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1.1 Introduction

Classical mechanics was utilized to explain dynamics of material bodies and matter-radiation
interaction together with Maxwell electromagnetic theory. It seemed that all known physical
phenomena could be explained by using these theories. At the turn of the twentieth century,
classical physics fails miserably in providing the proper explanation for several new discoveries
based on experimental observations. The failure of classical physics to explain several
microscopic phenomena such as blackbody radiation, the photoelectric effect, Compton Effect
had made the way for new theories. With the introduction of the concept of the quantum of
energy by Max Planck in 1900, new direction of thinking was culminated. = An accurate
explanation of blackbody radiation was put forward by Planck by using his new idea of energy
quantization. Later on in 1905 Einstein used the Planck’s postulates to explain photoelectric
effect. Then in 1923 A.H. Compton made an important discovery of x-rays scattering by
electrons, thus finally confirming the corpuscular nature of light having momentum hv/c, where
v is the frequency of x-rays.

1.2 Objectives

The objective of this unit is to provide insight, through the experimental findings, the need of
quantum mechanics. Following are the experimental observations

e Black-body radiation spectral distribution
e Photoelectric effect

e Compton effect

e Specific heat capacity

Which could not be satisfactorily explained by classical theory, therefore, lay down the
foundation of quantum mechanics, staring from the idea of Planck’s hypothesis, which are later
used by the Einstein to explain many observed phenomena.

1.3 Black Body Radiation

Blackbody is an object which gives the maximum amount of energy radiated from its surface at
any temperature and wavelength and absorbs all the radiation that falls on it. Model a blackbody
is a small cavity. A black body is an ideal body which allows the whole of the incident radiation
to pass into it (without reflecting the energy) and absorbs within itself this whole incident
radiation (without passing on the energy). This is permissible for all radiations falling on at all
angels. Therefore, the black body is an ideal absorber and emitter of incident radiation.
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Figurel.l1. Schematic of Lummer-Pringsheim experiment to measure spectral distribution of
energy from back-body

Lummer and Pringsheim investigated the distribution of energy among the radiation emitted by
black body at different temperatures. The experimental arrangement is shown in figure 1. In this
case the black-body is electrically heated and temperature was monitored by thermocouple. As
shown in figure 1, the radiations from black body pass through the slit S1 and fall on the mirror
M1, which reflects radiations towards a prism (ABC) placed on rotating table. It worth to
remember that the prism ABC is made of either rock salt or fluorspar. The radiations emergent
from prism ABC are focussed by the concave reflector M2 towards slit S2. Behind slit S2, a
bolometer is placed, which is connected to a sensitive galvanometer. If the rotating table is
rotated slightly is such a manner that different part of spectrum successively falls on the
bolometer and so that galvanometer can be read. The intensity of corresponding to each
wavelength is found to the proportional to the deflection in the galvanometer. From Intensity
versus wavelength curves, at different temperatures of black body, are drawn as shown in figure
1. On the basis of these experimental curves following conclusions can be made;

1. As the shapes of the curves at any particular temperatures are not symmetric, therefore, the
energy is not uniformly distributed in the radiation spectrum of a black body.

2. At a given temperature, the intensity of the radiations increases with the increase in
wavelength, reaches maximum value at a particular wavelength (Ay,), (as shown by dotted line)
and afterwards decreases with further increase in wavelength.

3. As clear from the dotted line, the value of A,,decreases with the increase in temperature.
According to Wien’s law;

Am.T = constant = 0.2896 X 1072 mK ... ... e vev cev e e (1.1)

4. With the increase in temperature, intensity corresponding to each wavelength increases
thereby indicating increase in energy emission for all wavelengths.
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5. The area under the each curve represents the total energy emitted by the black body at a
particular temperature for the range of wavelengths considered. The area under the curve
increases with the increase in temperature. It is found by Stefan’s that the area under the curve
(E) is directly proportional to the fourth power of absolute temperature (T*). Thus Stefan’s law
can be written as;

E T oo (1.2)

1 2 3 4 5 i
Wavelength (nm)

Figurel.2 Intensity versus wavelength plots as measured from black-body radiation at different
temperatures

1.4 Rayleigh-Jeans law of Spectral Distribution of Energy

Rayleigh formula for the distribution of energy in the normal spectrum is based on the principle
of equipartition of the energy for all the possible modes of free vibrations which might be
assigned to radiation. According to him the radiation to consist of standing waves having a
temperature 7 with nodes at the metallic surfaces. These standing waves are equivalent to
harmonic oscillators. Classically average energy of an oscillator can be written as,

E =Kl oo (1.3)

The number of modes of vibration per unit volume in the frequency range v and v + dv is given
by,
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8mv?
N,d, =

= AV e e i i e (L4)

The energy density within the frequency range v and v + dv can be written as,

2

8nv
Eydv = —5—dv X kT ...... e e e e ... (1.5)

In terms of wavelength, Rayleigh-Jeans law may be written as,

87r 8mkT
Eydd= — /12 |— - da| kT = D (16)

The Rayleigh —Jeans law explains the experimental measurements of the energy-distribution as
mention in Figure 1.2 at long wavelength at higher temperatures only. It does not fit well for
shorter wavelengths.

Moreover, according to above mentioned formula, the energy density should continuously
increase with the decrease in wavelength and approach infinite when wavelength reduces to zero.
Thus the total energy corresponding to wavelength range 0 to o can be written as,

*® *®8nkT
Ezf E,ld/lzf T e (17)
0 0

=8kT [~ | =0 i (18)

3231

This indicates that almost all the energy should be confined in the vibrations of very small
wavelengths, which is contrary to experimental results, and known as ultraviolet catastrophe.

1.5 Planck’s Radiation law

Planck found an empirical formula to explain theexperimentally observed distribution of energy
in the spectrum of a black-body. The formula may be deduced by using the following
assumptions which are known as Planck’s hypothesis;

1. A black-body chamber is filled up not only with the radiations but also simple harmonic
oscillators or resonators of molecular dimensions known as Planck’s oscillators or Planck’s
resonators. These oscillators vibrate with all possible frequencies having one degree of freedom.

2. The oscillators can absorbs or emit radiations in the quantized manner, i.e. an oscillator of
frequency v can only radiate or absorb energy in the units of nhv (h is known as Planck’s
constant, its value being equal to 6.62x 10347 oules/second) and n varies as 0,1,2,3,4,..... so on
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Hence, we can say that the exchanges of energy between radiation and matter cannot take place
continuously, but limited to discrete set of values 0, hv, 2hv, 3hv, 4hv...... nhv in the multiple of
some unit called the quantum.

Self Assessment Question (SAQ) 1.1: Define black body radiation. How does back body
radiation varies with temperature?

Self Assessment Question (SAQ) 1.2: State Wien’s law of back body radiation.

Self Assessment Question (SAQ) 1.3: What is the relation between the total energy of black
body radiation and temperature?

Self Assessment Question (SAQ) 1.4: What isultraviolet catastrophe?

Self Assessment Question (SAQ) 1.5: State Planck’s radiation law?

1.5.1 Derivation

For an electromagnetic (or light) wave travelling at the speed of light in some arbitary direction,
e.g., in the direction of the vector r. If the wave has wavelength A, at some instant the amplitude
of the wave in the r-direction is,

2mr

A(r) = AosinT T ) |

/N

I S |

\

Figure 1.3 representation of wave of moving in the direction of r.

In terms of the wave vector k,
A(r) = Agsin(k.r) = Agsinkr ... ... .. v .o ... ... (1.10)

Where, |k| = 2n/A. Wave vectors will prove to be very important quantities in what follows. The
wave travels at the speed of light c in the r-direction and so, after time t, the whole wave pattern
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is shifted a distance ct in the positive r-direction and the pattern is Agsin kr’, where we have
shifted the origin to the point ct along the r-axis such that r = r+ ct. Thus, the expression for the
wave after time t is

A(r,t) = Agsinkr’ = Agsin(kr — kct) . o vee e vee e (1L11)

But, if we observe the wave at a fixed value of r, we observe the amplitude to oscillate at
frequency v. Therefore, the time dependence of the wave amplitude is sin(2nt/T) where T =v " is
the period of oscillation of the wave. Therefore, the time dependence of the wave at any point is
sinot, where w= 2mv, is the angular frequency of the wave. Therefore, the expression of wave

A(r,t) = Apsin(kr — wt) oo v e vee ve v (112)
and the speed of the wave is ¢ = w/k.

Consider a cubical box of side L, as shown in figure 4 below and imagine waves bouncing back
and forth inside it. The box has fixed, rigid, perfectly conducting walls. Therefore, the electric
field of the electromagnetic wave must be zero at the walls of the box and so we can only fit
waves into the box which are multiples of half a wavelength.

Figure 1.4 Schematic representation of wave formation inside a box of length L.
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In the x-direction, the wavelengths of the waves which can be fitted into the box (as shown
above) are those for which,

— =L (L13)

Similarly, for the y- and z- directions

1, Ay

where 1, m, n takes any positive integral value, 1, 2, 3, ...........
The expression for the waves which fit in the box in the x-direction is,
A(x) = Agsink, X .. e cev v vev ve e . (1.15)

where £,is the component of the wave-vector of the mode of oscillation in the x-direction.

ky=2"andk,=""=T . (1.16)
Similarly
mm mmnm

Let us now plot a three-dimensional diagram with axes k,, k,and k.showing the allowed values of
ky, kyand k.. These form a regular cubical array of points, each of them defined by the three
integers, /, m, n. The waves can oscillate in three dimensions but the components of their &-
vectors, ky, k,and k., must be such that they are associated with one of the points of the lattice in
k-space. A wave oscillating in three dimensions with any of the allowed values of /, m, n satisfies
the boundary conditions and so every point in the lattice represents a possible mode of oscillation
of the waves within the box, consistent with the boundary conditions. Thus, in three-dimensions,
the modes of oscillation can be written as,

A(x,y,z) = Agysin(k,x) sin(kyy) sin(k;z) .o vev vev ve e .. (1.18)

Consider this is a trial solution into the three-dimensional wave equation, The time dependence
of the wave is also sinusoidal, A = Ay sinot and so we can find the dispersion relation for the
waves, that is, the relation between w and k, ky, k,

62A+82A+ aZA_ 1 azA
Jx2 ayz 072 - cZggz

e (1.19)
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3
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Figure 1.5 Possible values of | (along x-axis) and m (along y-axis) are drawn in x-y plane.

Then we find that

w
[k|? = (ki + kj + k) = —

2
/A
k? = ki+ k§+k§=L—2(lz+ m? +n?),

w? 2 72p?
c_2 = L_Z(lz + m? + le) = [Z (120)
where p?2 = (I24+ m2+n2) oo v e e . (1.21)

To find out number of modes of oscillation in the frequency interval v to v + dv, we need only
count up the number of lattice points in the interval of k-space k to k + dk corresponding to v to
v + dv. We carried out a similar calculation in converting from dv,dv, dv, to 4Amv?dv.

Considering only positive values of /, m and n and so we need only one-eighth of the sphere of

radius p. The volume of a spherical shell of radius p and thickness dp is 4zp’dp and so the
number of modes in the octant is,

ndp

VA
k =

dN(p) = N(p)dp = ( )47rp v e e e (1.22)
4
T and dk =
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3

L
dN(p) = mkzdk,

v 87T3v2d _ 4mviv

Therefore, dN (p) = #kz dk = —

. v
2 c3 c3

AV oo ee . (1.23)

Finally, for electromagnetic waves, we are always Note on the Polarisation of Electro-magnetic
Waves Illustrating the electric and magnetic fields of an electromagnetic wave. The E and B
fields of the wave are perpendicular to each other and to the direction of propagation of the
wave. There is an independent mode of propagation in which E and B are rotated through 90+
with respect to the direction of propagation C. Any polarisation of the wave can be formed by the
sum of these two independent modes of propagation, allowed two independent modes, or
polarisations, per state and so we have to multiply the result by two. Because of the nature of
light waves, there are two independent states associated with each lattice point (/; m,; n). The
final result is that the number of modes of oscillation in the frequency interval v to v + dv is,

3 8mv?V

= AV v s e s e e e e (1.24)
Thus, number of states per unit state is

8mv?
dN =

= AV oo e e s e e v e (1.25)
The quantisation of electromagnetic radiation means that the energy of a particular mode of
frequency v cannot have any arbitrary value but only those energies which are multiples of hv, in
other words the energy of the mode is E(v) = nhv, where we associate n photons with this mode.
We now consider all the modes (and photons) to be in thermal equilibrium at temperature T. In
order to establish equilibrium, there must be ways of exchanging energy between the modes (and
photons) and this can occur through interactions with any particles or oscillators within the
volume or with the walls of the enclosure. We now use the Boltzmann distribution to determine
the expected occupancy of the modes in thermal equilibrium. The probability that a single mode
has energy E,= nho is given by the usual Boltzmann factor,

E
exp (=17

p(n) = eeee e (1.26)

2 oexp (— 1)

This is the probability that the state contains n photons of frequency v. The mean energy of the
mode of frequency v is therefore,

Y=o En exp (_ %)

oo (~ )

E_v = Z Enp(n) =
n=0
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o nhv
_ Zn=onhvexp (— )

- K 27)
n=0€Xp (= 77)

To simplify the calculation, let us substitute x = exp (— Z—;) then equation (1.26) becomes,
_ o, nx™ (x4 2x%+3x> + )
E,=hv = )

= hv
g X™ I+x+x2+-)

(x+2x* +3x3+ )
A+x+x2+-)

hv.x

As you know the following series expansions,

=1+x+x%+x3+-

(1-x)

_— =142 3x2 + .-
=) +2x + 3x° +

E_hvx_ hv ~ hv
C1-x x1-1 M

exT — 1

To find the classical limit, we allow the energy quanta 4o to tend to zero. Expanding T _1 for
small values of hv/kT,

hv 1 (hvy?
eh”/kT—1=(1+—+—<—> +--->—1

kT ~ 2'\kT
hv/kT — = h—v
e 1 T
Then
_ hv hv
E = KT ..o v v e .. (1.28)

ehv/kT _ 1 E/kT

Thus, if we take the classical limit, we get exactly the expression for the average energy of a
harmonic oscillator in thermal equilibrium,E= kT.

The energy density of radiation in the frequency range v and v+dv is,

Page 11



BSCPH 301

8mv?
u(v)dv =

= E,dv

_ 8mhv® 1
CE .exp(hv/kT) _1

This formula is Planck’s distribution formula. This formula can be written in terms of
wavelength by using the relation v = ¢/A so

e (1.29)

C
w=kﬁm
8the  da
UDAA = g e e e e (1.30)
ekT 1

Total energy density of radiation,

u= fomu(v)dv

B 87rhf°° v3dv
0

- h
C3 e v/kT 1

h h . .
Let us replace x = % and dx = poe dv then energy density of radiation,

_8nh(kT>4f°° x3 p
YT\ o e¥—1 X

. 3dx. . Do 4
The integral |, Ooo %15 an standard integral value of which is equal to %, therefore,

8mok*
u = T*=aT*............(131)

The calculated value of a = 7.566 x 1071 Jm™3K~* . This relationship is known as Stefan-
Boltzmann law for the energy density of black body radiation.

We can now relate this energy density to the energy emitted per second from the surface of
a black body maintained at temperature 7. Because the enclosure is in thermal equilibrium, we
can use the relations derived from kinetic theory to work out the rate of arrival of photons per

unit area. The flux of photons is 1/ ANp = 1/ 4N since all the photons travel at the speed of

light, where N is their number density. Therefore, the rate at which energy arrives at the walls per
second, and consequently the rate at which the energy must be re-radiated from them,
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1/4thc = 1/4uc since u = Nhv

Therefore,
= tue =% ppe o (PN 1.32
3" T T T \15ems (132)
ac _ (2K _ ¢ 67 x 10-9wm-2K 1.33
= —=|—]=35. X .
=% " \Tscme m (1.33)

Equation (1.32) is referred as Stefan-Boltzmann Law. Again Planck’s radiation formula in terms
of wavelength (1)

8rmhc 1
u()dA = — iz A e iee e e e e e e e (34)
ekt 1

Differentiating partially with respect to A we get

hc hC/
1 —5(8whc) 8mhc  Ere M
- hey % A6 + A5 + hc 2
e /AT —1 (e Ikt — 1)
40mhc 1 8mhc hc ehc/ AKT

. + X
6 h 5 2 2
y e Iakr — 1 A A2kT (ehC/AkT _ 1)
For maximum value of above expression, it must be equal to zero. Then,

40mhc 1 N 8mhc y hc ehc/ AKT
6 'ehc//'lkT 1 A5 A2kT (ehC/AkT B 1)2

=0

8mhc
(" awr — 1)26

. hc ehc/ AKT 0
— _|_ X =
AkT (ehc/lkT _ 1)

-5

hc ehc/ AKT 0
+—X =
AkT (ehC/AkT ~1)

hc .
Let us assume o = X then above equation becomes,

xe*

=0
ex—1

—5+
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X

xe X
> = ex—1=1—e‘x
E+e"‘=1

5

By the method of approximation, the exact value of x can be calculated to be equal to 4.965, then

hc

¥ JkT

=4.965......cc. ceicer e ... (1.35)
Thus, the wavelength A;,, at which the energy per unit range of wavelength u) has its maximum
value is given by,

T hc
m T 4965k

= constant ... .. .. e cev cee e e ... (1.36)

Equation (1.36) is known as Wien’s displacement law.

SAQ 1.6: How both the laws, Wien’s and Rayleigh-Jean’s are incorporated in the Planck’s law.

1.6 Photoelectric Effect
1.6.1 Experimental observations

In 1887, Heinrich Hertz discovered that when electromagnetic radiation falls on a clean, metal
surface, electrons are emitted from the surface. This phenomenon is called the photoelectric
effect. Photo-emission depends upon the metal used. In case of alkali metals and alkaline earth
metals, the emission of photo electrons can occurs even by ordinary visible light. The number of
electrons emitted per unit time (called the photocurrent) depends on the intensity (i.e. brightness)
and frequency (i.e. color) of the light that shines on the metal surface.
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Figurel.6 Experimental setup to observe photoelectric effect.

The photoelectric effect is experimentally studied with the help of setup as shown in Figure 1.6.
It consists of an evacuated glass tube that contains two metal electrodes A (anode) and C
(cathode). The tube is connected to a power supply with a variable resistor that controls the
potential difference V between the two electrodes. Light shines on one electrode which emits
electrons called as cathode (C). The current due to the emitted electrons is measured by an
ameter (Am). The purpose of the variable resistor and power supply is to measure the energy of
the electrons emitted from the metal plate. If there is no potential difference (and therefore no
electric field), electrons will be able to travel across the evacuated tube and reach the other end.
However, if the potential is applied so that there is an electric force opposing the motion of each
electron, only electrons with sufficient energy will be able to cross the tube. By increasing the
potential until there is no photocurrent (and measuring that potential) the maximum kinetic
energy of electrons leaving the metal surface can be determined. When light falls on the surface
of the metal, it is absorbed. The photo-electrons are emitted by the surface. These photo-
electrons short-circuit the gap between A and C and then current flows in the external circuit.
The flow of photo-electrons stops as soon as the source of light is removed. The photo electric
effect depends on the following factors;

(a) The potential difference between two electrodes

(b) The intensity of incident radiations

(c) The frequency of incident radiations

(d) The property of metal used to eject photo-electrons.

The effect of each of the above mentioned factors are explained below,
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(a) The effect of potential difference

If the potential difference (V) between A and C is increased while keeping the intensity and
frequency of radiation constant, the photo-current in the external circuit increases and becomes
constant afterwards, know as saturation, as shown on figure 7 below. With the further increase
in potential difference photo-current remains same. However, as clear from the figure that a
small current flows even when the potential between A and C is zero. This happens because the
emitted electrons have finite velocity and able to reach the plate A by overcoming a small
repulsive force. When all the emitted photoelectrons are able to reach A, then it is called as a
saturation. When the negative potential is applied (now A and C are connected to negative and
positive terminals of battery, respectively) even then current flows and becomes zero at certain
value of applied potential called as a stopping potential or cut off potential (V).

Therefore, the stopping potential of cut off potential is defined as the retarding potential
for which no photo-current flows. It means the kinetic energy of emitted photo-electrons is not
enough the reach the anode (A). If emitted photo-electron of mass m emitted with velocity v then
the stopping potential is just equal to the kinetic energy of emitted photo-electrons. Therefore,
we can write,

Figure 1.7 Effect of applied potential difference between A and C, while incident frequency is
kept constant.

Kinetic energy of photoelectron = electrostatic potential energy

— mv? =eV
2 O

The value of stopping potential (Vo) depends on the frequency of radiation incident on the
cathode.
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(b) The Effect of Intensity of Radiation

Value of saturation current depends on the intensity of radiation. As intensity of radiation
increases the saturation current also increases, as shown in figure 8. Intensity of radiation means
number of radiation falling on the surface per second. If the number of radiation falling on
surface per second increase number of emitted photo-electrons also increases. Curves 1 and 2 are
corresponding to intensities [ and 21, respectively. On increasing the intensity of radiation twice
from the previous value, saturation current found to increase, as clear from figure.

(c) The Effect of frequency of Radiation

On increasing the frequency of radiation, it was found that higher stopping potential is required
to reduce the photo-current to zero, as clear from the figure. In these measurements, the intensity
of radiation and cathode material are kept same. If the frequency of the incident radiation is
plotted against the corresponding stopping potential, a straight line is obtained. The frequency vy,
the value of stopping potential corresponding to this is zero, is known as threshold frequency for
the particular photo-metal used.

Threshold frequency is defined as the minimum value of frequency of incident radiation below
which the photo-electric emission stops completely, irrespective the radiation intensity. The
value of threshold frequency depends on the metal used. The kinetic energy of emitted photo-
electrons is directly proportional to the frequency of incident radiation, and at threshold

frequency its value is zero.

Figure 1.8 Effect of applied potential difference between A and C at different incident frequency
of radiation
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(b) The Effect of cathode metal

Figure 1.9 Effect of cathode metal to emit photo-electron

As clear from the figure 1.9 the kinetic energy is emitted photo-electrons depends on the metal
used as a cathode. The curves corresponding potassium, sodium zinc and tungsten intersect the
frequency axis at different values, indicating that the threshold potential corresponding to these
metals are different.

From the above mentioned experimental observations on photo-electric effect can be
summarized as the fundamental laws of photo-electric effect.

1. The rate at which photo-electrons emit is directly proportional to the intensity of the incident
radiations.

2. The kinetic energy of emitted photo-electrons is independent of the intensity of incident
radiation.

3. The kinetic energy of emitted photo-electrons is directly proportional to the frequency of the
incident radiations and only takes above the certain frequency known as threshold frequency
characteristic of metal surface used.

4. There is no delay between the incidence of radiation and emission of photo-electrons.
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1.6.2 Einstein’s Theory for Photoelectric Effect

Planck's gave explanation of the blackbody spectrum in 1900. In 1905, Einstein explained the
photoelectric effect by using Planck's idea of quanta of radiation. He considered that the
emission of radiation takes place in small packet of energy known as quanta of photons rather
than continuously. The radiation can be defined as a ray of photons of energy hv, moving with
the speed of light (c), where h is Planck’s constant and v is the frequency of radiation. Photons
move without dividing that is photon preserves their identity throughout their life and these can
only be produced and absorbed as complete units. When a photon of energy hv collides with an
electron of the metal, it transfers its energy to the electron either completely of the electron or no
energy at all. When a photon of energy hv, is incident on the metal surface, its energy can be
used up in two ways;

1. A part of energy is used up to eject out the electrons from the binding forces of the nucleus.
This is metal dependent and known as work function (W) of the metal.

2. The remaining energy of the photon is used to impart kinetic energy to the same electron.
Thus we can write

Incident photon energy= work function + kinetic energy of electron

1
hv =W + Emv2 R @ B 1:)

Now, as mentioned before at threshold frequency vy the kinetic energy of electron is zero.
Therefore,

RUG = W oo eos e oo e e ee e o (1.39)
So we can write
1
hv = hyy + Emvz SR @ 7. 10 )|
1
Emv2 =RV —Up) e ceeeer et et e e e (1.41)

This is known as Einstein photo-electric equation. On the basis of this equation Einstein put
forward the following explanation regarding the laws of photo-electric effect.

1. If the intensity of light of a particulate frequency v increases then the photons of energy hv
falling on the metal surface will increase that will cause emission of more photo-electrons.
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2. As the energy of photons hv is fixed then for a given metal, which has a particular value of
work function then emitted electrons energy will remain unchanged as clear from above
equation.

3. However the kinetic energy of emitted electrons depends on the energy of incident photons
and work function of metal. If v <vy then the kinetic energy of electrons will become negative,
which is not possible, therefore it means that in this condition emission of electrons is not
possible.

4. As soon as a photon falls on the metal surface it is immediately absorbed by some electron and
with no time gap ejected out.

Additionally, if we plot the photon frequency versus applied potential curve for a particular
metal, then we can calculate work function of the metal, as shown in figure 10 below.

Figure 10 Plot to find out the work-function of metal

h
As mentioned in the figure the slope of straight line = >

and intercept on the potential axis is = — % v e e e e e e e e (142)
Then we calculate work function W = hv, = —imtercept Xe ............(1.43)

SAQ 1.7 State photoelectric effect.

SAQ 1.8: State Einstein postulates to explain photoelectric effect.
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1.7 Compton Effect

Compton scattering was discovered in 1922 by Arthur H. Compton (1892-1962) while
conducting research on the scattering of X-rays by light elements. In 1922 he subsequently
reported his experimental and theoretical results and received the Nobel Prize in 1927 for this
discovery. His theoretical explanation of what is now known as Compton scattering deviated
from classical theory and required the use of special relativity and quantum mechanics, both of
which were hardly understood at the time.

When a beam of monochromatic high frequency radiation (for example x-rays or gamma
rays) is scattered by light elements such as carbon, the scattered radiations contain radiations of
lower frequencies along with the incident frequency. The scattered radiations with incident
frequency are called the unmodified radiations while the scattered radiations with changed
frequency are known as the modified radiations. This effect is known as Compton Effect. It was
observed that the difference in the frequencies of these scattered radiations increases with the
angle of scattering and it is independent of frequency of incident radiation. It is also not
dependent on the scattering material.

To realise Compton scattering, high frequency photons are to be used. When high
frequency photon collides with an atom, it knocks out its electrons and then photon is scattered
with lower frequency. The theory of Compton scattering takes into account relativistic
mechanics for two reasons.

(1) It involves the scattering of photons that are mass-less
(i1) The energy transferred to the electron is comparable to its rest energy.

As a result the energy and momentum of the photons and electrons must be expressed using their
relativistic values. The laws of conservation of energy and conservation of momentum are used
along with these relativistic values to develop the theory of Compton scattering.

Let a photon of energy hv collide with light materials consisting of huge number of atoms. The
energy of incident photon is very large as compared to work function of the materials so electron
can be treated as a free. As a result of photons by an electron which is at rest initially, the
electron recoils at an angle 6 with the direction of incident photon as shown in figure 11. At the
same time photon of lesser energy hv' scattered with an angle ¢.

The energy of incident photon = hv

The energy of scattered photon = hv'<hv

The kinetic energy of the recoiled electron = %mv2 where m is the mass of electron at velocity v.
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Figure 1.11 Schematic representation of scattering of incident photons by electron at rest

Now, before collision,
1. The energy of incident photon = hv

2. Rest mass energy of electron = m, c2, where my is the rest mass of electron and c is the
velocity of light.

. ener hv
3. The momentum of incident photons p = Tgy ==

4. The momentum of the rest electron = 0
Now, after collision,
1. The energy of the scattered = hv'

2. Rest mass energy of electron = mc?, where m is the mass of electron with recoil velocity v,.

3. The momentum of incident photons p = @ = hTU

4. The momentum of the rest electron = mv

From the special theory of relativity, an object whose rest mass is mpand is moving at a velocity
vwill have a relativistic mass m given by

my

m = e (1.44)
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Now according to conservation of energy,
Energy before collision = energy after collision
hv+mgy c2=hv' +mc?....oen. (1.45)

Now according to conservation of momentum, momentum should remain same along x- and y-
directions

Along x-direction,

hv hv'
—+ 0 = —cos¢ + mvcosf
c c
hv h'
=~ Tcos¢ = mvcosh ... ... .. ... ... ... (1.46)

Along y-direction,

v
0+0= Tsin¢ — muvsinf

hv'
Tsin¢ = mvsing ... ... .. .. ... ... (1.47)

Squaring and adding equations (46) and (47),

(%~ 2 cosg)? + (L sing)? - (msin6)’ + (mvcos)?

h?(w? + v'? — 2vV' cosgp) = m2v?c?

m?c* = h*(v? + v'"? = 2v0") + 2hmyc?(v —v") + mgc*

m2c* — m?v?c?= (2h%wv' (cosp — 1) + 2hmyc?(v —v') + méc*

m, m,
m?c* —mPvict=—% . c* ——5 .vict
1-% 1-2%

122

172
s 4
=my.C =my.cC
CZ

Therefore,
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m?c* = h2(v? + v'2 = 2v') + 2hmyc?(v —v") + méc* ... e .. (1.48)
Becomes
(2h*vv' (1 — cosp) = 2hmyc?(v —v")
So
w—-v)

o moc? (1 —coso)

1 1 h

V' v mgc?

(1—=1cos) e vvvvev vv ve e . (1.49)

In this equation (49) the right hand side is positive quantity therefore in left hand side must be
positive therefore we get, v’ <v. In terms of wavelength using the relation A = c/v and A" = c/v/,
we get

h
M= -1=—»0- N @ B
i (1= cosg) (150)
The change in wavelength (A)) is known as Compton shift. This equation shows some important
points to be remembered.

1. scattered wavelength A' > A incident wavelength

2. A\ only depends on angle of scattering and independent of incident wavelength A and
materials used.

3. When ¢ = O then cos¢ =1 and then 44 = A'— A = 0, indicating no scattering along the
direction of incident photons.

4. When ¢ = n/2 then cos¢ =0 then

h o
M= 2 —-A=—=002424 oo e e e e (B1)
mgyc

Expression given in equation (1.51) is known as Compton wavelength ().
5. When ¢ = then cos¢ = -1 then

2h

M= 2 =1=—=0.04844A....c.cc e . ... ... (1.52)
mgycC

Maximum shift in the wavelength of the scattered electron occurs. Although this maximum shift
is only 0.001% of the initial light for A = 6000 A, while 4.84% when A = 1 A corresponding to x-
rays. Therefore in X-rays and gamma rays this effect is easily observable.
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hv'sing v'sing
tanf = - = -
h(v—v'cos¢p) (v—"v'cosep)
1 1 h 1 ¢
_ = _ 1-— - _ 2sin? —
o= + ——s— (1 —cos¢) y + ——s— sin” 2
. 2P
(1 +m0c2 2sin 2)
v
' v
vV =
hv )
1+ r—— 2sin 2)
Therefore,
cot%
tanf = — ceeen e e (153)
v
1+ >
myc

This equation shows that the direction of electron recoil depends on the scattering angle ¢. As ¢
changes from 0° to 180°, 6 varies from 90° to 0°, thereby indicating that the electron can get
recoiled only in the forward direction at angles less than 90°. On the other hand, photons can
scatter in all directions as is ¢ can take values ranging from 0° to 180°.

Kinetic energy of the recoil electron can be calculated as
K.E.= hv — h'

hv
K.E.= hv —

_h iz
(1+m0c2 2sin 2)

2hv . , ¢
moczsm 5

2hv 29)
<1+moczsm 5

K.E.= hy( e oot (1.54)

When photons strikes with the bound electrons then the electron itself does not get detached by
the impact but remains firmly bound so that the atom as a whole recoils. As the mass of recoiled
atom is thousand times more than the recoil electrons, therefore, Compton shift AL becomes too
small to be detected. Thus we can conclude that when a photon collides with a free electron its
wavelength modify whereas when collides with a bound electron due to weak modification can
consider it as unmodified radiation.
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Experimental Verification of Compton Effect

A beam of monochromatic x-rays after passing through slits S1 and S2 falls on a graphite crystal,
which acts as a scatter for x-rays. To record scattering of x-rays, a Bragg’s spectrometer is placed
at different scattering angles ¢, as shown below in figure.

Along the direction of
incident beam

AN = 0.007 A

AN =0.0242 A

AN = 0.0413 A

Figure 12 Setup to verify Compton shift at different angles of scattering
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At different scattering angles, the scattered wavelength is recorded. The observational values
were found according to the predicted Compton shifts.

SAQ 1.9: Explain Compton Effect.

SAQ 1.10: Why Compton Effect is not observable with visible light?

1.8 Classical Theory of Heat Capacity of Solids

The atoms in a solid are executing oscillations about their equilibrium positions with energy
governed by the temperature of the solid .Such oscillations in crystals are called lattice
vibrations. The lattice vibrations are responsible for the characteristic properties of matter such
as specific heat, thermal conductivity, electrical conductivity, optical and dielectric properties,
diffusion mechanism, phase change phenomena etc.

Atoms in a crystal are considered to be residing at particular lattice sites. But, in reality they
undergo continuous fluctuations in the neighborhood of their regular positions in the lattice.
These fluctuations arise from the heat or thermal energy in the lattice, and become more
pronounced at higher temperatures.

When certain amount of heat (dQ) is added to the in order to change the temperature (dT) under
the conditions either constant volume or constant pressure, then the quantity dQ/dT defines the
heat capacity of solids.

At constant volume the change in temperature only change the internal energy of the solid,
therefore we can write the expression for the heat capacity at constant volume as,

_(aQ\ _ (dE
c= <ﬁ>v _ (ﬁ)v o (1.55)
The specific heat has two contributions, one from the lattice vibrations i.e., lattice specific heat
capacity and the other from the thermal motion of the electrons i.e., electron heat capacity. When
temperatures are not too low, the contributions of electrons towards the specific heat can be
neglected as it is smaller than that of the lattice specific heat capacity. If the lattice vibrations
behave classically then, according to the equipartition theorem each normal mode of oscillation
has an associated mean energy in equilibrium at temperature T= kgT, half of it resides in the
kinetic energy of the oscillation, and rest resides in the potential energy.
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If there are N atoms in a solid, there will be 3N harmonic vibrations then the average energy can
be given as,

E = 3NkgT oo e (1.56)

The specific heat thus obtained (by using equation 1.55) is given as,

dQ dE
Cy = (ﬁ)v = (ﬁ>v = 3Nkg =3R .. e eev e e e o . (1L.57)
It follows that the molar heat capacity at constant volume is equal to 24.9 joules/mole/degree. In
fact, at room temperature most solids (in particular, metals) have heat capacities which lie
remarkably close to this value. This fact was discovered experimentally by Dulong and Petit at
the beginning of the nineteenth century, and was used to make some of the first crude estimates
of the molecular weights of solids. The heat capacity at constant volume (Cy) is somewhat less
than the constant pressure (Cp) value, but not by much, because solids are fairly incompressible.

Thus according to Dulong and Petit law, the lattice specific heat capacity is independent of
material properties and temperature. This holds good for higher temperatures but, for lower
temperatures C, is no longer a constant and decreases with temperature. The molar heat capacity
cannot remain a constant as the temperature approaches absolute zero, which violates the third
law of thermodynamics. Following experimental facts are observed regarding the heat capacity;

1. The Dulong and Petit law holds at very high temperature, just below the melting points of
solid.

2. At low temperature, the heat capacity drops remarkably and approaches zero following T°-
law and T-law in insulators and metals, respectively, as T goes to zero, as shown in figure below.
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CI‘ M nole)

3. In magnetic soilds, there is a large contribution to the heat capacity near the temperature at
which magnetic moments become ordered.

1.9 Einstein Theory of Specific Heat of solids

According to Einstein theory, the crystal can be regarded as an aggregate of atomic oscillators,
all of which vibrating independently with some natural frequency . The quantum mechanical
oscillators can take values as,

€, =nhw ... ... ... .....(1.58) where n=10,1,2,3 ....

The thermal properties of the vibration of a lattice of N atoms can be represented a set of 3N one
dimensional independent harmonic oscillators. Then the average energy can be written as,

2o En-exp (=nbw/kp T)
Yo exp (—nbw/kp T)

E =

. hw
Let us consider, x = ——
kT

Then the above expression can be expanded as

ho (e* + 2e?* +3e3* + - ......... )
(1+e* + 2e?* +3e3* + - ... ... )

E =
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_ hw
E =
e *—1
On substituting the value of x
_ bhw
F=
eksT — 1

By including the zero point energy of the oscillators, total energy of 3N oscillators can be written

as;
3Nhw 3Nhw
E=— T
eksT — 1
The molar heat capacity is defined as,
o= dE _3sza)2 1 (bcu)
P\k,T

Now bw = kB HE

Therefore, above equation can be written as,

Gy = ks (%) - (%;)_Dzexp (%) e (159)

(1) For very low temperatures, T << 0y then exp(0g/T) >> 1, therefore above equation can be
written as,

0\ 0
C, = 3Nk (%) exp (— TE> e (1.60)

Thus, Cy tends to zero as T approaches zero exponentially. Although it has been found that the
CyaT3

The reason for this discrepancy is the crude approximation that all normal modes have the same
frequency. In fact, long wavelength modes have lower frequencies than short wavelength modes.
A more realistic model of lattice vibrations was developed by the Dutch physicist Peter Debye in
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1912. In the Debye model, the frequencies of the normal modes of vibration are estimated by
treating the solid as an isotropic continuous medium. This approach is reasonable because the
only modes which really matter at low temperatures are the long wavelength modes: i.e., those
whose wavelengths greatly exceed the interatomic spacing. It is plausible that these modes are
not particularly sensitive to the discrete nature of the solid: i.e., the fact that it is made up of
atoms rather than being continuous.

(i1) For very high temperatures, T >> 6g then exp(0e/T) = 1 + 0g/T, therefore above equation
changes to,

0.\% 1+ HTE
Cy = 3Nkj (—) —— i (L6D)

N

Cy = 3Nkg, classical limit

Example 1.1. Calculate the momentum of a photon of energy 5 ergs.
Solution: For photon, hv = mc? or we can write, mc?> = hv = E

Momentum is defined as, p = mass X velocity = mc

. E
“PETST
Given E =5ergs
“lergs =1x10"7]Joule
~5ergs =5x1x1077Joule
. 5x1x1077 e
Lp= Ix108 - 1.67 x 10" kg.m/sec
Examplel.2. Calculate the number of photons emitted per second by a 3 Kilo watt
monochromatic source of wavelength 2A.
Solution: we know that energy of photon,
hc

E=hv=7

Given, power of incident photons =3 Kilo watt = 3x10° watt= 3x10° Joule/sec
" power = number of photons incident per second
Suppose “n”’photons incident per second then,

nhc
power = nhv = e
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Therefore,

__ power XA
n= hc

3x 103 x2x10710

= = 3. X 18
M= Eex10 x3x108 00X 10

Example 1.3: The work function of potassium is 2 eV. When a ultraviolet light of wavelength
3500 A falls on the potassium surface, calculate the maximum kinetic energy of the emitted
photoelectrons.

Solution: Energy of incident light, E = hv = %
Given, incident wavelength A= 3500 A=3500x10"" m

h=6.626 x107* Joule.sec, c= 3.0 x10® m/sec

_ 6.626 X 107** x 3 x 108
N 3500 x 1010

Joule

6.626 X 1073* x 3 x 108

“3500x 10 0x1ex10-0 ¢ -0 ¢

Maximum kinetic energy K4, = E — W (work function)

=3.57—-2.0=157eV

Example 1.4 The work function of a metal is 1.24 eV.Find the velocity of ejected photo-
electrons by the light of wavelength 4000 A.

Solution: Energy of incident photons E = hv = %

_ 6.6 X 10734 x 3 x 108
N 4000 x 10-10

Joule

6.6 X 1073% x 3 x 108

= 2000 x 1010 x 1.6 x 10-10 _ 507V

Therefore, kinetic energy of ejected photo-electrons %mu2 =E-W
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1
Emu2 =3.09-124=185¢eV

Therefore, velocity of ejected photo-electrons,

’2><1.85 eV
u= |——
m

_ jz X 1.85x 1.6 x 1071

511051 = 8.06 X 10°m/sec

1.10 Summary

In this unit, we have learned about black body radiation and then the requirement of the quantum
approach to explain the observational facts. Furthermore the photo-electric effect and
characteristics of photo-electric effects are understood. The hypotheses by Einstein to explain
photo-electric effect are well described in this unit. Compton Effect is also explained in the later
section. Therefore, we can conclude that the experimental observations of black body radiation,
photo-electric effect and Compton Effect are historic in drawing the basis of quantum concept.

e Rayleigh- Jeans law,

87‘[ 8mkT
EydA = /12 |— ;dA| KT = ——dA

e Planck’s radiation law, the energy density of radiation per unit frequency interval,

8mhv3 1
u(v)dv = . dv

c3 exp(hv /kT) _

e Wien’s displacement law,

AT = hc
™S 4965k

= constant

e Stefan’s Boltzmann Law,
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=7~ \Gam

ac 2mk*
4

> =5.67 X 107 8Wm™2K~*
¢ FEinstein photoelectric equation

Emvz = h(v — vy)

e Compton Shift

h
AN = A—A—m—oc(l—cosd))

¢ FEinstein equation of heat capacity

Cy = 3Nk (65)2 ! i
v = B\ 7 exXp |\
T 6 (T)
(exp (—715) —1)2

1.11 Glossary

Black body - An object which gives the maximum amount of energy radiated from its and
wavelength and absorbs all the radiation that falls on it.

Radiation — Transmission of energy in the form of wave through space or medium
Quanta — The minimum amount of any physical entity like energy involved in interaction.

Photoelectric effect: - Emission of electrons from a metallic surface when electromagnetic
radiation falls on it.

