number.

3.7 Decisions

To make more useful procedures, we need the actions taken to depend on

the input values. For example, we may want a procedure that takes two

numbers as inputs and evaluates to the greater of the two inputs. To define

such a procedure we need a way of making a decision. The If Expression

provides a way of using the result of one expression to select which of two

possible expressions to evaluate:

Expression ::=> If Expression

IfExpression ::=> (if Expression Predicate

Expression Consequent

Expression Alternate)

5 The condensed notation also includes a begin expression, which is a special form. We will not

need the begin expression until we start dealing with procedures that have side effects. We describe
the begin special formin Chapter 9.

81 | P a g e

The If Expression replacement has three Expression terms. For clarity, we

give each of them names as denoted by the Predicate, Consequent, and

Alternate subscripts. To evaluate an If Expression, first evaluate the

predicate expression, Expression Predicate. If it evaluates to any non-false

value, the value of the If Expression is the value of Expression Consequent,

the consequent expression, and the alternate expression is not evaluated at

all. If the predicate expression evaluates to false, the value of the If

Expression is the value of Expression Alternate, the alternate expression,

and the consequent expression is not evaluated at all.

The predicate expression determines which of the two following

expressions is evaluated to produce the value of the If Expression. If the

value of the predicate is anything other than false, the consequent expression

is used. For example, if the predicate evaluates to true, to a number, or to a

procedure the consequent expression is evaluated.

The if expression is a special form. This means that although it looks

syntactically identical to an application (that is, it could be an application of

a procedure named if), it is not evaluated as a normal application would be.

Instead, we have a special evaluation rule for if expressions. The reason a

special evaluation rule is needed is because we do not want all the sub

expressions to be evaluated. With the normal application rule, all the sub

expressions are evaluated first, and then the procedure resulting from the

first sub expression is applied to the values resulting from the others. With

the if special form evaluation rule, the predicate expression is always

evaluated first and only one of the following sub expressions is evaluated

depending on the result of evaluating the predicate expression.

This means an if expression can evaluate to a value even if evaluating one

of its sub expressions would produce an error. For example,

(if (> 3 4) (*+ +) 7)

evaluates to 7 even though evaluating the sub expression (* + +) would

produce an error. Because of the special evaluation rule for if expressions,

the consequent expression is never evaluated.

82 | P a g e

Example 3.3: Bigger

Now that we have procedures, decisions, and definitions, we can understand

the bigger procedure from the beginning of the chapter. The definition,

(define (bigger a b) (if (> a b) a b))

is a condensed procedure definition. It is equivalent to:

(define bigger (lambda (a b) (if (> a b) a b)))

This defines the name bigger as the value of evaluating the procedure

expression (lambda (a b) (if (> a b) a b)). This is a procedure that takes two

inputs, named a and b. Its body is an if expression with predicate expression

(> a b). The predicate expression compares the value that is bound to the

first parameter, a, with the value that is bound to the second parameter, b,

and evaluates to true if the value of the first parameter is greater, and false

otherwise. According to the evaluation rule for an if expression, when the

predicate evaluates to any non-false value (in this case, true), the value of the

if expression is the value of the consequent expression, a. When the

predicate evaluates to false, the value of the if expression is the value of the

alternate expression, b. Hence, our bigger procedure takes two numbers as

inputs and produces as output the greater of the two inputs.

3.8 Evaluation Rules

Here we summarize the grammar rules and evaluation rules. Since each

gram-mar rule has an associated evaluation rule, we can determine the

meaning of any grammatical Scheme fragment by combining the evaluation

rules corresponding to the grammar rules followed to derive that fragment.

Program ::=> € | ProgramElement Program

ProgramElement ::=> Expression | Definition

A program is a sequence of expressions and definitions.

Definition ::=> (define Name Expression)

A definition evaluates the expression, and associates the value of the

expression with the name.

83 | P a g e

Definition ::=> (define (Name Parameters) Expression)

Abbreviation for

(define Name (lambda Parameters) Expression)

Expression ::=> PrimitiveExpression | NameExpression

ApplicationExpression

ProcedureExpression | IfExpression

The value of the expression is the value of the replacement expression.

PrimitiveExpression ::=> Number | true | false | primitive procedure

Evaluation Rule 1: Primitives. A primitive expression evaluates to its pre-

defined value.

NameExpression ::=> Name

Evaluation Rule 2: Names. A name evaluates to the value associated with

that name.

ApplicationExpression ::=> (Expression MoreExpressions)

Evaluation Rule 3: Application. To evaluate an application expression:

a. Evaluate all the subexpressions;

b. Then, apply the value of the first subexpression to the values of the

remaining subexpressions.

MoreExpressions ::=> € | Expression MoreExpressions

ProcedureExpressio

n

::=> (lambda (Parameters) Expression)

Parameters ::=> € | Name Parameters

Evaluation Rule 4: Lambda. Lambda expressions evaluate to a procedure

that takes the given parameters and has the expression as its body.

IfExpression ::=> (if ExpressionPredicate

 ExpressionConsequent

 ExpressionAlternate)

Evaluation Rule 5: If. To evaluate an if expression, (a) evaluate the

predicate expression; then, (b) if the value of the predicate expression is a

false value then the value of the if expression is the value of the alternate

expression; otherwise, the value of the if expression is the value of the

consequent expression.

84 | P a g e

The evaluation rule for an application (Rule 3b) uses apply to perform the

ap-plication. Apply is defined by the two application rules:

Application Rule 1: Primitives.

To apply a primitive procedure, just do it.

Application Rule 2: Constructed Procedures.

To apply a constructed procedure, evaluate the body of the procedure with

each parameter name bound to the corresponding input expression value.

Application Rule 2 uses the evaluation rules to evaluate the expression.

Thus, the evaluation rules are defined using the application rules, which are

defined using the evaluation rules! This appears to be a circular definition,

but as with the grammar examples, it has a base case. Some expressions

evaluate without using the application rules (e.g., primitive expressions,

name expressions), and some applications can be performed without using

the evaluation rules (when the procedure to apply is a primitive). Hence, the

process of evaluating an ex-pression will sometimes finish and when it does

we end with the value of the expression.
7

3.9 Summary

At this point, we have covered enough of Scheme to write useful programs

(even if the programs we have seen so far seem rather dull). In fact (as we

show in Chapter 12), we have covered enough to express every possible

computation! We just need to combine these constructs in more complex

ways to perform more interesting computations. The next chapter (and

much of the rest of this book), focuses on ways to combine the constructs

for making procedures, mak-ing decisions, and applying procedures in more

powerful ways.

 Check your progress III

a. ____________ is the act of writing instructions that make the computer do

something useful.

b. A _________ is a computer program that generates other programs.

85 | P a g e

3.10 Answer the Following

1. Why Natural Languages cannot be used as programming languages?

2. Define programming languages.

3. What is a compiler? How it is different from an interpreter?

4. Define Procedures.

5. Draw a parse tree for the Scheme expression (+ 100 (* 5 (+ 5 5)))

and show how it is evaluated.

6. Define a procedure, compute-cost, that takes as input two numbers,

the first represents that price of an item, and the second represents

the sales tax rate. The output should be the total cost, which is

computed as the price of the item plus the sales tax on the item,

which is its price times the sales tax rate. For example, (compute-

cost 13 0.05) should evaluate to 13.65.

7. Follow the evaluation rules to evaluate the Scheme expression:

(bigger 3 4)

where bigger is the procedure defined above. (It is very tedious to

follow all of the steps (that’s why we normally rely on computers to

do it!), but worth doing once to make sure you understand the

evaluation rules.)

8. Define a procedure, xor, that implements the logical exclusive-or

operation. The xor function takes two inputs, and outputs true if

exactly one of those outputs has a true value. Otherwise, it outputs

false. For example, (xor true true) should evaluate to false and (xor (< 3

5) (= 8 8)) should evaluate to true.

9. Define a procedure, absvalue, that takes a number as input and

produces the absolute value of that number as its output. For

example, (ab-svalue 3) should evaluate to 3 and (absvalue 150) should

evaluate to 150.

10. Define a procedure, bigger-magnitude, that takes two inputs, and

outputs the value of the input with the greater magnitude (that is,

absolute dis-tance from zero). For example, (bigger-magnitude 5 7)

should evaluate to 7, and (bigger-magnitude 9 3) should evaluate to 9.

86 | P a g e

11. Define a procedure, biggest, that takes three inputs, and produces as

output the maximum value of the three inputs. For example, (biggest

5 7 3) should evaluate to 7. Find at least two different ways to define

biggest, one using bigger, and one without using it.

 Answers to Check your progress III

a. Programming

b. compiler

87 | P a g e

Problems and Procedures

Learning Objectives

After the completion of this unit, the learner shall be able to:

• Define a problem

• Apply divide-and-conquer techniques to solve simple problems

• Develop procedures for simple mathematical problems

• Evaluating Recursive Applications

Introduction

Computers are tools for performing computations to solve problems. In this

chapter, we consider what it means to solve a problem and explore some

strate-gies for constructing procedures that solve problems.

4.1 Solving Problems

Traditionally, a problem is an obstacle to overcome or some question to

answer. Once the question is answered or the obstacle circumvented, the

problem is solved and we can declare victory and move on to the next one.

When we talk about writing programs to solve problems, though, we have a

larger goal. We don’t just want to solve one instance of a problem, we want

an algorithm that can solve all instances of a problem. A problem is defined

by its inputs and the desired property of the output. Recall from Chapter 1,

that a procedure is a precise description of a process and a procedure is

guaranteed to always finish is called an algorithm. The name algorithm is a

Latinization of the name of the Persian mathematician and scientist,

Muhammad ibn Mus¯a¯ al-Khwarizm¯¯ı, who published a book in 825 on

calculation with Hindu numer-als. Although the name algorithm was

adopted after al-Khwarizm¯¯ı’s book, algo-rithms go back much further

88 | P a g e

than that. The ancient Babylonians had algorithms for finding square roots

more than 3500 years ago (see Exploration 4.1).

For example, we don’t just want to find the best route between New York

and Washington, we want an algorithm that takes as inputs the map, start

location, and end location, and outputs the best route. There are infinitely

many possible inputs that each specify different instances of the problem; a

general solution to the problem is a procedure that finds the best route for

all possible inputs.
1

To define a procedure that can solve a problem, we need to define a

procedure that takes inputs describing the problem instance and produces a

different in-formation process depending on the actual values of its inputs.

A procedure takes zero or more inputs, and produces one output or no

outputs
2
, as shown in Figure 4.1.

Our goal in solving a problem is to devise a procedure that takes inputs that

define a problem instance, and produces as output the solution to that

problem instance. The procedure should be an algorithm — this means

every application of the procedure must eventually finish evaluating and

produce an output value.

There is no magic wand for solving problems. But, most problem solving

in-volves breaking problems you do not yet know how to solve into simpler

and simpler problems until you find problems simple enough that you

already know how to solve them. The creative challenge is to find the

simpler subproblems that can be combined to solve the original problem.

89 | P a g e

This approach of solving problems by breaking them into simpler parts is

known as divide-and-conquer.

The following sections describe a two key forms of divide-and-conquer

problem solving: composition and recursive problem solving. We will use

these same problem-solving techniques in different forms throughout this

book.

4.2 Composing Procedures

One way to divide a problem is to split it into steps where the output of the

first step is the input to the second step, and the output of the second step is

the solution to the problem. Each step can be defined by one procedure, and

the two procedures can be combined to create one procedure that solves the

problem.

Figure 4.2 shows a composition of two functions, f and g . The output of f is

used as the input to g.

We can express this composition with the Scheme expression (g (f x))

where x is the input. The written order appears to be reversed from the

picture in Figure 4.2. This is because we apply a procedure to the values of

its sub expressions:

the values of the inner sub expressions must be computed first, and then

used as the inputs to the outer applications. So, the inner sub expression (f

x) is evaluated first since the evaluation rule for the outer application

expression is to first evaluate all the sub expressions.

90 | P a g e

To define a procedure that implements the composed procedure we make x

a parameter:

(define fog (lambda (x) (g (f x))))

This defines fog as a procedure that takes one input and produces as output

the composition of f and g applied to the input parameter. This works for

any two procedures that both take a single input parameter.

We can compose the square and cube procedures from Chapter 3:

(define sixth-power (lambda (x) (cube (square x))))

Then, (sixth-power 2) evaluates to 64.

4.2.1 Procedures as Inputs and Outputs

All the procedure inputs and outputs we have seen so far have been

numbers. The subexpressions of an application can be any expression

including a proce-dure. A higher-order procedure is a procedure that takes

other procedures as in-puts or that produces a procedure as its output.

Higher-order procedures give us the ability to write procedures that behave

differently based on the procedures that are passed in as inputs.

We can create a generic composition procedure by making f and g

parameters:

(define fog (lambda (f g x) (g (f x))))

The fog procedure takes three parameters. The first two are both procedures

that take one input. The third parameter is a value that can be the input to

the first procedure.

For example, (fog square cube 2) evaluates to 64, and (fog (lambda (x) (+ x

1)) square 2) evaluates to 9. In the second example, the first parameter is the

proce-dure produced by the lambda expression (lambda (x) (+ x 1)). This

procedure takes a number as input and produces as output that number plus

one. We use a definition to name this procedure inc (short for increment):

91 | P a g e

(define inc (lambda (x) (+ x 1)))

A more useful composition procedure would separate the input value, x,

from the composition. The fcompose procedure takes two procedures as

inputs and produces as output a procedure that is their composition:
3

(define fcompose

(lambda (f g) (lambda (x) (g (f x)))))

The body of the fcompose procedure is a lambda expression that makes a

proce-dure. Hence, the result of applying fcompose to two procedures is not

a simple value, but a procedure. The resulting procedure can then be

applied to a value.

Here are some examples using fcompose:

>(fcompose inc inc)

#<procedure>

>((fcompose inc inc) 1)

3

>((fcompose inc square) 2)

9

>((fcompose square inc) 2)

5

 Check your progress I

➢ For each expression, give the value to which the expression evaluates.

Assume fcompose and inc are defined as above.

a. ((fcompose square square) 3)

b. (fcompose (lambda (x) (x 2)) (lambda (x) (/ x 2)))

c. ((fcompose (lambda (x) (x 2)) (lambda (x) (/ x 2))) 1120)

d. ((fcompose (fcompose inc inc) inc) 2)

92 | P a g e

4.3 Recursive Problem Solving

In the previous section, we used functional composition to break a problem

into two procedures that can be composed to produce the desired output. A

particularly useful variation on this is when we can break a problem into a

smaller version of the original problem.

The goal is to be able to feed the output of one application of the procedure

back into the same procedure as its input for the next application, as shown

in Figure 4.3.

Here’s a corresponding Scheme procedure:

(define f (lambda (n) (f n)))

Of course, this doesn’t work very well! Every application of f results in

another application of f to evaluate. This never stops — no output is ever

produced and the interpreter will keep evaluating applications of f until it is

stopped or runs out of memory.

We need a way to make progress and eventually stop, instead of going

around in circles. To make progress, each subsequent application should

have a smaller input. Then, the applications stop when the input to the

procedure is simple enough that the output is already known. The stopping

condition is called the base case, similarly to the grammar rules in Section

2.4. In our grammar examples, the base case involved replacing the non

terminal with nothing (e.g., More Digits ::) e) or with a terminal (e.g., Noun

::) Alice). In recursive procedures, the base case will provide a solution for

some input for which the problem is so simple we already know the answer.

93 | P a g e

When the input is a number, this is often (but not necessarily) when the

input is 0 or 1.

To define a recursive procedure, we use an if expression to test if the input

matches the base case input. If it does, the consequent expression is the

known answer for the base case. Otherwise, the recursive case applies the

procedure again but with a smaller input. That application needs to make

progress towards reaching the base case. This means, the input has to

change in a way that gets closer to the base case input. If the base case is for

0, and the original input is a positive number, one way to get closer to the

base case input is to subtract 1 from the input value with each recursive

application.

This evaluation spiral is depicted in Figure 4.4. With each subsequent

recursive call, the input gets smaller, eventually reaching the base case. For

the base case application, a result is returned to the previous application.

This is passed back up the spiral to produce the final output. Keeping track

of where we are in a recursive evaluation is similar to keeping track of the

sub networks in an RTN traversal. The evaluator needs to keep track of

where to return after each recursive evaluation completes, similarly to how

we needed to keep track of the stack of sub networks to know how to

proceed in an RTN traversal.

Here is the corresponding procedure:

(define g

(lambda (n)

(if (= n 0) 1 (g (n 1)))))

Unlike the earlier circular f procedure, if we apply g to any non-negative

integer it will eventually produce an output. For example, consider

evaluating (g 2).

94 | P a g e

When we evaluate the first application, the value of the parameter n is 2, so

the predicate expression (= n 0) evaluates to false and the value of the

procedure body is the value of the alternate expression, (g (n 1)). The sub

expression, (n 1) evaluates to 1, so the result is the result of applying g to 1.

As with the previous application, this leads to the application, (g (n 1)), but

this time the value of n is 1, so (n 1) evaluates to 0. The next application

leads to the application, (g 0). This time, the predicate expression evaluates

to true and we have reached the base case. The consequent expression is

just 1, so no further applications of g are performed and this is the result of

the application (g 0). This is returned as the result of the (g 1) application in

the previous recursive call, and then as the output of the original (g 2)

application.

We can think of the recursive evaluation as winding until the base case is

reached, and then unwinding the outputs back to the original application.

For this pro-cedure, the output is not very interesting: no matter what

positive number we apply g to, the eventual result is 1. To solve interesting

problems with recursive procedures, we need to accumulate results as the

recursive applications wind or unwind. Examples 4.1 and 4.2 illustrate

recursive procedures that accumu-late the result during the unwinding

process. Example 4.3 illustrates a recursive procedure that accumulates the

result during the winding process.

Example 4.1: Factorial

How many different arrangements are there of a deck of 52 playing cards?

The top card in the deck can be any of the 52 cards, so there are 52 possible

choices for the top card. The second card can be any of the cards except for

the card that is the top card, so there are 51 possible choices for the second

95 | P a g e

card. The third card can be any of the 50 remaining cards, and so on, until

the last card for which there is only one choice remaining.

52*51*50*...*2*1

This is known as the factorial function (denoted in mathematics using the

ex-clamation point, e.g., 52!). It can be defined recursively:

0! = 1

n! = n*(n--1)! for all n > 0

The mathematical definition of factorial is recursive, so it is natural that we

can define a recursive procedure that computes factorials:

(define (factorial n)

(if (= n 0)

1

(* n (factorial (-n 1)))))

Evaluating (factorial 52) produces the number of arrangements of a 52-card

deck: a sixty-eight digit number starting with an 8.

The factorial procedure has structure very similar to our earlier definition of

the useless recursive g procedure. The only difference is the alternative

expression for the if expression: in g we used (g (n 1)); in factorial we

added the outer application of : (n (factorial (n 1))). Instead of just

evaluating to the result of the recursive application, we are now combining

the output of the recursive evaluation with the input n using a multiplication

application.

 Check your progress II

➢ How many different ways are there of choosing an unordered 5-card hand

from a 52-card deck?

96 | P a g e

 This is an instance of the “n choose k” problem (also known as the

 binomial coefficient): how many different ways are there to choose a set of

 k items from n items. There are n ways to choose the first item, n 1 ways

 to choose the second, . . ., and n k + 1 ways to choose the k
th

 item. But,

 since the order does not matter, some of these ways are equivalent. The

 number of possible ways to order the k items is k!, so we can compute the

 number of ways to choose k items from a set of n items as:

n (n 1)*. . . *(n k + 1) = n!

(n k)!k! k!

➢ Define a procedure choose that takes two inputs, n (the size of the item

set) and k (the number of items to choose), and outputs the number of

possible ways to choose k items from n.

➢ Compute the number of possible 5-card hands that can be dealt from a 52-

card deck.

➢ Compute the likelihood of being dealt a flush (5 cards all of the same suit).

In a standard 52-card deck, there are 13 cards of each of the four suits.

Hint: divide the number of possible flush hands by the number of possible

hands.

➢ Define a higher-order procedure, accumulate, that can be used to make

both gauss-sum (from Exercise 4.6) and factorial. The accumulate pro-

cedure should take as its input the function used for accumulation (e.g., for

factorial, + for gauss-sum). With your accumulate procedure, ((accumulate

+) 100) should evaluate to 5050 and ((accumulate) 3) should evaluate to

6. We assume the result of the base case is 1 (although a more general

procedure could take that as a parameter).

 Hint: since your procedure should produce a procedure as its output, it

 could start like this:

 (define (accumulate f)

 (lambda (n)

 (if (= n 1) 1

97 | P a g e

 . . .

Example 4.2: Find Maximum

Consider the problem of defining a procedure that takes as its input a

procedure, a low value, and a high value, and outputs the maximum value

the input proce-dure produces when applied to an integer value between the

low value and high value input. We name the inputs f , low, and high. To

find the maximum, the find-maximum procedure should evaluate the input

procedure f at every integer value between the low and high, and output the

greatest value found.

Here are a few examples:

>(find-maximum (lambda (x) x) 1 20)

20

>(find-maximum (lambda (x) (10 x)) 1 20)

9

>(find-maximum (lambda (x) (* x (10 x))) 1 20)

25

To define the procedure, think about how to combine results from simpler

prob-lems to find the result. For the base case, we need a case so simple we

already know the answer. Consider the case when low and high are equal.

Then, there is only one value to use, and we know the value of the

maximum is (f low). So, the base case is (if (= low high) (f low) . . .).

How do we make progress towards the base case? Suppose the value of

high is equal to the value of low plus 1. Then, the maximum value is either

the value of (f low) or the value of (f (+ low 1)). We could select it using the

bigger procedure (from Example 3.3): (bigger (f low) (f (+ low 1))). We can

extend this to the case where high is equal to low plus 2:

(bigger (f low) (bigger (f (+ low 1)) (f (+ low 2))))

98 | P a g e

The second operand for the outer bigger evaluation is the maximum value

of the input procedure between the low value plus one and the high value

input. If we name the procedure we are defining find-maximum, then this

second operand is the result of (find-maximum f (+ low 1) high). This works

whether high is equal to (+ low 1), or (+ low 2), or any other value greater

than high.

Putting things together, we have our recursive definition of find-maximum:

(define (find-maximum f low high)

(if (= low high)

(f low)

(bigger (f low) (find-maximum f (+ low 1) high))))

Example 4.3: Euclid’s Algorithm

In Book 7 of the Elements, Euclid describes an algorithm for finding the

greatest common divisor of two non-zero integers. The greatest common

divisor is the greatest integer that divides both of the input numbers without

leaving any re-mainder. For example, the greatest common divisor of 150

and 200 is 50 since (/ 150 50) evaluates to 3 and (/ 200 50) evaluates to 4, and

there is no number greater than 50 that can evenly divide both 150 and 200.

The modulo primitive procedure takes two integers as its inputs and

evaluates to the remainder when the first input is divided by the second

input. For example, (modulo 6 3) evaluates to 0 and (modulo 7 3) evaluates

to 1.

Euclid’s algorithm stems from two properties of integers:

1. If (modulo a b) evaluates to 0 then b is the greatest common divisor

of a and b.

2. If (modulo a b) evaluates to a non-zero integer r, the greatest

common divisor of a and b is the greatest common divisor of b and

r.

99 | P a g e

We can define a recursive procedure for finding the greatest common

divisor closely following Euclid’s algorithm
5
:

(define (gcd-euclid a b)

(if (= (modulo a b) 0) b (gcd-euclid b (modulo a b))))

The structure of the definition is similar to the factorial definition: the

proce-dure body is an if expression and the predicate tests for the base case.

For the gcd-euclid procedure, the base case corresponds to the first property

above. It occurs when b divides a evenly, and the consequent expression is

b. The alter-nate expression, (gcd-euclid b (modulo a b)), is the recursive

application.

The gcd-euclid procedure differs from the factorial definition in that there is

no outer application expression in the recursive call. We do not need to

combine the result of the recursive application with some other value as

was done in the factorial definition, the result of the recursive application is

the final result. Un-like the factorial and find-maximum examples, the gcd-

euclid procedure pro-duces the result in the base case, and no further

computation is necessary to produce the final result. When no further

evaluation is necessary to get from the result of the recursive application to

the final result, a recursive definition is said to be tail recursive. Tail

recursive procedures have the advantage that they can be evaluated without

needing to keep track of the stack of previous recur-sive calls. Since the

final call produces the final result, there is no need for the interpreter to

unwind the recursive calls to produce the answer.

Exploration 4.1: Square Roots

One of the earliest known algorithms is a method for computing square

roots. It is known as Heron’s method after the Greek mathematician Heron

of Alexandria who lived in the first century AD who described the method,

although it was also known to the Babylonians many centuries earlier. Isaac

Newton developed a more general method for estimating functions based

100 | P a g e

on their derivatives known as Netwon’s method, of which Heron’s method

is a specialization.

Square root is a mathematical function that take a number, a, as input and

out-puts a value x such that x
2
 = a. For many numbers (including 2), the

square root is irrational, so the best we can hope for with is a good

approximation. We define a procedure find-sqrt that takes the target number

as input and outputs an approximation for its square root.

Heron’s method works by starting with an arbitrary guess, g0. Then, with

each iteration, compute a new guess (gn is the n
th

 guess) that is a function of

the previous guess (gn 1) and the target number (a):

 gn =
gn-

 1 + g-11

 2

As n increases gn gets closer and closer to the square root of a.

The definition is recursive since we compute gn as a function of gn 1, so we

can define a recursive procedure that computes Heron’s method. First, we

define a procedure for computing the next guess from the previous guess

and the target:

(define (heron-next-guess a g) (/ (+ g (/ a g)) 2))

Next, we define a recursive procedure to compute the n
th

 guess using

Heron’s method. It takes three inputs: the target number, a, the number of

guesses to make, n, and the value of the first guess, g.

(define (heron-method a n g)

(if (= n 0)

g

(heron-method a (―n 1) (heron-next-guess a g))))

101 | P a g e

To start, we need a value for the first guess. The choice doesn’t really

matter the method works with any starting guess (but will reach a closer

estimate quicker if the starting guess is good). We will use 1 as our starting

guess. So, we can define a find-sqrt procedure that takes two inputs, the

target number and the number of guesses to make, and outputs an

approximation of the square root of the target number.

(define (find-sqrt a guesses)

(heron-method a guesses 1))

Heron’s method converges to a good estimate very quickly:

>(square (find-sqrt 2 0))

1

>(square (find-sqrt 2 1))

2 1/4

>(square (find-sqrt 2 2))

2 1/144

>(square (find-sqrt 2 4))

2 1/221682772224

>(exact->inexact (find-sqrt 2 5))

1.4142135623730951

The actual square root of 2 is 1.414213562373095048 . . ., so our estimate

is correct to 16 digits after only five guesses.

Users of square roots don’t really care about the method used to find the

square root (or how many guesses are used). Instead, what is important to a

square root user is how close the estimate is to the actual value. Can we

change our find-sqrt procedure so that instead of taking the number of

guesses to make as its second input it takes a minimum tolerance value?

102 | P a g e

Since we don’t know the actual square root value (otherwise, of course, we

could just return that), we need to measure tolerance as how close the

square of the approximation is to the target number. Hence, we can stop

when the square of the guess is close enough to the target value.

(define (close-enough? a tolerance g)

(<= (abs (― a (square g))) tolerance))

The stopping condition for the recursive definition is now when the guess is

close enough. Otherwise, our definitions are the same as before.

(define (heron-method-tolerance a tolerance g)

 (if (close-enough? a tolerance g)

g

(heron-method-tolerance a tolerance (heron-next-guess a g))))

(define (find-sqrt-approx a tolerance)

(heron-method-tolerance a tolerance 1))

Note that the value passed in as tolerance does not change with each

recursive call. We are making the problem smaller by making each

successive guess closer to the required answer.

Here are some example interactions with find-sqrt-approx:

(exact->inexact (square (find-sqrt-approx 2 0.01)))

2.0069444444444446

(exact->inexact (square (find-sqrt-approx 2 0.0000001)))

2.000000000004511

a. How accurate is the built-in sqrt procedure?

b. Can you produce more accurate square roots than the built-in sqrt

procedure?

c. Why doesn’t the built-in procedure do better?

103 | P a g e

4.4 Evaluating Recursive Applications

Evaluating an application of a recursive procedure follows the evaluation

rules just like any other expression evaluation. It may be confusing,

however, to see that this works because of the apparent circularity of the

procedure definition.

Here, we show in detail the evaluation steps for evaluating (factorial 2). The

evaluation and application rules refer to the rules summary in Section 3.8.

We first show the complete evaluation following the substitution model

evaluation rules

in full gory detail, and later review a subset showing the most revealing

steps. Stepping through even a fairly simple evaluation using the evaluation

rules is quite tedious, and not something humans should do very often

(that’s why we have computers!) but instructive to do once to understand

exactly how an expression is evaluated.

The evaluation rule for an application expression does not specify the order

in which the sub expressions are evaluated. A Scheme interpreter is free to

evaluate them in any order. Here, we choose to evaluate the sub expressions

in the order that is most readable. The value produced by an evaluation does

not depend on the order in which the sub expressions are evaluated.
6

In the evaluation steps, we use typewriter font for un interpreted Scheme

expressions and sans-serif font to show values. So, 2 represents the Scheme

expression that evaluates to the number 2.

104 | P a g e

The key to evaluating recursive procedure applications is if special

evaluation rule. If the if expression were evaluated like a regular application

all subexpres-sions would be evaluated, and the alternative expression

containing the recur-sive call would never finish evaluating! Since the

evaluation rule for if evaluates the predicate expression first and does not

evaluate the alternative expression when the predicate expression is true,

105 | P a g e

the circularity in the definition ends when the predicate expression

evaluates to true. This is the base case. In the example, this is the base case

where (= n 0) evaluates to true and instead of producing another recursive

call it evaluates to 1.

The Evaluation Stack. The structure of the evaluation is clearer from just

the most revealing steps:

Step 1 starts evaluating (factorial 2). The result is found in Step 42. To eval-

uate (factorial 2), we follow the evaluation rules, eventually reaching the

body expression of the if expression in the factorial definition in Step 17.

Evaluating this expression requires evaluating the (factorial 1) sub

expression. At Step 17, the first evaluation is in progress, but to complete it

we need the value resulting from the second recursive application.

Evaluating the second application results in the body expression, (*1

(factorial 0)), shown for Step 31. At this point, the evaluation of (factorial

2) is stuck in Evaluation Rule 3, waiting for the value of (factorial 1) sub

expression. The evaluation of the (factorial 1) application leads to the

(factorial 0) sub expression, which must be evaluated before the (factorial

1) evaluation can complete.

In Step 40, the (factorial 0) sub expression evaluation has completed and

produced the value 1. Now, the (factorial 1) evaluation can complete,

producing 1 as shown in Step 41. Once the (factorial 1) evaluation

completes, all the sub expressions needed to evaluate the expression in Step

17 are now evaluated, and the evaluation completes in Step 42.

Each recursive application can be tracked using a stack, similarly to

processing RTN sub networks (Section 2.3). A stack has the property that

106 | P a g e

the first item pushed on the stack will be the last item removed—all the

items pushed on top of this one must be removed before this item can be

removed. For application evaluations, the elements on the stack are

expressions to evaluate. To finish evaluating the first expression, all of its

component sub expressions must be evaluated. Hence, the first application

evaluation started is the last one to finish.

4.5 Developing Complex Programs

To develop and use more complex procedures it will be useful to learn

some helpful techniques for understanding what is going on when

procedures are evaluated. It is very rare for a first version of a program to

be completely correct, even for an expert programmer. Wise programmers

build programs incremen-tally, by writing and testing small components

one at a time.

The process of fixing broken programs is known as debugging. The key to

debugging effectively is to be systematic and thoughtful. It is a good idea to

take

notes to keep track of what you have learned and what you have tried.

Thought-less debugging can be very frustrating, and is unlikely to lead to a

correct pro-gram.

A good strategy for debugging is to:

a. Ensure you understand the intended behavior of your procedure.

Think of a few representative inputs, and what the expected output

should be.

b. Do experiments to observe the actual behavior of your procedure.

Try your program on simple inputs first. What is the relationship

between the ac-tual outputs and the desired outputs? Does it work

correctly for some in-puts but not others?

107 | P a g e

c. Make changes to your procedure and retest it. If you are not sure

what to do, make changes in small steps and carefully observe the

impact of each change.

For more complex programs, follow this strategy at the level of sub-

components. For example, you can try debugging at the level of one

expression before trying the whole procedure. Break your program into

several procedures so you can test and debug each procedure independently.

The smaller the unit you test at one time, the easier it is to understand and

fix problems.

DrRacket provides many useful and powerful features to aid debugging, but

the most important tool for debugging is using your brain to think carefully

about what your program should be doing and how its observed behavior

differs from the desired behavior. Next, we describe two simple ways to

observe program behavior.

4.5.1 Printing

One useful procedure built-in to DrRacket is the display procedure. It takes

one input, and produces no output. Instead of producing an output, it prints

out the value of the input (it will appear in purple in the Interactions

window). We can use display to observe what a procedure is doing as it is

evaluated.

For example, if we add a (display n) expression at the beginning of our

factorial procedure we can see all the intermediate calls. To make each

printed value appear on a separate line, we use the newline procedure. The

newline procedure prints a new line; it takes no inputs and produces no

output.

(define (factorial n)

(display "Enter factorial: ") (display n) (newline)

108 | P a g e

(if (= n 0) 1 (n (factorial (― n 1)))))

Evaluating (factorial 2) produces:

Enter factorial: 2

Enter factorial: 1

Enter factorial: 0

2

The built-in printf procedure makes it easier to print out many values at

once. It takes one or more inputs. The first input is a string (a sequence of

characters enclosed in double quotes). The string can include special ~a

markers that print out values of objects inside the string. Each ~a marker is

matched with a corre-sponding input, and the value of that input is printed

in place of the ~a in the string. Another special marker, ~n, prints out a new

line inside the string.

Using printf , we can define our factorial procedure with printing as:

(define (factorial n)

(printf "Enter factorial: ˜a˜n" n)

(if (= n 0) 1 (⃰ n (factorial (―n 1)))))

The display, printf , and newline procedures do not produce output values.

Intead, they are applied to produce side effects. A side effect is something

that changes the state of a computation. In this case, the side effect is

printing in the Interactions window. Side effects make reasoning about what

programs do much more complicated since the order in which events

happen now matters. We will mostly avoid using procedures with side

effects until Chapter 9, but printing procedures are so useful that we

introduce them here.

4.5.2 Tracing

DrRacket provides a more automated way to observe applications of

procedures. We can use tracing to observe the start of a procedure

evaluation (including the procedure inputs) and the completion of the

109 | P a g e

evaluation (including the output). To use tracing, it is necessary to first load

the tracing library by evaluating this expression:

(require racket/trace)

This defines the trace procedure that takes one input, a constructed

procedure (trace does not work for primitive procedures). After evaluating

(trace proc), the interpreter will print out the procedure name and its inputs

at the beginning of every application of proc and the value of the output at

the end of the ap-plication evaluation. If there are other applications before

the first application finishes evaluating, these will be printed indented so it

is possible to match up the beginning and end of each application

evaluation. For example (the trace outputs are shown in typewriter font),

>(trace factorial)

>(factorial 2)

|(factorial 2)

|(factorial 1)

| (factorial 0)

| 1

|1

2

2

The trace shows that (factorial 2) is evaluated first; within its evaluation,

(factorial 1) and then (factorial 0) are evaluated. The outputs of each of these

applications is lined up vertically below the application entry trace.

Exploration 4.2: Recipes for π

The value π is the defined as the ratio between the circumference of a circle

and its diameter. One way to calculate the approximate value of π is the

Gregory-Leibniz series (which was actually discovered by the Indian

mathematician Mad-hava in the 14
th

 century):

π=4/1-4/3+4/5-4/7+4/9-...

110 | P a g e

This summation converges to π. The more terms that are included, the

closer the computed value will be to the actual value of π.

a. Define a procedure compute-pi that takes as input n, the number of

terms to include and outputs an approximation of π computed using

the first n terms of the Gregory-Leibniz series. (compute-pi 1)

should evaluate to 4 and (compute-pi 2) should evaluate to 2 2/3. For

higher terms, use the built-in procedure exact->inexact to see the

decimal value. For example,

(exact->inexact (compute-pi 10000))

evaluates (after a long wait!) to 3.1414926535900434.

The Gregory-Leibniz series is fairly simple, but it takes an awful long time

to con-verge to a good approximation for π — only one digit is correct after

10 terms, and after summing 10000 terms only the first four digits are

correct.

Madhava discovered another series for computing the value of π that

converges much more quickly:

π=√12*(1-1/3*3+1/5*3-1/7*3+1/9*4-...)

Madhava computed the first 21 terms of this series, finding an

approximation of π that is correct for the first 12 digits: 3.14159265359.

b. [**] Define a procedure cherry-pi that takes as input n, the number of

terms to include and outputs an approximation of π computed using

the first n terms of the Madhava¯ series. (Continue reading for

hints.)

To define faster-pi, first define two helper functions: faster-pi-helper, that

takes one input, n, and computes the sum of the first n terms in the series

without the √12 factor, and faster-pi-term that takes one input n and

computes the value of the n
th

 term in the series (without alternating the

adding and subtracting). (faster-pi-term 1) should evaluate to 1 and (faster-

pi-term 2) should evaluate to 1/9. Then, define faster-pi as:

(define (faster-pi terms) (⃰ (sqrt 12) (faster-pi-helper terms)))

111 | P a g e

This uses the built-in sqrt procedure that takes one input and produces as

out-put an approximation of its square root. The accuracy of the sqrt

procedure
7
 limits the number of digits of π that can be correctly computed

using this method (see Exploration 4.1 for ways to compute a more accurate

approximation for the square root of 12). You should be able to get a few

more correct digits than Madhava was able to get without a computer 600

years ago, but to get more digits would need a more accurate sqrt procedure

or another method for com-puting π.

The built-in expt procedure takes two inputs, a and b, and produces a
b
 as its

output. You could also define your own procedure to compute a
b
 for

any integer inputs a and b.

c. Find a procedure for computing enough digits of π to find the

Feynman point where there are six consecutive 9 digits. This point is

named for Richard Feynman, who quipped that he wanted to

memorize π to that point so he could recite it as “. . . nine, nine,

nine, nine, nine, nine, and so on”.

Exploration 4.3: Recursive Definitions and Games

Many games can be analyzed by thinking recursively. For this exploration,

we consider how to develop a winning strategy for some two-player games.

In all the games, we assume player 1 moves first, and the two players take

turns until the game ends. The game ends when the player who’s turn it is

cannot move; the other player wins. A strategy is a winning strategy if it

provides a way to always select a move that wins the game, regardless of

what the other player does.

One approach for developing a winning strategy is to work backwards from

the winning position. This position corresponds to the base case in a

recursive def-inition. If the game reaches a winning position for player 1,

then player 1 wins. Moving back one move, if the game reaches a position

where it is player 2’s move, but all possible moves lead to a winning

position for player 1, then player 1 is guaranteed to win. Continuing

112 | P a g e

backwards, if the game reaches a position where it is player 1’s move, and

there is a move that leads to a position where all pos-sible moves for player

2 lead to a winning position for player 1, then player 1 is guaranteed to win.

The first game we will consider is called Nim. Variants on Nim have been

played widely over many centuries, but no one is quite sure where the name

comes from. We’ll start with a simple variation on the game that was called

Thai 21 when it was used as an Immunity Challenge on Survivor.

In this version of Nim, the game starts with a pile of 21 stones. One each

turn, a player removes one, two, or three stones. The player who removes

the last stone wins, since the other player cannot make a valid move on the

following turn.

a. What should the player who moves first do to ensure she can always

win the game? (Hint: start with the base case, and work backwards.

Think about a game starting with 5 stones first, before trying 21.)

b. Suppose instead of being able to take 1 to 3 stones with each turn,

you can take 1 to n stones where n is some number greater than or

equal to 1. For what values of n should the first player always win

(when the game starts with 21 stones)?

A standard Nim game starts with three heaps. At each turn, a player

removes any number of stones from any one heap (but may not remove

stones from more than one heap). We can describe the state of a 3-heap

game of Nim using three numbers, representing the number of stones in

each heap. For example, the Thai 21 game starts with the state (21 0 0) (one

heap with 21 stones, and two empty heaps).
8

a. What should the first player do to win if the starting state is (2 1 0)?

b. Which player should win if the starting state is (2 2 2)?

c. [*] Which player should win if the starting state is (5 6 7)?

d. [**] Describe a strategy for always winning a winnable game of Nim

starting from any position.
9

113 | P a g e

The final game we consider is the “Corner the Queen” game invented by

Rufus Isaacs. The game is played using a single Queen on a arbitrarily large

chess-board as shown in Figure 4.5.

On each turn, a player moves the Queen one or more squares in either the

left, down, or diagonally down-left direction (unlike a standard chess

Queen, in this game the queen may not move right, up or up-right). As with

the other games, the last player to make a legal move wins. For this game,

once the Queen reaches the bottom left square marked with the ?, there are

no moves possible. Hence, the player who moves the Queen onto the ? wins

the game. We name the squares using the numbers on the sides of the

chessboard with the column number first. So, the Queen in the picture is on

square (4 7).

a. Identify all the starting squares for which the first played to move

can win right away. (Your answer should generalize to any size

square chessboard.)

b. Suppose the Queen is on square (2 1) and it is your move. Explain

why there is no way you can avoid losing the game.

c. Given the shown starting position (with the Queen at (4 7), would

you rather be the first or second player?

d. Describe a strategy for winning the game (when possible). Explain

from which starting positions it is not possible to win (assuming the

other player always makes the right move).

114 | P a g e

e. Define a variant of Nim that is essentially the same as the “Corner

the Queen” game. (This game is known as “Wythoff’s Nim”.)

Developing winning strategies for these types of games is similar to

defining a recursive procedure that solves a problem. We need to identify a

base case from which it is obvious how to win, and a way to make progress

fro m a large input towards that base case.

4.6 Summary

By breaking problems down into simpler problems we can develop

solutions to complex problems. Many problems can be solved by

combining instances of the same problem on simpler inputs. When we

define a procedure to solve a problem this way, it needs to have a predicate

expression to determine when the base case has been reached, a consequent

expression that provides the value for the base case, and an alternate

expression that defines the solution to the given input as an expression

using a solution to a smaller input.

Our general recursive problem solving strategy is:

1. Be optimistic! Assume you can solve it.

2. Think of the simplest version of the problem, something you can

already solve. This is the base case.

3. Consider how you would solve a big version of the problem by

using the result for a slightly smaller version of the problem. This is

the recursive case.

4. Combine the base case and the recursive case to solve the problem.

For problems involving numbers, the base case is often when the input

value is zero. The problem size is usually reduced is by subtracting 1 from

one of the inputs.

In the next chapter, we introduce more complex data structures. For

problems involving complex data, the same strategy will work but with

different base cases and ways to shrink the problem size.

115 | P a g e

 Check your progress III

a. A ______ is defined by its inputs and the desired property of the output.

b. A _________ is a procedure that takes other procedures as inputs or that

produces a procedure as its output.

4.7 Answer the Following

1. Define a procedure? How it can be used to solve a problem?

2. What is a composite procedures? Explain with the help of a

diagram.

3. Define higher order procedures.

4. What is a recurcive problem?

5. Suppose we define self-compose as a procedure that composes a

procedure with itself:

(define (self-compose f) (fcompose f f))

Explain how (((fcompose self-compose self-compose) inc) 1) is

evaluated.

6. Define a procedure fcompose that takes three procedures as in-put,

and produces as output a procedure that is the composition of the

three input procedures. For example, ((fcompose3 abs inc square) -

5) should evaluate to 36. Define fcompose two different ways: once

without using fcompose, and once using fcompose.

7. The fcompose procedure only works when both input procedures

take one input. Define a f2compose procedure that composes two

procedures where the first procedure takes two inputs, and the

second procedure takes one input. For example, ((f2compose + abs)

3 -5) should evaluate to 2.

8. Reputedly, when Karl Gauss was in elementary school his teacher

assigned the class the task of summing the integers from 1 to 100

(e.g., 1 + 2 + 3 + + 100) to keep them busy. Being the (future)

“Prince of Mathematics”, Gauss developed the formula for

calculating this sum, that is now known as the Gauss sum. Had he

116 | P a g e

been a computer scientist, however, and had access to a Scheme

interpreter in the late 1700s, he might have instead defined a

recursive procedure to solve the problem. Define a recursive

procedure, gauss-sum, that takes a number n as its input parameter,

and evaluates to the sum of the integers from 1 to n as its output. For

example, (gauss-sum 100) should evaluate to 5050.

 Answers to Check your progress III

➢ problem

➢ higher-order procedure

117 | P a g e

Data

Learning Objectives

After the completion of this unit, the learner shall be able to:

➢ Classify all datatypes in a program

➢ Implement built-in procedures for constructing a Pair

➢ Implement Procedures that Construct Lists

➢ we often use more than one

➢ Apply recursive call to go inside the inner Lists

➢ Explain data abstraction

Introduction

For all the programs so far, we have been limited to simple data such as

number and Booleans. We call this scalar data since it has no structure. As

we saw in Chapter 1, we can represent all discrete data using just

(enormously large) whole numbers. For example, we could represent the

text of a book using only one (very large!) number, and manipulate the

characters in the book by changing the value of that number. But, it would

be very difficult to design and understand computations that use numbers to

represent complex data.

We need more complex data structures to better model structured data. We

want to represent data in ways that allow us to think about the problem we

are trying to solve, rather than the details of how data is represented and

manipulated.

This chapter covers techniques for building data structures and for defining

pro-cedures that manipulate structured data, and introduces data abstraction

as a tool for managing program complexity.

118 | P a g e

5.1 Types

All data in a program has an associated type. Internally, all data is stored

just as a sequence of bits, so the type of the data is important to understand

what it means. We have seen several different types of data already:

Numbers, Booleans, and Procedures (we use initial capital letters to signify

a datatype).

A datatype defines a set (often infinite) of possible values. The Boolean

datatype contains the two Boolean values, true and false. The Number type

includes the infinite set of all whole numbers (it also includes negative

numbers and rational numbers). We think of the set of possible Numbers as

infinite, even though on any particular computer there is some limit to the

amount of memory available, and hence, some largest number that can be

represented. On any real com-puter, the number of possible values of any

data type is always finite. But, we can imagine a computer large enough to

represent any given number.

The type of a value determines what can be done with it. For example, a

Number can be used as one of the inputs to the primitive procedures +, ⃰ ,

and =. A Boolean can be used as the first subexpression of an if expression

and as the input to the not procedure (—not— can also take a Number as its

input, but for all Number value inputs the output is false), but cannot be used

as the input to +, , or =.
1

A Procedure can be the first subexpression in an application expression.