1.12 References:

1. Quantum Mechanics: Concepts and Applications, Nouredine Zettili, A John Wiley and Sons,
Ltd., Publication
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2. Quantum Mechanics of atoms, molecules solids, nuclei and particles, Robert Eisberg and
Robert Resnick, A John Wiley and Sons, Ltd., Publication

3. QUANTUM PHYSICS of Atoms, Molecules, Solids, Nuclei, and Particles, Robert Eisberg, A
John Wiley and Sons, Ltd., Publication

10.13 Suggested Readings:

1. Fundamentals of Modern Physics, J.P. Agarwal and Amit Agarwal, Pragati Prakhasnan,
Meerut

1.14 Terminal Questions:
Objective Questions:

a) The total energy emitted by black body depends on-

i T
() T2
(i) T
(iv) 1T

b) According to Wien’s displacement law-
(1) AmT? = constant
(i1) AmT™'= constant
(ii1))  AmT = constant
(iv) AnT=0
¢) Kinetic energy of emitted photo-electron is independent of-
(1) Intensity of incident radiation
(11) Work-function of emitting surface
(ii1))  Frequency of incident radiation

(iv)  None of the above mentioned
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d) The value of Compton wavelength (4.) is equal to-
(1) 0.242 A
(i1) 0.0121 A
(iii)  0.0484 A
(iv)  0.0242 A
e) The value of Compton shift A4 depends on-
(1) Angle of scattering
(i1) Incident wavelength
(ii1))  Incident frequency
(iv)  Materials used
f) Maximum Compton shift in the wavelength of the scattered electron occurs when-
»  ¢=0
(i1) ¢ =90°
(1) ¢ =180°
(iv) ¢=45°
Short Answer Type Questions:

1.1 Explain the terms, Work function, cut off frequency, threshold potential and stopping
potential.

1.2 Explain how Einstein postulates explain the observations of photo electric effect
1.3 State Wien’s displacement law.

1.4 Explain the importance of photoelectric effect.

Long Answer type questions

1.1. Show that Planck’s law reduces to Wien’s law for shorter wavelengths and Rayleigh-Jean’s
law for longer wavelength.

1.2. Calculate the average energy E of an oscillator of frequency 6.0 X 10" Hz at T= 1800 K,
considering it as a (i) classical oscillator and (ii) Planck’s oscillator
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1.3. The photo-electric threshold wavelength of metal is 5000 A. Find the following;
(1) the value of work function in electron volts

(i1) the kinetic energy of photo-electron in electron volts ejected on incident of radiations of 4000
A and 3000 A.

1.4. Calculate the velocity of a photo-electron, if the work function of metal surface is 1.24 eV
and wavelength of the incident radiation is 4360 A. What will be the magnitude of retarding
potential?

1.5. X-rays of wavelength 1.00 A are scattered by a carbon block. The scattered radiations are
viewed at an angle of 90° to the direction of incidence. Calculate (1) Compton Shift and (ii) the
energy of recoiled electron. [rest mass of electron mg = 9.1 x 107! kg, velocity of light ¢= 3.0 x
10® m/sec, Planck’s constant h = 6.62 x 10~*joule.sec]

1.6. X-rays of wavelength 1 A are scattered at such an angle that the recoil electron has a
maximum kinetic energy, Calculate wavelength of the scattered wave.

1.7. If the Compton shift for a scattered x-ray beam at an angle 90° be 0.024 A. Find out incident
x-ray wavelength.

1.15: Answers of Terminal Questions:

Answer of objective questions: a) (i) b) (iii) ¢) (i) d) (iv) e) (1) f) (ii1)
Answer of Long answer type:

1.2. (i) 2.48 x 102°J, (ii) 1.01 x 102°J

1.3.(1) 2.475 eV, (ii) 0.62 eV and 1.65 eV

1.4.1.57 eV

1.5. (i) 0.02417 A (ii) 293 eV

1.6. 1.0485A

1.7.2A
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Unit-2 Origin of Quantum Mechanics (Classical Theories)

Structure

1.1 Introduction

1.2 Objectives

1.3 Bohr’s Atomic model
1.3.1 Bohr: Hydrogen spectra
1.3.2 Hydrogen Spectral Series
1.3.3 Limitations of Bohr’s Theory

1.4 Franck-Hertz Experiment

1.5 Sommerfeld’s Atomic Model
1.5.1 Elliptical orbit for electrons
1.5.2 Sommerfeld relativistic correction

1.5.3 Fine Structure of H,, line in hydrogen atom
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1.5.4 Limitations of Sommerfeld Model
1.6 Shortcomings of classical theories and old quantum mechanics
1.6.1 Thompson's model
1.6.2 Rutherford's model
.6.3 Old Quantum Theories
1.7 Foundation of Quantum Mechanics or Wave Mechanics
1.8 Summary
1.9 Glossary
1.10 References
1.11 Suggested Readings
1.12 Terminate Questions
1.13 Answer of Terminate Questions
1.1 Introduction

Atomic model was proposed initially by Thompson followed by Rutherford based on classical
theories. Both the theories were found incapable to explain the observed experimental results,
thus suffered serious drawbacks. However, both models provided the direction, which need
improvements and modifications in order to offer the correct picture of atomic model so that
experimental results could be explained satisfactorily. In this unit, we will learn about different
models which describe the atomic structures by applying the concept of quantization of energy
and photons, as discussed in the unit 1.

1.2 Objective

The objective of this unit is to introduce various approaches to describe the atomic structures and
thus the experimentally observed spectra. Various models including their hypotheses, results and
limitations are described. The following topics are incorporated in this unit;

e Bohr’s Atomic Model
e Atomic spectra of hydrogen atom

e Franck-Hertz experiment
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e Sommerfeld atomic model
e Shortcoming of classical and old quantum theories

¢ Foundation of quantum mechanics or wave mechanics

1.3 Bohr’s Atomic model

To overcome the difficulty associated with the classical collapse of the electron into the nucleus,
in 1913, Niels Bohr proposed a model for the hydrogen atom by using the following postulates to
explain the electron motion in an atom and the observed spectral lines:

1. An electron in an atom moves in a circular orbit around the nucleus under the influence of
Coulomb force of attraction between the electron and nucleus. The Coulombian force of
attraction is balanced by Newtonian centrifugal force. Thus we have,

(Ze)(e)  mu?
471.807.2 - r mEE mEm wEm omEEow

RN %)

2. An electron cannot revolve round the nucleus in all possible orbits as suggested by the
classical theory. It can revolve only in a few widely separated permitted orbits. While moving
along these orbits round the nucleus, an electron does not radiate energy. These non-radiating
orbits are called stationary orbits.

3. The permissible orbits of an electron revolving round a nucleus are those for which the
angular momentum of the electron is an integral multiple of 4/2n, where 4 is Planck’s constant.
Thus for any permitted orbit,

w=n(3)
o) 2 = 57)
mnu, =n (%) e e e e e e e e (2.2)

where m and wu,are the mass and velocity of the electron, r,the radius of the orbit and » is a
positive integer, called the quantum number. The above equation (2.2) is called Bohr’s quantum
condition.

4. An atom radiates energy only when an electron jumps from a stationary orbit of higher energy
to another of lower energy. Thus, if the electron jumps from an initial orbit of energy Ei to a final
orbit of energy E(E>E)), the frequency v of the radiation emitted is given by the relationship,
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hv = E; = Ef coe s oo e e o (23)

This equation is called Bohr’s frequency condition. Now let us consider the case of hydrogen
atom, in which an electron of mass m is moving with velocity v, around nucleus (Ze, proton) in
circular n™ orbit of radius r,, as shown in figure 2.1.

Zc l
f

Figure 2.1 Bohr’s model for hydrogen atom

From Bohr’s first postulate, we have

muk _ (Ze)(e)

T 41eyn?

,  Ze?
mnu;, = yrern REEU R (2.4)
0

Z=1 for hydrogen atom. According to Bohr’s third postulate, the angular momentum of the
electron in a permitted orbit must be an integral multiple of 42w, i.e.

h
mnu, =n (%)
=55 () =
U, =n 2m) N, ) o e .(2.5)
Then equation (2.4) takes the form
( )[ nh ]2 _ Ze?
M 2mmr,]  4me,
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n?h? Ze?

2 =
4memrm, 4neg,

Thus, the radius of 2™ permissible orbit for electron in hydrogen atom is given by,

P, = (nzhzg°> et et et et e e e (2.6)

mmZe?

Hence, the radii of different stationary orbits are directly proportional to the square of n,
principal quantum number. Velocity u, of electron in the stationary orbits can be obtained by
substituting this value of r, in equation,

3 ( nh ) nmmZe?
= 2mm n2h2g,

B Ze?
U, = 2k,

e (227)

Therefore, the velocity of the electron is inversely proportional to the principal quantum number
n. Thus, electron moves at a lower speed in higher orbits and vice versa. The orbital frequency
(fn) of an electron in the stationary orbits is also inversely proportional to third power of principle
quantum number, as calculated below.

21 U,
wWn = T_n =2nf, = Z
_ ( 1 ) Ze? |[mmZe?
fa= 21/ [2nhey| [n?h2g,
B i 2.8
fn = 4s§n3h3 ( ) )

The electron revolving round the nucleus has both potential energy, due to its position with
respect to the nucleus and kinetic energy. The potential energy of the electron is considered to be
zero when it is at infinite distance from the nucleus. Potential energy of an electron in an orbit is
given by the work done in taking the electron from the distance » to infinity against the
electrostatic attraction between the nucleus and the electron. This is obtained by integrating the
electrostatic force of attraction between the nucleus and the electron from the limit o to 7,. Thus
potential energy can be written as,

P.E.= —fooF(r)dr

™

Page 42



BSCPH 301

frn Ze%dr
- 2
o Amen;

B Ze? 29
= ey s (29)

Similarly, Kinetic energy of the electron K.E.= %mu,zl

Using the vlue of u, from above equation,

Ze?
K.E.=
8meyn,

e (2.10)

Then the total energy of electron in n™ orbit can be written as,
E,=P.E.+K.E.

B Ze? Ze? B Ze?

+ =
4mtegr, 8megmy, 8megmy,

On substitution of value of r, we can get,

By = - EE 2.11
n = = ez e (21D

The negative sign of the energy expression shows that the electron is bound to the nucleus and
work must be done to pull out electron from its orbit. Total energy £, decreases as n increases.

Now for hydron atom Z=1 then

n2h?eg,

= ithZ =1
L —" R

On substituting the values of h=6.6262 x107*, g5= 8.854 x10™"%, m=9.109x107'kg and e= 1.602
x107"? Coulomb, we get,

1, = (0.529 X 1071%).n2 metre ... .. .. e e .. ... (2.12)
Thus, radius of first orbit r; = (0.529 X 1071%) metre known as Bohr radius.

Siminlarly energy of electron can be expressed as after substituting the values in the equation
(2.11)
13.6

En= = eV e (213)
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The value of E corresponding to n =1 is known as the ground state energy of the atom, and is
called the ionisation potential of hydrogen atom.

SAQ 2.1: What do you mean by ionization potential? Calculate the ionization potential of
hydrogen atom.

SAQ 2.2: What is the energy of photon emitted when electron jumps from n=1 to n=2.

SAQ 2.3: Calculate the radius offirst Bohr orbit in hydrogen atom.Calculate the time taken by
electron to transverse the first orbit in Hydrogen atom.

1.3.1 Bohr: Hydrogen spectra

If an electron jumps from an outer orbit n, of higher energy to an inner orbit n; of lower energy,
emitted energy is, hv = (E,; — Enq)

mZz 4 mZz 4
[ 8£0h2nzl [ 8£0h2nll

Then emitted radiation frequency can be written as,

mZZ4[1 1
‘U — —

3 2 2
8e2h3 [n? nZ

Then as,

c
A 8e2h3

e (2.15)

mZ%e*[ 1 1
v = —_—
ny nj

Then the wavelength of emitted radiation,

1 mZze4[1 1]

— = (2.16)
ny n;

Wavenumber (V) is defined as inverse of wavelength therefore,

1 mZ%*[1 1
[ l (2.17)

T Qc2-13 |n2
A 8Bgsch3|ny nj
mz2e*

Ry = Py with Z = 1, is called Rydberg constant for hydrogen atom. The value of which can
0

be calculates on substituting values and is equal to 1.0961 x10" m’!

Page 44



BSCPH 301

An atom is said to be excited, if the electron is raised to an orbit of higher energy. The electron
can be completely freed from the influence of the nucleus by supplying sufficient energy and the
minimum energy needed for this is called ionisation energy.

me*

Er=bo- b= 8c2ch?

1 1

. [T - ;] =13.6eV

As long as the electron remains in its orbit, no energy is radiated, but whenever an electron
jumps from an outer orbit to an inner orbit, energy is emitted in the form of radiation. When the
hydrogen atom is subjected to an external source to energy, the electron jumps from lower
energy state to higher energy state. The atom is said to be excited. The excited state is not stable
and hence the electron returns to its ground state in about 10~ second. The excess of energy is
now emitted in the form of radiations of different wavelengths. In a hydrogen discharge tube
there are very large numbers of hydrogen atoms which are excited, and radiate energy. In some
atoms the electrons may jump from the second orbit to the first orbit, in some others from the
third to the second or first and so on. The different wavelengths due to different transitions of the
electrons constitute spectral series which are characteristics of the atom emitting them.

1.3.2 Hydrogen Spectral Series
Lyman Series

When electrons jump from n, =2, 3, 4, ...... etc. orbits to the first orbit n; = 1, the spectral lines
are in the ultraviolet region and called Lyman series. The wave-number (v) corresponding to
emitted radiation can be expressed as,

1 1 1

2
12 nj
Balmer series

When electrons jump from outer orbits to the second orbit (n; =2, n, =3, 4,5, ...), we get lines
of Balmer series and lies in the visible region of the spectrum.

A ﬁ_ng

1 1 1
b=<-= RH[ —l N A L)

The first line in the series (n, = 3) is called H, /ine then wave-number can be expressed as,

i 1 1 1
() = 5= Ru 5~ 7]
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the second line (n, = 4) is called Hp

i 1 1
5 (H) = 7= Rulz 73

Paschen series

Theselines in the infrared region are due to the transition of electrons from outer orbits (n, =4, 5,
O ) to the third orbit (n;=3).

1 1 1
0= -= Ry [———l TR ¢3.))

Brackett Series

On transition fromn; =4 andn, =5, 6, 7, ... , we get Brackett series lines.

1 1 1

N S/ - _,L =
s R T 3 /
&/ &
b :
\\‘x “x/'/
T

Figure 2.2. Different transition Series for hydrogen atom.

Pfund Series
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Ifnj=5andn,=6,7,8, ..., we get the Pfund series lines. For this series,

_ 1 1 1

Brackett and Pfund series lie in the far infrared region of the hydrogen spectrum.

The graphical representation and energy band diagram of transition corresponding to above
mentioned series are given in figure 2 and 3, respectively.

Energy (eV) n=oo(E+ 13.6)
2 : ! ! ! !
| | | | 8 T
1 I I [ =4 =
I 1 1 [ ! #
— S
1 I ] [ I
I e | 1 I ﬂ I
037 1 T 1 I m 1 P i13
~03 ¢ ! i f ! (13.2)
1 . ] ] ] ]
- | | 1 :
0.54 : ! i : 5 (131)
1 | [ |
f o | 13 1] /
=
0.5 | : 5 SAR 4 (128
1 | | &
1 | (-4
i | |
L2l ] 1% '
131 =5 e ' 3 (z)
] ]
< | k
- |
= 1 I
- 1 ]
: |
~34 ; 1 2 (102)
1
< | | &
= =§ Series limit
=) ls
| E
I &
| ey
1
136 '

Figure 2.3. Energy level diagram and spectral series at different parts of electromagnetic
spectrum of hydrogen atom.

1.3.3 Limitations of Bohr’s Theory

Bohr’s theory, based on circular electron orbits, was able to explain successfully a number of
experimentally observed facts and has correctly predicted the spectral lines of neutral hydrogen
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atom and singly ionised helium atom in terms of the principal quantum number n. However, the
theory fails to explain the following facts;

(1) Spectra of atoms more complex than hydrogen

(i1) Distribution and arrangement of electrons in atoms

(ii1) Experimentally observed variations in intensity of the spectral lines of an element
(iv) Selection rules for the transitions of electrons from one level to another

(v) Fine structure of spectral lines

(vi) Quantitative study of chemical bonding.

(vii) Splitting of spectral lines in the presence of electric field (Stark effect) or magnetic field
(Zeeman Effect).

SAQ 2.4: Calculate the wavelength of the first member of Balmer series of hydrogen atom.
Given Rydberg constant for hydrogen R = 1.097 x 107m™1

SAQ 2.5: Calculate the wavelength of the first member of Lyman series of hydrogen atom.
Given Rydberg constant for hydrogen R = 1.097 x 107m™1

1.4 Franck-Hertz Experiment

The Franck-Hertz experiment, first undertaken shortly after Bohr’s theory of the atom was
presented, and provided indications that atoms had discrete energy levels. Remarkable results of
this elegant experiment led foundation of early developments of quantum theory.In 1914 Franck
and Hertz performed a simple experiment to directly confirm that the internal energy states of an
atom are quantized. Figure 4 schematically shows the experimental setup. When cathode (C) is
heated then low energy electrons are thermally emitted from the cathode surface. On applying,
potential V between the two anode (A) and cathode (C), electrons are accelerated. Some of the
electrons pass through holes in 4 and reach to plate P, if they carry enough kinetic energy upon
leaving 4 to overcome a small retarding potential V,,applied between P and A. These electrodes
C, A and P are enclosed inside the tube and the entire tube is filled at a low pressure with a gas
or vapor of the atoms to be investigated. The experiment involves measuring the electron current
(I) on reaching P as a function of the applied voltage V. The first experiment was performed with
the tube containing Hg vapor. The observed variation in current value I as a function of applied
voltage is depicted in Figure 5. On increasing voltage V, the current / is observed to increase at
low accelerating voltage. When V reaches 4.9 V, the current abruptly drops, indicating that when
the electrons gain a kinetic energy of 4.9 eV, some interaction between the electrons and the Hg
atoms suddenly begins. A significant fraction of the electrons having energy ~4.9 eV excite the
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Hg atoms and afterwards lose their entirely kinetic energy. If V' is increased further, the electrons
can gain enough kinetic energy after the excitation process to overcome V,, and reach P. The
sharpness of the break in the curve indicates that if electrons possess energy less than 4.9 eV then
they are not able to transfer their energy to an Hg atom. This indicates the existence of discrete
energy states for the Hg atom. So it can be said that the first excited state of Hg is 4.9 eV higher
in energy than the ground state. Hg atom can not to accept energy from the electrons on
collision if it is less than 4.9 eV.

Gas or vapor of atoms
/‘ Jemng investigatec

; A }_"l_‘||

T O
l

Y

Heatar —

{ ) ==
- +
®
¥
VW

I

Figure 2.4. Schematic diagram of Franck-Hertz experiment.

Now, if the separation between the ground state and the first excited state is actually 4.9 eV,
there should be a line in the Hg emission spectrum corresponding to the atom's loss of 4.9 eV in
undergoing a transition from the first excited state to the ground state. Franck and Hertz found
that when the energy of the bombarding electrons is less than 4.9 eV no spectral lines at all are
emitted from the Hg vapor in the tube, and when the energy is not more than a few electron volts
greater than this value only a single line is seen in the spectrum. This line is of wavelength 2536
A, which corresponds exactly to a photon energy of 4.9 eV.

The Franck-Hertz experiment provided striking evidence for the quantization of the energy of
atoms. It also provided a method for the direct measurement of the energy differences between
the quantum states of an atom. When the curve of / versus V is extended to higher voltages,
additional breaks are found. Some are due to electrons exciting the first excited state of the atoms
on several separate occasions in their trip from C to 4; but some are due to excitation of the
higher excited states and, from the position of these breaks, the energy differences between the
higher excited states and the ground state can be directly measured.

Another experimental method of determining the separations between the energy states of an
atom, is to measure its atomic spectrum and then empirically to construct a set of energy states
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which would lead to such a spectrum. In practice this is often quite difficult to do since the set of
lines constituting the spectrum, as well as the set of energy states, is often very complicated;
however, in common with all spectroscopic techniques, it is a very accurate method. In all cases
in which determinations of the separations between the energy states of a certain atom have been
made, using both this technique and the Franck-Hertz technique, the results have been found to
be in excellent agreement. Figure 6 is a simplified representation of the energy states of Hg in
terms of an energy level diagram. The separations between the ground state and the first and
second excited states are known, from the Franck-Hertz experiment, to be 4.9 eV and 6.7 eV.

These numbers can be confirmed, and in fact determined with much higher accuracy, by
measuring the wavelengths of the two spectral lines corresponding to transitions of an electron in
the Hg atom from these two states to the ground state. The energy E=10.4 eV, of the ground state
relative to a state of zero total energy, is not determined by the Franck-Hertz experiment.
However, it can be found by measuring the wavelength of the line corresponding to a transition
of an atomic electron from a state of zero total energy to the ground state. This is the series limit
of the series terminating on the ground state. The energy (can also be measured by measuring the
energy which must be supplied to an Hg atom in order to send one of its electrons from the
ground state to a state of zero total energy. Since an electron of zero total energy is no longer
bound to the atom, this is the energy required to ionize the atom and is therefore called the
ionization energy. Lying above the highest discrete state at E = 0 are the energy states of the
system consisting of an unbound electron plus an ionized Hg atom. The total energy of an
unbound electron (a free electron with E > 0) is not quantized. Thus any energy E > 0 is possible
for the electron, and the energy states form a continuum. The electron can be excited from its
ground state to a continuum state if the Hg atom receives an energy greater than 10.4 eV.
Conversely, it is possible for an ionized Hg atom to capture a free electron into one of the
quantized energy states of the neutral atom. In this process, radiation of frequency greater than
the series limit corresponding to that state will be emitted. The exact value of the frequency
depends on the initial energy E of the free electron. Since E can have any value, the spectrum of
Hg should have a continuum extending beyond every series limit in the direction of increasing
frequency. This can actually be seen experimentally, although with some difficulty. These
comments concerning the continuum of energy states for E > 0, and its consequences, have been
made in reference to the Hg atom, but they are equally true for all atoms.
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Figure 2.5. Measured current as a function of applied voltage.
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Figure 2.6. Simplified energy level diagram of Hg, above E> 0 the levels are continuous.

SAQ 2.6: The excited states of sodium are 2.1 and 3.7 eV. Find the corresponding wavelength in
spectra.

1.5 Sommerfeld’s Atomic Model

Sommerfeld succeeded partially in explaining the observed fine structure of spectral lines by
introducing the following main modifications in Bohr’s theory;

(i) Sommerfeld suggested that the path of an electron around the nucleus, in general, is an ellipse
with the nucleus at one of the foci. The circular orbits of Bohr are a special case of this.

(if) The velocity of the electron moving in an elliptical orbit varies considerably at different parts
of the orbit. This causes relativistic variation in the mass of the moving electron. Therefore,
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Sommerfeld took into account the relativistic variation of the mass of the electron with velocity.
Hence this model of the atom is called the relativistic atom model.

1.5.1 Elliptical orbit for electrons

An electron moving in the field of the nucleus describes elliptical orbits, with the nucleus at one
focus. Circular orbits are only special cases of ellipses. When the electron moves along a circular
orbit, the angular coordinate is sufficient to describe its motion. In an elliptical orbit, the position
of the electron at any time instant is fixed by two coordinates namely the angular coordinate (¢)
and the radial coordinate (r). Here r is the radius vector and ¢ is the angle which the radius vector
makes with the major axis of the ellipse.

Consider an electron of mass m and linear tangential velocity v revolving in the elliptical orbit.
This tangential velocity of the electron can be resolved into two components: One along the
radius vector called radial velocity and the other perpendicular to the radius vector called the
transverse velocity. Corresponding to these velocities, the electron has two momenta: One along
the radius vector called radial momentum and the other perpendicular to the radius vector known
as azimuthal momentum or angular momentum. So in the case of elliptic motion, both the angle
¢ and the radius vector r vary periodically, as shown in Figure 7.

T 1
.-"-F'-- - _L_
- 1
/ . r III ¢
f a L
I ]
|

Figure 2.7. Sommerfeld model of hydrogen atom showing radial and transverse component of
velocity.

Thus, the momenta associated with both these coordinates (¢ and ) may be quantised in
accordance with Bohr’s quantum condition. Now, we have two quantization conditions related to
the momenta associated with both the angular and radial coordinates.

fprdr =R v (2.23D)
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where ny and n, are the two quantum numbers introduced by Sommerfeld. Since they stand for
one periodic system, therefore, n, + ny = n. Where n, is defined as radial quantum number, ny as
angular or azimuthal quantum number and n is known as principal quantum number. As, the force
on the electron is due to the electrostatic attraction to the nucleus which acts along the radius
vector, therefore, no force at right angles to this radius vector, so the transverse component of the
acceleration is zero throughout the atom. Hence,

1dr ., do
Therefore, r? % so mr? % must be constant. Then

21
0
h
Py = g (%) e (2.25)

This equation shows that the angular momentum of the electron is an integral multiple of 4#/2m. It
is considerably difficult to evaluate the integral in equation (2.18). However, an attempt is made
here. The polar equationto the ellipse is,

1 1+ ecosp

- = m v e e e e e e (2.26)

where a is the semi-major axis and ¢ is the eccentricity. Thus differentiating this equation with

respect to ¢, we get,
F@) s
0@ e
() G) =55 e

() (@) =T o

As mentioned before that 3€ prdr =n,h
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Now putting,

ldp  esind
rdt a(l-—e?)

Therefore, we get

2

o [ ceompy] 20 =

Now using value of p, from equation (2.25) then we get,
ff [ esing ] dd = nh
rr (1 + ecos¢) ¢=n

§£ [(1 iS;Zfs¢)] dg =ny

1

u=ssinpandvy =———
¢ 1+ ecos¢

Then above equation can be written as,

—fudv— — [ ]“—fznvdul

2 (ecosg)d
=0- (27r) 1+ ecos¢ — M

Mgy (P (ecosp)dd
T (%) 1+ ecos¢p o

_ (Z_z) jozn [m - 1] dp = Ty eos e (2.27)

Solution of the integral:

BSCPH 301
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2m d¢)
,];) 1+ ecos¢

Property of definite integral,

2T a
j F()dx = 2 j F()dx, if f(2a—x) = f(x)

=0,if f2a—x) = —f(x)

Therefore in the integral,

Let us consider,

Thus,

2T d¢)
1@ = 1+ scos®
1 1

fQr—0) =

1+ ecos(2m — @) 1+ ecos@

j-ZH d¢ 3 Zjn d¢
o l+ecosp ~J, 1+ ecosgp

Let us consider, t = tang

P=0,t=0:when® =m,t=o0

?1dod
th ,dt=[ 2| —
en sec A
. do = 2dt B 2dt B 2dt
N N 0 @ 1+ t2
2 ¥ 2 X
sec” 1+ tan >
1—tan2% 1 — ¢2
and cosp = =
1+tan2% 1+¢2

Substituting these values, the integral becomes,
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o 1+ecosdp

Zf‘”( 2dt 1

1+t2) e(1—-1t?)

0 -~ 7
1+ 1+t

_zf‘”( Zdt) (1+t%)
STy 1+t 142+ e —et?

_4 *© dt

B fo (14+¢)+ t2(1—¢)

4 o dt

(1 - o s2 4, (1+8)
S
4 *© dt

:(1—f)fo dro|

t2+[ (1_8)1

2T

Ny

[ ll I
__4 l L “tan-l;] -t
1-¢) /(1+s) f(1+s) V1 —g2l2
(1-¢) [ (1—8)10

Then equation (27) becomes,

o on —Zn]zn
2nlViez "
nw[ = —1]=n
Vi-e? "

1 _ n, ngt+n,
Vi  np mg

n
2 (4]
1= =7
2 ng® n*-—ng
n2 n2
ng? 1/2
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. b? . . .

For an ellipse (1 —¢&2) = - where a and b are the semi-major and semi-minor axes,
respectively.

bZ Tl@z

ST T T (2.29)
When ny = n, b = a and € = 0, the orbit becomes circular. ny cannot be zero, since the ellipse
would then degenerate into a straight line passing through the nucleus. Also n, cannot be greater
than n, since b is always less than a. Hence for a given value of n, ny can take only » different
values, so there can be only 7 elliptical orbits of different eccentricities. The tangential velocity

. . ., dr d
of the electron at any time can be resolved into two component; radial Eand transverser d—f.

dr

Therefore, radial momentum p, = M= e (2.30a)

and the orbital angular momentum pgy = mr? % cen vee vee e ene e e e (2.30D)

The kinetic energy of the circulating electron can be written as,

KE=tmu?=Lm l(ﬂ)z .\ ( dw)zl

2 2™ \at) "\"ar
2 2
br Py
2m + 2mr? ( )
We can write,
dr dr d¢
dt  d¢ dt
Then,
dar (dr>( 122 )
dt  \d@/ \mr2
doy?
2 _ 2,4 (2F
vl =mer ()
2 2
r2 @] _ _Po
dt m2r?
Then kinetic energy expression can be written as;
1 pé (dr\*  p3
K.E.=—= —_— e e e e (2,32
ZmIm2r4 (dQ)) +m2r2 ( )
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Log [(1dny',
2mr?|\rdo

and potential energy can be written as;

P.E.= ze? 3.33
o e (333)
Thus, the total energy of the system,
CRRES N[ P R 2
=5 (75 P CED)
1 p2 [(1dr\° Ze?
SN2 41| =E, +
2mr2 _(rd@) " 4meyr
[1 dry? _ 2mr’E, N mrZe?
rdgl — p2 2meopE

Now using the values of dr/d¢ value in terms of eccentricity, then

e’r?sin®@  £?r?(1 - cos® Q)
[a(1—e®]?  [a(l—e?)]?

1 dry?
=l
il =l ] @ et

Now by the following relations,

a(l—e&?)
r

(1 + ecos®) =

a(l — &?
scos@z%—l

la(l —&?) _ 1]
T

(ecos®)? =

We get,

riz[g_;z:[ﬁr[(‘sz_{a(l;gz)_l}zl
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B r2e? . r? N 2r
N a?(1 — &?)? a’(1—¢€?)?2  a(l—¢?)

_rie?—r? N 2r )
Ca2(1—¢e2)2  a(l-—e2)
r2(1—€?) 2r
1 (235)

- a?(1 — &?)? + a(l—e&?)

Now, equating the coefficient of r* and r in equations (2.34) and (2.35), we get;

2mE, 1
pg  a*(1-¢€?)
mZe? 2

2mepg - a(l—&?)
Then,

g

Ey=-—2
" 2ma?(1 — &2)

Now on substituting the value of (1-€%) we get,

pg [amZe?
2ma? [4meopg

E, =

Ze?

Eyp = —
" 8mae,

Again putting the value of a, we get;
£ - Ze*\ [ mZe* \ (1 —¢?
" \8mey ) \2meop3 2
£ - mZ%e*\ (1 — &2
m \32m2e2 P

Substituting the value of (1-&*) and pg> we obtain the expression of total energy as;

£ o= mZ%e* (n®)2 2\’
mo\32m2e2 ) \n/ \ngh

BSCPH 301
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Bu= (s ) =~ | 2 (2.36)
n — 885]12712 - 885]’12 Tlr+’n® .

This is expression for the energy of the electron depending on only principle quantum number #.
The magnitude of the semi-major axis a is obtained from equation (36) as follows:
Ze? Ze?

E =— La=—
n 8mega 4 8meyE,,

Substituting the value of E; then;

IZe2 l l8£§h2nzl
a=—

8mey || mZzet
_ gh*n?
" mmZe?
n’ry
= N ¢
Z (237)
Where, 15 1s the Bohr radius and defined as;
goh?
Tg = > = 0.0529 nm
mme
In case of ellipse we know,
b2
(1-¢*)= P

Z n

=T = a(22) = (72 (52) o239

Equations (2.37) and (2.38) show that the length of the semi-major axis is determined solely by
the principal quantum number n, while the length of the semi-minor axis depends upon the
azimuthal quantum number ny (1) as well as n.

For a given value of n, the possible values of
ng=0,1,2, ... , N
n=n,(n—1),..,...0

When ny = 0, the ellipse reduces to a straight line and the electron then passes through the
nucleus traversing the orbit. This leads to the collapse of the atom. Therefore, the value of ng = 0
is forbidden and for a given value n,
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For the first orbit n =1,

(n,+ny) =1 and ng# 0 =ny= 1 and n,= 0, therefore, first orbit is a circle
For the first orbit n =2,

Possible values of ny = 1, 2 with identical energy
So for n =2 and n4 =1, orbit an ellipse

So for n =2 and n4 =1, orbit is a circle

Similarly with n =3,

Possible values of ny = 1, 2 with identical energy
So for n =3 and n4 =1, orbit an ellipse

So for n =3 and n4 =2, orbit an ellipse

So for n =3 and ny =3, orbit a circle

The orbit corresponding to n = 1, 2, 3 are depicted in figure 8.

G

n=1

n, =1
b=a
a=1ry a—-l.rH a=9rg

Figure 2.8. Shapes of the Sommerfeld orbits in hydrogen atom.
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Thus, the introduction of elliptical orbits does not lead to create new energy terms only
multiplicity of orbits; hence no new spectral lines cannot be predicted. Hence Sommerfeld’s
elliptical orbit model could not explain the fine structure of spectral lines in the hydrogen atom.
Although, experimental results and quantum mechanical predictions confirm that ny also
assumes a value of zero. So corresponding to n, ny can have values 0, 1, 2, ..., (n — 1), In wave
mechanics, azimuthal quantum number 7y is denoted by /. On the other hand, on the basis of
variation of mass of the electron with velocity, Sommerfeld was able to find a solution to the
problem of fine structure of spectral lines.

1.5.2 Sommerfeld relativistic correction

In an elliptical orbit, the velocity of an electron varies, which is maximum at the shortest distance
from the nucleus and minimum at farther away from the nucleus. It was found that the value of
this velocity is quite large ¢/137. According to the theory of relativity, mass of the electron
depends on the velocity. Therefore, Sommerfeld included the relativistic correction in the
treatment of elliptical orbits, showed that path of the electron of the form of equation (2.39)

1 1+ ecosy®
— = e (2239
r a(l-—¢?) (239)
Where is denoted by the equation (2.40)
2 oq |2 2 (2.40)
Y = dmegpe| e (2
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Figure2.9. Rosette path of electron about the nucleus.

This the equation of ellipse which precesses means the major axis turns slowly about the nucleus
in the plane of ellipse. Therefore, electron is moving in rosette path, as shown in figure 9. Then
on taking relativistic theory of electron motion the total energy with a principal quantum number
n can be written as,

En

mZ%e* mZ%e*a?[n 3|1
e (241)

"o~ T 8e2h2n?  8eZh? ng 4nt

2

1 . . . )
Py o, Isa dimensionless constant and is known as the fine structure
0

constant. The dependency of total energy value on ng values leads to splitting of energy levels in

Where, a =

the atom and hence multiplicity in the spectral lines can be explained.

1.5.3 Fine Structure of H, line in hydrogen atom

H, line in the hydrogen atom is due to the transition from n=3 to n=2.

Now for n = 3, so possible values of ny =1, 2, 3. The notation of energy levels can be written as,
n=3, ng =1 as 3,

n=3, ny =2 as 3,

n=3, ny =3 as 33

For n = 2, the possible values of ns; =1, 2. So energy levels can be defined as,

n=2, ng =1 as 2,

n=2, ng =2 as 2
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o —— —— ——— —— | —— ——

-+ ——— —— ]

g ——— ———— ]

Figure 10. Allowed and forbidden transitions from n=3 to n=2, corresponding to H,, lines in the
hydrogen fine structure.

So there are six possible transition of different energy from n=3 to n=2. However, H, line has
three components. So transition must be based on some selection rule. The selection rule is that
Ang = £1. Then allowed transitions are, 31 —2,, 3,—2; and 33—2,, as shown schematic in
figure10 by solid lines. The other transitions are forbidden transitions as shown by dotted lines.

1.5.4 Limitations of Sommerfeld Model

(1) Bohr’s theory could not explain the fine structure of spectral lines even in the simplest
hydrogen atom.

(i1)) Bohr-Sommerfeld theory failed to calculate the energy levels and hence frequencies of
radiation emitted for complex atoms having more than one electron.

(i11)) Sommerfeld’s model could not explain the correct number of observed fine structure lines.
However, provided a theoretical background of the splitting of individual spectral lines of
hydrogen,

(iv) The model could not explain the distribution and arrangement of electrons in atoms.
(v) Intensities of the spectral lines could not be explained.

(vi) Explanation regarding the Anomalous Zeeman effect and Stark effect was not given by
Sommerfeld model.

Later on, the vector model of the atom was formulated to provide a satisfactory explanation of
observational findings.
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SAQ 2.7: State Sommerfeld hypothesis of atomic model.

SAQ 2.8: What is Sommerfeld’s quantisation conditions?

SAQ 2.9: What are the limitations of Sommerfeld atomic model?
SAQ 2.10: What is Sommerfeld’s relativistic correction?

1.6 Shortcomings of classical theories and old quantum mechanics
1.6.1 Classical models of atoms: Thompson's model

Chemical elements differ by the number Z of electrons in their atoms. Atoms are electrically
neutral, so that the negative charge Ze of all electrons in an atom must be compensated by
additional positive charge Ze. Therefore, Thompson modeled an atom as a sphere of radius ~1A
filled uniformly by a cloud of positive charge Ze. Inside this cloud there are Z point-like
electrons which sit still at their equilibrium positions determined by Coulomb forces. Under
various circumstances, for example at by raising temperature, electrons can be excited into
vibrating or orbiting motion. Such accelerated motion of charge leads to emission of
electromagnetic radiation according to Maxwell equations, which can qualitatively explain why
atoms radiate. The model can also describe ejection of electrons from atoms. However, this kind
of an atom is not stable according to the laws of electrodynamics. Some unknown forces must
rigidly maintain the spatial distribution of the positive charge. Furthermore, Rutherford's
experiment, which experimentally observed discrete atomic radiation spectra, proved that
Thomson assumptions are not correct.

1.6.2 Classical models of atoms: Rutherford's model

Rutherford conducted the first scattering experiment to probe the internal structure of atoms. A
beam of a particles was collimated by a pair of diaphragms and let to pass through a thin foil of
metal substance. Since a particles are energetic Helium nuclei produced by radioactive decay of
some materials, they have positive charge 2e and mass much larger than the electron mass.
Therefore, aparticles can scatter from the positive charge in atoms due to Coulomb forces, while
scattering from electrons can be neglected.In principle, a particles can interact electrostatically
with many atoms as they pass through the foil and scatter in various directions. The incoming
collimated beam becomes divergent upon incidence on the foil. A fluorescent screen can be
placed some distance away from the foil to detect deflected a particles at an arbitrary angle
towith respect to the direction of the incident beam. This allows the measurement of the number
of aparticles which get deflected at any given angle. A significant number of aparticles found to
scatter at large angles observed, even particles by 180°(bounced back). This implied large
electric fields inside the solid, created by highly concentrated positive charge attached to non-
negligible mass. Furthermore, the number of aparticles scattered by large angles was found to be
proportional to the thickness of the solid, consistent with rare large angle scattering events which
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randomly occur at only one atom on the path of an alpha particle. Rutherford's experiment
discovered atomic nucleus: a highly concentrated positive charge of appreciable mass. Therefore,
Rutherford models an atom as a small massive core (nucleus) carrying positive charge Ze with Z
light electrons of charge Ze orbiting around it (in analogy of planets orbiting around the Sun).
Detailed measurements of the numbers of aparticles deflected by different angles can be use in
estimating the size of a nucleus. These estimates yielded a radius ~ 10 *m, whereas the size of
an atom is of the order of 10"°m = 1A (obtained from the density of a typical solid, atomic
weight and Avogadro's number). Most of an atom's mass is inside its nucleus, roughly the
number of protons and neutrons times the atomic mass unit u = 1.66 x10>'Kg. Mass of an
electron is roughly 9.1x107'Kg, which is about 1836 times smaller than the mass of a proton.
The size of an atom is determined by the size of electron orbitals around the nucleus.

Rutherford's model is much better than Thompson's, but still not adequate. Classical
electrodynamics predicts that a Rutherford's atom cannot be stable. Electrons orbiting around a
nucleus must radiate electromagnetic waves because their motion is accelerated. In this manner
they must loose energy and eventually slow down and fall on the nucleus (in about 10™%s). A
stable atom would be rather similar to the Thompson's atom, but of much smaller size (10" m)
than observed.

1.6.3 Old Quantum Theories

The first real breakthrough came in 1900 when Max Planck introduced the concept of the
quantum of energy in quest to explain the phenomenon of blackbody radiation. He postulates
that the energy exchange between radiation and its surroundings takes place in discrete, or
quantized, amounts. He argued that the energy exchange between an electromagnetic wave of
frequency v and matter occurs only in integer multiples of hv, called as the energy of a quantum,
where h is a fundamental constant called Planck’s constant. This idea of the quantization of
electromagnetic radiation proved to be landmark in providing an accurate explanation of
blackbody radiation and hence provoked new direction of thinking that give way solutions to the
most outstanding problems or discoveries of that time.

In 1905 Einstein used Planck’s quantum concept to understand the photoelectric effect, Einstein
recognized that Planck’s idea of the quantization of the electromagnetic waves must be valid for
light as well. Therefore, light itself is made of discrete bits of energy (or tiny particles), called
photons, each of energy hv, v being the frequency of the light. By introducing the photon
concept Einstein provided an elegantly accurate explanation to the photoelectric problem, long
after its first experimental observation by Hertz in 1887.
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Another essential breakthrough came from Niels Bohr in explaining atomic model. By
combining Rutherford’s atomic model, Planck’s quantum concept, and Einstein’s photons, Bohr
introduced in 1913 his model of the hydrogen atom. He postulates that atoms can be found only
in discrete states of energy and that the interaction of atoms with radiation, i.e., the emission or
absorption of radiation by atoms, takes place only in discrete amounts of hv because it results
from transitions of the atom between its various discrete energy states. This work provided a
satisfactory explanation to several outstanding problems. Further modifications in the Bohr
models are incorporates by Sommerfeld by using elliptical orbit and relativistic approach. Then
in 1923 Compton made an important discovery that gave the most conclusive confirmation for
the corpuscular aspect of light. By scattering X-rays with electrons, he confirmed that the X-ray
photons behave like particles with momenta Av/c; v is the frequency of the X-rays. This series of
breakthroughs—due to Planck, Einstein, Bohr, and Compton gave both the theoretical
foundations as well as the conclusive experimental confirmation for the particle aspect of waves;
that is, the concept that waves exhibit particle behaviour at the microscopic scale.

in 1923 de Broglie introduced another powerful new concept that classical physics could not
resolve. According to de Broglie postulate that not only does radiation exhibit particle-like
behavior but, conversely, material particles themselves display wave-like behaviour. This
concept was confirmed experimentally in 1927 by Davisson and Germer as interference patterns,
a property of waves, can be obtained with material particles such as electrons.