There are infinitely many different types of Procedures, since the type of a

Procedure depends on its input and output types. For example, recall bigger

procedure from Chapter 3:

(define (bigger a b) (if (> a b) a b))

119 | P a g e

It takes two Numbers as input and produces a Number as output. We denote

this type as:

Number × Number → Number

The inputs to the procedure are shown on the left side of the arrow. The

type of each input is shown in order, separated by the × symbol.
2
 The

output type is given on the right side of the arrow.

From its definition, it is clear that the bigger procedure takes two inputs

from its parameter list. How do we know the inputs must be Numbers and

the output is a Number?

The body of the bigger procedure is an if expression with the predicate

expres-sion (> a b). This applies the > primitive procedure to the two

inputs. The type of the > procedure is Number Number ! Boolean. So, for

the predi-cate expression to be valid, its inputs must both be Numbers. This

means the input values to bigger must both be Numbers. We know the

output of the bigger procedure will be a Number by analyzing the

consequent and alternate subex-pressions: each evaluates to one of the input

values, which must be a Number.

Starting with the primitive Boolean, Number, and Procedure types, we can

build arbitrarily complex datatypes. This chapter introduces mechanisms for

building complex datatypes by combining the primitive datatypes.

Exercise 5.1. Describe the type of each of these expressions.

a. 17

b. (lambda (a) (> a 0))

c. ((lambda (a) (> a 0)) 3)

d. (lambda (a) (lambda (b) (> a b)))

e. (lambda (a) a)

120 | P a g e

Exercise 5.2. Define or identify a procedure that has the given type.

a. Number × Number → Boolean

b. Number × Number

c. (Number → Number) × (Number → Number) → (Number → Number)

d. Number → (Number → (Number → Number))

5.2 Pairs

The simplest structured data construct is a Pair. We draw a Pair as two

boxes, Pair each containing a value. We call each box of a Pair a cell. Here is

a Pair where the first cell has the value 37 and the second cell has the value

42:

Scheme provides built-in procedures for constructing a Pair, and for

extracting each cell from a Pair:

cons: Value × Value → Pair

Evaluates to a Pair whose first cell is the first input and second cell is the

second input. The inputs can be of any type.

car: Pair → Value

Evaluates to the first cell of the input, which must be a Pair.

cdr: Pair → Value

Evaluates to the second cell of input, which must be a Pair.

These rather unfortunate names come from the original LISP

implementation on the IBM 704. The name cons is short for “construct”.

The name car is short for “Contents of the Address part of the Register” and

the name cdr (pronounced “could-er”) is short for “Contents of the

Decrement part of the Register”. The de-signers of the original LISP

implementation picked the names because of how pairs could be

implemented on the IBM 704 using a single register to store both parts of a

121 | P a g e

pair, but it is a mistake to name things after details of their implemen-tation

(see Section 5.6). Unfortunately, the names stuck.

We can construct the Pair shown above by evaluating (cons 37 42). DrRacket

displays a Pair by printing the value of each cell separated by a dot: (37 . 42).

The interactions below show example uses of cons, car, and cdr.

>(define mypair (cons 37 42))

>(car mypair)

37

>(cdr mypair)

42

The values in the cells of a Pair can be any type, including other Pairs. For

exam-ple, this definition defines a Pair where each cell of the Pair is itself a

Pair:

(define doublepair (cons (cons 1 2) (cons 3 4)))

We can use the car and cdr procedures to access components of the

doublepair structure: (car doublepair) evaluates to the Pair (1 . 2), and (cdr

doublepair) evaluates to the Pair (3 . 4).

We can compose multiple car and cdr applications to extract components

from nested pairs:

>(cdr (car doublepair))

2

>(car (cdr doublepair))

3

> ((fcompose cdr cdr) doublepair)

4

>(car (car (car doublepair)))

 car: expects argument of type <pair>; given 1

122 | P a g e

The last expression produces an error when it is evaluated since car is

applied to the scalar value 1. The car and cdr procedures can only be applied

to an input that is a Pair. Hence, an error results when we attempt to apply

car to a scalar value. This is an important property of data: the type of data

(e.g., a Pair) defines how it can be used (e.g., passed as the input to car and

cdr). Every procedure expects a certain type of inputs, and typically

produces an error when it is applied to values of the wrong type.

We can draw the value of doublepair by nesting Pairs within cells:

Drawing Pairs within Pairs within Pairs can get quite difficult, however. For

in-stance, try drawing (cons 1 (cons 2 (cons 3 (cons 4 5)))) this way.

Instead, we us arrows to point to the contents of cells that are not simple

values.

This is the structure of doublepair shown using arrows:

Using arrows to point to cell contents allows us to draw arbitrarily

complicated data structures such as (cons 1 (cons 2 (cons 3 (cons 4 5)))),

keeping the cells reasonable sizes:

5.2.1 Making Pairs

Although Scheme provides the built-in procedures cons, car, and cdr for

creat-ing Pairs and accessing their cells, there is nothing magical about

123 | P a g e

these proce-dures. We can define procedures with the same behavior

ourselves using the subset of Scheme introduced in Chapter 3.

Here is one way to define the pair procedures (we prepend an s to the names

to avoid confusion with the built-in procedures):

(define (scons a b) (lambda (w) (if w a b)))

(define (scar pair) (pair true))

(define (scdr pair) (pair false))

The scons procedure takes the two parts of the Pair as inputs, and produces

as output a procedure. The output procedure takes one input, a selector that

de-termines which of the two cells of the Pair to output. If the selector is

true, the value of the if expression is the value of the first cell; if the selector

is false, it is the value of the second cell. The scar and scdr procedures

apply a procedure constructed by scons to either true (to select the first cell

in scar) or false (to select the second cell in scdr).

5.2.2 Triples to Octuples

Pairs are useful for representing data that is composed of two parts such as

a calendar date (composed of a number and month), or a playing card

(composed of a rank and suit). But, what if we want to represent data

composed of more than two parts such as a date (composed of a number,

month, and year) or a poker hand consisting of five playing cards? For more

complex data structures, we need data structures that have more than two

components.

A triple has three components. Here is one way to define a triple datatype:

(define (make-triple a b c)

(lambda (w) (if (― w 0) a (if (― w 1) b c))))

(define (triple-first t) (t 0))

(define (triple-second t) (t 1))

124 | P a g e

(define (triple-third t) (t 2))

Since a triple has three components we need three different selector values.

Another way to make a triple would be to combine two Pairs. We do this by

making a Pair whose second cell is itself a Pair:

(define (make-triple a b c) (cons a (cons b c)))

(define (triple-first t) (car t))

(define (triple-second t) (car (cdr t)))

(define (triple-third t) (cdr (cdr t)))

Similarly, we can define a quadruple as a Pair whose second cell is a triple:

(define (make-quad a b c d) (cons a (make-triple b c d)))

(define (quad-first q) (car q))

(define (quad-second q) (triple-first (cdr q))

(define (quad-third q) (triple-second (cdr q))

(define (quad-fourth q) (triple-third (cdr q))

We could continue in this manner defining increasingly large tuples.

A triple is a Pair whose second cell is a Pair.

A quadruple is a Pair whose second cell is a triple.

A quintuple is a Pair whose second cell is a quadruple.

. . .

An n + 1-uple is a Pair whose second cell is an n-uple.

Building from the simple Pair, we can construct tuples containing any

number of components.

5.3 Lists

125 | P a g e

In the previous section, we saw how to construct arbitrarily large tuples

from Pairs. This way of managing data is not very satisfying since it

requires defining different procedures for constructing and accessing

elements of every length tu- ple. For many applications, we want to be able

to manage data of any length such as all the items in a web store, or all the

bids on a given item. Since the number of components in these objects can

change, it would be very painful to need to define a new tuple type every

time an item is added. We need a data type that can hold any number of

items.

This definition almost provides what we need:

An any-uple is a Pair whose second cell is an any-uple.

This seems to allow an any-uple to contain any number of elements. The

problem is we have no stopping point. With only the definition above, there

is no way to construct an any-uple without already having one.

The situation is similar to defining More Digits as zero or more digits in

Chapter 2, defining More Expressions in the Scheme grammar in Chapter 3

as zero or more Expressions, and recursive composition in Chapter 4.

Recall the grammar rules for More Expressions:

More Expressions ::=> Expression More Expressions

More Expressions ::=> ϵ

The rule for constructing an any-uple is analogous to the first More

Expression replacement rule. To allow an any-uple to be constructed, we

also need a construction rule similar to the second rule, where More

Expression can be replaced with nothing. Since it is hard to type and read

nothing in a program, Scheme has a name for this value: null.

DrRacket will print out the value of null as (). It is also known as the empty

list, since it represents the List containing no elements. The built-in

126 | P a g e

procedure null? takes one input parameter and evaluates to true if and only

if the value of that parameter is null.

Using null, we can now define a List:

A List is either (1) null or (2) a Pair whose second cell is a List.

Symbolically, we define a List as:

List ::=> null

List ::=> (cons Value List)

These two rules define a List as a data structure that can contain any

number of elements. Starting from null, we can create Lists of any length:

• null evaluates to a List containing no elements.

• (cons 1 null) evaluates to a List containing one element.

• (cons 1 (cons 2 null)) evaluates to a List containing two elements.

• (cons 1 (cons 2 (cons 3 null))) evaluates to a 3-element List.

Scheme provides a convenient procedure, list, for constructing a List. The

list procedure takes zero or more inputs, and evaluates to a List containing

those inputs in order. The following expressions are equivalent to the

corresponding expressions above: (list), (list 1), (list 1 2), and (list 1 2 3).

Lists are just a collection of Pairs, so we can draw a List using the same box

and arrow notation we used to draw structures created with Pairs. Here is

the struc-ture resulting from (list 1 2 3):

There are three Pairs in the List, the second cell of each Pair is a List. For

the third Pair, the second cell is the List null, which we draw as a slash

through the final cell in the diagram.

127 | P a g e

Table 5.1 summarizes some of the built-in procedures for manipulating

Pairs and Lists.

5.4 List Procedures

Since the List data structure is defined recursively, it is natural to define

recursive procedures to examine and manipulate lists. Whereas most

recursive procedures on inputs that are Numbers usually used 0 as the base

case, for lists the most common base case is null. With numbers, we make

progress by subtracting 1; with lists, we make progress by using cdr to

reduce the length of the input List by one element for each recursive

application. This means we often break problems involving Lists into

figuring out what to do with the first element of the List and the result of

applying the recursive procedure to the rest of the List.

We can specialize our general problem solving strategy from Chapter 3 for

procedures involving lists:

1. Be very optimistic! Since lists themselves are recursive data

structures, most problems involving lists can be solved with

recursive procedures.

2. Think of the simplest version of the problem, something you can

already solve. This is the base case. For lists, this is usually the

empty list.

3. Consider how you would solve a big version of the problem by

using the result for a slightly smaller version of the problem. This is

the recursive case. For lists, the smaller version of the problem is

usually the rest (cdr) of the List.

4. Combine the base case and the recursive case to solve the problem.

Next we consider procedures that examine lists by walking through their

ele-ments and producing a scalar value. Section 5.4.2 generalizes these

procedures. In Section 5.4.3, we explore procedures that output lists.

128 | P a g e

5.4.1 Procedures that Examine Lists

All of the example procedures in this section take a single List as input and

pro-duce a scalar value that depends on the elements of the List as output.

These procedures have base cases where the List is empty, and recursive

cases that ap-ply the recursive procedure to the cdr of the input List.

Example 5.1: Length

How many elements are in a given List?
3
 Our standard recursive problem

solv-ing technique is to “Think of the simplest version of the problem,

something you can already solve.” For this procedure, the simplest version

of the problem is when the input is the empty list, null. We know the length

of the empty list is 0. So, the base case test is (null? p) and the output for the base case is 0.

For the recursive case, we need to consider the structure of all lists other

than null. Recall from our definition that a List is either null or (cons Value

List). The base case handles the null list; the recursive case must handle a

List that is a Pair of an element and a List. The length of this List is one

more than the length of the List that is the cdr of the Pair.

(define (list-length p)

(if (null? p)

0

(+ 1 (list-length (cdr p)))))

Here are a few example applications of our list-length procedure:

>(list-length null)

0

>(list-length (cons 0 null))

1

>(list-length (list 1 2 3 4))

4

Example 5.2: List Sums and Products

129 | P a g e

First, we define a procedure that takes a List of numbers as input and

produces as output the sum of the numbers in the input List. As usual, the

base case is when the input is null: the sum of an empty list is 0. For the

recursive case, we need to add the value of the first number in the List, to

the sum of the rest of the numbers in the List.

(define (list-sum p)

(if (null? p) 0 (+ (car p) (list-sum (cdr p)))))

We can define list-product similarly, using in place of +. The base case re-

sult cannot be 0, though, since then the final result would always be 0 since

any number multiplied by 0 is 0. We follow the mathematical convention

that the product of the empty list is 1.

(define (list-product p)

 (if (null? p) 1 (⃰ (car p) (list-product (cdr p)))))

 Check your progress I

➢ Define a procedure is-list? that takes one input and outputs true if the input

is a List, and false otherwise. Your procedure should behave identically to

the built-in list? procedure, but you should not use list? in your definition.

5.4.2 Generic Accumulators

The list-length, list-sum, and list-product procedures all have very similar

struc-tures. The base case is when the input is the empty list, and the

recursive case involves doing something with the first element of the List

and recursively call-ing the procedure with the rest of the List:

(define (Recursive-Procedure p)

(if (null? p)

130 | P a g e

Base-Case-Result

(Accumulator-Function (car p) (Recursive-Procedure (cdr p)))))

We can define a generic accumulator procedure for lists by making the base

case result and accumulator function inputs:

(define (list-accumulate f base p)

(if (null? p)

base

(f (car p) (list-accumulate f base (cdr p)))))

We can use list-accumulate to define list-sum and list-product:

(define (list-sum p) (list-accumulate + 0 p))

(define (list-product p) (list-accumulate*1 p))

Defining the list-length procedure is a bit less natural. The recursive case in

the original list-length procedure is (+ 1 (list-length (cdr p))); it does not use

the value of the first element of the List. But, list-accumulate is defined to

take a procedure that takes two inputs—the first input is the first element of

the List; the second input is the result of applying list-accumulate to the rest

of the List. We should follow our usual strategy: be optimistic! Being

optimistic as in recur-sive definitions, the value of the second input should

be the length of the rest of the List. Hence, we need to pass in a procedure

that takes two inputs, ignores the first input, and outputs one more than the

value of the second input:

(define (list-length p)

(list-accumulate (lambda (el length-rest) (+ 1 length-rest)) 0 p))

Example 5.3: Accessing List Elements

The built-in car procedure provides a way to get the first element of a list,

but what if we want to get the third element? We can do this by taking the

131 | P a g e

cdr twice to eliminate the first two elements, and then using car to get the

third:

(car (cdr (cdr p)))

We want a more general procedure that can access any selected list element.

It takes two inputs: a List, and an index Number that identifies the element.

If we start counting from 1 (it is often more natural to start from 0), then the

base case is when the index is 1 and the output should be the first element of

the List:

(if (= n 1) (car p) . . .)

For the recursive case, we make progress by eliminating the first element of

the list. We also need to adjust the index: since we have removed the first

element of the list, the index should be reduced by one. For example,

instead of wanting the third element of the original list, we now want the

second element of the cdr of the original list.

(define (list-get-element p n)

(if (= n 1)

(car p)

(list-get-element (cdr p) (―n 1))))

What happens if we apply list-get-element to an index that is larger than the

size of the input List (for example, (list-get-element (list 1 2) 3))?

The first recursive call is (list-get-element (list 2) 2). The second recursive

call is (list-get-element (list) 1). At this point, n is 1, so the base case is

reached and (car p) is evaluated. But, p is the empty list (which is not a

Pair), so an error results.

A better version of list-get-element would provide a meaningful error

message when the requested element is out of range. We do this by adding

an if expres-sion that tests if the input List is null:

132 | P a g e

(define (list-get-element p n)

(if (null? p)

(error "Index out of range")

(if (= n 1) (car p) (list-get-element (cdr p) (―n 1)))))

The built-in procedure error takes a String as input. The String datatype is a

sequence of characters; we can create a String by surrounding characters

with double quotes, as in the example. The error procedure terminates

program ex-ecution with a message that displays the input value.

Checking explicitly for invalid inputs is known as defensive programming.

Programming defensively helps avoid tricky to debug errors and makes it

easier to understand what went wrong if there is an error.

5.4.3 Procedures that Construct Lists

The procedures in this section take values (including Lists) as input, and

pro-duce a new List as output. As before, the empty list is typically the base

case. Since we are producing a List as output, the result for the base case is

also usu-ally null. The recursive case will use cons to construct a List

combining the first element with the result of the recursive application on

the rest of the List.

Example 5.4: Mapping

One common task for manipulating a List is to produce a new List that is

the re-sult of applying some procedure to every element in the input List.

For the base case, applying any procedure to every element of the empty list

produces the empty list. For the recursive case, we use cons to construct a

List. The first element is the result of applying the mapping procedure to

the first element of the input List. The rest of the output List is the result of

recursively mapping the rest of the input List.

Here is a procedure that constructs a List that contains the square of every

ele-ment of the input List:

133 | P a g e

(define (list-square p)

(if (null? p) null

(cons (square (car p))

(list-square (cdr p)))))

We generalize this by making the procedure which is applied to each

element an input. The procedure list-map takes a procedure as its first input

and a List as its second input. It outputs a List whose elements are the

results of applying the input procedure to each element of the input List.
4

(define (list-map f p)

 (if (null? p) null

(cons (f (car p))

(list-map f (cdr p)))))

We can use list-map to define square-all:

(define (square-all p) (list-map square p))

Example 5.5: Filtering

Consider defining a procedure that takes as input a List of numbers, and

eval-uates to a List of all the non-negative numbers in the input. For

example, (list-filter-negative (list 1 3 4 5 2 0)) evaluates to (1 5 0).

First, consider the base case when the input is the empty list. If we filter the

negative numbers from the empty list, the result is an empty list. So, for the

base case, the result should be null.

In the recursive case, we need to determine whether or not the first element

should be included in the output. If it should be included, we construct a

new List consisting of the first element followed by the result of filtering

the remain-ing elements in the List. If it should not be included, we skip the

134 | P a g e

first element and the result is the result of filtering the remaining elements

in the List.

(define (list-filter-negative p)

(if (null? p) null

(if (>= (car p) 0)

(cons (car p) (list-filter-negative (cdr p)))

(list-filter-negative (cdr p)))))

Similarly to list-map, we can generalize our filter by making the test

procedure as an input, so we can use any predicate to determine which

elements to include in the output List.

(define (list-filter test p)

(if (null? p) null

(if (test (car p))

(cons (car p) (list-filter test (cdr p)))

(list-filter test (cdr p)))))

Using the list-filter procedure, we can define list-filter-negative as:

(define (list-filter-negative p) (list-filter (lambda (x) (>= x 0)) p))

We could also define the list-filter procedure using the list-accumulate

proce-dure from Section 5.4.1:

(define (list-filter test p)

(list-accumulate

(lambda (el rest) (if (test el) (cons el rest) rest))

null

p))

 Check your progress II

135 | P a g e

➢ Define a procedure list-filter-even that takes as input a List of numbers

and produces as output a List consisting of all the even elements of the

input List.

➢ Define a procedure list-remove that takes two inputs: a test pro-cedure and

a List. As output, it produces a List that is a copy of the input List with all

of the elements for which the test procedure evaluates to true removed. For

example, (list-remove (lambda (x) (= x 0)) (list 0 1 2 3)) should evaluates

to the List (1 2 3).

Example 5.6: Append

The list-append procedure takes as input two lists and produces as output a

List consisting of the elements of the first List followed by the elements of

the sec-ond List.
6
 For the base case, when the first List is empty, the result

of appending the lists should just be the second List. When the first List is

non-empty, we can produce the result by cons-ing the first element of the

first List with the result of appending the rest of the first List and the second

List.

(define (list-append p q)

(if (null? p) q

(cons (car p) (list-append (cdr p) q))))

Example 5.7: Reverse

The list-reverse procedure takes a List as input and produces as output a

List containing the elements of the input List in reverse order.
7
 For

example, (list-reverse (list 1 2 3)) evaluates to the List (3 2 1). As usual, we

consider the base case where the input List is null first. The reverse of the

empty list is the empty list. To reverse a non-empty List, we should put the

first element of the List at the end of the result of reversing the rest of the

List.

The tricky part is putting the first element at the end, since cons only puts

ele-ments at the beginning of a List. We can use the list-append procedure

defined in the previous example to put a List at the end of another List. To

136 | P a g e

make this work, we need to turn the element at the front of the List into a

List containing just that element. We do this using (list (car p)).

(define (list-reverse p)

(if (null? p) null

(list-append (list-reverse (cdr p)) (list (car p)))))

Example 5.8: Intsto

For our final example, we define the intsto procedure that constructs a List

con-taining the whole numbers between 1 and the input parameter value.

For exam-ple, (intsto 5) evaluates to the List (1 2 3 4 5).

This example combines ideas from the previous chapter on creating

recursive definitions for problems involving numbers, and from this chapter

on lists. Since the input parameter is not a List, the base case is not the

usual list base case when the input is null. Instead, we use the input value 0

as the base case. The result for input 0 is the empty list. For higher values,

the output is the result of putting the input value at the end of the List of

numbers up to the input value minus one.

A first attempt that doesn’t quite work is:

(define (revintsto n)

(if (= n 0) null

(cons n (revintsto (n 1)))))

The problem with this solution is that it is cons-ing the higher number to the

front of the result, instead of at the end. Hence, it produces the List of

numbers in descending order: (revintsto 5) evaluates to (5 4 3 2 1).

One solution is to reverse the result by composing list-reverse with

revintsto:

(define (intsto n) (list-reverse (revintsto n)))

137 | P a g e

Equivalently, we can use the fcompose procedure from Section 4.2:

(define intsto (fcompose list-reverse revintsto))

Alternatively, we could use list-append to put the high number directly at

the end of the List. Since the second operand to list-append must be a List,

we use (list n) to make a singleton List containing the value as we did for

list-reverse.

(define (revintsto n)

(if (= n 0) null

(list-append (intsto (–n 1)) (list n))))

Although all of these procedures are functionally equivalent (for all valid

inputs, each function produces exactly the same output), the amount of

computing work (and hence the time they take to execute) varies across the

implemen-tations. We consider the problem of estimating the running-times

of different procedures in Part II.

 Check your progress III

➢ Define factorial using intsto.

5.5 Lists of Lists

The elements of a List can be any datatype, including, of course, other

Lists. In defining procedures that operate on Lists of Lists, we often use

more than one recursive call when we need to go inside the inner Lists.

Example 5.9: Summing Nested Lists

138 | P a g e

Consider the problem of summing all the numbers in a List of Lists. For

exam-ple, (nested-list-sum (list (list 1 2 3) (list 4 5 6))) should evaluate to 21.

We can define nested-list-sum using list-sum on each List.

(define (nested-list-sum p)

(if (null? p) 0

(+ (list-sum (car p))

(nested-list-sum (cdr p)))))

This works when we know the input is a List of Lists. But, what if the input

can contain arbitrarily deeply nested Lists?

To handle this, we need to recursively sum the inner Lists. Each element in

our deep List is either a List or a Number. If it is a List, we should add the

value of the sum of all elements in the List to the result for the rest of the

List. If it is a Number, we should just add the value of the Number to the

result for the rest of the List. So, our procedure involves two recursive calls:

one for the first element in the List when it is a List, and the other for the

rest of the List.

(define (deep-list-sum p)

(if (null? p) 0

(+ (if (list? (car p))

(deep-list-sum (car p))

(car p))

(deep-list-sum (cdr p)))))

Example 5.10: Flattening Lists

Another way to compute the deep list sum would be to first flatten the List,

and then use the list-sum procedure.

Flattening a nested list takes a List of Lists and evaluates to a List

containing the elements of the inner Lists. We can define list-flatten by

using list-append to append all the inner Lists together.

139 | P a g e

(define (list-flatten p)

(if (null? p) null

(list-append (car p) (list-flatten (cdr p)))))

This flattens a List of Lists into a single List. To completely flatten a deeply

nested List, we use multiple recursive calls as we did with deep-list-sum:

(define (deep-list-flatten p)

(if (null? p) null

(list-append (if (list? (car p))

(deep-list-flatten (car p))

(list (car p)))

(deep-list-flatten (cdr p)))))

Now we can define deep-list-sum as:

(define deep-list-sum (fcompose deep-list-flatten list-sum))

Exploration 5.1: Pascal’s Triangle

Pascal’s Triangle (named for Blaise Pascal, although known to many others

be-fore him) is shown below:

Each number in the triangle is the sum of the two numbers immediately

above and to the left and right of it. The numbers in Pascal’s Triangle are

140 | P a g e

the coefficients in a binomial expansion. The numbers of the n
th

 row (where

the rows are numbered starting from 0) are the coefficients of the binomial

expansion of (x + y)
n
. For example, (x + y)2 = x2 + 2xy + y2, so the

coefficients are 1 2 1, matching the third row in the triangle; from the fifth

row, (x + y)4 = x 4 + 4x3y + 6x2y2 + 4xy3 + y4. The values in the triangle

also match the number of ways to choose k elements from a set of size n

(see Exercise 4.5) — the kth number on the nth row of the triangle gives the

number of ways to choose k elements from a set of size n. For example, the

third number on the fifth (n = 4) row is 6, so there are 6 ways to choose 3

items from a set of size 4.

The goal of this exploration is to define a procedure, pascals-triangle to

produce Pascal’s Triangle. The input to your procedure should be the

number of rows; the output should be a list, where each element of the list

is a list of the numbers on that row of Pascal’s Triangle. For example,

(pascals-triangle 0) should produce ((1)) (a list containing one element

which is a list containing the number 1), and (pascals-triangle 4) should

produce ((1) (1 1) (1 2 1) (1 3 3 1) (1 4 6 4 1)).

Ambitious readers should attempt to define pascals-triangle themselves; the

sub-parts below provide some hints for one way to define it.

a. First, define a procedure expand-row that expands one row in the

triangle. It takes a List of numbers as input, and as output produces a

List with one more element than the input list. The first number in

the output List should be the first number in the input List; the last

number in the output List should be the last number in the input

List. Every other number in the output List is the sum of two

numbers in the input List. The n
th

 number in the output List is the

sum of the n 1
th

 and n
th

 numbers in the input List. For example,

(expand-row (list 1)) evaluates to (1 1); (expand-row (list 1 1))

evaluates to (1 2 1); and (expand-row (list 1 4 6 4 1)) evaluates to (1 5 10

10 5 1). This is trickier than the recursive list procedures we have seen

141 | P a g e

so far since the base case is not the empty list. It also needs to deal

with the first element specially. To define expand-row, it will be

helpful to divide it into two procedures, one that deals with the first

element of the list, and one that produces the rest of the list:

(define (expand-row p) (cons (car p) (expand-row-rest p)))

b. Define a procedure pascals-triangle-row that takes one input, n, and

outputs the n
th

 row of Pascal’s Triangle. For example, (pascals-

triangle-row 0) evalu-ates to (1) and (pascals-triangle-row 3)

produces (1 3 3 1).

c. Finally, define pascals-triangle with the behavior described above.

5.6 Data Abstraction

The mechanisms we have for constructing and manipulating complex data

struc-tures are valuable because they enable us to think about programs

closer to the level of the problem we are solving than the low level of how

data is stored and manipulated in the computer. Our goal is to hide

unnecessary details about how data is represented so we can focus on the

important aspects of what the data means and what we need to do with it to

solve our problem. The technique of hiding how data is represented from

how it is used is known as data abstraction.

The datatypes we have seen so far are not very abstract. We have datatypes

for representing Pairs, triples, and Lists, but we want datatypes for

representing ob-jects closer to the level of the problem we want to solve. A

good data abstraction is abstract enough to be used without worrying about

details like which cell of the Pair contains which datum and how to access

the different elements of a List. Instead, we want to define procedures with

meaningful names that manipulate the relevant parts of our data.

142 | P a g e

The rest of this section is an extended example that illustrates how to solve

prob-lems by first identifying the objects we need to model the problem,

and then im-plementing data abstractions that represent those objects. Once

the appropriate data abstractions are designed and implemented, the

solution to the prob-lem often follows readily. This example also uses many

of the list procedures defined earlier in this chapter.

Exploration 5.2: Pegboard Puzzle

For this exploration, we develop a program to solve the infamous pegboard

puz-zle, often found tormenting unsuspecting diners at pancake restaurants.

The standard puzzle is a one-player game played on a triangular board with

fifteen holes with pegs in all of the holes except one.

The goal is to remove all but one of the pegs by jumping pegs over one

another. A peg may jump over an adjacent peg only when there is a free

hole on the other side of the peg. The jumped peg is removed. The game

ends when there are no possible moves. If there is only one peg remaining,

the player wins (according to the Cracker Barrel version of the game,

“Leave only one—you’re genius”). If more than one peg remains, the

player loses (“Leave four or more’n you’re just plain ‘eg-no-ra-moose’.”).

 Figure 5.1. Pegboard Puzzle.

The blue peg can jump the red peg as shown, removing the red peg. The resulting posi-tion

is a winning position.

Our goal is to develop a program that finds a winning solution to the

pegboard game from any winnable starting position. We use a brute force

approach: try all possible moves until we find one that works. Brute force

143 | P a g e

solutions only work on small-size problems. Because they have to try all

possibilities they are of-ten too slow for solving large problems, even on the

most powerful computers imaginable.
8

The first thing to think about to solve a complex problem is what datatypes

we need. We want datatypes that represent the things we need to model in

our problem solution. For the pegboard game, we need to model the board

with its pegs. We also need to model actions in the game like a move

(jumping over a peg). The important thing about a datatype is what you can

do with it. To design our board datatype we need to think about what we

want to do with a board. In the physical pegboard game, the board holds the

pegs. The important property we need to observe about the board is which

holes on the board contain pegs. For this, we need a way of identifying

board positions. We define a datatype for representing positions first, then a

datatype for representing moves, and a datatype for representing the board.

Finally, we use these datatypes to define a procedure that finds a winning

solution.

Position. We identify the board positions using row and column numbers:

(1 1)

(2 1) (2 2)

(3 1) (3 2) (3 3)

(4 1) (4 2) (4 3) (4 4)

(5 1) (5 2) (5 3) (5 4) (5 5)

A position has a row and a column, so we could just use a Pair to represent

a position. This would work, but we prefer to have a more abstract datatype

so we can think about a position’s row and column, rather than thinking that

a position is a Pair and using the car and cdr procedures to extract the row

and column from the position.

Our Position datatype should provide at least these operations:

144 | P a g e

make-position: Number × Number → Position

Creates a Position representing the row and column given by the input

numbers.

position-get-row: Position → Number

Outputs the row number of the input Position.

position-get-column: Position → Number

Outputs the column number of the input Position.

Since the Position needs to keep track of two numbers, a natural way to

imple-ment the Position datatype is to use a Pair. A more defensive

implementation of the Position datatype uses a tagged list. With a tagged

list, the first element of the list is a tag denoting the datatype it represents.

All operations check the tag is correct before proceeding. We can use any

type to encode the list tag, but it is most convenient to use the built-in

Symbol type. Symbols are a quote (’) followed by a sequence of characters.

The important operation we can do with a Symbol, is test whether it is an

exact match for another symbol using the eq? procedure.

We define the tagged list datatype, tlist, using the list-get-element

procedure from Example 5.3:

(define (make-tlist tag p) (cons tag p))

(define (tlist-get-tag p) (car p))

(define (tlist-get-element tag p n)

(if (eq? (tlist-get-tag p) tag)

(list-get-element (cdr p) n)

(error (format "Bad tag: ˜a (expected ˜a)"

(tlist-get-tag p) tag))))

The format procedure is a built-in procedure similar to the printf procedure

described in Section 4.5.1. Instead of printing as a side effect, format

produces a String. For example, (format "list: ˜a number: ˜a." (list 1 2 3)

123) evaluates to the String "list: (1 2 3) number: 123.".

145 | P a g e

This is an example of defensive programming. Using our tagged lists, if we

ac-cidentally attempt to use a value that is not a Position as a position, we

will get a clear error message instead of a hard-to-debug error (or worse, an

unnoticed incorrect result).

Using the tagged list, we define the Position datatype as:

(define (make-position row col) (make-tlist ’Position (list row col)))

(define (position-get-row posn) (tlist-get-element ’Position posn 1))

(define (position-get-column posn) (tlist-get-element ’Position posn 2))

Here are some example interactions with our Position datatype:

>(define pos (make-position 2 1))

>pos

(Position 2 1)

>(get-position-row pos)

2

>(get-position-row (list 1 2))

Bad tag: 1 (expected Position)

Move. A move involves three positions: where the jumping peg starts, the

po-sition of the peg that is jumped and removed, and the landing position.

One possibility would be to represent a move as a list of the three positions.

A better option is to observe that once any two of the positions are known,

the third po-sition is determined. For example, if we know the starting

position and the land-ing position, we know the jumped peg is at the

position between them. Hence, we could represent a jump using just the

starting and landing positions.

Another possibility is to represent a jump by storing the starting Position

and the direction. This is also enough to determine the jumped and landing

positions. This approach avoids the difficulty of calculating jumped

positions. To do it, we first design a Direction datatype for representing the

146 | P a g e

possible move directions. Directions have two components: the change in

the column (we use 1 for right and 1 for left), and the change in the row (1

for down and 1 for up).

We implement the Direction datatype using a tagged list similarly to how

we defined Position:

(define (make-direction right down)

(make-tlist ’Direction (list right down)))

(define (direction-get-horizontal dir) (tlist-get-element ’Direction dir 1))

(define (direction-get-vertical dir) (tlist-get-element ’Direction dir 2))

The Move datatype is defined using the starting position and the jump

direction:

(define (make-move start direction)

(make-tlist ’Move (list start direction)))

(define (move-get-start move) (tlist-get-element ’Move move 1))

(define (move-get-direction move) (tlist-get-element ’Move move 2))

We also define procedures for getting the jumped and landing positions of a

move. The jumped position is the result of moving one step in the move di-

rection from the starting position. So, it will be useful to define a procedure

that takes a Position and a Direction as input, and outputs a Position that is

one step in the input Direction from the input Position.

(define (direction-step pos dir)

(make-position

(+ (position-get-row pos) (direction-get-vertical dir))

(+ (position-get-column pos) (direction-get-horizontal dir))))

Using direction-step we can implement procedure to get the middle and

landing positions.

147 | P a g e

(define (move-get-jumped move)

(direction-step (move-get-start move) (move-get-direction move)))

(define (move-get-landing move)

(direction-step (move-get-jumped move) (move-get-direction move)))

Board. The board datatype represents the current state of the board. It

keeps track of which holes in the board contain pegs, and provides

operations that model adding and removing pegs from the board:

make-board: Number → Board

Outputs a board full of pegs with the input number of rows. (The stan-dard

physical board has 5 rows, but our datatype supports any number of rows.)

board-rows: Board → Number

Outputs the number of rows in the input board.

board-valid-position?: Board × Position → Boolean

Outputs true if input Position corresponds to a position on the Board;

otherwise, false.

board-is-winning?: Board → Boolean

Outputs true if the Board represents a winning position (exactly one peg);

otherwise, false.

board-contains-peg?: Position → Boolean

Outputs true if the hole at the input Position contains a peg; otherwise,

false.

board-add-peg : Board × Position → Board

Output a Board containing all the pegs of the input Board and one addi-

tional peg at the input Position. If the input Board already has a peg at the

input Position, produces an error.

board-remove-peg : Board × Position ! Board

Outputs a Board containing all the pegs of the input Board except for the

peg at the input Position. If the input Board does not have a peg at the input

Position, produces an error.

148 | P a g e

The procedures for adding and removing pegs change the state of the board

to reflect moves in the game, but nothing we have seen so far, however,

provides a means for changing the state of an existing object.
9
 So, instead

of defining these operations to change the state of the board, they actually

create a new board that is different from the input board by the one new

peg. These procedures take a Board and Position as inputs, and produce as

output a Board.

There are lots of different ways we could represent the Board. One

possibility is to keep a List of the Positions of the pegs on the board.

Another possibility is to keep a List of the Positions of the empty holes on

the board. Yet another pos-sibility is to keep a List of Lists, where each List

corresponds to one row on the board. The elements in each of the Lists are

Booleans representing whether or not there is a peg at that position. The

good thing about data abstraction is we could pick any of these

representations and change it to a different representa-tion later (for

example, if we needed a more efficient board implementation). As long as

the procedures for implementing the Board are updated the work with the

new representation, all the code that uses the board abstraction should con-

tinue to work correctly without any changes.

We choose the third option and represent a Board using a List of Lists

where each element of the inner lists is a Boolean indicating whether or not

the cor-responding position contains a peg. So, make-board evaluates to a

List of Lists, where each element of the List contains the row number of

elements and all the inner elements are true (the initial board is completely

full of pegs). First, we de-fine a procedure make-list-of-constants that takes

two inputs, a Number, n, and a Value, val. The output is a List of length n

where each element has the value val.

(define (make-list-of-constants n val)

(if (= n 0) null (cons val (make-list-of-constants (– n 1) val))))

149 | P a g e

To make the initial board, we use make-list-of-constants to make each row

of the board. As usual, a recursive problem solving strategy works well: the

simplest board is a board with zero rows (represented as the empty list); for

each larger board, we add a row with the right number of elements.

The tricky part is putting the rows in order. This is similar to the problem

we faced with intsto, and a similar solution using append-list works here:

(define (make-board rows)

(if (= rows 0) null

(list-append (make-board (– rows 1))

(list (make-list-of-constants rows true)))))

Evaluating (make-board 3) produces ((true) (true true) (true true true)).

The board-rows procedure takes a Board as input and outputs the number of

rows on the board.

(define (board-rows board) (length board))

The board-valid-position? indicates if a Position is on the board. A position

is valid if its row number is between 1 and the number of rows on the

board, and its column numbers is between 1 and the row number.

(define (board-valid-position? board pos)

(and (>= (position-get-row pos) 1) (>= (position-get-column pos) 1)

(<= (position-get-row pos) (board-rows board))

(<= (position-get-column pos) (position-get-row pos))))

We need a way to check if a Board represents a winning solution (that is,

contains only one peg). We implement a more general procedure to count

the number of pegs on a board first. Our board representation used true to

represent a peg. To count the pegs, we first map the Boolean values used to

represent pegs to 1 if there is a peg and 0 if there is no peg. Then, we use

150 | P a g e

sum-list to count the number of pegs. Since the Board is a List of Lists, we

first use list-flatten to put all the pegs in a single List.

(define (board-number-of-pegs board)

(list-sum

(list-map (lambda (peg) (if peg 1 0)) (list-flatten board))))

A board is a winning board if it contains exactly one peg:

(define (board-is-winning? board)

(= (board-number-of-pegs board) 1))

The board-contains-peg? procedure takes a Board and a Position as input,

and outputs a Boolean indicating whether or not that Position contains a

peg. To im-plement board-contains-peg? we need to find the appropriate

row in our board representation, and then find the element in its list

corresponding to the posi-tion’s column. The list-get-element procedure

(from Example 5.3) does exactly what we need. Since our board is

represented as a List of Lists, we need to use it twice: first to get the row,

and then to select the column within that row:

(define (board-contains-peg? board pos)

(list-get-element (list-get-element board (position-get-row pos))

(position-get-column pos)))

Defining procedures for adding and removing pegs from the board is more

com-plicated. Both of these procedures need to make a board with every

row identi-cal to the input board, except the row where the peg is added or

removed. For that row, we need to replace the corresponding value. Hence,

instead of defining separate procedures for adding and removing we first

implement a more general board-replace-peg procedure that takes an extra

parameter indicating whether a peg should be added or removed at the

selected position.

151 | P a g e

First we consider the subproblem of replacing a peg in a row. The

procedure row-replace-peg takes as input a List representing a row on the

board and a Number indicating the column where the peg should be

replaced. We can de-fine row-replace-peg recursively: the base case is

when the modified peg is at the beginning of the row (the column number is

1); in the recursive case, we copy the first element in the List, and replace

the peg in the rest of the list. The third parameter indicates if we are adding

or removing a peg. Since true values rep-resent holes with pegs, a true value

indicates that we are adding a peg and false means we are removing a peg.

(define (row-replace-peg pegs col val)

(if (= col 1)

(cons val (cdr pegs))

(cons (car pegs) (row-replace-peg (cdr pegs) (– col 1) val))))

To replace the peg on the board, we use row-replace-peg to replace the peg

on the appropriate row, and keep all the other rows the same.

(define (board-replace-peg board row col val)

(if (= row 1)

(cons (row-replace-peg (car board) col val) (cdr board))

(cons (car board) (board-replace-peg (cdr board) (– row 1) col val))))

Both board-add-peg and board-remove-peg can be defined simply using

board- remove-peg . They first check if the operation is valid (adding is

valid only if the selected position does not contain a peg, removing is valid

only if the selected position contains a peg), and then use board-replace-peg

to produce the modi-fied board:

(define (board-add-peg board pos)

(if (board-contains-peg? board pos)

(error (format "Board already contains peg at position: ˜a" pos))

(board-replace-peg board (position-get-row pos)

(position-get-column pos) true)))

152 | P a g e

(define (board-remove-peg board pos)

(if (not (board-contains-peg? board pos))

(error (format "Board does not contain peg at position: ˜a" pos))

(board-replace-peg board (position-get-row pos)

(position-get-column pos) false)))

We can now define a procedure that models making a move on a board.

Making a move involves removing the jumped peg and moving the peg

from the start-ing position to the landing position. Moving the peg is

equivalent to removing the peg from the starting position and adding a peg

to the landing position, so the procedures we defined for adding and

removing pegs can be composed to model making a move. We add a peg

landing position to the board that results from removing the pegs in the

starting and jumped positions:

(define (board-execute-move board move)

(board-add-peg

(board-remove-peg

(board-remove-peg board (move-get-start move))

(move-get-jumped move))

(move-get-landing move)))

Finding Valid Moves. Now that we can model the board and simulate

making jumps, we are ready to develop the solution. At each step, we try all

valid moves on the board to see if any move leads to a winning position

(that is, a position with only one peg remaining). So, we need a procedure

that takes a Board as its input and outputs a List of all valid moves on the

board. We break this down into the problem of producing a list of all

conceivable moves (all moves in all directions from all starting positions on

the board), filtering that list for moves that stay on the board, and then

filtering the resulting list for moves that are legal (start at a position

containing a peg, jump over a position containing a peg, and land in a

position that is an empty hole).

153 | P a g e

First, we generate all conceivable moves by creating moves starting from

each position on the board and moving in all possible move directions. We

break this down further: the first problem is to produce a List of all

positions on the board.

We can generate a list of all row numbers using the intsto procedure (from

Ex-ample 5.8). To get a list of all the positions, we need to produce a list of

the positions for each row. We do this by mapping each row to the

corresponding list:

(define (all-positions-helper board)

(list-map

(lambda (row) (list-map (lambda (col) (make-position row col))

(intsto row)))

(intsto (board-rows board)))

This almost does what we need, except instead of producing one List

containing all the positions, it produces a List of Lists for the positions in

each row. The list-flatten procedure (from Example 5.10) produces a flat

list containing all the positions.

(define (all-positions board)

(list-flatten (all-positions-helper board)))

For each Position, we find all possible moves starting from that position.

We can move in six possible directions on the board: left, right, up-left, up-

right, down-left, and down-right.

(define all-directions

(list

(make-direction – 1 0) (make-direction 1 0) ; left, right

(make-direction – 1 – 1) (make-direction 0 – 1) ; up-left, up-right

(make-direction 0 1) (make-direction 1 1))) ; down-left, down-right

154 | P a g e

For each position on the board, we create a list of possible moves starting at

that position and moving in each possible move directions. This produces a

List of Lists, so we use list-flatten to flatten the output of the list-map

application into a single List of Moves.

(define (all-conceivable-moves board)

(list-flatten

(list-map

(lambda (pos) (list-map (lambda (dir) (make-move pos dir))

all-directions))

(all-positions board))))

The output produced by all-conceivable-moves includes moves that fly off

the board. We use the list-filter procedure to remove those moves, to get the

list of moves that stay on the board:

(define (all-board-moves board)

(list-filter

(lambda (move) (board-valid-position? board (move-get-landing move)))

(all-conceivable-moves board)))

Finally, we need to filter out the moves that are not legal moves. A legal

move must start at a position that contains a peg, jump over a position that

contains a peg, and land in an empty hole. We use list-filter similarly to

how we kept only the moves that stay on the board:

(define (all-legal-moves board)

(list-filter

(lambda (move)

(and

(board-contains-peg? board (move-get-start move))

(board-contains-peg? board (move-get-jumped move))

(not (board-contains-peg? board (move-get-landing move)))))

(all-board-moves board)))

155 | P a g e

Winning the Game. Our goal is to find a sequence of moves that leads to a

win-ning position, starting from the current board. If there is a winning

sequence of moves, we can find it by trying all possible moves on the

current board. Each of these moves leads to a new board. If the original

board has a winning sequence of moves, at least one of the new boards has

a winning sequence of moves. Hence, we can solve the puzzle by

recursively trying all moves until finding a winning position.

(define (solve-pegboard board)

(if (board-is-winning? board)

null ; no moves needed to reach winning position (try-moves board (all-

legal-moves board))))

If there is a sequence of moves that wins the game starting from the input

Board, solve-pegboard outputs a List of Moves representing a winning

sequence. This could be null, in the case where the input board is already a

winning board. If there is no sequence of moves to win from the input

board, solve-pegboard out-puts false.

It remains to define the try-moves procedure. It takes a Board and a List of

Moves as inputs. If there is a sequence of moves that starts with one of the

input moves and leads to a winning position it outputs a List of Moves that

wins; otherwise, it outputs false.

The base case is when there are no moves to try. When the input list is null

it means there are no moves to try. We output false to mean this attempt did

not lead to a winning board. Otherwise, we try the first move. If it leads to a

winning position, try-moves should output the List of Moves that starts with

the first move and is followed by the rest of the moves needed to solve the

board resulting from taking the first move (that is, the result of solve-

pegboard applied to the Board resulting from taking the first move). If the

first move doesn’t lead to a winning board, it tries the rest of the moves by

calling try-moves recursively.

156 | P a g e

(define (try-moves board moves)

(if (null? moves)

false ; didn’t find a winner

(if (solve-pegboard (board-execute-move board (car moves)))

(cons (car moves)

(solve-pegboard (board-execute-move board (car moves))))

(try-moves board (cdr moves)))))

Evaluating (solve-pegboard (make-board 5)) produces false since there is no

way to win starting from a completely full board. Evaluating (solve-

pegboard (board-remove-peg (make-board 5) (make-position 1 1))) takes

about three minutes to produce this sequence of moves for winning the

game starting from a 5-row board with the top peg removed:

((Move (Position 3 1) (Direction – 1))

(Move (Position 3 3) (Direction – 1 0))

(Move (Position 1 1) (Direction 1 1))

(Move (Position 4 1) (Direction 0 – 1))

. . . ; 8 moves elided

(Move (Position 5 1) (Direction 1 1)))

[*] Change the implementation to use a different Board representation, such

as keeping a list of the Positions of each hole on the board. Only the proce-

dures with names starting with board- should need to change when the

Board representation is changed. Compare your implementation to this one.