Maurice de Broglie was a French experimental physicist who, from the outset, had supported
Compton's view of the particle nature of radiation. In his doctoral thesis, presented in 1924 to the
Faculty of Science at the University of Paris, Louis de Broglie proposed the existence of matter
waves. The thoroughness and originality of his thesis was recognized at once but, because of the
apparent lack of experimental evidence, de Broglie's ideas were not considered to have any
physical reality. It was Albert Einstein who recognized their importance and validity and in turn
called them to the attention of other physicists. Five years later de Broglie won the Nobel Prize
in physics, after experimental confirmation. The hypothesis of de Broglie was that the dual
nature that is wave-particle, of radiation holds equally well to matter. A material particle (e.g., an
electron) has an associated matter wave that governs its motion like a photon. According to de
Broglie, for matter and for radiation alike the total energy E of an entity is related to the
frequency v of the wave associated with its motion by the equation,

E=AV .o (2.42)

and the momentum p of the entity is related to the wavelength Aof the associated wave by the
equation,

. (2.43)

=
I
NI
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de Broglie predicts the wavelength A of a matter wave associated with the motion of a material
particle having a momentum p.

A= e = e (2.44)

Now, kinetic energy can be written as,

KE—K—1 2_1mzvz_p2

S E R T =T T 2m
1

p=02mK)2.....c. s eev ev e ... (2.45)

When a charged particle, carrying a charge q, is accelerated through a potential difference of V
volts, then kinetic energy,

K=qlV

A=

cen e e e e e e (2.46)
2mqV

If the material particles are in thermal equilibrium at associated temperature T, then kinetic
energy is,

K—ng
= ks

1.7 Foundation of Quantum Mechanics or Wave Mechanics

The theory had dominated by the ideas of Planck and Bohr from 1900-1925 and known as the
old quantum theory. The attempt was made by Heisenberg and Schrodinger for the theoretical
foundation underlying these new ideas so that a consistent theory can be developed. Both
skillfully linked the various experimental findings as well as Bohr’s postulates into a refined
theory known as quantum mechanics. This not only provided an accurate reproduction of the
existing experimental data, but also astonishingly reliable predictions to explore and unravel
many unexplored areas of the microphysical world.

Historically, there were two independent formulations of quantum mechanics. The first
formulation was developed by Heisenberg (1925) to describe atomic structure starting from the
observed spectral lines and known as matrix mechanics. Heisenberg used Planck’s quantization
of waves and by Bohr’s model of the hydrogen atom, Heisenberg expressed dynamical quantities
such as energy, position, momentum and angular momentum in terms of matrices and he
obtained an eigenvalue problem to describe the dynamics of microscopic systems. Moreover,
discrete energy exchange between microphysical systems in terms of quanta was taken as the
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only allowed values. The diagonalization of the Hamiltonian matrix yields the energy spectrum
and the state vectors of the system. Matrix mechanics was very successful in accounting for the
discrete quanta of light emitted and absorbed by atoms.

The second formulation was put forward by Schrédinger in 1926 and called as wave mechanics.
This is a generalization of the de Broglie postulate and describes the dynamics of microscopic
matter by means of a wave equation, called the Schrédinger equation. This approach Schrédinger
obtained a differential equation was found more intuitive than matrix mechanics. The solutions
of differential equations yield the energy spectrum and the wave function of the system under
consideration. Based on probabilistic interpretation, Max Born in 1927 proposed that solutions to
the Schrodinger wave equation, square moduli of the wave functions, are probability densities.

h
A= e e e (247)

v 2mkgT )

Example 2.1: What is the de Broglie wavelength of a baseball moving at a speed v =10 m/sec?
Assuming the mass of baseball is 1.0 kg.

. h h 6.62x 10734 _
Solution: 1l =—-= — = 22— =662 % 1073°m
P mv 1.0 X10

Example 2.2: What is the de Broglie wavelength of an electron whose kinetic energy is 100 eV?

h 6.62x 10734
\2mev V2x9.1x10731 x1.6 X 10-19x100

=12 x10719 =124

Solution: A =

Example 2.3 Energy in a Bohr orbit is given to be —ni where A= 2.197 x 10™"* Joules.

2
Calculate the frequency of radiation and also the wave number when the electron jumps from
second to first orbit. Given h= 6.62x 10>* Joule-sec.

Solution: Energy of n™ Bohr orbit is given by,

A 2.197 x 10718

E, = — = — Joules
For the second orbit, n=2
2.197 x 10718
E, =— >z = —0.54475 x 10718 Joules
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2.197 x 10718

E, = 17 = —2.197 x 10718 Joules

Therefore, E;, — E; = (—0.54475 — (2.197)) x 10718 = 1.65227 x 1071% Joules
Hence, frequency of radiation when electron jumps from n=2 to n=1,

E,—E; 165227 x 10718

- 7 Tom = 02496 X 10'°

v =

= 2.496 X 10sec™?!
The corresponding wavenumber when electron jumps from n=2 to n=1,

v 2496 X 105

===

1
A ¢ 3x108
=0.832 x107m™1

Example 2.4. The series limit wavelength of Balmer series in hydrogen spectrum is
experimentally found to be 3646 A. Find the wavelength of the first member of this series.

Solution: The wavelengthsof Balmer series are given by,

'—1—R<1 1)Wh =3,4,5
= —_——= —— — = 3,4 0 ... ues o0
V=7 22 " 2 erep , 4,

For series limit p=co, then

= (%) ererefore =
=z ereforeR = 7
Given, L =3646 A, therefore, R = % e e e e (@)

For the first member of the Balmer series, p=3, then

__1_R(1 1)_5R
V=, T 227 32) T 36

Using the value of R from equation(a), we get
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36 364 36 x 3646

Al=§=5x4_ 5x 4

A, = 6562.8 &
1.8 Summary

e the radius of n™ permissible Bohr orbit for electron in hydrogen atom is,

_ [n?h%e,
=\ Imze?

e Bohr radius is defined as r5 = (0.529 x 1071%) metre.

e Total energy of the orbit according to Bohr model,

13.6
E,= — 2 eV

e Wavenumber of emitted radiation,

_ 1 mZ%*[1 1
v_l_8£§ch3 ni ni

mZz?e*
8€3ch3

¢ Rydberg constant Ry =
e Sommerfeld Model

(1) Quantization conditions for elliptical orbit,

jgprdr =n,h

(i1) Ratio of semi-minor to semi-major axis

2 2
b =‘I’l®

a? n?

(111) total energy of the electron in nth orbit
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£ - mZ%e* (n®)2 2\’
mo\32m2e2 J\n/ \ngh

£ - mZ%e*\ = mZ%e* 1 7
" \8e2h?n2) 8g2h? [n, + ny

(iv) in relativistic approach total energy of an electron

1
n4

n

En

B mZ%e* mZ%e*a?[n 3
Me T 8elh2n?  8elh? |ny 4

de Broglie relationship

h
mv

> =

p:

1.9 Glossary

Postulate: a statement that is accepted to be true and forms a basis for theory.

Energy level diagram: is a sort of one-dimensional scale of energy along which each
electron according to its energy state can be located.

Ground state: lowest energy state of an electron is called as known as ground state.
Excited state: any state other than ground state is known as excited state.

Excitation: of an atoms and molecules is a process in which the electron of the system
absorbs energy and pass on to higher energy states.

Ionization: minimum energy required to ionize atom or molecule.

Relativistic: moving at a velocity such that there is a significant change in properties
such as mass.

Ellipse: is oval like a circle that has been pressed in from two sides.

Quantization: is a process of using discrete values rather than continuous

1.10 References
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1. Quantum Mechanics Concepts and Applications, Nouredine Zettili, A John Wiley and Sons,
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2. Fundamentals of Modern Physics, J.P. Agarwal and Amit Agarwal, Pragati Prakhasnan,
Meerut

3. QUANTUM PHYSICS of Atoms, Molecules, Solids, Nuclei, and Particles, Robert Eisberg, A
John Wiley and Sons, Ltd., Publication

10.11 Suggested Readings:

1. Fundamentals of Modern Physics, J.P. Agarwal and Amit Agarwal, Pragati Prakhasnan,
Meerut

1.12 Terminate questions.
Objective questions:

a) According to Bohr, only those orbitals are permissible for electrons in which the total angular
momentum of the electron is equal to an integral multiple of;

.\ h
I)E
. R
11);
ooy h
111)5
iv) h

b) In case of elliptical orbit, the Wilson-Sommerfeld’s qunatisation condition is

)p.q=nh

ii) § p.dq = nh
iii) $p.dg = h
iv) $ q.dp = nh

c¢) For hydrogen atom, first Bohr radius is equal to,

0)0.526 A
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d) According to Louis de Broglie, an electron of mass m, moving with a velocity v was

equivalent to a wave of wavelength,

HA=-—
if) A=
iif) A= —
iv) A=—

Short Answer type questions:
2.1. Write down Bohr’s postulates of atomic model.

2.2. What are the shortcomings of Bohr’s atomic model?

2.3. State corrections proposed by Sommerfeld in Bohr atomic model.

2.4. What do you mean by excitation and ionization potentials?

Long answer type questions:

2.1. Calculate for hydrogen atom;

(1) velocity of an electron in the ground state
(i1) radius of Bohr orbit in the ground state

(ii1) Rydberg constant

Givene=1.6 x 107" coulomb, m,=9.1 x 107! kg and h = 6.62 x 10°* Joule-sec.

2.2. Energy in a Bohr orbit is given by —A/n’, where A =2.179 x 10™'® Joules and n is the number
of orbit. Calculate the frequency of radiation and also the wavenumber when the electron jumps

from the third orbit to second orbit. (given h = 6.62 x 10~* Joule-sec)

2.3. Calculate the ionization potential of hydrogen atom from the followings,
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e=1.6x 10" coulomb,
me=9.1 x 107! kg and
h=6.62 x 10** Joule-sec.

2.4. In a Franck-Hertz experiment the first dip in the current vs voltage graph for hydrogen was
observed at 10.2 Volts. Calculate the wavelength of light emitted by hydrogen when excited to
the first excitation level.

2.5. A given atom shows two excitation potentials at 4.85 and 9.67 volts. Show these on an
energy diagram and calculate the wavelengths of possible emission transitions.

2.6. A proton moves with a speed of 7.45 x 10° m/s directly towards a free proton originally at
rest. Find the distance of closest approach for the two protons.

2.7. For Lyman series, calculate the wavelength of the second member and the series limit.

1.13 Answer of terminal questions

Self Assessment Questions

2.2. Energy of emitted photon 10.21 eV
2.3.0.529 A, 1.51 x10™° Secs

2.4.6563 A

2.5.1212A

2.6.5910 A,3354 A

Objective type:

a) (1), b) (i1), ¢) (1), d) (iii)

Long answer type questions:

2.1. (i) 2.19 x10° m/sec. (ii) 0.526 A and (iii) 1.096x10" m™
2.2.0.30265 x 107'® Joules and (ii) 1.52 x10° m*
2.3.13.6 eV

2.4.1216.9 A

2.51859 A, 2551 A, 6852 A
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Unit-3 : Basics of Wave Mechanics

Structure

3.1.  Introduction

3.2.  Objectives

3.3.  de Broglie Matter Wave

3.4.  Derivation of deBroglie's Relation.

3.5.

3.4.1 deBroglie wavelength of High Energy Electrons
3.4.2 Properties of deBroglie Waves (Matter Waves)
Experimental Evidence of Matter Wave : Proof of deBroglie's Hypothesis.

Page 76



3.6.
3.7.
3.8.
3.9.

3.10.
3.11.
3.12.

3.13.
3.14.

3.1

3.5.1 Davisson and Germer Experiment.
3.5.2 G.P. Thomson's Experiment

3.5.3 Electron Double Slit Experiment.
Group and Wave Velocities

Wave Packet and its Formation

Relation between Group Velocity and Particle Velocity.

Relation between Phase Velocity and Group Velocity.
Summary

Glossary

References

Self-Assessment Questions

Solved Problems

Terminal Questions

3.14.1 Short Answer Type

3.14.2 Long Answer Type

3.14.3 Numerical Answer Type

Introduction

BSCPH 301

We have seen that radiation exhibits wave behaviour in the phenomena of interference,

diffraction etc. These are the result of interaction of radiation with radiation. At the same time in

some phenomena like black body radiation, photo electric effect and Compton effect, radiation

behaves as a set of discrete particles called 'photons'. These phenomena are the result of

interaction of radiation with matter. Radiation was thus regarded having a dual wave-particle

character but both characters, -wave and particle, are never exhibited simultaneously in any

experiment. Scientists made use of either the wave or particle nature of light (radiation) to

explain experimental phenomena as per requirements. In 1924-25 French Physicist Louis de

Broglie made a suggestion that "if the light which is known to consist of waves can assume the
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aspect of a particle (matter), then from symmetry concept, the material particles e.g. proton,

electron, etc. should also possess a wave like nature". The waves associated with these particles

are known as deBroglie waves or matter waves". This suggestion about the wave nature of

particles were later verified experimentally by Davisson andGermar in 1927 and by

G.P.Thomson in 1928. The wave properties of matter can be reconciled with particle properties

by the superposition of waves of different wavelengths to form a group of waves or a wave

packet. A wave packet can represent a particle in motion as a moving particle at any instant is

confined to a small region of space. We shall discuss about it in detail later on.

3.2

3.3

Objectives

After studying this unit you should be able to —

Understand the basis on which de Broglie suggested the concept of 'matter wave'.
Derive an expression for the wavelength of matter wave.

Examine why matter waves cannot be observed with a macroscopic bodies whereas it can

be observed with microscopic bodies like electrons protons, neutrons etc. only.

Know about the experimental evidences of matter waves as proof of deBroglie's

hypothesis.
Know about group, wave and particle velocities and their interrelations.
Understand the concept of 'wave packet'.

Solve simple numerical problems based on matter wave, group velocity, wave velocity

and particle velocity etc.
deBroglie's Matter Wave

According to deBroglie a moving particle, having any nature, has wave properties

associated with it and its wavelength is given by

o= 3.1)
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Wherehis Planck's constant having value 6.6256x107** J-s, m is the mass and v is the velocity of
the particle with which it is moving. From the above relation it is clear that the wavelength

associated with a moving particle is inversely proportional to its momentum.
3.4  Derivation of deBroglie's Relation

Let us first consider the case of photon. If the photon is considered as a wave of

frequency v, then its energy is given by

E = hv (3.2)
If the photon is considered to be a particle of mass m, then its energy is given by

E = mc (3.3)
Wherec is the velocity of light. Thus from eqns. (3.1) and (3.2) we get,

hv = mc? (3.4)

As the photon travels in free space with velocity of light ¢, its momentum is given by

p = mc (3.5)

Dividing eqns. (3.4) by (3.5) we have

hv mc’

—_— = =C

)% mc
hv h_ ¢ .

or p = —=—(""—= A1 the wavelength of radiation)
c A v
A= " (3.6)

P

deBroglie assumed that this equation should be equally applicable to both the photons of
radiation and material particles like electrons. Hence, if m is the mass of the particle moving with
velocity v, then its momentum p = mv. The wavelength of the wave associated with material

particle is then
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(3.7)

This equation is known as deBroglie's wave equation and A is called deBroglie wavelength.

This relation can also be derived by considering a material particle as a standing wave

system and the theory of relativity.

Consider a material particle e.g. electron or proton, as a standing wave system in the

vicinity of the particle. Let the standing wave at any instant # at the point (x,,y,,z,) be

represented by the function
(3.8)

v = y,sin2xvt,

Wherevy is the frequency of the wave and yy its amplitude at (x,,,,z,) -

If the particleis given a velocity v along the positive x-direction, then according to inverse

Lorentz transformation.

t+ Lz X
t, = —=<
V2
==
and the variation of yis given by
v
(t + > )Cj
v = y,sin2xv, ;2 (3.9
v
1 -
c2

The standard equation of wave motion is given by

v = v, sin{z%(twtgj} (3.10)

wherey, is the amplitude, 7 the periodic time and u the phase velocity of the wave along x-axis
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Comparing equations (3.9) and (3.10) we get

and

N =

From Einstein's mass-energy relation

E:

or V, =

<|QN

2 _
myc” = hv,

m,c

h

Putting this in equation (3.12), we get

or Vv =

As m =

The wavelength of the material particle is given by

L =

velocity  u

frequency v

2
C
v

2
mc

h

(3.11)

(3.12)

(3.13)

(3.14)

BSCPH 301
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which is the same as given by eqn. (3.7). This relation connects the wave property of light i.e. [1,
to the particle property of photon i.e. photon momentum p. If E; is the kinetic energy of material

particle then

p = +J2mE, (provided v«<c)

Thus the de-Broglie wave length is given by

A= (3.15)

\J2mE,

If a charged particle of charge ¢ is accelerated through a potential difference ' volts then E, =

qV . The de-Broglie wavelength for such a particle is given by

A= (3.16)

If a particle, say an electron, of charge e = 1.6x107"°C, is accelerated through 100 volts then

6.63x107*

= ~1.226 A
J2x9.1x107 x100x1.6x107"

A

Such wavelengths are of the same order of magnitude as those of x-rays. It would
therefore, appear that the regular array of atoms in a crystal, which have a spacing of several A
between them, might well provide a conventional diffraction grating for electron waves.
Experiments on the scattering of electron beam by the atoms at the surface of the crystal, by

Davisson and Germer, were in fact the proof of the existence of matter waves.

Introducing the wavenumber £ = 27” and the angular frequency w=27v, the de-Broglie

relation can be written as

>
I
< | =
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2r h
or £ =
ke p
h
or = —k=hk
P 2r
and similarly the energy E= hv= hzﬂ
7
or E=rlho (3.17) (where i = h/2m)

Some of de-Broglie's ideas were used by Schrodinger, Dirac, Born, Heisenberg and other

physicists which developed into the modern theory of Quantum mechanics.

It can be concluded from eqn. (3.7) that the smaller is the velocity of the particle, greater
is the wavelength associated with it and vice-versa. Further lighter the particle, greater is the
wavelength associated with it. The velocity of the matter wave depends on the velocity of
material particle. Waves are produced by the motion of the particle and are independent of the

charge.

From equation (3.14) we note that Aocl/m whenv is constant. For macroscopic
bodies,m—0, so A— 0. For example, consider the case of a cricket ball of mass 500 g flying with
a velocity of 13.9 m/s, its de Broglie wavelength is

h 6.62x107 Js

A=—0o = ~10*m=10"A
my 0.5kgx13.9m/s

which is insignificant compared to the size of the ball. As a result we are unable to observe the

wave character of such object nor we can detect the associated waves.

On the other hand, for microscopic objects [ is large and significant. For example an

electron of mass 9.1x107! kg moving with velocity 4.47x10° m/s, its de Broglie wavelength is

34
o _?1'62“0 Js = 93x10*m=93A
mv  9.1x107 kgx4.47x10°m/s
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which is large compared to the size of the electron and are well within the limit of measurement.

It may, therefore, be treated as a wave than a particle.

3.4.1 de-Broglie Wavelength of High Energy Electrons

If the energy of the electron is so high that mass of the electron varies with velocity, then

the simple expression of de Broglie wavelength of the electron (/1 = i} needs correction.
my

If p be the momentum and my, the rest mass of the electron, then the relativistic

expression for energy is, E =/ p’c’ + mjc* where, c is the velocity of light in free space.

The kinetic energy of the electron is,

_ 2 _ 2 2 2.4 2
E,=E-myc™ = \/pc” +myc’ —mc

or pct+mict = E;+mict+2m,c’E,
E (E¢ +2myc’
o P:J (B, +2m,c)
c

Then the de Broglie wavelength of electron is

_ he

h
A=2
P JE(Eg+2mc?)

If V' be the accelerating potential in volt, then
E, = eV

he
\/eV(eV +2myc’)

Page 84



or,

BSCPH 301

he

2
e\/V(V+2m°C j
e

A=

3.4.2 Properties of de Broglie Waves (Matter Waves)

Matter waves possess the following properties:

Lighter is the particle, greater is the wavelength associated with it and vice-versa.

Smaller is the velocity of the particle, greater is the wavelength associated with it and vice-

versa.
These waves are produced by the motion of the particles and are independent of the charge.

The velocity of matter wave depends on the velocity of the matter particle i.e., it is not a

constant like the velocity of an electromagnetic wave.

The wave and particle aspects of moving bodies can never appear together in the experiment,
1.e., waves have particle like properties and particles have wave like properties and are

separately linked.

The wave nature of mater introduces an uncertainty in the position of the particle because a
wave cannot be exactly at this point or at that point. However, where the wave is strong there
is a better chance of finding the particle, while where the wave is weak there is feeble chance

of finding the particle.

3.5 Experimental Evidence of Matter Wave : Proof of de Broglie's Hypothesis

The existence of matter wave or de Broglie's hypothesis can be demonstrated by a number of

experiments. We shall now discuss some of them.

3.5.1 Davisson and Germer's experiment

The first proof of the existence of "matter waves" was obtained in 1927 by two American

physicists Davisson and Germer. They succeeded in measuring the de Broglie wavelength for

slow electrons, accelerated by a low potential difference by diffraction methods. The
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experimental arrangement is shown in the Fig. 3.1. The electron beam is produced from an
electron gun consisting of tungsten filament F heated by low tension battery. The electrons
exited by the filament are accelerated in an electric field of known potential difference from a
high tension battery. The electrons are collimated to a fine beam and made to strike a Nickel
target which is capable of rotation about an axis parallel to the axis of the incident beam. The
electrons are scattered in all directions by the atoms of the crystal. The intensity of the electron
beam scattered in a given direction is measured by allowing it to enter in a Faraday cylinder
called collector C which can be moved along a graduated circular scale S, so that it is able to

receive the reflected electrons at all angled between 20° and 90°.

Fig. 3.1 : Davisson and Germer electron diffraction apparatus

Davisson and Germer noticed that the strongest of Davisson and Germer electron
diffraction apparatus the scattered electron beams corresponded accurately to diffraction maxima
that would be expected in the diffraction of X-rays by the same crystal. The angular distribution
of scattered electrons was analogous to optical diffraction patterns from a plane diffraction
grating whose lines consisted of the rows of nickel atoms in the surface of the target crystal. The

wavelength associated with the diffraction pattern can be obtained using Bragg's law:
nh  =2dsin0
whered is the distance between the rows of atoms.

It was observed by Davisson and Germer that when an electron beam accelerated by a
potential of 54 volts was directed upon a Nickel target, a sharp diffraction maxima appeared in

the electron currents. The incident and the scattered beams in this case make an angle of 65° with
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the family of Bragg's planes. The spacing of planes in this family which can be determined by x-

ray diffraction is 0.91 A. From above Bragg's equation, taking n = 1, we have,
2x0.91xsin65° = L. orh =1.65 A
The wavelength of electrons accelerated through potential of 54 volts can be calculated as

lmv2 = eV

Wherem is the mass of the electron

<.
Il
[\®)
3
Q
<

m

or myv = 2meV

Putting 7 =6.6x107*J-s, m=9x10~" kgand e=1.6x10"" coulomb, we obtain

A = g with V' = 54 volts
N
A= 1.66A.

There is an excellent agreement between the two results. Thus Davisson Germer experiment is a
definite evidence that the electron beams do behave as waves and the wavelengths of these

beams is thus given by the de-Broglie equation.
3.5.2 G.P. Thomson's Experiment

The wave nature of moving electron was confirmed through G.P. Thomson's electron
diffraction experiment in 1928. A beam of electron of velocity v was passed through a thin foil of
gold and the diffraction pattern obtained was found to be exactly similar to that obtained from X-

rays,
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The experimental arrangement is shown in Fig 3.2.7 is a closed tube in which the air
pressure is made very low with the help of the pumps. At one end of T, there is a filament which
is heated to produce electron beams. These electrons are then accelerated by a potential
difference of 50,000V to the anode A. The electron beam passes through a narrow hole of the
anode and falls normally on a gold foil G of thickness 10~8 m. The electrons suffer diffraction
and are recorded on a photoplate P. The diffraction pattern was exactly similar to those obtained
by diffraction of X-rays by powdered crystals in Debye-Scherrer method. The diffraction pattern

was found to consist of a series of concentric rings about a central spot.

To be sure that the pattern was due to the electron beam and not due to the X-rays
produced due to the impact of cathode rays on the film, the experiment was repeated by
introducing a magnetic field between the film and the photographic plate. The diffraction pattern
in presence of the magnetic field was found to be exactly similar except that the whole pattern is
moved to one side due to the field. This proves that the diffraction pattern was due to the charged
particles (electrons) all of them having the same velocity. On removing the film a central spot is
recorded on the photoplate due to the direct electron beam. The experiment was repeated with
beam of protons, neutrons and molecules, and all are found to show wave character under

suitable conditions.

To pump To pump

Fig 3.2: G.P. Thomson's experiment
Calculation of A

The gold foil being polycrystalline, there are some atomic planes set at correct angle to

give Bragg diffraction. If the number of crystals distributed at random be large, the Bragg
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reflection will form a series of concentric rings due to the intersection of the diffraction cone

with the photographic plate.

In Fig 3.3, let PQ be the incident electron beam passing through the gold film at Q. The
beam after suffering Bragg reflection at some crystal the reflected beam goes along QR meeting

the photoplate at R. If O be the position of the central spot and OR =r, then,
r/l=tan20; 260
where, / is the distance QO and ZOQR = 26, the angle of scattering and 0 is the glancing angle.

Again, if d be the distance between two parallel lattice planes and A the wavelength of the
de Broglie wave associated with the electron, then according Bragg's law, 2d sin 6 = n\ [n is the

order of diffraction.]
Again,
2dsin@; 2d0=dtan26 [Q@is small]

or, dtan20 =2dsin@ =nA

or,. dﬁznﬂ,
[
or, l:ﬂ
nl

g-sﬂ-‘-ﬁ- —y D m

T
Y

Fig. 3.3Schematic diagram of G.P.Thomson's experiment
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The value of A calculated from the above relation agrees closely with the value calculated from

_ 1227

'

A , V' is the accelerating potential.

Thus we note that the experiment provides an excellent and direct confirmation wave

nature of electrons proposed by de Broglie.

3.5.3 Electron Double Slit Experiment

The electron double slit experiment is another experiment that exhibits the existence of

matter wave, for example waves associated with electrons.

The basic experimental arrangement is simple one thematically shown in the figure
(Fig.3.4). A stream of focussed electrons from an electron gun impinges on a plate with two
narrow slits separated a small distance apart. The electrons transmitted through the slits are
observed to form a typical diffraction pattern, identical to that of Young's double slit experiment
with visible light, on the fluorescent screen behind the slit plate. When the intensity of the
electron source is very low, the locations of where electrons hit the screen and thereby causing a
fluorescent spot, would appear to be completely arbitrary. However, if we either increase the
intensity of the electron source or to allow the experiment to run for a very long time,a pattern on
the screen will emerge. The pattern on the screen has a central bright band followed by a non-
illuminated band and then a relatively less intense band on either sides of it. This intensity
pattern cannot be predicted with electrons being treated in a classical manner, as a particle. This
conceptual mystery can be resolved only with quantum mechanical concept assuming a wave
associated with the moving electrons. The deflection of electrons has no classical explanation.
The stripy interference pattern suggests that the electrons somehow interfere with each other so
they don't arrive in the same places they would if they were alone. However, the interference
pattern remains even when we fire the electrons one by one, so that they have no chance to
interfere. But strongly, each individual electron contributes one dot to an overall pattern that

looks like the interference pattern of a wave, but after lapse of some time only.
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The result of his experiment suggests that what we call 'particle' such as electrons,

somehow combine characteristics of waves the famous wave-particle duality.
3.6 Group and Wave Velocities

A particle while moving with velocity v can be explained as a group of waves which is moving
along, a single direction. The group velocity is defined as the velocity with which a slowly

varying envelope or packet due to group of waves travels in a medium

According to de Broglie hypothesis a material particle in motion is associated with a
wave of wave - length 4 = h/mv, where m is the mass and v the velocity of the particle. The
group velocity can be shown equal to the velocity of the particle. If E is the energy of the particle

and v the frequency of the wave then by quantum condition
E=hvorv=FElh
But according to Einstein's mass-energy relation we have

E= mcz, so that

Thus the velocity of the propagation of the wave, called phase velocity, v, is given by

2
v, = V/lzmc i
h mv
CZ
or v, = — (3.18)
%

which is also called de-Broglie wave velocity

According to special theory of relativity, the speed of light is the maximum speed that a
particle in nature can attain i.e. the speed of material particle (v) is always less then the speed of
light ¢. The above equation implies that the de-Broglie wave velocity must be greater than c.

This is an unexpected result. Further, accordingly the de-Broglie wave associated with the
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particle would travel faster thanthe particle itself, thus leaving the particle far behind. So it is

clear that a material particle cannot be equivalent to a single wave train.

This difficulty was resolved by Schrodinger by postulating that a material particle in

motion is equivalent to a wave packet rather than a single wave.
3.7 Wave Packet and its formation

A wave packet is a type of wave motion comprising a group of waves, each with slightly
differentvelocity and wavelength, with phases and amplitude so chosen that they interfere
constructively only overa small region of space where the particle can be located, outside of
which they produce destructive interference so that the amplitude reduces to zero rapidly.
Alternatively a wave packet is a localized disturbance that results from the sum of many different
wave forms. In other words, the behaviour of then particle should be describable by a wave
function y(x, f) whose magnitude is large in regions wherethe probability of occurrence of the
particle is large; in other regions where the particle is less likely tobe found, the magnitude of

is small.
The simplest type of wave is, a plane monochromatic wave expressed mathematically as

w(x,t) = Aexpli(kx—wt)] (3.19)

which represents a disturbance of wavelength A= 27 /k travelling in the direction of its wave
vector k with constant velocity @/k. For the propagation of matter waves, the frequency ® is

related to the be energy E of the particle as (given by eqn. 3.17)

E=hv = h—a):ha)
2
where o= i
27

and from de-Broglie relation, the momentum, p and wave number k are connected by

b = hk (Qp: :@:hk) (3.20)

A

NS
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A wave packet can be constructed by principle of superposition, which states that if a particle
can be present in the states described by the wave function y, and y, it can also be in all states

described by the wave function constructed from y, and y, by linear transformation

Yy = aytay,

Wherea; and a, are arbitrary complex numbers. Mathematically the wave packet in one
dimension isdescribed as

w(x,t) = J_ j A(k)exp.[i(kx — at)|dk (3.21)

where, A(k) is the amplitude, a function of & and is called the Fourier transform of the function
w(x,1)

Using eqns. (3.17) and (3.20) we may write eqn (3.21) in the following form

v(x1) = J— ] a(p)exp[ (px~ Er)}lp (3.22)

A typical form for a wave packet is shown in fig 3.5 where w(x,?) is plotted against x
fora particular time ¢ since y(x,¢) is in. general complex, what we have actually plotted is real

part ofy(x,7) as a function of x for a particular time 7. The average wavelength [y and the

approximate extension Ax of the wave packet are shown in the figure

P

Amplitude ()

o)

Fig 3.5:a wave packet
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A wave packet consists of a group of waves each having slightly different velocity and
wavelength. Such a packet moves with its own velocity v, called the group velocity. The group
velocity may be defined as "the velocity with which a slowly varying envelope or packet due to a
group of waves travels in a medium". This is the velocity with which the energy in the wave

group is transmitted.

One dimensional wave packet formed by superposition of plane waves is described by

A(k)ei/(kxfa)x)dk

v = |

if the range of values of & for which the components have significant amplitude is limited, then it
is possible to assign an average velocity to the wave packet. Assuming that,4(k) is negligible

except when £ lies in a small interval Ak around k, the wave packet can be written as
w(x,t) = j A(k)e = g (3.23)

where the integration extends over the region Ak. Assuming that a(k) varies slowly with £, it can

be expanded in a Taylor series about k =k, .

mm:www+w—%{%§j

1 o[ d*w
+—(k—k —_— +... 3.24
2( 0) (dkz szk ( )

k=k,

Assuming that the second and higher order terms can be neglected, we obtain

1 d
w(x,t)~ EAJ; A(k)exp.i {(k —ky)x+kyx — @yt — (d—fjkzko (k- ko)t} dk
= f(x,t)expli(kyx —w,t)] (3.25)

where @, = w(k,) and f(x,t), which determines the envelope of the wave packet, is given by
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f(x,t)=ﬁ [ A(k)explZi(x—fl—Z)tj (k—ko)}dk (3.26)

Since the function f(x,7) depends on x and ¢ only through the combination (x—fl—z)tj

the wave packet propagates without distortion with velocity v, where

do
y = ¢ 3.27
is known as the group velocity of the wave since it represents,the velocity of motion of a group
of waves, which make up the wave packet. The wave packet remains undistorted as long as the

neglect of second and higher order terms in equation (2.21) are justified.

Since @ = 27y
= 27
A
y = do_ 2mdv . dv (3.28)
dk  —(x/2%)dA da

3.8 Relation Between Group Velocity and Particle Velocity

deBroglie's assumption that the equation £ = % @ is valid for matter as well as for radiation, may
be made plausible by computing the group velocity of a wave packet that represents a non

relativistic particle whose energy and momentum are connected by the relation. E =

2

P
2m
and dE _p_,
dp m
But from E = hw and p= hk
dE = hdw and dp= hdk
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dE dw
or — = —=v by eqn. 3.27
dp TR (by eq )
Thus Vg =V (3.29)
1e. group velocity of wave packet = velocity of the particle
For a relativistic particle
E? = p202+ m§c4
2
and dE _ pe
dp E
m,c’ m,v
But E = —-—— and p= —2—
V1- v/ ¢? VJ1- v/ c?
2
Therefore v, = 9k _ pe
& dp E
putting for £ and p we get, Vg =V (3.30)

Thus energy-frequency and momentum-wave vector relations introduced by de-Broglie,
lead to the conclusion that the velocity of a particle is to be associated with the group velocity of

the wave packet.

3.9 Relation Between Phase Velocity and Group Velocity

(1) Non-relativistic Particle: For particle which resemble a small wave packet rather than

infinitely long wave, the phase velocity is given by
v, = nl

p

According to de-Broglie hypothesis, the material particle associated with wave has wavelength
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g

(3.31)

Thus for a non-relativistic free particle the phase velocity is half of the group velocity.

Further, as

Also from (3.29)

or

But

Dividing, we get

Putting in (3.32) we have

a
y =—
k

(3.32)
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v =y —j—2 (3.33)

(i)  For relativistic particle : The phase velocity v, is defined by the relation

P

@
=— 3.34
' k (3.3

and represents the velocity of propagation of an infinitely long monochromatic plane wave. If [
is wavelength and v the frequency of the wave then phase velocity given by eqn. (3.34) can also

be written as

v =vA (3.35)

P

and as shown earlier in eqn. (3.18) the phase velocity of associated de-Broglie wave is given by

The group and phase velocities are equal only in the case where v, is independent of k. A

medium of which fl—Z} is independent of k (i.e. @ o k) is known as dispersionless medium.

3.10 Summary

1. deBroglie suggested that like radiation, matter should also show dual character and hence

material particles can also possess wave like character.

2. The wave associated with the particle has wavelength given by A =4/ p =h/mv, where

p is momentum of the particle and 4 the Planck's constant.

3. A wave packet is a type of wave motion comprising a group of waves, each with slightly
different velocity and wavelength, with phases and amplitude so chosen that they
interfere constructively over only a small region of space where the particle can be
located, outside of which they interfere destructively so that the amplitude reduces to zero

rapidly.
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The group velocity (v,) is the velocity with which a slowly varying envelop or packet due
to group of waves travel in a medium. The phase velocity (v,) of a wave is the velocity
with which the displacement of the crest or trough of the wave travels in a medium. In a
dispersive medium v, is different for different wavelength. The particle velocity is

practically the group velocity.

For no-relativistic particles the group and phase velocities are related as v, = /2v,
The wave character of particle can be observed through various experiments.
Glossary

Wave-particle duality : Exhibiting both particle and wave like behaviour by light

(radiation) and particle (matter) under suitable conditions.
Matter waves : Waves associated with a particle in motion.
deBroglie waves : Matter waves.

deBroglie wavelength : The wavelength of the wave associated with a moving particle

and given by the relation.
A=h/mv

Wave packet : A theoretical conception which are employed to explain the experimental

findings.

A wave packet is a short ' burst' or 'envelope' of localized wave action that travels as a

unit.

Group Velocity : The velocity with which a slowly varying envelope or packet due to

group of waves travel in a medium.
Phase velocity : The rate at which the phase of the wave propagates in space given.
Particle velocity: The velocity of the particle which is equal to the group velocity of the

waves.
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Self Assessment Questions (SAQ)

SAQ-1.

SAQ-2

SAQ-3
SAQ-4

SAQ-5

What do you understand by wave-particle duality?

What led deBroglie to suggest that the material particle should also show wave

nature?
What is the difference between light (electromagnetic) waves and matter waves?
What do you understand by 'wave packet' and what is its importance?

Why a monochromatic wave cannot represent a particle?

3.13 Solved Problems

Problem 1: What is the deBroglie wavelength of an electron moving with velocity

v =3/5¢c?

Solution: The deBroglie wavelength is

A=h/my

Here v/c = 3/5, so the electron mass undergoes relativistic variation by the relation
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m,

Ja=v/e?)
24
L h T 663x107 /1_%

My 9.1><10’31><gc

m= m, =rest mass of electron

6.63x107* x4

= — < =0.323x10"m
9.1x107° x3x3x10

=0.0323 A.

Problem 2: What voltage must be applied to an electron microscope to produce electrons of

wavelength 0.40 A?

Solution: The deBroglie wavelength is given by

Here [1=0.40A=0.40x10""m
h=6.62 x 10*Js
m=9.1x10""kg
e=1.6x10"C

6.62x107* 1

A= _
J2x9.1x107" x1.60x10™"° WV

N 6.62x107*

=30.6
0.4x107"° x4/2x9.1x107' x1.6x10™"

or

V'=936.36 volts.

Problem 3: You have 10 e} photon and 10 eVelectron, which one has shorter wavelength? Give

reason.
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Solution: Energy of a 10 e} photon

E=10x1.6x10"7J (- 1eV=1.6x10"7)
Again E:hv=E
A
34 8
gl te 002210 030 1h0x100m=1240 A
p E 10x1.6x10

Now for an electron,

E=—mv

myv =+/2mE and the associated deBroglie wavelength is

h h 6.62x107%*

ﬂ:—: =
mv. \2mE  \[(2x9.1x107 x10x1.6x107")

=388x10""m=3.88A
Hence electron will have shorter wavelength.
Problem 4: Find the deBroglie wavelength associated with a 50 el electron.

Solution: We have,

Putting the values,

6.62x107%*

ﬂ/:
J(2x9.1x10 7 x50x1.6x10™"")

=1.66x10""m=1.66 A.

3.14 Terminal Questions
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Short Answer Type

What do you understand by wave-particle duality?

What are matter waves?

What led deBroglie to think that the material particles should also exhibit wave nature.
What is the difference between light (electromagnetic) waves and matter waves?

How matter waves are not electromagnetic?

Why we cannot observe matter or deBroglie waves associated with moving objects in our

daily life?

What are wave-packets?

Why a monochromatic wave cannot represent a particle?

What is the significance of Davisson and Germer experimental result?
What are group velocity and phase velocity? Which one is greater?

Show that the deBroglie wavelength [Tof electron of energy E = el is given by

A= h .
meV
Long Answer Type

Discuss the basic results that led to the formation of the wave concept of matter. What are

deBroglie waves? Derive an expression for its wavelength.

State deBroglie theory of mater waves. Give experimental verification for this

hypothesis.

Derive an expression for the deBroglie wavelength for a particle in terms of its kinetic

energy.

What do you understand by wave packet? How does it represent a particle?
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Distinguish between group velocity and phase velocity. Show that for a non-relativistic

free particle the phase velocity is half of the group velocity.

What are group, phase and particle velocities? Show that phase velocity of associated

waves is always greater thanthe velocity of light in vacuum.

On the basisof deBroglie's matter wave hypothesis establish the correspondence between
particle concept and wave concept. Explain weave-particle dualism by Davisson-

Germer's experiment.

Describe Davisson and Germer experiment on diffraction of electrons and explain how it

explains the nature of an electron beam.
Show that group velocity v, = A % , where the symbols have their usual meanings.

Prove that wave group associated with a moving particle travels with the same velocity as

that of the particle.

Show that the deBroglie wavelength of an electron beam accelerated by a potential V

volt, under relativistic condition, is given by

h eV
A= 1-——
\2meV mc
Describe G.P. Thomson's experiment that demonstrates the wave-like behaviour of
electrons. What are the practical applications of wave nature of electrons?

Numerical Answer Type

Calculate the de-Broglie wavelength of an electron which has kinetic energy equal to 15

eV (Ans. : 3.12 A)

What voltage must be applied to an electron microscope to produce electrons of
wavelength 0.5 A? Given e=1.6 x0 107 C, m=9.1x107' kg and / = 6.62x107>* J-s
[Ans : 602.4 V]
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3. A bullet of mass 40 g travels at a speed of 1000 m/s What wavelength can be associated

with it?

4. Find the energy of the neutron in eV whose deBroglie wavelength is 1 A

(Ans : 8.13x107%¢)

5. A spectral line has wavelength 4000 A. Calculate frequency and the energy inel of the
photon associated with it.[Ans. v =0.75x10"> Hz, E=3.1 eV]

6. Calculate the wavelength associated with an electron subjected to a potential difference

of 1.25 kV [Ans. 11 A]

Unit 4 : Heisenberg's Uncertainty Principle

Structure
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4.1 Introduction

In the previous chapter we have discussed about the dual-character of light and particle in

which light (e.m. waves) behaves as particles and particles like electrons protons, neutrons also
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behave as waves. Various explanations were given to explain this 'wave-particle duality' but the

best known consequence of the wave-particle duality is the 'Uncertainty Principle'.

The uncertainty principle or principle of indeterminacy was proposed by Heisenberg in
1927.According to classical mechanics, a moving particle has a definite momentum and position
in space and both the physical quantities i.e., position and momentum can be determined
accurately. However, recently the classical view has been proved to be an approximation only
and it is inadequate for describing the dynamical behaviour of microscopic objects like sub-

atomic particles.

In quantum mechanics, a particle is described by a 'wave-packet' of linear extension (Ax)
that surrounds the position of the classical particle and moves with group velocity. From Max
Born'sprobability interpretation, the particle can be found everywhere within the wave packet.
This means that the position of the particle is uncertain within the limit Ax. Again, a wavepacket
is formed by the superposition of a large number of waves having different wavelengths. Hence,

the wavelength of the wave packet cannot be said definitely.

In other way we can say that the wavelength of the wave packet lies within certain range

Ato A+AA.

As the momentum of a particle is related to the wavelength by deBroglie's relation-

A= (4.1)

oy 2t
p =7

h
or Ap = —?di (4.2)
and the particle momentum is also within range p to p + Ap . Therefore, now the momentum of

the particle cannot have a definite value. Hence, because of the wave nature of particle there is

uncertainty (Ax) in position and a corresponding uncertainty (Ap) in momentum of the particle.

Now if the number of superposed wave as well as their range of wavelength (AL) is
increased, then the linear spread (Ax) of the wave packet decreases. But simultaneously the

uncertainty (Ap) in momentum increases as Ap «c A4, when A4 =0, Ap =ccand Ax=0, i.e. the
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wave packet reduces to a point. In this position, there is no uncertainty in the position of the

particle.

Now for a definite A, AL =0, then Ap =0 (as Ap A1), and so there is no uncertainty in

the momentum of the particle but in this case Ax = oo, i.e., the position uncertainty is infinite

since the associated wave with the particle may now extend uptoco.

— 00 - Ax P + oo
A AA NN
FARLW A i W e
no precise location 5 Ap - oo
uncertainty Ap, = 0 (precise momentum) _ uncertainly Ap, # 0 (finite)
(a) (b) (c)

Fig. 4.1 :(a) a plane monochromatic wave (k = a constant)

(b) a superposition of plane waves of slightly different k's, forming a wave
group.

4.2 Objectives

After studying this chapter you should be able to understand the following points and

answer same simple related questions.

1. Concept of uncertainty in measurement of physical quantities.

2. How fundamentally uncertainties are introduced in measurement of some dynamical
conjugate variables associated with microscopic objects.

Statement and explanation of Heisenberg's uncertainty principle.

Uncertainty of position-momentum and energy-time.

Verification of uncertainty principle through various theoretical experiments.

AN

Some applications of uncertainty principle and simple problems based on it.
4.3 Heisenberg's Uncertainty Principle

The uncertainty principle states that "It is fundamentally impossible to determine
simultaneously the position and the momentum of a particle to an accuracy greater than one

quantum of action A."
Mathematiclaly this principle can be expressed as
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AxAp = h (4.3)

where h=h/2z, h being the Planck's constant = 6.62x107* J-s. Here Ax is the error
(uncertainty) in the determination of position of the particle and Apy is the error (uncertainty) in
the determination of the x-component of momentum. If the position is determined accurately,
then Ax becomes smaller and consequently larger is Apx and vice-versa. It must be kept in mind

that the uncertainties do not lie in the apparatus used for the measurement but in the nature itself.
In three dimensions, the uncertainty relations are given as
AxAp = h
AyAp, > h (4.4)
AzAp_ > h
4.3.1 Elementary Proof of Uncertainty Relation
For a particle moving along the x-direction, the deBroglie wavelength A is given by

A=h/px.

or, D, = =hk 4.5)

If the wave packet be considered as the superposition of two simple harmonic waves of

propagation constants k and & + Ak, then linear extension of the wave packet is,

2z

Ax =22
Ak

(4.6)

As, the particle lies somewhere within the wave packet, Ax is the uncertainty in the position of
the particle and Ak is the uncertainty in the corresponding propagation constant of the associated

wave.
The uncertainty in the momentum Ap,is obtained from eq. (4.5)
Ap. =hAk (4.7)
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From eq. (4.6) and (4.7), we get the product of the uncertainty as
2
AxAp =—xhAk =27h=h
T Ak

The above equality may be replaced by an inequality and then
AxAp, = h (4.8)

4.4 Conclusions from Uncertainty Relations
From the Heisenberg's uncertainty relation

AxAp, =h

we may conclude that

h h
i IfAx=0,then Ap =—=—=
(i) P =T

Thus, if the uncertainty in the position measurement of a moving particle be zero, then at
the same moment the uncertainty in the momentum measurement will be infinity.
(i) If the momentum be measured accurately i.e.,Ap =0, then the uncertainty in the

position mesurement will be infinite, that is

Av= TP
Ap, 0

(iili) For a particle of mass mmoving with velocity v, along the x-direction, its momentum is

p,. =mv_, then from uncertainty relation

AxAp, =h
or AxAv, = n
m

For heavy particle,m —o0, then

Ax-Av, :E:O.

e}
For such a particle both the position and momentum can be determined accurately. This

is true for macroscopic bodies whose motion can be discussed in classical mechanics.
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Hence, the uncertainty relation bears no significance in classical mechanics rather only
for microscopic objects like electron, proton, neutron, atom etc. where quantum

mechanics is applicable.
4.5 Time-Energy Uncertainty Relation
The time-Energy Uncertainty Principle states that —

In any simultaneous determination of time and energy of a moving particle, the product

of the uncertainty is of the order of Planck's constant, i.e.,
AEAt>H

Here, AE is the uncertainty in measurement of energy and At, the corresponding uncertainty in

the measurement of time.
4.5.1 Elementary proof of Time-Energy Uncertainty Relation

Let a moving particle is represented by a wave packet whose group velocity is equal to
the particle velocity. Now, if the wave packet extended in range Ax moved along the x-axis with

group velocity v,, then

v, =—, or At = 4.9
£ At (49)

Ax Ax

Vg
WhereA¢ is the time in which the wave packet moves through Ax. Ax and At are the uncertainties
in x-coordinate and time associated with the particle. If m be the mass, p, the momentum and £

the kinetic energy of the particle, then,

2
Folt
2m
or AE = 2P _Pep, MV A,
2m m m
or AE =v Ap, (4.10)

From equations (4.9) and (4.10), we get
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AE.At:vapx.ngx.Apx [-..vx :vg]
v
4
But, Ax-Ap_ =h.
Therefore, AE.At>H (4.11)

Eq. (4.11) represents the time-energy uncertainty relation.
From eq. (4.11), we have

h
At =— 4.11a
G (4.11a)

If AE be the maximum uncertainty in determining the energy for a system in a particular state,
then from above equation At is the minimum i.e. the system remains in that state for a minimum

time. Again

h

AE =—
At

(4.11b)

The above relation shows that if a system remains in a particular state for a maximum intervalof

time then the uncertainty in the measurement of energy is the minimum.
4.6Angular Position-Angular Momentum Uncertainty Principle
The angular position angular momentum uncertainty principle is stated as below:

In any simultaneous determination of angular position and angular momentum of a
particle, the product of the uncertainties in angular momentum AL and angular positionA¢ is

greater than or equal to the Planck's constant 7 i.e.
ALAG>h (4.12)
In fact the Heisenberg's uncertainty principle is valid for any canonical conjugate variables.

4.7 Derivation of Uncertainty Principle from deBroglie's Wave Concept
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It is possible to derive the Heisenberg's uncertainty principle using de-Broglie's wave concept
which proposes that a particle in motion can be taken as a group of waves or a wave packet, the

group velocity being equal to the particle velocity.

Let us consider a group of waves having only components of equal amplitude but having
slightly different angular frequencies (0\ and o”. The wave displacements for two components

are given as
w, = acos(ot —kx)
v, =acos(w,t —k,x)

—L and —2 represent their respective phase velocities.

1 2

where

The resultant displacement

Vv=y ty, :2«CZ(JOS|:(a)1 +a)2)t— (kl +k2)xj|XCOS|:(a)1 _a)z)t_ (kl _kz)x:l

2 2 2
=2a cos(wt—kx)cos(A—wt—A—kxj (4.13)
2 2
where @ (@) (k)
2 2 (4.14)

and Aw=0-0,; A=k -k,

The resultant is plotted in Fig. (3.1), where the loop formed will travel with group velocity v,.
Now this group velocity is equal to the particle velocity and hence the loop is equivalent to the

position of
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Fig. 4.2

the particle. Thus the position of the particle cannot be determined with certainty. It is expected
to lie somewhere between the two consecutive nodes. In other words, the error in the
measurement of the position of the particle is therefore equal to the distance between these two

nodes.

Now a node is formed when

or

Thus, if x, and x, represent the positions of two successive nodes, then at any instant 7, we get

Thus, if x; and x; represent the positions of two successive nodes, then at any instant ¢, we get

Ao, Ak _(n+Z
2 2

and Ao, Ak (on+3)E
22 2

Subtracting, we get ATk(x1 -x,)=02n+3-2n- 1)% =7

Therefore, the error in the measurement of the position of the particle is

2

A)C:XI—XZZE

(4.15)
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Now k = 2 = 27p
A k
Ak — 277[ Ap (4.16)
Hence Ax =ﬂ
27Ap
AxAp =h
or Ax-Ap>h (4.17)

whereAp represents the error in the measurement of momentum.

The treatment given above is very elementary. If we take a group of large number of waves
having continuously varying frequencies, we get the product of the fundamental errors as ApAx=

h /2, which is exact form of uncertainty principle.
4.8 Illustration (Experimental Verification) of Heisenberg's Uncertainty Principle

The validation of Heisenberg's uncertainty principle may be illustrated by the following thought
experiments: A thought experiment is an imaginary experiment which is not possible to be

performed in practice however, it does not violate any fundamental law of nature.
4.8.1 Electron Diffraction through a Single Slit

Let a monoenergetic parallel beam of electrons moving along the x -direction be incident on a
single slit of width Ay. As the electron in motion is associated with de Broglie wave, the electron
beam after passing through the slit undergoes diffraction producing a Fraunhoferelectron

diffraction pattern on the photoplate P, placed perpendicular to the x-axis [Fig 4.3].
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P
Electron béam >
7
5 Aly—<fﬂz__: X
8 D

Fig.4.3 :Diffraction of electron wave through a single slit

The first minimum of the diffraction pattern satisfies the relation Aysin& =1, where 0 is the

angle of diffraction for the first order and A is the de Broglie wavelength. Nowthe uncertainty in
the position of an electron in the slit is Ay as it is very difficult to exactly the position of the

electron in the slit,

or, Ay = ﬂ (418)
sind

Before incidence, let the momentum of the electron along the x-direction be p. After
diffraction if the electron moves along OC, then the component of momentum p along the y-
direction is psin®. If the electron moves along OD after diffraction, then the ycomponent

momentum is —psin @ . Since the electron may be anywhere within —0 to +0, the y-component

of momentum must be anywhere between — psinfto psiné.

Thus the uncertainty in the momentum measurement of the electron is,

Ap, = psin€—(—psin0)
Ap,=2psin®
or Ap,=2h/Apsiné (~A=h/p) (4.19)

Multiplying equations (4.18) and (4.19) we get,

A 2h
AVvAp = x—sin@ =2h
Yy T ine A
or AyAp, =2h
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or AyAp,>21h/2 (4.20)

To decrease the uncertainty in the determination position of the electron, Ay must be decreased.
But equation (4.18) shows that a decrease in Ay leads to the increase in 0 and the diffraction
pattern will be wider. This will cause a larger uncertainty in Ap. Thus the electron diffraction

experiment established the truth of uncertainty principle.
4.8.2 Gamma-Ray Microscope Experiment

This hypothetical experiment was suggested by Bohr and was developed by Heisenberg to
establish the validity of uncertainty principle. The use of y-ray in the experiment can be justified

as follows:

The atomic radius is ~ 10" m. So to determine the position of an electron with an
uncertainty of about 10% of the atomic radius, radiation of wavelength
~10"2 m=0.01 A is needed. The wavelength of jrays being ~ 0.01 A, it is an efficient agent to

conduct the experiment.

We suppose, O be the position of the electron and A, the wavelength of the y-ray. If a be
the semi-vertical angle of the cone of the y-rays entering into the microscope objective from the

electron, then the resolving of the microscope is given by,

Ax—/i

= 4.21
2sina ( )

Here, Ax is the distance between two points which can just be resolved by the microscope. This
suggests that for greater resolving power Ax should be small which can be achieved if A be small.
We know that the y-rays emitted from the atomic nuclei have smallest wavelength available in
nature. That is why j~rays are used to locate the position of the electron with minimum
uncertainty. In this connection, it must be remembered that we cannot observe an object with the
help of a microscope which uses j-ray beam. The microscope using lens, etc. cannot refract y-

rays. This is why the experiment is known as athought experiment.
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The incident j~ray photon is scattered by the electron due to Compton effect and enters into the
microscope. During bouncing off into the microscope the photon transfers momentum to the
electron. The amount of transferred momentum is uncertain as the aperture of the microscope is

definite.
The uncertainty in momentum of the recoil electron can be calculated as follows:

We suppose that a y-ray photon of momentum /v/cstrikes an electron of mass m at rest.
After scattering the photon enters into microscope and making an angle ¢ with the direction of
incidence and the electron moves with momentum myv along a direction making an angle 6 with

the x-axis as in Fig 4.4

0
y-ray
microscope

photon electron
hv

Fig 4.4 y-ray microscope experiment

Now, from the momentum conservation principle along the x-direction [Fig 4.5],

ﬂ:h—vcos¢+mvcos¢
c c
or D, =mvcos¢9=ﬂ—h—vcos¢
c c
h :
or p,=—(WV-v'cosg) (4.22)
c
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xY

Incident
photon

Fig 4.5 Scattering of photon by an electron

Here, p, is the x-component of momentum of the electron. Since the limits of the angle ¢through
which the photon enters the microscope objective are from (772 —a) to (n/2 + @), the spread in

the x-component of momentum is given by,

cprelafomeclrren{3el
—|v=vcos| ——a |[|Sp, S—|v-vcos| —+ta
c 2 c 2

or ﬁ[v—v’sina]ﬁpxSﬁ[v—v'sina]
c c

The uncertainty in the momentum is given by,

Ap, :ﬁ[v+v’sina]—ﬁ[v—v’sina]
C C

h h' . hy W' .
=—+4+—sin@g——+—sina
c ¢ c ¢

= Zh sina

2h
=—sina 4.23
7 (4.23)
From equations (4.21) and (4.23),

AxAp, =

A 2 Gina = h (4.24)
2sina A
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which is consistent with AxAp,>7 .
Hence, the experiment established the validity of the uncertainty principle.
4.9 Applications of Uncertainty Principle

(i) Non-existence of free electronin the nucleus. The radius of the nucleus of any atom is
of the order 107'* m, so that if the electron is confined with nucleus, the uncertainty in its

position must be greater than 10~'* m. According to uncertainty principle

AxAp, =h

whereAx is the uncertainty in position and Ap is the uncertainty in momentum and

hi=h/2r.

h_ 6.63x107"  6.63x107
Ax  27x2x107" 4

Thus Ap= [Ax=2a=2x10"m]

~ 5.275x107 kg m/s.

If this is the uncertainty in momentum of the electron, the momentum of the electron must be at

least comparable with its magnitude i.e.
p=5.275x10" kgm/s.

The kinetic energy of the electron of mass m is given by

P’ _(5275x107)

T: -31
2m 2x9x%10

(m=9.1x10-31kg)

(5.275x107*")?

= — —eV=9.7x10"eV »97MeV
2x9.1x107" x1.6x10

or,

This means that if the electrons exist inside the nucleus, their kinetic energy must be of the order
of 97 MeV. But experimental observations show that an electron in the atom possesses energy in

the range 4 MeV to 9 MeV. Clearly the inference is that the electrons do not exist in the nucleus,
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ii) Determination of the size of atom. Consider the simplest atom, say, hydrogen atom which
consists of an electron and a proton. Again assuming that electron is confined to a circular region
of radius 'a’ then the maximum uncertainty in the position of the electron w.r.t. nucleus is Aa =

a.

From uncertainty principle the minimum uncertainty in the corresponding simultaneous

momentum is

Apzl:ﬁwhereh:i
Aa a 2

(again the constants in uncertainty relation are chosen to get the exact result).

Since the momentum of electron cannot be less than Ap, then p=7#/a

Now, kinetic energy of electron =

p_n
m 2ma’

as uncertainty principle relates Ax to Ap,,Ay to Ap, and Az to Ap,

2
2

pP=pl+p.+pl=(Ap,)’ +(Ap,) +(Ap.) ==

The electrostatic potential energy is —e*/4 e ga. Therefore, the total energy is given by

2 2
h e

——
2ma” 4re,a

E

The ground state of the atom will correspond to a minimum value of £ for which dE/da must be
equal to zero. i.e., dE/da=0
dE I’ e’

or — == T+ -=0
da 2ma’ 4re;a

e’ n’
or =
dre, 2ma
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a:47reohz _&

or
me’ me’

(4.25)

Putting the values of constants, we get a =a, =0.5x 107" m, where aq represents the minimum

value of a. Thus the finite size of the atom is due to the uncertainty principle. According to
(4.25) the atomic dimensions are of the order of Angstrom which is indeed correct. The

minimum energy is given by

h’ e’

= 2 —
2ma, 4re,a,

Substituting values, we have
E=-13.6¢eV (4.26)
which in indeed the ground state energy of hydrogen atom.
(iii) Existence of neutrons, protons and o-particles in the nucleus. The rest mass of

neutronsand protons is of the order ofmy = 1.67 x 107*" kg. From the uncertainty principle

hZ
Ap. =1
P \

As radius of the nucleus of atom is 10™* m thus
Ax=2a=2x10""

and Ap, ~p, ~5275x107" kg m/s

X

The corresponding value of kinetic energy,

2 212 -15
pe _(279)x107)° o 4 oy 8410 oo

E =
2m,  2x1.67x107 1.6x107"

The rest mass of a particle is approximately four times the proton mass, thus a-particle should

have a minimum Kinetic energy of 13kel. Since the minimum energy carried by protons or
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neutrons is of the order of 52kel and for a-particles of the order of 13keV, thus these particles

can exist in the nuclei.

(iv)  The radiusof the Bohr's first orbit: Suppose AxandAp represent the uncertainties in the
position and momentum of the electron in the first orbit respectively. According to

Heisenberg's uncertainty principle, we have
AxAp="h or Ap = LA
\p \p Ax
The uncertainty in the kinetic energy of the electroOn may be put as follows:
1 2
AT = 5y m(Av) (4.27)

_ 1 (mAv)® 1 (Ap)’
2 m 2 m

2 2
or AT:—L(llJ:D—lL—T (4.28)
2m\ Ax 2m(Ax)

The uncertainty in the potential energy of the same electron may be put as follows:

B Ze®
Ax

AV = (4.29)

The uncertainty in the total energy of the electron will therefore be

AE=AT+AV

2 2
e /] - Ze
2m(Ax)”  Ax

or (4.30)

The uncertainty in the energy will be minimum provided

d(AE) =0 and dz(AEZ) =(+)ve
d(Ax) d(Ax)

Equation (4.30) may be put as follows:
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dAE) | Ze 431
d(Ax)  m(Ax)*  (Ax)’

If £ is minimum, we must have

3 h? N Ze’
m(Ax)*  (Ax)’

K’ Ze®

or =
m(Ax)”  (Ax)’

hZ

or Ax =~ 5
mZe

(4.32)

On differentiating equation (4.31), we obtain

dz(AE)~+ 3 5 zZe' 3 _2zZe
d(Ax)? m(Ax)? (Ax)’ NN & (Ax)’
m(Ax) 5
mZe

[by eqn. (4.32)]

_3Ze* 2Ze’  27e (e
Q)" (Ax)°  (Ax)’

As equation (4.32) represents the condition of minimum in the first orbit, it means that the radius

of the first orbit is given as follows:

n’ h

V= A_x = =
mZe*  An*mZe*

(4.33)
which is the same as the radius of Bohr's first orbit.

(iv) Strength of nuclear force. If a nucleon is confined within the sphere of radius,

ro (= 1.2x107" cm), the momentum must be of the order of p = #/ 7, . Thus, kinetic energy of the

nucleon of mass M (proton or neutron) will be of the order
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Now if the nucleon is bound in the nucleus, the binding energy must be more than kinetic energy

and opposite in sign. The nuclear binding energy is of the order of 10 MeV.

v) Stability of the atom. The ground state energy is the lowest possible energy with which
the atom can have existence. This energy will be the sum of two terms (kinetic and potential) of
opposite sign. If the electron is confined to a small region, the kinetic energy becomes large
because the wave will be carrying large momentum. If the wave is spread in a large region, the
potential energy will be small. Hence the ground state refers to the best possible compromise and
this is the explanation for the stability of the atom against collapse.

(vi)  Light quanta. Suppose an electromagnetic wave-packet is made by opening a shutter for
a time interval A¢. Thus, a pulse of radiation is obtained which is passing any specific point in

time A¢. Further the electric field will be large during time interval At.

Now suppose that the pulse of radiation has one quantum only and this pulse is incident
on a target having many atoms. But only one of the atoms of the target will absorb the quantum.
Therefore, the probability of the absorption will be proportional to | E |, where E refers to the
strength of the electric field. It is, thus, evident that the momentum will be absorbed within time
interval At because during this time there is maximum electric field in the region in the having
the target. Hence Ar may be considered as uncertainty in the time during which the absorption of

quantum takes place. But the pulse of radiation is having a range of angular frequencies given by

Aa)zL

At
and, therefore, the range of energies will be

AE=hAy =TACTY) _pnps B
27 At

so that we obtain AEAt>h

From above it is evident that in any process in which there occurs a transfer of quantum from
radiation to the matter (or vice versa), the product of uncertainties in the time of transfer and in

the quantity of energy transferred is never less than 7, i.e.,
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AEAt=h

Here, we knowingly avoided discussion on particle nature of light.
4.10 Discussion

We hardly find the uncertainty principle valid in our daily experience. We find that the
calculation related to measurement of both position and momentum of terrestrial bodies
remarkably accurate. This is due to the fact that for bodies having appreciable mass, the
uncertainties in determining both position and momentum are so small that these are negligibly
small compared to the normal experimental error. However, for very small particles such as
electrons and photons, the uncertainties are large comparable to the quantities themselves. In
such case the classical mechanics fails to explain the behaviour of such particles and hence wave

or quantum mechanics becomes a necessity.
4.11 Summary

1. Heisenberg's uncertainty principle is the best known consequence of the wave-particle
duality which states that "It is fundamentally in possible to determine simultaneously the
position and the momentum of a particle to an accuracy greater than 4 the Planck's
constant".

2. Mathematically, it can be expressed as

Ax.Ap. > h
where Ax is the error (uncertainty) in measurement of the position of the particle, Ap,

the error (uncertainty) in measuring the x-component of momentum of the particle and
h=h/2x,, hbeing the Planck's constant = 6.62x107* J-s.
3. The uncertainty relation is not only true for other components of position and momentum

of the particle but also for other dynamical conjugate variables such as energy and time;

angle and angular momentum etc. as well

Thus, Ay.Ap, 2h
Az.Ap.=h
and AE.At>h
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4. The uncertainty principle explains a number of facts which could not be explained by the
classical concepts; such as non-existence of electrons in atomic nucleus, determination of
size of the atom, the radius of Bohr's first orbit, existence of neutrons and protons in the
nucleus etc.

5. The uncertainty principle can be validated by a number of theoretical experiments like

gamma-ray microscope and electron diffraction by a slit.
4.12 Glossary
Uncertain: Something which is not sure or which is not known exactly.

Uncertainty Principle:A principle proposed by Heisenberg that states that "It is impossible to
measure simultaneously the value of any two canonically conjugate variables with unlimited

accuracy."

Angular momentum: The quantity of rotation of a body, which is the product of its moment of

inertia and its angular velocity.

It is the rotational equivalent of linear momentum and denoted as

L=Io=rxp, unit=kgm?®s .

Wave packet:A wave packet (or wave train) is a short 'burst' or 'envelope' of localized wave
action that travels as a unit. It comprises a group of waves, each with slightly different velocity
and wavelength, with phases and amplitude so chosen that they interfere constructively over only
as a small region of space and destructively elsewhere. The particle can be located in the wave

packet region.

Gamma-ray microscope:A hypothetical experiment proposed by Heisenberg to evaluate the
order of limitations in the measurements of position and momentum of an electron or a photon.

In other words, the experiment establishes the validity of uncertainty principle.

a-particle: Alpha particles, also called a-ray or a-radiation, consists of two protons and two
neutrons bound together into a particle identical to helium-4 nucleus. They are generally

produced in the process of a-decay but may be produced by other ways.
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Self Assessment Questions

SAQL1. If the number of superposed wave and the range of wavelength be increased, then what

will happen to the linear spread of the wave packet?

SAQ2.How you can say that the uncertainty principle is the consequence of wave-particle

duality?
SAQ3. In y-ray thought experiment, why y-rays is used?

SAQ4. The uncertainty principle has significance in the case of microscopic particles only.

Why?
4.14 Solved Problems

Problem 1. An electron has a speed of 1 km/s with an accuracy of 0.05%. Calculate the
uncertainty with which the position of the electron can be determined. Given mass of electron

(m) =9.1x10"'kg,h = 6.63x107>* J-s.
Solution: The uncertainty in momentum measurement is

Ap = A(mv) =mAv =9.1x107' x1000 x (1)005 =4.55x107"" kg m/s.
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From the uncertainty relation, the error in measurement of position is therefore,

h 6.63x107**Js

=—= - =1.45x10"m
Ap 4.55x107 kgm/s

Problem 2.  An electron is kept in a box of length 10™® m. Find the minimum uncertainty in its

velocity. Given m =9.1x107" kg, and 7 =1.05 x 10 ~** J-s
Solution: From Heisenberg's relation
Ax.Ap =h
If Ax is maximum, Ap must be minimum.
ie. (Ax%), .- (AP) i, *H

Given, (Ax)__ =maximum uncertainty in position = 10" m

max

34
Then, (Ap),, = — =000 5,102 g ms™
(Ax) 2x3.14x10

max

(Ap),;, =m(Av), . =1.05x10°kgms™".

B 1.05x107%° B 1.05x107%°

min = = 1xl0™ =1.17x10*ms™'
m AX

(Av)

Problem 3.  Life time of a nucleus in excited state is 10”2 s. Find the probability uncertainty

in energy and frequency of a gamma-ray photon emitted by it.
Solution: According to Heisenberg's time-energy uncertainty relation
AEAt=h=h/2r
As the life time of a nucleus in the excited state is 107" s

At=10"s.
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h o 6.63x107J-s

- = ——=1.054x107]
27At 2%x3.14%x107°s

So the frequency of y-ray photon is uncertain by an amount

_AE _1.054x107]

=——————=1.59x10""Hz
h  6.63x107*Js

Problem 4.  An electron has a speed of 1.05x10* m/s within the accuracy of 0.01%. Calculate

the uncertainty in the position of the electron. Given 7/ =1.05x10""Js,

m=9.1x10""kg.

0.01 /s
0

Solution: The uncertainty in velocity, Av =1.05x107* x

Uncertainty in momentum Ap = mAv=9.1x107' x1.05x10* x% :

Using uncertainty relation

Ap.Ax =h, we have

1.05x107*

Ax=h/Ap= m =1.1x10"* m.

9.1x107%"'x1.05%10* xw
100

Problem 5.  The position and momentum of a 1kel electron are simultaneously determined. If
its position is located to within 1 A, what is the percentage uncertainty in its momentum?

Solution: From uncertainty relation,

h

Ap=——
Ay

Here, Ax =1 A=10""m, h=6.62x10"*]-s

34
Ap = _6.63x10" =1.056x10"** kg m/s.

© 2x3.14x107"°
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Also, the momentum of electron =p = 2mE =\2meV ,

24
..percentage uncertainty in momentum & x100 = 1.056x10" x100=6.173%.

p 1.708x107%

Problem 6.  On the average, an excited state of a system remains in that state for 10" s. What

is the minimum uncertainty in the energy of an excited state?

Solution: From the uncertainty relation,

AE.At :E
2

ho1.054x107*

=g = 0527107 1
X

or AE =

Problem 7.  An electron has a speed of 300 m/s accurate to 0.01%. With what accuracy can

the electron be located?

Solution: Momentum of the electron p=mv=9.1x107"x300=2.73x10"* kg ms™".
L Ap=0.01% ofp =2.73x10*x10™ =2.73x10 " kgms .

h 1.054x107%*

:E_W:3.86X1073m.

Problem 8. The maximum uncertainty in the position of an electron in a nucleus is 2x10™"*m.

Find the minimum uncertainty in its momentum.

Solution: From Heisenberg's uncertainty relation

h
Ax.Ap =—.
P >

Here, max. uncertainty in position Ax=2x10"* m.

The min. uncertainty in momentum is
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h 6.63x107**

>——= ——=0.26x10""kgms .
2Ax  (2x3.14)x2x(2x1077)

Ap,

4.15 Terminal Questions

4.15.1 Short Answer Type Questions

1) Is uncertainty principle the outcome of wave description of a particle? Justify your
answer.

2) Why is uncertainty principle not applied for macroscopic objects in motion?

3) State and explain uncertainty principle is brief.

4) What is the significance and importance of uncertainty principle?

5) What is Heisenberg's uncertainty principle?

6) What is the use of y-rays in thought experiment of gamma ray microscope?
7) What is the physical significance of uncertainty principle?

8) Using uncertainty relation show that electron cannot exist in a nucleus.

9) Do your expect to observe wave and particle aspect of a physical entity simultaneously in

the same experiment? Justify your answer.
10)  What is time-energy uncertainty relation?

11)  Estimate the minimum uncertainty in the momentum of an electron confined in a box of

length 1 pum.
12)  Briefly explain one experiment to validate the uncertainty principle.
4.15.2 Long Answer Type Questions

1) Beginning from deBroglie wave concept, obtain Heisenberg's uncertainty principle. Give

one illustration of this principle.

2) State and explain uncertainty principle. Discuss its significance and importance.
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What is Heisenberg's uncertainty principle? Describe single slit electron diffraction

experiment to prove the validity of this principle.

Give an elementary proof of the uncertainty relation between energy and time. What is its

significance?
(a) Prove that proton, neutron and a-particle can exist within the nucleus.

(b) Describe y-ray microscope experiment to establish the truth of uncertainty

principle.
Discuss various applications of uncertainty principle.

Explain the time-energy uncertainty relation. Why we cannot take measurement of physical

property of a system without physically disturbing it?

Write uncertainty relation of position and momentum along all the three coordinates.

Derive the position — momentum uncertainty relation along x-component.
Numerical Answer Questions

The uncertainty in velocity of an electron is 1 ms . Calculate the uncertainty in the

position of the electron. (Ans : 7.3x107" m).

An electron of energy 200 eV is passed through a circular hole of radius 10~ cm. What is

the uncertainty introduced in the angle of emergence? (Ans : 5.76x10° radians)

The average period that elapses between the excitation of an atom and the time it emits
radiation is 10 s. Find the uncertainty in energy emitted and uncertainty in the
frequency of light emitted. (Ans :AE = 1.054x1072° J,
Av=1.59x10" Hz).

Calculate the minimum energy of a photon for its existence within the nucleus of

diameter 10™"* m. (Ans : 4.9 MeV)

Wavelength can be determined with an accuracy of 1 part in 10°. What is the uncertainty

in the position of a 1 A X-ray photon when its wavelength is simultaneously measured?

Page 133



BSCPH 301

6.  What is the uncertainty in momentum of the electron in H-atom of size 10 *em and mass
of electron = 9.1x10'kg. (Ans. : 1.054x107** kgms™
Unit 5: Schrodinger Wave Equation
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5.13.1 Short Answer Questions
5.13.2 Long Answer Questions
5.13.3 Numerical Problems

5.1 Introduction

In previous chapters, we found that some experiments like Compton scattering showed that
particles like proton, electron, neutron etc. exhibit wave like properties. In this chapter, we will
obtain an equation, known as Schodinger’s equation that describes the wave like behaviour of

the particle and is consistent with Heisenberg’s uncertainty principle. The trajectory of such
particles is described by the wave functiony , whereas |W|2 dt gives the probability of finding

the particle in the volume element dz .
5.2 Objective

There has been a number of Formalisms available to deal with quantum mechanical problems.
The two most famous formalisms are Heisenberg’s formalism, also known as matrix mechanics,
where he deals with the description of a quantum mechanical system through time evolution of
matrix operators for different physical quantities required to describe the system like position,
momentum etc. In this chapter we will learn about the second formalism given by Erwin
Schrodinger. Schrodinger’s formalism of quantum mechanical systems is based on the evolution
of a wavefunction, describing the system as a function of time whereas the operators are
considered as time independent. In this chapter we will also learn about quantum mechanical

wavefunction for various physical systems and its various properties.
5.3 Schrodinger’s Equation

The fundamental equation of quantum mechanics is the Schrodinger’s equation. It was

formulated by Erwin Schrodinger in 1926. We can say that Schrodinger’s equation in Quantum
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Mechanics is analogous to second law of motion in classical mechanics. In formulating his
equation, Schrodinger used the concept of matter waves. In deriving the equation, Schrodinger
used the assumptions that a) Material parties can't be created and destroyed b) and the velocity of
material particles can be treated non-relativistically. Schrodinger’s equation is a Second order

homogeneous linear differential equation.

5.3.1 Time dependent Schrodinger equation

We know that the de-Broglie wavelength A associated with a free particle having momentum p

and mass m is

P (1)
p
also the wave vector associatedwith wavelength A is
2
k= = 2)
Combining equation (1) and (2) e get
h hk
p=T=o—=hk 3)
Also the kinetic energy E and angular frequency 'o' are related as
E=ho (4)
Further E= p_Z 5)

Combining (4) and (5) we get

E_p' 1
k m h

N
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hk?

1
= 6
2m h m ©

Now in quantum mechanics, the wavefunction 'y' plays the same role as the wave variable 'y’

plays in wave motion. But unlike 'y', y. Can not be measured and therefore is complex. Also

electrons and other subatomic particles exhibit wave like properties. Let such a wave be

represented by a wave function y/(;,t) of free electron of Momentum 13 and energy E. Let us

also assume that the wave associated with electrons to be free plane waves and hence l//(;,l‘)

may be written as

w(rf) = e (7)
where k is given by equation (2)
In one dimension, eqn. (7) may be written as

w(x,t) = Ae' ™ (8)
Using eqn. (3) and (4) in eqn. (2) we get

L Pe—En)

w(x,f) = Ae" )

Eqns. (4), (5) and (9) reveals that the differential form of matter wave should have first

derivative with respect to time ‘t’ and second derivative with respect to position ‘x’.

Let the differential eqn. representing matter wave be of the form

oy _yoy
of  ox’ (10)

Differentia eqn. (8) with respect to time 't' and diff. eqn. (8) twice with respect to position ‘x’, we

get

%=—ia}l//(x,t) (11)
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GG B E R (12)

and
Ox?

Using eqns. (11) and (12) in eqn. (10), we get

—iwy (x,1) =—k>yy (x,1)

o

. =22 (13)
Since a):£
fi
. . . . 2 .
N y = iE iE _IhE _ ihP _ ih (14)

Wk n-PRE PY 2mP' 2m
Using (14) in (10), we get the general form of differential equation for matter wave, which is

oy _in Oy
ot  2m ox*

= ihaa—l/l/ = —%227(/2/ (15)

Eqn. (15) is the one-dimensional time dependent Schrodinger’s wave equation. The
Schrodinger’s equation is linear in y and is second order homogeneous differential equation. In
deriving eqn. (15), we have assumed that the particle is free. However if the particle is not free,
(such as the electrons is an atom, where electrons more under the potential due to the nucleus of

the atom) and speed of the particle is small then the total energy E can be written as the sum of

kinetic energy and potential energy

p2
1e., E=—"+V(x,1) (16)
2m

Multiplying both sides of eqn. (16) by w(x,1),

2

5 v(x,)+V(x, Oy (x,t) (17)

Ey(x,1)= -
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o’y Ply 2 ) Oy
or ——=-2" =S Py =—h"—- 18
o’ hn* i o’ (18)
or —=——FEy(x,t)= Ey(x,t)=———"7"T= 19
P A pnt=-——"7 (19)
Using eqns. (18) and (19) in eqn. (17), we get
how(x,t) h* O’w(x,1)
-= -— +V(x,O)p(x,t
i ot 2m  Ox? (0 (x.1)
32 A2
- QYD OV v () (20)

ot 2m ox?

Above equation is the one-dimensional time dependent Schrodinger’s equation for a particle

under potential V' (x,¢) . Now if we know the potential due to the interaction of the particle with

the surrounding, Schrodinger’s equation can be solved.
5.3.2 Validity of Schrodinger’s equation

Schrodinger’s equation derived above used the wavefunctiony (x,¢) of a free particles. But what

we do not know is, if it is also valid for a bound particle is particle under same arbitrary
potential. To verify Schrodinger’s equation, we can solve it for any physical problem and
compare the results with experimental results. If the two results agree, then we can say that the
Schrodinger’s equation is valid and if results do not match then Schrodinger’s equation must be
discarded. What we find is that Schrodinger’s equation turns out to be accurate in predicting the
experimental results. It is to be noted that Schrodinger’s equation cannot be derived from other
basic principles of physics, infect it is a basic principle in itself just like Newton’s second law of

motion in mechanics.
5.3.3 Time-dependent Schrodinger’s equation in three dimensions

The one-dimensional Schrodinger’s equation can be extended to three-dimension. The three

dimensional wave eqn. can be written as
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W(; t) — Aei(l—c.;—a)t)

- LPr-En

or w(r,t)=Ae" (1)
ow(rt) —i . -

= VD L by 2)
’w(r,t) P> -
SHED Sy @
Pw(rt) P -
D v @
’w(r,t) P> -
DSy 5)

Adding eqns. (3), (4) and (5) we get

azl//+82y+azz _(1))(2+Py2+1322)l//

x> o’ o7t >
—2 = P2 -
or Voy(r, t)=—h—21//(r,t)
_y - 2Em -
= \% V/(l”, ZL):_ hz V/(l",t)
—> - 2m( —h oy (r, 1)
= V@ t)=-"| =220
v hQ(i ot j

= 2
ihM = _h_VZ,/,(,/’ )
ot m
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is three-dimensional have dependent Schrodinger’s equation for a free particle.

5.4 Time independent Schrodinger’s equation
5.4.1 One dimensional time independent Schrodinger’s equation

The time dependent three-dimensional Schrodinger’s equation is given by

—h? Py (x,t) .~ - v (rt)
— = +V(r, Oy (r,t)=ih———= 1
o (r Oy (r. ) =ih— (1)

above eqn. can be written in one-dimension as

0 Py (x,0)

L ow(x,t
o +V(x,t)l//(x,t):zh%) )

When potential energy ¥ does not dependexplicitly on time and is a function of position only,

then the wavefunctiony (x,7) can be written as the product of two wave functions say w(x)

(function of position only) and ¢(¢) (function of time only).
therefore we can write
w(x,1) =y (x)p(t) 3)

Using w(x,t) from eqn. (3) in eqn. (1), we get

1 6 (y () oy (40
L vy g = n DD
2
- h ¢(r)a "’(x) VY0 =0 < 0 ) 4)
f(Px Et)
Let y(x,t)= Ae”
N 6] ‘/’a(;" I % aEr ™~ %t//(x £)
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Eqgn. (4) becomes

82t//( )

¢(t) +Vy (0)e(t) = lh( 2 jEl//(X )

82;//()6)

¢(f) +Vy (0)h(t) = Ey (x)¢(t)

Dividing by ¢(7), we get

ROy _
2 ()= By ()
or a;‘/’gx) 2’”(E V) (x)=0 (5)

is one-dimensional time independent Schrodinger’s equation.

5.4.2 Three-Dimensional time dependent Schrodinger’s equation

Let w(x,y,z,t) or simply y/(;,t) is the wave function representing the motion of a particle in

three-dimension. In such a case, time independent Schrodinger’s equation takes the form-

Z v+ S Loy 20 =0
oy

or Vzw(x,y,z>+;—T(E—V)w(x,y,z)=0

5.5 Wave function

The quantity that describes the matter wave in space is known as a wavefunction. The
wavefunction is a complex quantity having real and imaginary parts. It is a solution of
Schrodinger equation. A wavefunction completely describes is system and contains every

possible information about the system.

The wavefunction (y) being complex has no physical significance. This is because y, being an

amplitude of a matter wave has both positive and negative amplitude. Since negative amplitude
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imply negative probability hencenegative amplitude is meaningless. Therefore y cannot

represent a measurable quantity.
5.5.1 Physical Significance of wavefunction

The probability of funding the particle described by the wavefunction of a particle at a point (x,

y, z) is proportional to |y |*. |y |* always gives a real positive quantity.
because let v = A+iB
w =A—iB
lw P=y'y = A +|B|* =real.
A greater value of |y |* implies large probability of funding the particle, whereas a sm

all value of |y |* means small probability of its presence. A non-zero value of |y |* at some (x,

v, z) howsoever small always implies a definite, though small probability of finding the particle.

5.5.2 Conditions on a Wavefunctiony

1. The wavefunctiony must always be finite at (X, y, z).
2. ymust be single valued.
3. ymust be continuous in all regions except where potential energy is infinite.
4. Partial derivatives of y i.e. 8_1,//’ 8_1//98_(// must also be continuous.
ox Oy oz

5.5.3 Probabilistic Interpretation of wavefunction

In the year 1926, Max Born postulated that "If a particle is described by a wavefunction 1//(;, 1),

the probability offunding the particle within a volume element d7 =dxdydz about some point r

at time ¢ 1is.
P(r,t)dr = |y (r,t)|* dr
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or P(r,0) = |w(r,0)

=y (r,Op(r,1)

where 1//*(;, t)is the complex conjugate of w(;,t) and P(;,t) denotes the probability density.
Therefore if we know the wavefunction associated with a particle, we can always calculate the
probability of an event and not the event itself. If the wavefunction is spread-out in space doesn't
mean that the particle is also spread out. Spread of a wavefunction only implies probabilistic
spread. It is for this reason that the wavefunction sometimes is also known as probability

amplitude.

Above discussion shows that the quantum mechanical laws and the results of their measurement

can be interpreted on the basis of probability interpretations.

5.5.4 Eigen values and Eigen vectors

When an operator 4 is such that when acts on a function y(x) yields a constant times the same

function back i.e,
Ay (%)= py(x) (1)
Where p may be a complex constant then

(1) w(x) is called the eigen function corresponding to the operator A

(i1) The constant p is called the Eigen value of the operator A, corresponding to Eigen

function f(x) and

(iii)  the equation zzly/(x) = py/(x) is known as the Eigen value equation.