[*] The standard pegboard puzzle uses a triangular board, but there is no

reason the board has to be a triangle. Define a more general pegboard

puzzle solver that works for a board of any shape.

[**] The described implementation is very inefficient. It does lots of redun-

dant computation. For example, all-possible-moves evaluates to the same

value every time it is applied to a board with the same number of rows. It is

157 | P a g e

wasteful to recompute this over and over again to solve a given board. See

how much faster you can make the pegboard solver. Can you make it fast

enough to solve the 5-row board in less than half the original time? Can you

make it fast enough to solve a 7-row board?

5.7 Summary

Recursive definitions. We have seen many types of recursive definitions

and used them to solve problems, including the pegboard puzzle. Recursive

grammars provide a compact way to define a language; recursive procedure

definitions enable us to solve problems by optimistically assuming a

smaller problem in-stance can be solved and using that solution to solve the

problem; recursive data structures such as the list type allow us to define

and manipulate complex data built from simple components. All recursive

definitions involve a base case. For grammars, the base case provides a way

to stop the recursive replacements by produce a terminal (or empty output)

directly; for procedures, the base case provides a direct solution to a small

problem instance; for data structures, the base case provides a small

instance of the data type (e.g., null). We will see many more examples of

recursive definitions in the rest of this book.

Universality. All of the programs we have can be created from the simple

subset of Scheme introduced in Chapter 3. This subset is a universal

programming language: it is powerful enough to describe all possible

computations. We can generate all the programs using the simple Scheme

grammar, and interpret their meaning by systematically following the

evaluation rules. We have also seen the universality of code and data.

Procedures can take procedures as inputs, and produce procedures as

outputs.

Abstraction. Abstraction hides details by giving things names. Procedural

ab-straction defines a procedure; by using inputs, a short procedure

158 | P a g e

definition can abstract infinitely many different information processes. Data

abstraction hides the details of how data is represented by providing

procedures that abstractly create and manipulate that data. As we develop

programs to solve more com-plex problems, it is increasingly important to

use abstraction well to manage complexity. We need to break problems

down into smaller parts that can be solved separately. Solutions to complex

problems can be developed by think-ing about what objects need to be

modeled, and designing data abstractions the implement those models. Most

of the work in solving the problem is defining the right datatypes; once we

have the datatypes we need to model the problem well, we are usually well

along the path to a solution.

 Check your progress IV

➢ A ________ defines a set of possible values.

➢ Checking explicitly for invalid inputs is known as _________ .

➢ The technique of hiding how data is represented from how it is used is

known as _____________ .

5.8 Answer the Following

1. Define defensive programming.

2. Define data abstraction.

3. What is brute-force approach?

4. Define a procedure list-max that takes a List of non-negative

numbers as its input and produces as its result the value of the

greatest element in the List (or 0 if there are no elements in the input

List). For example, (list-max (list 1 1 2 0)) should evaluate to 2.

5. Define a procedure deep-list-map that behaves similarly to list-map

but on deeply nested lists. It should take two parameters, a mapping

procedure, and a List (that may contain deeply nested Lists as

elements), and output a List with the same structure as the input List

with each value mapped using the mapping procedure.

159 | P a g e

6. Define a procedure deep-list-filter that behaves similarly to list-filter

but on deeply nested lists.

7. Define the list-reverse procedure using list-accumulate.

8. Define a procedure list-last-element that takes as input a List and

outputs the last element of the input List. If the input List is empty,

list-last-element should produce an error.

9. Define a procedure list-ordered? that takes two inputs, a test

procedure and a List. It outputs true if all the elements of the List are

ordered according to the test procedure. For example, (list-ordered?

< (list 1 2 3)) evalu-ates to true, and (list-ordered? < (list 1 2 3 2))

evaluates to false. Hint: think about what the output should be for

the empty list.

10. Define a procedure list-increment that takes as input a List of

numbers, and produces as output a List containing each element in

the input List incremented by one. For example, (list-increment 1 2 3)

evaluates to (2 3 4).

11. Use list-map and list-sum to define list-length:

12. (define (list-length p) (list-sum (list-map p)))

13. For each of the following expressions, explain whether or not the

expression evaluates to a List. Check your answers with a Scheme

interpreter by using the list? procedure.

a. Null

b. (cons 1 2)

c. (cons null null)

d. (cons (cons (cons 1 2) 3) null)

e. (cdr (cons 1 (cons 2 (cons null null))))

f. (cons (list 1 2 3) 4)

160 | P a g e

14. Define a procedure that constructs a quintuple and procedures for

selecting the five elements of a quintuple.

15. Another way of thinking of a triple is as a Pair where the first cell is

a Pair and the second cell is a scalar. Provide definitions of make-

triple, triple-first, triple-second, and triple-third for this construct.

16. Suppose the following definition has been executed:

(define tpair

(cons (cons (cons 1 2) (cons 3 4))

5))

Draw the structure defined by tpair, and give the value of each of the

following expressions.

a. (cdr tpair)

b. (car (car (car tpair)))

c. (cdr (cdr (car tpair)))

d. (car (cdr (cdr tpair)))

17. Write expressions that extract each of the four elements from fstruct

defined by (define fstruct (cons 1 (cons 2 (cons 3 4)))).

18. Give an expression that produces the structure shown below.

161 | P a g e

19. Convince yourself the definitions of scons, scar, and scdr above

work as expected by following the evaluation rules to evaluate

(scar (scons 1 2))

Show the corresponding definitions of tcar and tcdr that provide the

pair selection behavior for a pair created using tcons defined as:

(define (tcons a b) (lambda (w) (if w b a)))

 Answers to Check your progress IV

➢ datatype

➢ defensive programming

➢ Data abstraction

162 | P a g e

163 | P a g e

BLOCK II

164 | P a g e

165 | P a g e

Machines

Learning Objectives

After the completion of this unit, the learner shall be able to:

• Differentiate Computers with other machines

• Explain how machines can compute,

• Apply OR, AND and NAND function to solve boolean logical

functions

• Define Turing Machine

• Build a wine computer to perform any Boolean function by

composing the logic functions

Introduction

The first five chapters focused on ways to use language to describe

procedures. Although finding ways to describe procedures succinctly and

precisely would be worthwhile even if we did not have machines to carry

out those procedures, the tremendous practical value we gain from being

able to describe procedures comes from the ability of computers to carry

out those procedures astoundingly quickly, reliably, and inexpensively. As

a very rough approximation, a typical laptop gives an individual computing

power comparable to having every living human on the planet working for

you without ever making a mistake or needing a break.

This chapter introduces computing machines. Computers are different from

other machines in two key ways:

Whereas other machines amplify or extend our physical abilities, comput-

ers amplify and extend our mental abilities.

Whereas other machines are designed for a few specific tasks, computers

can be programmed to perform many tasks. The simple computer model

introduced in this chapter can perform all possible computations.

166 | P a g e

The next section gives a brief history of computing machines, from

prehistoric calculating aids to the design of the first universal computers.

Section 6.2 ex-plains how machines can implement logic. Section 6.3

introduces a simple ab-stract model of a computing machine that is

powerful enough to carry out any algorithm.

We provide only a very shallow introduction to how machines can

implement computations. Our primary goal is not to convey the details of

how to design and build an efficient computing machine (although that is

certainly a worthy goal that is often pursued in later computing courses),

but to gain sufficient un-derstanding of the properties nearly all conceivable

computing machines share to be able to predict properties about the costs

involved in carrying out a par-ticular procedure. The following chapters use

this to reason about the costs of various procedures. In Chapter 12, we use it

to reason about the range of prob-lems that can and cannot be solved by any

mechanical computing machine.

6.1 History of Computing Machines

The goal of early machines was to carry out some physical process with less

ef-fort than would be required by a human. These machines took physical

things as inputs, performed physical actions on those things, and produced

some phys-ical output. For instance, a cotton gin takes as input raw cotton,

mechanically separates the cotton seed and lint, and produces the separated

products as out-put.

The first big leap toward computing machines was the development of

machines whose purpose is abstract rather than physical. Instead of

producing physical things, these machines used physical things to represent

information. The out-put of the machine is valuable because it can be

interpreted as information, not for its direct physical effect.

167 | P a g e

Our first example is not a machine, but using fingers to count. The base ten

number system used by most human cultures reflects using our ten fingers

for counting. Successful shepherds needed to find ways to count higher than

ten. Shepherds used stones to represent numbers, making the cognitive leap

of using a physical stone to represent some quantity of sheep. A shepherd

would count sheep by holding stones in his hand that represent the number

of sheep.

More complex societies required more counting and more advanced

calculat-ing. The Inca civilization in Peru used knots in collections of

strings known as khipu to keep track of thousands of items for a

hierarchical system of taxation. Many cultures developed forms of abaci,

including the ancient Mesopotamians and Romans. An abacus performs

calculations by moving beads on rods. The Chinese suan pan (“calculating

plate”) is an abacus with a beam subdividing the rods, typically with two

beads above the bar (each representing 5), and five beads below the beam

(each representing 1). An operator can perform addition, subtraction,

multiplication, and division by following mechanical processes us-ing an

abacus.

All of these machines require humans to move parts to perform

calculations. As machine technology improved, automatic calculating

machines were built where the operator only needed to set up the inputs and

then turn a crank or use some external power source to perform the

calculation. The first automatic calculating machine to be widely

demonstrated was the Pascaline, built by then nineteen-year old French

mathematician Blaise Pascal (also responsible for Pascal’s triangle from

Exploration 5.1) to replace the tedious calculations he had to do to manage

his father’s accounts. The Pascaline had five wheels, each repre-senting one

digit of a number, linked by gears to perform addition with carries.

Gottfried Wilhelm von Leibniz built the first machine capable of

performing all four basic arithmetic operations (addition, subtraction,

multiplication, and division) fully mechanically in 1694.

168 | P a g e

Over the following centuries, more sophisticated mechanical calculating

ma-chines were developed but these machines could still only perform one

opera-tion at a time. Performing a series of calculations was a tedious and

error-prone process in which a human operator had to set up the machine

for each arithmetic operation, record the result, and reset the machine for

the next calcula-tion.

The big breakthrough was the conceptual leap of programmability. A

machine is programmable if its inputs not only control the values it operates

on, but the operations it performs.

The first programmable computing machine was envisioned (but never suc-

cessfully built) in the 1830s by Charles Babbage. Babbage was born in

London in 1791 and studied mathematics at Cambridge. In the 1800s,

calculations were done by looking up values in large books of mathematical

and astronomical ta-bles. These tables were computed by hand, and often

contained errors. The calculations were especially important for

astronomical navigation, and when the values were incorrect a ship would

miscalculate its position at sea (some-times with tragic consequences).

Babbage sought to develop a machine to mechanize the calculations to

compute these tables. Starting in 1822, he designed a steam-powered

machine known as the Difference Engine to compute polynomials needed

for astronomical cal-culations using Newton’s method of successive

differences (a generalization of Heron’s method from Exploration 4.1). The

Difference Engine was never fully completed. but led Babbage to envision

a more general calculating machine.

This new machine, the Analytical Engine, designed between 1833 and

1844, was the first general-purpose computer envisioned. It was designed

so that it could be programmed to perform any calculation. One

breakthrough in Babbage’s de-sign was to feed the machine’s outputs back

into its inputs. This meant the engine could perform calculations with an

arbitrary number of steps by cycling outputs back through the machine.

169 | P a g e

The Analytical Engine was programmed using punch cards, based on the

cards that were used by Jacquard looms. Each card could describe an

instruction such as loading a number into a variable in the store, moving

values, performing arithmetic operations on the values in the store, and,

most interestingly, jump-ing forward and backwards in the instruction

cards. The Analytical Engine sup-ported conditional jumps where the jump

would be taken depending on the state of a lever in the machine (this is

essentially a simple form of the if expression).

In 1842, Charles Babbage visited Italy and described the Analytical Engine

to Luigi Menabrea, an Italian engineer, military officer, and mathematician

who would later become Prime Minister of Italy. Menabrea published a

description of Babbage’s lectures in French. Ada Augusta Byron King (also

known as Ada, Countess of Lovelace) translated the article into English.

In addition to the translation, Ada added a series of notes to the article. The

notes included a program to compute Bernoulli numbers, the first detailed

program for the Analytical Engine. Ada was the first to realize the

importance and interest in creating the programs themselves, and

envisioned how programs could be used to do much more than just

calculate mathematical functions. This was the first computer program ever

described, and Ada is recognized as the first computer programmer.

Despite Babbage’s design, and Ada’s vision, the Analytical Engine was

never completed. It is unclear whether the main reason for the failure to

build a working Analytical Engine was due to limitations of the mechanical

components avail-able at the time, or due to Babbage’s inability to work

with his engineer collabo-rator or to secure continued funding.

The first working programmable computers would not appear for nearly a

hun-dred years. Advances in electronics enabled more reliable and faster

compo-nents than the mechanical components used by Babbage, and the

170 | P a g e

desperation brought on by World War II spurred the funding and efforts

that led to working general-purpose computing machines.

The remaining conceptual leap is to treat the program itself as data. In Bab-

bage’s Analytical Engine, the program is a stack of cards and the data are

num-bers stored in the machine. The machine cannot alter its own program.

The idea of treating the program as just another kind of data the machine

can process was developed in theory by Alan Turing in the 1930s (Section

6.3 of this chapter describes his model of computing), and first

implemented by the Manchester Small-Scale Experimental Machine (built

by a team at Victoria Uni-versity in Manchester) in 1948.

This computer (and all general-purpose computers in use today) stores the

pro-gram itself in the machine’s memory. Thus, the computer can create

new pro-grams by writing into its own memory. This power to change its

own program is what makes stored-program computers so versatile.

 Check your progress I

➢ Babbage’s design for the Analytical Engine called for a store hold-ing

1000 variables, each of which is a 50-digit (decimal) number. How many

bits could the store of Babbage’s Analytical Engine hold?

6.2 Mechanizing Logic

This section explains how machines can compute, starting with simple

logical Boolean logic operations. We use Boolean logic, in which there are

two possible values: true (often denoted as 1), and false (often denoted as 0).

The Boolean datatype in Scheme is based on Boolean logic. Boolean logic

is named for George Boole, a self-taught British mathematician who

published An investigation into the Laws of Thought, on Which are

founded the Mathematical Theories of Logic and Prob-abilities in 1854.

Before Boole’s work, logic focused on natural language dis-course. Boole

171 | P a g e

made logic a formal language to which the tools of mathematics could be

applied.

We illustrate how logical functions can be implemented mechanically by

de-scribing some logical machines. Modern computers use electrons to

compute because they are small (more than a billion billion billion (10
31

)

electrons fit within the volume of a grain of sand), fast (approaching the

speed of light), and cheap (more than a billion billion (10
22

) electrons come

out of a power outlet for less than a cent). They are also invisible and

behave in somewhat mysterious ways, however, so we will instead consider

how to compute with wine (or your favorite colored liquid). The basic

notions of mechanical computation don’t de-pend on the medium we use to

compute, only on our ability to use it to represent values and to perform

simple logical operations.

6.2.1 Implementing Logic

To implement logic using a machine, we need physical ways of

representing the two possible values. We use a full bottle of wine to

represent true and an empty bottle of wine to represent false. If the value of

an input is true, we pour a bottle of wine in the input nozzle; for false inputs

we do nothing. Similarly, electronic computers typically use presence of

voltage to represent true, and absence of voltage to represent false.

And. A logical and function takes two inputs and produces one output. The

output is true if both of the inputs are true; otherwise the output is false. We

define a logical-and procedure using an if expression:

(define (logical-and a b) (if a b false))

To design a mechanical implementation of the logical and function, we

want a simpler definition that does not involve implementing something as

complex as an if expression.

172 | P a g e

A different way to define a function is by using a table to show the

corresponding output value for each possible pair of input values. This

approach is limited to functions with a small number of possible inputs; we

could not define addition on integers this way, since there are infinitely

many possible different numbers that could be used as inputs. For functions

in Boolean logic, there are only two possible values for each input (true and

false) so it is feasible to list the outputs for all possible inputs.

We call a table defining a Boolean function a truth table. If there is one

input, the table needs two entries, showing the output value for each

possible input. When there are two inputs, the table needs four entries,

showing the output value for all possible combinations of the input values.

The truth table for the logical and function is:

We design a machine that implements the function described by the truth

ta-ble: if both inputs are true (represented by full bottles of wine in our

machine), the output should be true; if either input is false, the output

should be false (an empty bottle). One way to do this is shown in Figure

6.1. Both inputs pour into a basin. The output nozzle is placed at a height

corresponding to one bottle of wine in the collection basin, so the output

bottle will fill (representing true), only if both inputs are true.

The design in Figure 6.1 would probably not work very well in practice.

Some of the wine is likely to spill, so even when both inputs are true the

output might not be a full bottle of wine. What should a
3

4 full bottle of

wine represent? What about a bottle that is half full?

173 | P a g e

The solution is the digital abstraction. Although there are many different

quan-tities of wine that could be in a bottle, regardless of the actual quantity

the value is interpreted as only one of two possible values: true or false. If

the bottle has more than a given threshold, say half full, it represents true;

otherwise, it repre-sents false. This means an infinitely large set of possible

values are abstracted as meaning true, so it doesn’t matter which of the

values above half full it is.

The digital abstraction provides a transition between the continuous world

of physical things and the logical world of discrete values. It is much easier

to de-sign computing systems around discrete values than around

continuous values; by mapping a range of possible continuous values to just

two discrete values, we give up a lot of information but gain in simplicity

and reliability. Nearly all com-puting machines today operate on discrete

values using the digital abstraction.

Or. The logical or function takes two inputs, and outputs true if any of the

inputs are true:

174 | P a g e

Try to invent your own design for a machine that computes the or function

be-fore looking at one solution in Figure 6.2(a).

Implementing not. The output of the not function is the opposite of the

value of its input:

It is not possible to produce a logical not without some other source of

wine; it needs to create wine (to represent true) when there is none input

(representing false). To implement the not function, we need the notion of a

source current and a clock. The source current injects a bottle of wine on

each clock tick. The clock ticks periodically, on each operation. The inputs

need to be set up before the clock tick. When the clock ticks, a bottle of

wine is sent through the source current, and the output is produced. Figure

6.2(b) shows one way to implement the not function.

The or machine is similar to the and machine in design, except we move the

output nozzle to the bottom of the basin, so if either input is true, the output

is true; when both inputs are true, some wine is spilled but the logical result

is still true.

175 | P a g e

The not machine uses a clock. Before the clock tick, the input is set. If the

input is true, the float is lifted, blocking the source opening; if the input i

false, the float rests on the bottom of the basin. When the clock ticks, the

source wine is injected. If the float is up (because of the true input), the

opening is blocked, and the output is empty (false). If the float is down

(because of the false input), the opening is open, the source wine will pour

across the float, filling the output (representing true). (This design assumes

wine coming from the source does not leak under the float, which might be

hard to build in a real system.)

6.2.2 Composing Operations

We can implement and, or and not using wine, but is that enough to

perform interesting computations? In this subsection, we consider how

simple logical functions can be combined to implement any logical

function; in the following subsection, we see how basic arithmetic

operations can be built from logical functions.

We start by making a three-input conjunction function. The and3 of three

inputs is true if and only if all three inputs are true. One way to make the

three-input and3 is to follow the same idea as the two-input and where all

three inputs pour into the same basin, but make the basin with the output

nozzle above the two bottle level.

Another way to implement a three-input and3 is to compose two of the two-

input and functions, similarly to how we composed procedures in Section

4.2.

Building and3 by composing two two-input and functions allows us to

construct a three-input and3 without needing to design any new structures,

as shown in Figure 6.3. The output of the first and function is fed into the

second and func-tion as its first input; the third input is fed directly into the

second and function as its second input. We could write this as (and (and A

B) C).

176 | P a g e

Composing logical functions also allows us to build new logical functions.

Con-sider the xor (exclusive or) function that takes two inputs, and has

output true when exactly one of the inputs is true:

Can we build xor by composing the functions we already have?

The xor is similar to or, except for the result when both inputs are true. So,

we could compute (xor A B) as (and (or A B) (not (and A B))). Thus, we

can build an xor machine by composing the designs we already have for

and, or, and not.

We can compose any pair of functions where the outputs for the first

function are consistent with the input for the second function. One

particularly impor-tant function known as nand results from not and and:

177 | P a g e

All Boolean logic functions can be implemented using just the nand

function. One way to prove this is to show how to build all logic functions

using just nand. For example, we can implement not using nand where the

one input to the not function is used for both inputs to the nand function:

(not A) ≡ (nand A A)

Now that we have shown how to implement not using nand, it is easy to see

how to implement and using nand:

(and A B) ≡ (not (nand A B))

Implementing or is a bit trickier. Recall that A or B is true if any one of the

inputs is true. But, A nand B is true if both inputs are false, and false if both

inputs are true. To compute or using only nand functions, we need to invert

both inputs:

(or A B) ≡ (nand (not A) (not B))

To complete the proof, we would need to show how to implement all the

other Boolean logic functions. We omit the details here, but leave some of

the other functions as exercises. The universality of the nand function

makes it very useful for implementing computing devices. Trillions of nand

gates are produced in silicon every day.

6.2.3 Arithmetic

Not only is the nand function complete for Boolean logical functions, it is

also enough to implement all discrete arithmetic functions. First, consider

the prob-lem of adding two one-bit numbers.

There are four possible pairs of inputs:

178 | P a g e

We can compute each of the two output bits as a logical function of the two

input bits. The right output bit, r0, is 1 if exactly one of the input bits is 1:

r0 = (or (and (not A) B) (and A (not B)))

This is what the xor function computes, so:

r0 = (xor A B)

The left output bit, r1, is 0 for all inputs except when both inputs are 1:

r1 = (and A B)

Since we have already seen how to implement and, or, xor, and not using

only nand functions, this means we can implement a one-bit adder using

only nand functions.

Adding larger numbers requires more logical functions. Consider adding

two n-bit numbers:

The elementary school algorithm for adding decimal numbers is to sum up

the digits from right to left. If the result in one place is more than one digit,

179 | P a g e

the additional tens are carried to the next digit. We use ck to represent the

carry digit in the k
th

 column.

The algorithm for addition is:

• Initially, c0 = 0.

• Repeat for each digit k from 0 to n:

1. v1v0 = ak + bk + ck (if there is no digit ak or bk use 0).

2. rk = v0.

3. ck+1 = v1.

This is perhaps the first interesting algorithm most people learn: if followed

cor-rectly, it is guaranteed to produce the correct result, and to always

finish, for any two input numbers.

Step 1 seems to require already knowing how to perform addition, since it

uses +. But, the numbers added are one-digit numbers (and ck is 0 or 1).

Hence, there are a finite number of possible inputs for the addition in step 1:

10 decimal digits for ak 10 decimal digits for b k 2 possible values of c k.

We can memorize the 100 possibilities for adding two digits (or write them

down in a table), and easily add one as necessary for the carry. Hence,

computing this addition does not require a general addition algorithm, just a

specialized method for adding one-digit numbers.

We can use the same algorithm to sum binary numbers, except it is simpler

since there are only two binary digits. Without the carry bit, the result bit,

rk, is 1 if (xor ak bk). If the carry bit is 1, the result bit should flip. So,

180 | P a g e

rk = (xor (xor ak bk) ck)

This is the same as adding ak + bk + ck base two and keeping only the right

digit.

The carry bit is 1 if the sum of the input bits and previous carry bit is

greater than 1. This happens when any two of the bits are 1:

ck+1 = (or (and ak bk) (and ak ck) (and bk ck))

As with elementary school decimal addition, we start with c0 = 0, and

proceed through all the bits from right to left.

We can propagate the equations through the steps to find a logical equation

for each result bit in terms of just the input bits. First, we simplify the

functions for the first result and carry bits based on knowing c0 = 0:

r0 = (xor (xor a0 b0) c0) = (xor a0 b0)

c1 = (or (and a0 b0) (and a0 c0) (and b0 c0)) = (and a0 b0)

Then, we can derive the functions for r1 and c2:

r1 = (xor (xor a1 b1) c1) = (xor (xor a1 b1) (and a0 b0))

c2 = (or (and a1 b1) (and a1 c1) (and b1 c1))

(or (and a1 b1) (and a1 (and a0 b0)) (and b1 (and a0 b0)))

As we move left through the digits, the terms get increasingly complex.

But, for any number of digits, we can always find functions for computing

the result bits using only logical functions on the input bits. Hence, we can

implement addition for any length binary numbers using only nand

functions.

181 | P a g e

We can also implement multiplication, subtraction, and division using only

nand functions. We omit the details here, but the essential approach of

breaking down our elementary school arithmetic algorithms into functions

for computing each output bit works for all of the arithmetic operations.

 Check your progress II

➢ Show how to compute the result bits for binary multiplication of two 2-bit

inputs using only logical functions.

➢ Show how to compute the result bits for binary multiplication of two

inputs of any length using only logical functions.

6.3 Modeling Computing

By composing the logic functions, we could build a wine computer to

perform any Boolean function. And, we can perform any discrete arithmetic

function using only Boolean functions. For a useful computer, though, we

need pro-grammability. We would like to be able to make the inputs to the

machine de-scribe the logical functions that it should perform, rather than

having to build a new machine for each desired function. We could, in

theory, construct such a machine using wine, but it would be awfully

complicated. Instead, we consider programmable computing machines

abstractly.

Recall in Chapter 1, we defined a computer as a machine that can:

1. Accept input.

2. Execute a mechanical procedure.

3. Produce output.

 So, our model of a computer needs to model these three things.

Modeling input. In real computers, input comes in many forms: typing on

a keyboard, moving a mouse, packets coming in from the network, an

accelerom-eter in the device, etc.

182 | P a g e

For our model, we want to keep things as simple as possible, though. From

a computational standpoint, it doesn’t really matter how the input is

collected. We can represent any discrete input with a sequence of bits. Input

devices like key-boards are clearly discrete: there are a finite number of

keys, and each key could be assigned a unique number. Input from a

pointing device like a mouse could be continuous, but we can always

identify some minimum detected movement

distance, and record the mouse movements as discrete numbers of move

units and directions. Richer input devices like a camera or microphone can

also pro-duce discrete output by discretizing the input using a process

similar to the im-age storage in Chapter 1. So, the information produced by

any input device can be represented by a sequence of bits.

For real input devices, the time an event occurs is often crucial. When

playing a video game, it does not just matter that the mouse button was

clicked, it matters a great deal when the click occurs. How can we model

inputs where time matters using just our simple sequence of bits?

One way would be to divide time into discrete quanta and encode the input

as zero or one events in each quanta. A more efficient way would be to add

a times-tamp to each input. The timestamps are just numbers (e.g., the

number of mil-liseconds since the start time), so can be written down just as

sequences of bits.

Thus, we can model a wide range of complex input devices with just a finite

sequence of bits. The input must be finite, since our model computer needs

all the input before it starts processing. This means our model is not a good

model for computations where the input is infinite, such as a web server

intended to keep running and processing new inputs (e.g., requests for a

web page) forever. In practice, though, this isn’t usually a big problem since

we can make the input finite by limiting the time the server is running in the

model.

183 | P a g e

A finite sequence of bits can be modeled using a long, narrow, tape that is

di-vided into squares, where each square contains one bit of the input.

Modeling output. Output from computers effects the physical world in lots

of very complex ways: displaying images on a screen, printing text on a

printer, sending an encoded web page over a network, sending an electrical

signal to an anti-lock brake to increase the braking pressure, etc.

We don’t attempt to model the physical impact of computer outputs; that

would be far too complicated, but it is also one step beyond modeling the

computa-tion itself. Instead, we consider just the information content of the

output. The information in a picture is the same whether it is presented as a

sequence of bits or an image projected on a screen, its just less pleasant to

look at as a sequence of bits. So, we can model the output just like we

modeled the input: a sequence of bits written on a tape divided into squares.

Modeling processing. Our processing model should be able to model every

possible mechanical procedure since we want to model a universal

computer, but should be as simple as possible.

One thing our model computer needs is a way to keep track of what it is do-

ing. We can think of this like scratch paper: a human would not be able to

do a long computation without keeping track of intermediate values on

scratch pa-per, and a computer has the same need. In Babbage’s Analytical

Engine, this was called the store, and divided into a thousand variables,

each of which could store a fifty decimal digit number. In the Apollo

Guidance Computer, the work-ing memory was divided into banks, each

bank holding 1024 words. Each word was 15 bits (plus one bit for error

correction). In current 32-bit processors, such as the x86, memory is

divided into pages, each containing 1024 32-bit words.

For our model machine, we don’t want to have arbitrary limits on the

amount of working storage. So, we model the working storage with an

infinitely long tape. Like the input and output tapes, it is divided into

184 | P a g e

squares, and each square can contain one symbol. For our model computer,

it is useful to think about having an infinitely long tape, but of course, no

real computer has infinite amounts of working storage. We can, however,

imagine continuing to add more memory to a real computer as needed until

we have enough to solve a given problem, and adding more if we need to

solve a larger problem.

Our model now involves separate tapes for input, output, and a working

tape. We can simplify the model by using a single tape for all three. At the

beginning of the execution, the tape contains the input (which must be

finite). As processing is done, the input is read and the tape is used as the

working tape. Whatever is on the tape and the end of the execution is the

output.

We also need a way for our model machine to interface with the tape. We

imag-ine a tape head that contacts a single square on the tape. On each

processing step, the tape head can read the symbol in the current square,

write a symbol in the current square, and move one square either left or

right.

The final thing we need is a way to model actually doing the processing. In

our model, this means controlling what the tape head does: at each step, it

needs to decide what to write on the tape, and whether to move left or right,

or to finish the execution.

In early computing machines, processing meant performing one of the basic

arithmetic operations (addition, subtraction, multiplication, or division). We

don’t want to have to model anything as complex as multiplication in our

model machine, however. The previous section showed how addition and

other arith-metic operations can be built from simpler logical operations. To

carry out a complex operation as a composition of simple operations, we

need a way to keep track of enough state to know what to do next. The

machine state is just a number that keeps track of what the machine is

doing. Unlike the tape, it is limited to a finite number. There are two

reasons why the machine state num-ber must be finite: first, we need to be

185 | P a g e

able to write down the program for the machine by explaining what it

should do in each state, which would be difficult if there were infinitely

many states.

We also need rules to control what the tape head does. We can think of each

rule as a mapping from the current observed state of the machine to what to

do next. The input for a rule is the symbol in the current tape square and the

current state of the machine; the output of each rule is three things: the

symbol to write on the current tape square, the direction for the tape head to

move (left, right, or halt), and the new machine state. We can describe the

program for the machine by listing the rules. For each machine state, we

need a rule for each possible symbol on the tape.

6.3.1 Turing Machines

This abstract model of a computer was invented by Alan Turing in the

1930s and is known as a Turing Machine. Turing’s model is depicted in

Figure 6.4. An infinite tape divided into squares is used as the input,

working storage, and output. The tape head can read the current square on

the tape, write a symbol into the current tape square, and move left or right

one position. The tape head

keeps track of its internal state, and follows rules matching the current state

and current tape square to determine what to do next.

Turing’s model is by far the most widely used model for computers today.

Tur-ing developed this model in 1936, before anything resembling a

modern com-puter existed. Turing did not develop his model as a model of

186 | P a g e

an automatic computer, but instead as a model for what could be done by a

human following mechanical rules. He devised the infinite tape to model

the two-dimensional graph paper students use to perform arithmetic. He

argued that the number of machine states must be limited by arguing that a

human could only keep a limited amount of information in mind at one

time.

Turing’s model is equivalent to the model we described earlier, but instead

of using only bits as the symbols on the tape, Turing’s model uses members

of any finite set of symbols, known as the alphabet of the tape. Allowing

the tape al-phabet to contain any set of symbols instead of just the two

binary digits makes it easier to describe a Turing Machine that computes a

particular function, but does not change the power of the model. That

means, every computation that could be done with a Turing Machine using

any alphabet set, could also be done by some Turing Machine using only

the binary digits.

We could show this by describing an algorithm that takes in a description of

a Turing Machine using an arbitrarily large alphabet, and produces a Turing

Ma-chine that uses only two symbols to simulate the input Turing Machine.

As we saw in Chapter 1, we can map each of the alphabet symbols to a

finite sequence of binary digits.

Mapping the rules is more complex: since each original input symbol is

now spread over several squares, we need extra states and rules to read the

equiva-lent of one original input. For example, suppose our original

machine uses 16 alphabet symbols, and we map each symbol to a 4-bit

sequence. If the original machine used a symbol X, which we map to the

sequence of bits 1011, we would need four states for every state in the

original machine that has a rule using X as input. These four states would

read the 1, 0, 1, 1 from the tape. The last state now corresponds to the state

in the original machine when an X is read from the tape. To follow the rule,

we also need to use four states to write the bit sequence corresponding to

the original write symbol on the tape. Then, simulating mov-ing one square

187 | P a g e

left or right on the original Turing Machine, now requires moving four

squares, so requires four more states. Hence, we may need 12 states for

each transition rule of the original machine, but can simulate everything it

does using only two symbols.

The Turing Machine model is a universal computing machine. This means

every algorithm can be implemented by some Turing Machine. Chapter 12

explores more deeply what it means to simulate every possible Turing

Machine and ex-plores the set of problems that can be solved by a Turing

Machine.

Any physical machine has a limited amount of memory. If the machine

does not have enough space to store a trillion bits, there is no way it can do

a com-putation whose output would exceed a trillion bits. Nevertheless, the

simplicity and robustness of the Turing Machine model make it a useful

way to think about computing even if we cannot build a truly universal

computing machine.

Turing’s model has proven to be remarkably robust. Despite being invented

before anything resembling a modern computer existed, nearly every

comput-ing machine ever imagined or built can be modeled well using

Turing’s simple model. The important thing about the model is that we can

simulate any com-puter using a Turing Machine. Any step on any computer

that operates using standard physics and be simulated with a finite number

of steps on a Turing Machine. This means if we know how many steps it

takes to solve some prob-lem on a Turing Machine, the number of steps it

takes on any other machine is at most some multiple of that number. Hence,

if we can reason about the num-ber of steps required for a Turing Machine

to solve a given problem, then we can make strong and general claims

about the number of steps it would take any standard computer to solve the

problem. We will show this more convincingly in Chapter 12, but for now

we assert it, and use it to reason about the cost of executing various

procedures in the following chapter.

188 | P a g e

Example 6.1: Balancing Parentheses

We define a Turing Machine that solves the problem of checking

parentheses are well-balanced. For example, in a Scheme expression, every

opening left parenthesis must have a corresponding closing right

parenthesis. For example, (()(()))() is well-balanced, but (()))(() is not. Our

goal is to design a Turing Machine that takes as input a string of

parentheses (with a # at the beginning and end to mark the endpoints) and

produces as output a 1 on the tape if the input string is well-balanced, and a

0 otherwise. For this problem, the output is what is written in the square

under the tape head; it doesn’t matter what is left on the rest of the tape.

Our strategy is to find matching pairs of parentheses and cross them out by

writ-ing an X on the tape in place of the parenthesis. If all the parentheses

are crossed out at the end, the input was well-balanced, so the machine

writes a 1 as its out-put and halts. If not, the input was not well-balanced,

and the machine writes a 0 as its output and halts. The trick to the matching

is that a closing parenthe-sis always matches the first open parenthesis

found moving to the left from the closing parenthesis. The plan for the

machine is to move the tape head to the right (without changing the input)

until a closing parenthesis is found. Cross out that closing parenthesis by

replacing it with an X, and move to the left un-til an open parenthesis is

found. This matches the closing parenthesis, so it is replaced with an X.

Then, continue to the right searching for the next closing parenthesis. If the

end of the tape (marked with a #) is found, check the tape has no remaining

open parenthesis.

We need three internal states: LookForClosing, in which the machine contin

ues to the right until it finds a closing parenthesis (this is the start state);

Look-ForOpen, in which the machine continues to the left until it finds the

balancing open parenthesis; and CheckTape, in which the machine checks

there are no un-balanced open parentheses on the tape starting from the

right end of the tape and moving towards the left end. The full rules are

shown in Figure 6.5.

189 | P a g e

Another way to depict a Turing Machine is to show the states and rules

graphi-cally. Each state is a node in the graph. For each rule, we draw an

edge on the graph between the starting state and the next state, and label the

edge with the read and write tape symbols (separated by a /), and move

direction.

Figure 6.6 shows the same Turing Machine as a state graph. When reading

a symbol in a given state produces an error (such as when a) is encountered

in the LookForOpen state), it is not necessary to draw an edge on the graph.

If there is no outgoing edge for the current read symbol for the current state

in the state graph, execution terminates with an error.

6.4 Summary

190 | P a g e

The power of computers comes from their programmability. Universal

comput-ers can be programmed to execute any algorithm. The Turing

Machine model provides a simple, abstract, model of a computing machine.

Every algorithm can be implemented as a Turing Machine, and a Turing

Machine can simulate any other reasonable computer.

As the first computer programmer, Ada deserves the last word:

By the word operation, we mean any process which alters the mutual re-

lation of two or more things, be this relation of what kind it may. This is the

most general definition, and would include all subjects in the universe. In

abstract mathematics, of course operations alter those particular rela-tions

which are involved in the considerations of number and space, and the

results of operations are those peculiar results which correspond to the

nature of the subjects of operation. But the science of operations, as de-

rived from mathematics more especially, is a science of itself, and has its

own abstract truth and value; just as logic has its own peculiar truth and

value, independently of the subjects to which we may apply its reasonings

and processes.. . .

The operating mechanism can even be thrown into action independently of

any object to operate upon (although of course no result could then be

developed). Again, it might act upon other things besides number, were

objects found whose mutual fundamental relations could be expressed by

those of the abstract science of operations, and which should be also sus-

ceptible of adaptations to the action of the operating notation and mech-

anism of the engine. Supposing, for instance, that the fundamental rela-tions

of pitched sounds in the science of harmony and of musical composi-tion

were susceptible of such expression and adaptations, the engine might

compose elaborate and scientific pieces of music of any degree of

complexity or extent.

191 | P a g e

 Check your progress III

A. We call a table defining a Boolean function a ________.

B. The abstract model of a computer was invented by Alan Turing in the

1930s and is known as a_____________.

6.5 Answer the Following

1. Define a Scheme procedure, logical-or, that takes two inputs and

outputs the logical or of those inputs.

2. What is the meaning of composing not with itself? For example,

(not (not A)).

3. Define the xor function using only nand functions.

4. Follow the rules to simulate the checking parentheses Turing

Machine on each input (assume the beginning and end of the input

are marked with a #):

a.)

b. ()

c. empty input

d. (()(()))()

e. (()))(()

5. Define Turing Machine.

6. Design a Turing Machine for adding two arbitrary-length binary

numbers. The input is of the form an 1 . . . a 1a0 + bm 1 . . . b1b0

(with # mark-ers at both ends) where each ak and bk is either 0 or 1.

The output tape should contain bits that represent the sum of the two

inputs.

 Anwer to Check your progress III

A. truth table.

B. Turing Machine

192 | P a g e

193 | P a g e

Cost

Learning Objectives

After the completion of this unit, the learner shall be able to:

• Measure the cost of evaluating a given expression empirically

• Define order of growth of functions

• Explain dynamic programming

• Explain how to measure input sizes and running times

• Understand how the running time increases as the size of the input

increases.

• Evaluate Big O. Omega and Theta of a function

Introduction

This chapter develops tools for reasoning about the cost of evaluating a

given expression. Predicting the cost of executing a procedure has practical

value (for example, we can estimate how much computing power is needed

to solve a par-ticular problem or decide between two possible

implementations), but also pro-vides deep insights into the nature of

procedures and problems.

The most commonly used cost metric is time. Other measures of cost

include the amount of memory needed and the amount of energy consumed.

Indirectly, these costs can often be translated into money: the rate of

transactions a service can support, or the price of the computer needed to

solve a problem.

7.1 Empirical Measurements

We can measure the cost of evaluating a given expression empirically. If we

are primarily concerned with time, we could just use a stopwatch to

measure the evaluation time. For more accurate results, we use the built-in

(time Expression) special form. Evaluating (time Expression) produces the

194 | P a g e

value of the input ex-pression, but also prints out the time required to

evaluate the expression (shown in our examples using slanted font). It prints

out three time values:

cpu time

The time in milliseconds the processor ran to evaluate the expression. CPU

is an abbreviation for “central processing unit”, the computer’s main pro-

cessor.

real time

The actual time in milliseconds it took to evaluate the expression. Since

other processes may be running on the computer while this expression is

evaluated, the real time may be longer than the CPU time, which only

counts the time the processor was working on evaluating this expression.

gc time

The time in milliseconds the interpreter spent on garbage collection to eval-

uate the expression. Garbage collection is used to reclaim memory that is

storing data that will never be used again.

For example, using the definitions from Chapter 5,

prints: cpu time: 141797 real time: 152063 gc time: 765. The real time is

152 seconds, meaning this evaluation took just over two and a half minutes.

Of this time, the evaluation was using the CPU for 142 seconds, and the

garbage collector ran for less than one second.

Here are two more examples:

195 | P a g e

The two expressions evaluated are identical, but the reported time varies.

Even on the same computer, the time needed to evaluate the same

expression varies. Many properties unrelated to our expression (such as

where things happen to be stored in memory) impact the actual time needed

for any particular evalua-tion. Hence, it is dangerous to draw conclusions

about which procedure is faster based on a few timings.

Another limitation of this way of measuring cost is it only works if we wait

for the evaluation to complete. If we try an evaluation and it has not

finished after an hour, say, we have no idea if the actual time to finish the

evaluation is sixty-one minutes or a quintillion years. We could wait

another minute, but if it still hasn’t finished we don’t know if the execution

time is sixty-two minutes or a quintillion years. The techniques we develop

allow us to predict the time an evaluation needs without waiting for it to

execute.

Finally, measuring the time of a particular application of a procedure does

not provide much insight into how long it will take to apply the procedure

to differ-ent inputs. We would like to understand how the evaluation time

scales with the size of the inputs so we can understand which inputs the

procedure can sensibly be applied to, and can choose the best procedure to

use for different situations. The next section introduces mathematical tools

that are helpful for capturing how cost scales with input size.

Exploration 7.1: Multiplying Like Rabbits

Filius Bonacci was an Italian monk and mathematician in the 12th century.

He published a book, Liber Abbaci, on how to calculate with decimal

numbers that introduced Hindu-Arabic numbers to Europe (replacing

196 | P a g e

Roman numbers) along with many of the algorithms for doing arithmetic

we learn in elementary school. It also included the problem for which

Fibonacci numbers are named:

A pair of newly-born male and female rabbits are put in a field. Rabbits

mate at the age of one month and after that procreate every month, so the

female rabbit produces a new pair of rabbits at the end of its second month.

Assume rabbits never die and that each female rabbit produces one new pair

(one male, one female) every month from her second month on. How many

pairs will there be in one year?

The third case follows from Bonacci’s assumptions: all the rabbits alive at

the beginning of the previous month are still alive (the Fibonacci(n 1) term),

and all the rabbits that are at least two months old reproduce (the

Fibonacci(n 2) term).

The sequence produced is known as the Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

After the first two 1s, each number in the sequence is the sum of the

previous two numbers. Fibonacci numbers occur frequently in nature, such

as the ar-rangement of florets in the sunflower (34 spirals in one direction

and 55 in the other) or the number of petals in common plants (typically 1,

2, 3, 5, 8, 13, 21, or 34), hence the rarity of the four-leaf clover.

Translating the definition of the Fibonacci function into a Scheme

procedure is straightforward; we combine the two base cases using the or

special form:

197 | P a g e

But when we try to determine the number of rabbits in five years by

computing (fibo 60), our interpreter just hangs without producing a value.

The fibo procedure is defined in a way that guarantees it eventually

completes when applied to a non-negative whole number: each recursive

call reduces the input by 1 or 2, so both recursive calls get closer to the base

case. Hence, we always make progress and must eventually reach the base

case, unwind the re-cursive applications, and produce a value. To

understand why the evaluation of (fibo 60) did not finish in our interpreter,

we need to consider how much work is required to evaluate the expression.

To evaluate (fibo 60), the interpreter follows the if expressions to the

recursive case, where it needs to evaluate (+ (fibo 59) (fibo 58)). To

evaluate (fibo 59), it needs to evaluate (fibo 58) again and also evaluate

(fibo 57). To evaluate (fibo 58) (which needs to be done twice), it needs to

evaluate (fibo 57) and (fibo 56). So, there is one evaluation of (fibo 60), one

evaluation of (fibo 59), two evaluations of (fibo 58), and three evaluations

of (fibo 57).

The total number of evaluations of the fibo procedure for each input is itself

the Fibonacci sequence! To understand why, consider the evaluation tree

for (fibo 4) shown in Figure 7.1. The only direct number values are the 1

values that result from evaluations of either (fibo 1) or (fibo 2). Hence, the

number of 1 val-ues must be the value of the final result, which just sums

198 | P a g e

all these numbers. For (fibo 4), there are 5 leaf applications, and 3 more

inner applications, for 8 (= Fibonacci(5)) total recursive applications. The

number of evaluations of ap-plications of fibo needed to evaluate (fibo 60) is

the 61st Fibonacci number — 2,504,730,781,961 — over two and a half

trillion applications of fibo!

Although our fibo definition is correct, it is ridiculously inefficient and only

fin-ishes for input numbers below about 40. It involves a tremendous

amount of duplicated work: for the (fibo 60) example, there are two

evaluations of (fibo 58) and over a trillion evaluations of (fibo 1) and (fibo

2).

We can avoid this duplicated effort by building up to the answer starting

from the base cases. This is more like the way a human would determine

the numbers in the Fibonacci sequence: we find the next number by adding

the previous two numbers, and stop once we have reached the number we

want.

The fast-fibo procedure computes the n
th

 Fibonacci number, but avoids the

duplicate effort by computing the results building up from the first two

Fibonacci numbers, instead of working backwards.

199 | P a g e

This is a form of what is known as dynamic programming . The definition

is still recursive, but unlike the original definition the problem is broken

down differ-ently. Instead of breaking the problem down into a slightly

smaller instance of the original problem, with dynamic programming we

build up from the base case to the desired solution. In the case of Fibonacci,

the fast-fibo procedure builds up from the two base cases until reaching the

desired answer. The addi-tional complexity is we need to keep track of

when to stop; we do this using the left parameter.

The helper procedure, fibo-iter (short for iteration), takes three parameters:

a is the value of the previous-previous Fibonacci number, b is the value of

the previous Fibonacci number, and left is the number of iterations needed

be-fore reaching the target. The initial call to fibo-iter passes in 1 as a (the

value of Fibonacci(1)), and 1 as b (the value of Fibonacci(2)), and (n 2) as

left (we have n 2 more iterations to do to reach the target, since the first two

Fibonacci numbers were passed in as a and b we are now working on

Fibonacci(2)). Each recursive call to fibo-iter reduces the value passed in as

left by one, and advances the values of a and b to the next numbers in the

Fibonacci sequence.

The fast-fibo procedure produces the same output values as the original fibo

procedure, but requires far less work to do so. The number of applications

of fibo-iter needed to evaluate (fast-fibo 60) is now only 59. The value

passed in as left for the first application of fibo-iter is 58, and each recursive

call reduces the value of left by one until the zero case is reached. This

allows us to compute the expected number of rabbits in 5 years is

1548008755920 (over 1.5 Trillion).

7.2 Orders of Growth

As illustrated by the Fibonacci exploration, the same problem can be solved

by procedures that require vastly different resources. The important

question in understanding the resources required to evaluate a procedure

200 | P a g e

application is how the required resources scale with the size of the input.

For small inputs, both Fibonacci procedures work using with minimal

resources. For large inputs, the first Fibonacci procedure never finishes, but

the fast Fibonacci procedure fin-ishes effectively instantly.

In this section, we introduce three functions computer scientists use to

capture the important properties of how resources required grow with input

size. Each function takes as input a function, and produces as output a set of

functions:

O(f) (“big oh”)

The set of functions that grow no faster than f grows.

Θ(f) (theta)

The set of functions that grow as fast as f grows.

Ω(f) (omega)

The set of functions that grow no slower than f grows.

These functions capture the asymptotic behavior of functions, that is, how

they behave as the inputs get arbitrarily large. To understand how the time

required to evaluate a procedure increases as the inputs to that procedure

increase, we need to know the asymptotic behavior of a function that takes

the size of input to the target procedure as its input and outputs the number

of steps to evaluate the target procedure on that input.

Figure 7.2 depicts the sets O, Θ, Ω for some function f . Next, we define

each function and provide some examples. Section 7.3 illustrates how to

analyze the time required to evaluate applications of procedures using these

notations.

201 | P a g e

nctions that

7.2.1 Big O

The first notation we introduce is O, pronounced “big oh”. The O function

takes as input a function, and produces as output the set of all functions that

grow no faster than the input function. The set O(f) is the set of all

functions that grow as fast as, or slower than, f grows. In Figure 7.2, the

O(f) set is represented by everything inside the outer circle.

To define the meaning of O precisely, we need to consider what it means

for a function to grow. We want to capture how the output of the function

increases as the input to the function increases. First, we consider a few

examples; then we provide a formal definition of O.

f (n) = n + 12 and g(n) = n – 7

No matter what n value we use, the value of f (n) is greater than the value of

g(n). This doesn’t matter for the growth rates, though. What matters is how

the difference between g(n) and f (n) changes as the input values increase.

No matter what values we choose for n1 and n2, we know g(n1) – f (n1) =

g(n2) – f (n2) = – 19. Thus, the growth rates of f and g are identical and

7 is in the set O(n + 12), and n + 12 is in the set O(n – 7).

202 | P a g e

f (n) = 2n and g(n) = 3n

The difference between g(n) and f (n) is n. This difference increases as the

input value n increases, but it increases by the same amount as n increases.

So, the growth rate as n increases is
n

n = 1. The value of 2n is always within

a constant multiple of 3n, so they grow asymptotically at the same rate.

Hence, 2n is in the set O(3n) and 3n is in the set O(2n). x

f (n) = n and g(n) = n
2

The difference between g(n) and f (n) is n2 – n = n(n – 1). The growth rate

as n increases is n = n – 1. The value of n – 1 increases as n increases, so g

grows faster than f . This means n2 is not in O(n) since n2 grows faster than

n. The function n is in O(n2) since n grows slower than n2 grows.

f (n) = Fibonacci(n) and g(n) = n

The Fibonacci function grows very rapidly. The value of Fibonacci(n + 2)

is more than double the value of Fibonacci(n) since

Fibonacci(n + 2) = Fibonacci(n + 1) + Fibonacci(n)

and Fibonacci(n + 1) > Fibonacci(n). The rate of increase is multiplicative,

and must be at least a factor of √2 ≈ 1.414 (since increasing by one twice

more than doubles the value). (In fact, the rate of increase is a factor of ϕ =

(1 + 5)/2 ≈ 1.618, also known as the “golden ratio”. This is a rather

remarkable result, but explaining why is beyond the scope of this book.)

This is much faster than the growth rate of n, which increases by one when

we increase n by one. So, n is in the set O(Fibonacci(n)), but Fibonacci(n) is

not in the set O(n).

Some of the example functions are plotted in Figure 7.3. The O notation

reveals the asymptotic behavior of functions. The functions plotted are the

203 | P a g e

same in both graphs, but the scale of the horizontal axis is different. In the

first graph, the rightmost value of n2 is greatest; for higher input values, the

value of Fibonacci(n) is greatest. In the second graph, the values of

Fibonacci(n) for input values up to 20 are so large that the other functions

appear as nearly flat lines on the graph.

Definition of O. The function g is a member of the set O(f) if and only if

there exist positive constants c and n0 such that, for all values n ≥ n0,

g(n) ≤ c f (n).

We can show g is in O(f) using the definition of O(f) by choosing

positive con-stants for the values of c and n0, and showing that the property

g(n) ≤ c f (n) holds for all values n ≥ n0. To show g is not in O(f), we need

to explain how, for any choices of c and n0, we can find values of n that are

greater than n0 such that g(n) ≤ c f (n) does not hold.

Example 7.1: O Examples

We now show the claimed properties are true using the formal definition.

 n – 7 is in O(n + 12)

Choose c = 1 and n0 = 1. Then, we need to show n – 7 ≤ 1(n + 12) for all

values n 1. This is true, since n – 7 > n + 12 for all values n.

n + 12 is in O(n – 7)

204 | P a g e

Choose c = 2 and n0 = 26. Then, we need to show n + 12 ≤ 2(n – 7) for all

values n ≥ 26. The equation simplifies to n + 12 ≤ 2n – 14, which simplifies

to 26 ≤ n. This is trivially true for all values n ≥ 26.

2n is in O(3n)

Choose c = 1 and n0 = 1. Then, 2n ≤ 3n for all values n ≥ 1.

3n is in O(2n)

Choose c = 2 and n0 = 1. Then, 3n ≤ 2(2n) simplifies to n ≤ 4/3n which is

true for all values n ≥ 1.

n is in O(n
2
)

Choose c = 1 and n0 = 1. Then n ≤ n2 for all values n ≥ 1.

n2 is not in O(n)

We need to show that no matter what values are chosen for c and n0, there

are values of n ≥ n0 such that the inequality n2 ≤ cn does not hold. For any

value of c, we can make n2 > cn by choosing n > c.

n is in O(Fibonacci(n))

Choose c = 1 and n0 = 3. Then n ≤ Fibonacci(n) for all values n ≥ n0.

Fibonacci(n) is not in O(n – 2)

No matter what values are chosen for c and n0, there are values of n ≥ n0

such that Fibonacci(n) > c(n). We know Fibonacci(12) = 144, and, from the

discussion above, that:

Fibonacci(n + 2) > 2 ⃰ Fibonacci(n)

205 | P a g e

This means, for n > 12, we know Fibonacci(n) > n
2
. So, no matter what

value is chosen for c, we can choose n = c. Then, we need to show

Fibonacci(n) > n(n)

The right side simplifies to n
2
. For n > 12, we know Fibonacci(n) > n

2
.

Hence, we can always choose an n that contradicts the Fibonacci(n) ≤ cn

inequality by choosing an n that is greater than n0, 12, and c.

For all of the examples where g is in O(f), there are many acceptable

choices for c and n0. For the given c values, we can always use a higher n0

value than the selected value. It only matters that there is some finite,

positive constant we can choose for n0, such that the required inequality,

g(n) ≤ c f (n) holds for all values n ≥ n0. Hence, our proofs work equally

well with higher values for n0 than we selected. Similarly, we could always

choose higher c values with the same n0 values. The key is just to pick any

appropriate values for c and n0, and show the inequality holds for all values

n ≥ n0.

Proving that a function is not in O(f) is usually tougher. The key to these

proofs is that the value of n that invalidates the inequality is selected after

the values of c and n0 are chosen. One way to think of this is as a game

between two adver-saries. The first player picks c and n0, and the second

player picks n. To show the property that g is not in O(f), we need to show

that no matter what values the first player picks for c and n0, the second

player can always find a value n that is greater than n0 such that g(n) > c f

(n).

7.2.2 Omega

206 | P a g e

The set Ω(f) (omega) is the set of functions that grow no slower than f

grows. So, a function g is in Ω(f) if g grows as fast as f or faster. Constrast

this with O(f), the set of all functions that grow no faster than f grows. In

Figure 7.2, Ω(f) is the set of all functions outside the darker circle.

The formal definition of Ω(f) is nearly identical to the definition of O(f):

the only difference is the ≤ comparison is changed to ≥ .

Definition of Ω(f). The function g is a member of the set Ω(f) if and only

if there exist positive constants c and n0 such that, for all values n ≥ n0,

g(n) ≥ c f (n).

Example 7.2: Ω Examples

We repeat selected examples from the previous section with Ω instead of O.

The strategy is similar: we show g is in Ω(f) using the definition of Ω (f)

by choos-ing positive constants for the values of c and n0, and showing that

the property g(n) ≥ c f (n) holds for all values n n0. To show g is not in Ω(f),

we need to explain how, for any choices of c and n0, we can find a choice

for n ≥ n0 such that g(n) < c f (n).

7 is in Ω (n + 12)

Choose c =
1

2
 and n0 = 26. Then, we need to show n – 7 ≥

1

2
 (n + 12) for all

values n ≥ 26. This is true, since the inequality simplifies
𝑛

2
 ≥ 13 which

holds for all values n ≥ 26.

2n is in Ω(3n)

Choose c =
1

3
 and n0 = 1. Then, 2n

1

3
 (3n) simplifies to n ≥ 0 which holds for

all values n ≥ 1.

207 | P a g e

n is not in Ω(n
2
)

Whatever values are chosen for c and n0, we can choose n≥ n0 such that n ≥

cn
2
does not hold. Choose n >

1

𝑐
 (note that c must be less than 1 for the

inequality to hold for any positive n, so if c is not less than 1 we can just

choose n ≥ 2). Then, the right side of the inequality cn
2
 will be greater than

n, and the needed inequality n ≥ cn2 does not hold.

n is not in Ω(Fibonacci(n))

No matter what values are chosen for c and n0, we can choose n ≥ n0 such

that n ≥ Fibonacci(n) does not hold. The value of Fibonacci(n) more than

doubles every time n is increased by 2 (see Section 7.2.1), but the value of

c(n) only increases by 2c. Hence, if we keep increasing n, eventually

Fibonacci(n + 1) > c(n - 2) for any choice of c.

7.2.3 Theta

The function Θ(f) denotes the set of functions that grow at the same rate as

f . It is the intersection of the sets O(f) and Ω(f). Hence, a function g is in

Θ(f) if and only if g is in O(f) and g is in Ω(f). In Figure 7.2, Θ(f) is the

ring between the outer and inner circles.

An alternate definition combines the inequalities for O and Ω:

Definition of Θ(f). The function g is a member of the set Θ(f) if any only

if there exist positive constants c1, c2, and n 0 such that, for all values n ≥

n0,

c1 f (n) ≥ g(n) ≥ c2 f (n).

If g(n) is in Θ(f (n)), then the sets Θ(f (n)) and Q(g(n)) are identical. If g(n)

ϵ Θ(f (n)) then g and f grow at the same rate,

Example 7.3: Q Examples

208 | P a g e

Determining membership in Θ(f) is simple once we know membership in

O(f) and Ω(f).

n – 7 is in Θ(n + 12)

Since n – 7 is in O(n + 12) and n – 7 is in Ω (n + 12) we know n – 7 is in

Θ(n + 12). Intuitively, n –7 increases at the same rate as n + 12, since

adding one to n adds one to both function outputs. We can also show this

using the definition of Θ(f): choose c1 = 1, c2 =
1

2
 , and n0 = 38.

2n is in Θ(3n)

2n is in O(3n) and in Ω(3n). Choose c1 = 1, c2 =
1

3
, and n0 = 1.

n is not in Θ(n
2
)

n is not in Ω(n
2
). Intuitively, n grows slower than n

2
 since increasing n by

one always increases the value of the first function, n, by one, but increases

the value of n
2
 by 2n + 1, a value that increases as n increases.

n
2
 is not in Θ(n): n

2
 is not in O(n).

n - 2 is not in Θ(Fibonacci(n + 1)): n 2 is not in Ω(n).

Fibonacci(n) is not in Θ(n): Fibonacci(n + 1) is not in O(n- 2).

Properties of O, Ω, and Θ. Because O, Ω, and Θ are concerned with the

asymp-totic properties of functions, that is, how they grow as inputs

approach infinity, many functions that are different when the actual output

values matter gener-ate identical sets with the O, Ω, and Θ functions. For

example, we saw n 7 is in Θ(n + 12) and n + 12 is in Θ(n – 7). In fact, every

function that is in Θ(n 7) is also in Θ(n + 12).

More generally, if we could prove g is in Θ(an + k) where a is a positive

constant and k is any constant, then g is also in Θ(n). Thus, the set Θ(an +k)

is equivalent to the set Θ(n).

209 | P a g e

We prove Θ(an + k)≡ Θ(n) using the definition of Θ. To prove the sets are

equivalent, we need to show inclusion in both directions.

Θ(n) ⸦ Θ(an + k): For any function g, if g is in Θ(n) then g is in Θ(an + k).

Since g is in Θ(n) there exist positive constants c1, c2, and n0 such that c1n

≥ g(n) ≥ c2n. To show g is also in Θ(an + k) we find d1, d2, and m0 such

that d1(an+ k) ≥ g(n) ≥ d2(an+k) for all n ≥ m0. Simplifying the

inequalities, we need (ad1)n + kd1 ≥ g(n) ≥ (ad2)n + kd2. Ignoring the

constants for now, we can pick d1 =
𝑐1

𝑎
 and d2 =

𝑐2

𝑎
 . Since g is in Θ(n), we

know is satisfied. As for the constants, as n increases they become

insignificant. Adding one to d1 and d2 adds an to the first term and k to the

second term. Hence, as n grows, an becomes greater than k.

Θ(an + k)⸦ Θ(k): For any function g, if g is in Θ(an + k) then g is in Θ(n).

Since g is in Θ(an + k) there exist positive constants c1, c2, and n0 such that

c1(an + k) ≥ g(n) ≥ c2(an + k). Simplifying the inequalities, we have

(ac1)n + kc1 ≥ g(n) ≥ (ac2)n + kc2 or, for some different positive constants

b1 = ac1 and b2 = ac2 and constants k1 = kc1 and k2 = kc2, b1n + k1 ≥ g(n)

≥ b2n + k2. To show g is also in Θ(n), we find d1, d2, and m0 such that d1n ≥

g(n) ≥ d2n for all n ≥ m0. If it were not for the constants, we already have

this with d1 = b1 and d2 = b2. As before, the constants become

inconsequential as n increases. This property also holds for the O and Ω

operators since our proof for Θ also proved the property for the O and Ω

inequalities.

This result can be generalized to any polynomial. The set Θ(a0 + a1n +

a2n
2
 +... + akn

k
) is equivalent to Θ(n

k
). Because we are concerned with the

asymptotic growth, only the highest power term of the polynomial matters

once n gets big enough.

210 | P a g e

7.3 Analyzing Procedures

By considering the asymptotic growth of functions, rather than their actual

out-puts, the O, Ω, and Θ operators allow us to hide constants and factors

that change depending on the speed of our processor, how data is arranged

in mem-ory, and the specifics of how our interpreter is implemented.

Instead, we can consider the essential properties of how the running time of

the procedures in-creases with the size of the input.

This section explains how to measure input sizes and running times. To

under-stand the growth rate of a procedure’s running time, we need a

function that maps the size of the inputs to the procedure to the amount of

time it takes to evaluate the application. First we consider how to measure

the input size; then, we consider how to measure the running time. In

Section 7.3.3 we consider which input of a given size should be used to

reason about the cost of applying a procedure. Section 7.4 provides

examples of procedures with different growth rates. The growth rate of a

procedure’s running time gives us an understanding of how the running

time increases as the size of the input increases.

7.3.1 Input Size

Procedure inputs may be many different types: Numbers, Lists of Numbers,

Lists of Lists, Procedures, etc. Our goal is to characterize the input size with

a single number that does not depend on the types of the input.

We use the Turing machine to model a computer, so the way to measure the

size of the input is the number of characters needed to write the input on the

tape. The characters can be from any fixed-size alphabet, such as the ten

decimal dig-its, or the letters of the alphabet. The number of different

symbols in the tape alphabet does not matter for our analysis since we are

concerned with orders of growth not absolute values. Within the O, Ω, and

Θ operators, a constant fac-tor does not matter (e.g., Θ(n) Θ(17n + 523)).

211 | P a g e

This means is doesn’t matter whether we use an alphabet with two symbols

or an alphabet with 256 symbols. With two symbols the input may be 8

times as long as it is with a 256-symbol alphabet, but the constant factor

does not matter inside the asymptotic operator.

Thus, we measure the size of the input as the number of symbols required to

write the number on a Turing Machine input tape. To figure out the input

size of a given type, we need to think about how many symbols it would

require to write down inputs of that type.

Booleans. There are only two Boolean values: true and false. Hence, the

length of a Boolean input is fixed.

Numbers. Using the decimal number system (that is, 10 tape symbols), we

can write a number of magnitude n using log10 n digits. Using the binary

number system (that is, 2 tape symbols), we can write it using log2 n bits.

Within the asymptotic operators, the base of the logarithm does not matter

(as long as it is a constant) since it changes the result by a constant factor.

We can see this from the argument above — changing the number of

symbols in the input alphabet changes the input length by a constant factor

which has no impact within the asymptotic operators.

Lists. If the input is a List, the size of the input is related to the number of

elements in the list. If each element is a constant size (for example, a list of

numbers where each number is between 0 and 100), the size of the input list

is some constant multiple of the number of elements in the list. Hence, the

size of an input that is a list of n elements is cn for some constant c. Since

Θ(cn) = Θ(n), the size of a List input is Θ(n) where n is the number of

elements in the List. If List elements can vary in size, then we need to

account for that in the input size. For example, suppose the input is a List of

Lists, where there are n elements in each inner List, and there are n List

elements in the main List. Then, there are n
2
 total elements and the input

size is in Θ(n
2
).

212 | P a g e

7.3.2 Running Time

We want a measure of the running time of a procedure that satisfies two

properties: (1) it should be robust to ephemeral properties of a particular

execution or computer, and (2) it should provide insights into how long it

takes evaluate the procedure on a wide range of inputs.

To estimate the running time of an evaluation, we use the number of steps

re-quired to perform the evaluation. The actual number of steps depends on

the details of how much work can be done on each step. For any particular

proces-sor, both the time it takes to perform a step and the amount of work

that can be done in one step varies. When we analyze procedures, however,

we usually don’t want to deal with these details. Instead, what we care

about is how the running time changes as the input size increases. This

means we can count anything we want as a “step” as long as each step is the

approximately same size and the time a step requires does not depend on

the size of the input.

The clearest and simplest definition of a step is to use one Turing Machine

step. We have a precise definition of exactly what a Turing Machine can do

in one step:

it can read the symbol in the current square, write a symbol into that

square, transition its internal state number, and move one square to the left

or right. Counting Turing Machine steps is very precise, but difficult

because we do not usually start with a Turing Machine description of a

procedure and creating one is tedious.

Instead, we usually reason directly from a Scheme procedure (or any

precise de-scription of a procedure) using larger steps. As long as we can

claim that what-ever we consider a step could be simulated using a constant

number of steps on a Turing Machine, our larger steps will produce the

same answer within the asymptotic operators. One possibility is to count the

213 | P a g e

number of times an evalua-tion rule is used in an evaluation of an

application of the procedure. The amount of work in each evaluation rule

may vary slightly (for example, the evaluation rule for an if expression

seems more complex than the rule for a primitive) but does not depend on

the input size.

Hence, it is reasonable to assume all the evaluation rules to take constant

time. This does not include any additional evaluation rules that are needed

to apply one rule. For example, the evaluation rule for application

expressions includes evaluating every subexpression. Evaluating an

application constitutes one work unit for the application rule itself, plus all

the work required to evaluate the subexpressions. In cases where the bigger

steps are unclear, we can always re-turn to our precise definition of a step as

one step of a Turing Machine.

7.3.3 Worst Case Input

A procedure may have different running times for inputs of the same size.

For example, consider this procedure that takes a List as input and outputs

the first positive number in the list:

If the first element in the input list is positive, evaluating the application of

list-first-pos requires very little work. It is not necessary to consider any

other elements in the list if the first element is positive. On the other hand,

if none of the elements are positive, the procedure needs to test each

element in the list until it reaches the end of the list (where the base case

reports an error).

214 | P a g e

In our analyses we usually consider the worst case input. For a given size,

the worst case input is the input for which evaluating the procedure takes

the most work. By focusing on the worst case input, we know the maximum

running time for the procedure. Without knowing something about the

possible inputs to the procedure, it is safest to be pessimistic about the input

and not assume any properties that are not known (such as that the first

number in the list is positive for the first-pos example).

In some cases, we also consider the average case input. Since most

procedures can take infinitely many inputs, this requires understanding the

distribution of possible inputs to determine an “average” input. This is

often necessary when we are analyzing the running time of a procedure

that uses another helper pro-cedure. If we use the worst-case running time

for the helper procedure, we will grossly overestimate the running time of

the main procedure. Instead, since we know how the main procedure uses

the helper procedure, we can more pre-cisely estimate the actual running

time by considering the actual inputs. We see an example of this in the

analysis of how the + procedure is used by list-length in Section 7.4.2.

7.4 Growth Rates

Since our goal is to understand how the running time of an application of a

pro-cedure is related to the size of the input, we want to devise a function

that takes as input a number that represents the size of the input and outputs

the maxi-mum number of steps required to complete the evaluation on an

input of that size. Symbolically, we can think of this function as:

where Proc is the name of the procedure we are analyzing. Because the

output represents the maximum number of steps required, we need to

consider the worst-case input of the given size.

215 | P a g e

Because of all the issues with counting steps exactly, and the uncertainty

about how much work can be done in one step on a particular machine, we

cannot usually determine the exact function for Max-StepsProc . Instead,

we charac-terize the running time of a procedure with a set of functions

denoted by an asymptotic operator. Inside the O, Ω, and Θ operators, the

actual time needed for each step does not matter since the constant factors

are hidden by the oper-ator; what matters is how the number of steps

required grows as the size of the input grows.

Hence, we will characterize the running time of a procedure using a set of

func-tions produced by one of the asymptotic operators. The Θ operator

provides the most information. Since Θ(f) is the intersection of O(f) (no

faster than) and Ω(f) (no slower than), knowing that the running time of a

procedure is in Θ(f) for some function f provides much more information

than just knowing it is in O(f) or just knowing that it is in Ω(f). Hence,

our goal is to characterize the running time of a procedure using the set of

functions defined by Θ(f) of some function f .

The rest of this section provides examples of procedures with different

growth rates, from slowest (no growth) through increasingly rapid growth

rates. The growth classes described are important classes that are commonly

encountered when analyzing procedures, but these are only examples of

growth classes. Be-tween each pair of classes described here, there are an

unlimited number of dif-ferent growth classes.

7.4.1 No Growth: Constant Time

If the running time of a procedure does not increase when the size of the

input increases, the procedure must be able to produce its output by looking

at only a constant number of symbols in the input. Procedures whose

running time does

216 | P a g e

not increase with the size of the input are known as constant time

procedures. Their running time is in O(1) — it does not grow at all. By

convention, we use O(1) instead of Θ(1) to describe constant time. Since

there is no way to grow slower than not growing at all, O(1) and Θ(1) are

equivalent.

We cannot do much in constant time, since we cannot even examine the

whole input. A constant time procedure must be able to produce its output

by exam-ining only a fixed-size part of the input. Recall that the input size

measures the number of squares needed to represent the input. No matter

how long the input is, a constant time procedure can look at no more than

some fixed number of squares on the tape, so cannot even read the whole

input.

An example of a constant time procedure is the built-in procedure car.

When car is applied to a non-empty list, it evaluates to the first element of

that list. No matter how long the input list is, all the car procedure needs to

do is extract the first component of the list. So, the running time of car is in

O(1). Other built-in procedures that involve lists and pairs that have running

times in O(1) include cons, cdr, null?, and pair?. None of these procedures

need to examine more than the first pair of the list.

7.4.2 Linear Growth

When the running time of a procedure increases by a constant amount when

the size of the input grows by one, the running time of the procedure grows

linearly with the input size. If the input size is n, the running time is in Θ(n).

If a proce-dure has running time in Θ(n), doubling the size of the input will

approximately double the execution time.

An example of a procedure that has linear growth is the elementary school

ad-dition algorithm from Section 6.2.3. To add two d-digit numbers, we

need to perform a constant amount of work for each digit. The number of

steps required grows linearly with the size of the numbers (recall from

217 | P a g e

Section 7.3.1 that the size of a number is the number of input symbols

needed to represent the number).

Many procedures that take a List as input have linear time growth. A

procedure that does something that takes constant time with every element

in the input List, has running time that grows linearly with the size of the

input since adding one element to the list increases the number of steps by a

constant amount. Next, we analyze three list procedures, all of which have

running times that scale linearly with the size of their input.

Example 7.4: Append

Consider the list-append procedure (from Example 5.6):

(define (list-append p q)

(if (null? p) q (cons (car p) (list-append (cdr p) q))))

Since list-append takes two inputs, we need to be careful about how we

refer to the input size. We use np to represent the number of elements in the

first input, and nq to represent the number of elements in the second input.

So, our goal is to define a function Max- Steps listappend (np, nq) that captures

how the maximum number of steps required to evaluate an application of

list-append scales with the size of its input.

To analyze the running time of list-append, we examine its body which is

an if expression. The predicate expression applies the null? procedure with

is con-stant time since the effort required to determine if a list is null does

not depend on the length of the list. When the predicate expression

evaluates to true, the alternate expression is just q, which can also be

evaluated in constant time.

Next, we consider the alternate expression. It includes a recursive

application of list-append. Hence, the running time of the alternate

expression is the time required to evaluate the recursive application plus the

time required to evaluate everything else in the expression. The other

218 | P a g e

expressions to evaluate are applica-tions of cons, car, and cdr, all of which

is are constant time procedures.

So, we can defined the total running time recursively as:

Max-Steps
list-append

(n
p
,

n

q
) =

C

+

Max-Steps

list-append
(np –1, n

q
)

where C is some constant that reflects the time for all the operations besides

the recursive call. Note that the value of nq does not matter, so we simplify

this to:

Max-Steps
list-append

(n
p
) =

C

+

Max-Steps

list-append
(n

p
 –1).

This does not yet provide a useful characterization of the running time of

list-append though, since it is a circular definition. To make it a recursive

definition, we need a base case. The base case for the running time

definition is the same as the base case for the procedure: when the input is

null. For the base case, the running time is constant:

Max-Steps list-append (0)= C0

where C0 is some constant.

To better characterize the running time of list-append, we want a closed

form solution. For a given input n, Max-Steps(n) is C + C + C + C + . . . +

C + C0 where there are n-1 of the C terms in the sum. This simplifies to (n-

1)C + C0 = nC - C + C0 = nC + C2. We do not know what the values of C

and C2 are, but within the asymptotic notations the constant values do not

matter. The impor-tant property is that the running time scales linearly with

the value of its input. Thus, the running time of list-append is in Θ(np)

where np is the number of elements in the first input.

219 | P a g e

Usually, we do not need to reason at quite this low a level. Instead, to

analyze the running time of a recursive procedure it is enough to determine

the amount of work involved in each recursive call (excluding the recursive

application itself) and multiply this by the number of recursive calls. For

this example, there are np recursive calls since each call reduces the length

of the p input by one until the base case is reached. Each call involves only

constant-time procedures (other than the recursive application), so the

amount of work involved in each call is constant. Hence, the running time is

in Θ(np). Equivalently, the running time for the list-append procedure scales

linearly with the length of the first input list.

Example 7.5: Length

Consider the list-length procedure from Example 5.1:

(define (list-length p) (if (null? p) 0 (+ 1 (list-length (cdr p)))))

This procedure makes one recursive application of list-length for each

element in the input p. If the input has n elements, there will be n + 1 total

applications of list-length to evaluate (one for each element, and one for the

null). So, the total work is in Θ(n.work for each recursive application).

To determine the running time, we need to determine how much work is in-

volved in each application. Evaluating an application of list-length involves

eval-uating its body, which is an if expression. To evaluate the if

expression, the pred-icate expression, (null? p), must be evaluated first.

This requires constant time since the null? procedure has constant running

time (see Section 7.4.1). The consequent expression is the primitive

expression, 0, which can be evaluated in constant time. The alternate

expression, (+ 1 (list-length (cdr p))), includes the recursive call. There are

n + 1 total applications of list-length to evaluate, the total running time is n

+ 1 times the work required for each application (other than the recursive

application itself).

220 | P a g e

The remaining work is evaluating (cdr p) and evaluating the + application.

The cdr procedure is constant time. Analyzing the running time of the +

procedure application is more complicated.

Cost of Addition. Since + is a built-in procedure, we need to think about

how it might be implemented. Following the elementary school addition

algorithm (from Section 6.2.3), we know we can add any two numbers by

walking down the digits. The work required for each digit is constant; we

just need to compute the corresponding result and carry bits using a simple

formula or lookup table. The number of digits to add is the maximum

number of digits in the two input numbers. Thus, if there are b digits to add,

the total work is in Q(b). In the worst case, we need to look at all the digits

in both numbers. In general, we cannot do asymptotically better than this,

since adding two arbitrary numbers might require looking at all the digits in

both numbers.

But, in the list-length procedure the + is used in a very limited way: one of

the inputs is always 1. We might be able to add 1 to a number without

looking at all the digits in the number. Recall the addition algorithm: we

start at the rightmost (least significant) digit, add that digit, and continue

with the carry. If one of the input numbers is 1, then once the carry is zero

we know now of the more significant digits will need to change. In the

worst case, adding one requires changing every digit in the other input. For

example, (+ 99999 1) is 100000. In the best case (when the last digit is

below 9), adding one requires only examining and changing one digit.

Figuring out the average case is more difficult, but necessary to get a good

esti-mate of the running time of list-length. We assume the numbers are

represented in binary, so instead of decimal digits we are counting bits (this

is both simpler, and closer to how numbers are actually represented in the

computer). Approx-imately half the time, the least significant bit is a 0, so

we only need to examine one bit. When the last bit is not a 0, we need to

examine the second least signifi-cant bit (the second bit from the right): if it

is a 0 we are done; if it is a 1, we need to continue.

221 | P a g e

We always need to examine one bit, the least significant bit. Half the time

we also need to examine the second least significant bit. Of those times,

half the time we need to continue and examine the next least significant bit.

This con- tinues through the whole number. Thus, the expected number of

bits we need to examine is,

No matter how large b gets, this value is always less than 2. So, on average,

the number of bits to examine to add 1 is constant: it does not depend on the

length of the input number.

This result generalizes to addition where one of the inputs is any constant

value. Adding any constant C to a number n is equivalent to adding one C

times. Since adding one is a constant time procedure, adding one C times

can also be done in constant time for any constant C.

Excluding the recursive application, the list-length application involves

appli-cations of two constant time procedures: cdr and adding one using +.

Hence, the total time needed to evaluate one application of list-length,

excluding the recursive application, is constant.

There are n + 1 total applications of list-length to evaluate total, so the total

run-ning time is c(n + 1) where c is the amount of time needed for each

application. The set Θ(c(n + 1)) is identical to the set Θ(n), so the running

time for the length procedure is in Θ(n) where n is the length of the input

list.

Example 7.6: Accessing List Elements

Consider the list-get-element procedure from Example 5.3:

222 | P a g e

(define (list-get-element p n)

(if (= n 1)

(car p)

(list-get-element (cdr p) (– n 1))))

The procedure takes two inputs, a List and a Number selecting the element

of the list to get. Since there are two inputs, we need to think carefully

about the input size. We can use variables to represent the size of each

input, for example p and sn for the size of p and n respectively. In this case,

however, only the size of the first input really matters.

The procedure body is an if expression. The predicate uses the built-in =

pro-cedure to compare n to 1. The worst case running time of the =

procedure is linear in the size of the input: it potentially needs to look at all

bits in the input numbers to determine if they are equal. Similarly to +,

however, if one of the inputs is a constant, the comparison can be done in

constant time. To compare a number of any size to 1, it is enough to look at

a few bits. If the least significant bit of the input number is not a 1, we

know the result is false. If it is a 1, we need to examine a few other bits of

the input number to determine if its value is dif-ferent from 1 (the exact

number of bits depends on the details of how numbers are represented). So,

the = comparison can be done in constant time.

If the predicate is true, the base case applies the car procedure, which has

con-stant running time. The alternate expression involves the recursive

calls, as well as evaluating (cdr p), which requires constant time, and (– n

1). The procedure is similar to +: for arbitrary inputs, its worst case running

time is linear in the input size, but when one of the inputs is a constant the

running time is constant. This follows from a similar argument to the one

we used for the + procedure. So, the work required for each recursive call is

constant.

223 | P a g e

The number of recursive calls is determined by the value of n and the

number of elements in the list p. In the best case, when n is 1, there are no

recursive calls and the running time is constant since the procedure only

needs to examine the first element. Each recursive call reduces the value

passed in as n by 1, so the number of recursive calls scales linearly with n

(the actual number is n 1 since the base case is when n equals 1). But, there

is a limit on the value of n for which this is true. If the value passed in as n

exceeds the number of elements in p, the procedure will produce an error

when it attempts to evaluate (cdr p) for the empty list. This happens after sp

recursive calls, where sp is the number of elements in p. Hence, the running

time of list-get-element does not grow with the length of the input passed as

n; after the value of n exceeds the number of elements in p it does not

matter how much bigger it gets, the running time does not continue to

increase.

Thus, the worst case running time of list-get-element grows linearly with

the length of the input list. Equivalently, the running time of list-get-

element is in Θ(sp) where sp is the number of elements in the input list.

 Check your progress I

➢ For the decimal six-digit odometer (shown in the picture on page 142), we

measure the amount of work to add one as the total number of wheel digit

turns required. For example, going from 000000 to 000001 requires one

work unit, but going from 000099 to 000100 requires three work units.

(a) What are the worst case inputs?

(b) What are the best case inputs?

[⃰] On average, how many work units are required for each mile? Assume over the

lifetime of the odometer, the car travels 1,000,000 miles.

7.4.3 Quadratic Growth

If the running time of a procedure scales as the square of the size of the

input,the procedure’s running time grows quadratically. Doubling the size

224 | P a g e

of the in-put approximately quadruples the running time. The running time

is in Θ(n
2
) where n is the size of the input.

A procedure that takes a list as input has running time that grows

quadratically if it goes through all elements in the list once for every

element in the list. For example, we can compare every element in a list of

length n with every other element using n(n 1) comparisons. This simplifies

to n
2
 – n, but Θ(n

2
 – n) is equivalent to Θ(n

2
) since as n increases only the

highest power term matters (see Exercise 7.7).

Example 7.7: Reverse

Consider the list-reverse procedure defined in Section 5.4.2:

(define (list-reverse p)

(if (null? p) null (list-append (list-reverse (cdr p)) (list (car p)))))

To determine the running time of list-reverse, we need to know how many

recur-sive calls there are and how much work is involved in each recursive

call. Each recursive application passes in (cdr p) as the input, so reduces the

length of the input list by one. Hence, applying list-reverse to a input list

with n elements in-volves n recursive calls.

The work for each recursive application, excluding the recursive call itself,

is ap-plying list-append. The first input to list-append is the output of the

recursive call. As we argued in Example 7.4, the running time of list-

append is in Q(np) where np is the number of elements in its first input. So,

to determine the run-ning time we need to know the length of the first input

list to list-append. For the first call, (cdr p) is the parameter, with length n 1;

for the second call, there will be n 2 elements; and so forth, until the final

call where (cdr p) has 0 elements. The total number of elements in all of

these calls is:

225 | P a g e

(n – 1) + (n – 2) + . . . + 1 + 0.

The average number of elements in each call is approximately
n

2 . Within

the asymptotic operators the constant factor of
1

2 does not matter, so the

average running time for each recursive application is in Θ(n).

There are n recursive applications, so the total running time of list-reverse is

n times the average running time of each recursive application:

n.Θ(n) = Θ(n
2
).

Thus, the running time is quadratic in the size of the input list.

Example 7.8: Multiplication

Consider the problem of multiplying two numbers. The elementary school

long multiplication algorithm works by multiplying each digit in b by each

digit in a, aligning the intermediate results in the right places, and summing

the results:

If both input numbers have n digits, there are n2 digit multiplications, each

of which can be done in constant time. The intermediate results will be n

rows, each containing n digits. So, the total number of digits to add is n2: 1

digit in the ones place, 2 digits in the tens place, . . ., n digits in the 10n 1s

place, . . ., 2 digits in the 102 n 3s place, and 1 digit in the 102n 2s place.

Each digit addition requires constant work, so the total work for all the digit

additions is in Θ(n2). Adding the work for both the digit multiplications and

the digit additions, the total run-ning time for the elementary school

multiplication algorithm is quadratic in the number of input digits, Θ(n
2
)

where n is the number if digits in the inputs.

226 | P a g e

This is not the fastest known algorithm for multiplying two numbers,

although it was the best algorithm known until 1960. In 1960, Anatolii

Karatsuba discovers

multiplication algorithm with running time in Θ(n
log

2
3
). Since log23 < 1.585

this is an improvement over the Θ(n
2
) elementary school algorithm. In

2007, Martin Furer¨ discovered an even faster algorithm for multiplication.

It is not yet known if this is the fastest possible multiplication algorithm, or

if faster ones exist.

 Check your progress II

➢ Analyze the running time of the elementary school long division

algorithm.

➢ Define a Scheme procedure that multiplies two multi-digit numbers

(without using the built-in procedure except to multiply single-digit

numbers). Strive for your procedure to have running time in Θ(n) where n

is the total number of digits in the input numbers.

7.4.4 Exponential Growth

If the running time of a procedure scales as a power of the size of the input,

the procedure’s running time grows exponentially. When the size of the

input increases by one, the running time is multiplied by some constant

factor. The growth rate of a function whose output is multiplied by w when

the input size, n, increases by one is w
n
. Exponential growth is very fast—it

is not feasible to evaluate applications of an exponential time procedure on

large inputs.

For a surprisingly large number of interesting problems, the best known

algorithm has exponential running time. Examples of problems like this

include finding the best route between two locations on a map (the problem

mentioned at the beginning of Chapter 4), the pegboard puzzle (Exploration

5.2, solving generalized versions of most other games such as Suduko and

Minesweeper, and finding the factors of a number. Whether or not it is

227 | P a g e

possible to design faster algorithms that solve these problems is the most

important open prob-lem in computer science.

Example 7.9: Factoring

A simple way to find a factor of a given input number is to exhaustively try

all possible numbers below the input number to find the first one that

divides the number evenly. The find-factor procedure takes one number as

input and out-puts the lowest factor of that number (other than 1):

(define (find-factor n)

(define (find-factor-helper v)

(if (= (modulo n v) 0) v (find-factor-helper (+ 1 v))))

(find-factor-helper 2))

The find-factor-helper procedure takes two inputs, the number to factor and

the current guess. Since all numbers are divisible by themselves, the

modulo test will eventually be true for any positive input number, so the

maximum number of recursive calls is n, the magnitude of the input to find-

factor. The magnitude of n is exponential in its size, so the number of

recursive calls is in Θ(2
b
) where b is the number of bits in the input. This

means even if the amount of work re-quired for each recursive call were

constant, the running time of the find-factor procedure is still exponential in

the size of its input.

The actual work for each recursive call is not constant, though, since it

involves an application of modulo. The modulo built-in procedure takes two

inputs and outputs the remainder when the first input is divided by the

second input. Hence, it output is 0 if n is divisible by v. Computing a

remainder, in the worst case, at least involves examining every bit in the

input number, so scales at least linearly in the size of its input
6
. This means

the running time of find-factor is in Ω(2
b
): it grows at least as fast as 2

b
.

228 | P a g e

There are lots of ways we could produce a faster procedure for finding

factors: stopping once the square root of the input number is reached since

we know there is no need to check the rest of the numbers, skipping even

numbers after 2 since if a number is divisible by any even number it is also

divisible by 2, or using advanced sieve methods. This techniques can

improve the running time by con-stant factors, but there is no known

factoring algorithm that runs in faster than exponential time. The security of

the widely used RSA encryption algorithm de-pends on factoring being

hard. If someone finds a fast factoring algorithm it would put the codes

used to secure Internet commerce at risk.
7

 Example 7.10: Power Set

The power set of a set S is the set of all subsets of S. For example, the

power set of {1, 2, 3} is

{{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

The number of elements in the power set of S is 2
|S|

 (where |S| is the

number of elements in the set S).

Here is a procedure that takes a list as input, and produces as output the

power set of the elements of the list:

(define (list-powerset s)

(if (null? s) (list null)

(list-append (list-map (lambda (t) (cons (car s) t))

(list-powerset (cdr s)))

(list-powerset (cdr s)))))

The list-powerset procedure produces a List of Lists. Hence, for the base

case, instead of just producing null, it produces a list containing a single

element, null. In the recursive case, we can produce the power set by

appending the list of all the subsets that include the first element, with the

list of all the subsets that do not include the first element. For example, the

powerset of {1, 2, 3} is found by finding the powerset of {2, 3}, which is

229 | P a g e

{{}, {2}, {3}, {2, 3}}, and taking the union of that set with the set of all

elements in that set unioned with {1}.

An application of list-powerset involves applying list-append, and two

recursive applications of (list-powerset (cdr s)). Increasing the size of the

input list by one, doubles the total number of applications of list-powerset

since we need to eval-uate (list-powerset (cdr s)) twice. The number of

applications of list-powerset is 2
n
 where n is the length of the input list.

8

The body of list-powerset is an if expression. The predicate applies the

constant-time procedure, null?. The consequent expression, (list null) is also

constant time. The alternate expression is an application of list-append.

From Exam-ple 7.4, we know the running time of list-append is Θ(np)

where np is the num-ber of elements in its first input. The first input is the

result of applying list-map to a procedure and the List produced by (list-

powerset (cdr s)). The length of the list output by list-map is the same as the

length of its input, so we need to determine the length of (list-powerset (cdr

s)).

We use ns to represent the number of elements in s. The length of the input

list to map is the number of elements in the power set of a size ns 1 set:

2
n–1

. But, for each application, the value of ns is different. Since we are

trying to determine the total running time, we can do this by thinking about

the total length of all the input lists to list-map over all of the list-powerset.

In the input is a list of length n, the total list length is 2
n

1
 + 2

n

2
 + ... + 2

1
 +

2
0
, which is equal to 2

n
 – 1. So,the running time for all the list-map

applications is in Θ(2
n
).

The analysis of the list-append applications is similar. The length of the first

input to list-append is the length of the result of the list-powerset

application, so the total length of all the inputs to append is 2
n
.

230 | P a g e

Other than the applications of list-map and list-append, the rest of each list-

powerset application requires constant time. So, the running time required

for 2
n
 applications is in Θ(2

n
). The total running time for list-powerset is

the sum of the running times for the list-powerset applications, in Θ(2
n
); the

list-map applications, in Θ(2
n
); and the list-append applications, in Θ(2

n
).

Hence, the total running time is in Θ(2
n
).

In this case, we know there can be no faster than exponential procedure that

solves the same problem, since the size of the output is exponential in the

size of the input. Since the most work a Turing Machine can do in one step

is write one square, the size of the output provides a lower bound on the

running time of the Turing Machine. The size of the powerset is 2
n
 where n

is the size of the input set. Hence, the fastest possible procedure for this

problem has at least exponential running time.

7.4.5 Faster than Exponential Growth

We have already seen an example of a procedure that grows faster than

expo-nentially in the size of the input: the fibo procedure at the beginning

of this chapter! Evaluating an application of fibo involves Θ(ϕ
n
) recursive

applications where n is the magnitude of the input parameter. The size of a

numeric input is the number of bits needed to express it, so the value n can

be as high as 2
b
 1 where b is the number of bits. Hence, the running time of

the fibo procedure is in Θ(ϕ
2b) where b is the size of the input. This is why

we are still waiting for (fibo 60) to finish evaluating.

7.4.6 Non-terminating Procedures

All of the procedures so far in the section are algorithms: they may be slow,

but they are guaranteed to eventually finish if one can wait long enough.

Some pro-cedures never terminate. For example,

231 | P a g e

(define (run-forever) (run-forever))

defines a procedure that never finishes. Its body calls itself, never making

any progress toward a base case. The running time of this procedure is

effectively infinite since it never finishes.

7.5 Summary

Because the speed of computers varies and the exact time required for a

particu-lar application depends on many details, the most important

property to under-stand is how the work required scales with the size of the

input. The asymptotic operators provide a convenient way of understanding

the cost involved in eval-uating a procedure applications.

Procedures that can produce an output only touching a fixed amount have

con-stant running times. Procedures whose running times increase by a

fixed amount when the input size increases by one have linear (in Θ(n))

running times. Proce-dures whose running time quadruples when the input

size doubles have quadratic (in Θ(n
2
)) running times. Procedures whose

running time doubles when the in-put size increases by one have

exponential (in Θ(2
n
)) running times. Procedures with exponential running

time can only be evaluated for small inputs.

Asymptotic analysis, however, must be interpreted cautiously. For large

enough inputs, a procedure with running time in Θ(n) is always faster than a

procedure with running time in Θ(n
2
). But, for an input of a particular size,

the Θ(n
2
) procedure may be faster. Without knowing the constants that are

hidden by the asymptotic operators, there is no way to accurately predict the

actual running time on a given input.

232 | P a g e

 Check your progress III

A. The _____ function takes as input a function, and produces as output the

set of all functions that grow no faster than the input function.

B. If the running time of a procedure scales as the square of the size of the

input, the procedure’s running time grows ____________ .

C. The _________ of a power set set S is the set of all subsets of S.

7.6 Answer the Following

1. Define cpu time, real time and gc time.

2. Define asymptotic notations. Why they are used?

3. Explain dynamic programming.

4. For each of the g functions below, answer whether or not g is in the

set O(n). Your answer should include a proof. If g is in O(n) you

should identify values of c and n0 that can be selected to make the

necessary inequality hold. If g is not in O(n) you should argue

convincingly that no matter what values are chosen for c and n0

there are values of n ≥ n 0 such the inequality in the definition of O

does not hold.

a. g(n) = n + 5

b. g(n) = .01n

c. g(n) = 150n + √n

d. g(n) = n
1.5

e. g(n) = n!