Each Eigen values of an operator is unique. If two or more eigen functions have same eigen

values, then the eigen value is said to be degenerate. For example if,

Ay, = py,and
Ay, = py,
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Then the eigen value is said to be doubly degenerate. The eigen value is non degenerate, if there

is only one eigen function corresponding to the eigen value.
5.5.5 Operator

An operator is a mathematical entity or a rule that transforms one function into another function.

: . d . : : :
e.g. differential operator o or D, differentiates with respect to x, when it operates on
X

some function of x, say y(x) and gives some other function ¢@(x).
i.e.let w(x)=x"

2 vy = n—l.
dx(x) nx

Linear operator —>An operator D is said to be a linear operator if it satisfy following

conditions:

(1) D(py)= pD(y) = p¢

(1) D(pwy, + p2ws) = Dy, + p, Dy, = piéy + D29,
where p, p; and p, are complex constants.

Linearity is the fundamental aspect of wave theory and guarantees the addition of amplitudes

before or after some operation is performed.

. . d . .
Differential operator . is a linear operator.
X

5.5.6 Normalized wavefunction

The probability of funding a particle in volume dt is given by |y |* dz, where v is the

wavefunction representing the particle. However, in real problems particles are bound by forces
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in some specified region. For e.g. particle in a box, electrons in an atom. In such constrained

problems, the probability of finding the particle in the entire bound, region has to be unity.

ie. jw*wdrzj lw P dr=1 (1)

The wavefunctiony which satisfy the eqn. (1) is known as normalized wave functions. If a

wavefunction

If a wavefunction w(;,t) is not normalized, it may be normalized by multiplying with a constant.

For example if Schrodinger equations satisfied by a wavefunction 1//(;, t) and the integration of

probability density over the specified bound region is M, say

ie. j v (rOw(r,)dt =
then we can write

I«//(rt)t//(rt) 1

or j ¢ (r,00p(r,0)dr =1

{here¢(;,t) is also a Solution of Schrodinger’s equation since Schrodinger’s equation is a

homogeneous linear differential equation}.

: . - 1 . .
here M is known as the norm of the wavefunctiony (r,f) and —— is known as normalization

NM
constant. Also ¢(;, t) is the normalized wavefunction. A normalized wavefunction is one that

has unit norm. Also a normalizable wavefunction has finite norm.For finite norm, 1//(;, ) must

satisfy the boundary condition
w(;,t) —>0 as r > fow.

5.5.7 Orthogonal wavefunction
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Another very important property of wavefunctionis that the set of wavefunctions

W, (;,t), i=1,2,...,n is that they are orthogonalto each other.

For a pair of wavefunctionsy/; and y ; to be orthogonal, they must satisfy the equation
[ wivdr=0if iz )

If we combine eqns. (1) and (2), we can write
I l//;kl//jdl' =0y 3)

where 5@; 1s kroncker delta and is defined as

o, =1ifi =j and
=0 ifizj.

Any set of wavefunctions satisfying equation (3) are known as orthonormal wavefunctionsi.e,

they are orthogonal as well as normalized.
5.5.8 Proof of orthogonality

Let w; and y; be two Eigen functions satisfying the Schrodinger’s equation. Also let E; and E;

be the corresponding Eigen values.

time independent Schrodinger’s equation fory/; and y; can be writtenas

—h? 0%y,
Vi vy =Ey, 4
2m Ox* Vi Vi ®
_h2 621//.

and S 8x2] +Vy,=Ey, (5)
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Multiplying complex conjugate of eqn. (4) with y; we get

—n? oy ; ;
. ;) a;l +tVyw,=Ew,y,; (6)

Multiplying eqn. (5) with l//;k.

—hz *azl// P *
El//i?;—i_l/l//il//j:bjjl//il//j (7)

Subtracting eqn. (7) from eqn. (6)

h2 * 821// GZW: *
l:‘//i axzj —Y; o =(E, _E_j)‘//i v,

nt| L0, oyl dw, 9%, oy, oy, .
- ) + l — . i _ ! = E —E . .
{l//l ox? ox Ox Vi ox? ox Ox E-Ewviy,

o 0y, | o oy | 2m '
Ox [l/ll ox J ox (l/lj Ox /N Wiv,

Integrating both sides from —oo to +oo

Toa( Loy, oy, 2m T

=| =y L-y L |dx=""(E, —-E, W 8

I alviavis S (E, ,)_L vy, (8)
butt//,t//*,aa—x,%ao as r - too.

L.H.S. of eqn. (8) is zero
2m iy *
h—z(E[—Ej)j l//l-l//jdx=0 )

butifi#j then E; # E;

BSCPH 301

Page 148



BSCPH 301

= for eqn. (6) to be true

fw vy dx=0

Hence Eigen functions corresponding to different Eigen values are orthogonal.
5.6  Solution of Schrodinger equation

The home time dependent Schrodinger’s equation is given by

h2 2 . 81//
—— Vi +Vy =ih—= 1
a4 Y (1)

here the wave function y is a function of three-position coordinates x, y and z and time t. Now if
the potential V7 is independent of time and 1is a function of position only
(x, ¥, z) then the solution of Schrodinger’s equation is that of a standing wave. Therefore if

potential V is independent of time, w(x, y,z,t) can be written as —

w(x,y,2,0) = §(x,y,2)5 (1) )
where @(x, y, z) is a functions of position only and £(¢) is a function of time only.
Substituting eqn. (2) in eqn. (1), we get

32
in(qé(x,y,Z)f ) +V (x,,2)p(x, y,2)5 (1) = ih%(cif(x,y,Z)e‘ (1))

2m
n ) )
= é:(t) _%V (¢(x7yaz) +V(x7yaz)¢(x7yaz)§(t):¢(x7yaz)lh5§(t)

Dividing throughout by ¢(x, y,z)&(t) we get

L Gy [V = ——in L e
#(x,y,2)| 2m 7 T s o
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1 o, 1
or ———V +V(x, y,Z)}f(x Y,z)= h——é( ) 3)
P(x, y, 2){ (1) ot
In eqn. (3), right hand side is a function of time only while left hand side is a function of position

only. Therefore equation (3) will be satisfied only if each side is equal to the same constant say

E, therefore we have

—— &)= 4
5( Y é( )= 4)
and ! [ i —Vi+V(x,y, z)} ¢(x,y,z)=FE
P(x,y,2)
or V2h(x,y, z)+2h—zl(E—V)¢(x, y,2)=0 (5)

Equation (4) has a solution of the form

HORT R ©)

Here E, the constant is nothing but the energy of the particle can be found by solving the

Schrodinger equation
Using eqn. (6), eqn. (2) becomes

‘//(‘x’ y’ Z’ t) = ¢(‘x’ y’ Z)e_lEt/h

For bound states, like the particle in a box, E has only certain definite values and the allowed
values of E are known as the Eigen values. Corresponding to every allowed value of Energy E,

there is a function , the solution of Schrodinger equation (5), known as Eigen function.
5.6.1 Stationary State Solution

We know that the wavefunctiony is complex. But if in a particular state experimentally
measurable quantity y "y i.e, the probability density is independent of time, then the state of the

system is said to be stationary state.
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Let the state of a system is given by the wavefunction

—iEt/h iEt/h

y(x,y,2,0) =, (x,y,z)e + ey (x,y,2)e” T 4L

—iE t/h
=3 .8, (x,p,2)e "
n

It’s complex conjugate will be

v (50,50 = o (x,y,2)e""

n

Now consider

(. 2,00 (x,,2,0) = (z e, b (x,y,z)e""" ](Z c,d, (x,, z)e_iE"t/hJ

n n

= (cl*(él* (x, y,z)eB"" 4 c;(b; (x,y,z)e™"" & ...)(clgél (x, y,z)e B 4 0, (x,y, z)e E 4 )
* L 4 —~iE,t/h Etih
=0, 4, + by +...t i (x,y,2)e " [c2¢2 (x,v,z)e™
C3¢3 (X ¥, Z)elE l/h :|+ cz¢2 (X, y, Z)e—iEzl/h |:Cl*¢1* (_X, y, Z)eiE]l/h

+e3s (x, v, 2)e™ " + } ¥

:Z ¢, n¢n¢n +cl¢1(x V, Z)e lEt/hz ¢ e’Emt/h
n
S L

:Z Cn n¢n¢n +Z c ¢ (.X' y,Z)e iE, t/hz ¢ elE,,,t/h
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* * v * i(E,—E )t/h
:Z cncn¢n¢n +Zz cmcn¢m¢nel( nE
n n o m

Where the summation Z ' means excluding the terms where m = n.

m

Now in above equation first term is independent of time whereas the second term depends on

time and hence the solutions not a stationary state. Howevery v will be independent of time,

only if ¢, 's =0's are zero for all values of n except for m = n.

Hence under the condition ¢, 's =0, wavefunction will consider only one term i.e,

—iEt/h

v, (x,y,2)=¢,(x,y,2)e

and hence the solution given by above equation is known as stationary state solution.

5.7 Expectation Value

We know that the wavefunctiony (x, y,z,¢)contains every possible information regarding the

variables of the particles. This information is probabilistic only (except for those variables, for

which the solution of Schrodinger equation gives quantized values)and doesn't give definite
values. Also we know that the quantityy " (x,f)w(x,t)dxgives the probability of finding the
particles in a small distance dx. It makes us possible to find the expectation values or the average

value of position denoted as <x> of the particle along the x-axis.

“The average or expectation value of a dynamical quantity is the Mathematical
expression for the result of a single measurement. It may also be defined the average of the

results of large number of measurements on independent identical systems”.

As an example, Consider 'N' number of electrons, each being described by the same wave

function y(x,1).
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Let at some time ¢, for each electron we makes an observation for position of electron and we
find the number of electrons in the range, x and x + dx. Therefore the probability of an electron

to be in the position anywhere between x and x + dx will be

_ No.of e 's in the position between x and x + dx
No. of e 's(N)

(1)

But from wavefunction interpretation, this probability is given by

v (x, O (x,t)dx 2)
wherey (x,t) is normalized wavefunction
From (1) and (2) we get
Number of electrons in the position between x and x + dx as Ny~ (x, )y (x, t)dx .

= Summation of all measured values x,,x,,...,x, of all the N electrons is given by

+00
X+ X, 4. +xy = J XNy~ (x, 0w (x,t)dx

—00

+00
XXXy J-

*x,lx x,t)dx
N y (x,0)xy(x,1)

or

—00

X+ X, et Xy

but by definition gives the average expectation values of x.

+00

<x>=I v (x,O)xy (x,1)dx (1)

Where w(x,t) is normalized wavefunction

Eqn. (1) can be generalized for any function f(x) as

+00

(@)= [ v 0 f@w(x.tdx )

—00
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If the wavefunctiony/(x) is not normalized, then the expectation value of some function f(x)

may be expressed as

+00

| v enf@yndx
(/) ===
| v o

—00

Moreover, if the expectation values are defined using operators, the integrand consist of the

operator operating on the wavefunction y, multiplied on left by .

A jw v’ fydx
)=
[ vipdx

—00

5.8 Summary

Schrodinger wave equations are the backbone of quantum mechanics, which are analogues to
Newton’s equation in classical mechanics but quantum mechanics is found different from
classical physics. As we have learnt in the chapter that that the term evolution of state of a
system is described by something, that we call wavefunction and the wavefunction is all we

know about a system. Though wavefunction  does not have straightforward simple
interpretation, its |1p|2 that represents the probability density of finding the system in a particular

state. The probabilistic nature of quantum mechanics is in complete contrast with the
deterministic nature of classical mechanics. From this probabilistic interpretation of
wavefunction, we can also calculate the average values of the dynamical quantities of the system

at any time.

5.9  Glossary
Validity - Credibility
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Explicitely - Clear and Exact

Significance - Importance

Interpretation - Exposition

Unique - Distinctive

Fundamental - Elemental

Orthogonal - Independent

5.10

1)
2)

3)

5.11

1)
2)

3)

5.12

Q.1

References:

A text book of Quantum mechanics P. M. Mathews and K. Venketesan
Introduction to quantum Mechanics, David J. Griftith, 005, Pearson Education

Quantum Mechanics, Theory and Application, Ajoy Ghatak and S Loknathan, MacMillan
India Ltd.

Suggested Readings

Concept of Modern Physics, Arthur Beiser, 2002, McGraw-Hill.

Quantum Physics, Berkeley Physics, Vol. 4, E. H. Wichman, 2008, 2008, Tata McGraw-
Hill Co.

Modern Physics, R. A. Serway, C. J. Moses and C.A. Moyer, 2005, Cengage Learning.

Solved Problems

If v, and y, are two Eigenfunction corresponding to an operator with same Eigen

values then show that their linear combinations will also be an eigen function.
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Solution: Let v = p,y, + p,i, be the linear combination of y, and y,
also 121% =ay,
1:11//2 =ay,
Consider Ay = Al W+ P, ]
= py(dy) + py(dy)
= pi(ay))+ p(ay,)
=a(p,y, + p2y>)
=ay
hence the result.

Q.2 Explain if the wavefunctiony(x)=e¢" 1is an acceptable quantum mechanical

wavefunction or not?

Solution:Wavefunctiony/(x) to be an acceptable wavefunction it should satisfy same general

conditions i.e.

(a) w(x) must be finite at all point in space
(b) w(x)must be single valued at all points in space.
(¢) lw(x)[* should be integrable.

(d) w(x)and its partial derivatives must be continuous throughout.

But the given wave function y(x)=e" is such that

w(x) —> too as x — oo

also|y(x)|* is not integrable, since
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+00 +0
j|mmfw:jeﬁa:w

hence iy (x) = e* does not represent an acceptable quantum mechanical wavefunction.

Q.3  The wavefunction of a particle is

0 |x|>L
Find the probability of finding the particle in the region 0 < x < % .

Solution:Probability of finding the particle inthe region 0 < x < % is given by

L/2

P= [ v @ (x)dx

(=3

L

| L2 L2 )
=—j dx——j cos—xdx

L 0

1" 1L 2ax]”?
=—x/ —-——sin—

L7, L2z L,
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_1 £—O —L(sinﬂ—sino)
L\ 2 2
1 1
L2 0-0
2 27r( )
_1
>

Q4. Normalize the following wave function is one-dimension

Ae™? for x>0
p)=y
Ae”™  for x<0

Wherep is a real positive constant

Solution: Normalization condition is given by
+00

| v =0

0 +00
j A AePdx + j A Ae P dx =1]
—0 0

+00

0
= |A|2J. ezﬂxdx+|A|2J. ey =0

—o0 0
) eZﬂx 0 e—Zﬁx @
S
2p ‘—oo —25 ‘0

el 5H5-5]-
28 28| | 28 —2p

BSCPH 301
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=|A|2.i=1
B
|A|2:ﬁ or A:\/E

Therefore the normalized wavefunction is
w(x)= \/Ee_ﬁ * forx>0

= \/Eeﬁ *forx< 0
Q.5 Normalize the one-dimensional wave function given by

TX

a

l//(x)=Asin( j 0<x<a

Solution:The wavefunctiony (x) is said to be normalize if it satisfies the normalization

condition
+00
I wwdx =1
we have w(x)=4 sin 2%
a

wi(x)=4" sin 2%
a

Therefore I AA" sin’ ﬂabc
a
0

P (l—coszﬂx]
|A|2J' a
0

or -~ Zdx
2
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|A|2 a r x| |
or — J dx—j cos——dx | =1
2 k! 0 a .
|A|2_ a . ZﬂxT
—|x——sin—— /| =1
or 2 27 a |,
2
or %[a—0+0]:l
ap=2
a

if A is real, then we can write

A= |—
a

2
.. Normalized wavefunctionisy/(x) =, [—sin [ﬂj
a a

Q.6. A particle described by a wavefunction

Normalize the wavefunction and determine the region of the space wherethe particle is

most likely to be found.

Solution: Let the normalized wavefunction is

$(x) = Ny (x)

:N(xﬂ);j
1+ix

where N is the normalization constant
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¢*(x):N*( x—ixj

)
1—ix

Now the normalization condition is

[ ¢ dx)dx=1

+00 . .
S (e
o \U=ix 1+ix
+o0 2 2 2
) X —i'x
or | N | _[ mdx=l
+00 ) 2
or NP | 1+xx4dx=1
0 2 2
2 X +1 X —1
o . f(ll—}”
+00 1+72 +00 l—iz
or INP| [ ——adx+ | dx [=1

Let X——=z
X
1
= dx+—2dx=dz
X
1
or (1+—2jdx:dz
X

- 1* part of the integral on LHS of eqn. (1) becomes

(1)

BSCPH 301
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+00

dz i dz
Iw Zz+2:J; 22 +(2)?

_ 1 -1 . =10 _ -1
_ﬁ[man (oo)} {-tan”' (-6)=—tan"' 6}
_ 1l r_z
V272 2
. : 1
Similarly if we assume x+—=t¢
X
1
= (x——zjdx:dt
x

Then second integral on LHS of eqn. (1) becomes

T’ e _ 1 -2 )"
DTN TSN R PN

—00

+00

—00

= Llog(l) =0

22

.. eqn. (1) becomes
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or

1/2
If N is real, then N = (_]

Hence the normalized wave functions become

1/2
Q ( X +ix
V4 1+ ix?
Now to find the most probable positionof the particle, we have to maximize y "y

1.€.

or

or

or

or

INP {%m}:l

N2

[N[P=—
V4

D

T

d( «
E(WV/)ZO

2
)ci al 7 1=0
dx| 1+x

d 451
—x"(1+ =
o )

X (=11+ x4+ (1+xH T 2x=0

—A4x°(1+xH) 7 +2x(1+x") " =0

2x(1+xH)™! {1—

4 4
1+x 42x _0
1+x

x*=1 or x=1

J

0

2x*

1+x

4

|

0

BSCPH 301
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Thus probability 1s maximum at x = 1.

Q.7

A normalized wave function is given by

e
ikgx——
[ 242

P(X) =~z e
P

Find where the particle is most likely to be found.

Solution: The probability density of the particle is given by

Q.8

190 P= 9 ((0) = —z e

Itis clear from above equation that
| (x)|*is maximum at x = 0 and decreases exponentially for | x | > 0.

Therefore, the particle is most likely to be found in region of width ‘a’ on either side of

the origin x = 0.

A particle moving along the positive x-direction in region of potential energy V(x) is

given by the wave packet

1 L'(Pxx—Et)
Vs =—ps] Alp)e " dp

Using non-relativistic energy expression, derive one-dimensional time-dependent

Schrodinger equation.

Solution: Non-relativistic total energy in 1-D is given by

2

P
X +V(x
. (x)

E=

also we have
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(Px Et)

w(x,t)= = j A(p)e® dp

Differentiating eqn. (1) w.r.t x.

dw(x,) 1 (i ) L(pa-En)
A —P et d,
o [ Ap)| =P, |e p

Again differentiating w.r.t. X

0? , 2 (PXx—Et)
YD <p>( R) e ey

1 O’y (x,0) _ L (PEn)
or d
2m  Ox* \N27 P
Differentiating eqn. (1) w.r.t to time
oy (x,t) ( ) (Pa=ED)
e d
or «/ 7l P
oy(x,t) L (Px-Et)
or in A(p)E e" dp .
™ \/— [ 4p) p
Subtracting eqn. (3) from eqn. (2)
2 A2 2
N —h” 0y i oy 1 I P; A(p)Eeg(Px Et)
2m ox’ ot \/27z'h 2m
or oy oy ] [ 7ac et P
2m Ox* ot 2xh g v
or —h? azl//_ihal// 1 V(x)J' A )eh(Px E)d
2m ox* ot 2zh g v

Oy .oy
or —ih =V(x
PPl dC4

dp

BSCPH 301
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—h? 0%y oy
or ——5+tvx =ih—
2m x> (v ot

is the one—dimensional Schrodinger’s time dependent wave equation.

Q9.  Calculate the expectation value of x, P, and P for the wave function

2 1/2 T
— sin— O<x<L
w(x)= (Lj L

0 |x|>L
Solution: The expectation value of x is
= I v Xy dx

:EIL sinﬂ(x) sinZ | dx
L0 L L

L
:—I xsinzﬂdx
L0 L

:—jL x( s—jdx

:_I dx——j xcos—dx

; x|t 27x
1x* 1] .7 L .
_270_Z x.sin 2l —J.O sin 2l dx
L | L
2
L L L Lsin2z-0)+| 22 27 Y (| cos 2%
2 L 27 2 L

27
-0- (7) (cos2z —cos0)
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(ii)

(iii)

(4)=3

+00

(P)=| v )Py (x0)dx

—00

2% . ax(h o). mx
=—I sin— | —— [sin—dXx
L L\ iox L

2 hrw r . X X
BEILEA QOO JOW.: 9N
L ilLy L L

il

—zh L 27x
=——5"X——C0S—
i~ 2r L |,

2iL

+00

(P2)= [ v 0Py (x0)dx

+o0 2
= [ w*(x,t)(ﬁ,ij w(x, t)dx
e i Ox

—2n* % zx 0 ( , mj
Z—I sin——| sin— |dx
L 0 L 6x L

BSCPH 301
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3
Ly
L
722 sm@
= L3 X — 2£
L 0
232
7°h ) )
= L———(sin2xz—sin0
r { 27r( )}
222
7°h
= IE {L_O}
222
2 °h
<R‘>: 2

5.13 Terminal Questions
5.13.1 Short Answer Questions

Ql What is a wavefunction?
Q2 What do you understand by probabilistic interpretation in quantum mechanics?

Q3 What are the conditions that a wavefunction must satisfy and why?
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Q4
Q5
5.13.2

Ql

Q2
Q3
Q4

Q5

5.13.3

Ql.

Q2.

Q3.

Q4.

Qs.

Q6.

Q7.

BSCPH 301

What do you mean by normalization of a wavefunction?
Define the expectation value of an observable.

Long Answer Questions
Obtain the time dependent Schrodinger wave equation for bound and free particles.

State and prove the Ehrenfest theorem. Also explain its physical significance.
Why the wavefunction and its derivatives should be continuous everywhere?

Find the expression for expectation value of position, momentum and energy operator.
Derive time independent Schrodinger wave equation in one dimension.

Numerical Questions

An Eigen function of the operator d%f is y(x) =e*". Find the corresponding

Eigenvalue.

Explain if the wavefunctiony(x)= Atanx 1is an acceptable quantum mechanical

wavefunction or not?

x2

Explain if the wavefunctiony(x)=Ce ™ is an acceptable quantum mechanical

wavefunction or not?

Why Schrodinger’s wave equation is not valid for relativistic particles?

One dimensional wave function of a particle is given by 1//(x)=\/;e“”‘. Find the

probability of finding the particle between x=1/a and x = 3/a.

Determine the expectation value of position and momentum for a particle trapped in a

box of length L.

Calculate the expectation values of momentum p and p> for the wavefunction

1/2
w(x)= (%) sin (%) in the region 0 < x < L. Outside this region consider y(x)=0.
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Q8.  Obtain the expectation value of the potential energy V(r) of the electron in a hydrogen

atom in its ground state.

Unit 6 : Operators

6.1 Introduction
6.2 Objective

6.3 Operators and Observables
6.3.1 Commuting and non-commuting operators
6.3.2 Hermitian Operator
6.4 Dynamical Variables or Observables
6.4.1 Position Operator
6.4.2 Linear Momentum Operator

6.4.3 Kinetic Energy Operator
6.4.4 Potential Energy Operator

6.4.5 Hamiltonian operator or total Energy operator
6.4.6 Total Energy Operator as time derivative
6.5 Angular Momentum operator
6.5.1 Angular Momentum Operator in Cartesian Coordinates
6.5.2 Angular Momentum Operator in Spherical Polar coordinates
6.5.3 Operator for Square of total angular Momentum (L)
6.6 Commutation relation
6.6.1 Commutation relation between angular momentum operators:
6.6.2 Commutation relations between Square Angular Momentum Operator (
iz) and ix , iy and iz
6.7  Ehrenest Theorem
6.7.1 Proof of Ehrenfest Theorem
6.8  Summary

6.9 Glossary
6.10 References

6.11 Suggested Readings
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Solved Questions

Terminal Questions

6.13.1 Short Answer Questions
6.13.2 Long Answer Questions

6.13.3 Numerical Problems

Introduction

The quantity obtained by the process of measurement or observation on a physical system
is called an observable. An observable is always a real entity, since it is a result of actual
measurement. Classically we assume that an act of measurement does not disturb the
system and various observables of the system can be measured with utmost accuracy. But
quantum mechanically this is not the case. According to quantum mechanics, an act of
measurement disturbs a physical system and therefore the value of an observable depends
upon time. However if the value of an observable doesnot depend on time, it is known as

constant of the system.
Objective

As we have learnt in unit 5, that the Schrodinger equation is fundamental equation of
quantum mechanics, which provides us the wavefunction of the system. In physics we are
mainly interested in finding the dynamical quantities of the system like position,
momentum, angular momentum etc of the system at any time ‘t’. In this unit we will
learn that the dynamical quantities in quantum mechanics are also represented by
operators. We will also learn about the different relations satisfied by these operators. We
will also learn that average values of these operators satisfies laws, analogues to the

Newton’s second law.

Operators and Observables

An operator is a rule by means of which a given function is changes into another function. The

measurable quantities like position, momentum energy etc. are called observable. Each

observable has a definte operator associated with it.
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6.3.1 Commuting and non-commuting operators
Let 4 and B be any two operators and y be any wavefunction

then Izlf?l// means first B operators on s.t.

By =¢and then 4 operator on ¢s.t.

A

Ap=¢
ABy)=Ap=¢&
Now if 4 and B operators are such that
AB— BA = 0then the two operators

A and B are said to be commuting, otherwise they are non-commuting.

6.3.2 Hermitian Operator:

An operator A is said to be Hermitian if it satisfy the equation

[ v Cigrax=| iy gas

wheny (x) and ¢(x) are two well behaved wavefunction.

6.4 Dynamical Variables or Observables

The physical quantities that can be determined experimentally are known as observables or
dynamical variables. For e.g. position of some particle with respect to some coordinates system,
Momentum, Energy (kinetic and potential) are some observables or dynamical variables. In
classical mechanics, observables have a continuous range of values whereas in quantum
mechanics, observables have discrete or quantized values. In quantum mechanics, the
observables are represented by operators. Below are some operators used in quantum

mechanics.
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6.4.1"Position Operator

In Cartesian Coordinates, position operators are represented as x, y, Z, when they act on

any wavefunction v, they give the function times the corresponding coordinate

e.g. Xy =xy, yy =yy and Zy =zy

6.4.2 Linear Momentum Operator

We know that the wavefunction for a free particle is given by

L(pa-En)
w(x,t)=Ae"
8_1//: A i P, é(R‘x_E[)
ox h
_ip
h 4
or ﬁ.a—w=le// or za—W=le// (1)
i Ox i Ox

Above equation is an Eigen value equation for x-component of momentum such that the operator

r operators on a wavefunction y and gives Xx-component of momentum times the
i Ox

wavefunction.

ho . . .
the operator ™ 1s known the momentum operator and is denoted by p,
i Ox

hoo
L _ N 2
Py==70 (2)

Similarly p.,= no

Y doy
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Yooz

The momentum operator p =ip + j[py + Iéjpz =—V
i

Such that py = py .

3)

BSCPH 301

.. Momentum operator is defined as the operator which when operates on a wavefunction,

reproduces the wavefunction multiplied by the Momentum.
6.4.3 Kinetic Energy Operator

We have the Momentum operator as
h o
——W)=Py
i Ox

Differentiating above eqn. w.r.t X,

h o° oy
i ox? V=2 Ox
oy i
but —=—
ox hpxl//
net (i
l.axz px hpx 4
2
or Y py =1
n? 52 pz
or — ===
2m8x2y/ 2ml//

2
but 22 = K E. of the particle.
2m
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2 2
. The operator ———— is known as kinetic energy operator K .
2m Ox
: s h 0
1.e, K=——— 4
2m ox? )

6.4.4 Potential Energy Operator

Potential energy operator 17(17) is such that when it operates on a wavefunction y, it gives

potential energy multiplied by the wave function back.
ie. Vi)w=Vrw
6.4.5 Hamiltonian operator or total Energy operator

Total energy of a particle moving along x-axis is given by

2
E=Liy(n)
2m

2

- Px _ g p(x)
2m

2

X

Py g eqn. (1)
2m

Using value of

—n* o?
" [E-V(x0)]y
_p? 32

or g@l// + Vl// = El//

—-n* &
or ———+V |y =E
[2m ox* }/j v
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2 2

Above eqn. is the Eigen value equation of total energy and hence the operator _2_8_2+ Vo is
m Ox

the total energy operator for the motion ofthe particle along x-direction and is denoted by H .

n =R O
- iy 5
Y 2m ox? () ®)

In three dimensions, total energy operator is

—hz(az 2

+ + +V(x,y,z
2m \ ox*  oy? azzj (x.7:2)

— 2 A
or Zivz +V and is denoted by H and is also known as Hamiltonian operator
m

2
HZEVZ-FV (6)

Therefore total Energy operator or Hamiltonian operator is a differential operator, which

operates on a wavefunction, reproduces the same wavefunction multiplied by the total energy.
6.4.6 Total Energy Operator as time derivative

We have the wavefunction of a free particle in one dimension as
‘//(x) — Aei/h(RXX*El)

Differentiating w.r.t. z, we get

a_!//:A(__iE]ei/h(PXx—Et)

ot h
oy _~
ot h
or iha—l/leg//
ot
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From above equation we conclude that the total energy operator is

ﬁ:mg
ot

6.5 Angular Momentum operator

6.5.1 Angular Momentum Operator in Cartesian Coordinates

The angular Momentum L is given by
L=rxp
where 7 is the position vector and p is the linear momentum operator.

In operator, form eqn. (8) can be written as

izfxfy
or L=7Fx—ih
= —ihFxV
A_Sa A AT o A ~ 0
But r=ix+jy+zkand V=i—+j—+k—
ox oy oz
- . A A AT ’.‘a ’\.a '\a
Therefore, L=—ih(i x+ jy+zk)x|i—+ j—+k—
ox "oy oz
i ]k
=—ih|x y z
o 6 @
ox Oy 0z

o0 La) 5.0 .0) .0 .8
=—ih|i|y——Z2— |+j| z2——X— |+k| X——-y—
0z Oy ox Oz oy = Ox

BSCPH 301

(7)

(®)

€

(10)
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A

IfL,L iz be x, v, and z components of L .

X y’

then L, =il ﬁi—éi ,
oz 0y

L, = —ih(éﬁ—fcﬁj and

Ox Oz

L. =—inh )eﬁwi
oy 0z

6.5.2 Angular Momentum Operator in Spherical Polar coordinates

The relation between Cartesian and Spherical polar coordinates is

x =rsinécos¢
y=rsin@sing

z=rcosd

Where r = xi + yi + zk

7"=()C2+y2+22)1/2

[ 2, 2

_ X"+

also 6 =tan™! Y
z

g=tan"' y/x
@:l(xz +y?+22) 22 =2 =sinfcosd
ox 2 r
@=l(x2 +y*+2°) 22y =L =sinOsin g
oy 2 r
or

_:l(xz+y2+zz)‘”22z=£=cosﬂ
oz 2 r

Again we have

z
z=rcost or cosf =—
r

(11)

(12)

(13)

(14)

(15)

(16)

7

(18)
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Differentiating w.r. to x.

—sinH%: 0 (1]:—2 or

Z —_— p— —_—
ox ox\r) r*ox
Using eqns. (16) and (18), above eqn. becomes

—sinﬁg—gz —lsinﬁcosqﬁcosﬁ

X r
or %:lcosﬁcowﬁ
ox r
Similarly —sin 9% = —_22@
oy r°oy
or %=lcosﬁsin¢
oy r
and 20 = _—lsin 0
oz r

also we have

Y

tang =—
X

Differentiating w.r. t. X, we get

2 0P _ =y
sec” g—=—-
¢ ¢8x x?
or secz¢%:1.l:—tan¢.
X

X rsin@cos ¢

secz¢%=—sm¢ 1

= —
ox cos¢ rsinécos¢
N o9 _ si.n¢
ox rsiné

(19)

(20)

1)

(22)
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Similarly o¢ = —CO,S /
oy rsing
0z

Now consider

0 _0r0 000 090
ox Ox Or Ox 00 Ox 0¢

i:sin¢9cos¢i+lcosﬁcos¢i— 51'n¢ 9
0. or r 00 rsinf 0¢

dy Oy or 0y a0 0y ¢

0 oOr 0 00 0 0¢ 0

sianin¢£+lsin¢cost9i+ CO,S¢ 9
or r 060 rsinf 0¢

i o _oro 300 040

0z 0OzOr 0z 060 0z 0¢

0 sin@ 0

=cosfd—— —

or r 00
Now ix:—ih(yi—ziJ
0z Oy

Using above relations,

ix =—ifi| rsin@sin @cos t9i—sin2 Hsinqﬁi—rcos@sin Hsinqﬁg
or 00 0

—cos’ Hsin¢£— cos ¢

cos@ i
or sinf o¢

(23)

(24)

(25)

(26)

(27)
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ixzih sin¢£+cot6’cos¢5i (28)
or op
Similarlyl: =—ih zi—xi =—ih cosqﬁi—coté’sinqﬁi (29)
d ox Oz 00 o¢p
and @:4hxﬁ_y9-:4mi (30)
oy = Ox o¢

6.5.3 Operator for Square of total angular Momentum (L)

Operator for total angular momentum in Cartesian Coordinates is —
P22 72, f2
L"=L+L+L;

=L -L,+L,-L,+L L (1)

x x y y z z
Consider

A

L.-L =1 sin;f)ijtcotﬁcowﬁi sin¢5i+cotﬁcos¢5i
00 o4 00 o

2
=—h? [sin2 ¢%+sin¢cos¢a—ae(cot98—aej+cotﬁcos ¢a—a¢(sin ¢%)

) 0 0
+cot 6’cos¢a—¢(cos¢a—¢ﬂ

2 2
=—h*|sin’ ¢a—2+sin¢cos¢cot¢9 0 —sin¢cos¢5coseczt9i
00 0600¢ o¢

2

0400

2
+cot@cos’ ¢i+cot2 Ocos? ¢6_2
00 o¢p

+cotfdcos¢@sin g

_cot? ing
cot” @ cosgsin g 54’5} (32)
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Similarly, ]:y .ﬁy =1’ {cos2 ¢% +cos@sin ¢coseczﬁai;j —cos¢@singcotf

zz

and L.L ={

2 2

0604

2

—cot@singbcosgbawg+cot05in2¢%+cot26’sin¢cos¢%
2 2 82
+cot” Gsi — 33
cot” @sin ¢8¢2} (33)
2
| il = O (34)
o¢p o¢ o¢p

Using eqns. (32), (33) and (34) in eqn. (31)

[} =—n?

{(sin2 $ +cos” ¢)% +cot O(sin” ¢+ cos? ¢5)i

2

00

2 2
+cot? O(sin” ¢ + cos’ ¢)a—2+a—
o¢g° 0¢

[ A2 2
9 eot0-L 1 (cor? 0412
00 00 o9

2 a 82
—5tcotd—+ 0056029—2
00 00 o¢

(& o 1 o
—2+C0t0— + 2 Ao
(o0 00 | sin’0 04

10 ( .9 j 1 o
- — Sll’lg— +—2—2
| sin6 00 00) sin“ 60 0¢
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Therefore operator for square of total angular momentum ? is given by

2
[ =-n? _1 i(sineij+ _12 6—2 (35)
siné 06 00) sin“ 6 0¢

6.6 Commutation relation

The commutator [/Al,é]zzzlé—éfl plays a vital role in quantum mechanics, we will now

consider commutation of position and momentum. The position and momentum in quantum

. . h=
mechanics are represented by the operators 7 and —V .
i
If we consider the z component of position and momentum operator for z and p, such that z =z
h o

and ﬁz = 75

Then consider the commutator [z, p_ Jy

22,
" i 0z |
A n(_ o T IT TT
=z, —|y=—| 22y —— AB—AB)y = ABy — AB
l,_z w4 l,(zazv/ a(Z!//)]{( )l// v l//}
_h( oy - 8_%1/]
i 0z v Zaz
h
l
or [z, p.ly =ihy
= [z, p.]=ih

Similarly, [x, p. 1=y, p,1=in
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h 0
[y, p. v =—.[y, —}I/
i ox

Oox

hl oy 81//]
=y -y |=0
i(y ox d ox

i.(ya—w—i(yw)j
i ox

Slmllarly [Z, px]:[x’ py]=[X, pz]:[yn px]’ [y’ pz]=0

Above relations can be expressed as

[x;, p;]1=iRho;

ij

When 51_7 1s Kronecker delta function and is defined as

also

6.6.1

(1)

o, =0, ifiz/
=1, if i=j

X=X, X=y, x3=zand py=p., p,=p,, p,=p,

Commutation relation between angular momentum operators:

(L

X

L]
Consider [ix, ﬁy ly = ixiyw —ﬁyixy/

Where psi is any arbitrary wavefunction, therefore we have

N2 0 0 0 0 0 0 0 0
=i || y—z—||lz—x—|W—|z——x— || y——z— | |¥

oz Oy ox 0Oz ox 0z oz Oy

oz Oy ox 0z ox 0z Z y

e yi(y%j_zi(zﬁ_wj_yi(x@_wj Zi(xﬁ_Wj
" 0z\" Ox oy\ ox oz\ 0Oz oy\ 0Oz
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+h2 Zi(ya_wj_zi Za_V/ _xi(ya_wj+xi Za_l//
ox\" oz ox\ Oy 0z\~ oz oz\ Oy

2 2 2 2
=—h? ya—l//+yz oy —Zzal//—yxal/zl+zxay
0z0x 0yox 0z 0y0z

- Xy +Xx + xz

2 242 2 2
o Zy@t//_zat// 61/2/ oy oy
Ox0z  OxOy 0z oy 0z0y

:_hzya_l//+h2x6_l//:h2 xﬁ_'//_yﬁ_l//
ox oy oy 0x

s By = )ity 22—y O
“ L LyJy = (in)( zh){x P ax}”

but—i7 xi—yi =iz
oy ~ Ox

Therefore [ﬁx, iy]w = ihizw
or [L

L)=inL, (1)

Similarly we can prove

A

=inL, 2)

~

L,
and [L.,L]=ihL, (3)

The commutation relations (1), (2) and (3) can be combined as

A

(L. L;1=ihL,
wherei, j, k being x, y and z resp. taken in cyclic order.

6.6.2 Commutation relations between Square Angular Momentum Operator (iz) and

A

L and L

x? Hy z

L
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0 [ L]
-2 = =
L =L-L=L+L +L
the operator corresponding to the observable L? is L* and can be expressed as

r2 r2 r2 r2
L"=L+L, +L;

(L L =L+ L +12, L]

r2 7 r2 7 r2 7
=[Ly, L J+[L,, L ]+[LZ, L, ]
:LAx[l’:x’LAx]+[l’:x’LAx]l’:x—'_l’:y[Ay’l’:x]—i_[l’:y’ Ax]LAy+LAz[l’:Z’LAx]+[l’:z’LAx]l’:Z

=0+0 —ihL L —ihL L +ihL L +ihL L. =0

Similarly [Z*,L,]=[L*,L,]1=0
6.7 Ehrenest Theorem

P. Ehrenfest established the correspondence between the Motion of a wave packet representing a

particle and the motion of a classical particle and stated that

"The expectation values or averages of the quantum mechanical variable satisfy the same
equation of motion as the corresponding classical variables in the corresponding classical

picture.

1.€. We can write
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and i<px>:<_ dV(x)>
dt dx

under the constraint that the wavefunction. y(x,¢) w.r.t which the averages are computed satisfy

the time dependent Schrodinger’s equation
ihaa—'t”(x, £)= Hy (x,1)

2 A2
where H :h—a—2+V(x)
2m Ox

6.7.1 Proof of Ehrenfest Theorem

Let x be the position coordinate of a particle of mass m at time '#. Also let the particle is under

the action of a potential V'(x). If w(x,¢) be the wavefunction of the particle at position x and
time t, then we have
~+00

(x)= j v (x,0)xy (x, t)dx (1)

—00

Differentiating w.r. t. time

d(x) :%j v (x5, 0)xy (%, 1)dx 2)

Also time dependent Schrodinger equation is

L, 0 n* o?
lha‘//(xaf)Z{—%&T‘FV@C)}W@J)
ot hl 2m ox? ’

Complex conjugate of eqn. (3) is
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* . 2 2
e =%{—§—m%+m)jw (x.)

eqn. (2) can also be written as

d<x> B jf’ 6(;/; (x,t)xl//(xat)dx"‘f '//*(x,t)x%

Substituting eqns. (3) and (4) in eqn (5)

d(x) ‘¢ i(-n* o
= I (2 Pl +V(x)j1// (x,)xy (x,t)dx

+ j “(x, t)x(——j iza—+V(x) W (x, £)dx
2m ox* ’

+00 2 0k
j {_wa(x, t)+il_TV(x)W*(x, H)xy (x,1)
e X

+y (x, t)xaz—(ft) 2mt// (x,t)xy (x, t)V(x)}dx
ox n*

dt 2m

—00

d i T i 2
= (x)_ in {xl// (x,0) ¥ 1) ZS D _ (1) '/’ x, t)}

+00
Let [, = I xy(x, I)L)dx
o’

—00

+00

CIAC)) %(w(x,t))

oy (x,1)
- dy x50,
W)= o

Buty(x,t) >0 as x >t

*

I ——T 9 () 2 .y
=T AR

(4)

)

(6)

BSCPH 301
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+oo +00 62
+ —(xw(x,t
- j — (o)

‘i v (x,t)dx

-0 .
or L= ()Y () >

Again using the boundary conditions, we get
+00 2
L=| v d d
= j v (60— G (x,0)dx

+o0

v (x,1) i(l// (x,0)+x Oy (x1) J dx
ox ox

—00

T d Oy (x,t) Ow(x,1)
j;y(x,t) PR ACORE P dx

—00

+00

=[ v’

—00

2
9 w(;c,t) L2y 7
Ox Ox

Using I in eqn. (6), we get

d(x) in T | . Py . o’y N1
0 Z%_w Xy (xat)ax—z_'// (X,l‘)xax—z(X,l‘)—2§// (x,t)a(x,t) dx
= R 20 (x, t)a—l//(x, t)dx
2m ox
d<x> 1+OO * . 0
or " =;_J;o 7% (x,t)(—zha}//(x,t)dx
But by definition

<Rc>: _[ V/*(x,l)(—ih%jl//(x,t)dx

—00

Therefore eqn. (9) gives
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(11) By definition
+00

<Rc> = _[ V/*(x,l)(—ih%jl//(x,t)dx

—00

Differentiating w.r.t time

d a+oo . ) 0
a(px >_5_£ % (x,t)(—zhajl//(xaf)dx

LC oy dy o ooy
=—ih ) ——(x,t)dx —ih D —| —(x,2) |d.
ZL (60— () z_{ow(x )ax(at(x )jx

Substituting from eqn. (3) and (4) in eqn. (10) we get

oy’ (x,1) and 2¥ 50
o ot

d<P> ] n* o° * oy (x,t)
X —_'h —_ —— -t l‘ > d
=—1 | ( 3 Vix) v (x,1) X

—ihT "(x z)(‘-’)i RS PN
_wl// Uk )ox| 2m ox? Vi

12 E 0%y (x,t) Ow(x,1) i ; dw(x,1)
= d dx+ |V 1 > d
2m I Ox? Ox * I @y (x.0) Ox *

—00 —00

/Rl S o (& T d
o [ v (x,t)a(a—):/zj(x,t)jdx— [ v (x,t)a(V(x)(x,t))dx

—00

2m ox? ox

—00

S T Nl Oy (1) Oy (x,0)
= |:l// (x,1) ﬁx(é’xz l//(X,l‘)J dx

)

(10)
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+ j {V(x)t//( t)a"’(x ) _ *(x,t)%(V(x)w(x,t))}dx

B 72 +Jgo l:i[ *(x’t)f;_l/z/(x’t)J_al//*(X,t) azl//(xat) _521//*(%0 azl//(x’t):ldx
X

B ﬂ ox v ox ox? ox? Ox?