5. Given f is some function in O(h), and g is some function not in

O(h), which of the following must always be true:

a. For all positive integers m, f (m) ≤ g(m).

b. For some positive integer m, f (m) < g(m).

c. For some positive integer m0, and all positive integers m > m0,

233 | P a g e

f(m) < g(m).

6. Repeat Q.3 using Ω instead of O.

7. For each part, identify a function g that satisfies the property.

a. g is in O(n2) but not in Ω(n2).

b. g is not in O(n2) but is in Ω(n2).

c. g is in both O(n2) and Ω(n2).

8. Repeat Q. 3 using Θ instead of O.

9. Show that Θ(n
2
 – n) is equivalent to Θ(n

2
).

10. Is Θ(n
2
) equivalent to Θ(n

2.1
)? Either prove they are identical, or

prove they are different.

11. Is Θ(2
n
) equivalent to Θ(3

n
)? Either prove they are identical, or

prove they are different.

12. Analyze the asymptotic running time of the list-sum procedure

(from Example 5.2):

(define (list-sum p)

(if (null? p)

0

(+ (car p) (list-sum (cdr p)))))

You may assume all of the elements in the list have values below

some constant (but explain why this assumption is useful in your

analysis).

13. Analyze the asymptotic running time of the factorial procedure

(from Example 4.1):

(define (factorial n) (if (= n 0) 1 (* n (factorial (– n 1)))))

Be careful to describe the running time in terms of the size (not the

magnitude) of the input.

14. Analyze the running time of the board-replace-peg procedure (from

Exploration 5.2):

(define (row-replace-peg pegs col val)

(if (= col 1) (cons val (cdr pegs))

(cons (car pegs) (row-replace-peg (cdr pegs) (– col 1) val))))

(define (board-replace-peg board row col val)

234 | P a g e

(if (= row 1) (cons (row-replace-peg (car board) col val) (cdr board))

(cons (car board) (board-replace-peg (cdr board) (– row 1) col

val))))

15. Analyze the running time of the deep-list-flatten procedure from

Section 5.5:

(define (deep-list-flatten p)

(if (null? p) null

(list-append (if (list? (car p))

(deep-list-flatten (car p))

(list (car p)))

(deep-list-flatten (cdr p)))))

16. Find and correct at least one error in the Orders of Growth section of

the Wikipedia page on Analysis of Algorithms

(http://en.wikipedia.org/ wiki/Analysis of algorithms). This is rated

as [*] now (July 2011), since the cur-rent entry contains many fairly

obvious errors. Hopefully it will soon become a [* * *] challenge,

and perhaps, eventually will become impossible!

 Answer to Check your progress III

A. Big O

B. quadratically.

C. power set

http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms

235 | P a g e

Sorting and Searching

Learning Objectives

After reading this unit, the learner shall be able to:

• Define Sorting and Searching

• Apply best-first sort technique to sort a given list of data

• Apply insertion-sort technique to sort a given list of data Define

sorted binary tree

• Apply quick sort technique to sort the given list of data

• Compare the run-time complexities of various sorting algorithms

• Perform Unstructured Search

• Apply binary search technique to search an element in a given list of

data

• Perform Indexed Search

Introduction

This unit presents two extended examples that use the programming tech-

niques from Chapters 2–5 and analysis ideas from Chapters 6–7 to solve

some interesting and important problems: sorting and searching. These

examples in-volve some quite challenging problems and incorporate many

of the ideas we have seen up to this point in the book. Once you understand

them, you are well on your way to thinking like a computer scientist!

8.1 Sorting

The sorting problem takes two inputs: a list of elements and a comparison

pro-cedure. It outputs a list containing same elements as the input list

ordered ac-cording to the comparison procedure. For example, if we sort a

list of numbers using < as the comparison procedure, the output is the list of

numbers sorted in order from least to greatest.

Sorting is one of the most widely studied problems in computing, and many

different sorting algorithms have been proposed. Try to develop a sorting

236 | P a g e

pro-cedure yourself before continuing further. It may be illuminating to try

sorting some items by hand an think carefully about how you do it and how

much work it is. For example, take a shuffled deck of cards and arrange

them in sorted or-der by ranks. Or, try arranging all the students in your

class in order by birthday. Next, we present and analyze three different

sorting procedures.

8.1.1 Best-First Sort

A simple sorting strategy is to find the best element in the list and put that

at the front. The best element is an element for which the comparison

procedure evaluates to true when applied to that element and every other

element. For example, if the comparison function is <, the best element is

the lowest number in the list. This element belongs at the front of the output

list.

The notion of the best element in the list for a given comparison function

only makes sense if the comparison function is transitive. This means it has

the property that for any inputs a, b, and c, if (cf a b) and (cf b c) are both

true, the result of (cf a c) must be true. The < function is transitive: a < b

and b < c implies a < c for all numbers a, b, and c. If the comparison

function does not have this property, there may be no way to arrange the

elements in a single sorted list. All of our sorting procedures require that the

procedure passed as the comparison function is transitive.

Once we can find the best element in a given list, we can sort the whole list

by repeatedly finding the best element of the remaining elements until no

more elements remain. To define our best-first sorting procedure, we first

define a procedure for finding the best element in the list, and then define a

procedure for removing an element from a list.

Finding the Best. The best element in the list is either the first element, or

the best element from the rest of the list. Hence, we define list-find-best

237 | P a g e

recursively. An empty list has no best element, so the base case is for a list

that has one element. When the input list has only one element, that element

is the best element. If the list has more than one element, the best element is

the better of the first element in the list and the best element of the rest of

the list.

To pick the better element from two elements, we define the pick-better

proce-dure that takes three inputs: a comparison function and two values.

(define (pick-better cf p1 p2) (if (cf p1 p2) p1 p2))

Assuming the procedure passed as cf has constant running time, the running

time of pick-better is constant. For most of our examples, we use the <

proce-dure as the comparison function. For arbitrary inputs, the running

time of < is not constant since in the worst case performing the comparison

requires exam-ining every digit in the input numbers. But, if the maximum

value of a number in the input list is limited, then we can consider < a

constant time procedure since all of the inputs passed to it are below some

fixed size.

We use pick-better to define list-find-best:

(define (list-find-best cf p)

(if (null? (cdr p)) (car p)

(pick-better cf (car p) (list-find-best cf (cdr p)))))

We use n to represent the number of elements in the input list p. An

applica-tion of list-find-best involves n 1 recursive applications since each

one passes in (cdr p) as the new p operand and the base case stops when the

list has one element left. The running time for each application (excluding

the recursive application) is constant since it involves only applications of

the constant time procedures null?, cdr, and pick-better. So, the total

running time for list-find-best is in Θ(n); it scales linearly with the length of

the input list.

238 | P a g e

Deleting an Element. To implement best first sorting, we need to produce

a list that contains all the elements of the original list except for the best

element, which will be placed at the front of the output list. We define a

procedure, list-delete, that takes as inputs a List and a Value, and produces

a List that contains all the elements of the input list in the original order

except for the first element that is equal to the input value.

(define (list-delete p el)

(if (null? p) null

(if (equal? (car p) el) (cdr p) ; found match, skip this element

(cons (car p) (list-delete (cdr p) el)))))

We use the equal? procedure to check if the element matches instead of =

so the list-delete procedure works on elements that are not just Numbers.

The equal? procedure behaves identically to = when both inputs are

Numbers, but also works sensibly on many other datatypes including

Booleans, Characters, Pairs, Lists, and Strings. Since we assume the sizes

of the inputs to equal? are bounded, we can consider equal? to be a constant

time procedure (even though it would not be constant time on arbitrary

inputs).

The worst case running time for list-delete occurs when no element in the

list matches the value of el (in the best case, the first element matches and

the run-ning time does not depend on the length of the input list at all). We

use n to represent the number of elements in the input list. There can be up

to n re-cursive applications of list-delete. Each application has constant

running time since all of the procedures applied (except the recursive call)

have constant run-ning times. Hence, the total running time for list-delete is

in Θ(n) where n is the length of the input list.

Best-First Sorting. We define list-sort-best-first using list-find-best and

list-delete:

239 | P a g e

(define (list-sort-best-first cf p)

(if (null? p) null

(cons (list-find-best cf p)

(list-sort-best-first cf (list-delete p (list-find-best cf p))))))

The running time of the list-sort-best-first procedure grows quadratically

with the length of the input list. We use n to represent the number of

elements in the input list. There are n recursive applications since each

application of list-delete produces an output list that is one element shorter

than its input list. In addition to the constant time procedures (null? and

cons), the body of list-sort-best-first involves two applications of list-find-

best on the input list, and one application of list-delete on the input list.

Each of these applications has running time in Θ(m) where m is the length

of the input list to list-find-best and list-delete (we use m here to avoid

confusion with n, the length of the first list passed into list-sort-best-first).

In the first appli-cation, this input list will be a list of length n, but in later

applications it will be involve lists of decreasing length: n – 1, n – 2, , 1.

Hence, the average length of the input lists to list-find-best and list-delete is

approximately
n

2. Thus, the av-erage running time for each of these

applications is in Θ(
n

2), which is equivalent to Θ(n).

There are three applications (two of list-find-best and one of list-delete) for

each application of list-sort-best-first, so the total running time for each

application is in Θ(3n), which is equivalent to Θ(n).

There are n recursive applications, each with average running time in Θ(n),

so the running time for list-sort-best-first is in Θ(n2). This means doubling

the length of the input list quadruples the expected running time, so we

predict that sorting a list of 2000 elements to take approximately four times

as long as sorting a list of 1000 elements.

240 | P a g e

Let expression. Each application of the list-sort-best-first procedure

involves two evaluations of (list-find-best cf p), a procedure with running

time in Θ(n) where n is the length of the input list.

The result of both evaluations is the same, so there is no need to evaluate

this expression twice. We could just evaluate (list-find-best cf p) once and

reuse the result. One way to do this is to introduce a new procedure using a

lambda ex-pression and pass in the result of (list-find-best cf p) as a

parameter to this pro-cedure so it can be used twice:

(define (list-sort-best-first-nodup cf p)

(if (null? p) null

((lambda (best)

(cons best (list-sort-best-first-nodup cf (list-delete p best))))

(list-find-best cf p))))

This procedure avoids the duplicate evaluation of (list-find-best cf p), but is

quite awkward to read and understand.

Scheme provides the let expression special form to avoid this type of

duplicate work more elegantly. The grammar for the let expression is:

Expression ::=> LetExpression

LetExpression ::=> (let (Bindings) Expression)

Bindings ::=> Binding Bindings

Bindings ::=> ϵ

Binding ::=> (Name Expression)

The evaluation rule for the let expression is:

Evaluation Rule 6: Let expression. To evaluate a let expression, eval-uate

each binding in order. To evaluate each binding, evaluate the binding

expression and bind the name to the value of that expres-sion. Then, the

value of the let expression is the value of the body expression evaluated

241 | P a g e

with the names in the expression that match binding names substituted with

their bound values.

A let expression can be transformed into an equivalent application

expression. The let expression

(let ((Name1 Expression1) (Name2 Expression2)

(Namek Expressionk)) Expressionbody)

is equivalent to the application expression:

((lambda (Name1 Name2 . . . Namek) Expressionbody)

Expression1 Expression2 . . . Expressionk)

The advantage of the let expression syntax is it puts the expressions next to

the names to which they are bound. Using a let expression, we define list-

sort-best-first-let to avoid the duplicate evaluations:

(define (list-sort-best-first-let cf p)

(if (null? p) null

(let ((best (list-find-best cf p)))

(cons best (list-sort-best-first-let cf (list-delete p best))))))

This runs faster than list-sort-best-first since it avoids the duplicate

evaluations, but the asymptotic asymptotic running time is still in Θ(n
2
):

there are n recur-sive applications of list-sort-best-first-let and each

application involves linear time applications of list-find-best and list-delete.

Using the let expression im-proves the actual running time by avoiding the

duplicate work, but does not im-pact the asymptotic growth rate since the

duplicate work is hidden in the con-stant factor.

 Check your progress I

➢ What is the best case input for list-sort-best-first? What is its asymptotic

running time on the best case input?

242 | P a g e

8.1.2 Insertion Sort

The list-sort-best-first procedure seems quite inefficient. For every output

ele-ment, we are searching the whole remaining list to find the best

element, but do nothing of value with all the comparisons that were done to

find the best element.

An alternate approach is to build up a sorted list as we go through the

elements. Insertion sort works by putting the first element in the list in the

right place in the list that results from sorting the rest of the elements.

First, we define the list-insert-one procedure that takes three inputs: a

compar-ison procedure, an element, and a List. The input List must be

sorted according to the comparison function. As output, list-insert-one

produces a List consist-ing of the elements of the input List, with the input

element inserts in the right place according to the comparison function.

(define (list-insert-one cf el p) ; requires: p is sorted by cf

(if (null? p) (list el)

(if (cf el (car p)) (cons el p)

(cons (car p) (list-insert-one cf el (cdr p))))))

The running time for list-insert-one is in Θ(n) where n is the number of

elements in the input list. In the worst case, the input element belongs at the

end of the list and it makes n recursive applications of list-insert-one. Each

application involves constant work so the overall running time of list-insert-

one is in Θ(n).

To sort the whole list, we insert each element into the list that results from

sort-ing the rest of the elements:

(define (list-sort-insert cf p)

(if (null? p) null

(list-insert-one cf (car p) (list-sort-insert cf (cdr p)))))

243 | P a g e

Evaluating an application of list-sort-insert on a list of length n involves n

recur-sive applications. The lengths of the input lists in the recursive

applications are n – 1, n – 2, . . ., 0. Each application involves an application

of list-insert-one which has linear running time. The average length of the

input list over all the applications is approximately
n

2 , so the average

running time of the list-insert-one applications is in Θ(n). There are n

applications of list-insert-one, so the total running time is in Θ(n
2
).

 Check your progress II

➢ We analyzed the worst case running time of list-sort-insert above. Analyze

the best case running time. Your analysis should identify the inputs for

which list-sort-insert runs fastest, and describe the asymptotic running

time for the best case input.

8.1.3 Quicker Sorting

Although insertion sort is typically faster than best-first sort, its running

time is still scales quadratically with the length of the list. If it takes 100

milliseconds (one tenth of a second) to sort a list containing 1000 elements

using list-sort-insert, we expect it will take four (= 2
2
) times as long to sort

a list containing 2000 elements, and a million times (= 1000
2
) as long (over

a day!) to sort a list containing one million (1000 1000) elements. Yet

computers routinely need to sort lists containing many millions of elements

(for example, consider process-ing credit card transactions or analyzing the

data collected by a super collider).

The problem with our insertion sort is that it divides the work unevenly into

inserting one element and sorting the rest of the list. This is a very unequal

division. Any sorting procedure that works by considering one element at a

time and putting it in the sorted position as is done by list-sort-find-best and

list-sort-insert has a running time in Ω(n2). We cannot do better than this

244 | P a g e

with this strategy since there are n elements, and the time required to figure

out where each element goes is in Ω(n).

To do better, we need to either reduce the number of recursive applications

needed (this would mean each recursive call results in more than one

element being sorted), or reduce the time required for each application. The

approach we take is to use each recursive application to divide the list into

two approx-imately equal-sized parts, but to do the division in such a way

that the results of sorting the two parts can be combined directly to form the

result. We par-tition the elements in the list so that all elements in the first

part are less than (according to the comparison function) all elements in the

second part.

Our first attempt is to modify insert-one to partition the list into two parts.

This approach does not produce a better-than-quadratic time sorting

procedure be-cause of the inefficiency of accessing list elements; however,

it leads to insights for producing a quicker sorting procedure.

First, we define a list-extract procedure that takes as inputs a list and two

num-bers indicating the start and end positions, and outputs a list containing

the elements of the input list between the start and end positions:

(define (list-extract p start end)

(if (= start 0)

(if (= end 0) null

(cons (car p) (list-extract (cdr p) start (– end 1))))

(list-extract (cdr p) (– start 1) (– end 1))))

The running time of the list-extract procedure is in Θ(n) where n is the

number of elements in the input list. The worst case input is when the value

of end is the length of the input list, which means there will be n recursive

applications, each involving a constant amount of work.

245 | P a g e

We use list-extract to define procedures for obtaining first and second

halves of a list (when the list has an odd number of elements, we put the

middle element in the second half of the list):

(define (list-first-half p)

(list-extract p 0 (floor (/ (list-length p) 2))))

(define (list-second-half p)

(list-extract p (floor (/ (list-length p) 2)) (list-length p)))

The list-first-half and list-second-half procedures use list-extract so their

run-ning times are linear in the number of elements in the input list.

The list-insert-one-split procedure inserts an element in sorted order by first

splitting the list in halves and then recursively inserting the new element in

the appropriate half of the list:

(define (list-insert-one-split cf el p) ; requires: p is sorted by cf (if (null? p)

(list el)

(if (null? (cdr p))

(if (cf el (car p)) (cons el p) (list (car p) el))

(let ((front (list-first-half p)) (back (list-second-half p)))

(if (cf el (car back))

(list-append (list-insert-one-split cf el front) back)

(list-append front (list-insert-one-split cf el back)))))))

In addition to the normal base case when the input list is null, we need a

special case when the input list has one element. If the element to be

inserted is before this element, the output is produced using cons;

otherwise, we produce a list of the first (only) element in the list followed

by the inserted element.

In the recursive case, we use the list-first-half and list-second-half

procedures to split the input list and bind the results of the first and second

246 | P a g e

halves to the front and back variables so we do not need to evaluate these

expressions more than once.

Since the list passed to list-insert-one-split is required to be sorted, the

elements in front are all less than the first element in back. Hence, only one

comparison is needed to determine which of the sublists contains the new

element: if the element is before the first element in back it is in the first

half, and we produce the result by appending the result of inserting the

element in the front half with the back half unchanged; otherwise, it is in

the second half, so we produce the result by appending the front half

unchanged with the result of inserting the element in the back half.

To analyze the running time of list-insert-one-split we determine the

number of recursive calls and the amount of work involved in each

application. We use n to denote the number of elements in the input list.

Unlike the other recur-sive list procedures we have analyzed, the number of

recursive applications of list-insert-one-split does not scale linearly with the

length of the input list. The reason for this is that instead of using (cdr p) in

the recursive call, list-insert-one-split passes in either the front or back

value which is the result of (first-half p) or (second-half p) respectively. The

length of the list produced by these procedures is approximately
1
2 the

length of the input list. With each recursive application, the size of the input

list is halved. This means, doubling the size of the input list only adds one

more recursive application. This means the number of recursive calls is

logarithmic in the size of the input.

Recall that the logarithm (logb) of a number n is the number x such that b
x

= n where b is the base of the logarithm. In computing, we most commonly

en-counter logarithms with base 2. Doubling the input value increases the

value of its logarithm base two by one: log2 2n = 1 + log2 n. Changing the

base of a loga-rithm from k to b changes the value by the constant factor

(see Section 7.3.1), so inside the asymptotic operators a constant base of a

logarithm does not matter. Thus, when the amount of work increases by

247 | P a g e

some constant amount when the input size doubles, we write that the

growth rate is in Q(log n) without specify-ing the base of the logarithm.

Each list-insert-one-split application applies list-append to a first parameter

that is either the front half of the list or the result of inserting the element in

the front half of the list. In either case, the length of the list is approximately

n
2 . The run-ning time of list-append is in Q(m) where m is the length of the

first input list. So, the time required for each list-insert-one-split application

is in Q(n) where n is the length of the input list to list-insert-one-split.

Similarly to list-sort-insert, list-sort-insert-split involves n applications of

list-insert-one-split, and the average length of the input list is
n

2 . Since list-

sort-insert-split involves Q(n) applications of list-insert-one-split with

average in-put list length of
n

2 , the total running time for list-sort-insert-

split is in Q(n
2
). Because of the cost of evaluating the list-append, list-first-

half , and list-second-half applications, the change to splitting the list in

halves has not improved the asymptotic performance; in fact, because of all

the extra work in each applica-tion, the actual running time is higher than it

was for list-sort-insert.

248 | P a g e

The problem with our list-insert-one-split procedure is that the list-first-half

and list-second-half procedures have to cdr down the whole list to get to the

middle of the list, and the list-append procedure needs to walk through the

en-tire input list to put the new element in the list. All of these procedures

have run-ning times that scale linearly with the length of the input list. To

use the splitting strategy effectively, we need is a way to get to the middle

of the list quickly. With the standard list representation this is impossible: it

requires one cdr applica-tion to get to the next element in the list, so there is

no way to access the middle of the list without using at least
n
2 applications

of cdr. To do better, we need to change the way we represent our data. The

next subsection introduces such a structure; in Section 8.1.5 shows a way of

sorting efficiently using lists directly by changing how we split the list.

8.1.4 Binary Trees

The data structure we will use is known as a sorted binary tree. While a list

provides constant time procedures for accessing the first element and the

rest of the elements, a binary tree provides constant time procedures for

accessing the root element, the left side of the tree, and the right side of the

tree. The left and right sides of the tree are themselves trees. So, like a list, a

binary tree is a recursive data structure.

Whereas we defined a List (in Chapter 5) as:

A List is either (1) null or (2) a Pair whose second cell is a List.

a Tree is defined as:

A Tree is either (1) null or (2) a triple while first and third parts are both

Trees.

Symbolically:

Tree ::=> null

Tree ::=> (make-tree Tree Element Tree)

249 | P a g e

The make-tree procedure can be defined using cons to package the three

inputs into a tree:

(define (make-tree left element right)

(cons element (cons left right)))

We define selector procedures for extracting the parts of a non-null tree:

(define (tree-element tree) (car tree))

(define (tree-left tree) (car (cdr tree)))

(define (tree-right tree) (cdr (cdr tree)))

The tree-left and tree-right procedures are constant time procedures that

evalu-ate to the left or right subtrees respectively of a tree.

In a sorted tree, the elements are maintained in a sorted structure. All

elements in the left subtree of a tree are less than (according to the

comparison function) the value of the root element of the tree; all elements

in the right subtree of a tree are greater than or equal to the value of the root

element of the tree (the result of comparing them with the root element is

false). For example, here is a sorted binary tree containing 6 elements using

< as the comparison function:

The top node has element value 7, and its left subtree is a tree containing

the tree elements whose values are less than 7. The null subtrees are not

shown. For example, the left subtree of the element whose value is 12 is

null. Although there are six elements in the tree, we can reach any element

from the top by following at most two branches. By contrast, with a list of

six elements, we need five cdr operations to reach the last element.

250 | P a g e

The depth of a tree is the largest number of steps needed to reach any node

in the tree starting from the root. The example tree has depth 2, since we

can reach every node starting from the root of the tree in two or fewer steps.

A tree of depth d can contain up to 2
d+1

 1 elements. One way to see this is

from this recursive definition for the maximum number of nodes in a tree:

A tree of depth zero has one node. Increasing the depth of a tree by one

means we can add two nodes for each leaf node in the tree, so the total

number of nodes in the new tree is the sum of the number of nodes in the

original tree and twice the number of leaves in the original tree. The

maximum number of leaves in a tree of depth d is 2d since each level

doubles the number of leaves. Hence, the second equation simplifies to

TreeNodes(d – 1) + 2 2
d-1

 = TreeNodes(d – 1) + 2
d

.

The value of TreeNodes(d – 1) is 2d-1 + 2d-2 + . . . + 1 = 2d – 1. Adding 2d

and 2d - 1 gives 2d+1 – 1 as the maximum number of nodes in a tree of

depth d. Hence, a well-balanced tree containing n nodes has depth

approximately log2 n.

A tree is well-balanced if the left and right subtrees of all nodes in the

contain nearly the same number of elements.

Procedures that are analogous to the list-first-half , list-second-half , and

list-append procedures that had linear running times for the standard list

represen-tation can all be implemented with constant running times for the

tree repre-sentation. For example, tree-left is analogous to list-first-half and

make-tree is analogous to list-append.

The tree-insert-one procedure inserts an element in a sorted binary tree:

251 | P a g e

(define (tree-insert-one cf el tree)

(if (null? tree) (make-tree null el null)

(if (cf el (tree-element tree))

(make-tree (tree-insert-one cf el (tree-left tree))

(tree-element tree)

(tree-right tree))

(make-tree (tree-left tree)

(tree-element tree)

(tree-insert-one cf el (tree-right tree))))))

When the input tree is null, the new element is the top element of a new tree

whose left and right subtrees are null. Otherwise, the procedure compares

the element to insert with the element at the top node of the tree. If the

comparison evaluates to true, the new element belongs in the left subtree.

The result is a tree where the left tree is the result of inserting this element

in the old left subtree, and the element and right subtree are the same as

they were in the original tree. For the alternate case, the element is inserted

in the right subtree, and the left subtree is unchanged.

In addition to the recursive call, tree-insert-one only applies constant time

pro-cedures. If the tree is well-balanced, each recursive application halves

the size of the input tree so there are approximately log2n recursive calls.

Hence, the running time to insert an element in a well-balanced tree using

tree-insert-one is in Θ(log n).

Using tree-insert-one, we define list-to-sorted-tree, a procedure that takes a

com-parison function and a list as its inputs, and outputs a sorted binary tree

con-taining the elements in the input list. It inserts each element of the list

in turn into the sorted tree:

(define (list-to-sorted-tree cf p)

(if (null? p) null

(tree-insert-one cf (car p) (list-to-sorted-tree cf (cdr p)))))

252 | P a g e

Assuming well-balanced trees as above (we revisit this assumption later),

the expected running time of list-to-sorted-tree is in Θ(n log n) where n is

the size of the input list. There are n recursive applications of list-to-sorted-

tree since each application uses cdr to reduce the size of the input list by

one. Each application involves an application of tree-insert-one (as well as

only constant time procedures), so the expected running time of each

application is in Θ(log n). Hence, the total running time for list-to-sorted-

tree is in Θ(n log n).

To use our list-to-sorted-tree procedure to perform sorting we need to

extract a list of the elements in the tree in the correct order. The leftmost

element in the tree should be the first element in the list. Starting from the

top node, all elements in its left subtree should appear before the top

element, and all the el-ements in its right subtree should follow it. The tree-

extract-elements procedure does this:

(define (tree-extract-elements tree)

(if (null? tree) null

(list-append (tree-extract-elements (tree-left tree))

(cons (tree-element tree)

(tree-extract-elements (tree-right tree))))))

The total number of applications of tree-extract-elements is between n (the

num-ber of elements in the tree) and 3n since there can be up to two null

trees for each leaf element (it could never actually be 3n, but for our

asymptotic analysis it is enough to know it is always less than some

constant multiple of n). For each ap-plication, the body applies list-append

where the first parameter is the elements extracted from the left subtree.

The end result of all the list-append applications is the output list,

containing the n elements in the input tree.

Hence, the total size of all the appended lists is at most n, and the running

time for all the list-append applications is in Θ(n). Since this is the total

253 | P a g e

time for all the list-append applications, not the time for each application of

tree-extract-elements, the total running time for tree-extract-elements is the

time for the re-cursive applications, in Θ(n), plus the time for the list-

append applications, in Θ(n), which is in Θ(n).

Putting things together, we define list-sort-tree:

(define (list-sort-tree cf p)

(tree-extract-elements (list-to-sorted-tree cf p)))

The total running time for list-sort-tree is the running time of the list-to-

sorted-tree application plus the running time of the tree-extract-elements

application. The running time of list-sort-tree is in Θ(n log n) where n is the

number of elements in the input list (in this case, the number of elements in

p), and the running time of tree-extract-elements is in Θ(n) where n is the

number of elements in its input list (which is the result of the list-to-sorted

tree application, a list containing n elements where n is the number of

elements in p).

Only the fastest-growing term contributes to the total asymptotic running

time, so the expected total running time for an application of list-sort-tree-

insert to a list containing n elements is in Θ(n log n). This is substantially

better than the previous sorting algorithms which had running times in

Θ(n
2
) since logarithms grow far slower than their input. For example, if n is

one million, n
2
 is over 50,000 times bigger than n log2 n; if n is one billion,

n
2
 is over 33 million times bigger than n log2 n since log2 1000000000 is

just under 30.

There is no general sorting procedure that has expected running time better

than Θ(n log n), so there is no algorithm that is asymptotically faster than

list-sort-tree (in fact, it can be proven that no asymptotically faster sorting

procedure exists). There are, however, sorting procedures that may have

254 | P a g e

advantages such as how they use memory which may provide better

absolute performance in some situations.

Unbalanced Trees. Our analysis assumes the left and right halves of the

tree passed to tree-insert-one having approximately the same number of

elements. If the input list is in random order, this assumption is likely to be

valid: each element we insert is equally likely to go into the left or right

half, so the halves contain approximately the same number of elements all

the way down the tree. But, if the input list is not in random order this may

not be the case.

For example, suppose the input list is already in sorted order. Then, each

ele-ment that is inserted will be the rightmost node in the tree when it is

inserted. For the previous example, this produces the unbalanced tree

shown in Figure 8.1. This tree contains the same six elements as the earlier

example, but because it is not well-balanced the number of branches that

must be traversed to reach the deepest element is 5 instead of 2. Similarly,

if the input list is in reverse sorted order, we will have an unbalanced tree

where only the left branches are used.

In these pathological situations, the tree effectively becomes a list. The

number of recursive applications of tree-insert-one needed to insert a new

element will not be in Θ(logn), but rather will be in Θ(n). Hence, the worst

case run-ning time for list-sort-tree-insert is in Θ(n2) since the worst case

time for tree-insert-one is in Θ(n) and there are Θ(n) applications of tree-

insert-one. The list-sort-tree-insert procedure has expected running time in

Θ(n log n) for randomly distributed inputs, but has worst case running time

in Θ(n2).

255 | P a g e

8.1.5 Quicksort

Although building and extracting elements from trees allows us to sort with

ex-pected time in Q(n log n), the constant time required to build all those

trees and extract the elements from the final tree is high.

In fact, we can use the same approach to sort without needing to build trees.

Instead, we keep the two sides of the tree as separate lists, and sort them

recursively. The key is to divide the list into halves by value, instead of by

position. The values in the first half of the list are all less than the values in

the second half of the list, so the lists can be sorted separately.

The list-quicksort procedure uses list-filter (from Example 5.5) to divide the

input list into sublists containing elements below and above the comparison

ele-ment, and then recursively sorts those sublists:

(define (list-quicksort cf p)

(if (null? p) null

(list-append

(list-quicksort cf

(list-filter (lambda (el) (cf el (car p))) (cdr p)))

(cons (car p)

(list-quicksort cf

(list-filter (lambda (el) (not (cf el (car p)))) (cdr p)))))))

256 | P a g e

This is the famous quicksort algorithm that was invented by Sir C. A. R.

(Tony) Hoare while he was an exchange student at Moscow State

University in 1959. He was there to study probability theory, but also got a

job working on a project to translate Russian into English. The translation

depended on looking up words in a dictionary. Since the dictionary was

stored on a magnetic tape which could be read in order faster than if it was

necessary to jump around, the translation could be done more quickly if the

words to translate were sorted alphabetically. Hoare invented the quicksort

algorithm for this purpose and it remains the most widely used sorting

algorithm.

As with list-sort-tree-insert, the expected running time for a randomly

arranged list is in Θ(n log n) and the worst case running time is in Θ(n
2
). In

the expected cases, each recursive call halves the size of the input list (since

if the list is ran-domly arranged we expect about half of the list elements are

below the value of the first element), so there are approximately log n

expected recursive calls.

Each call involves an application of list-filter, which has running time in

Θ(m) where m is the length of the input list. At each call depth, the total

length of the inputs to all the calls to list-filter is n since the original list is

subdivided into 2
d
 sublists, which together include all of the elements in the

original list. Hence, the total running time is in Θ(n log n) in the expected

cases where the input list is randomly arranged. As with list-sort-tree-insert,

if the input list is not randomly rearranged it is possible that all elements

end up in the same partition. Hence, the worst case running time of list-

quicksort is still in Θ(n
2
).

 Check your progress III

➢ Estimate the time it would take to sort a list of one million ele-ments using

list-quicksort.

➢ Both the list-quicksort and list-sort-tree-insert procedures have expected

257 | P a g e

running times in Θ(n log n). Experimentally compare their actual run-ning

times.

➢ Instead of using binary trees, we could use ternary trees. A node in a

ternary tree has two elements, a left element and a right element, where the

left element must be before the right element according to the com-parison

function. Each node has three subtrees: left, containing elements be-fore

the left element; middle, containing elements between the left and right

elements; and right, containing elements after the right element. Is it

possible to sort faster using ternary trees?

8.2 Searching

In a broad sense, nearly all problems can be thought of as search problems.

If we can define the space of possible solutions, we can search that space to

find a correct solution. For example, to solve the pegboard puzzle

(Exploration 5.2) we enumerate all possible sequences of moves and search

that space to find a winning sequence. For most interesting problems,

however, the search space is far too large to search through all possible

solutions.

This section explores a few specific types of search problems. First, we

consider the simple problem of finding an element in a list that satisfies

some property. Then, we consider searching for an item in sorted data.

Finally, we consider the more specific problem of efficiently searching for

documents (such as web pages) that contain some target word.

8.2.1 Unstructured Search

Finding an item that satisfies an arbitrary property in unstructured data

requires testing each element in turn until one that satisfies the property is

found. Since we have no more information about the property or data, there

is no way to more quickly find a satisfying element.

258 | P a g e

The list-search procedure takes as input a matching function and a list, and

out-puts the first element in the list that satisfies the matching function or

false if there is no satisfying element:
1

(define (list-search ef p)

(if (null? p) false ; Not found

(if (ef (car p)) (car p) (list-search ef (cdr p)))))

For example,

(list-search (lambda (el) (= 12 el)) (intsto 10))) false

(list-search (lambda (el) (= 12 el)) (intsto 15))) 12

(list-search (lambda (el) (> el 12)) (intsto 15))) 13

Assuming the matching function has constant running time, the worst case

run-ning time of list-search is linear in the size of the input list. The worst

case is when there is no satisfying element in the list. If the input list has

length n, there are n recursive calls to list-search, each of which involves

only constant time procedures.

Without imposing more structure on the input and comparison function,

there is no more efficient search procedure. In the worst case, we always

need to test every element in the input list before concluding that there is no

element that satisfies the matching function.

8.2.2 Binary Search

If the data to search is structured, it may be possible to find an element that

sat-isfies some property without examining all elements. Suppose the input

data is a sorted binary tree, as introduced in Section 8.1.4. Then, with a

single com-parison we can determine if the element we are searching for

would be in the left or right subtree. Instead of eliminating just one element

with each appli-cation of the matching function as was the case with list-

259 | P a g e

search, with a sorted binary tree a single application of the comparison

function is enough to exclude approximately half the elements.

The binary-tree-search procedure takes a sorted binary tree and two

procedures as its inputs. The first procedure determines when a satisfying

element has been found (we call this the ef procedure, suggesting equality).

The second proce-dure, cf , determines whether to search the left or right

subtree. Since cf is used to traverse the tree, the input tree must be sorted by

cf .

(define (binary-tree-search ef cf tree) ; requires: tree is sorted by cf (if

(null? tree) false

(if (ef (tree-element tree)) (tree-element tree)

(if (cf (tree-element tree))

(binary-tree-search ef cf (tree-left tree))

(binary-tree-search ef cf (tree-right tree))))))

For example, we can search for a number in a sorted binary tree using = as

the equality function and < as the comparison function:

(define (binary-tree-number-search tree target)

(binary-tree-search (lambda (el) (= target el))

(lambda (el) (< target el))

tree))

To analyze the running time of binary-tree-search, we need to determine the

number of recursive calls. Like our analysis of list-sort-tree, we assume the

in-put tree is well-balanced. If not, all the elements could be in the right

branch, for example, and binary-tree-search becomes like list-search in the

pathological case.

If the tree is well-balanced, each recursive call approximately halves the

num-ber of elements in the input tree since it passed in either the left or

right subtree. Hence, the number of calls needed to reach a null tree is in

260 | P a g e

Θ(log n) where n is the number of elements in the input tree. This is the

depth of the tree: binary-tree-search traverses one path from the root

through the tree until either reach-ing an element that satisfies the ef

function, or reaching a null node.

Assuming the procedures passed as ef and cf have constant running time,

the work for each call is constant except for the recursive call. Hence, the

total run-ning time for binary-tree-search is in Θ(log n) where n is the

number of elements in the input tree. This is a huge improvement over

linear searching: with linear search, doubling the number of elements in the

input doubles the search time; with binary search, doubling the input size

only increases the search time by a constant.

8.2.3 Indexed Search

The limitation of binary search is we can only use is when the input data is

al-ready sorted. What if we want to search a collection of documents, such

as find-ing all web pages that contain a given word? The web visible to

search engines contains billions of web pages most of which contain

hundreds or thousands of words. A linear search over such a vast corpus

would be infeasible: suppos-ing each word can be tested in 1 millisecond,

the time to search 1 trillion words would be over 30 years!

Providing useful searches over large data sets like web documents requires

find-ing a way to structure the data so it is not necessary to examine all

documents to perform a search. One way to do this is to build an index that

provides a map-ping from words to the documents that contain them. Then,

we can build the index once, store it in a sorted binary tree, and use it to

perform all the searches. Once the index is built, the work required to

perform one search is just the time it takes to look up the target word in the

index. If the index is stored as a sorted binary tree, this is logarithmic in the

number of distinct words.

261 | P a g e

Strings. We use the built-in String datatype to represent documents and

target words. A String is similar to a List, but specialized for representing

sequences of characters. A convenient way to make a String it to just use

double quotes around a sequence of characters. For example, "abcd"

evaluates to a String con-taining four characters.

The String datatype provides procedures for matching, ordering, and

converting between Strings and Lists of characters:

string=?: String × String → Boolean

Outputs true if the input Strings have exactly the same sequence of charac-

ters, otherwise false.

string<?: String × String → Boolean

Outputs true if the first input String is lexicographically before the second

input String, otherwise false.

string->list: String → List

Outputs a List containing the characters in the input String.

list->string : List → String

Outputs a String containing the characters in the input List.

One advantage of using Strings instead of Lists of characters is the built-in

pro-cedures for comparing Strings; we could write similar procedures for

Lists of characters, but lexicographic ordering is somewhat tricky to get

right, so it is better to use the built-in procedures.

Building the index. The entries in the index are Pairs of a word represented

as a string, and a list of locations where that word appears. Each location is

262 | P a g e

a Pair consisting of a document identifier (for web documents, this is the

Uniform Resource Locator (URL) that is the address of the web page

represented as a string) and a Number identifying the position within the

document where the word appears (we label positions as the number of

characters in the document before this location).

To build the index, we split each document into words and record the

position of each word in the document. The first step is to define a

procedure that takes as input a string representing an entire document, and

produces a list of (word position) pairs containing one element for each

word in the document. We define a word as a sequence of alphabetic

characters; non-alphabetic characters including spaces, numbers, and

punctuation marks separate words and are not included in the index.

The text-to-word-positions procedure takes a string as input and outputs a

list of word-position pairs corresponding to each word in the input. The

inner pro-cedure, text-to-word-positions-iter, takes three inputs: a list of the

characters in the document, a list of the characters in the current word, and

a number repre-senting the position in the string where the current word

starts; it outputs the list of (word . position) pairs. The value passed in as w

can be null, meaning there is no current word. Otherwise, it is a list of the

characters in the current word. A word starts when the first alphabetic

character is found, and continues until either the first non-alphabetic

character or the end of the document. We use the built-in char-downcase

procedure to convert all letters to their lowercase form, so KING, King, and

king all correspond to the same word.

(define (text-to-word-positions s)

(define (text-to-word-positions-iter p w pos)

(if (null? p)

(if (null? w) null (list (cons (list->string w) pos)))

(if (not (char-alphabetic? (car p))) ; finished word (if (null? w) ; no current

word

(text-to-word-positions-iter (cdr p) null (+ pos 1))

263 | P a g e

(cons (cons (list->string w) pos)

(text-to-word-positions-iter (cdr p) null

(+ pos (list-length w) 1))))

(text-to-word-positions-iter (cdr p)

(list-append w (list (char-downcase (car p))))

pos))))

(text-to-word-positions-iter (string->list s) null 0))

The next step is to build an index from the list of word-position pairs. To

enable fast searching, we store the index in a binary tree sorted by the target

word. The insert-into-index procedure takes as input an index and a word-

position pair and outputs an index consisting of the input index with the

input word-position pair added.

The index is represented as a sorted binary tree where each element is a pair

of a word and a list of the positions where that word appears. Each word

should ap-pear in the tree only once, so if the word-position pair to be

added corresponds to a word that is already in the index, the position is

added to the corresponding list of positions. Otherwise, a new entry is

added to the index for the word with a list of positions containing the

position as its only element.

(define (insert-into-index index wp)

(if (null? index)

(make-tree null (cons (car wp) (list (cdr wp))) null)

(if (string=? (car wp) (car (tree-element index)))

(make-tree (tree-left index)

(cons (car (tree-element index))

(list-append (cdr (tree-element index))

(list (cdr wp))))

(tree-right index))

(if (string<? (car wp) (car (tree-element index)))

(make-tree (insert-into-index (tree-left index) wp)

(tree-element index)

264 | P a g e

(tree-right index))

(make-tree (tree-left index)

(tree-element index)

(insert-into-index (tree-right index) wp))))))

To insert all the (word . position) pairs in a list into the index, we use insert-

into-index to add each pair, passing the resulting index into the next

recursive call:

(define (insert-all-wps index wps)

(if (null? wps) index

(insert-all-wps (insert-into-index index (car wps)) (cdr wps))))

To add all the words in a document to the index we use text-to-word-

positions to obtain the list of word-position pairs. Since we want to include

the document identity in the positions, we use list-map to add the url (a

string that identifies the document location) to the position of each word.

Then, we use insert-all-wps to add all the word-position pairs in this

document to the index. The index-document procedure takes a document

identifier and its text as a string, and produces an index of all words in the

document.

(define (index-document url text)

(insert-all-wps

null

(list-map (lambda (wp) (cons (car wp) (cons url (cdr wp))))

(text-to-word-positions text))))

We leave analyzing the running time of index-document as an exercise. The

im-portant point, though, is that it only has to be done once for a given set

of doc-uments. Once the index is built, we can use it to answer any number

of search queries without needing to reconstruct the index.

265 | P a g e

Merging indexes. Our goal is to produce an index for a set of documents,

not just a single document. So, we need a way to take two indexes produced

by index-document and combine them into a single index. We use this

repeat-edly to create an index of any number of documents. To merge two

indexes, we combine their word occurrences. If a word occurs in both

documents, the word should appear in the merged index with a position list

that includes all the positions in both indexes. If the word occurs in only

one of the documents, that word and its position list should be included in

the merged index.

(define (merge-indexes d1 d2)

(define (merge-elements p1 p2)

(if (null? p1) p2

(if (null? p2) p1

(if (string=? (car (car p1)) (car (car p2)))

(cons (cons (car (car p1))

(list-append (cdr (car p1)) (cdr (car p2))))

(merge-elements (cdr p1) (cdr p2)))

(if (string<? (car (car p1)) (car (car p2)))

(cons (car p1) (merge-elements (cdr p1) p2))

(cons (car p2) (merge-elements p1 (cdr p2))))))))

(list-to-sorted-tree

(lambda (e1 e2) (string<? (car e1) (car e2)))

(merge-elements (tree-extract-elements d1)

(tree-extract-elements d2)))))))

To merge the indexes, we first use tree-extract-elements to convert the tree

rep-resentations to lists. The inner merge-elements procedure takes the two

lists of word-position pairs and outputs a single list.

Since the lists are sorted by the target word, we can perform the merge effi-

ciently. If the first words in both lists are the same, we produce a word-

position pair that appends the position lists for the two entries. If they are

different, we use string<? to determine which of the words belongs first,

266 | P a g e

and include that el-ement in the merged list. This way, the two lists are kept

synchronized, so there is no need to search the lists to see if the same word

appears in both lists.

Obtaining documents. To build a useful index for searching, we need

some documents to index. The web provides a useful collection of freely

available documents. To read documents from the web, we use library

procedures pro-vided by DrRacket.

This expression loads the libraries for managing URLs and getting files

from the network: (require (lib "url.ss" "net")). One procedure this library

defines is string->url, which takes a string as input and produces a

representation of that string as a URL. A Uniform Resource Locator (URL)

is a standard way to identify a doc-ument on the network. The address bar

in most web browsers displays the URL of the current web page.

The full grammar for URLs is quite complex (see Exercise 2.14), but we

will use simple web page addresses of the form:
2

URL ::=> http:// Domain OptPath

Domain ::=> Name SubDomains

SubDomains ::=> . Domain

SubDomains ::=> ϵ

OptPath ::=> Path

OptPath ::=> ϵ

Path ::=> / Name OptPath

An example of a URL is http://www.whitehouse.gov/index.html. The http

indicates the HyperText Transfer Protocol, which prescribes how the web

client (browser) and server communicate with each other. The domain name

is www.whitehouse. gov, and the path name is /index.html (which is the

default page for most web servers).

http://www.whitehouse.gov/index.html
file:///C:/Users/john/Desktop/http
file:///C:/Users/john/Desktop/http
file:///C:/Users/john/Desktop/www.whitehouse.gov
file:///C:/Users/john/Desktop/www.whitehouse.gov
file:///C:/index.html

267 | P a g e

The library also defines the get-pure-port procedure that takes as input a

URL and produces a port for reading the document at that location. The

read-char procedure takes as input a port, and outputs the first character in

that port. It also has a side effect: it advances the port to the next character.

We can use read-char repeatedly to read each character in the web page of

the port. When the end of the file is reached, the next application of read-

char outputs a special marker representing the end of the file. The procedure

eof-object? evaluates to true when applied to this marker, and false for all

other inputs.

The read-all-chars procedure takes a port as its input, and produces a list

con-taining all the characters in the document associated with the port:

(define (read-all-chars port)

(let ((c (read-char port)))

(if (eof-object? c) null

(cons c (read-all-chars port)))))

Using these procedures, we define web-get, a procedure that takes as input

a string that represents the URL of some web page, and outputs a string

repre-senting the contents of that page.

(define (web-get url)

(list->string (read-all-chars (get-pure-port (string->url url)))))

To make it easy to build an index of a set of web pages, we define the

index-pages procedure that takes as input a list of web pages and outputs an

index of the words in those pages. It recurses through the list of pages,

indexing each document, and merging that index with the result of indexing

the rest of the pages in the list.

(define (index-pages p)

(if (null? p) null

(merge-indexes (index-document (car p) (web-get (car p)))

268 | P a g e

(index-pages (cdr p)))))

We can use this to create an index of any set of web pages. For example,

here we use Jeremy Hylton’s collection of the complete works of William

Shakespeare (http://shakespeare.mit.edu) to define Shakespeare index as an

index of the words used in all of Shakespeare’s plays.

(define Shakespeare index

(index-pages

(list-map

(lambda (play)

(string-append "http://shakespeare.mit.edu/" play "/full.html"))

List of plays following the site’s naming conventions. (list "allswell"

"asyoulikeit" "comedy errors" "cymbeline" "lll" "measure" "merry wives"

"merchant" "midsummer" "much ado" "pericles" "taming shrew" "tempest"

"troilus cressida" "twelfth night" "two gentlemen" "winters tale" "1henryiv"

"2henryiv" "henryv" "1henryvi" "2henryvi" "3henryvi" "henryviii" "john"

"richardii" "richardiii" "cleopatra" "coriolanus" "hamlet" "julius caesar"

"lear" "macbeth" "othello" "romeo juliet" "timon" "titus"))))

Building the index takes about two and a half hours on my laptop. It

contains 22949 distinct words and over 1.6 million word occurrences. Much

of the time spent building the index is in constructing new lists and trees for

every change, which can be avoided by using the mutable data types we

cover in the next chap-ter. The key idea, though, is that the index only

needs to be built once. Once the documents have been indexed, we can use

the index to quickly perform any search.

Searching. Using an index, searching for pages that use a given word is

easy and efficient. Since the index is a sorted binary tree, we use binary-

tree-search to search for a word in the index:

http://shakespeare.mit.edu/

269 | P a g e

(define (search-in-index index word)

(binary-tree-search

(lambda (el) (string=? word (car el))) ; first element of (word . position)

(lambda (el) (string<? word (car el)))

index))

As analyzed in the previous section, the expected running time of binary-

tree-search is in Q(log n) where n is the number of nodes in the input tree.
3

The body of search-in-index applies binary-tree-search to the index. The

number of nodes in the index is the number of distinct words in the indexed

documents.

So, the running time of search-in-index scales logarithmically with the

number of distinct words in the indexed documents. Note that the number

and size of the documents does not matter! This is why a search engine

such as Google can respond to a query quickly even though its index

contains many billions of documents.

One issue we should be concerned with is the running time of the

procedures passed into binary-tree-search. Our analysis of binary-tree-

search assumes the equality and comparison functions are constant time

procedures. Here, the pro-cedures as string=? and string<?, which both have

worst case running times that are linear in the length of the input string. As

used here, one of the inputs is the target word. So, the amount of work for

each binary-tree-search recursive call is in Θ(w) where w is the length of

word. Thus, the overall running time of search-in-index is in Θ(w log d)

where w is the length of word and d is the num-ber of words in the index. If

we assume all words are of some maximum length, though, the w term

disappears as a constant factor (that is, we are assuming w< C for some

constant C. Thus, the overall running time is in Θ(log d). Here are some

examples:

>(search-in-index shakespeare-index "mathematics")

("mathematics"

270 | P a g e

("http://shakespeare.mit.edu/taming shrew/full.html" . 26917)

("http://shakespeare.mit.edu/taming shrew/full.html" . 75069)

("http://shakespeare.mit.edu/taming shrew/full.html" . 77341))

>(search-in-index shakespeare-index "procedure")

false

Our search-in-index and index-pages procedures form the beginnings of a

search engine service. A useful web search engine needs at least two more

capabilities: a way to automate the process of finding documents to index,

and a way to rank the documents that contain the target word by the

likelihood they are useful. The exploration at the end of this section

addresses these capabilities.

Histogram. We can also use our index to analyze Shakespeare’s writing.

The index-histogram procedure produces a list of the words in an index

sorted by how frequently they appear:

(define (index-histogram index)

(list-quicksort

(lambda (e1 e2) (> (cdr e1) (cdr e2)))

(list-map (lambda (el) (cons (car el) (length (cdr el))))

(tree-extract-elements index))))

The expression,

(list-filter (lambda (entry) (> string-length (car entry) 5))

(index-histogram shakespeare-index))

evaluates to a list of Shakespeare’s favorite 6-letter and longer words along

with the number of times they appear in the corpus (the first two entries are

from their use in the page formatting):

(("blockquote" . 63345) ("speech" . 31099)

("should" . 1557) ("father" . 1086) ("exeunt" . 1061)

("master" . 861) ("before" . 826) ("mistress" . 787)

. . ("brother" . 623)

. . ("daughter" . 452)

271 | P a g e

. . ("mother" . 418)

. . ("mustardseed" . 13)

. . ("excrement" . 5)

. . ("zwaggered" . 1))

8.3 Summary

The focus of Part II has been on predicting properties of procedures, in

particular how their running time scales with the size of their input. This

involved many encounters with the three powerful ideas introduced in

Section 1.4: recursive definitions, universality, and abstraction. The simple

Turing Machine model is a useful abstraction for modeling nearly all

conceivable computing machines, and the few simple operations it defines

are enough for a universal computer. Actual machines use the digital

abstraction to allow a continuous range of volt-ages to represent just two

values. The asymptotic operators used to describe running times are also a

kind of abstraction—they allow us to represent the set of infinitely many

different functions with a compact notation.

In Part III, we will see many more recursive definitions, and extend the

notion of recursive definitions to the language interpreter itself. We change

the language evaluation rules themselves, and see how different evaluation

rules enable different ways of expressing computations.

 Check your progress IV

➢ The __________ of a tree is the largest number of steps needed to reach

any node in the tree starting from the root.

➢ A ___________ tree containing n nodes has depth approximately log2 n.

272 | P a g e

8.4 Answer the Following

1. What is sorting? How it is performed?

2. Define transitive property with the help of an example.

3. Define the list-find-best procedure using the list-accumulate pro-

cedure from Section 5.4.2 and evaluate its asymptotic running time.

4. Define and analyze a list-sort-worst-last procedure that sorts by

finding the worst element first and putting it at the end of the list.

5. Both the list-sort-best-first-sort and list-sort-insert procedures have

asymptotic running times in Θ(n2). This tells us how their worst

case run-ning times grow with the size of the input, but isn’t enough

to know which proce-dure is faster for a particular input. For the

questions below, use both analytical and empirical analysis to

provide a convincing answer.

a. How do the actual running times of list-sort-best-first-sort

and list-sort-insert on typical inputs compare?

b. Are there any inputs for which list-sort-best-first is faster

than list-sort-insert?

c. For sorting a long list of n random elements, how long does

each procedure take?

6. Define a procedure binary-tree-depth that takes as input a binary

tree and outputs the depth of the tree. The running time of your

procedure should not grow faster than linearly with the number of

nodes in the tree.

7. Define a procedure binary-tree-balance that takes as input a sorted

binary tree and the comparison function, and outputs a sorted binary

tree containing the same elements as the input tree but in a well-

balanced tree. The depth of the output tree should be no higher than

log2 n + 1 where n is the number of elements in the input tree.

8. Define a procedure binary-tree-size that takes as input a binary tree

and outputs the number of elements in the tree. Analyze the running

time of your procedure.

273 | P a g e

9. What is the best case input for list-quicksort? Analyze the

asymptotic running time for list-quicksort on best case inputs.

10. Define a procedure for finding the longest word in a document.

Analyze the running time of your procedure.

11. Analyze the running time required to build the index.

a. Analyze the running time of the text-to-word-positions

procedure. Use n to represent the number of characters in the

input string, and w to represent the number of distinct words.

Be careful to clearly state all assumptions on which your

analysis relies.

b. Analyze the running time of the insert-into-index procedure.

c. Analyze the running time of the index-document procedure.

d. Analyze the running time of the merge-indexes procedure.

e. Analyze the overall running time of the index-pages

procedure. Your result should describe how the running time

is impacted by the number of docu-ments to index, the size

of each document, and the number of distinct words.

 Answers to Check your progress IV

➢ depth

➢ well-balanced

274 | P a g e

275 | P a g e

BLOCK III: Improving Expressiveness

276 | P a g e

277 | P a g e

Mutation

Learning Objectives

After reading this unit, the learner shall be able to:

• Define mutators

• Define assignment

• Explain the impact of mutation

• Explain evaluation rules with state

• Know the difference between functional programming and

Imperative Programming

• Use Imperative Control Structures

Introduction

The subset of Scheme we have used until this chapter provides no means to

change the value associated with a name. This enabled very simple

evaluation rules for names, as well as allowing the substitution model of

evaluation. Since the value associated with a name was always the value it

was defined as, no complex evaluation rules are needed to determine the

value associated with a name.

This chapter introduces special forms known as mutators that allow

programs to change the value in a given place. Introducing mutation does

not change the computations we can express—every computation that can

be expressed using mutation could also be expressed using the only purely

functional subset of Scheme from Chapter 3. It does, however, make it

possible to express cer-tain computations more efficiently and clearly than

could be done without it. Adding mutation is not free, however; reasoning

about the value of expressions becomes much more complex.

9.1 Assignment

The set! (pronounced “set-bang!”) special form associates a new value with

an already defined name. The exclamation point at the end of set! follows a

278 | P a g e

naming convention to indicate that an operation may mutate state. A set

expression is also known as an assignment. It assigns a value to a variable.

The grammar rule for assignment is:

Expression ::=> Assignment

Assignment ::=> (set! Name Expression)

The evaluation rule for an assignment is:

Evaluation Rule 7: Assignment. To evaluate an assignment, evaluate the

expression, and replace the value associated with the name with the value of

the expression. An assignment has no value.

Assignments do not produce output values, but are used for their side

effects. They change the value of some state (namely, the value associated

with the name in the set expression), but do not produce an output.

Here is an example use of set!:

>(define num 200)

>num

200

>(set! num 150)

>(set! num 1120)

>num

1120

Begin expression. Since assignments do not evaluate to a value, they are

often used inside a begin expression. A begin expression is a special form

that eval-uates a sequence of expressions in order and evaluates to the value

of the last expression.

The grammar rule for the begin expression is:

Expression ::=> BeginExpression

BeginExpression ::=> (begin MoreExpressions Expression)

279 | P a g e

The evaluation rule is:

Evaluation Rule 8: Begin. To evaluate a begin expression,

(begin Expression1 Expression2 . . . Expressionk)

evaluate each subexpression in order from left to right. The value of the

begin expression is the value of the last subexpression, Expressionk.

The values of all the subexpressions except the last one are ignored; these

subexpressions are only evaluated for their side effects.

The begin expression must be a special form. It is not possible to define a

pro-cedure that behaves identically to a begin expression since the

application rule does not specify the order in which the operand

subexpressions are evaluated.

The definition syntax for procedures includes a hidden begin expression.

(define (Name Parameters) MoreExpressions Expression)

is an abbreviation for:

(define Name

(lambda (Parameters) (begin MoreExpressions Expression)))

The let expression introduced in Section 8.1.1 also includes a hidden begin

expression.

(let ((Name1 Expression1) (Name2 Expression2)

(Namek Expressionk))

MoreExpressions Expression)

is equivalent to the application expression:

((lambda (Name1 Name2 . . . Namek)

(begin MoreExpressions Expression))

280 | P a g e

Expression1 Expression2 . . . Expressionk)

9.2 Impact of Mutation

Introducing assignment presents many complications for our programming

model. It invalidates the substitution model of evaluation introduced in

Section 3.6.2 and found satisfactory until this point. All the procedures we

can define without using mutation behave almost like mathematical

functions—every time they are applied to the same inputs they produce the

same output. Assignments allow us to define non-functional procedures that

produce different results for differ-ent applications even with the same

inputs.

Example 9.1: Counter

Consider the update-counter! procedure:

(define (update-counter!)

(set! counter (+ counter 1))

counter)

To use update-counter!, we must first define the counter variable it uses:

(define counter 0)

Every time (update-counter!) is evaluated the value associated with the

name counter is increased by one and the result is the new value of counter.

Because of the hidden begin expression in the definition, the (set! counter

(+ counter 1)) is always evaluated first, followed by counter which is the

last expression in the begin expression so its value is the value of the

procedure. Thus, the value of (update-counter!) is 1 the first time it is

evaluated, 2 the second time, and so on.

The substitution model of evaluation doesn’t make any sense for this

evaluation: the value of counter changes during the course of the

evaluation. Even though (update-counter!) is the same expression, every

time it is evaluated it evaluates to a different value.

281 | P a g e

Mutation also means some expressions have undetermined values. Consider

evaluating the expression (+ counter (update-counter!)). The evaluation rule

for the application expression does not specify the order in which the

operand sub expressions are evaluated. But, the value of the name

expression counter depends on whether it is evaluated before or after the

application of update-counter! is evaluated!

The meaning of the expression is ambiguous since it depends on the order

in which the sub expressions are evaluated. If the second sub expression,

counter, is evaluated before the third sub expression, (update-counter!), the

value of the expression is 1 the first time it is evaluated, and 3 the second

time it is evaluated. Alternately, but still following the evaluation rules

correctly, the third sub expression could be evaluated before the second sub

expression. With this ordering, the value of the expression is 2 the first time

it is evaluated, and 4 the second time it is evaluated.

9.2.1 Names, Places, Frames, and Environments

Because assignments can change the value associated with a name, the

order in which expressions are evaluated now matters. As a result, we need

to revisit sev-eral of our other evaluation rules and change the way we think

about processes.

Since the value associated with a name can now change, instead of

associating a value directly with a name we use a name as a way to identify

a place. A place has a name and holds the value associated with that name.

With mutation, we can change the value in a place; this changes the value

associated with the place’s name. A frame is a collection of places.

An environment is a pair consisting of a frame and a pointer to a parent

environment. A special environment known as the global environment has

no parent environment. The global environment exists when the interpreter

282 | P a g e

starts, and is maintained for the lifetime of the interpreter. Initially, the

global environment contains the built-in procedures. Names defined in the

interactions buffer are placed in the global environment. Other

environments are created and destroyed as a program is evaluated. Figure

9.1 shows some example environments, frames, and places.

Every environment has a parent environment except for the global

environment. All other environments descend from the global environment.

Hence, if we start with any environment, and continue to follow its parent

pointers we always eventually reach the global environment.

The key change to our evaluation model is that whereas before we could

evaluate expressions without any notion of where they are evaluated, once

we introduce mutation, we need to consider the environment in which an

expression is evaluated. An environment captures the current state of the

interpreter. The value of an expression depends on both the expression

itself, and on the environment in which it is evaluated.

9.2.2 Evaluation Rules with State

Introducing mutation requires us to revise the evaluation rule for names, the

definition rule, and the application rule for constructed procedures. All of

283 | P a g e

these rules must be adapted to be more precise about how values are

associated with names by using places and environments.

Names. The new evaluation rule for a name expression is:

Stateful Evaluation Rule 2: Names. To evaluate a name expression,

search the evaluation environment’s frame for a place with a name that

matches the name in the expression. If such a place exists, the value of the

name expression is the value in that place. Otherwise, the value of the name

expression is the result of evaluating the name expression in the parent

environment. If the evaluation environment has no parent, the name is not

defined and the name expression evaluates to an error.

For example, to evaluate the value of the name expression x in Environment

B in Figure 9.1, we first look in the frame of Environment B for a place

named x. Since there is no place named x in that frame, we follow the

parent pointer to Environment A, and evaluate the value of the name

expression in Environment A. Environment A’s frame contains a place

named x that contains the value 7, so the value of evaluating x in

Environment B is 7.

The value of the same expression in the Global Environment is 3 since that

is the value in the place named x in the Global Environment’s frame.

To evaluate the value of y in Environment A, we first look in the frame in

Environment A for a place named y. Since no y place exists, evaluation

continues by evaluating the expression in the parent environment, which is

the Global Envi-ronment. The Global Environments frame does not contain

a place named y, and the global environment has no parent, so the name is

undefined and the evaluation results in an error.

Definition. The revised evaluation rule for a definition is:

Stateful Definition Rule. A definition creates a new place with the defi-

nition’s name in the frame associated with the evaluation environment. The

284 | P a g e

value in the place is value of the definition’s expression. If there is al-ready

a place with the name in the current frame, the definition replaces the old

place with a new place and value.

The rule for redefinitions means we could use define in some situations to

mean something similar to set!. The meaning is different, though, since an

assignment finds the place associated with the name and puts a new value in

that place. Evaluating an assignment follows the Stateful Evaluation Rule 2

to find the place associated with a name. Hence, (define Name Expression)

has a different mean-ing from (set! Name Expression) when there is no

place named Name in the current execution environment. To avoid this

confusion, only use define for the first definition of a name and always use

set! when the intent is to change the value associated with a name.

Application. The final rule that must change because of mutation is the ap-

plication rule for constructed procedures. Instead of using substitution, the

new application rule creates a new environment with a frame containing

places named for the parameters.

Stateful Application Rule 2: Constructed Procedures. To apply a con-

structed procedure:

1. Construct a new environment, whose parent is the environment of

the applied procedure.

2. For each procedure parameter, create a place in the frame of the new

environment with the name of the parameter. Evaluate each operand

expression in the environment or the application and ini-tialize the

value in each place to the value of the corresponding operand

expression.

3. Evaluate the body of the procedure in the newly created environ-

ment. The resulting value is the value of the application.

Consider evaluating the application expression (bigger 3 4) where bigger is

the procedure from Example 3.3: (define (bigger a b) (if (> a b) a b))).

285 | P a g e

Evaluating an application of bigger involves following the Stateful

Application Rule 2. First, create a new environment. Since bigger was

defined in the global environment, its environment pointer points to the

global environment. Hence, the parent environment for the new

environment is the global environment.

Next, create places in the new environment’s frame named for the

procedure parameters, a and b. The value in the place associated with a is 3,

the value of the first operand expression. The value in the place associated

with b is 4.

The final step is to evaluate the body expression, (if (> a b) a b), in the

newly cre-ated environment. Figure 9.2 shows the environment where the

body expression is evaluated. The values of a and b are found in the

application environment.

The new application rule becomes more interesting when we consider

procedures that create new procedures. For example, make-adder takes a

number as input and produces as output a procedure:

(define (make-adder v) (lambda (n) (+ n v)))

The new application rule becomes more interesting when we consider

procedures that create new procedures. For example, make-adder takes a

number as input and produces as output a procedure:

(define (make-adder v) (lambda (n) (+ n v)))

286 | P a g e

The result of the application is the value of evaluating its body in this new

environment. Since the body is a lambda expression, it evaluates to a

procedure. That procedure was created in the execution environment that

was created to evaluate the application of make-adder, hence, its

environment pointer points to the application environment which contains a

place named inc holding the value 1.

Next, consider evaluating (inc 149). Figure 9.4 illustrates the environment

for evaluating the body of the inc procedure. The evaluation creates a new

environment with a frame containing the place n and its associated value

149. We evaluate the body of the procedure, (+ n v), in that environment.

The value of n is found in the execution environment. The value of v is not

found there, so evaluation continues by looking in the parent environment.

It contains a place v containing the value 1.

 Check your progress I

➢ Devise a Scheme expression that could have four possible values,

depending on the order in which application sub expressions are evaluated.

➢ Draw the environment that results after evaluating:

 >(define alpha 0)

 >(define beta 1)

 >(define update-beta! (lambda () (set! beta (+ alpha 1)))

 >(set! alpha 3)

287 | P a g e

 >(update-beta!)

 >(set! alpha 4)

9.3 Mutable Pairs and Lists

The Pair datatype introduced in Chapter 5 is immutable. This means that

once a Pair is created, the values in its cells cannot be changed.

The MutablePair datatype is a mutable pair. A MutablePair is

constructed using mcons, which is similar to cons but produces a

MutablePair. The parts of a Mu-tablePair can be extracted using the mcar

and mcdr procedures, which behave analogously to the car and cdr

procedures. A MutablePair is a distinct datatype from a Pair; it is an error to

apply car to a MutablePair, or to apply mcar to an immutable Pair.

The MutablePair datatype also provides two procedures that change the

values in the cells of a MutablePair:

set-mcar!: MutablePair × Value → Void

Replaces the value in the first cell of the MutablePair with the value of the

second input.

288 | P a g e

set-mcdr!: MutablePair × Value → Void

Replaces the value in the second cell of the MutablePair with the value of

the second input.

The Void result type indicates that set-mcar! and set-mcdr! produce no

output.

Here are some interactions using a MutablePair:

>(define pair (mcons 1 2))

>(set-mcar! pair 3)

>pair

(3 . 2)

>(set-mcdr! pair 4)

>pair

(3 . 4)

The set-mcdr! procedure allows us to create a pair where the second cell of

the pair is itself: (set-mcdr! pair pair). This produces the rather frightening

object shown in Figure 9.5. Every time we apply mcdr to pair, we get the

same pair as the output. Hence, the value of (mcar (mcdr (mcdr (mcdr

pair)))) is 3.

We can also create objects that combine mutable and immutable Pairs. For

example, (define mstruct (cons (mcons 1 2) 3)) defines mstruct as an

immutable Pair containing a MutablePair in its first cell. Since the outer

Pair is immutable, we cannot change the objects in its cells. Thus, the

second cell of mstruct always contains the value 3. We can, however,

change the values in the cells of the mu-table pair in its first cell. For

289 | P a g e

example, (set-mcar! (car mstruct) 7) replaces the value in the first cell of the

MutablePair in the first cell of mstruct.

Mutable Lists. As we used immutable Pairs to build immutable Lists, we

can use MutablePairs to construct MutableLists. A MutableList is either null

or a Mu-tablePair whose second cell contains a MutableList.

The MutableList type is defined by a library. To use it, evaluate the

following expression: (require racket/mpair). All of the examples in this

chapter assume this expression has been evaluated. This library defines the

mlist procedure that is similar to the list procedure, but produces a

MutableList instead of an immutable List. For example, (mlist 1 2 3)

produces the structure shown in Fig-ure 9.6. Each node in the list is a

MutablePair, so we can use the set-mcar! and set-mcdr! procedures to

change the values in the cells.

>(define m1 (mlist 1 2 3))

>(set-mcar! (mcdr m1) 5)

>(set-mcar! (mcdr (mcdr m1)) 0)

>m1

{1 5 0} ; DrRacket denotes MutableLists using curly brackets.

Many of the list procedures from Chapter 5 can be directly translated to

work on mutable lists. For example, we can define mlist-length as:

(define (mlist-length m)

(if (null? m) 0 (+ 1 (mlist-length (mcdr m)))))

290 | P a g e

As shown in Exercise 9.4, though, we need to be careful when using mcdr

to recurse through a MutableList since structures created with MutablePairs

can include circular pointers.

 Check your progress II

➢ What is the value of (mlist-length pair) for the pair shown in Figure 9.5?

9.4 Imperative Programming

Mutation enables a style of programming known as imperative

programming . Whereas functional programming is concerned with

defining procedures that can be composed to solve a problem, imperative

programming is primarily con-cerned with modifying state in ways that

lead to a state that provides a solution to a problem.

The main operation in function programming is application. A functional

pro-gram applies a series of procedures, passing the outputs of one

application as the inputs to the next procedure application. With imperative

programming, the primary operation is assignment (performed by set!, set-

mcar!, and set-mcdr! in Scheme; but typically by an assignment operator,

often := or =, in languages de-signed for imperative programming such as

Pascal, Algol60, Java, and Python).

The next subsection presents imperative-style versions of some of the

proce-dures we have seen in previous chapters for manipulating lists. The

following subsection introduces some imperative control structures.

9.4.1 List Mutators

All the procedures for changing the value of a list in Section 5.4.3 actually

do not change any values; instead they construct new lists. When our goal is

291 | P a g e

only to change some elements in an existing list, this wastes memory

constructing a new list and may require more running time than a procedure

that modifies the input list instead. Here, we revisit some of the procedures

from Section 5.4.3, but instead of producing new lists with the desired

property these procedures modify the input list.

Example 9.2: Mapping

The list-map procedure (from Example 5.4) produces a new list that is the

result of applying the same procedure to every element in the input list.

(define (list-map f p)

(if (null? p) null (cons (f (car p)) (list-map f (cdr p)))))

Whereas the functional list-map procedure uses cons to build up the output

list, the imperative mlist-map! procedure uses set-car! to mutate the input

list’s ele-ments:

(define (mlist-map! f p)

(if (null? p) (void)

(begin (set-mcar! p (f (mcar p)))

(mlist-map! f (mcdr p)))))

The base case uses (void) to evaluate to no value. Unlike list-map which

evalu-ates to a List, mlist-map! is evaluated for its side effects and produces

no output.

Assuming the procedure passed as f has constant running time, the running

time of the mlist-map! procedure is in Θ(n) where n is the number of

elements in the input list. There will be n recursive applications of mlist-

map! since each one passes in a list one element shorter than the input list,

and each application requires constant time. This is asymptotically the same

as the list-map proce-dure, but we would expect the actual running time to

be faster since there is no need to construct a new list.

292 | P a g e

The memory consumed is asymptotically different. The list-map procedure

al-locates n new cons cells, so it requires memory in Θ(n) where n is the

number of elements in the input list. The mlist-map! procedure is tail

recursive (so no stack needs to be maintained) and does not allocate any

new cons cells, so it requires constant memory.

Example 9.3: Filtering

The list-filter procedure takes as inputs a test procedure and a list and

outputs a list containing the elements of the input list for which applying the

test proce-dure evaluates to a true value. In Example 5.5, we defined list-

filter as:

(define (list-filter test p)

(if (null? p) null

(if (test (car p)) (cons (car p) (list-filter test (cdr p)))

(list-filter test (cdr p)))))

An imperative version of list-filter removes the unsatisfying elements from

a mutable list. We define mlist-filter! using set-mcdr! to skip over elements

that should not be included in the filtered list:

(define (mlist-filter! test p)

(if (null? p) null

(begin (set-mcdr! p (mlist-filter! test (mcdr p)))

(if (test (mcar p)) p (mcdr p)))))

Assuming the test procedure has constant running time, the running time of

the mlist-filter! procedure is linear in the length of the input list. As with

mlist-map!, the space used by mlist-filter! is constant, which is better than

the Θ(n) space used by list-filter.

Unlike mlist-map!, mlist-filter! outputs a value. This is needed when the

first element is not in the list. Consider this example:

293 | P a g e

>(define a (mlist 1 2 3 1 4))

>(mlist-filter! (lambda (x) (> x 1)) a)

{2 3 4}

>a

>{1 2 3 4}

The value of a still includes the initial 1. There is no way for the mlist-filter!

pro-cedure to remove the first element of the list: the set-mcar! and set-

mcdr! proce-dures only enable us to change what the mutable pair’s

components contain.

To avoid this, mlist-filter! should be used with set! to assign the variable to

the resulting mutable list:

(set! a (mlist-filter! (lambda (x) (> x 1)) a))

Example 9.4: Append

The list-append procedure takes as input two lists and produces a list

consisting of the elements of the first list followed by the elements of the

second list. An imperative version of this procedure instead mutates the first

list to contain the elements of both lists.

(define (mlist-append! p q)

(if (null? p) (error "Cannot append to an empty list")

(if (null? (mcdr p)) (set-mcdr! p q)

(mlist-append! (mcdr p) q))))

The mlist-append! procedure produces an error when the first input is null

— this is necessary since if the input is null there is no pair to modify.
3

Like list-append, the running time of the mlist-append! procedure is in Θ(n)

where n is the number of elements in the first input list. The list-append

294 | P a g e

pro-cedure copies the first input list, so its memory use is in Θ(n) where n is

the number of elements in the first input list. The memory use of mlist-

append! is constant: it does not create any new cons cells to append the

lists.

Aliasing. Adding mutation makes it possible to define many procedures

more efficiently and compactly, but introduces many new potential pitfalls

in produc-ing reliable programs. Since our evaluation model now depends

on the environ-ment in which an expression is evaluated, it becomes much

harder to reason about code by itself.

One challenge introduced by mutation is aliasing . There may be different

ways to refer to the same object. This was true before mutation also, but

didn’t mat-ter since the value of an object never changed. Once object

values can change, however, aliasing can lead to surprising behaviors.

For example,

>(define m1 (mlist 1 2 3))

>(define m2 (mlist 4 5 6))

>(mlist-append! m1 m2)

>(set! m1 (mlist-filter! (lambda (el) (= (modulo el 2) 0)) m1))

The value of m2 was defined as {4 5 6}, and no expressions since then

explicitly modified m2. But, the value of m2 has still changed! It changed

because after evaluating (mlist-append! m1 m2) the m1 object shares cells

with m2. Thus, when the mlist-filter! application changes the value of m1, it

also changes the value of m2 to {4 6}.

The built-in procedure eq? takes as input any two objects and outputs a

Boolean. The result is true if and only if the inputs are the same object. For

example, (eq? 3 3) evaluates to true but (eq? (mcons 1 2) (mcons 1 2))

evaluates to false. Even though the input pairs have the same value, they are

different objects—mutating one of the pairs does not effect the value of the

other pair.

295 | P a g e

For the earlier mlist-append! example, (eq? m1 m2) evaluates to false since

m1 and m2 do not refer to the same object. But, (eq? (mcdr m1) m2)

evaluates to true since the second cell of m1 points to the same object as

m2. Evaluating (set-mcar! m2 3) changes the value of both m1 and m2

since the modified cell is common to both structures.

 Check your progress III

➢ Define an imperative-style procedure, mlistinc! that takes as in-put a

MutableList of Numbers and modifies the list by adding one to the value

of each element in the list.

9.4.2 Imperative Control Structures

The imperative style of programming makes progress by using assignments

to manipulate state. In many cases, solving a problem requires repeated

opera-tions. With functional programming, this is done using recursive

definitions. We make progress towards a base case by passing in different

values for the operands with each recursive application. With imperative

programming, we can make progress by changing state repeatedly without

needing to pass in dif-ferent operands.

A common control structure in imperative programming is a while loop. A

while loop has a test condition and a body. The test condition is a predicate.

If it evaluates to true, the while loop body is executed. Then, the test

condition is evaluated again. The while loop continues to execute until the

test condition evaluates to false.

We can define while as a procedure that takes as input two procedures, a

test procedure and a body procedure, each of which take no parameters.

Even though the test and body procedures take no parameters, they need to

be procedures in-stead of expressions, since every iteration of the loop

should re-evaluate the test and body expressions of the passed procedures.

296 | P a g e

(define (while test body)

(if (test)

(begin (body) (while test body))

(void))) ; no result value

We can use the while procedure to implement Fibonacci similarly to the

fast-fibo procedure:

(define (fibo-while n)

(let ((a 1) (b 1))

(while (lambda () (> n 2))

(lambda () (set! b (+ a b))

(set! a (– b a))

(set! n (– n 1))))

b))

The final value of b is the result of the fibo-while procedure. In each

iteration, the body procedure is applied, updating the values of a and b to

the next Fibonacci numbers.

The value assigned to a is computed as (– b a) instead of b. The reason for

this is the previous assignment expression has already changed the value of

b, by adding a to it. Since the next value of a should be the old value of b,

we can find the necessary value by subtracting a. The fact that the value of

a variable can change depending on when it is used often makes imperative

programming trickier than functional programming.

An alternative approach, which would save the need to do subtraction, is to

store the old value in a temporary value:

(lambda ()

(let ((oldb b))

(set! b (+ a b))

(set! a oldb)

(set! n (– n 1))))

297 | P a g e

Many programming languages designed to support imperative

programming provide control constructs similar to the while procedure

defined above. For ex-ample, here is a version of the procedure in the

Python programming language:

def fibonacci (n):

a = 1

b = 1

while n > 2:

a, b = b, a + b

n = n 1

return b

We will use Python starting in Chapter 11, although you can probably guess

what most of this procedure means without knowing Python.

The most interesting statement is the double assignment: a, b = b, a + b.

This assigns the new value of a to the old value of b, and the new value of b

to the sum of the old values of a and b. Without the double assignment

operator, it would be necessary to store the old value of b in a new variable

so it can be assigned to a after updating b to the new value.

9.5 Summary

Adding the ability to change the value associated with a name complicates

our evaluation rules, but enables simpler and more efficient solutions to

many prob-lems. Mutation allows us to efficiently manipulate larger data

structures since it is not necessary to copy the data structure to make

changes to it.

Once we add assignment to our language, the order in which things happen

affects the value of some expressions. Instead of evaluating expressions

298 | P a g e

using substitution, we now need to always evaluate an expression in a

particular execution environment.

The problem with mutation is that it makes it much tougher to reason about

the meaning of an expression. In the next chapter, we introduce a new kind

of abstraction that packages procedures with the state they manipulate. This

helps manage some of the complexity resulting from mutation by limiting

the places where data may be accessed and modified.

 Check your progress IV

a. A set expression is also known as an __________.

b. _________ allow programs mutators to change the value in a given place.

c. A _______ is a collection of places.

d. An ________is a pair consisting of a frame and a pointer to a parent.

e. Mutation enables a style of programming known as ________

programming.

9.6 Answer the Following

1. What is mutator?

2. Define global environment.

3. What is the difference between imperative programming and

functional programming.

4. Explain Imperative Control Structure.

5. Define a mpair-circular? procedure that takes a MutablePair as its

input and outputs true when the input contains a cycle and false

otherwise.

6. Define a procedure mlist-truncate! that takes as input a MutableList

and modifies the list by removing the last element in the list. Specify

carefully the requirements for the input list to your procedure.

7. Define a procedure mlist-make-circular! that takes as input a

MutableList and modifies the list to be a circular list containing all

the elements in the original list. For example, (mlist-make-circular!

299 | P a g e

(mlist 3)) should produce the same structure as the circular pair

shown in Figure 9.5.

8. Define an imperative-style procedure, mlist-reverse!, that re-verses

the elements of a list. Is it possible to implement a mlist-reverse!

pro-cedure that is asymptotically faster than the list-reverse

procedure from Exam-ple 5.4?

9. Define a procedure mlist-aliases? that takes as input two mutable

lists and outputs true if and only if there are any mcons cells shared

between the two lists.

10. One of the common imperative programming structure is a

repeatuntil loop. Define a repeat-until procedure that takes two

inputs, a body procedure and a test procedure. The procedure should

evaluate the body procedure repeatedly, until the test procedure

evaluates to a true value. For example, using repeat-until we could

define factorial as:

(define (factorial n)

(let ((fact 1))

(repeat-until

(lambda () (set! fact (fact n)) (set! n (– n 1)))

(lambda () (< n 1)))

 fact))

11. Define the mlist-map! example from the previous section using

while

 Answers to Check your progress IV

a. assignment.

b. Mutators

c. frame

d. environment

e. imperative

300 | P a g e

301 | P a g e

Objects

Learning Objectives

After the completion of this unit, the learner shall be able to:

• Explain Object- Oriented Programming approach

• Define encapsulation

• Explain object terminology

• Define inheritance

• Implement subclass

• Implement overriding methods

• Know the history of Object-Oriented Programming

Introduction

So far, we have seen two main approaches for solving problems:

Functional programming

Break a problem into a group of simpler procedures that can be composed

to solve the problem (introduced in Chapter 4).

Data-centric programming

Model the data the problem involves, and develop procedures to manip-

ulate that data (introduced in Chapter 5, and extended to imperative pro-

gramming with mutation in the previous chapter).

All computational problems involve both data and procedures. All

procedures act on some form of data; without data they can have no

meaningful inputs and outputs. Any data-focused design must involve some

procedures to perform computations using that data.

This chapter introduces a new problem-solving approach known as object-

oriented programming. By packaging procedures and data together, object-

oriented programming overcomes a weakness of both previous approaches:

the data and the procedures that manipulate it are separate.

302 | P a g e

Unlike many programming languages, Scheme does not provide special

built-in support for objects. We build an object system ourselves, taking

advantage of the stateful evaluation rules. By building an object system

from simple com-ponents, we provide a clearer and deeper understanding of

how object systems work. In Chapter 11, we see how Python provides

language support for object-oriented programming.

The next section introduces techniques for programming with objects that

com-bine state with procedures that manipulate that state. Section 10.2

describes inheritance, a powerful technique for programming with objects

by implement-ing new objects that add or modify the behaviors of

previously implemented objects. Section 10.3 provides some historical

background on the development of object-oriented programming.

10.1 Packaging Procedures and State

Recall our counter from Example 9.1:

(define (update-counter!) (set! counter (+ counter 1)) counter)

Every time an application of update-counter! is evaluated, we expect to

obtain a value one larger than the previous application. This only works,

however, if there are no other evaluations that modify the counter variable.

Hence, we can only have one counter: there is only one counter place in the

global environment. If we want to have a second counter, we would need to

define a new variable (such as counter2, and implement a new procedure,

update-counter2!, that is identical to update-counter!, but manipulates

counter2 instead. For each new counter, we would need a new variable and

a new procedure.

303 | P a g e

10.1.1 Encapsulation

It would be more useful to package the counter variable with the procedure

that manipulates it. Then we could create as many counters as we want,

each with its own counter variable to manipulate.

The Stateful Application Rule (from Section 9.2.2) suggests a way to do

this: eval-uating an application creates a new environment, so a counter

variable defined an the application environment is only visible through

body of the created pro-cedure.

The make-counter procedure creates a counter object that packages the

count variable with the procedure that increases its value:

(define (make-counter)

((lambda (count)

(lambda () (set! count (+ 1 count)) count))

0))

Each application of make-counter produces a new object that is a procedure

with its own associated count variable. Protecting state so it can only be

manipulated in controlled ways is known as encapsulation.

The count place is encapsulated within the counter object. Whereas the

previ-ous counter used the global environment to store the counter in a way

that could be manipulated by other expressions, this version encapsulates

the counter vari-able so the only way to manipulate the counter value is

through the counter ob-ject.

An equivalent make-counter definition uses a let expression to make the

initial-ization of the count variable clearer:

(define (make-counter)

(let ((count 0))

304 | P a g e

(lambda () (set! count (+ 1 count)) count)))

Figure 10.1 depicts the environment after creating two counter objects and

applying one of them.

10.1.2 Messages

The object produced by make-counter is limited to only one behavior: every

time it is applied the associated count variable is increased by one and the

new value is output. To produce more useful objects, we need a way to

combine state with multiple behaviors.

For example, we might want a counter that can also return the current count

and reset the count. We do this by adding a message parameter to the

procedure produced by make-counter:

(define (make-counter)

(let ((count 0))

(lambda (message)

(if (eq? message ’get-count) count

(if (eq? message ’reset!) (set! count 0)

(if (eq? message ’next!) (set! count (+ 1 count))

(error "Unrecognized message")))))))

305 | P a g e

Like the earlier make-counter, this procedure produces a procedure with an

en-vironment containing a frame with a place named count. The produced

procedure takes a message parameter and selects different behavior

depending on the input message.

The message parameter is a Symbol. A Symbol is a sequence of characters

preceded by a quote character such as ’next!. Two Symbols are equal, as

determined by the eq? procedure, if their sequences of characters are

identical. The running time of the eq? procedure on symbol type inputs is

constant; it does not increase with the length of the symbols since the

symbols can be represented internally as small numbers and compared

quickly using number equality. This makes symbols a more efficient way of

selecting object behaviors than Strings, and a more memorable way to

select behaviors than using Numbers.

Here are some sample interactions using the counter object:

>(define counter (make-counter))

>(counter ’next!)

>(counter ’get-count)

1

>(counter ’previous!)

 Unrecognized message

Conditional expressions. For objects with many behaviors, the nested if

ex-pressions can get quite cumbersome. Scheme provides a compact

conditional expression for combining many if expressions into one smaller

expression:

Expression ::=> CondExpression

CondExpression ::=> (cond CondClauseList)

CondClauseList ::=> CondClause CondClauseList

CondClauseList ::=> ϵ

CondClause ::=> (Expressionpredicate Expressionconsequent)

306 | P a g e

The evaluation rule for a conditional expression can be defined as a

transformation into an if expression:

Evaluation Rule 9: Conditional. The conditional expression (cond) has no

value. All other conditional expressions are of the form (cond

(Expressionp1 Expressionc1) Rest) where Rest is a list of conditional

clauses. The value of such a conditional expression is the value of the if

expression:

(if Expressionp1 Expressionc1 (cond Rest))

This evaluation rule is recursive since the transformed expression still

includes a conditional expression, but uses the empty conditional with no

value as its base case.

The conditional expression can be used to define make-counter more

clearly than the nested if expressions:

(define (make-counter)

(let ((count 0))

(lambda (message)

(cond ((eq? message ’get-count) count)

((eq? message ’reset!) (set! count 0))

((eq? message ’next!) (set! count (+ 1 count)))

(true (error "Unrecognized message"))))))

For linguistic convenience, Scheme provides a special syntax else for use in

con-ditional expressions. When used as the predicate in the last conditional

clause it means the same thing as true. So, we could write the last clause

equivalently as (else (error "Unrecognized message")).

307 | P a g e

Sending messages. A more natural way to interact with objects is to define

a generic procedure that takes an object and a message as its parameters,

and send the message to the object.

The ask procedure is a simple procedure that does this:

(define (ask object message) (object message))

It applies the object input to the message input. So, (ask counter ’next!) is

equiv-alent to (counter ’next!), but looks more like passing a message to an

object than applying a procedure. Later, we will develop more complex

versions of the ask procedure to provide a more powerful object model.

Messages with parameters. Sometimes it is useful to have behaviors that

take additional parameters. For example, we may want to support a message

adjust! that increases the counter value by an input value.

To support such behaviors, we generalize the behaviors so that the result of

ap-plying the message dispatching procedure is itself a procedure. The

procedures for reset!, next!, and get-count take no parameters; the

procedure for adjust! takes one parameter.

(define (make-adjustable-counter)

(let ((count 0))

(lambda (message)

(cond ((eq? message ’get-count) (lambda () count))

((eq? message ’reset!) (lambda () (set! count 0)))

((eq? message ’next!) (lambda () (set! count (+ 1 count))))

((eq? message ’adjust!)

(lambda (val) (set! count (+ count val))))

(else (error "Unrecognized message"))))))

We also need to also change the ask procedure to pass in the extra

arguments. So far, all the procedures we have defined take a fixed number

308 | P a g e

of operands. To allow ask to work for procedures that take a variable

number of arguments, we use a special definition construct:

Definition ::=> (define (Name Parameters . NameRest) Expression)

The name following the dot is bound to all the remaining operands

combined into a list. This means the defined procedure can be applied to n

or more operands where n is the number of names in Parameters. If there

are only n operand expressions, the value bound to NameRest is null. If there

are n + k operand expres-sions, the value bound to NameRest is a list

containing the values of the last k operand expressions.

To apply the procedure we use the built-in apply procedure which takes two

inputs, a Procedure and a List. It applies the procedure to the values in the

list, extracting them from the list as each operand in order.

(define (ask object message . args)

(apply (object message) args))

We can use the new ask procedure with two or more parameters to invoke

meth-ods with any number of arguments (e.g., > (ask counter ’adjust! 5)).

10.1.3 Object Terminology

An object is an entity that packages state and procedures. The state

variables that are part of an object are called instance variables. The

instance variables are stored in places that are part of the application

environ-ment for the object. This means they are encapsulated with the

object and can only be accessed through the object. An object produced by

(make-counter) de-fines a single instance variable, count.

The procedures that are part of an object are called methods. Methods may

provide information about the state of an object (we call these observers) or

309 | P a g e

modify the state of an object (we call these mutators). An object produced

by (make-counter) provides three methods: reset! (a mutator), next! (a

mutator), and get-count (an observer).

An object is manipulated using the object’s methods. We invoke a method

on an object by sending the object a message. This is analogous to applying

a procedure.

A class is a kind of object. Classes are similar to data types. They define a

set of possible values and operations (methods in the object terminology)

for manip-ulating those values. We also need procedures for creating new

objects, such as the make-counter procedure above. We call these

constructors. By convention, we call the constructor for a class make-

<class> where <class> is the name of the class. Hence, an instance of the

counter class is the result produced when the make-counter procedure is

applied.

 Check your progress I

➢ Modify the make-counter definition to add a previous! method that

decrements the counter value by one.

10.2 Inheritance

Objects are particularly well-suited to programs that involve modeling real

or imaginary worlds such as graphical user interfaces (modeling windows,

files, and folders on a desktop), simulations (modeling physical objects in

the real world and their interactions), and games (modeling creatures and

things in an imagined world).

Objects in the real world (or most simulated worlds) are complex. Suppose

we are implementing a game that simulates a typical university. It might

include many different kinds of objects including places (which are

stationary and may contain other objects), things, and people. There are

many different kinds of people, such as students and professors. All objects

310 | P a g e

in our game have a name and a location; some objects also have methods

for talking and moving. We could define classes independently for all of

the object types, but this would involve a lot of duplicate effort. It would

also make it hard to add a new behaviour to all of the objects in the game

without modifying many different procedures. The solution is to define

more specialized kinds of objects using the definitions of other objects. For

example, a student is a kind of person. A student has all the behaviors of a

normal person, as well as some behaviors particular to a student such as

choosing a major and graduating. To implement a student class, we want to

reuse methods from the person class without needing to duplicate them in

the student implementation. We call the more specialized class (in this case

the student class) the subclass and say student is a subclass of person. The

reused class is known as the superclass, so person is the superclass of

student. A class can have many subclasses but only one superclass.2

Figure 10.2 illustrates some inheritance relationships for a university

simulator. The arrows point from subclasses to their superclass. A class

may be both a subclass to another class, and a superclass to a different

class. For example, person is a subclass of movable-object, but a superclass

of student and professor.

Our goal is to be able to reuse superclass methods in subclasses. When a

method is invoked in a subclass, if the subclass does not provide a

311 | P a g e

definition of the method, then the definition of the method in the superclass

is used. This can continue up the superclass chain. For instance, student is a

subclass of person, which is a subclass of movable-object, which is a

subclass of sim-object (simula-tion object), which is the superclass of all

classes in the simulator.

Hence, if the sim-object class defines a get-name method, when the get-

name method is invoked on a student object, the implementation of get-

name in the sim-object class will be used (as long as neither person nor

movable-object de-fines its own get-name method).

When one class implementation uses the methods from another class we say

the subclass inherits from the superclass. Inheritance is a powerful way to

obtain many different objects with a small amount of code.

10.2.1 Implementing Subclasses

To implement inheritance we change class definitions so that if a requested

method is not defined by the subclass, the method defined by its superclass

will be used.

The make-sub-object procedure does this. It takes two inputs, a superclass

ob-ject and the object dispatching procedure of the subclass, and produces

an in-stance of the subclass which is a procedure that takes a message as

input and outputs the method corresponding to that message. If the method

is defined by the subclass, the result will be the subclass method. If the

method is not defined by the subclass, it will be the superclass method.

(define (make-sub-object super subproc)

(lambda (message)

(let ((method (subproc message)))

(if method method (super message)))))

312 | P a g e

When an object produced by (make-sub-object obj proc) is applied to a

message, it first applies the subclass dispatch procedure to the message to

find an appropriate method if one is defined. If no method is defined by the

subclass implementation, it evaluates to (super message), the method

associated with the message in the superclass.