—00

+ j v (x, z)( (x)j (x,£)dx
I N N 0oy (x,0) Dy (x,0) OV (x)
" 2m {ax (l// (1) dx’ (x,t)] 8x( ox ox de+< Ox >

+°°]+< aV(x)>
. ox

Again due to boundary conditions first two terms are zero

+00

/i oy oy’ oy
=E|:l// (xat)ﬁ(xat) . _a_(xat)_(xat)

.. We are left with
d(P) | V() an
dt Ox

But force corresponding to potential energy Vy is

F. = _Vx) (12)
ox
. eqn. (11) becomes
d(P) _
" =(F,) (13)
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Hence eqn. (9) becomes

dx P dx . o
—=-x or P_=m—, classical definition of momentum
dt x dt

and eqn. (11) becomes

5 _dP,
dt

R

; Newton's Second law of Motion.

6.8 Summary

In this chapter, we learnt that the dynamical quantities in quantum mechanics are represented by
operators. Also we learnt that the Heisenberg’s uncertainty relation, mathematically in a concise
form, can be presented in terms of commutation relations satisfied by these operators. We have
also learned about Ehrenfest theorem, which in quantum mechanics, is analogues of Newton’s

second law.
6.9  Glossary
Utmost — Greatest
Observable - Noticeable
Correspondence - Correlation
Analogues - Similar
Concise - Compact
Uncertainty - Unpredictability
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Q1.
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Quantum Mechanics, Theory and Application, Ajoy Ghatak and S Loknathan, MacMillan
India Ltd.

Theory and Problems of Modern Physics, Schaum’s outline, R. Gautreau and W. Savin,

2" edition, Tata MacGraw Hill Publishing.
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Quantum Physics, Berkeley Physics, Vol. 4, E. H. Wichman, 2008, 2008, Tata McGraw-
Hill Co.

Modern Physics, R. A. Serway, C. J. Moses and C.A. Moyer, 2005, Cengage Learning.

Solved Problems

A~ D .
Show that the operator A4 :8_ and B=x" do not commute when they operate on a
X

function y?.

Solution:  Consider 4 B(»?)= A(x*y?) = aﬁ(ﬁ y?) = 2xy?
X

Q2.

BAOY) = éﬁ(yz) =x2.0=0
ox
(AB-BA)y* =2xy*—0=2xy> 20
Aand B do not commute.

~ 0 - .
Show that the operator A= a—and B= p; where p is a constant commute when operate
X

on a function y*.

Solution: AB y? = ﬁ(pyz) = ai(byz) =0
X

Page 193



BSCPH 301

: o 0
BA(y2)=B(ay2j=p-0=0

Since (4B—BA)y> =0. .. Acommute with B.

n

d* . . : e
Q3.  Show that is a linear operator when n is a positive integer

dx"
Solution: Consider —cy, =¢, 4y,
dx" dx"
d" d"y
and c =c,——
A" W) 2 A
d" d"y, d"y,
— (e, +c¢ =c +c
I (e +cw,)=¢ e 2 A

n

Therefore is a linear operator.

n

dx

Q4. If ;lt// =e¢ "y , then shows that A is not a linear operator. Consider
Solution: Aley) =e " ey,

Ia(cz'//z) =e " ey,
Le. 121(01‘//1 +eyyy) = e VTN (e +ep,)

= ClV’lei(Wl ek g 02W237(01W1+02W2) oy M +ey,e

A 1s not a linear operator.
2

Q5.  Show that the operator A= % is Hermitian
X

Solution: For an operator to be Hermitian, we have
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+00 +00
I a (21¢)dx = I (1//,21)*¢dx Wheny and ¢ are same function of x.

—00

2
Let A:d—z.
dx

%
+00 +00

d’ d’
= [ v semd= | [v/(x)?] P(x) dx

—00 —00

. T d? Ldg|” T Ay dg
Consider LHS — dx=y — —-| ——d
_‘[O v dx* ) dx =y dx 'f dx dx gy

—00

+00 dl//z to Lx dzz//*
L d
¢ dx | 'f dx? P

dg
dx

—o0 —0

But wavefunctions y and ¢ must vanish as x —=oo.

s (4

dx? dx?

—00 —00

2
Hence the operator 4 = el 1s Hermitian.
X

Q6.  Find the commutator [x;, x;]and[p;, p;]
Solution: Consider [x;, x;ly
=[x; X; —xjx,-]l//
Ifi=j
[x;, x;1=[x; x;, —x;x; ]y =0
ifizj; leti=1,j=2 -.x;=x, x,=y

[xy—yx]y =0
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[x;, x;]=0

Consider [x;, p;lv =[x;p;, — p,x; ¥

case 1 ifi=j=1

but

=

or

[x,p) — prx; v

p=p,=——and x =x
i

=—y
l

oy
ox l//j

[x, ply =ihy

[x, p]1=ih

Case2ifi#j, leti=1,7=2

X=X, py=p,

[xﬁpy]l// :[xpy _pyx]l//

BSCPH 301
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[x, p,]=0
Similarly [z, p,1=[x, p.1=[y, p,1=[y, p.1=0
~.1s general we can write[x;, p;]=iho;
(ii1) Consider [p;, p;lv
Case lifi=j=1
[P, 2y =[P, Pl =P P~ PP W =0
Case2 i#j; leti=1, j=2
p=p,and p,=p,
Hence the commutation relation becomes
[P P, v =[PP, —DyP W

BIEERT )

_ 2| ooy _2(8_'//
ox\ oy ) oy\ ox

L 1
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2 2
| SV 9V p2k0=0
O0x0y 8y8x

..1n general we can write

[pi» p;1=0

Q.7  Evaluate the commutation relations

"o>

[P, L.[P, L1, [P, L]

Sol.  Consider [ﬁx, ix]l// =P Lxl// L P s

0 0 0 0 0 0
PP RV o ISLCARL S NP AN (LA O P A
l 8x( : )(yﬁz Z@y} - )(yaz Z@yj( l )8xl//
ox\~ oz oy 0z 0Oy ) ox

2 2 2 2
Ox0z  Ox0Oy 0z0x  Ox
=0

Thus [P,, L.]=0

(ii) Consider [ﬁ’ ]:y]l// =[ x]:y —]:y > v

IO (-T2 WSl (AL
6x 62 ox

2 2 2
=—h* Zavzl—xav/—al// +h?| z 8__ oy
Ox Ox0z 0Oz ox? 0z0x
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(i)  Consider [P, L lw =P.Ly—L Py

:—ihi(—ih) xi—yi w —(—ih) xi—yi x—ihit//
ox ox ox

oy oy ox
BPO) (VRN WY BN BN B .17
ox\ oy = oOx oy =~ Ox) ox
2 2 2 2
=—h* 8V/+x oy —ya 1/2/ +h? x—8 Ld —y—a 1/2/
oy Ox0y 0x 0yox ox
:_h26_l//
y
. . 0
= (-~ h)((—l h) —JV/
y
=—ih Ayl//

=[P, L,]=-inhP,
Q.8 Find the commutators
)% L] G)I[% L] (i) [% L]

Sol. (i) Consider [%, L Jy =% Ly — L iy

0 0 0 0
= x(=ih)| v— =z |y = (=ih)| y——z—
x(—i )(yaz z@yjt// (—i )(y@z z@ijy/
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= —ihxya—l//wtihxzail//+ihxy6—l//—ihx26—l// =0

0z )y 0z oy

A A

(i)  Consider [%, L,Jy =[%L, - L, %]y

<
<

0 0 0 0
= x(—it)| z——x—= |l = (=ih)| z— - x—
x(—i )(z X jl// (—i )(z X jxl//

=—ih xza—l// +ihx? v +ihzy + ihzxa—v/ — ihx? v

Ox Oz Oz Oz
=ihzy

Thus [, P,]=ihz

(i) Consider [%, L_Jy = *Ly — L_xy

0 0 0 0
= x(=it)| x— = v—= | = (=ih)| x—— y—
x(—i )(x . y Jl// (—i )(x . y Jxl//

= —ihx? 6_1//+ ihxya—l// +ihx? 6_1// —ihyxa—y —ihyy
oy ox oy ox

=—ihyy

then [%, L.]=—-ih}

Q.9  Show the commutation [ﬁz, cos¢@|=ihsing where ¢ is the azimuthal angle.

Solution: We know that us polar coordinates (r,8, @),

L. —_in
o¢

Consider []:Z, cosPly = (ﬁz cos¢@—cos ¢]:Z W
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wherey is a function of (7, 6, ¢)

therefore [iz , cosPly = —ih % (cosgy)—cosg [—ih 6% l//j

= —ih (—sin@)y —ikcos ¢(Z—Z+ ihcos ¢2—Z

= ih sin gy

Thus

[]:Z , Cos@|=ihsing

6.13

6.13.1

Ql
Q2
Q3

Q4

Q5

6.13.2

Ql

Q2

Terminal Questions
Short Answer Questions

Show that the sum of two linear operators is also a linear operator.
Show that the product of two linear operators is also a linear operator.

Show that the momentum operator is Hermitian.

2
Show that xe ™ is an eigenfunction of the linear operator% —4x”. Also find the
x

corresponding eigen value.

Find [xyz,pf] .

Long Answer Questions

Find the values of angular momentum operator in
1) Spherical polar coordinates

i1) Cartesian coordinates

Calculate the value of the operator for square of total angular momentum in spherical

polar coordinate.
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Q3

6.13.3

Ql.

Q2.

Q3

Q4.

1) Define eigen value and eigen function

BSCPH 301

i) The operator for z-component of angular momentum is ﬁz = —ihai , find if

sin(mg) is its eigenfunction or not.

Numerical problems

Evaluate the commutator []:Z,sin 24].

Evaluate the commutators [ ﬁi,i_j] where i # j

An FEigen function of the operator d%xz is sin(mx), where m = 1,2,3...Find the

corresponding eigenvalues.

State and Prove Ehrenfest Theorem.
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Unit-7: One Dimensional Potential Well and Barrier Potential
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7.1 Introduction:

Insight into how quantum particles can be bound or scattered by potential energy fields
can be obtained by considering models based on square wells and square barriers. In these
models, the Schrodinger equation may be solved easily using elementary mathematics, the
possible energies of a particle may be found and the properties of the wave functions are self-
evident. We begin by considering the quantum states of a particle in a one-dimensional square-
well potential. We shall show that there are unbound states with a continuous range of energies
and that there are, when the well is deep enough, bound states with discrete energies. We shall
then consider a particle incident on a square potential barrier.

In this unit, Schrodinger’s equation is used to solve one-dimensional problems in which
the potential is discontinuous and is such that between two points of discontinuity it is a constant.
These problems are interesting since there exist many physical phenomena whose motion is one
dimensional. The application of the Schrodinger’s equation to one-dimensional problems enables
us to compare the predictions of classical and quantum mechanics in a simple setting. Besides
being simple to solve, one-dimensional problems will be used to illustrate some non-classical
effects.

7.2 Objective

e To know about the Schrodinger equation and its application in one dimensional problem
e To define the bound and unbound state in one dimensional potential

e Derive an expression for one dimensional potential wells

e To determine the energy eigen value of one dimensional square well potential

e Define the meaning of potential barrier

e To calculate the transmission coefficient for single step potential barrier

7.3 Properties of one-dimensional motion
The Schrédinger’s equation describing the dynamics of a microscopic particle of mass m
in a one-dimensional time-independent potential is given by

d’y(x) 2m

Py (E-V(x)w(x)=0 (7.1)
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where FE is the total energy of the particle. The solution of this equation yield the allowed energy
eigenvalues E,, and the corresponding wave function ¥, (x). To solve this partial differential
equation, we need to specify the potential V(x) as well as the boundary conditions; the boundary
conditions can be obtained from the physical requirements of the system. The solutions of the
Schrédinger equation for time-independent potentials are stationary,

P(x, t) = P(x)e E/ (7.2)

for the probability density does not depend on time. We begin by examining some general
properties of one dimensional motion and discussing the symmetry character of the solutions.
Then, we apply the Schroédinger equation to various one-dimensional potentials: the potential
well, finite potential wells etc.

To study the dynamic properties of a single particle moving in a one-dimensional
potential, let us consider a potential V(x) that is general enough to allow for the illustration of all
the required features.

One such potential is displayed in Fig.7.1; it is finite at x - +oo,V(—c0) = V; and
V(400) =V, with V; smaller than V,, and it has a minimum, V,,;,. In particular, we want to
study the conditions under which discrete and continuous spectra occur. As the character of the
states is completely determined by the size of the system’s energy, we will be considering
separately the cases where the energy is smaller and larger than the potential.

Continuum states

Bound states

I Vmin

X1 0 x
Fig.7.1:General Potential Shape

7.4  Bound States (Discrete Spectrum)

At first, we want to know about the bound states in one dimensional potential. Bound states
occur whenever the particle cannot move to infinity. That is, the particle is confined or bound at
all energies to move within a finite and limited region of space which is delimited by two
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classical turning points. The Schrodinger equation in this region admits only solutions that are
discrete. The infinite square well potential and the harmonic oscillator are typical examples that
display bound states.

In the potential of Fig.7.1, the motion of the particle is bounded between the classical
turning points x; and x, when the particle’s energy lies between V,,;,, and V;:

Viin < E < V. (7.3)

The states corresponding to this energy range are called bound states. They are defined as states
whose wave functions are finite (or zero) at x — too, usually the bound states have energies
smaller than the potential E<V. For the bound states to exist, the potential V(x) must have at least
one minimum which is lower thanV; (V,,,;, < V). The energy spectra of bound states are discrete.

7.5 Unbound States (Continuous Spectrum)

On the other hand, the unbound states occur in those cases where the motion of the system is not
confined; a typical example is the free particle. For the potential displayed in Fig.7.1 there are
two energy ranges where the particle’s motion is finite: V; < E < Vyand E > V.

e Casel: (Vi <E<V,)
In this case the particle’s motion is infinite only towards x = —oo, that is, the particle can
move between x = x, and x = —o0, x, is a classical turning point. The energy spectrum
is continuous and none of the energy eigenvalues is degenerate. The non-degeneracy can
be shown to result as follows. Since the Schrodinger equation is a second order
differential equation, it has, for this case, two linearly independent solutions, but only one
is physically acceptable.

e Case-Il: (E>V,)
The energy spectrum is continuous and the particle’s motion is infinite in both directions
od x (i.e., towards x — +o0,). All the energy levels of this spectrum are doubly
degenerate. To see this, note that the general solution to equation (7.1) is a linear
combination of two independent oscillatory solutions, one moving to the left and the
other to the right. In the previous nondegenerate case only one solution is retained, since
the other one diverge as x — +o0 and it has to be rejected.

7.6 One dimensional potential well

Suppose a particle is moving from left to right in a region in which potential is zero.
However, after a certain time it reaches in a region in which potential becomes infinite as shown
in Fig.7.2.

Now the problem arises how to find the boundary condition at the surface of infinite
potential. We know that the Schrodinger’s equation is as follows:
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+—(E-V)y=0 (7.4)

| V =

REGION I REGION II

V=0

A B

Fig. 7.2: Boundary conditions at the surface of infinite potential

For region I, the Schrédinger equation may be put as follows:

d’y 2
dx‘;’ -lh—’?El/ll =0(-V=0)

2
dxl/zj +a’y, =0, wherea” = 2;;]3

or

The general solution of equation (7.4) [for x<0] is as follows
Y1 = A cos ax + B sin ax,

The Schrodinger equation for the region II is as follows

d’y, 2m

I ?(E ~V)y, =0, (Because V>E)
dZ
71/22 - IHZVQ =0
where ° = 2m(:2— E)

The general solution of equation (7.5) [for x > 0] is as follows

vy = CeP* + D™

BSCPH 301

(7.5)

(7.6)

(7.7)

(7.8)
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As the first term in Eq. (7.8) is representing an exponentially growing function for x=0, this
means that it does not remain finite as x—o0. Thus, only well-behaved part in y, is second term
which is the solution in the region II (x>0).

v, =De™ (7.10)

The solutions (7.6) and (7.10) have to be continuous at x = 0, i.e. y; at x = 0 should be the same
asyyatx =0,

or (W1)a=0=(Y¥2)a=0
From equation (7.6), we have (y)q=0= A.

From equation (7.8), we have (y3)q=0= D.

A=D (7.11)
d d
d—l’[/j has also to be continuous i.e., ( id j = (ﬁ]
dx dx o dx o
dy,
=7 = B
dx ]a:O A
@) g
dx ),
~Ba=-pD
B_p
o, 7.12
or 5 » ( )

From equation (7.12) it follows that if V —o0,  also tends to infinity, and as B cannot be
infinite, it implies that D should be zero

LA=D=0
or Yy, =0

Hence at the surface of infinite potential wave function will be zero.
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7.7 Energy levels for one-dimensional square well potential of finite depth (OR finite
potential well)
Let us now consider a simple one-dimensional well potential of finite depth which gives
rise to discrete energy levels. Suppose the potential is equal to zero within a distance on either
side of the origin and is equal to +V elsewhere, as depicted in Fig. 7.3).

V(x)

]

O e e =—wn o oo

Y

-a +a

Fig. 7.3: Finite potential well.

0 for -a<x<a
V for -a>x>a

Such a potential energy function is termed as a square well potential.

In the region | x | <a, the wave equation may be put as follows:

d*y, 2m
dle +-3 By =0, (v=0)

d2
\Zl +a’y, =0, wheea’ _2mE (7.13)
dx h,

The general solution of this equation is as follows:
y; = A cos ax + B sin ax (7.14)

The wave equation outside this region may be put as follows:

d’y, 2m
Tzz'Fh—z(V—E)\vz =0
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d’ 2
or &_Bz\pz =0, wherep’ =—r2n(V—E) (7.15)
dx, h

The general solution of this equation for E<V (bound states) may be put as follows :
W, = Ce® + De™" (7.16)

On applying the boundary conditions at x = 00 we need that in the region

x> a, C=0
x<-a, D=0.
Hence we get
y; = A cos ox + B sin ax. -a<x<a, (7.17)
v, = Ce™ X<-a (7.18)
ys=De ™", X>a. (7.19)

Let us now put restrictions that y and (dy/dx) should be continuous at x = +a.
If equations (7.17) and (7.19) are considered at x = +a, and then we apply (¥1)xa=(W3)x—a. We obtain

A cos aa+ Bsinoa=De™*  (7.20)

and if we apply (%} , wWe obtain

X
- A% sin 0a + Bot cos oa = - pDe . (7.21)

If Egs. (7.17) and (7.18) are considered at x = -a and then we apply (y;),—..=(y2),-.. we obtain

A cos aa — B sin aa = Ce™ (7.22)
d d
and | 0 —| Y2 , we get
dX X=-a dX X=-a
- A o sin 0a + Ba cos oa = Cpe™* (7.23)

On adding and subtracting equations (7.20) and (7.22), we get
2A cos aa = (C+D) e (7.24)
2Bsinoa = (D-C) ¢ (7.25)

Similarly, on adding and subtracting Egs. (7.21) and (7.23), we get
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2Ba cos aa = (C — D) pe’®, (7.26)

2Aasinoa = (C + D) pe’®, (7.27)
From Egs. (7.24) and (7.27), we get

o tan oa = (7.28)
and from Eqgs. (7.25) and (7.26), we get

acotoa = -f (7.29)
It is possible to get a solution of the equations (7.28) and (7.29) graphically.
Now the equation (7.28) is considered and put E&=aa and Pa = 1 then

Etan = .(7.30)

2mVa?’
hZ

and g+’ =o’a’+ fla’=a'[a’+p’] = ..(7.31)

= constant for a given system

Py
L/
//

N
\.-h-—

N ':4
g1
N~

A
-

1)
2 3/\ 4

T —

il ERE I DR ] S e S ——

et
X

(¥,

Fig. 7.4: Graphical solution of equation
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As & and n have been restricted to positive values, it becomes possible to find out the energy levels front
he intersection in the first quadrant of the curve & tan o plotted against & with the circle of known radius.

1
2mVa? |2
h2

In Fig. 7.4, there are curves for three values of Va’. For each of the two smaller of those values there
occurs one solution of equation and for the largest there are two solutions.

Stang=n
Now we will consider the equation
o cota=-f
=EcotE=-1

In Fig. 7.5, there have been shown the intersections of the same circles with the curves of - cot § versus
&. The smallest value Va* does not furnish any solution while the two larger values furnish one each.
Hence the three increasing values of Va® yield altogether one, two and three energy levels respectively.

3 S
N

cot g \ V2:]2

s UTE
===

X
()
3

fz-\ L

——gcot

ey

A
-.....7-{_....-

o
-
.
w
&~
(8, ]

E—-—-—-—-

Fig. 7.5: Graphical solution of equation

geos&=-m

Let us now undertake a special case in which V approaches infinity, i.e., when the potential barrier is
infinitely high. For the first group of solutions, we obtain
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tan aa = /o=
or oaa=(2n+ 1) /2 ..(7.32)

The characteristic energy values may be put as follows:

2 232
E, = % (7.33)

For the second group of solutions, we have

-
tanca=——>0

oa=nm ..(7.34)

The characteristic energy values may be put as follows:

2 232
E. =(2n)—“2h .(7.35)
8ma

One gets interesting results by finding the value of y at x = +a as V is changed and also that of y, = a as
V approaches unity. It follows that y, = a approaches zero as V approaches infinity. This result is also
obtained from Egs. (7.18) and (7.19). The general shape of y within the well has been found to be same
as in the well of infinite depth. However, exponential tails are present on the wave functions in region on
two sides of the well. These tails possess larger amplitude and fall off less rapidly with increasing
distance away from the well.

An interesting new result is obtained that y and therefore y* is not zero in outer regions. This
result is not expected when we apply the classical theory to this problem. In the outer regions kinetic
energy is negative (V > E). By the negative kinetic energy, it means that classically the particle should get
turned around at the edge to the well and should never appear in negative kinetic energy regions.
However, the quantum mechanics predicts a probability that a particle is able to penetrate some distance
into a classically forbidden region of negative kinetic energy. But it follows from the form of the wave
function that y, remains appreciable in size beyond the barrier provided (V — E) is small. Therefore, the
degree of penetration will be a rapidly varying function of the negative kinetic energy.

The v does not get reduced to zero at the edges of the well. Therefore, the wave length of the
oscillation within the well becomes somewhat longer, i.e., the energy levels are somewhat lower than in
the preceding case. It is possible to put this conclusion in another form, i.e., walls are separated by a

. . . 1 3
distance greater than 2a. It is not necessary that the wave function may not complete —,1, —etc.

oscillation within the well but will have ‘little left’ over for joining smoothly with exponential tails.
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Self Assessment Question (SAQ) 1:A particle with mass m is in an infinite square well potential with
walls at x = —[/2 and x = [/2. Write the wave functions for the statesn = 1,n = 2,n = 3.

Self Assessment Question (SAQ) 2:A particle is in the nth energy state 1,, (x)of an infinite square well
potential with widthL. Determine the probability P, (i)that the particle is confined to the ﬁrst%of the width
of the well.

7.8 Potential step or a single step barrier

When the force field acting on a particle is zero or nearly zero everywhere except in a limited
region, it is known as a potential step or a single step barrier. A potential step is shown in Fig. 7.6.

The potential function of a potential step may be put as follows :

Oforx<0

V()=
V, forx>0

V=Vo

REGION 1 REGION II

V=0
=X - x=0 — X

Fig. 7.6: Potential step or a single step barrier.

Suppose the electrons of energy E move from left to right, i.e., along the positive direction of x-axis.
Suppose we apply quantum mechanics to this problem according to which the electrons behave like a
wave when moving from left to right and face a potential hill of height V= Vyat x = 0.

The analogy for this problem is that if light strikes a sheet of glass, the wave is partly reflected and partly
transmitted. Hence in this problem the electrons at the discontinuity will be partly reflected and partly
transmitted.

As V(x) = 0 for region I, the Schrédinger wave equation for this region will be
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o’ 2m
Gx\lzj T BV 0, ..(7.36)

The Schrodinger wave equation for the region II will be

+h—(E-Vo)W=0 (737

The general solutions of Egs. (7.36) and (7.37) may be expressed as
w, =Ae™" 1+ Be™ ! ..(7.38)

and w, =Ce™ " 4 De™'" ..(7.39)

where y; and v, are the wave functions for the regions I and II respectively; A, B, C and D are constants
of integration and can be evaluated by the boundary conditions; p; and p, are the momenta in the regions
I and II respectively and are given by

P = \/7 (2mE )
Py = \/7[2m(E -V )]
In Eq. (7.38), the first term represents a wave advancing in the positive direction of x-axis in the

first region, i.e., incident wave and the second term represents a wave moving in the negative direction of
X, 1.e., reflected wave.

..(7.40)

Similarly, in Eq. (7.39), the first term represents a wave advancing in the positive direction of x-
axis in the region II, i.e., transmitted wave and the second term represents a wave moving in the negative
direction of x-axis in the region I, i.e., reflected wave. As there occurs discontinuity only at x=0 in the
region II and after which there occurs no discontinuity in this region, it means that the reflection will not
take place in this region, i.e., D=0.

Hence Eq. (7.39) becomes as follows:

w, = Ce™"" (7.41)

7.8.1 Boundary conditions

In order for y to be finite, E and V must be finite because infinite energies do not occur in nature. Then,
2

oy
Ox?

from Schrodinger equation, it follows that is not necessarily continuous but is everywhere finite. In
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2

order for —-to be finite, 2 should be continuous everywhere. By the continuity of 2 , it means
ox 0x ox
that
%: a&at x=0,ie.,
ox ox
0 0
ie., L I .(7.42a)
ox ), ox ) _,
This is the first boundary condition.
oy . . o .
In order for 8_ , v must be continuous. By the continuity of y it implies that y;=y, and x=0, i.¢.,
X
(Wx=0= (W2)x=0 -(7.42D)
This is the second boundary condition.
On applying the boundary condition Eq. (7.42b) to Egs. (7.38) and (7.39), we get
A+B=C ..(7.43)
On differentiating Egs. (7.38) and (7.42), we obtain
Wy _ D1 [ goinain — pe-ineh] (7.44)
ox h
OV _ 1Dy ripern ..(7.45)
ox h
On applying the boundary condition (7.42a) to Egs. (7.44) and (7.45), we obtain
pC=pi[A + B] ...(7.46)
On solving Egs. (7.43) and (7.46) for B and C, we obtain
c-nd (1.47)
Pt D,
p=t1"P .(7.48)
Pt D,

In the above equations, B and C are denoting the amplitudes of reflected and transmitted beam in terms of
the amplitude of incident wave.
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In order to understand further steps, we should define reflectance and transmittance at the potential
discontinuity.

At the potential discontinuity, the reflectance, reflectivity or reflection coefficients may be defined as the
ratio of magnitude of reflected current to the magnitude of incident current, i.e.

magnitudeof reflected current
Reflectance, R = - — ...(7.49)
magnitudeof incident current

At the potential discontinuity, the transmittance may be defined as the ratio of magnitude of transmitted
current to the magnitude of incident current

] magnitudeof transmitted current
Transmittance, T = ..(7.50)

magnitude of incident current

Two cases may arise :
(a)E>V,

(b) E<V,

Let us discuss these one by one.

» Case-I:E >V,
When E >V, p, is real. In this case we will now derive the current density in the I and II regions.

In region I, we have

y, = Ae”'" + Be " .(7.51)
Its complex conjugate v, would become as follows :

w, = A"e " 4 BT .(7.52)

On differentiating Egs. (7.51) and (7.52) with respect to x, we get

oy, _ i&[Aemlm — Be ] (7.53)
Ox h

oy, _ _Q[A*e—iplx/h _B*Eiplx/h] .(7.54)
ox h

We know that the probability current may be defined as follows :
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J=%[W*Vw—wvw*]
m

When this relation is applied to region I, it becomes as follows :

Bl .0 v,
(Jx)l_ {‘//1 (//l—% Wl}

" 2im ox ox

On substituting Egs. (7.51), (7.52), (7.53) and (7.54), we obtain

0= gl )

X(lplj(A*ezplx/h)}_ {(Aeiplx/h _I_Be—iplx/h)

h

X(ﬂj( A B*eiplx/h)}],

h

_pl44a -5'B)

~Pfap - Bp]
m

BSCPH 301

..(7.55)

..(7.56)

From the above relation it is evident that the current in the region I is equal to the difference between two
terms, of which the first one which is proportional top;| A |* represents the incident beam travelling from

the left to right, whereas the second one which is proportional to p; | B |* represents the reflected beam

travelling from right to left. Hence,

The probability current of the incident beam =| A | pan
m

and the probability current of the reflected beam = | B |* v
m

Let us now consider the region II. In this region, we have
W, = Ceipzx/h
2
Its complex conjugate would be given as follows :

* * _ipyx/h
y,=Ce™

On differentiating Egs. (7.59a) and (7.59b) with respect to x, we get

.(7.57)

.(7.58)

..(7.59)

..(7.59b)
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a‘//z — ip_ZCeipzx/h

...(7.59¢)
Ox h
oy, i .
Vo _ P2 ox privaern .(7.59d)
ox h
The expression for probability current in region II becomes as follows :
h oy. oy, *
J)M =—/|y, *—=+ : ..(7.59
(v.) Zim[l//z P (7.59)

On substituting Egs. (7.59a), (7.59b), (7.59c¢), and (7.59d) in Eq. (7.59¢), we get

(Jx)[]:i C*eipzx/h & Ceipzx/h _ Ceipzx/h _ip_z C*e_l-pzx/h

= L2 [cc” + cc’]
2m
2 2
_P (cewy 1P ..(7.60)
m m

From Egs. (7.60), it is evident that there is only transmitted wave in region II, Thus, Eq. (7.60) represents
the transmitted current.

Let us now find the expressions for reflectance and transmittance for the case when E>V, or p; is real.

Thus, we have

magnitudeof reflected current

Reflectance R = - —
magnitudeof incident current

On substituting Egs. (7.57) and (7.58) in the above relation, we get

|B|* p,/m
Zm ...(7.60a)
1
where we have
B — pl _pZ A
bt p,
or E _bPh~P
A p +p,

Page 219



BSCPH 301

On substituting the above relation in Eq. (7.60a), we get

2
or rolpizp:) (7.61)
(p+p,)

Thus we have

Magnitude of transmitted current

Transmittance T = - —
magnitudeof incident current

From the above relations we get

T:‘Cyz p2/m
|A|2 p/m
2
T:(—2p1 j el
pitp,) P
T PPy (7.62)
(p+p,)

From the definitions of reflectance and transmittance, it follows that the sum of reflectance and
transmittance must be equal to unity. This can be verified by using Egs. (7.61) and (7.62).

rar_Pi=p)  4pips

(p,+p,) (p+p,)

_(p=p) +4pps _(pi+p) (7.63)

(p,+p,) (p,+p,)

From Eq. (7.61) it follows that
(i) the reflectance approaches zero as p, approaches p; and
(i1) the reflectance approaches unity as p, approaches zero

We also know

Py =2m(E~V,

p, =~N2mE
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From the above expressions it follows that p, would approach zero when V, is zero, i.¢., the reflectance
would be zero when V, becomes equal to zero. It means that some reflection must take place even if
E>V,. The reflectance would be large only when V is almost comparable in size with E. It is to be kept
in mind that it is the wave nature of matter that gives rise to the property of reflection from a sudden
change in potential. However, the classical theory does not give rise to this property when E>V,,. Thus, it
may be concluded that the property of reflection from a sudden change in potential is purely a quantum
mechanical effect.

» Case-II: E<V,
When E<V,p, is imaginary. We know,

P> =iN2m{(V, - E); (7.64)
Its complex conjugate would be
pr=2m(y —E)]=-p, .(7.65)

As p, is imaginary, it is possible to calculate the probability current associated with wave function y, in
the following way.

v, = Ce"" ..(7.66)
v, = C*e”"”;”h('.' p, is imaginary) . ..(7.67)

On differentiating Egs. (7.56) and (7.67), we get

OV, _ 1Py ryiprein (7.68)
ox h

Wy _ Py prlt .(7.69)
ox ox

The probability current in this case would be given by

h + OY, 8(//2*}

J = ...(7.70
X 2im (//2 Ox WZ O ( )
2im | h
_Ceipzx/h(%jc*ewz*x/h:l .(7.71)
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*

But P, =D,

A zzi{c*eipzx/h(lp?zjceﬂpmh _CC*(%je[pzx/heipz)r/h}
im

=0 .(7.72)
It means that the transmittance current is zero. Also we know

magnitudeof transmitted current

The transmittance = -
magnitudeof reflected current

0
- magnitudeof reflectedcurrent

ie., T=0 ..(7.73)
We also know,

magnitudeof reflected current

The reflectance R = - —
magnitudeof incident current

(559"
R=——_ M
P

AA *) 2L
(142

*

PP PP *
A A
R bt D, p+h, _(p1_p2)(p1_p2)

A4 (p+p NP+ p,)

[By using Eq. (7.48) and its complex conjugate]

g=i=p Mo =) _(piopXpip:)  (Gneep = —p))
(pl +p2)(pl TP *) (pl +p2)(p1 +p2)

or R=1 .(7.74)

From Eqs. (7.73) and (7.74), it is evident that the entire wave gets reflected when E<V,, i.e., no electrons
are transmitted but all are reflected.

Self Assessment Question (SAQ) 3: Write the difference between reflectance and transmittance
coefficient.
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Example7.1:Suppose a beam of electrons gets impinged on an energy barrier of height 0.035 eV
and of infinite width. Calculate the fraction of electrons reflected and transmitted at the barrier when the
energy of the impinging electrons is

(i) 0.035 eV
(ii) 0.045 eV
(iii) 0.020 eV.
Sol. (i) Here E =V,

p, =~N2mE

=J2x9x107% x0.035x1.6x 10> g cm/sec

=1.0039x10™ g cm/sec

P2 =2m(E=V,)

Fraction of electrons reflected

(p.—p.)

pitp )2

_ (1.0039x10™ ~0)

-1
(1.0039x10™ +0f

Fraction of electrons transmitted

_ 4]91]92
(p+p,)

_ 4x1.0039x10™ %0
(1.0039+0Y’

=(0. Ans.

(i) Here E= 0.045 eV
=0.045 x 1.6 x 10" erg. = 7.2 x 10 erg.

Page 223



BSCPH 301

Vo=0.035¢eV

=0.035x 1.6 x 10" erg = 5.6 x 10 %eg.

p, =~2mE (cm=9x10"g)

=2x9x10% x7.2x10™* erg

=1.1384 x 10™° g cm/sec.
ps =2m(E=V,)

=2x9%x107(72x10™* —5.6x10™

=2x9%x10% x1.6x107"

=5.3665 x 107! g cm/sec.

ButE > V(),

2
Reflectance = M

D +p2)2

(1.1384x10 —5.3665x10' ]
(1.1384x10™ +53665x10”' |

_3.6210x10™
2.8057x107%

=0.1290.
Fraction of electrons reflected ~ 0.13.

Fraction of electrons transmitted

_ 4p,p,
(p1 +P, )2

_ 4x1.1384x107° x5.3665x107*!
(1.1384x10° +5.3665x10”' |

_2.4436x10%
2.8057x107%
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=0.87094.

Fraction of electrons transmitted = 0.87.

(iii) In this case, E < V,. It means that
Transmission coefficient = 0
Thus, the fraction of electrons transmitted = 0.

and, the fraction of electrons reflected = 1.

Example 7.2:4 particle of mass m moves in a potential V(r)=—V, when r<a, and V(r)=0 when
r>a. Find the least value of 'V, such that there is a bound state of zero energy and zero angular
momentum.

Sol.: Since there is no angular momentum, the Schrédinger equation reduced to

2 2 2
_;Z_m{aa? + ;%}l/l = Ey (outside the well)
2 2
and e 6_2 + %2 = (VO +E )(// (inside the well)
2m |Or° ror
With the introduction of U=ry, the wave equation is
U-a’U=0 (r>a),
and U+pU=0 (0<r<a),
|: 2,/’/IE,}I/Z
a=|- e
where
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V(r)

——— 34 —-——-|

-——-°<——ﬂ

r——=m

Fig. 7.7

We are interested in the limit E—0. Solutions are

—ar

pe

=4 (r>a),

sin fr

y=B8B (r<a),
where we have eliminated the solution singular at the origin. Continuity of y and its derivative at r=a

(equivalently, and easier, continuity of U and its derivate) requires that £ cot fa = -a. As E—0,a—0;
hence cot (Ba)—0. This happens when Ba=n/2, or Vy=2"h’/8ma’.

Example 7.3:Calculate the value of E, for an electron moving back and forth between potential
barriers 107 ¢cm apart (m=9.1 x 107 g).

h2
Sol. We know E, = 5
8ma

_ (e63x107)
8x9.1x10x (107

=6.04x10™" erg.Ans.

Example 7.4:Calculate the value of the difference between the energy of a molecule of the
moving back and forth on a path 1 cm long when n=2 and n=3 at T=298°K.
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) B

8m

Sol. We know E =n

n

2

22 % (6.63x107 ]

E,=

8x ———————x1?
6.02x10%

_ 2

i x(6.63x1077)

4 2

8x— 1 __x1
6.02x10%

E,—E, =(-4)(8.27x107")

=4.13x10™ ergAns.

Example 7.5: If the electron having de Broglie’s wave length as 1.21 <10 cm is confined in a
one-dimensional box, how far apart must the walls of the box be when five loops of the de Broglie wave
span the distance from one wall to the other?

Sol. A loop is just half as long as the wave length, i.e., (1.21x10®)/2 or 0.605%10® cm. If there are
five loops between the walls of the box, the distance between the walls must be five times the length of
the loop i.e., 5¥0.605x10™® cm or 3.03x10® cm.

7.9 Summary:

This unit has considered a particle in the potential energy field given in Fig. 7.2. We have chosen this
simple potential because it permits the solution of the Schrodinger equation using elementary methods
and because it leads to wave functions which are easy to visualize. Clearly, the detail of the results is only
relevant to this particular potential, but the following general features are relevant in atomic, nuclear and
particle physics:

*  Wave functions undulate in classically allowed regions and fall off exponentially in classically
forbidden regions.
» Potentials give rise to bound states with discrete energies when they are sufficiently attractive.
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7.12TERMINAL QUESTIONS:

Objective type questions:

a)

b)

d)

According to Schrédinger a particle is equivalent to a-

(1) Single wave

(i1) Wave packet

(iii)  Light wave

(iv) Cannot behave as wave

Of the following having the same kinetic energy, which has the longest wavelength?
(1) An electron

(i1) A proton

(ii1) A neutron

(iv) An alpha particle

In case of a potential step of height V. If a classical particle of energy E<V the transmittance is-
(1) Zero

(i1) Finite non-zero

(ii1) Infinite

(iv) 1

The wave W = A exp (ikx) represents-

6)] The wave travelling along x-axis

(i1) The wave travelling along negative x-axis

(i)  The wave travelling along any direction
(iv) None of these

Short Answer type questions:

Q.7.1 Define bound and unbound states for one dimensional potential.

Q.7.2 Write the Schrodinger equations for one dimensional potential walls.
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Q.7.3 What are the impotency of boundary conditions?

Q.7.4 Discuss the one dimensional potential step.

Q.7.5 Define the probability current for any complex wave function.
Long Answer type questions:

Q.7.6 Derive an expression for one dimensional finite potential wall potential and deduce the eigen
value equations.

Q. 7.7The potential function for a certain particle moving along positive direction of X-axis is
represented as

V(x)=0forx <0
=V, forx=0.

Calculate the transmittance and reflectance at the potential R + T = 1, where R is reflectance and T
is the transmittance.

Q. 7.8A particle is moving in a one-dimensional potential, given by

V(x)=0forx<0
=V, forx=0.

(a)  Write down the Schrodinger wave equation for the particle and solve it.
(b)  Find the reflection and transmission coefficients for the case of (i) E>V, and (ii) 0<E<V,
where F is the total energy of the particle.
Q. 7.9An electron having kinetic energy 10eV at x = oo is moving from left to right along X-axis.
The potential energy is V=0 for x<0 and V= 20eV for x>0. Treating to electron as a one
dimensional plane wave:

(a) Write Schrodinger equation for x<<0 and x>0.

(b) Sketch to solution of Schrodinger equation in the two regions x<0 and x>0.
(c) What is the wavelength of electron in x<O0.

(d) What are the boundary conditions at x= 0.

(e) What is the probability of finding the electron at some positive value of x.

Q. 7.10Calculate the discrete energy levels of a particle in one-dimensional square well potential
with (i) perfectly rigid walls (ii) finite potential step.

Q. 7.11Given that V= 0 for x<0 and x>0 and that a potential barrier of arbitrary shape V(x) exists in
0<x<a. Shaw that the coefficient of reflection of particle incident on the barrier is same whether they
approach from the right or from the left.
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Q. 7.12An alpha particle is trapped in a nucleus whose radius is ro= 1.4 X 10~15m. What is the
probability that an alpha particle will escape from the nucleus if its energy is 2MeV? The potential
barrier at the surface of the nucleus is 4 MeV.

7.14 (a) Answers of Self Assessment Question (SAQ):

Ans.1: P, (x) = \/Z_/Lcos (nTx)
$200) = —27Lsin (277)
Ya() = —27L cos (77

sin2nr/a

Ans.2: P, G) = foL/“thn(x) dx = %

2nm

Ans.3: Refer section 7.8 to ans.

(b) Answers of Terminal Questions:
Answer of objective questions: a) (ii) b) (i) ¢)(i) d)(i)

Ans.7.6: Refer section 7.7 to solve.
Ans.7.7 to 7.11: Refer section 7.8 to solve.

Ans. 7.12: P=0.124.
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Unit-&8: Reflection and Transmission Coefficients for a
Rectangular Barrier in One Dimension

CONTENTS
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8.6 Attractive square well potential
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8.8 Glossary
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8.10 Suggested Readings

8.11 Terminal Questions
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8.12 Answers

8.1 Introduction

In the present unit we describe that how a particle interacts with the rectangular barrier in case of
one dimension. The ability to penetrate and tunnel through a classically forbidden region is one of the
most important properties of a quantum particle. In the previousunit, we discovered that the wave
function of a bound particle extends beyond the region of confinement of a bound classical particle. Now,
we shall show how particles can tunnel through potential barriers. Here we checked thatif a classical
particle approaches the barrier from the left, it would be reflected if its energy is below of the barrier and
it would be transmitted if its energy is above the barrier. We shall see that when a quantum particle
encounters the barrier, the outcome is uncertain; it may be reflected or it may be transmitted. Most
importantly, we shall show that the particle may be transmitted even when its energy is below ofthe
barrier, and we shall calculate the probability for this to happen.

8.2 Objective

e To define the rectangular potential barrierin one dimensional

e Derive and write the transmission and reflected coefficients

e To discuss the classical and quantum approach of the tunneling effect
e Explain the various examples of the tunneling phenomena

e To study the attractive square well potential

8.3 Rectangular potential barrier

In this unit we shall study some applications of Schrodinger equation which beyond the potential
step. Suppose there is one-dimensional problem (Fig. 8.1) where the potential function may be defined as
follow :
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V(x)=0forx <0
=V, for0<x<a

=(0forx>a LG8

Here there is a potential barrier between x=0 and x=a.If a particle having energy less than V, i.e., E<V,
approaches this barrier from the left, i.e., from region I, classically the particle will always get reflected
and will not penetrate the barrier. However, wave mechanics predicts that the particle will not necessarily
be reflected by the barrier but there is always a probability that it may cross the barrier and continue its
forward motion to the region III. This probability of crossing the barrier is termed as the tunnel effect.

Further, if E>V,, classical mechanics predicts that the particle will always get transmitted whereas wave
mechanics predicts that the particle is having finite probability of transmission and therefore it is not
certain that the particle will penetrate the barrier.

In order to solve this problem, the Schrodinger’s wave equation will be written for three regions one by
one.

Vix)=Vo

&

1 ¥ 1l “-,I?I““
3 Yo
~Vix)=0 I} Vix)=0

xz( Xz=d
——-—.x

Fig. 8.1Rectangular potential barrier

The Schrodinger equation for regions I may be put as follows :

2
%Jrzh—TEwl =0, (SinceV =0) (8.2)

The Schrodinger equation for region II may be put as follows:

2
_a \ljz +2_m

PR (E-V,)w, =0 (8.3)

Similarly, the Schrodinger equation for region III may be put as follows :
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0* 2m

Ey, =0 .(8.4)

In Egs. (8.2), (8.3) and (8.4) v, v, and y; represent wave-function for region [, I and III respectively.

The general solutions of equations (8.2), (8.3) and (8.4) may be put as follows :

vy, =A™ +Be ™ .(8.5)
v, =A™ +Be " .(8.6)
v, =A,e™" +Be ™ .(8.7)

where p;, p; and p; represent the momenta of particle in the corresponding regions and are given as
follows :

b= (2mE) =P3

b, = \/7[2m(E_ Vo )]

In Egs. (8.5), (8.6) and (8.7) A1, A,, Az, By, By, B; are constants whose values can be determined by
boundary conditions.

(8.8)

Also, in Eq. (8.5), the first term is representing the wave which is travelling along +ve X-axis in the
region I, i.e., the incident wave, while the second term is representing the wave reflected at x=0.

In Eq. (8.6), the first term is representing the wave travelling along +ve X-axis in the region II, i.e., the
wave transmitted at x=0 whereas the second term is representing the wage travelling along —ve X-axis in
the region II, i.e., the wave reflected at x=a.

Similarly, in Eq. (8.7), the first term is representing the wave travelling along +ve X-axis in the region III
i.e., the wave transmitted at X-a, while the second term is representing the wave travelling along —ve X-
axis in the region III. However, no wave is travelling back from infinity in region III. Hence, B;=0.
Therefore, it means that Eq. (8.7), which is the solution of Eq. (8.4), may be put as follows :

v, =A™ .(8.9)

In order to evaluate the constant A, By, A,, B, and A3, the conditions are to be applied at the boundaries
x=0 and x=a. These conditions are as follows:

(a) Condition—i): They must be continuous at the boundaries, i.e.,
Y =\, at x=0 ...(8.10a)

Y, = 3 at x=0 ...(8.10b)
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(b) Condition -ii): The 2V

must be continuous at the boundaries, i.e.,

Ny _ oV, atx =0
ox  0x ..(8.11a)
and V2 _ Vs 4k —a (8.11b)
ox ox
If we apply boundary condition (8.10a) to equations (8.5) and (8.6), we get
A1 +B1 :A2+B2 (812)
If we apply boundary condition (8.10b) to equations (8.6) and (8.9), we get
A,e®" 1+ Be P = A e (8.13)
Now we differentiate equations (8.5) and (8.9), we obtain

Oy, _ip, ip,x /1 —ipyx /7

——=——|A ™" -Be ™ ..(8.14

ox  h [, 1 | ®19
oy, _ip, ip,x /B —ipyx/h
—==—=[A,e™" —-B,e ™" ..(8.15
ox  h 2, ’ | ®19

Wy _ 1Py p g .(8.16)
ox h
If we apply boundary conditions (8.11a) and (8.11b) to these equations, we obtain
pl[Al _Bl]:pz[Az _Bz]
and pz[Azeipza/h _Bze—ipza/h]:pl[A3eipla/h]
_bs
or A, -B,="2(A,-B,) .(8.17)
P
A/t _B e/t = PLp g (8.18)
P

If we solve Egs. (8.12) and (8.17) for A, and B,, we obtain

A B
A =22 P Bapy Pa (8.19)
2 b, 2 b,
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A B
B =u P Bapy P2 .(8.20)
1
2 P: 2 P,
If we solve Egs. (8.13) and (8.18) for A, and B,, we obtain
A .
A, 273(1+£_1jel(mpz>a/h .(8.21)
2
A .
B, =73(1+§—1je1(p1*p2)a”’ .(8.22)
2

B, zﬁeipla/h 1_& 1+& o ipaa/
4 b, P>
{H&II_&j g/ (8.23)
P, P,

It is possible to rewrite Eq. (8.23) in the form:

ﬁ_ 4e—ip1a/h
A (1+pzj(1+plj—eipza”’+(1—p2j(1—leeipza”’
P, P, b, P,
4ppe””

- 2 ip,a/h 2 i,palh

(p+p,) €™ —(p,—p,)°e

—ipja/h

_ 4p,p,e
(P12 +p22 Xe—ipza/h )+2p1p2(e—ip2a/h +eip2a/h)

—ipa/h

2p,p,e

5 5 e—ipza/h _ eipza/h e—ipza/h + eipzp/h
(pl +Pp, )( )+2p1p2 ( ) )

As E<V,,p, =4 |2m(E -V, )I is imaginary and therefore ip, is real, so that we may obtain

—ipjal/h

2p,p,e
(plz +p,’ )sinh (ipza/h)+ 2p,p, cosh (ipza/h)

Ay
Al
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—ipjal/h

_ . 2p,p,e }
cosh(ipzal/h)l(pl2 +p,’ )tanh(ipza/h)+ 2p,p, J

2p,p, sech(ip,a/f)e ™"

= ...(8.25)
2 2 .
(p1 +P, )tanh(lpza/h)+2p1p2
The complex conjugate of above equation may be put as follows :
A, 2pp, sech(— ip, a/h)eipla/h (8.26)

A" [p 4, Jranh(-ip,"a/n)+2p,p,”
But we get
pz* = —i,/|2miV0 -E )I =-p,

= Py = J2m(E V)] = iJ@m(V, —E)jasV, > E|

*2 2

SPpy =Py

Then, Eq. (8.26) becomes as follows :

Az* - 2p1p2 sec h(ipza / h)eipla/h
A (p +p,’ Jtanh(ip,a /) -2p,p,

(827)

The transmittance or the transmission coefficient may be defined as follows :

T magnitudeof transmitted current

magnitudeof incident current

(A3A3*))1 /m _ A3A3:
(A A pm  AA,

_ {2p1p2 sech(ip,a/n)e " }{_ 2p.,p, sech(ipza/h eipza/h)
{p," +p,’ Jranh(ip,a/h)+ 2p,p, f{p,” +p," tanh(ip,a/ 7))~ 2p,p,

[Using Egs. (8.25) and (8.27)]

2 2 2(:
or T:( ~4p,"p,"sech’(ip,a/h) (8.28)

p,” +p,’ Jtanh?(ip,a/7)-4p,’p,’

As p, is imaginary, it means that ip, is real and so p,” is real. Hence T is real.
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The reflectance of the barrier or the reflection coefficient may be defined as follows :

_ magnitudeof reflectedcurrent

magnitudeof incidentcurrent

*

— BlBl
AlAl*

..(8.29)

If we use equations (8.23) and (8.24), their conjugates and remembering that p, = -p,, equation (8.29) on
simplification becomes as follows :

R = (P12 - Pzz)z tanh” (ip,a /1) .(8.30)
2+ pz)Z tanh®(ip,a /%) —4p,’p,’

It is possible to obtain the reflection coefficient on the basis of the fact
R+T=1 ..(8.31)
ie., R=1-T

The property of barrier penetration has been entirely ascribed to the wave nature of the matter and
has been found to be much similar to the total internal reflection of light waves. If there are two glass
plates having a layer of air as a medium between them, then there occurs transmission of light from one
plate to another, even though the angle of incidence is greater than the critical angle. However, the
intensity of transmitted wave will decrease exponentially with thickness of the layer of air. In this case,
there occurs decrease in the intensity of transmitted wave exponentially with the thickness of the barrier.
The wave function will be of the form as depicted in Fig. 8.2.

INCIDENT+REFLECTED
WAV
a TRANSMITTED

v AWAWAW] e oS PP P
VAVAAVIIN) el

|

Fig. 8.2Transmission wave functionand its amplitude

%x=0 . X=a
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Now we will undertake a special case when the barrier is thick. It means that
ipza >h, because a is very large.

In this case tanh {(ip2 )a / h} =1
sec h[—(ipg Ja j =2e"*""

As p, is imaginary, it means that ip, and p,” are real and negative. Then, equations (8.28) and (8.30)
become as follows :

T _16p12p2262ipza/71
b2+, —4p.’p,’
_ 2 2 2ip,alh
or T= 16p, p, € ..(8.32)
b0,
1 P
(o~ p.)
R: pl _pZ

(p12 + pzz)z - 4p12p22

o .(833)
_(pl - D ) =1.

= ( - . )2 =
P =D
If the values of p; and p, from equation (8.8) are substituted in equation (8.32), we get

_ —16(2mE)2m(E —Vo)e[Zi Bm(EVg)}a/h

T
{2mE - 2m(E -V, )}
_ %OZ—E) o2 E 7] -(8.34)

\Z

Eq. (8.34) represents the expression for transmission coefficient for a very large barrier. The
phenomenon of penetrating the potential barrier by the particles such as electrons is known as tunnel
effect. This effect finds valid applications in thermionic and field emission.

Self Assessment Question (SAQ) 1:What are the difference between one dimensional square well and
rectangular potential barrier?

Self Assessment Question (SAQ) 2:Write an expression for transmission coefficient for a very large
barrier.
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8.4Tunnelling Phenomena

Although the walls of the potential well were of finite height, they were assumed to be infinitely
thick. As a result, the particle was trapped forever even though it could penetrate the walls. We next look
at the situation of a particle that strikes a potential barrier of height U, again with E<U, but here the
barrier has a finite width (Fig.8.3). In this figure, 1, is incident de-Broglie wave, 1;_ is reflected wave
while ;. is the quantum phenomena of transmission waves.

Energy 1 o 1

-"7 e .
'

Fig: 8.3Classical and quantum approaches when a particle E<V.

The tunnel effect actually occurs, notably in the case of the alpha particles emitted by certain
radioactive nuclei. An alpha particle whose potential wall is perhaps 25MeV high. The probability of
escape is so small that the alpha particle might have to strike the wall 1038or mora times before it
emerges, but sooner or later it does get out. Tunnelling also occurs in the operation of certain
semiconductor diodes in which electrons pass through potential barriers even though their kinetic energies
are smaller than the barrier heights.

Examples of Tunnel effect: There are many examples in mature of quantum mechanical tunneling. We
consider a few of them.

e Alpha Decay: The tunnel effect occurs in the emission of alpha particles from radioactive nuclei.
The average energy of an alpha particle formed within a nucleus is only a few MeV whereas the
potential barrier around the nucleus (formed by the nuclear binding forces) is about 25MeV high.
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Classically, the alpha particle cannot escape from the nucleus but quantum mechanically it
“tunnels” through the barrier. This tunnelling constitutes radioactive alpha decay.

o Field Emission: The tunnel effect has also been found responsible for the “field emission” of
electrons from metals. This is the emission by cold metals in vacuum subjected to strong electric
fields. Classically, the field must be much stronger than the actual fields at which the emission
occurs. The actual field however, reduces the width of the barrier for the electrons at the metal-
vacuum interface, so that electrons of energy less than the barrier height can “tunnel” through the
barrier.

o Field Ionisation: The tunnel effect also explains “field ionisation” of electrons inside solid
insulators. In this phenomena the electrons break away from their parent atoms under the
influence of electric fields applied to insulators which thus undergo dielectric break down. Here
too, the actual field is weaker than classical physics requires it to be. But it makes the electrons to
“tunnel” through the potential barriers around the atoms.

e Tunnel Diode: Crystal diodes are modified by an extremely thin layer of insulation between the
two faces in contact. These are called “tunnel diodes” in which current flows by electrons
tunnelling from one side to the other through potential barriers higher than the kinetic energy of
the regulated merely by changing the height of the barrier, which can be done with an applied
voltage. This can be done rapidly, so that frequencies higher than 10°Hz can be obtained.
(ordinary diodes depend on the diffusion of electrons across a junction and therefore operate at
much lower frequencies.)

8.5 Application of barrier penetration, i.e.Radioactive emission of
o-particles (a-decay)

There are certain nuclei which emit a-particles and get converted into new nuclei with atomic
number less by two and mass number less by four. This process is known as a-decay and is depicted as
follows :

A A4 4
K - M+He .(8.35)
z zZ2 2

When an a-particle is present inside the nucleus, the energy of a-particle cannot be greater than
the height of the potential barrier which is existing around the nucleus. It implies that it is never possible
to detect or observe the a-activity or it means that o-particle should never come out of the nucleus. When
classical mechanics was applied to explain a-decay, many difficulties were realised which are as follows :

(1) The first difficulty involves the energy of the a-particle in the field of the nucleus. It was
concluded from Rutherford’s scattering experiments that the force experienced by o-
particles is a coulomb force which acts at a very small distance (=10"* cm) from the
centre of the nucleus. After this distance, coulomb’s law breaks down and the boundary
of the nucleus starts. Thus, there is only coulomb potential outside the nucleus which is
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depicted in Fig. 8.4. As soon as the a-particle enters the nucleus (0<r<a), it will be under
the influence of very strong attractive nuclear forces from the nuclear constituents. These
forces are represented by a potential well as depicted in Fig. 8.4.

(i1) If the radius of radium nucleus is 9.1 x 10™ ¢m, then the coulomb potential outside the
nucleus is 27.8 MeV. However, the energy of the a-particle emitted by a radium nucleus
is 4.88 MeV only. Now the simple question arises : How can an a-particle of 4.88 MeV
energy go through a potential barrier of 27.8 MeV?

(ii1) The second difficulty is concerned with the law of causality. According to the
radioactive decay law, the amount of radium left after 1620 years should be half. After
several periods of 1620 years, a small fraction of radium should be left. Now the simply
question arises: Why are some radium atoms decaying in the first few years and why are
some others surviving for thousands of years?

When quantum mechanics was applied to the problem of a-decay, the difficulties of classical mechanics
as described above disappear. According to quantum mechanics, every particle is assigned a wave aspect.
If this fact is taken into consideration, difficulty disappears completely because an electrostatic potential
barrier, although very high, cannot completely rule out the passage of wave through it.

v 27-8MeV

Fig. 8.4: Potential for the a-particle in the nucleus.

There always exists certain probability of the particle to penetrate through the barrier, however
the small the energy might be. It is possible to obtain some quantitative features of the theory from the
expression of the transmission:

16E(V, = E) [2/ntimyai]
=G
v

T ..(8.36)
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In quantum mechanics, we are only concerned with the probability of doing something; the probability
may become reality in a few years or after many thousand years. Thus, no question of causality exists.

Now an attempt is being made to calculate the mean rate of emission in case of uranium nucleus
which is having radius of about 10" cm. There is an evidence that the a-particle moves back and forth
freely with an average speed of 10° cm/sec. Thus, the a-particle will strike the barrier 10%/10"?=10°'
times/sec. The a-particle strikes the barrier each time. The probability that it penetrates the barrier is
equal to the transmittance or transmission coefficient T which is given by Eq. (8.36).

Hence the probability that a-particle leaks out in one second

P=10"'T per sec.

o 16E(V, —E) [oym®iehn]
=10* =0 e

0
For uranium, E=4.2 MeV and V, =30 MeV,
Mass of a-particle = 4xmass of proton
=4x1.6x10%* g
h o =1.05x10" erg-sec.
a =2x10"cm

4.2MeV)x {(30 - 4.2)MeV}

Thus, P:1021><16><( 5
(30MeV)

% e[—z {Zm(VO—E)}a/h]

16x4.2x25.8
30x30

=102" x

. [ 2y (2x4x1.6x10™ x25.8x10° x1.6x1072)|x2x 107"
X
1.05x107

=1.9x102 =)
~107"® per sec.
=10"" per year.

*." The average life time of the nucleus is equal the reciprocal of P, i.e.,
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T= lo;nyears =10"" years.

But experimentally, T had been found to be 10" years. Thus the theory is not valid. The
discrepancy has been ascribed to the fact that the barrier is not rectangular and hence the present
treatment is not very good for this case. A better treatment due to W.K.B. approximation is used.

It may also be understood that the life times of different elements have been found to vary widely
because Vy— E and a are different for different elements and the exponential is very sensitive to these
quantities.

Self Assessment Question (SAQ) 3:What is alpha particle? Define.

8.6 Attractive square well potential

Suppose there is an attractive square well potential as shown in Fig. 8.5. Suppose the potential
between x=a and x=-a be —Vjand zero elsewhere.

Fig. 8.5Attractive square well potential

Suppose a stream of electrons is directed from the left side. According to the classical physics,
there occurs no reflection of electrons from the potential barrier but due to wave reflection of electrons
from the potential barrier but due to wave nature there occurs reflection of some electrons from the sharp
edges at x = a and x = -a. As a result, there will be reflected and transmitted wave.

The Schrodinger wave equation for the first region may be put as follows :

d’ 2m
o T =

(because the potential V = 0)
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Suppose we takep, = 4/ (2 mE ) where p,; represents the momentum in this region. Then,

v, P
dx* &

vy, =0
The solution of this equation is as follows :
v, = Aeiplx/h +Be—ip1x/h
1

where A and B are constants.

Schrodinger wave equation for the second region may be put as follows:

d*y, 2m
it E+Volws =0

d’y, pz2
or dx? +?\V2:OWherepzx/_[zm(E"'Vo)]’

The solution of this equation may be put as follows :
\I/Z — Ceipzx/h + De—ipzx/h

Schrédinger’s wave equation for the third region is as follows :

d’y, 2mE
dx’ n v
d’ ’
or ?1/23+p—121//3 =0. where p, = /(2mE)

The solution of this equation may be put as follows :
\|f3 — Feip]x/h + Ge—iplx/h

As there occurs no reflected wave in the third region, the factor Ge ™'

v, = Feiplx/h
;=

BSCPH 301

.(8.37)

..(8.38)

gets discarded. Hence

..(8.39)

It is possible to obtain the values of those constants by applying the following boundary conditions as:

(‘Vl )xzfa = (Wz)x;a,

dy, ) _(dv,
dX X=-a dX X=-a
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Similarly (2)r=(W2)sss

()
dx ) _, dx ) _,

It we apply those boundary conditions, we obtain

Ae—(ipla)/h n Be+(ipla)/h _ Ce—(ipza)/h + De(ipza)/h

or (&j Ae*(ipla)/ ho_ (ﬂjB e(ipla)/h
h h
= [ip_zjce(ipla )/h _ (ipijBe(ipla )/h
h h

Ce(ipza)/h + De—(ipza)h — Fe(ipla)h

( ipy jCe(ipW _ (ip_z jDe—(ipza)m
7 n

_ (ﬂer(ip,a)m
h

Equations (8.41) and (8.41) on simplification become as follows :
Ae—(ipla)/h n Be(ipla)/h _ Ce—(ipz/a)/h n De(ipza)/h

and Ac- el _ glpa)n

= (p_zjce(ipza)/h _ (&jDGJr(ipza )/h
P b

On adding Egs. (8.44) and (8.45), we have

2Aef[ipla]/h _ (1 . p_zjce(ipza)/h + (1 . p_szGJr(ipla)/h
b b,

or A= l (1 " &JC e—(ipza)/h 4 (1 _ &JD e+(ip2a)/h y e(ipla)/h
2 b b

l (1 +&jcei(plpz Ja/h + (1 _ p_szei(plpz Ja/h
2 P o

BSCPH 301

...(8.40)

..(8.41)

.(8.42)

..(8.43)

..(8.44)

..(8.45)

...(8.46)
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On simplifying Egs. (8.42) and (8.43), we get

Ce(ipza)/h + De—(ipza)h — Fe(ipla)h (847)
Colina)h | pyg-linalih _ (E_ler(imaw .(8.48)
2

If Egs. (8.47) and (8.48) are added and subtracted, we obtain

2Pt — (1 +&er([pla)/h

P>
or C= l(l +ﬂer"(Plpz)“”' ...(8.49)
2 P>
and similarly D = 1 (1 - ﬂer"("l“’z Jalh .(8.50)
2 P>

If the values of C and D from Egs. (8.49) and (8.50) are substituted in Eq. (8.46), we get

A= l(l + &Il + ﬂJFeZ“PI-Pz)“/h
4 D P,
+ l(l _ &J(l _ &JFeZi(pﬁpz)a/h
4 D P,
_ E e(2ip1a)/h (1 n P> J(l Py j eO(Zipza)/h
4 b 2
n [1 _ &J(l _ &J 2ipaa)in
D P>

:Ee(%pla)/h (1+&+ﬁ+1je(21pza)/h
4 P P

+ (1 _& _ & + lJe—(Zipza)/h
b D
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(& + ﬁ}e(ﬁpza)/h
b P

— 9p\2ima)n _ ( Dy + P Je(2tp2a)/h:|

= g l2ima)/h [2 cos (ﬂ

2 j_izsin(MHL&J
h h b D

cos(—zPZaj - i(
h

b D

P p

b D

sin(zl)—zaj +2 cos[zp—zaj
fi fi

+2i sin[zp—zaj - (& + ﬂj cos[—zl) 2aj
h P P h

_i[&
D

h

= g ol2ima)/n { 4 CO{
— Fplipa)/n {co{ 2p,a j
h

_|FPPv _|F]
AP v A

2p,a

+&J sin(—zp zaﬂ

P h

j—2i[&+&Jsin(—2p2aﬂ
P P h

(&Jr&}in(—z}) zaj

P P h

i

..(8.51
> 8.51)

Now the transmissivity may be obtained as follows :

Rl

S2pza
fi

Fe(2[pla)/h {(CO

1

LA )

2 p

P
)2

+

2
sin 2P24
/)

1

4

cosz(zpzaj+ (pl
h b

P
D

()
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— 1
= : 1 : :

lﬂw(%@+(ﬂ+%Jm{zwj

L h 4 p2 pl h
_ 1
= e

1+ 1(191+sz -1 sin{zljza}

4\p, p h
1

= (8.52)

2
1 . 2| 2p,a
1+{M+%}mﬁ{m}
4lp, b h
From Eq. (8.52), it is evident that if p; = p, then T is unity, i.e., T=1. It is expected because there
exists no potential well at all. If p;#p,, transmissivity will be less than unity. It implies that there will
occur some reflection. However, this reflection is taking place from an attractive potential due to wave

nature and further this reflection has resemblance with the reflection of round wave from the open end of
an organ pipe.

For p,=p,, transmissivity is unity, i.e., when

sinZ{zil—Za} =0 or p,= Nt

2a

where N represents an integer. This problem has been somewhat similar to the Febry-Perot interferometer
in optics.

The result could be understood as follows :

The wave which gets reflected from the surface x=a, arrives back at x=0 with a phase shift of nx, then it
interferes constructively with the next wave coming in and consequently the transmitted wave gets
reinforced.
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e I |

/

N N

=]

Fig. 8.6 A wavenumber the transmittance

Hence, for certain wavelengths the transmittance or transmission coefficient becomes unity. As a
wavenumber the transmittance has been shown in Fig. 8.6.

Example 8.1: Electrons with energies of 10.0eV and 2.0eV are incident on a barrier 10.0eV high
and 0.50 nm wide. (a) Find their respective transmission probabilities. (b) How are these affected if the
barrier is doubled in width?

Sol:

(a) For the 1.0eV electrons

J2m(Vy, —E)

2 h
~ 42(9.1x10731)[10 — 1](1.6 x 1071?)
- 1.054 x 10734

= 1.6 x 101°m™!

Since L = 0.50nm = 5.0 X 1071%m, and 2k,L = 2 X 1.6 X 101° x 5.0 x 1071% = 16,

The approximate transmission probability is
Tl = e —2k,L

— 16
=11x1077

One 1.0eV electron out of 8.9 million can tunnel through the 10eV barrier on the average. For the 2.0eV
electrons a similar calculation gives T, = 2.4 X 1077, These electrons are over twice as likely to tunnel
through the barrier.
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(b) If the barrier is doubled in width to 1.0nm, the transmission probabilities become
T', =13 x 1071,
T', =5.1x 1071,

Evidently T is more sensitive to the width of the barrier than to the particle energy here.

Example 8.2:4 spherical square well has depth Vy and radius a. A particle of positive energy E
and mass m is caught in a state of angular momentum L#). Estimate the lifetime 7 of the particle,
ignoring the angular momentum inside the well.

Sol.: The spherical square well may be treated as a one-dimensional square well, provided the
potential is replaced by the effective potential:

V(ry=—Vy+(h*2mr*) L(L+1)  (inside the well)
And =V(r)+(h’2mr*) L(L+1)  (outside)

The transmission factor, the ratio of the flux outside and inside the well, is given, in WKB-approximation,

as
E 1/2
T 872J-k(x)dx
E+V,
2712
where "k =V-E,
2m
E )" v TL(L+1) 2mE]"”
thus T= exp. —2j dr ( 2+)— mz
E+V, a r h

Here, b is the point at which the radicand vanishes. Each time the particle, which may be pictured as
bouncing back and forth inside the well, strikes the wall, the probability of escaping is 7. The particle hits

the wall (v/2a =[(2/m)E +V,)]"* /2a) times/sec. So

N[

T 2ma’

Upon change of variables the integral in the expression for 7 becomes
1 1 1/2
JL(L + 1)[ dx(—z— 1}
y X
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, U2
2mEa
where 4 By e—
h™L(L+1)

The exact integration is somewhat involved; however, in the case y <1, one has

tdx 1/2 1
J;?(l - xz) ~log (;]

and the expression for T becomes

_[2ma’ rnen) Y
E 2ma’E

Example 8.3: 4 particle of mass m is confined to a one-dimensional box with the origin at the

centre of the box. The box extends from —a/2to+a/2. The potential energy is

(a) Write the Schrodinger equation for this problem showing separate equations for the inside
and the outside of the box.

(b) Assume a solution (inside the box) of the form
W (x) = Asin(cx)+ B cos(cx)

Give a rule that determines all the possible values of ¢, and for each possible c give the
conditions on A and B that make y(a) satisfactory solution.

(c) Express the energy in terms of c.

Sol. (a) Inside :
R dy
87°m dx’
Outsid h_dy + E
utside : - — =
87°m dx’ v v
Then w =0 outside.

(b) v = Asin (¢x) + B cos (cx)
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For continuity of inside and outside functions,

W(—ﬁj =-AsinL + BeosL =0
2 2 2

y/gz Asin <L+ Beos <L =0
2 2 2

24sin<% =0
2

Either A=0 or sin (ca/2)=0

n=1x1, £2,
2=nr,
_2nrx
a
v = Asin 2nm
a
2Bcosﬂ=O
2

Either B=0, or cos ca/2 =0

ﬂz(n—ljn,nzo,il,il...
2 2
oo 2n-hx

a

V= B COS[M:'

a

(©)

h2 h2j2

- 2 2
87°m 8ma

R j=2n or 2n—1

BSCPH 301
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=£], £2, ...

Example 8.4: Calculate the reflection and transmission coefficients for a particle incident on the
potential

V(x) = —ad(x).

Sol.The solution to the Schrédinger equation in position space is
P1(x) = Ae®* + Be™x,  x <0
Py(x) = Ce™ x>0
where the infinite potential well is at x = 0. Continuity of the wave function means
Aet (0 4 Be—ik(0) = (gik(0)
=2A+B=C
The first derivatives in regions ¥, (x)and ¥, (x) are
Y (x) = ikAe™™ — ikBe =¥,
and ', (x) = ikCe™*

Thus we obtain,
2m
Y10 —¥,(0) = ~ 27 a p(0)

. . . 2m
= kAe*(® — jkBe k() _ jkCeik(0) = —5z Y(0)
Using ¥,(0) = C,

. . ) 2m
ikA — ikB — ikC = —FaC

. . 2m
ik(A—B)=-C (Lk - ﬁa)

and we use the continuity condition, 4 + B = C, to eliminate C, so
] ) 2m
ik(A—B) = —(A+B) (lk - ?a’)

) 2m ) 2m
k(A—B) = —A<lk —?a) +B(lk—FQ)
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2m
s a B ] e
B (2 'k 2m " ikh? — ma
l —?a
The reflection coefficient is
R | B
2
| 4l
3 m?a?
" k2h%* + m2a?
_ 1
N k2n*
1 m2a?
The transmission coefficient is
T=1-R=1 mia®
B B k2h* + m2a?
k?n*
T k2hA + m2a?
_ 1
m2a?’
1+ TIHE

Example 8.5:Prove that all the wave functions belonging to the maximum eigen value of the
square of the total spin operator of a system of N electrons are symmetric in the spin coordinates of the
individual electrons.

Sol. All (ZS T 1) of the wave functions belong to S, have the same symmetry, since the

raising and lowering operators, S *iS of S, are symmetric functions of the individual particle

operators (e.g., S. = S;,+ ... +Sys Which is symmetric under particle exchange).

Now §; attain its maximum value N/2 only when each S;, is oriented along the z-direction; i.e., if

_y (L1 11
v =y, 75 e 7% 55 )

where the argument of the single-electron wave function gives the spin and its projection on the z-axis.
Now pis completely symmetric under interchange of spinors; therefore by the argument of the first
paragraph, all wave functions in question are symmetric.
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8.7 Summary:

In this unit, we have expressed the reflection and transmission coefficients if a particle passing
through the potential barrier. We know from the photoelectric effect that the minimum energy needed to
eject an electron from the surface of a metal is of the order of a few electron volts. This energy is needed
because electrons in a metal reside in an attractive potential energy field which increases at the surface of
the metal to give a potential step which is a few electron volts above the energy of the most energetic
electrons in the metal. When two metal surfaces are placed in close proximity, there are two regions of
low potential energy separated by a potential barrier which is similar to that shown in Fig. 8.1. But this
barrier does not prevent electrons from moving across the gap between the surfaces. Electrons are
quantum particles that can tunnel through the barrier with a finite probability. We have discussed the
various examples of the tunnelling effect. Moreover, we have explained the tunnel effect occurs in the
emission of alpha particles from radioactive nuclei.

8.8 Glossary:

Boundary conditions-a condition that is required to be satisfied at all or part of the boundary of a
region in which a set of differential conditions is to be solved.

Thermionic emission- the emission of free electrons from a heated source.
Radioactive-emitting or relating to the emission of ionizing radiation or particles.

Ionization-it is the process by which an atom or a molecule acquires a negative or positive charge by
gaining or losing electrons to form ions.

Reinforced-to make something stronger.

8.9 References:

1. Beiser A., Concepts of Modern Physics, 6™ Edition, McGraw Hill (2003) ISBN 0-07-244848-2.

2. Shankar, R., Principles of Quantum Mechanics, Kluwer Academic / Plenum Publishers New York
(1994) ISBN 0-306-44790-8.

3. Chatwal, G. R.; Anand, S. K.; Arora, M., Quantum Mechanics, Himalaya Publishing House (2007)
ISBN 978-9-350-24732-7.

4. Zettili Nouredine, Quantum Mechanics: Concepts and Applications, John Wiley and Son’s
Publishers, United Kingdom(2009) ISBN 978-0-470-02678-6.

8.10 Suggested Reading:
1. Quantum Mechanics by E Merzbacher

2. A Text book of Quantum Mechanics by P M Mathews and K Venkatesan
3. Introduction to Quantum Mechanics by J Griffiths David

4. Quantum Mechanics: A Textbook for Undergraduates by Jain Mahesh

Page 256



BSCPH 301

8.11 Terminal Questions:

Objective Type Questions:

a) Which of the following wave functions can be solutions of Schrodinger’s equation for all valves

of x?

(1) Y = Asecx

(i1) Y =Atanx

(i) W= Aexpx?
(iv) ¥=Aexp(—x?)

b) A particle of energy E is incident on a potential step of infinite width and height V,. According to

quantum mechanics, if E>V,, then-

(1) The particle will definitely get transmitted

(i1) The reflectivity of the particle will be zero

(iii)  The reflectivity and transmittance of particle will be finite
(iv) The particle will definitely get reflected

A particle of energy E is incident on a potential step of infinite width and height V,. If E<V,,
then-

(1) R=0,T=1

(i1) R=1,T=0

(i) R=0.5,T=0.5

(iv) R=0.16,T=0.48

(d)The probabilities of transmission through a potential barrier of height V and width a for

a particle of energy E (E<V)-

(1) Is inversely proportional to the width a of the barrier
(i1) Is directly proportional to the width a of the barrier
(iii)  Does not depend on the width a of the barrier

(iv) Decreases exponentially with the width a of the barrier

Short Answer Type Questions:

Q.8.1 What is the potential barrier? Explain.

Q.8.2 Write Schrodinger wave equations for one dimensional rectangular potential barrier.

Q.8.3 Why Tunnelling phenomena is called quantum phenomena?
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Q.8.4 Explain the examples of quantum mechanical tunneling.

Q.8.5 What would be the difficulties when classical mechanics was applied to explain alpha-decay?
Explain briefly.

Long Answer Type Questions:

Q.8.6Calculate the transmission coefficient of electrons of energy E through one-dimensional
rectangular barrier. Discuss the phenomenon associated with this problem.

Q. 8.7(a) What do you mean by tunnelling through a barrier? A particle travelling with energy E
along X-axis has a potential barrier defined as

Oforx<O
V(x) ={Vfor0 < x <a
Oforx>0

Derive the expression for the reflection and transmission coefficients of the particle.

(b) Show that coefficient of reflection of particles inside on barrier is same whether they approach
from right of from left.

Q. 8.8A beam of particles with energy E is incident on a potential barrier with potential function:
Oforx <0
V(x) ={Vfor0 < x <a
Oforx>0

Show that there is a finite probability of transmission even if E < V.

Q. 8.9Determine the transmission coefficient for a particle of energy E < V, for a rectangular one-
dimensional potential barrier given by

V=0forx<—aand x> a
= Vyfor—a<x<a

Discuss briefly its application to the observed phenomenon of alpha-decay.

Q. 8.10 Explain the problem of the leakage of a particle through a rectangular potential barrier of
finite width and explain the quantum theory of @ —particle decay.

Q. 8.11 A particle travelling with energy E along X-axis has in its path a rectangular potential barrier
of height V<E and width a. Calculate the transmission coefficient of the particle and discuss briefly
its application to the observed phenomenon of alpha decay in nuclei.

Q. 8.12 A beam of electrons of energy 100eV fall on one-dimensional rectangular potential barrier
of height 110eV and width Imm. Calculate the percentage of electrons transmitted.
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8.12Answers of Self Assessment Question (SAQ):
Answer of the objective questions: a) (iv) b) (ii) ¢) (ii) d) (iv)
Ans.1&2: Refer section 8.3.

Ans.3: Alpha particles consist of two protons and two neutrons bound together into a particle
identical to a helium-4 nucleus.

Answers of Terminal Questions:
Ans.8.7& 8.8: Refer section 8.3
Ans.8.12: follow example 8.1

Unit-9: Free Particle in One Dimensional Box and Eigen

Functions
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9.1 Introduction

In this unit we study a quantum view of a particle in one dimensional particle in a box. The
quantum mechanics is the theoretical structure whose results are closest to experimental reality, we must
explore its methods and applications to understand modern physics. In present unit, we shall see, even a
modest mathematical background is enough for us to follow the trains of thought that have led quantum
mechanics to its greatest achievements.

9.2 Objective

e Define the meaning of free particle

e To study a quantum mechanical problem of a particle that trapped in a box
e To calculate the expectation value of position and momentum

e Describe the infinite symmetrical square potential wall problem

e To study the behaviour of the three-dimensional box system

9.3 Particle in a box

The simplest quantum mechanical problem is that of a particle trapped in a box with infinitely
hard walls.This is called afree particle since it has no forces acting on it. A particle does not lose energy
when it collides with such walls, so that its total energy stays constant. Let us consider a particle restricted
to move along the x-axis between x = 0 ad x = L by ideally reflecting infinitely high walls of a box (Fig:
9.1). Suppose that the potential energy V of the particle is zero inside the box, but rises to infinity on the
outside, that is,

V=0 for 0<x<L

= o for x<0and x> L.
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Fig. 9.1Particle in a box.

Because the particle cannot have an infinite amount of energy, it cannot exist outside the box, and so its
wave function 1 is 0 for x < 0 and x = L. Thus our task is to find what 1 is with in the box, namely
betweenx = 0 and x = L.

The Schrodinger equation for the particle within the box (V = 0) or free particle is

d’y 2
l';/ 4—TE v=0

dx” h

d’ 2mE
or Wl/j+k21// =0, where k° =L2 (9.1)
The general solution of this differential equation is of the form of

w(x)=A sinkx + B cos k x 9.2)
vV2mE vV2mE
ory(x) = Asin 7 x + B cos 7 x

where the constant 4 and B are to be determined by the boundary conditions. The boundary condition
w(x)= 0 at x = 0 applied to Eq. (9.2) requires

and the condition y(x)= 0 at x = L requires

AsinkL =0

or kL=nm

k=" (9.2a)
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Where the quantum numbern = 1,2,3, ... ... ... (n= 0 is not admissible because it yields y(x)zero
everywhere which means that the particle is nowhere). Substitution of this value of & in Eq. (9.1) shows
that the energy E can have only the values

V2mE nm
TzT' n=123,,....

(9.3)

From Eq.(9.3) it is clear that the energy of the particle can have only certain values, which are called the
eigenvalues. These eigenvalues constituting the energy levels of the system, are found by solving Eq.
(9.3) for E,which gives

_ntnh?
- 2

E

n

Joules 9.4)
2mL

The wave function of a particle in a box whose energies are E,are, from Eq. (9.2) with B = 0,

= Asi 2mE,
y, (x) = Asin . x
9.5)
Substituting Eq. (9.4) for E,gives
_ A nm
y,(x) = Asin T x
(9.6)

for the eigen functions corresponding to the energy eigenvalues E, .

It is easy to verify that these eigenfunctions meet all the requirements, i.e. for each quantum
number n, y, (x) will be finite, single-valued function of x, and y, (x) and 0y, (x)/0x become

continuous (except at the ends of the box). Furthermore, the integral of |y, (x) |2 over all space will be
finite.

As we can see by integrating |y, (x)|?dx from x = 0 to x = L (since the particle is confined within these

limits). With the help of the trigonometric identity sin?6 = %(1 — cos20), we find that
® 2 L 2
f |y, ()] dx = f |y, ()| dx
— 00 0

= A? jL sin? (nLLx) dx
0

Solving the above integral as,
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L 2 A%t L 2nmx
f |Wn(x)| dx = — j dx—f cos ( )dx
0 2 1Jo 0 L
_A? ( L ) _ an[x]L
= |x sin 0

2nm L

)

The normalize v, (x) we must assign a value to 4 such that |y, (x)|?dx is equal to the probability P dx

(9.72)

of finding the particle between x and x+dx, rather than merely proportional to P dx. If |y, (x)|?dx is to
equal P dx, then it must be true that

J |t//n(x)|2dx =1

(9.7b)

Comparing Egs. (9.7a) and (9.7b), we see that the wave functions of a particle in a box are normalized if

A= |=
L

Thus the normalized wave functions of the particle are therefore

()_Z_nrc _ 123
y/nx—LsmLx, n=123......