References to self. It is useful to add an extra parameter to all methods so

the object on which the method was invoked is visible. Otherwise, the

object will lose its special behaviors as it is moves up the superclasses. We

call this the self object (in some languages it is called the this object

instead). To support this, we modify the ask procedure to pass in the object

parameter to the method:

(define (ask object message . args)

(apply (object message) object args))

All methods now take the self object as their first parameter, and may take

addi-tional parameters. So, the counter constructor is defined as:

(define (make-counter)

(let ((count 0))

(lambda (message)

(cond

((eq? message ’get-count) (lambda (self) count))

((eq? message ’reset!) (lambda (self) (set! count 0)))

((eq? message ’next!) (lambda (self) (set! count (+ 1 count))))

(else (error "Unrecognized message"))))))

Subclassing counter. Since subclass objects cannot see the instance

variables of their superclass objects directly, if we want to provide a

versatile counter class we need to also provide a set-count! method for

setting the value of the counter to an arbitrary value. For reasons that will

become clear later, we should use set-count! everywhere the value of the

count variable is changed instead of setting it directly:

313 | P a g e

(define (make-counter)

(let ((count 0))

(lambda (message)

(cond

((eq? message ’get-count) (lambda (self) count))

((eq? message ’set-count!) (lambda (self val) (set! count val)))

((eq? message ’reset!) (lambda (self) (ask self ’set-count! 0)))

((eq? message ’next!)

(lambda (self) (ask self ’set-count! (+ 1 (ask self ’current)))))

(else (error "Unrecognized message"))))))

Previously, we defined make-adjustable-counter by repeating all the code

from make-counter and adding an adjust! method. With inheritance, we can

define make-adjustable-counter as a subclass of make-counter without

repeating any code:

(define (make-adjustable-counter)

(make-sub-object

(make-counter)

(lambda (message)

(cond

((eq? message ’adjust!)

(lambda (self val)

(ask self ’set-count! (+ (ask self ’get-count) val))))

(else false)))))

We use make-sub-object to create an object that inherits the behaviors from

one class, and extends those behaviors by defining new methods in the

subclass im-plementation.

The new adjust! method takes one Number parameter (in addition to the

self object that is passed to every method) and adds that number to the

current counter value. It cannot use (set! count (+ count val)) directly,

314 | P a g e

though, since the count variable is defined in the application environment of

its superclass object and is not visible within adjustable-counter. Hence, it

accesses the counter us-ing the set-count! and get-count methods provided

by the superclass.

Suppose we create an adjustable-counter object:

(define acounter (make-adjustable-counter))

Consider what happens when (ask acounter ’adjust! 3) is evaluated. The

acounter object is the result of the application of make-sub-object which is

the procedure,

(lambda (message)

(let ((method (subproc message)))

(if method method (super message)))))

where super is the counter object resulting from evaluating (make-counter)

and subproc is the procedure created by the lambda expression in make-

adjustable-counter. The body of ask evaluates (object message) to find the

method associ-ated with the input message, in this case ’adjust!. The

acounter object takes the message input and evaluates the let expression:

(let ((method (subproc message))) . . .)

The result of applying subproc to message is the adjust! procedure defined

by make-adjustable-counter:

(lambda (self val)

(ask self ’set-count! (+ (ask self ’get-count) val)))

Since this is not false, the predicate of the if expression is non-false and the

value of the consequent expression, method, is the result of the procedure

application. The ask procedure uses apply to apply this procedure to the

315 | P a g e

object and args parameters. The object is the acounter object, and the args is

the list of the extra parameters, in this case (3).

Thus, the adjust! method is applied to the acounter object and 3. The body

of the adjust! method uses ask to invoke the set-count! method on the self

object. As with the first invocation, the body of ask evaluates (object

message) to find the method. In this case, the subclass implementation

provides no set-count! method so the result of (subproc message) in the

application of the subclass ob-ject is false. Hence, the alternate expression is

evaluated: (super message). This evaluates to the method associated with

the set-count! message in the super-class. The ask body will apply this

method to the self object, setting the value of the counter to the new value.

We can define new classes by defining subclasses of previously defined

classes.

For example, reversible-counter inherits from adjustable-counter:

(define (make-reversible-counter)

(make-subobject

(make-adjustable-counter)

(lambda (message)

(cond

((eq? message ’previous!) (lambda (self) (ask self ’adjust! 1)))

(else false)))))

The reversible-counter object defines the previous! method which provides

a new behavior. If the message to a adjustable-counter object is not

previous!, the method from its superclass, adjustable-counter is used.

Within the previous! method we use ask to invoke the adjust! method on the

self object. Since the subclass implementation does not provide an adjust!

method, this results in the superclass method being applied.

316 | P a g e

10.2.2 Overriding Methods

In addition to adding new methods, subclasses can replace the definitions of

methods defined in the superclass. When a subclass replaces a method

defined by its superclass, then the subclass method overrides the superclass

method. When the method is invoked on a subclass object, the new method

will be used.

For example, we can define a subclass of reversible-counter that is not

allowed to have negative counter values. If the counter would reach a

negative number, instead of setting the counter to the new value, it produces

an error message and maintains the counter at zero. We do this by

overriding the set-count! method, replacing the superclass implementation

of the method with a new implemen-tation.

(define (make-positive-counter)

(make-subobject

(make-reversible-counter)

(lambda (message)

(cond

((eq? message ’set-count!)

(lambda (self val) (if (< val 0) (error "Negative count")

. . .)))

(else false)))))

What should go in place of the . . .? When the value to set the count to is

not negative, what should happen is the count is set as it would be by the

super-class set-count! method. In the positive-counter code though, there is

no way to access the count variable since it is in the superclass procedure’s

application environment. There is also no way to invoke the superclass’ set-

count! method since it has been overridden by positive-counter.

317 | P a g e

The solution is to provide a way for the subclass object to obtain its

superclass object. We can do this by adding a get-super method to the

object produced by make-sub-object:

(define (make-sub-object super subproc)

(lambda (message)

(if (eq? message ’get-super)

(lambda (self) super)

(let ((method (subproc message)))

(if method method (super message))))))

Thus, when an object produced by make-sub-object is passed the get-super

mes-sage it returns a method that produces the super object. The rest of the

proce-dure is the same as before, so for every other message it behaves like

the earlier make-sub-object procedure.

With the get-super method we can define the set-count! method for

positive-counter, replacing the . . . with:

(ask (ask self ’get-super) ’set-count! val))

Figure 10.3 shows the subclasses that inherit from counter and the methods

they define or override.

Consider these sample interactions with a positive-counter object:

>(define poscount (make-positive-counter))

>(ask poscount ’next!)

>(ask poscount ’previous!)

>(ask poscount ’previous!)

Negative count

> (ask poscount ’get-count)

0

318 | P a g e

For the first ask application, the next! method is invoked on a positive-

counter object. Since the positive-counter class does not define a next!

method, the mes-sage is sent to the superclass, reversible-counter. The

reversible-counter imple-mentation also does not define a next! method, so

the message is passed up to its superclass, adjustable-counter. This class

also does not define a next! method, so the message is passed up to its

superclass, counter. The counter class defines a next! method, so that

method is used.

For the next ask, the previous! method is invoked. Since the positive-

counter class does not define a previous! method, the message is sent to the

superclass. The superclass, reversible-counter, defines a previous! method.

Its implemen-tation involves an invocation of the adjust! method: (ask self

’adjust! 1). This invocation is done on the self object, which is an instance

of the positive-counter class. Hence, the adjust! method is found from the

positive-counter class imple-mentation. This is the method that overrides

the adjust! method defined by the adjustable-counter class. Hence, the

second invocation of previous! produces the “Negative count” error and

does not adjust the count to –1.

The property this object system has where the method invoked depends on

the object is known as dynamic dispatch. The method used for an

invocation depends on the self object. In this case, for example, it means

319 | P a g e

that when we inspect the implementation of the previous! method in the

reversible-counter class by itself it is not possible to determine what

procedure will be applied for the method invocation, (ask self ’adjust! –1).

It depends on the actual self object: if it is a positive-counter object, the

adjust! method defined by positive-counter is used; if it is a reversible-

counter object, the adjust! method defined by adjustable-counter class (the

superclass of reversible-counter) is used.

Dynamic dispatch provides for a great deal of expressiveness. It enables us

to use the same code to produce many different behaviors by overriding

methods in subclasses. This is very useful, but also very dangerous — it

makes it impos-sible to reason about what a given procedure does, without

knowing about all possible subclasses. For example, we cannot make any

claims about what the previous! method in reversible-counter actually does

without knowing what the adjust! method does in all subclasses of

reversible-counter.

The value of encapsulation and inheritance increases as programs get more

com-plex. Programming with objects allows a programmer to manage

complexity by hiding the details of how objects are implemented from what

those objects rep-resent and do.

 Check your progress II

➢ Define a countdown class that simulates a rocket launch count-down: it

starts at some initial value, and counts down to zero, at which point the

rocket is launched. Can you implement countdown as a subclass of

counter.

10.3 Object-Oriented Programming

Object-oriented programming is a style of programming where programs

are broken down into objects that can be combined to solve a problem or

model a simulated world. The notion of designing programs around object

320 | P a g e

manipulations goes back at least to Ada (see the quote at the end if Chapter

6), but started in earnest in the early 1960s.

During World War II, the US Navy began to consider the possibility of

building a airplane simulator for training pilots and aiding aircraft

designers. At the time, pilots trained in mechanical simulators that were

custom designed for partic-ular airplanes. The Navy wanted a simulator that

could be used for multiple airplanes and could accurately model the

aerodynamics of different airplanes.

Project Whirlwind was started at MIT to build the simulator. The initial

plans called for an analog computer which would need to be manually

reconfigured to change the aerodynamics model to a different airplane. Jay

Forrester learned about emerging projects to build digital computers,

including ENIAC which be-came operational in 1946, and realized that

building a programmable digital computer would enable a much more

flexible and powerful simulator, as well as a machine that could be used for

many other purposes.

Before Whirlwind, all digital computers operated as batch processors where

a programmer creates a program (typically described using a stack of punch

cards) and submits it to the computer. A computer operator would set up the

computer to run the program, after which it would run and (hopefully)

produce a result. A flight simulator, though, requires direct interaction

between a human user and the computer.

The first Whirlwind computer was designed in 1947 and operational by

1950. It was the first interactive programmable digital computer. Producing

a machine that could perform the complex computations needed for a flight

simulator fast enough to be used interactively required much faster and

more reliable memory that was possible with available technologies based

on storing electrostatic charges in vacuum tubes. Jay Forrester invented a

much faster memory based known as magnetic-core memory. Magnetic-

core memory stores a bit using magnetic polarity.

321 | P a g e

The interactiveness of the Whirlwind computer opened up many new

possibili-ties for computing. Shortly after the first Whirlwind computer,

Ken Olson led an effort to build a version of the computer using transistors.

The successor to this machine became the TX-2, and Ken Olsen went on to

found Digital Equipment Corporation (DEC) which pioneered the

widespread use of moderately priced computers in science and industry.

DEC was very successful in the 1970s and 1980s, but suffered a long

decline before eventually being bought by Compaq.

Ivan Sutherland, then a graduate student at MIT, had an opportunity to use

the TX-2 machine. He developed a program called Sketchpad that was the

first pro-gram to have an interactive graphical interface. Sketchpad allowed

users to draw and manipulate objects on the screen using a light pen. It was

designed around objects and operations on those objects:
3

In the process of making the Sketchpad system operate, a few very gen-eral

functions were developed which make no reference at all to the spe-cific

types of entities on which they operate. These general functions give the

Sketchpad system the ability to operate on a wide range of problems. The

motivation for making the functions as general as possible came from the

desire to get as much result as possible from the programming effort

involved. . . Each of the general functions implemented in the Sketchpad

system abstracts, in some sense, some common property of pictures inde-

pendent of the specific subject matter of the pictures themselves.

Sketchpad was a great influence on Douglas Engelbart who developed a

research program around a vision of using computers interactively to

enhance human in-tellect. In what has become known as “the mother of all

demos”, Engelbart and his colleagues demonstrated a networked, graphical,

interactive computing sys-tem to the general public for the first time in

1968. With Bill English, Engelbard also invented the computer mouse.

322 | P a g e

Sketchpad also influenced Alan Kay in developing object-oriented

programming. The first language to include support for objects was the

Simula programming language, developed in Norway in the 1960s by

Kristen Nygaard and Ole Johan Dahl. Simula was designed as a language

for implementing simulations. It pro-vided mechanisms for packaging data

and procedures, and for implementing subclasses using inheritance.

In 1966, Alan Kay entered graduate school at the University of Utah, where

Ivan Sutherland was then a professor. Here’s how he describes his first

assignment:
4

Head whirling, I found my desk. On it was a pile of tapes and listings, and a

note: “This is the Algol for the 1108. It doesn’t work. Please make it work.”

The latest graduate student gets the latest dirty task. The documen-tation

was incomprehensible. Supposedly, this was the Case-Western Re-serve

1107 Algol—but it had been doctored to make a language called Sim-ula;

the documentation read like Norwegian transliterated into English, which in

fact it was. There were uses of words like activity and process that didn’t

seem to coincide with normal English usage. Finally, another grad-uate

student and I unrolled the program listing 80 feet down the hall and crawled

over it yelling discoveries to each other. The weirdest part was the storage

allocator, which did not obey a stack discipline as was usual for Al-gol. A

few days later, that provided the clue. What Simula was allocating were

structures very much like the instances of Sketchpad. There were de-

scriptions that acted like masters and they could create instances, each of

which was an independent entity. . . .

This was the big hit, and I’ve not been the same since. . . For the first time I

thought of the whole as the entire computer and wondered why anyone

would want to divide it up into weaker things called data structures and

procedures. Why not divide it up into little computers, as time sharing was

starting to? But not in dozens. Why not thousands of them, each simulat-ing

a useful structure?

323 | P a g e

Alan Kay went on to design the language Smalltalk, which became the first

widely used object-oriented language. Smalltalk was developed as part of a

project at XEROX’s Palo Alto Research Center to develop a hand-held

computer that could be used as a learning environment by children.

In Smalltalk, everything is an object, and all computation is done by

sending messages to objects. For example, in Smalltalk one computes (+ 1

2) by send-ing the message + 2 to the object 1. Here is Smalltalk code for

implementing a counter object:

class name counter

instance variable names count

new count < – 0

next count < – count + 1

current ˆ count

The new method is a constructor analogous to make-counter. The count in-

stance variable stores the current value of the counter, and the next method

up-dates the counter value by sending the message + 1 to the count object.

Nearly all widely-used languages today provide built-in support for some

form of object-oriented programming. For example, here is how a counter

object could be defined in Python:

class counter:

def __init__ (self): self._count = 0

def rest(self): self._count = 0

def next(self): self._count = self._count + 1

def current(self): return self._count

The constructor is named init . Similarly to the object system we developed

for Scheme, each method takes the self object as its parameter.

324 | P a g e

10.4 Summary

An object is an entity that packages state with procedures that manipulate

that state. By packaging state and procedures together, we can encapsulate

state in ways that enable more elegant and robust programs.

Inheritance allows an implementation of one class to reuse or override

meth-ods in another class, known as its superclass. Programming using

objects and inheritance enables a style of problem solving known as object-

oriented pro-gramming in which we solve problems by modeling problem

instances using objects.

 Check your progress III

➢ Protecting state so it can only be maniulated in controlled ways is known

as _________________.

➢ An ___________ is an entity that packages state and procedures.

➢ The procedures that are part of an object are called __________.

➢ When a subclass replaces a method defined by its superclass, then the

subclass method ___________ the superclass method.

➢ The property of the object system where the method invoked depends on

the object is known as ________________ .

10.5 Answer the Following

1. Explain Object-Oriented Programming.

2. What is inheritance in OOP?

3. Define instance variables. Why they are used in OOP.

4. What are methods?

5. Define a class. Explain the concept of subclass and superclass in

OOP.

6. What are constructors in OOP?

7. What is dynamic dispatch?

8. Define a new subclass of parameterizable-counter where the in-

crement for each next! method application is a parameter to the

constructor procedure. For example, (make-parameterizable-counter

325 | P a g e

0.1) would produce a counter object whose counter has value 0.1

after one invocation of the next! method.

9. Find a 5-state Turing Machine that runs for more than 47,176,870

steps, or prove that no such machine exists.

 Answers to Check your progress III

➢ encapsulation.

➢ object

➢ methods.

➢ overrides

➢ dynamic dispatch.

326 | P a g e

327 | P a g e

Interpreters

Learning Objectives

After the completion of this unit, the learner shall be able to:

• Define an Interpreter

• Know the requirments to implement an interpreter for a given target

language

• Know the control statements for making decisions, looping, and for

returning from a procedure provided by Python.

• Know various built-in data types of Python programming language

• Know the working of a parser

• Define an order of precedence for parsing expressions.

• Draw the parse tree for each of the following Python expressions

and provide the value of each expression

• Define lazy evaluation

Languages are powerful tools for thinking. Different languages encourage

dif-ferent ways of thinking and lead to different thoughts. Hence, inventing

new languages is a powerful way for solving problems. We can solve a

problem by designing a language in which it is easy to express a solution

and implementing an interpreter for that language.

An interpreter is just a program. As input, it takes a specification of a

program in some language. As output, it produces the output of the input

program. Imple-menting an interpreter further blurs the line between data

and programs, that

we first crossed in Chapter 3 by passing procedures as parameters and

return-ing new procedures as results. Programs are just data input for the

interpreter program. The interpreter determines the meaning of the program.

To implement an interpreter for a given target language we need to:

328 | P a g e

1. Implement a parser that takes as input a string representation of a

program in the target language and produces a structural parse of the

input program. The parser should break the input string into its

language com-ponents, and form a parse tree data structure that

represents the input text in a structural way. Section 11.2 describes

our parser implementation.

2. Implement an evaluator that takes as input a structural parse of an

input program, and evaluates that program. The evaluator should

implement the target language’s evaluation rules. Section 11.3

describes our evaluator.

Our target language is a simple subset of Scheme we call Charme.1 The

Charme language is very simple, yet is powerful enough to express all

computations (that is, it is a universal programming language). Its

evaluation rules are a subset of the stateful evaluation rules for Scheme. The

full grammar and evaluation rules for Charme are given in Section 11.3.

The evaluator implements those evalua-tion rules.

Section 11.4 illustrates how changing the evaluation rules of our interpreter

opens up new ways of programming.

11.1 Python

We could implement a Charme interpreter using Scheme or any other

univer-sal programming language, but implement it using the programming

language Python. Python is a popular programming language initially

designed by Guido van Rossum in 1991.
2
 Python is freely available from

http://www.python.org.

We use Python instead of Scheme to implement our Charme interpreter for

a few reasons. The first reason is pedagogical: it is instructive to learn new

languages. As Dijkstra’s quote at the beginning of this chapter observes, the

http://www.python.org/

329 | P a g e

languages we use have a profound effect on how we think. This is true for

natural languages, but also true for programming languages. Different

languages make different styles of programming more convenient, and it is

important for every program-mer to be familiar with several different styles

of programming. All of the major concepts we have covered so far apply to

Python nearly identically to how they apply to Scheme, but seeing them in

the context of a different language should make it clearer what the

fundamental concepts are and what are artifacts of a particular

programming language.

Another reason for using Python is that it provides some features that

enhance expressiveness that are not available in Scheme. These include

built-in support for objects and imperative control structures. Python is also

well-supported by most web servers (including Apache), and is widely used

to develop dynamic web applications.

The grammar for Python is quite different from the Scheme grammar, so

Python programs look very different from Scheme programs. The

evaluation rules, how-ever, are quite similar to the evaluation rules for

Scheme. This chapter does not describe the entire Python language, but

introduces the grammar rules and evaluation rules for the most important

Python constructs as we use them to implement the Charme interpreter.

Like Scheme, Python is a universal programming language. Both languages

can express all mechanical computations. For any computation we can

express in Scheme, there is a Python program that defines the same

computation. Con-versely, every Python program has an equivalent Scheme

program.

One piece of evidence that every Scheme program has an equivalent Python

program is the interpreter we develop in this chapter. Since we can

implement an interpreter for a Scheme-like language in Python, we know

we can express every computation that can be expressed by a program in

330 | P a g e

that language with an equivalent Python program: the Charme interpreter

with the Charme program as its input.

Tokenizing. We introduce Python using one of the procedures in our

interpreter implementation. We divide the job of parsing into two

procedures that are combined to solve the problem of transforming an input

string into a list de-scribing the input program’s structure. The first part is

the tokenizer. It takes as input a string representing a Charme program, and

outputs a list of the tokens in that string.

 A token is an indivisible syntactic unit. For example, the Charme

expression, (define square (lambda (x) (x x))), contains 15 tokens: (,

define, square, (, lambda, (, x,), (, *, x, x,),), and). Tokens are separated

by whitespace (spaces, tabs, and newlines). Punctuation marks such as the

left and right parentheses are tokens by themselves.

The tokenize procedure below takes as input a string s in the Charme target

lan-guage, and produces as output a list of the tokens in s. We describe the

Python language constructs it uses next.

11.1.1 Python Programs

331 | P a g e

Whereas Scheme programs are composed of expressions and definitions,

Python programs are mostly sequences of statements. Unlike expressions, a

statement has no value. The emphasis on statements impacts the style of

programming used with Python. It is more imperative than that used with

Scheme: instead of composing expressions in ways that pass the result of

one expression as an operand to the next expression, Python procedures

consist mostly of statements, each of which alters the state in some way

towards reaching the goal state. Nev-ertheless, it is possible (but not

recommended) to program in Scheme using an imperative style

(emphasizing assignments), and it is possible (but not recom-mended) to

program in Python using a functional style (emphasizing procedure

applications and eschewing statements).

Defining a procedure in Python is similar to defining a procedure in

Scheme, except the syntax is different:

ProcedureDefinition ::=> def Name (Parameters) : Block

Parameters ::=> ϵ

Parameters ::=> SomeParameters

SomeParameters ::=> Name

SomeParameters ::=> Name , SomeParameters

Block ::=> Statement

Block ::=> <newline> indented(Statements)

Statements ::=> Statement <newline> MoreStatements

MoreStatements ::=> Statement <newline> MoreStatements

MoreStatements ::=> ϵ

Unlike in Scheme, whitespace (such as new lines) has meaning in Python.

State-ments cannot be separated into multiple lines, and only one statement

may ap-pear on a single line. Indentation within a line also matters. Instead

of using parentheses to provide code structure, Python uses the indentation

to group statements into blocks. The Python interpreter reports an error if

the inden-tation does not match the logical structure of the code.

332 | P a g e

Since whitespace matters in Python, we include newlines (<newline>) and

in-dentation in our grammar. We use indented(elements) to indicate that the

ele-ments are indented. For example, the rule for Block is a newline,

followed by one or more statements. The statements are all indented one

level inside the block’s indentation. The block ends when the indenting

returns to the outer level.

The evaluation rule for a procedure definition is similar to the rule for

evaluating a procedure definition in Scheme.

Python Procedure Definition. The procedure definition,

def Name (Parameters): Block

defines Name as a procedure that takes as inputs the Parameters and has the

body expression Block.

The procedure definition, def tokenize(s): ..., defines a procedure named

tokenize that takes a single parameter, s.

Assignment. The body of the procedure uses several different types of

Python statements. Following Python’s more imperative style, five of the

statements in tokenize are assignment statements including the first two

statements. For ex-ample, the assignment statement, tokens = [] assigns the

value [] (the empty list) to the name tokens.

The grammar for the assignment statement is:

Statement ::=> AssignmentStatement

AssignmentStatement ::=> Target = Expression

Target ::=> Name

333 | P a g e

For now, we use only a Name as the left side of an assignment, but since

other constructs can appear on the left side of an assignment statement, we

introduce the nonterminal Target for which additional rules can be defined

to encompass other possible assignees. Anything that can hold a value (such

as an element of a list) can be the target of an assignment.

The evaluation rule for an assignment statement is similar to Scheme’s

evaluation rule for assignments: the meaning of x = e in Python is similar to

the mean-ing of (set! x e) in Scheme, except that in Python the target Name

need not exist before the assignment. In Scheme, it is an error to evaluate

(set! x 7) where the name x has not been previously defined; in Python, if x

is not already defined, evaluating x = 7 creates a new place named x with its

value initialized to 7.

Python Evaluation Rule: Assignment. To evaluate an assignment state-

ment, evaluate the expression, and assign the value of the expression to the

place identified by the target. If no such place exists, create a new place

with that name.

Arithmetic and Comparison Expressions. Python supports many

different kinds of expressions for performing arithmetic and comparisons.

Since Python does not use parentheses to group expressions, the grammar

provides the group-ing by breaking down expressions in several steps. This

defines an order of prece-dence for parsing expressions.

For example, consider the expression 3 + 4 * 5. In Scheme, the expressions

(+ 3 (* 4 5)) and (* (+ 3 4) 5) are clearly different and the parentheses

group the subexpressions. The Python expression, 3 + 4 * 5, means (+ 3 (*

4 5)) and evalu-ates to 23.

Supporting precedence makes the Python grammar rules more complex

since they must deal with * and + differently, but it makes the meaning of

Python ex-pressions match our familiar mathematical interpretation,

without needing to clutter expressions with parentheses. This is done is by

334 | P a g e

defining the grammar rules so an AddExpression can contain a

MultExpression as one of its subexpres-sions, but a MultExpression cannot

contain an AddExpression. This makes the multiplication operator have

higher precedence than the addition operator. If an expression contains both

+ and * operators, the * operator is grouped with its operands first. The

replacement rules that happen first have lower precedence, since their

components must be built from the remaining pieces.

Here are the grammar rules for Python expressions for comparison,

multiplica-tion, and addition expressions:

Expression ::=> CompExpr

CompExpr ::=> CompExpr Comparator CompExpr

Comparator ::=> < | > | == | <= | >=

CompExpr ::=> AddExpression

AddExpression ::=> AddExpression + MultExpression

AddExpression ::=> AddExpression - MultExpression

AddExpression ::=> MultExpression

MultExpression ::=> MultExpression * PrimaryExpression

MultExpression ::=> PrimaryExpression

PrimaryExpression ::=> Literal

PrimaryExpression ::=> Name

PrimaryExpression ::=> (Expression)

The last rule allows expressions to be grouped explicitly using parentheses.

For example, (3 + 4) * 5 is parsed as the PrimaryExpression, (3 + 4), times

5, so evalu-ates to 35; without the parentheses, 3 + 4 * 5 is parsed as 3 plus

the MultExpres-sion, 4 * 5, so evaluates to 23.

335 | P a g e

A PrimaryExpression can be a Literal, such as a number. Numbers in

Python are similar (but not identical) to numbers in Scheme.

A PrimaryExpression can also be a name, similar to names in Scheme. The

eval-uation rule for a name in Python is similar to the stateful rule for

evaluating a name in Scheme
3
.

 Check your progress I

➢ Draw the parse tree for each of the following Python expressions and

provide the value of each expression.

(a) 1 + 2 + 3 * 4

(b) 3 > 2 + 2

(c) 3 * 6 >= 15 == 12

(d) (3 * 6 >= 15) == True

➢

11.1.2 Data Types

Python provides many built-in data types. We describe three of the most

useful data types here: lists, strings, and dictionaries.

Lists. Python provides a list datatype similar to lists in Scheme, except

instead of building lists from simpler parts (that is, using cons pairs in

Scheme), the Python list type is a built-in datatype. The other important

difference is that Python lists are mutable like mlist from Section 9.3.

Lists are denoted in Python using square brackets. For example, [] denotes

an empty list and [1, 2] denotes a list containing two elements. The

elements in a list can be of any type (including other lists).

Elements can be selected from a list using the list subscript expression:

PrimaryExpression ::=> SubscriptExpression

SubscriptExpression ::=> PrimaryExpression [Expression]

336 | P a g e

A subscript expression evaluates to the element indexed by value of the

inner expression from the list. For example,

>> a = [1, 2, 3]

>> a[0] ::=> 1

>> a[1+1] ::=> 3

>> a[3] ::=> IndexError : list index out of range

The expression p[0] in Python is analogous to (car p) in Scheme.

The subscript expression has constant running time; unlike indexing

Scheme lists, the time required does not depend on the length of the list

even if the se-lection index is the end of the list. The reason for this is that

Python stores lists internally differently from how Scheme stores as chains

of pairs. The elements of a Python list are stored as a block in memory, so

the location of the k
th

 ele-ment can be calculated directly by adding k times

the size of one element to the location of the start of the list.

A subscript expression can also select a range of elements from the list:

SubscriptExpression ::=> PrimaryExpression [BoundLow : BoundHigh]

Bound ::=> Expression | ϵ

Subscript expressions with ranges evaluate to a list containing the elements

be-tween the low bound and the high bound. If the low bound is missing,

the low bound is the beginning of the list. If the high bound is missing, the

high bound is the end of the list. For example,

>> a = [1, 2, 3]

>> a[:1] => [1]

>> a[1:] => [2, 3]

337 | P a g e

>> a[4 2:3] => [3]

>> a[:] => [1, 2,3]

The expression p[1:] in Python is analogous to (cdr p) in Scheme.

Python lists are mutable (the value of a list can change after it is created).

We can use list subscripts as the targets for an assignment expression:

Target ::=> SubscriptExpression

Assignments using ranges as targets can add elements to the list as well as

chang-ing the values of existing elements:

>> a = [1, 2, 3]

>> a[0] = 7

>> a => [7, 2, 3]

>> a[1:4] = [4, 5, 6]

>> a => [7, 4, 5, 6]

>> a[1:] = [6]

>> a => [7, 6]

In the tokenize procedure, we use tokens = [] to initialize tokens to an

empty list, and use tokens.append(current) to append an element to the

tokens list. The Python append procedure is similar to the mlist-append!

procedure (except it works on the empty list, where there is no way in

Scheme to modify the null input list).

Strings. The other datatype used in tokenize is the string datatype, named

str in Python. As in Scheme, a String is a sequence of characters. Unlike

Scheme strings which are mutable, the Python str datatype is immutable.

Once a string is created its value cannot change. This means all the string

methods that seem to change the string values actually return new strings

338 | P a g e

(for example, capitalize() returns a copy of the string with its first letter

capitalized).

Strings can be enclosed in single quotes (e.g., 'hello'), double quotes (e.g.,

''hello''), and triple-double quotes (e.g., '' '' ''hello'' '' ''; a string inside triple

quotes can span multiple lines). In our example program, we use the

assignment expression, current = ' ' (two single quotes), to initialize the

value of current to the empty string. The input, s, is a string object.

The addition operator can be used to concatenate two strings. In tokenize,

we use current = current + c to update the value of current to include a new

charac-ter. Since strings are immutable there is no string method analogous

to the list append method. Instead, appending a character to a string

involves creating a new string object.

Dictionaries. A dictionary is a lookup-table where values are associated

with keys. The keys can be any immutable type (strings and numbers are

commonly used as keys); the values can be of any type. We did not use the

dictionary type in tokenize, but it is very useful for implementing frames in

the evaluator.

A dictionary is denoted using curly brackets. The empty dictionary is fg.

We add a key-value pair to the dictionary using an assignment where the

left side is a subscript expression that specifies the key and the right side is

the value assigned to that key. For example,

birthyear = {}

birthyear['Euclid'] = '300BC'

birthyear['Ada'] = 1815

birthyear['Alan Turing'] = 1912

339 | P a g e

birthyear['Alan Kay'] = 1940

defines birthyear as a dictionary containing four entries. The keys are all

strings; the values are numbers, except for Euclid’s entry which is a string.

We can obtain the value associated with a key in the dictionary using a sub-

script expression. For example, birthyear['Alan Turing'] evaluates to 1912. We

can replace the value associated with a key using the same syntax as adding

a key-value pair to the dictionary. The statement,

birthyear['Euclid'] = 300

replaces the value of birthyear['Euclid'] with the number 300.

The dictionary type also provides a method has key that takes one input and

produces a Boolean indicating if the dictionary object contains the input

value as a key. For the birthyear dictionary,

>>birthyear.has key('John Backus') ::=> False

>>birthyear.has key('Ada') ::=> True

The dictionary type lookup and update operations have approximately

constant running time: the time it takes to lookup the value associated with

a key does not scale as the size of the dictionary increases. This is done by

computing a number based on the key that determines where the associated

value would be stored (if that key is in the dictionary). The number is used

to index into a structure similar to a Python list (so it has constant time to

retrieve any element). Mapping keys to appropriate numbers to avoid many

keys mapping to the same location in the list is a difficult problem, but one

the Python dictionary object does well for most sets of keys.

340 | P a g e

11.1.3 Applications and Invocations

The grammar rules for expressions that apply procedures are:

PrimaryExpression ::=> CallExpression

CallExpression ::=> PrimaryExpression (ArgumentList)

ArgumentList ::=> SomeArguments

ArgumentList ::=> ϵ

SomeArguments ::=> Expression

SomeArguments ::=> Expression , SomeArguments

In Python, nearly every data value (including lists and strings) is an object.

This means the way we manipulate data is to invoke methods on objects. To

invoke a method we use the same rules, but the PrimaryExpression of the

CallExpression specifies an object and method:

PrimaryExpression ::=> AttributeReference

AttributeReference ::=> PrimaryExpression . Name

The name AttributeReference is used since the same syntax is used for

accessing the internal state of objects as well. The tokenize procedure

includes five method applications, four of which are

tokens.append(current). The object reference is tokens, the list of tokens in

the input. The list append method takes one parameter and adds that value

to the end of the list.

The other method invocation is c.isspace() where c is a string consisting of

one character in the input. The isspace method for the string datatype

returns true if the input string is non-empty and all characters in the string

are whitespace (either spaces, tabs, or newlines).

The tokenize procedure also uses the built-in function len which takes as in-

put an object of a collection datatype such as a list or a string, and outputs

341 | P a g e

the number of elements in the collection. It is a procedure, not a method;

the input object is passed in as a parameter. In tokenize, we use len(current)

to find the number of characters in the current token.

11.1.4 Control Statements

Python provides control statements for making decisions, looping, and for

returning from a procedure.

If statement. Python’s if statement is similar to the conditional expression

in

Scheme:

Statement ::=> IfStatement

IfStatement ::=> if ExpressionPredicate : Block Elifs OptElse

Elifs ::=> ϵ

Elifs ::=> elif ExpressionPredicate : Block Elifs

OptElse ::=> ϵ

OptElse ::=> else : Block

Unlike in Scheme, there is no need to have an alternate clause since the

Python if statement does not need to produce a value. The evaluation rule is

similar to Scheme’s conditional expression:

Python Evaluation Rule: If. First, evaluate the ExpressionPredicate. If it

evaluates to a true value, the consequent Block is evaluated, and none

of the rest of the IfStatement is evaluated. Otherwise, each of the elif

predicates is evaluated in order. If one evaluates to a true value, its Block is

evaluated and none of the rest of the IfStatement is evaluated. If none of the

elif predicates evaluates to a true value, the else Block is evaluated if there

is one.

342 | P a g e

The main if statement in tokenize is:

if c.isspace(): ...

elif c in '()': ...

else: current = current + c

The first if predicate tests if the current character is a space. If so, the end of

the current token has been reached. The consequent Block is itself an

IfStatement:

if len(current) > 0:

tokens.append(current)

current = ' '

If the current token has at least one character, it is appended to the list of

tokens in the input string and the current token is reset to the empty string.

This IfS-tatement has no elif or else clauses, so if the predicate is false,

there is nothing to do.

For statement. A for statement provides a way of iterating through a set of

values, carrying out a body block for each value.

Statement ::=> ForStatement

ForStatement ::=> for Target in Expression : Block

Its evaluation rule is:

Python Evaluation Rule: For. First evaluate the Expression which must

produce a value that is a collection. Then, for each value in the collec-tion

assign the Target to that value and evaluate the Block.

Other than the first two initializations, and the final two statements, the bulk

of the tokenize procedure is contained in a for statement. The for statement

in tokenize header is for c in s: The string s is the input string, a

343 | P a g e

collection of characters. So, the loop will repeat once for each character in

s, and the value of c is each character in the input string (represented as a

singleton string), in turn.

Return statement. In Scheme, the body of a procedure is an expression

and the value of that expression is the result of evaluating an application of

the proce-dure. In Python, the body of a procedure is a block of one or more

statements. Statements have no value, so there is no obvious way to decide

what the result of a procedure application should be. Python’s solution is to

use a return state-ment.

The grammar for the return statement is:

Statement ::=> ReturnStatement

ReturnStatement ::=> return Expression

A return statement finishes execution of a procedure, returning the value of

the Expression to the caller as the result. The last statement of the tokenize

proce-dure is: return tokens. It returns the value of the tokens list to the

caller.

11.2 Parser

The parser takes as input a Charme program string, and produces as output

a nested list that encodes the structure of the input program. The first step is

to break the input string into tokens; this is done by the tokenize procedure

defined in the previous section.

The next step is to take the list of tokens and produce a data structure that

en-codes the structure of the input program. Since the Charme language is

built from simple parenthesized expressions, we can represent the parsed

program as a list. But, unlike the list returned by tokenize which is a flat list

344 | P a g e

containing the tokens in order, the list returned by parse is a structured list

that may have lists (and lists of lists, etc.) as elements.

Charme’s syntax is very simple, so the parser can be implemented by just

break-ing an expression into its components using the parentheses and

whitespace. The parser needs to balance the open and close parentheses that

enclose ex-pressions. For example, if the input string is

(define square (lambda (x) (x x)))

the output of tokenizer is the list:

['(', 'define', 'square', '(', 'lambda', '(', 'x', ')', '(', '*', 'x', 'x', ')', ')', ')']

The parser structures the tokens according to the program structure,

producing a parse tree that encodes the structure of the input program. The

parenthesis provide the program structure, so are removed from the parse

tree. For the ex-ample, the resulting parse tree is:

['define',

'square',

'lambda', ['x'],

['*', 'x', 'x']]]

Here is the definition of parse:

def parse(s):

def parse tokens(tokens, inner):

res = []

while len(tokens) > 0:

current = tokens.pop(0)

if current == '(':

res.append (parse tokens(tokens, True))

elif current == ')':

if inner: return res

else:

error('Unmatched close paren: ' + s)

return None

345 | P a g e

else:

res.append(current)

if inner:

error ('Unmatched open paren: ' + s)

return None

else:

return res

return parse tokens(tokenize(s), False)

The input to parse is a string in the target language. The output is a list of

the parenthesized expressions in the input. Here are some examples:

>>parse('(define square (lambda (x) (* x x)))')

 =>[['define', 'square', ['lambda', ['x'], ['*', 'x', 'x']]]]

>>parse('(+ 1 2) (+ 3 4)') =>[['+', '1', '2'], ['+', '3', '4']]

The parentheses are no longer included as tokens in the result, but their

pres-ence in the input string determines the structure of the result.

The parse procedure implements a recursive descent parser. The main parse

procedure defines the parse tokens helper procedure and returns the result

of calling it with inputs that are the result of tokenizing the input string and

the Boolean literal False: return parse tokens(tokenize(s), False).

The parse tokens procedure takes two inputs: tokens, a list of tokens (that

results from the tokenize procedure); and inner, a Boolean that indicates

whether the parser is inside a parenthesized expression. The value of inner

is False for the initial call since the parser starts outside a parenthesized

>>parse('150') => ['150']

>>parse('(+ 1 2)') => [['+', '1', '2']]

>>parse('(+ 1 (* 2 3))') => [['+', '1', ['*', '2', '3']]]

346 | P a g e

expression. All of the recursive calls result from encountering a '(', so the

value passed as inner is True for all the recursive calls.

The body of the parse tokens procedure initializes res to an empty list that is

used to store the result. Then, the while statement iterates as long as the

token list contains at least one element.

The first statement of the while statement block assigns tokens.pop(0) to

current. The pop method of the list takes a parameter that selects an element

from the list. The selected element is returned as the result. The pop method

also mutates the list object by removing the selected element. So,

tokens.pop(0) returns the first element of the tokens list and removes that

element from the list. This is essential to the parser making progress: every

time the tokens.pop(0) expression is evaluated the number of elements in

the token list is reduced by one.

If the current token is an open parenthesis, parse tokens is called recursively

to parse the inner expression (that is, all the tokens until the matching close

paren-thesis). The result is a list of tokens, which is appended to the result.

If the current token is a close parenthesis, the behavior depends on whether

or not the parser is parsing an inner expression. If it is inside an expression

(that is, an open parenthesis has been encountered with no matching close

parenthesis yet), the close parenthesis closes the inner expression, and the

result is returned. If it is not in an inner expression, the close parenthesis

has no matching open parenthesis so a parse error is reported.

The else clause deals with all other tokens by appending them to the list.

The final if statement checks that the parser is not in an inner context when

the input is finished. This would mean there was an open parenthesis

without a corresponding close, so an error is reported. Otherwise, the list

representing the parse tree is returned.

347 | P a g e

11.3 Evaluator

The evaluator takes a list representing the parse tree of a Charme expression

or definition and an environment, and outputs the result of evaluating the

expres-sion in the input environment. The evaluator implements the

evaluation rules for the target language.

The core of the evaluator is the procedure meval:

def meval(expr, env):

if is primitive(expr): return eval primitive(expr)

elif is if(expr): return eval if(expr, env)

elif is definition(expr): eval definition(expr, env)

elif is name(expr): return eval name(expr, env)

elif is lambda(expr): return eval lambda(expr, env)

elif is application(expr): return eval application(expr, env)

else: error ('Unknown expression type: ' + str(expr))

The if statement matches the input expression with one of the expression

types (or the definition) in the Charme language, and returns the result of

applying the corresponding evaluation procedure (if the input is a

definition, no value is returned since definitions do not produce an output

value). We next consider each evaluation rule in turn.

11.3.1 Primitives

Charme supports two kinds of primitives: natural numbers and primitive

pro-cedures. If the expression is a number, it is a string of digits. The is

number procedure evaluates to True if and only if its input is a number:

def is primitive(expr):

return is number(expr) or is primitive procedure(expr)

def is number(expr):

348 | P a g e

return isinstance(expr, str) and expr.isdigit()

Here, we use the built-in function isinstance to check if expr is of type str.

The and expression in Python evaluates similarly to the Scheme and special

form: the left operand is evaluated first; if it evaluates to a false value, the

value of the and expression is that false value. If it evaluates to a true value,

the right operand is evaluated, and the value of the and expression is the

value of its right operand. This evaluation rule means it is safe to use

expr.isdigit() in the right operand, since it is only evaluated if the left

operand evaluated to a true value, which means expr is a string.

Primitive procedures are defined using Python procedures. We define the

pro-cedure is primitive procedure using callable, a procedure that returns

true only for callable objects such as procedures and methods:

def is primitive procedure(expr):

return callable(expr)

The evaluation rule for a primitive is identical to the Scheme rule:

Charme Evaluation Rule 1: Primitives. A primitive expression evalu-ates

to its pre-defined value.

We need to implement the pre-defined values in our Charme interpreter.

To evaluate a number primitive, we need to convert the string

representation to a number of type int. The int(s) constructor takes a string

as its input and outputs the corresponding integer:

def eval primitive(expr):

if is number(expr): return int(expr)

else: return expr

349 | P a g e

The else clause means that all other primitives (in Charme, this is only

primi-tive procedures and Boolean constants) self-evaluate: the value of

evaluating a primitive is itself.

For the primitive procedures, we need to define Python procedures that

imple-ment the primitive procedure. For example, here is the primitive plus

procedure that is associated with the + primitive procedure:

def primitive plus (operands):

if (len(operands) == 0): return 0

else: return operands[0] + primitive plus (operands[1:])

The input is a list of operands. Since a procedure is applied only after all

subex-pressions are evaluated, there is no need to evaluate the operands:

they are al-ready the evaluated values. For numbers, the values are Python

integers, so we can use the Python + operator to add them. To provide the

same behavior as the Scheme primitive + procedure, we define our Charme

primitive + procedure to evaluate to 0 when there are no operands, and

otherwise to recursively add all of the operand values.

The other primitive procedures are defined similarly:

def primitive times (operands):

if (len(operands) == 0): return 1

else: return operands[0] * primitive times (operands[1:])

def primitive minus (operands):

if (len(operands) == 1): return – 1 * operands[0]

elif len(operands) == 2: return operands[0] operands[1] else:

eval error(' – expects 1 or 2 operands, given %s: %s'

(len(operands), str(operands)))

def primitive equals (operands):

350 | P a g e

check operands (operands, 2, '=')

return operands[0] == operands[1]

def primitive lessthan (operands):

check operands (operands, 2, '<')

return operands[0] < operands[1]

The check operands procedure reports an error if a primitive procedure is

ap-plied to the wrong number of operands:

def check operands(operands, num, prim):

if (len(operands) != num):

eval error('Primitive %s expected %s operands, given %s: %s'

(prim, num, len(operands), str(operands)))

11.3.2 If Expressions

Charme provides an if expression special form with a syntax and evaluation

rule identical to the Scheme if expression. The grammar rule for an if

expression is:

The expression object representing an if expression should be a list

containing three elements, with the first element matching the keyword if.

All special forms have this property: they are represented by lists where the

first element is a keyword that identifies the special form.

The is special form procedure takes an expression and a keyword and

outputs a Boolean. The result is True if the expression is a special form

matching the keyword:

351 | P a g e

def is special form(expr, keyword):

return isinstance(expr, list) and len(expr) > 0 and expr[0] == keyword

We can use this to recognize different special forms by passing in different

key-words. We recognize an if expression by the if token at the beginning

of the ex-pression:

def is if(expr):

return is special form(expr, 'if')

The evaluation rule for an if expression is:
4

Charme Evaluation Rule 5: If. To evaluate an if expression in the cur-rent

environment, (a) evaluate the predicate expression in the current

environment; then, (b) if the value of the predicate expression is a false

value then the value of the if expression is the value of the alternate ex-

pression in the current environment; otherwise, the value of the if ex-

pression is the value of the consequent expression in the current envi-

ronment.

This procedure implements the if evaluation rule:

def eval if(expr,env):

if meval(expr[1], env) != False: return meval(expr[2],env)

else: return meval(expr[3],env)

11.3.3 Definitions and Names

To evaluate definitions and names we need to represent environments. A

def-inition adds a name to a frame, and a name expression evaluates to the

value associated with a name.

352 | P a g e

We use a Python class to represent an environment. As in Chapter 10, a

class packages state and procedures that manipulate that state. In Scheme,

we needed to use a message-accepting procedure to do this. Python

provides the class construct to support it directly. We define the

Environment class for represent-ing an environment. It has internal state for

representing the parent (itself an Environment or None, Python’s equivalent

to null for the global environment’s parent), and for the frame.

The dictionary datatype provides a convenient way to implement a frame.

The init procedure constructs a new object. It initializes the frame of the

new

environment to the empty dictionary using self. frame = fg.

The add variable method either defines a new variable or updates the value

as-sociated with a variable. With the dictionary datatype, we can do this

with a simple assignment statement.

The lookup variable method first checks if the frame associated with this

envi-ronment has a key associated with the input name. If it does, the value

associ-ated with that key is the value of the variable and that value is

returned. Other-wise, if the environment has a parent, the value associated

with the name is the value of looking up the variable in the parent

environment. This directly follows from the stateful Scheme evaluation rule

for name expressions. The else clause addresses the situation where the

name is not found and there is no parent en-vironment (since we have

already reached the global environment) by reporting an evaluation error

indicating an undefined name.

class Environment:

def init (self, parent):

self. parent = parent

self. frame = {}

353 | P a g e

def add variable(self, name, value):

self. frame[name] = value

def lookup variable(self, name):

if self. frame.has key(name): return self. frame[name]

elif (self. parent): return self. parent.lookup variable(name)

else: eval error('Undefined name: %s' % (name))

Using the Environment class, the evaluation rules for definitions and name

ex-pressions are straightforward.

def is definition(expr): return is special form(expr, 'define')

def eval definition(expr, env):

name = expr[1]

value = meval(expr[2], env)

env.add variable(name, value)

def is name(expr): return isinstance(expr, str)

def eval name(expr, env):

return env.lookup variable(expr)

11.3.4 Procedures

The result of evaluating a lambda expression is a procedure. Hence, to

define the evaluation rule for lambda expressions we need to define a class

for representing user-defined procedures. It needs to record the parameters,

procedure body, and defining environment:

class Procedure:

definit (self, params, body, env):

self. params = params

self. body = body

self. env = env

354 | P a g e

def getParams(self): return self. params

def getBody(self): return self. body

def getEnvironment(self): return self. env

The evaluation rule for lambda expressions creates a Procedure object:

def is lambda(expr): return is special form(expr, 'lambda')

def eval lambda(expr,env):

return Procedure(expr[1], expr[2], env)

11.3.5 Application

Evaluation and application are defined recursively. To perform an

application, we need to evaluate all the subexpressions of the application

expression, and then apply the result of evaluating the first subexpression to

the values of the other subexpressions.

def is application(expr): # requires: all special forms checked first return

isinstance(expr, list)

def eval application(expr, env):

subexprs = expr

subexprvals = map (lambda sexpr: meval(sexpr, env), subexprs)

return mapply(subexprvals[0], subexprvals[1:])

The eval application procedure uses the built-in map procedure, which is

sim-ilar to list-map from Chapter 5. The first parameter to map is a

procedure con-structed using a lambda expression (similar in meaning, but

not in syntax, to Scheme’s lambda expression); the second parameter is the

list of subexpres-sions.

The mapply procedure implements the application rules. If the procedure is

a primitive, it “just does it”: it applies the primitive procedure to its

operands.

355 | P a g e

To apply a constructed procedure (represented by a Procedure), follow the

state-ful application rule for applying constructed procedures:

Charme Application Rule 2: Constructed Procedures. To apply a con-

structed procedure:

1. Construct a new environment, whose parent is the environment of

the applied procedure.

2. For each procedure parameter, create a place in the frame of the new

environment with the name of the parameter. Evaluate each operand

expression in the environment or the application and ini-tialize the

value in each place to the value of the corresponding operand

expression.

3. Evaluate the body of the procedure in the newly created environ-

ment. The resulting value is the value of the application.

The mapply procedure implements the application rules for primitive and

con-structed procedures:

def mapply(proc, operands):

if (is primitive procedure(proc)): return proc(operands)

elif isinstance(proc, Procedure):

params = proc.getParams()

newenv = Environment(proc.getEnvironment())

if len(params) != len(operands):

eval error ('Parameter length mismatch: %s given operands %s'

(str(proc), str(operands)))

for i in range(0, len(params)):

newenv.add variable(params[i], operands[i])

return meval(proc.getBody(), newenv)

else: eval error('Application of non procedure: %s' % (proc))

356 | P a g e

11.3.6 Finishing the Interpreter

To finish the interpreter, we define the evalLoop procedure that sets up the

global environment and provides an interactive interface to the interpreter.

The eval-uation loop reads a string from the user using the Python built-in

procedure raw input. It uses parse to convert that string into a structured list

representa-tion. Then, it uses a for loop to iterate through the expressions. It

evaluates each expression using meval and the result is printed.

To initialize the global environment, we create an environment with no

parent and place variables in it corresponding to the primitives in Charme.

def evalLoop():

genv = Environment(None)

genv.add variable('true', True)

genv.add variable('false', False)

genv.add variable('+', primitive plus)

genv.add variable(' ', primitive minus)

genv.add variable('*', primitive times)

genv.add variable('=', primitive equals)

genv.add variable('<', primitive lessthan)

while True:

inv = raw input('Charme> ')

if inv == 'quit': break

for expr in parse(inv):

print str(meval(expr, genv))

Here are some sample interactions with our Charme interpreter:

>> evalLoop()

Charme> (+ 2 2)

4

Charme> (define fibo

(lambda (n)

(if (= n 1) 1

357 | P a g e

(if (= n 2) 1

(+ (fibo (n 1)) (fibo (n 2)))))))

None

Charme> (fibo 10)

55

11.4 Lazy Evaluation

Once we have an interpreter, we can change the meaning of our language

by changing the evaluation rules. This enables a new problem-solving

strategy: if the solution to a problem cannot be expressed easily in an

existing language, define and implement an interpreter for a new language

in which the problem can be solved more easily.

This section explores a variation on Charme we call LazyCharme.

LazyCharme changes the application evaluation rule so that operand

expressions are not evaluated until their values are needed. This is known as

lazy evaluation. Lazy evaluation enables many procedures which would

otherwise be awkward to ex-press to be defined concisely. Since both

Charme and LazyCharme are universal programming languages they can

express the same set of computations: all of the procedures we define that

take advantage of lazy evaluation could be de-fined with eager evaluation

(for example, by first defining a lazy interpreter as we do here).

11.4.1 Lazy Interpreter

The Charme interpreter as well as the standard Scheme language evaluate

appli-cation expressions eagerly: all operand subexpressions are evaluated

whether or not their values are needed. This is known as eager evaluation.

Eager evaluation means that any expression that does not always evaluate

all of its subexpres-sions must be a special form. For example, there is no

way to define a procedure that behaves like the if special form.

358 | P a g e

With lazy evaluation, an expression is evaluated only when its value is

needed. Lazy evaluation changes the evaluation rule for applications of

constructed pro-cedures. Instead of evaluating all operand expressions, lazy

evaluation delays evaluation of an operand expression until the value of the

parameter is needed. To keep track of what is needed to perform the

evaluation when and if it is needed, a special object known as a thunk is

created and stored in the place associated with the parameter name. By

delaying evaluation of operand expres-sions until their value is needed, we

can enable programs to define procedures that conditionally evaluate their

operands like the if special form.

The lazy rule for applying constructed procedures is:

Lazy Application Rule 2: Constructed Procedures. To apply a con-

structed procedure:

1. Construct a new environment, whose parent is the environment of

the applied procedure.

2. For each procedure parameter, create a place in the frame of the new

environment with the name of the parameter. Put a thunk in that

place, which is an object that can be used later to evaluate the value

of the corresponding operand expression if and when its value is

needed.

3. Evaluate the body of the procedure in the newly created environ-

ment. The resulting value is the value of the application.

The rule is identical to the Stateful Application Rule except for the bolded

part of step 2. To implement lazy evaluation we modify the interpreter to

implement the lazy application rule. We start by defining a Python class for

representing thunks and then modify the interpreter to support lazy

evaluation.

Making Thunks. A thunk keeps track of an expression whose evaluation is

de-layed until it is needed. Once the evaluation is performed, the resulting

359 | P a g e

value is saved so the expression does not need to be re-evaluated the next

time the value is needed. Thus, a thunk is in one of two possible states:

unevaluated and evaluated.

The Thunk class implements thunks:

class Thunk:

def__init __(self, expr, env):

self. expr = expr

self. env = env

self. evaluated = False

def value(self):

if not self. evaluated:

self. value = force eval(self. expr, self. env)

self. evaluated = True

return self. value

A Thunk object keeps track of the expression in the expr instance variable.

Since the value of the expression may be needed when the evaluator is

evaluating an expression in some other environment, it also keeps track of

the environment in which the thunk expression should be evaluated in the

env instance variable.

The evaluated instance variable is a Boolean that records whether or not the

thunk expression has been evaluated. Initially this value is False. After the

ex-pression is evaluated, evaluated is True and the value instance variable

keeps track of the resulting value.

The value method uses force eval (defined later) to obtain the evaluated

value of the thunk expression and stores that result in value.

The is thunk procedure returns True only when its parameter is a thunk:

def is thunk(expr): return isinstance(expr, Thunk)

360 | P a g e

Changing the evaluator. To implement lazy evaluation, we change the

evalua-tor so there are two different evaluation procedures: meval is the

standard evalu-ation procedure (which leaves thunks in their unevaluated

state), and force eval is the evaluation procedure that forces thunks to be

evaluated to values. The interpreter uses meval when the actual expression

value may not be needed, and force eval to force evaluation of thunks when

the value of an expression is needed.

In the meval procedure, a thunk evaluates to itself. We add a new elif clause

for thunk objects to the meval procedure:

elif is thunk(expr): return expr

The force eval procedure first uses meval to evaluate the expression

normally. If the result is a thunk, it uses the Thunk.value method to force

evaluation of the thunk expression. That method uses force eval to find the

value of the thunk expression, so any thunks inside the expression will be

recursively evaluated.

def force eval(expr, env):

val = meval(expr, env)

if is thunk(val): return val.value()

else: return val

Next, we change the application rule to perform delayed evaluation and

change a few other places in the interpreter to use force eval instead of

meval to obtain the actual values when they are needed.

We change eval application to delay evaluation of the operands by creating

Thunk objects representing each operand:

def eval application(expr, env):

361 | P a g e

ops = map (lambda sexpr: Thunk(sexpr, env), expr[1:])

return mapply(force eval(expr[0], env), ops)

Only the first subexpression must be evaluated to obtain the procedure to

apply. Hence, eval application uses force eval to obtain the value of the first

subexpres-sion, but makes Thunk objects for the operand expressions.

To apply a primitive, we need the actual values of its operands, so must

force evaluation of any thunks in the operands. Hence, the definition for

mapply forces evaluation of the operands to a primitive procedure:

def mapply(proc, operands):

def dethunk(expr):

if is thunk(expr): return expr.value()

else: return expr

if (is primitive procedure(proc)):

ops = map (dethunk, operands)

return proc(ops)

elif isinstance(proc, Procedure):

... # same as in Charme interpreter

To evaluate an if expression, it is necessary to know the actual value of the

pred-icate expressions. We change the eval if procedure to use force eval

when eval-uating the predicate expression:

def eval if(expr,env):

if force eval(expr[1], env) != False: return meval(expr[2],env)

else: return meval(expr[3],env)

This forces the predicate to evaluate to a value so its actual value can be

used to determine how the rest of the if expression evaluates; the

362 | P a g e

evaluations of the consequent and alternate expressions are left as mevals

since it is not necessary to force them to be evaluated yet.

The final change to the interpreter is to force evaluation when the result is

dis-played to the user in the evalLoop procedure by replacing the call to

meval with force eval.

11.4.2 Lazy Programming

Lazy evaluation enables programming constructs that are not possible with

ea-ger evaluation. For example, with lazy evaluation we can define a

procedure that behaves like the if expression special form. We first define

true and false as procedures that take two parameters and output the first or

second parameter:

(define true (lambda (a b) a))

(define false (lambda (a b) b))

Then, this definition defines a procedure with behavior similar to the if

special form:

(define ifp (lambda (p c a) (p c a)))

With eager evaluation, this would not work since all operands would be

evalu-ated; with lazy evaluation, only the operand that corresponds to the

appropriate consequent or alternate expression is evaluated.

Lazy evaluation also enables programs to deal with seemingly infinite data

struc-tures. This is possible since only those values of the apparently

infinite data structure that are used need to be created.

Suppose we define procedures similar to the Scheme procedures for

manipulat-ing pairs:

363 | P a g e

(define cons (lambda (a b) (lambda (p) (if p a b))))

(define car (lambda (p) (p true)))

(define cdr (lambda (p) (p false)))

(define null false)

(define null? (lambda (x) (= x false)))

These behave similarly to the corresponding Scheme procedures, except in

Lazy-Charme their operands are evaluated lazily. This means, we can

define an infi-nite list:

(define ints-from (lambda (n) (cons n (ints-from (+ n 1)))))

With eager evaluation, (ints-from 1) would never finish evaluating; it has no

base case for stopping the recursive applications. In LazyCharme, however,

the operands to the cons application in the body of ints-from are not

evaluated un-til they are needed. Hence, (ints-from 1) terminates and

produces a seemingly infinite list, but only the evaluations that are needed

are performed:

LazyCharme> (car (ints-from 1))

1

LazyCharme> (car (cdr (cdr (cdr (ints-from 1)))))

4

Some evaluations fail to terminate even with lazy evaluation. For example,

as-sume the standard definition of list-length:

(define list-length

(lambda (lst) (if (null? lst) 0 (+ 1 (list-length (cdr lst))))))

An evaluation of (length (ints-from 1)) never terminates. Every time an

appli-cation of list-length is evaluated, it applies cdr to the input list, which

causes ints-from to evaluate another cons, increasing the length of the list

364 | P a g e

by one. The actual length of the list is infinite, so the application of list-

length does not ter-minate.

Lists with delayed evaluation can be used in useful programs. Reconsider

the Fibonacci sequence from Chapter 7. Using lazy evaluation, we can

define a list that is the infinitely long Fibonacci sequence:
5

(define fibo-gen (lambda (a b) (cons a (fibo-gen b (+ a b)))))

(define fibos (fibo-gen 0 1))

The n
th

 Fibonacci number is the n
th

 element of fibos:

(define fibo

(lambda (n)

(list-get-element fibos n)))

where list-get-element is defined as it was defined in Chapter 5.

Another strategy for defining the Fibonacci sequence is to first define a

procedure that merges two (possibly infinite) lists, and then define the

Fibonacci sequence recursively. The merge-lists procedure combines

elements in two lists using an input procedure.

(define merge-lists

(lambda (lst1 lst2 proc)

(if (null? lst1) null

(if (null? lst2) null

(cons (proc (car lst1) (car lst2))

(merge-lists (cdr lst1) (cdr lst2) proc))))))

We can define the Fibonacci sequence as the combination of two

sequences, starting with the 0 and 1 base cases, combined using addition

where the second sequence is offset by one position:

(define fibos (cons 0 (cons 1 (merge-lists fibos (cdr fibos) +))))

The sequence is defined to start with 0 and 1 as the first two elements. The

fol lowing elements are the result of merging fibos and (cdr fibos) using the

+ pro cedure. This definition relies heavily on lazy evaluation; otherwise,

365 | P a g e

the evalua tion of (merge-lists fibos (cdr fibos) +) would never terminate:

the input lists are effectively infinite.

11.5 Summary

Languages are tools for thinking, as well as means to express executable

pro-grams. A programming language is defined by its grammar and

evaluation rules. To implement a language, we need to implement a parser

that carries out the grammar rules and an evaluator that implements the

evaluation rules.

We can produce new languages by changing the evaluation rules of an

inter-preter. Changing the evaluation rules changes what programs mean,

and en-ables new approaches to solving problems.

 Check your progress II

➢ The ______ takes as input a Charme program string, and produces as

output a nested list that encodes the structure of the input program.

➢ Charme supports two kinds of primitives: _______ and ___________ .

11.6 Answer the Following

1. What is an Intrepreter? Are the the requirements to implement an

interpreter for a given target language.

2. Define an order of precedence for parsing expressions.

3. Do comparison expressions have higher or lower precedence than

addition expressions? Explain why using the grammar rules.

4. Define the sequence of factorials as an infinite list using delayed

evaluation.

5. Define the role of a parser.

6. What is lazy evaluation?

366 | P a g e

7. Describe the infinite list defined by each of the following defini

tions. (Check your answers by evaluating the expressions in

LazyCharme.)

a. (define p (cons 1 (merge-lists p p +)))

b. (define t (cons 1 (merge-lists t (merge-lists t t +) +)))

c. (define twos (cons 2 twos))

d. (define doubles (merge-lists (ints-from 1) twos))

 Answers to Check your progress II

➢ parser

➢ natural numbers, primitive procedures.

367 | P a g e

Computability

Learning Objectives

After the completion of this unit, the learner shall be able to:

• Define axiomatic system

• Define Universal Turing Machine

• Define Universal Progtamming Language

• State Russell’s paradox.

• Explain Godel’s Incompleteness Theorem

• Define Halting Problem

Introduction

In this chapter we consider the question of what problems can and cannot

be solved by mechanical computation. This is the question of

computability: a problem is computable if it can be solved by some

algorithm; a problem that is noncomputable cannot be solved by any

algorithm.

Section 12.1 considers first the analogous question for declarative

knowledge: are there true statements that cannot be proven by any proof?

Section 12.2 in-troduces the Halting Problem, a problem that cannot be

solved by any algo-rithm. Section 12.3 sketches Alan Turing’s proof that

the Halting Problem is noncomputable. Section 12.4 discusses how to show

other problems are non-computable.

12.1 Mechanizing Reasoning

Humans have been attempting to mechanize reasoning for thousands of

years. Aristotle’s Organon developed rules of inference known as

syllogisms to codify logical deductions in approximately 350 BC.

368 | P a g e

Euclid went beyond Aristotle by developing a formal axiomatic system. An

axiomatic system is a formal system consisting of a set of axioms and a set

of inference rules. The goal of an axiomatic system is to codify knowledge

in some domain.

The axiomatic system Euclid developed in The Elements concerned

construc-tions that could be drawn using just a straightedge and a compass.

Euclid started with five axioms (more commonly known as postulates); an

example axiom is: A straight line segment can be drawn joining any two

points. In addition to the postulates, Euclid states five common notions,

which could be considered inference rules. An example of a common

notion is: The whole is greater than the part.

Starting from the axioms and common notions, along with a set of

definitions (e.g., defining a circle), Euclid proved 468 propositions mostly

about geometry and number theory. A proposition is a statement that is

stated precisely enough to be either true or false. Euclid’s first proposition

is: given any line, an equilat-eral triangle can be constructed whose edges

are the length of that line.

A proof of a proposition in an axiomatic system is a sequence of steps that

ends with the proposition. Each step must follow from the axioms using the

infer-ence rules. Most of Euclid’s proofs are constructive: propositions state

that a thing with a particular property exists, and proofs show steps for

constructing something with the stated property. The steps start from the

postulates and fol-low the inference rules to prove that the constructed thing

resulting at the end satisfies the requirements of the proposition.

A consistent axiomatic system is one that can never derive contradictory

state-ments by starting from the axioms and following the inference rules. If

a system can generate both A and not A for any proposition A, the system is

inconsistent. If the system cannot generate any contradictory pairs of

statements it is consistent.

369 | P a g e

A complete axiomatic system can derive all true statements by starting from

the axioms and following the inference rules. This means if a given

proposition is true, some proof for that proposition can be found in the

system. Since we do not have a clear definition of true (if we defined true as

something that can be derived in the system, all axiomatic systems would

automatically be complete by definition), we state this more clearly by

saying that the system can decide any proposition. This means, for any

proposition P, a complete axiomatic sys-tem would be able to derive either

P or not P. A system that cannot decide all statements in the system is

incomplete. An ideal axiomatic system would be complete and consistent: it

would derive all true statements and no false state-ments.

The completeness of a system depends on the set of possible propositions.

Eu-clid’s system is consistent but not complete for the set of propositions

about ge-ometry. There are statements that concern simple properties in

geometry (a fa-mous example is any angle can be divided into three equal

sub-angles) that can-not be derived in the system; trisecting an angle

requires more powerful tools than the straightedge and compass provided

by Euclid’s postulates.

Figure 12.1 depicts two axiomatic systems. The one on the left one

incomplete: there are some propositions that can be stated in the system that

are true for which no valid proof exists in the system. The one on the right

is inconsistent: it is possible to construct valid proofs of both P and not P

starting from the ax-ioms and following the inference rules. Once a single

contradictory proposi-tion can be proven the system becomes completely

useless. The contradictory propositions amount to a proof that true = false,

so once a single pair of con-tradictory propositions can be proven every

other false proposition can also be proven in the system. Hence, only

consistent systems are interesting and we focus on whether it is possible for

them to also be complete.

370 | P a g e

Russell’s Paradox. Towards the end of the 19
th

 century, many

mathematicians sought to systematize mathematics by developing a

consistent axiomatic sys-tem that is complete for some area of mathematics.

One notable attempt was Gottlob Frege’s Grundgestze der Arithmetik

(1893) which attempted to develop an axiomatic system for all of

mathematics built from simple logic.

Bertrand Russell discovered a problem with Frege’s system, which is now

known as Russell’s paradox. Suppose R is defined as the set containing all

sets that do not contain themselves as members. For example, the set of all

prime numbers does not contain itself as a member, so it is a member of R.

On the other hand, the set of all entities that are not prime numbers is a

member of R. This set contains all sets, since a set is not a prime number, so

it must contain itself.

The paradoxical question is: is the set R a member of R? There are two

possible answers to consider but neither makes sense:

Yes: R is a member of R

We defined the set R as the set of all sets that do not contain themselves as

member. Hence, R cannot be a member of itself, and the statement that R is

a member of R must be false.

371 | P a g e

No: R is not a member of R

If R is not a member of R, then R does not contain itself and, by definition,

must be a member of set R. This is a contradiction, so the statement that R

is not a member of R must be false.

The question is a perfectly clear and precise binary question, but neither the

“yes” nor the “no” answer makes any sense. Symbolically, we summarize

the paradox: for any set s, s 2 R if and only if s 2/ s. Selecting s = R leads to

the contradiction: R 2 R if and only if R 2/ R.

Whitehead and Russell attempted to resolve this paradox by constructing

their system to make it impossible to define the set R. Their solution was to

introduce types. Each set has an associated type, and a set cannot contain

members of its own type. The set types are defined recursively:

• A type zero set is a set that contains only non-set objects.

• A type-n set can only contain sets of type n 1 and below.

This definition avoids the paradox: the definition of R must now define R as

a set of type k set containing all sets of type k 1 and below that do not

contain themselves as members. Since R is a type k set, it cannot contain

itself, since it cannot contain any type k sets.

In 1913, Whitehead and Russell published Principia Mathematica, a bold

attempt to mechanize mathematical reasoning that stretched to over 2000

pages. Whitehead and Russell attempted to derive all true mathematical

statements about numbers and sets starting from a set of axioms and formal

inference rules. They employed the type restriction to eliminate the

particular paradox caused by set inclusion, but it does not eliminate all self-

referential paradoxes.

For example, consider this paradox named for the Cretan philosopher

Epimenides who was purported to have said “All Cretans are liars”. If the

372 | P a g e

statement is true, than Epimenides, a Cretan, is not a liar and the statement

that all Cretans are liars is false. Another version is the self-referential

sentence: this statement is false. If the statement is true, then it is true that

the statement is false (a contra-diction). If the statement is false, then it is a

true statement (also a contradic-tion). It was not clear until Godel,¨

however, if such statements could be stated in the Principia Mathematica

system.

12.1.1 Godel’s Incompleteness Theorem

Kurt Godel was born in Brno (then in Austria-Hungary, now in the Czech

Re-public) in 1906. Godel¨ proved that the axiomatic system in Principia

Mathemat-ica could not be complete and consistent. More generally, Godel¨

showed that no powerful axiomatic system could be both complete and

consistent: no mat-ter what the axiomatic system is, if it is powerful enough

to express a notion of proof, it must also be the case that there exist

statements that can be expressed in the system but cannot be proven either

true or false within the system.

Godel’s¨ proof used construction: to prove that Principia Mathematica

contains statements which cannot be proven either true or false, it is enough

to find one such statement. The statement Godel¨ found:

GPM: Statement GPM does not have any proof in the system of Principia

Mathematica.

Similarly to Russel’s Paradox, this statement leads to a contradiction. It

makes no sense for GPM to be either true or false:

Statement GPM is provable in the system.

373 | P a g e

If GPM is proven, then it means GPM does have a proof, but GPM stated that

GPM has no proof. The system is inconsistent: it can be used to prove a

statement that is not true.

Statement GPM is not provable in the system.

Since GPM cannot be proven in the system, GPM is a true statement. The

system is incomplete: we have a true statement that is not provable in the

system.

The proof generalizes to any axiomatic system, powerful enough to express

a corresponding statement G:

G: Statement G does not have any proof in the system.

For the proof to be valid, it is necessary to show that statement G can be ex-

pressed in the system.

To express G formally, we need to consider what it means for a statement to

not have any proof in the system. A proof of the statement G is a sequence

of steps, T0, T1, T2, . . ., TN. Each step is the set of all statements that have

been proven true so far. Initially, T0 is the set of axioms in the system. To

be a proof of G, TN must contain G. To be a valid proof, each step should

be producible from the previous step by applying one of the inference rules

to statements from the previous step.

To express statement G an axiomatic system needs to be powerful enough

to express the notion that a valid proof does not exist. Godel¨ showed that

such a statement could be constructed using the Principia Mathematica

system, and using any system powerful enough to be able to express

interesting properties. That is, in order for an axiomatic system to be

374 | P a g e

complete and consistent, it must be so weak that it is not possible to express

this statement has no proof in the system.

12.2 The Halting Problem

Godel¨ established that no interesting and consistent axiomatic system is

capa-ble of proving all true statements in the system. Now we consider the

analogous question for computing: are there problems for which no

algorithm exists?

Recall these definitions form Chapters 1 and 4:

problem: A description of an input and a desired output.

procedure: A specification of a series of actions.

algorithm: A procedure that is guaranteed to always terminate.

A procedure solves a problem if that procedure produces a correct output

for every possible input. If that procedure always terminates, it is an

algorithm. So, the question can be stated as: are there problems for which

no procedure exists that produces the correct output for every possible

problem instance in a finite amount of time?

A problem is computable if there exists an algorithm that solves the

problem. It is important to remember that in order for an algorithm to be a

solution for a problem P, it must always terminate (otherwise it is not an

algorithm) and must always produce the correct output for all possible

inputs to P. If no such algorithm exists, the problem is noncomputable.

Alan Turing proved that noncomputable problems exist. The way to show

that uncomputable problems exist is to find one, similarly to the way Godel¨

375 | P a g e

showed unprovable true statements exist by finding an unprovable true

statement.

The problem Turing found is known as the Halting Problem:

Halting Problem

Input: A string representing a Python program.

Output: If evaluating the input program would ever finish, output True.

Otherwise, output False.

Suppose we had a procedure halts that solves the Halting Problem. The

input to halts is a Python program expressed as a string.

For example, halts('(+ 2 3)') should evaluate to True, halts('while True: pass')

should evaluate to False (the Python pass statement does nothing, but is

needed to make the while loop syntactically correct), and should evaluate to

True. From the last example, it is clear that halts cannot be implemented by

evaluating the expression and outputting True if it terminates. The problem

is knowing when to give up and output False. As we analyzed in Chapter 7,

evaluating fibo(60) would take trillions of years; in theory, though, it

eventually finishes so halts should output True.

This argument is not sufficient to prove that halts is noncomputable. It just

shows that one particular way of implementing halts would not work. To

376 | P a g e

show that halts is noncomputable, we need to show that it is impossible to

implement a halts procedure that would produce the correct output for all

inputs in a finite amount of time.

Here is another example that suggests (but does not prove) the impossibility

of halts (where sumOfTwoPrimes is defined as an algorithm that take a

number as input and outputs True if the number is the sum of two prime

numbers and False otherwise):

This program halts if there exists an even number greater than 2 that is not

the sum of two primes. We assume unbounded integers even though every

actual computer has a limit on the largest number it can represent. Our

computing model, though, uses an infinite tape, so there is no arbitrary limit

on number sizes.

Knowing whether or not the program halts would settle an open problem

known as Goldbach’s Conjecture: every even integer greater than 2 can be

written as the sum of two primes. Christian Goldbach proposed a form of

the conjecture in a letter to Leonhard Euler in 1742. Euler refined it and

believed it to be true, but couldn’t prove it.

With a halts algorithm, we could settle the conjecture using the expression

above: if the result is False, the conjecture is proven; if the result is True, the

conjecture is disproved. We could use a halts algorithm like this to resolve

many other open problems. This strongly suggests there is no halts

algorithm, but does not prove it cannot exist.

Proving Noncomputability. Proving non-existence is requires more than

just showing a hard problem could be solved if something exists. One way

to prove non-existence of an X, is to show that if an X exists it leads to a

contradiction.

377 | P a g e

We prove that the existence of a halts algorithm leads to a contradiction, so

no halts algorithm exists.

We obtain the contradiction by showing one input for which the halts

procedure could not possibly work correctly. Consider this procedure:

The body of the paradox procedure is an if expression. The consequent

expres-sion is a never-ending loop.

The predicate expression cannot sensibly evaluate to either True or False:

halts(‘paradox()’) => True

If the predicate expression evaluates to True, the consequent block is eval-

uated producing a never-ending loop. Thus, if halts('paradox()') evaluates to

True, the evaluation of an application of paradox never halts. But, this means

the result of halts('paradox()') was incorrect.

halts(‘paradox()’) => False

If the predicate expression evaluates to False, the alternate block is evalu-

ated. It is empty, so evaluation terminates. Thus, the evaluation of paradox()

terminates, contradicting the result of halts('paradox()').

Either result for halts(`paradox()') leads to a contradiction! The only

sensible thing halts could do for this input is to not produce a value. That

means there is no algorithm that solves the Halting Problem. Any procedure

we define to implement halts must sometimes either produce the wrong

result or fail to pro-duce a result at all (that is, run forever without

producing a result). This means the Halting Problem is noncomputable.

378 | P a g e

There is one important hole in our proof: we argued that because paradox

does not make sense, something in the definition of paradox must not exist

and iden-tified halts as the component that does not exist. This assumes that

everything else we used to define paradox does exist.

This seems reasonable enough—they are built-in to Python so they seem to

exist. But, perhaps the reason paradox leads to a contradiction is because

True does not really exist or because it is not possible to implement an if

expression that strictly follows the Python evaluation rules. Although we

have been using these and they seems to always work fine, we have no

formal model in which to argue that evaluating True always terminates or

that an if expression means exactly what the evaluation rules say it does.

Our informal proof is also insufficient to prove the stronger claim that no

algo-rithm exists to solve the halting problem. All we have shown is that no

Python procedure exists that solves halts. Perhaps there is a procedure in

some more powerful programming language in which it is possible to

implement a solution to the Halting Problem. In fact, we will see that no

more powerful programming language exists.

A convincing proof requires a formal model of computing. This is why

Alan Turing developed a model of computation.

 Check your progress I

➢ Is the Check-Proof Problem described below computable? Provide a

convincing argument supporting your answer.

Check-Proof

Input: A specification of an axiomatic system, a statement (the theorem),

and a proof (a sequence of steps, each identifying the axiom that is ap-

plied).

Output: Outputs True if the proof is a valid proof of the theorem in the

system, or False if it is not a valid proof.

379 | P a g e

12.3 Universality

Recall the Turing Machine model from Chapter 6: a Turing Machine

consists of an infinite tape divided into discrete square into which symbols

from a fixed alphabet can be written, and a tape head that moves along the

tape. On each step, the tape head can read the symbol in the current square,

write a symbol in the current square, and move left or right one square or

halt. The machine can keep track of a finite number of possible states, and

determines which action to take based on a set of transition rules that

specify the output symbol and head action for a given current state and read

symbol.

Turing argued that this simple model corresponds to our intuition about

what can be done using mechanical computation. Recall this was 1936, so

the model for mechanical computation was not what a mechanical computer

can do, but what a human computer can do. Turing argued that his model

corresponded to what a human computer could do by following a

systematic procedure: the infinite tape was as powerful as a two-

dimensional sheet of paper or any other recording medium, the set of

symbols must be finite otherwise it would not be possible to correctly

distinguish all symbols, and the number of machine states must be finite

because there is a limited amount a human can keep in mind at one time.

We can enumerate all possible Turing Machines. One way to see this is to

devise a notation for writing down any Turing Machine. A Turing Machine

is com-pletely described by its alphabet, states and transition rules. We

could write down any Turing Machine by numbering each state and listing

each transition rule as a tuple of the current state, alphabet symbol, next

state, output symbol, and tape direction. We can map each state and

alphabet symbol to a number, and use this encoding to write down a unique

number for every possible Turing Machine. Hence, we can enumerate all

possible Turing Machines by just enu-merating the positive integers. Most

positive integers do not correspond to valid Turing Machines, but if we go

380 | P a g e

through all the numbers we will eventually reach every possible Turing

Machine.

This is step towards proving that some problems cannot be solved by any

algorithm. The number of Turing Machines is less than the number of real

numbers. Both numbers are infinite, but as explained in Section 1.2.2,

Cantor’s diagonal-ization proof showed that the real numbers are not

countable. Any attempt to map the real numbers to the integers must fail to

include all the real numbers. This means there are real numbers that cannot

be produced by any Turing Ma-chine: there are fewer Turing Machines than

there are real numbers, so there must be some real numbers that cannot be

produced by any Turing Machine.

The next step is to define the machine depicted in Figure 12.2. A Universal

Turing Machine is a machine that takes as input a number that identifies a

Turing Machine and simulates the specified Turing Machine running on

initially empty input tape.

The Universal Turing Machine can simulate any Turing Machine. In his

proof, Turing describes the transition rules for such a machine. It simulates

the Turing Machine encoded by the input number. One can imagine doing

this by using the tape to keep track of the state of the simulated machine.

For each step, the universal machine searches the description of the input

machine to find the appropriate rule. This is the rule for the current state of

the simulated machine on the current input symbol of the simulated

machine. The universal machine keeps track of the machine and tape state

of the simulated machine, and simu lates each step. Thus, there is a single

Turing Machine that can simulate every Turing Machine.

381 | P a g e

Since a Universal Turing Machine can simulate every Turing Machine, and

a Turing Machine can perform any computation according to our intuitive

notion of computation, this means a Universal Turing Machine can perform

all computa tions. Using the universal machine and a diagonalization

argument similar to the one above for the real numbers, Turing reached a

similar contradiction for a problem analogous to the Halting Problem for

Python programs but for Turing Machines instead.

If we can simulate a Universal Turing Machine in a programming language,

that language is a universal programming language. There is some program

that can be written in that language to perform every possible computation.

To show that a programming language is universal, it is sufficient to show

that it can simulate any Turing Machine, since a Turing Machine can

perform every possible computation. To simulate a Universal Turing

Machine, we need some way to keep track of the state of the tape (for

example, the list datatypes in Scheme or Python would be adequate), a way

to keep track of the internal machine state (a number can do this), and a

way to execute the transition rules (we could define a procedure that does

this using an if expression to make de-cisions about which transition rule to

follow for each step), and a way to keep going (we can do this in Scheme

with recursive applications). Thus, Scheme is a universal programming

language: one can write a Scheme program to simulate a Universal Turing

Machine, and thus, perform any mechanical computation.

12.4 Proving Non-Computability

We can show that a problem is computable by describing a procedure and

prov-ing that the procedure always terminates and always produces the

correct an-swer. It is enough to provide a convincing argument that such a

procedure exists; finding the actual procedure is not necessary (but often

helps to make the argument more convincing).

382 | P a g e

To show that a problem is not computable, we need to show that no

algorithm exists that solves the problem. Since there are an infinite number

of possible procedures, we cannot just list all possible procedures and show

why each one does not solve the problem. Instead, we need to construct an

argument showing that if there were such an algorithm it would lead to a

contradiction.

The core of our argument is based on knowing the Halting Problem is

noncomputable. If a solution to some new problem P could be used to solve

the Halting Problem, then we know that P is also noncomputable. That is,

no algorithm exists that can solve P since if such an algorithm exists it

could be used to also solve the Halting Problem which we already know is

impossible.

Reduction Proofs. The proof technique where we show that a solution for

some reduction problem P can be used to solve a different problem Q is

known as a reduction.

A problem Q is reducible to a problem P if a solution to P could be used to

solve Q. This means that problem Q is no harder than problem P, since a

solution to problem Q leads to a solution to problem P.

12.1: Prints-Three Problem

Consider the problem of determining if an application of a procedure would

ever print 3:

Prints-Three

Input: A string representing a Python program.

Output: If evaluating the input program would print 3, output True;

otherwise, output False.

383 | P a g e

We show the Prints-Three Problem is noncomputable by showing that it is

as hard as the Halting Problem, which we already know is noncomputable.

Suppose we had an algorithm printsThree that solves the Prints-Three

Problem. Then, we could define halts as:

def halts(p):

return printsThree(p + '; print(3)')

The printsThree application would evaluate to True if evaluating the Python

program specified by p would halt since that means the print(3) statement

appended to p would be evaluated. On the other hand, if evaluating p would

not halt, the added print statement never evaluated. As long as the program

specified by p would never print 3, the application of printsThree should

evaluate to False. Hence, if a printsThree algorithm exists, we would use it

to implement an algorithm that solves the Halting Problem.

The one wrinkle is that the specified input program might print 3 itself. We

can avoid this problem by transforming the input program so it would never

print 3 itself, without otherwise altering its behavior. One way to do this

would be to replace all occurrences of print (or any other built-in procedure

that prints) in the string with a new procedure, dontprint that behaves like

print but doesn’t actually print out anything. Suppose the replacePrints

procedure is defined to do this. Then, we could use printsThree to define

halts:

def halts(p): return printsThree(replacePrints(p) + '; print(3)')

We know that the Halting Problem is noncomputable, so this means the

Prints-Three Problem must also be noncomputable.

384 | P a g e

Exploration 12.1: Virus Detection

The Halting Problem and Prints-Three Problem are noncomputable, but do

seem to be obviously important problems. It is useful to know if a

procedure appli-cation will terminate in a reasonable amount of time, but

the Halting Problem does not answer that question. It concerns the question

of whether the proce-dure application will terminate in any finite amount of

time, no matter how long it is. This example considers a problem for which

it would be very useful to have a solution for it one existed.

A virus is a program that infects other programs. A virus spreads by

copying its own code into the code of other programs, so when those

programs are executed the virus will execute. In this manner, the virus

spreads to infect more and more programs. A typical virus also includes a

malicious payload so when it executes in addition to infecting other

programs it also performs some damaging (cor-rupting data files) or

annoying (popping up messages) behavior. The Is-Virus Problem is to

determine if a procedure specification contains a virus:

Is-Virus

Input: A specification of a Python program.

Output: If the expression contains a virus (a code fragment that will infect

other files) output True. Otherwise, output False.

We demonstrate the Is-Virus Problem is noncomputable using a similar

strat-egy to the one we used for the Prints-Three Problem: we show how to

define a halts algorithm given a hypothetical isVirus algorithm. Since we

know halts is noncomputable, this shows there is no isVirus algorithm.

Assume infectFiles is a procedure that infects files, so the result of

evaluating isVirus('infectFiles()') is True. We could define halts as:

def halts(p):

385 | P a g e

return isVirus(p + '; infectFiles()')

This works as long as the program specified by p does not exhibit the file-

infecting behavior. If it does, p could infect a file and never terminate, and

halts would produce the wrong output. To solve this we need to do

something like we did in the previous example to hide the printing behavior

of the original program.

A rough definition of file-infecting behavior would be to consider any write

to an executable file to be an infection. To avoid any file infections in the

specific program, we replace all procedures that write to files with

procedures that write to shadow copies of these files. For example, we

could do this by creating a new temporary directory and prepend that path

to all file names. We call this (assumed) procedure, sandBox, since it

transforms the original program speci-fication into one that would execute

in a protected sandbox.

def halts(p): isVirus(sandBox(p) + '; infectFiles()')

Since we know there is no algorithm that solves the Halting Problem, this

proves that there is no algorithm that solves the Is-Virus problem.

Virus scanners such as Symantec’s Norton AntiVirus attempt to solve the

Is-Virus Problem, but its non-computability means they are doomed to

always fail. Virus scanners detect known viruses by scanning files for

strings that match sig-natures in a database of known viruses. As long as the

signature database is frequently updated they may be able to detect

currently spreading viruses, but this approach cannot detect a new virus that

will not match the signature of a previously known virus.

Sophisticated virus scanners employ more advanced techniques to attempt

to detect complex viruses such as metamorphic viruses that alter their own

code as they propagate to avoid detection. But, because the general Is-Virus

Prob-lem is noncomputable, we know that it is impossible to create a

386 | P a g e

program that always terminates and that always correctly determines if an

input procedure specification is a virus.

Exploration 12.2: Busy Beavers

Consider the Busy-Beaver Problem (devised by Tibor Rado´ in 1962):

Busy-Beaver

Input: A positive integer, n.

Output: A number representing that maximum number of steps a Turing

Machine with n states and a two-symbol tape alphabet can run starting on

an empty tape before halting.

We use 0 and 1 for the two tape symbols, where the blank squares on the

tape are interpreted as 0s (alternately, we could use blank and X as the

symbols, but it is more natural to describe machines where symbols are 0

and 1, so we can think of the initially blank tape as containing all 0s).

For example, if the Busy Beaver input n is 1, the output should be 1. The

best we can do with only one state is to halt on the first step. If the

transition rule for a 0 input moves left, then it will reach another 0 square

and continue forever without halting; similarly it if moves right.

For n = 2, there are more options to consider. The machine in Figure 12.3

runs for 6 steps before halting, and there is no two-state machine that runs

for more steps. One way to support this claim would be to try simulating all

possible two-state Turing Machines.

Busy Beaver numbers increase extremely quickly. The maximum number

of steps for a three-state machine is 21, and for a four-state machine is 107.

The value for a five-state machine is not yet known, but the best machine

found to date runs for 47,176,870 steps! For six states, the best known

387 | P a g e

result, discovered in 2007 by Terry Ligocki and Shawn Ligocki, is over

2879 decimal digits long.

We can prove the Busy Beaver Problem is noncomputable by reducing the

Halt-ing Problem to it. Suppose we had an algorithm, bb(n), that takes the

number of states as input and outputs the corresponding Busy Beaver. Then,

we could solve the Halting Problem for a Turing Machine:

TM Halting Problem

Input: A string representing a Turing Machine.

Output: If executing the input Turing Machine starting with a blank tape

would ever finish, output True. Otherwise, output False.

The TM Halting Problem is different from the Halting Problem as we

defined it earlier, so first we need to show that the TM Halting Problem is

noncom-putable by showing it could be used to solve the Python Halting

Problem. Be-cause Python is universal programming language, it is possible

to transform any Turing Machine into a Python program. Once way to do

this would be to write a Universal Turing Machine simulator in Python, and

then create a Python pro-gram that first creates a tape containing the input

Turing Machine description, and then calls the Universal Turing Machine

simulator on that input. This shows that the TM Halting Problem is

noncomputable.

388 | P a g e

Next, we show that an algorithm that solves the Busy Beaver Problem could

be used to solve the TM Halting Problem. Here’s how (in Pythonish

pseudocode):

def haltsTM(m):

states = numberOfStates(m)

maxSteps = bb(states)

state = 0

tape = []

for step in range(0, maxSteps):

state, tape = simulateOneStep(m, state, tape)

if halted(state): return True

return False

The simulateOneStep procedure takes as inputs a Turing Machine

description, its current state and tape, and simulates the next step on the

machine. So, haltsTM simulates up to bb(n) steps of the input machine m

where n is the num-ber of states in m. Since bb(n) is the maximum number

of steps a Turing Ma-chine with n states can execute before halting, we

know if m has not halted in the simulate before maxSteps is reached that the

machine m will never halt, and can correctly return False. This means there is

no algorithm that can solve the Busy Beaver Problem.

389 | P a g e

 Check your progress II

➢ Confirm that the machine showing in Figure 12.3 runs for 6 steps before

halting.

12.5 Summary

Although today’s computers can do amazing things, many of which could

not even have been imagined twenty years ago, there are problems that can

never be solved by computing. The Halting Problem is the most famous

example: it is impossible to define a mechanical procedure that always

terminates and correctly determines if the computation specified by its input

would terminate. Once we know the Halting Problem is noncomputable, we

can show that other problems are also noncomputable by illustrating how a

solution to the other problem could be used to solve the Halting Problem

which we know to be im-possible.

Noncomputable problems frequently arise in practice. For example,

identifying viruses, analyzing program paths, and constructing proofs, are

all noncom-putable problems.

Just because a problem is noncomputable does not mean we cannot produce

useful programs that address the problem. These programs provide approxi-

mate solutions, which are often useful in practice. They produce the correct

re-sults on many inputs, but on some inputs must either fail to produce any

result or produce an incorrect result.

 Check your progress III

a. Aristotle’s Organon developed rules of inference known as _______ to

codify logical deductions in approximately 350 BC.

b. An ______ system is a formal system consisting of a set of axioms and a

set of inference rules.

c. A ________ is a statement that is stated precisely enough to be either true

or false.

d. A proof of a proposition in an axiomatic systemis a sequence of steps that

390 | P a g e

ends with the _______ .

e. A _______ is one that can never derive contradictory statements by

starting from the axioms and following the inference rules.

f. A ___________ can derive all true statements by starting from the axioms

and following the inference rules.

g. A problem is ______ if there exists an algorithm that solves the problem.

h. The _____________ can simulate any Turing Machine.

12.6 Answer the following

1. State Russell’s paradox.

2. State G¨odel’s Incompleteness Theorem.

3. What is Halting Problem? Explain.

4. What is Universal Turing Machine?

5. What is Universal Programming Language?

6. Is the Launches-Missiles Problem described below computable?

Provide a convincing argument supporting your answer.

Launches-Missiles

Input: A specification of a procedure.

Output: If an application of the procedure would lead to the

missiles being launched, outputs True. Otherwise, outputs False.

You may assume that the only thing that causes the missiles to be

launched is an application of the launchMissiles procedure.

7. Is the Same-Result Problem described below computable? Pro-vide a

convincing argument supporting your answer.

Same-Result

Input: Specifications of two procedures, P and Q.

Output: If an application of P terminates and produces the same

value as applying Q, outputs True. If an application of P does not

391 | P a g e

terminate, and an application of Q also does not terminate, outputs

True. Otherwise, outputs False.

8. Is the Find-Finite-Proof Problem described below computable?

Provide a convincing argument supporting your answer.

Find-Finite-Proof

Input: A specification of an axiomatic system, a statement (the

theorem), and a maximum number of steps (max-steps).

Output: If there is a proof in the axiomatic system of the th eorem

that uses max-steps or fewer steps, outputs True. Otherwise, outputs

False.

9. Is the Find-Proof Problem described below computable? Pro-vide a

convincing argument why it is or why it is not computable.

Find-Proof

Input: A specification of an axiomatic system, and a statement (the

theorem).

Output: If there is a proof in the axiomatic system of the theorem,

outputs True. Otherwise, outputs False.

 Answers to Check your progress III

a. syllogisms

b. axiomatic

c. proposition

d. proposition

e. consistent axiomatic system

f. complete axiomatic system

g. computable

h. Universal Turing Machine

392 | P a g e

393 | P a g e

Reference

This textbook has been adapted from “Introduction to Computing:

Explorations in Language, Logic, and Machines” by David Evans

available at http://computingbook.org under Creative Commons

Attribution-Noncommercial-Share Alike 3.0 United States License.