(9.8)

|?and

The normalized wave functions y;, v,, and y,together with the probability densities, |y, 12, | v,
Ly |? |2
since v, is normalized, its value at a given x is equal to the probability density of finding the particle

are plotted in Fig.9.2. Although v, may be negative as well as positive, |y |° is negative and,

there. In every case |y, 2 = 0 atx =0, and x = L, the boundaries of the box.
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Fig. 9.2Wave functions and probabilities of a particle in a box

At a particular place in the box the probability of the particle being present may be very different for
different quantum numbers given by fig. 9.2. For instance, |y, |2

middle of the box, while |, |*> = 0 there.

has its maximum value of 2/Lin the

A particle in the lowest energy level of n = 1 is most likely to be in the middle of the box, while a particle
in the next higher state of n = 2 is never there! Classical physics, of course, suggest the same probability
for the particle being anywhere in the box.

The significant feature of the particle-in-a-box quantum states is the occurrence of nodes. These are
points, other than the two end points (which are fixed by the boundary conditions), at which the
wavefunction vanishes.At a node there is exactly zero probability of finding the particle.

Thenth quantum state has, in fact,n — 1 nodes. It is generally true that thenumber of nodes
increases with the energy of a quantum state, which can be rationalized by the following qualitative
argument. As the number ofnodes increases, so does the number and steepness of the ‘wiggles' in the
wavefunction. It's like skiing down a slalom course. Accordingly, the average curvature, given by the
second derivative, must increase. But the second derivative is proportional to the kinetic energy operator.
Therefore, the more nodes, the higher the energy. This will prove to be an invaluable guide in more
complex quantum systems.

Self Assessment Question (SAQ) 1:Find the value of 4 in the following wave state
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_ 4 —womx?  iwt
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Self Assessment Question (SAQ) 2:Write the first and second energy eigen value for one dimensional
particle in a box.

Self Assessment Question (SAQ) 3:What are the physical significant of the particle in a box?

9.4 The expectation value <x>(OR Average position of a particle in
a box)

In quantum mechanics, the expectation value is the probabilistic expected value of the result
(measurement) of an experiment. It is not the most probable value of a measurement; indeed, the
expectation value may have zero probability of occurring. It is a fundamental concept in all areas of
quantum physics.We know that the formula of the expectation value of x is

0

<X >= _[ xW(x,0)* W (x,t)dx where W(x,t) has to benormalized

— 0

we need normalized wave functions, from the above relation (9.8) we have

v, = 1/3 sin 2 , n=12,3,.
L L

so the integral becomes

[ee]

<x>= '[xt//(x)*t//(x)dx

2 ¢L . NITX n
= ZJ.O x (sin

)(sin

X
d.
L)x

or
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2 L . o, NTTX
<x>=—J. x-sin - ——dx
LY L

2nmx dnmx. |
s x sin( ) cos( )
L| 4 dnr 8(ﬂ)z

L L

0

since sin (nx) = 0, cos (2nw) = 1 and cos 0 = 1, for all values of n, thus the expectation value of x is

L’ L
<x>=—((—)=—
(4) 5

|

00 02 04 06 08 1g 00 02 04 06 08 I

Fig. 9.2a(left) The ground-state (n=1) wave function for a particle in a box.
(right) The ground-state (n=1) probability for a particle in a box.

Therefore, in all quantum states, the arithmetic mean position of the particle is in the middle of the box. In
Fig.9.2a, we show the nature of a wavefunction and probability for moving a particle in a box.
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Fig 9.2b: Probability distribution in particle in a box.

Now, the interpretation of |y, |? based on measurements (Fig. 9.2b). Each measurement of the
position gives one result. Many measurements give a probability distribution of outcomes. Moreover, we
. 2 _ * . g . . .
know that Max Born interpreted that |y, (x)|* = v, *(x) y, (x) is a probability distribution or
probability density for the particle in the interval x and x+dx.

9.5 Expectation value of <p,>(OR Average momentum of a

particle)
What is the average momentum of a particle in the box? We start with the momentum operator as
0
=—ih—
Px ox

We note that the particle-in-a-box wavefunctions are not eigen functions of the momentum
operator, but we can calculate the expectation value for the momentum.

First write the expectation value integral with the momentum operator. Then insert the
expression for the wavefunction and evaluate the integral as shown here.

L
<p.>= J\P(x,t)*(—ih ai)\l’(x,t)dx
0 X

Substituting the wavefunction of particle in a box, we get
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Note that this makes sense since the particles spends an equal amount of time traveling in the +x and —

Xaxisdirection.

Why are we not aware of quantization in daily experience: In our daily life we come across
particles of large mass and systems of large dimensions. In such case the allowed energy states do
not appear to be quantized and for all practical purposes, form a continuum. To show this, let us
find the spacing between two adjacent energy levels for different values of the mass of a particle
moving in boxes of different sizes.

The difference in energies of two adjacent levels is
AE, = Enyr — En

_ (n+1)%h*  n?h?
 8ml? 8ml?

2
- (2n + 1).

Let us take mto be the mass of the molecule (= 1072¢kg) and L to be 10cm. That is, for the
molecule of a gas in a vessel, we have

AE. = (6.62 x 1073%)2(2n + 1)
T 8% 10726 x (0.1)2
=5.5%x107%°(2n + 1)joule

_55%x1074°(2n + 1)

1.6 X 1019
=3.4%x10721(2n + 1)eV.

The permissible energy levels are so very close together that they may be regarded as being
practically continuous. Although energy quantization occurs in principle, it will not affect the

Page 268



BSCPH 301

motion of the molecules. Hence in the domain of everyday experience quantum effects are
imperceptible. This accounts for the success of Newtonian mechanics in everyday life.

A similar result is obtained if we take mto be the mass of an electron (= 9 x 10731kg)
but L same as above. In this case of free electrons in a metal, we have

AE, =3.8x10717(2n + 1)eV.

Thus in a trap of macroscopic size the energy of an electron behaves in classical manner, it can
take continuous values.

An absolutely different result is, however, obtained for an electron moving ina region of
atomic dimensions (m = 9 x 1073%kg, L = 1A). In this case,

AE. = (6.62 x 1073%)2(2n+ 1)
™78 x (9 x10731) x (10-10)2

= 6.0 X 107'8(2n + 1)joule
_60x107"(2n +1)

1.6 x 10719
=38(2n+ 1)eV.

The spacing between the lowest (n = 1) and the next level is 114 eV, and increases in higher
adjacent levels. Thus these energy level are sufficiently far apart to make the quantization of
energy conspicuous.

Thus, in passing from atomic to much larger dimensions the results of wave mechanics approach
those of the classical physics.

Self Assessment Question (SAQ) 4:Express the quantum operators for classical position, momentum and
energy.
9.6 Infinite symmetrical potential wall or one-dimensional

symmetrical box

In order to calculate discrete energy levels of particle in quantum mechanics, let us consider the
one-dimensional motion of a particle which is restrained by reflecting walls. Here we shall assume a
square well potential with infinitely high sides as shown in Fig. 9.3. This is corresponding to a particle
which is bounded by impenetrable walls of width 2a. In Fig. 9.3, it can be seen that

Vix) =0for—a<x<a

and V(x) = + oo, for | x | >a and walls at points x = *a.

The proper boundary condition which is to be imposed is that the wave functions gets vanished at the
walls, i.e. (X)x-a= 0 and (y),—,= 0.
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Fig. 9.3: One dimensional square well potential with perfectly rigid walls.

The wave equation for | X | > a is as follows :

d’y 2m
+——Fy =0 because V=0
PRI v [ ]

2
lexl/zl +a’y =0, where a” = Z;;E

or 9.9)

The general solution of this equation is
w=Acosx+ Bsinx (9.10)
On applying the boundary conditions at x = +a, we get
ie., w=0atx=a
and wv=0atx=-a
A cos aa + B sin aa = 0, (9.11)
A cos aa - B sin aa = 0, (9.12)
On adding Egs. (9.11) and (9.12), we get
24 cos aa =0
either a=0orcos aa =10
On subtracting Eq. (9.12) from (9.11), we get

2B sin aa = 0
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Both 4 and B cannot be zero because we would get the physically uninteresting solution i = 0. Further,

both sin ca and cos aa cannot be made zero for a given value of a and £. However, two possible classes

of solutions are as follows:
(i)4 =0, sin oa =0
(i) B =0, cos aa =0

For the class (i) (sin aa = 0), we have

where n is an even integer.

Similarly, for the class (ii) (cos aa = 0), we have

where 7 is an odd integer.

If we apply Egs. (9.13) and (9.14) to Eq. (9.9), we obtain

w=A cos%, when n is odd.

N :
w=B cosT, when n is even

222
and azzzszorE:ah
h 2m
2 222
E = n872 il Joules
ma

(9.13)

(9.14)

(9.15)

Thus, corresponding to all integral values of n, there is an infinite sequence of discrete energy
levels. In the above discussion, the n numbers are called quantum numbers while the £ values are called

energy levels.
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If a particle is described by a wave function with a certain n value, it is said to be the quantum
state, n. On the other hand, the quantum state with higher values of n (=2, 3, ...etc) are termed as excited
states.

According to quantum mechanics (but not in accordance to classical mechanics), the kinetic
energy is not equal to zero in ground state. The result is applicable to all problems. Further, if a particle is
bound to a small region of space, the quantum mechanics only predicts the discrete energy levels and
quantum numbers. On the other hand, classical mechanics does not need any such requirement of discrete
energy levels for bound systems. It does not imply that quantum mechanics does not agree with classical
mechanics in the region of laboratory-scale sizes where classical theory is known to be applicable. In the
laboratory sizes, the energy levels are so closely spaced that they could not be distinguished
experimentally from a continuous set.

Let us now give few interesting facts about the foregoing problem.

(a) 1t is possible to deduce the quantum condition of discreteness of energy levels by taking into
consideration of the interference of de Broglie wave reflected back and forth between the walls.
Any value of E not given by Eq. (9.15) will give rise to destructive interference while any value
of E given by Eq. (9.15) will give rise to constructive interference.

(b) 1t is possible to compare this problem mathematically with that of the vibrations of the violin
string. The value of y represents the displacement of point on the string. As the string is fixed at
each end, y = 0 at x = +a. The solution of this problem is same what we get in the violin case
(sinusoidal oscillations); the string is having a fundamental mode of vibration (n=1) and set of
overtones (n=2, 3, ...) each with a characteristic frequency.

(c) It is also possible to compare this problem with a section of transmission line or wave guide
which is shorted at both ends and here the voltage V is used in place of . Further /' become
equal to zero at each end as termination becomes short (impedance z=0) at each end.

9.6.1 Wave function

It is possible to put the general form of wave equation in the following form :

v, = Acos L (n =1,2, 5) (9.16)
2a

w, = Bsin nz—”x(n =2,4,..6) (9.17)
a

Let us now normalise ;, in Eq. (9.16)

Ia A? cos? ﬂa’x =1
—a 2a
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1
a
1
A= — (9.18)
a
Similarly, normalise v, in Eq. (9.17) to yield

- B = |~ (9.19)
b

Hence normalised wave functions of Egs. (9.16) and (9.17) are as follows :

1 nzax

=—cos—(n=12,5... 9.20
1 . nax

=—sin——(n=2,4,6... 9.21

In Fig. 9.4, the energy levels and wave functions have been depicted. From Fig.9.4, it can be seen
that there is only one-half wave length for the lowest energy state called zero-point energy E, while the
successive energy states are differing in having an additional half wave-length more.

I
Es \_/JI/\ i
|
1
A
|
'
]
I
!
l
Ez ! v,
i
]
L}
Eq |L ¥,
I
|
1
-a 0 +a

|
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Fig. 9.4: First few energy levels and wave functions of a particle in a box.

There are certain points between a<x<-a at which the wave function gets vanished. These points
are known as nodes. It can be seen that the number of nodes, excluding those at the extremities, go on
increasing as we go up the energy scale. For a particular energy state which is characterised by the
quantum number n, there will be (n-1) intermediate nodes.

As wave-functions represented by Eq. (9.20) are symmetrical about the origin x=0, it means that
w,(x) for odd n are even for function of x. Such functions are considered to be having an even parity.
Similarly, ,(x) of Eq. (9.21) are odd function of x (anti-symmetric about x=0) and are considered to be

having an odd parity.

9.7 The three dimensional box: (Application of Schrodinger

equation)
Let us consider a particle which is enclosed inside a rectangular box having edges a, b and c in
length (Fig. 5.5).

o—

W

Fig. 5.5Three dimensional box

The potential function V(x, y, z) is having a constant value of zero in the regions given as follows

V(x,y, z), =0, 0<x<a,
V(x,y,2)=0,0<y<b,
and V(x,y,z) =0, 0<z<c.

The potential outside the box is infinite. The Schrodinger time independent wave equation inside the box

may be put as follows :
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’v 0w 0w 2m
+ L+ T Ey =0 (9.22)
o oy o wtV

It is possible to separate Eq. (9.22) by making the following substitutions:
v (x,,2)= X ()Y () Z(2) = XVZ 9.23)

Differentiating Eq. (9.23) with respect to x, y and z separately by keeping the remaining two factors as
constant, we obtain

2 2 2
OV xvyz, %V - xyz,and OV = xvz" (9.23a)
ox oy 0z

On substituting Eq. (9.23a) in Eq. (9.22), we obtain

2mE

X"YZ+XY"Z + XYZ"=~ Py XYZ

On dividing the above equation by XYZ, we obtain

X" YH Z" 2mE
—t—F—=-
X Y Z h?

(9.24)

For the given energy of the particle, the term (— 87*mE/ hz) is constant and each term on the

left side is a function of one variable only. If we allow only one of these (x or y or z) to vary at a time and
keep the other two constants (say we vary X keeping y and z constant), the sum of the three terms is still
equal to the constant on the right-hand side. This means that each of the three terms on the left is itself a
constant and is independent of the other variables, present in it. Let us represent the constants for the three
terms as — alz , = a22 and — a32. These have a minus sign because the term on the right side of equation

has minus sign. This gives three differential equations. Now

X" Zsz EEANE AN, (9.25)
X n Y Z
XH 5
or 72—051
a’x
or I +a, X=0 (9.26)

and from Eq. (9.25), we have

T Zia; 9.27)
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Y" 5
or —=-a,
Y
2
or d f +a,’Y =0 (9.28)
dy
Again from Eq. (9.27), we have
z" 2mE 2 2 2
S ta, +ta, =-a, (9.29)
a’z =
or —+a, Z=0 9.30
dz* ’ ©-30)
On substitutingEgs. (9.26), (9.28) and (9.30) in Eq. (9.24), we obtain
alz +a22 +a32 =ZZ1—2E (9.31)
The solutions of Egs. (9.26), (9.28) and (9.30) are as follows :
X =4,cosa,x+ B;sin a,x (9.32)
Y=4,cosa,y+ B,sina,y (9.33)
(9.34)

Z = A,cosa,x + By sina,x

In the above equations, 4;, A; and 4; are constants; B;, B, and B; are also constants. It is possible
to obtain the values of these constants by applying the boundary conditions. As i vanishes at the surface

of infinite potential, it means that

W:OWhenx:O}y:O}z:O}

x=a |y=b|z=b

If these boundary conditions are applied, then we have

A]:Ag :A3:0
. . n,m
Also B, #0 .. sinagua=0, 1e, a,a=n,wora, =—"—
a
) ) n,z
B,#0 .. sina,b=0, 1e, a,b=n,rora, =

b

L . n,m
B,#0 .. sina,c=0, 1e, a,C =N, or a, 27
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Hence X = B, sin =& (9.35)
a

where n, represents any integer (n, =1, 2, 3...).

Also, Y =B, sin nybw (9.36)
n,=1,2,3
and Z = B, sin ”ZC”Z (9.37)
n,=1,2,3
v, (x,y,z)=B,B,B,sin A in 2™ gin 72
M a b c
or W, (X,9,2) = ksin n"aﬂx sin nybﬂy sin nZCﬂZ (9.38)

In the above equation, k is termed as normalisation constant. It is possible to obtain the value of k
by using the normalised condition, i.e.,

a b pc
['[ [y *dxdydz=1 (9.39)
afefbe . 2 NX L, B n X B
or k J‘OJ.OJ‘Osm » sin 5 sin ; dxdydz=1 (9.40)

a a 2
But, _L s1n2wdxzj0 [%—%cos e, }dxz%

a a
. . b . 2 ny7z.)} _ b
Similarly J:) sin Tdy =3
and J‘a sin? 2= g, = €
0 c 2
i %%% =1 (9.41)
2+/2
V2 (9.42)

r k=
° +/(abc)
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242 . . n .
2 sin 2« sin yﬂysmnzﬂZ (9.43)

X,Y,Z)= 1mn
l//nxnynz ( Y Z) W 4 b c

From Eq. (9.31), we have

a’+a’+a’ = 2ZZE (9.442)

”“;f , nf";fz + "Sf . 2}’:’2}5 (9.44b)

or E,,, = %{ ”aa; + %2 + Z 222 :l;:z (9.440)

or E,,, :%{’Z{ +’;—y: ’Z{} (9.44d)

But if we consider a box that is cubical in shape such that a=b=c, energy can be expressed by

2

E=

2 2 2
- (na +n,” +n, )
For the lowest quantum state (111), in which n,, n, and n., respectively, are equal to unity, it is

seen that £ =3h”/8ma’. There is only one set of quantum numbers that gives this energy state, and this
level is said to be non-degenerate.

If we now consider the second energy state as shown in Fig. 9.6, it is seen that there are three sets
(112), (121) and (211) of the quantum numbers n,, n, and n., that will give the same energy level,
E =3h*/4ma*. Such level is said to degenerate, and in this particular case the level of triply
degenerate. For a cubical box, it can be concluded from the Fig. 9.6, that virtually all the energy levels are
degenerate to some degree.
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STATES Ny , ny , ng
27 p=4 (511,0051), (115) (333)
26 P=6 (431)[413) (341) (314),(143)(134)
24 p=3 (422)(242) (224)
22 P=3 (332) (323),(233)
21 p=6 (421), (241),(124)0142) (214) (412}
19 P=3 (331),(133),(313)
18 P=3  (411),014M),(114)
2. V P=3 (322),(232)(223)
Bng E,
. 14 p=6 (321),0132)(213) (312),(231), (123)
12 p=1 (222)
n P=3 (311),(131),(113)
3 P=3 (221, (122),(212)
6 [— P=3 (211), (121),(1N2)
3 p=1 (111)
0

Fig. 9.6: Energy levels, degree of degeneracy and quantum numbers of a particle in a cubical box.

The next problem is to know about the number of allowed energy values which are lying between
a given energy E and E+dE. The exact solution of this problem is quite a difficult task. However, the task
becomes much easier for such cases in which the integers #., n, and n. are very large. In order to solve this

problem, a three-dimensional lattice is set up in which l, % and l are the sides of a unit cell
a c

respectively (Fig. 9.6). The energy is given as follows:

2 2
8mE nw2 n n,
PRl ke s (9.45)

From the above equation it is evident that each brick yields one energy state and now only the
problem is to know the number of bricks in the energy between E and E+dE.

If a sphere of radius ~/8mE / h* is considered, then all energy states would be situated in this
sphere. It means that the number of eigen values lying in this energy interval £ andE+dEwould be equal
to the number of bricks which are lying between the octant of the sphere of radius » corresponding to
energy and octant of the sphere of radius r+dr corresponding to energy E+dE. This can be obtained by
knowing the total volume of the bricks within energy £ andE+dEand then dividing it by the volume of
one brick. Now the number of bricks up to energy £ would be given as follows:

_lﬂ(SmEJM
8 3\ A

Page 279



BSCPH 301

A T 3/2
=2 (2mE 9.46
3 h ( ) ( )

And therefore energy states between E and E+dEwould be given as follows :

Al

47Z'V 3/2 3 1/3
= 2 —F
TR

zm 3/2
=2ﬁV( j E'? (9.47)

h 2
Thus, from above Eq. (9.47), we can easily calculate the energy state density for the case of three
dimensional box.

Self Assessment Question (SAQ) 5: What do you mean by the degeneracy for energy levels.

Example 9.1:Prove that the value of energy obtained for a particle of mass m moving in a one-
dimensional box can also be obtained with the help of relation used to obtain expectation value.

Sol. The normalised wave function for a particle of mass m in one dimensional box may be put as

follows :

v, (x)= zsin LN
a a

The Hamiltonian operator may be put as follows:
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E=<FE>= jo“ v, ()Hy, (x)dx

o 272 a
or E=<E>=" h3 [x]g—i sin 2"
8ma 2nrw a

2712 2712
:nh (a—O):nh

3 2
8ma 8ma

This value is the same obtained by solving Schrédinger’s equation.

Example 9.2:What is the lowest energy that a neutron (mass 1.67 X 10~2’kg) can have if

confined to move along the edge of an impenetrable box of length 10~ meter? (h = 6.63 X
10~3%joule — sec).

Sol. The quantised energies of a particle of mass m in a one-dimensional box of length L are
given by

n’r’h’ .
=ﬁjoules
m

E

n

272

= P joules, (n=12,3,......)

The lowest energy corresponds to n = 1, and is thus

2

E = joules
: 8mL2']
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Substituting the given values, we have

(6.63 x 10~3%joule — sec)?

E. =
178 x (1.67 x 10~27kg) x (10~ *meter)?

= 3.29 x 10~ 3joule

329x10713

= Tex10-13 eV

Here 1MeV = 1.6 x 10™13joule

E; =2.06 MeV.

BSCPH 301

Example 9.3:4n electron is confined to move between two rigid walls separated by 10~ meter.

Find the de Broglie wavelengths representing the first three allowed energy states of the electron and the

corresponding energies. (electron mass 9.1 X 1073Ykg and h = 6.63 x 10~3%joule — sec).

Sol: The electron moving back and between rigid walls will form a stationary wave-pattern with
nodes at the walls. For this, the distance L between the walls must be a whole multiple of the de- Broglie

half-wave-lengths. Thus

Or

Here, L = 10 %meter = 10A

So that,
2 x 10A
A= n=123,....
n
= 20A,104,6.74, ... ..
The corresponding energies are given by
n?h?
" 8miz

Here m= 9.1 X 10~ 3%kgand L= 10" %meter.
Therefore,

(6.63 x 10734)2n2

E, =
" 8x(9.1x10731) x (1079)2
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= 6.04 X 1072°02, joule

_ 6.04x1072n?

Tex10- ¢

= 0.38 n%eV.
Forn = 1,2,3, we have
E{=0.38¢eV
E, =1.52eV

E;=3.42eV.

Example 9.4: Calculate the energy difference between the ground state and the first excited state
for an electron in a one-dimensional rigid box of length 1078 cm. (electron-mass 9.1 x 10~31kg,andh =
6.626 x 10™3%joule — sec).

Sol: The energy of a particle of mass m in a one —dimensional rigid box of side L is given by
n2h?
" 8mi?
or

5 - (6.626 x 10734)2n?2
8% (9.1 x 10731) x (10-10)2

=0.60 X 1072712, joule

060 x 107%"n?

Tex10- ¢

= 38n2eV.

For the ground state (n = 1); E; =38 eV and for the first excited state (n = 2); E,= 152 eV. The energy
difference is 152-38 =114 eV.

Example 9.5:Can you observe the energy states for a ball of mass 10 gm moving in a box of
length 10 cm. (h = 6.626 X 10™3%joule — sec).

Sol.: No. On calculating as above, we shall have

n?h?
" 8ml?

or
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E, =3.4x107*n? eV.
The first few energies (n=1, 2, 3, ....) will be:
3.4x107% eV,
13.6 x 104> eV,

30.6 x 10745 eV,

These are so near to each other that a continuum will be observed.

Example 9.6:Find the probabilities of finding a particle trapped in a box of length L in the
region from 0.45L to 0.55L for the ground state and the first excited state.

Sol:

The eigenfunctions of a particle trapped in a box of length L are:

nm

AN
y, (x) = (Z) sin T X, n=123,......

The probability of finding the particle between x;and x, when it is in the nth state, is
X2 2
P = f |1//n(x)| dx
X1

_2fx2 ] 2nrrxd
=1l sin®——dx
1

A o)

_1[ ( L ) ) 2nnx]x2
L x 2nm st L Ixq

Here x; = 0.45L, x, = 0.55L and for the ground state, n=1,

P_l (L) 2mx]0.55L
_L[x 21) "L ]0.45L

1 L L
=- [(O.SSL — (—) sinl.lOn) — (0.45L — (—) sin 0.901‘[)]
L 21 2T
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1
= (0.55 — (—) sin198°)
2T
1
— (0.45 — (—) sin162°)
21
1
= (0.55 — 0.45) — (E) [sin198° — sin162]°

1
=0.10 — - (cos180°sin 18°)

0104 0.3090
- 3.14

=0.198 = 19.8%

Similarly, for the first excited state (n=2), we shall have P = 0.65% .

9.8 Summary:

In this unit we have discussed the behaviour of a particle in a one dimensional box. We also have
discussed the quantum structure of it. We have derived the eigen values and eigen functions for one
dimensional box system and also calculate the expectation value of position & momentum. It seems that
this means the particle in a box does not have any momentum, which is incorrect because we know the
energy is never zero. In fact, the energy that we obtained for the particle-in-a-box is entirely kinetic
energy because we set the potential energy at 0. Since the kinetic energy is the momentum squared
divided by twice the mass, it is easy to understand how the average momentum can be zero and the
kinetic energy finite. Further, we have calculated discrete energy levels of particle in quantum mechanics
for the case of one-dimensional motion of a particle which is restrained by reflecting symmetrical walls.
For this case, the wave-functions also represented symmetrical nature about the origin x = 0, it means that
w,(x) for odd n are even for function of x and vice-versa. Similarly, we have extended one dimensional
concept in three dimensional form and calculate the eigen value and the eigen function for a particle.

9.9 Glossary:

Trapped- confined, imprisoned

Free particle-a free particle is a particle that, in some sense, is not bound by an external force, or
equivalently not in a region where its potential energy varies.

Eigenvalue-each of a set of values of a parameter for which a differential equation has a non-zero
solution (an eigen-function) under given conditions.

Eigenfunction- wavefunction or each of a set of independent functions which are the solutions to a
given differential equation.

Distinguished-differentiate or discriminate.

Degenerate-an energy level corresponding to more than one quantum state.
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9.12 Terminal Questions:

Objective Type Questions:

a)

b)

<)

d)

The quantum state energy of an atom probably depends on-

(1) Principal quantum number

(i1) Orbital quantum number

(iii)  Magnetic quantum number

@iv) Spin quantum number

If the width L between two sides of one dimensional potential well is decreased to a smaller
width /then-

@) Energy of each level decreases

(i1) Number of energy levels decreases

(iii) The energy of each energy level remains unchanged

(iv) The energy difference between consecutive energy levels increases

The lowest energy possible for a particle in a potential box is 2eV. The next highest energy the
particle can have is-

(i)  4eV
(i)  8eV
(i)  16eV
(iv) 32V

The energy of a particle constrained to move in a cube of side a is given by
2

E=

2 2 2
8ma2 (na +ny +n, )
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If n,, n, and n, may have either values out of 1,2,3, the degree of degeneracy of this energy level
is-

(1) 2
i) 3
(i) 6
Giv) 8

Short Type Answer Questions:
Q.9.1 Write the Schrodinger wave equations for free particles in 1D and 3D box.

Q.9.2 What are the difference between unsymmetrical and symmetrical one dimensional potential
wall in view of eigen function and eigen values?

Q.9.3What is the reason that the value of n # 0 for a particle in a box with infinite walls.

Q.9.4Show that any two wave functions corresponding to different energy levels are orthogonal in
case of particle in a box problem.

Q.9.5Show thatthe function ¢ = A exp [i(kx — wt)] satisfies the Schrodinger’s equation.

Q.9.6 Sketch the energy levels diagram along with their wave functions for one dimensional
particle in a box.

Long Type Answer Questions:
Q.9.7A box was considered that extends from x = 0 to x = L. Suppose the box instead extends form

X = X tox = xo + L, where xy # 0. Would the expression for the wave functions of a particle in
this box be any different from those in the box that extends from x = 0 to x = L? Would the energy
levels be different?

Q.9.8Show that the expectation valve (x) of a particle trapped in a box L wide is L/2, which means
that its average position is the middle of the box. Find the expectation value of (x?2).

Q.9.9Find the normalization constant B for the linear combination of two wave functions for the
same system, i.e.,

—B<' nx+ ) Zﬂx)
Y = smL sin I

for the n = I and n = 2 states of a particle in a box L wide.

Q.9.10Find the probability that a particle in a box L wide can be found between x = 0 and x = (L/n)
when it is in the nth state.

Q.9.11The particle in a box is in its ground state of n, = n,, =n, = 1.

(a) Find the probability that the particle will be found in the volume defined by 0 < x <

NI
o
IA

y<t o<z<t.
4 4
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(b) Do the same for% instead ofi .
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Q.9.12 An important property of the eigenfunctions of a system is that they are orthogonal to one

another, which means that

+ 00

Yn l/)de =0,

— 00

Verify this relationship for the eigenfunctions of a particle in a one-dimensional box.

Q.9.13A particle is in a cube box with infinitely hard walls whose edges are L long. The wave

functions of the particle are given by

o> . Wy | nmz
7 §in——"sin—=
L L

. n
l//nxnynz = Asin

where n,,n, n.are the quantum numbers of values 1, 2, 3,..... . Find the value of the normalization

constant 4.

9.13(a) Answers of Self Assessment Question (SAQ)

1/4
Ans.1: Using Eq.(9.7b), A = (%)

hZ

Ans.2: E; =FE, and E, = 4E, where E = >
8mL

Ans.3:Refer section-9.3
Ansd:ix > %, p—p=—ih—, E—E=ih2
ns.4:x X, p p=—ih_—, = ih

Ans.5:Refer section-9.7

(¢) Answers of Terminal Questions:
Answer of objective questions: a) (i) b) (iv) ¢) (ii) d) (iii)

12
2n2m2

L3
Ans.9.8:(x?) = 5
1/2
Ans.9.9: B = (3)
Ans.9.10: 1/n

Ans.9.13: A = (%)3/2
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10.1 Introduction:

In this unit, we study about the quantum phenomena of linear harmonic oscillator and
hydrogen atom. Let us consider two masses which are joined together by some type of
interaction force between them. Suppose these are vibrating with respect to each other. This
system will execute harmonic oscillations if the restoring force exerted by one vibrating mass
upon the other is proportional to its respective displacement. In such a situation, the system will
constitute a harmonic oscillator. If the vibrations are confined to one dimension, the system will
form a linear harmonic oscillator.

10.2 Objective:

e Explain and define the meaning oflinear harmonic oscillator
e To derive the eigen value and eigen function of linear harmonic oscillator
e [llustrate thephysical interpretation of harmonic oscillator wave function
e Describe the spherical symmetric systems and potentials
e To study the hydrogen atom and its eigen value and eigen state

10.3 Linear harmonic oscillator:

When the potential energy of two atoms is plotted as a function of their separation, a curve of the
type shown in Fig. 10.1 is obtained. At x=a, the potential will be minimum. This point is
corresponding to a stable equilibrium position. Ear this point it becomes possible to expand the

potential as a series of powers of (x-a) and but 2—1/ = ( at this point. Therefore, we have
X

V:%(x—a)2 (101)

In the above expansion, the higher order terms have been neglected.Eq. (10.1) represents the
harmonic oscillator potential. In general, it is possible to represent any system in stable
equilibrium near the equilibrium position by means of a harmonic oscillator (Fig.10.1).
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REPULSION

— <<

ATTRACTION

a —a
Fig. 10.1Harmonic potential

10.3.1 Asymptotic behaviour:

In the case of a linear harmonic oscillator, it is possible to represent the force F=Kx by the
potential energy

V(x) =%sz ..(10.2)
It is possible to derive the above equation in the following manner. Suppose the particle of mass

m in undergoing simple harmonic motion with amplitude a. The displacement from the origin at
time t is given as follows :

X =a sin wt
dx
or —=qaw cos wt
dt
. Kinetic energ —lm ax 2
a Y=

= lm a*w’ cos® wt
2
Maximum value of K.E. will be obtained, when cos wt = 1

. (Kinetic Energy)max = %ma 2w’

Further, (K.E.)max = K.E. + Potential Energy (V)
or %mazw2 zémazwz cos’ wt +V
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1
V= Emazw2 (l—cos2 wt)
1 )
= —mazw2 sm2 wt
2
=—mw’x’ [+ x=asin wr]
1
=—Kx*
2

where K=mw’. It is to be proved. If we substitute Eq. (10.2) in the Schrédinger’s equation in
one dimension, we obtain

2
ile+;—T(E—%Kx2jw=o .(10.3)

Now it is possible to convert Eq. (10.3) in dimensionless form by introducing & = ax.

dy dl//déf dl//
dx d& dx d§

and ..(10.4)

Iy d(dw j ddf(dy/ j a2d2_w
dx dx\ dé dé dx\ d& ds

If the above equations are introduced in Eq. (10.3), we obtain

2 2mE  mK &

d’v | 2mE mKE&?
d§2 +|:h2a2 _a40h4 WZO (105)

Suppose a is so chooses that

mK _1 4 M | mK v
P ora’ =—, 1.e., a= e
and suppose A= le;n—oi
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omeh  2E(m)"
A=— == ..(10.6
hzw/imK) h (KJ (10.6)
If Eq. (10.6) substituted in Eq. (10.5), we obtain
2
d Y i(-& =0 .(10.7)

dg

Now such functions are needed which are able to satisfy this equation throughout the region of
value -oo to +oo for £ and are acceptable wave functions. It means that we desire such functions
which are continuous, single valued and finite throughout the region.

Now an attempt is being made to get the solution of Eq. (10.7) throughout configuration
space (—oo<E<+oo). This is based upon the asymptotic behaviour. Suppose the solution is of the
following form :

w(&)=H(&)e " ..(10.8)

where H(E) represents a polynomial of finite order in &. If positive sign is taken in the exponent,
vy get diverged as y—o0.

From Eq. (10.5), Z—?=H’(§) exp. [_5 }—ﬂ{(f)exp[_f }

dzl// _ _52 _ _52
and e H'(§) exp. { 5 } H’(&)&exp{ 5 }
H (@) exp. {‘f } EH(E) exp. [‘f }&H(&) exp. {‘f }
—H"(2) exp. {‘f } 2EH(E) exp. [%} HE1) H (E) exp. {‘f }
If the values of d—l//and {dz—l/;} are substituted in Eq. (10.7), we obtain
dé dé
exp. {%}[H"@)%H'@H?H(f) _H(E)+(A-EDH(E)]=0
or H"(E)—28H" (&) + (A -V H (&) =0
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or H"-2EH'+(A-1)H =0, ..(10.9)
In Eq. (10.9) primes represent differentiation with respect to &.

10.3.2 Energy levels:

It is possible to solve Eq. (10.6) by the series method by putting.

HE) =& ay +a,é+a,E*+..)  ay#0,520

dH S+v—
d_cf = Zay(s+v)§‘ :
a’H _
dé?

and

Z a,(s+v)(s+v-1)ET?

If these values are substituted in equation (10.9), we get

S a (s +v)(s+v-DE T 226y a (s +ETT +(A-DY @, & =0
Ya(s+v)(s+v=DE"7 =23 a (s +v)&TT +(A-DY e, =0 . (10.1])

If this series is to vanish for all values of & i.e., H(§) is to be a solution of Eq. (10.9), it means
that the coefficient of individual powers of § must vanish separately. If the coefficients of

various powers of § are equated to zero, we obtain

s(s=1)a, =0 ...(10.12a)
(s+1)(s)a, =0 ...(10.12b)
(s+2)(s+Da,-(2s+1+A)a, =0 ...(10.12¢)
(s+3)(s+2)a,—(2s=3-A)a, =0 ...(10.12d)
(s+v+2)(s+v+Da,,, —(2s+2v+1-A4A)a, =0 ...(10.12¢)
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25+ 2v+1-4 4
(s+v+D(s+v+2) "

.(10.13)

av+2

where v represents an integer.

Eq. (10.13) is termed as a recursion formula. As ay cannot be zero, it follows from Eq. (10.12a)
that s=0 or s=1. If ag is put equal to zero, only odd powers will appear; with a, zero, the series
will be having even powers only.

If arbitrary values are given to the energy parameters A, the series given in Eq. (10.13)
will give rise to an infinite number of terms but they do not correspond to satisfactory wave
function. If the convergence of the power solution defined by Eq. (10.13) is examined very

carefully, it is found that as v —o,(a,,,)/a, — 2/vso that the series gets converged for all finite

values of &. Now we will consider the series gets converged for all finite values of &. Now we
will consider the series expansion of e+‘i2, 1e.,

4 6 v v+2
e§2=1+§2+§—+§—+...+ ¢ _,_¢ +
PR /2! (v/2+1)

by +b,E* +b,EY + . 4D E +DE +b, E+

1
and b, _(/1+Dh! 2
b, 1 2+v
(v/2)!
o bv+2 2
or 2 _ 2
Lygfl b, v

£2

From the above it follows that H (&) gets diverged approximately as e°* and the product

+&£2/2

H(&)e < '? will behave in a similar manner as H (&) e in this region. It implies that it is

unacceptable as wave function.

In order to avoid this situation, the value of A is chooses in such a way that the power series of
H (&) gets cut off at some terms, thereby making H (&) a polynomial. From Eq. (10.13), it

follows that the value of A which makes the series to cut off at nth terms, should be
A=2s+2v+1

The value of index, s, may be either 0 or 1. Corresponding to these values of s the values of A
will be equal to 2v+1 or 2v+3 where 2v is an even integer. It is possible to express both these
cases in terms of a quantum number #, i.¢.,
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2E, A=Q2n+1)

Then -
m
—=2n+1
N . ( )
or E, :(n+%jha), n=0,1,2,3, ...(10.14)

where o, = \/K is the classical angular frequency of the oscillator.
m

10.3.3 Zero-point energy:

The energy levels obtained by using Eq. (10.14) are discrete and possess equal spacing. If n=0

put in Eq. (10.14), then the finite value of grand state energy will be %ha)c, called the zero point
energy, 1.e.,

Eozéhwc (10.15)

From the above equation it is evident that all the energy levels get shifted by an amount which is
equal to half the separation of energy levels.

In Fig. 10.2, five lowest energy of a harmonic oscillator have been depicted. In this figure, it can
be seen that the system in its lowest state is having an energy greater than that which it would be
having when it was at rest in its equilibrium position. Zero-point energy has been found to be
characteristic of quantum mechanics. Further it is related to the uncertainty principle given by

Heisenberg. 92 hw,

712 hw,

512 hw,

3/2 hw

c

172 hw,

Fig. 10.2: Energy level diagram for a liner harmonic oscillator.
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10.3.4 Hermite polynomials:
When 1 =(2n+1), Eq. (10.9) becomes as follows :
H "-2&H '+2nH, =0 ...(10.16)

The polynomials H, (&), are known as the Hermite polynomials. The first few Hermite

Polynomials are as follows :

H (&) =1,
H\(&)=2¢,
H,(§) =4 -

H, (&) =88 -12¢,
H, (&)= 16984 —48&-12.
10.3.5 Harmonic oscillator wave function:

The solution of the equation H,"-2&H '+2nH =0 will bey, (§)=H, (5)6752/2. The general

solution may be put as follows :

V. (O)=N,H,©e" " (10.17)
where N, is a constant. In order to evaluate this constant now proceed as follows:

From the Hermite Polynomials, we have

,52+2S§ iH (é) (1018)

n=0

Similarly, it can be put as follows:

exp. (22 +2t8)= ZH 2 (6) (10.19)

m=0

By power series, we also obtain

[TH,(&)e dé=7"2" (), whenn =m (10.20)

j_‘:H,, (E)H () *2déE =0.1f n#m. (10.21)
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By normalised condition, we have
2
[Tiw,f de=l [ e a =1
_ 0 o —0

2
ie., Mﬂ”?(n}A =1
o

1/2
a
or N =%
" {7[”22”(14)!}

Therefore, the wave function of harmonic oscillator is

B o 1/2 s
l//n(é:)_{ﬂ_l/zzn(n)!} Hn(g)e
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(10.22)

.(10.23)

..(10.24)

Self Assessment Question (SAQ) 1: Define linear harmonic oscillator. How potential energy

varies for that.

Self Assessment Question (SAQ) 2: Calculate the energy eigen value of linear harmonic

oscillator for third energy state.

Self Assessment Question (SAQ) 3: What isthe frequency of emitted radiation if electron jumps

from third exited level to second exited level.

10.4 Physical interpretation of harmonic oscillator wave functions:

We should know about the physical significant of the harmonic oscillator wave functions. For

the lowest energy state (n=0), the wave function (&) and the quantity [y, (&)]° when plotted as

a function of ¢ are depicted in Fig. 10.3(a) and (b).
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Fig. 10.3(a) The wave function (b) Probability distribution
¥, (&) for the normal state of the function |y, (&) | classically

harmonic oscillator wave distribution curve is shown by
function dashed curve

From Fig. 10.3(b), it can be seen that the result for quantum mechanics for this case is not having
any agreement with the probability function which is found out classically for a harmonic
oscillator with the same energy.

From the classical theory, it is evident that a limit exists beyond which oscillator cannot go and
the classical probability density tends to approach infinity at this limit. From the quantum
mechanics, it is evident that there occurs a small probability outside of it.

The kinetic energy of the classical oscillator reduces to zero and the potential energy
equals the total energy at the two end point of the classically permitted region. Outside this
region, the potential energy would become higher than the total energy and the particle would be
having a negative kinetic energy which is not possible at all in classical mechanics. This
unexpected result is closely related to the Heisenberg’s uncertainty relation. This forms the
characteristic feature of quantum mechanics. It is of interest to note that the agreement between
classical and quantum probability densities tends to increase rapidly with increasing value of 7.

This can be seen from Fig. 10.4, having a plot of |y, (&) | for n=10 (solid curve) and of the

density of a classical oscillator of total energy % Lo, (shown by dotted curve). It will be seen

that the agreement is fairly good on the average.
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Fig. 10.4: The probability distribution function |,,(£)|* for state n=10 of the harmonic

oscillator. Dashed curve represents the probability function for the classical harmonic
oscillator with the energy.

In fig 10.5, we represent the nature of wave functions if the values of n are going to 0 to 5. Each
of these wave functions, the peak shows the probability of finding of particle.

Yol w,(E) v2(6)
"N *
vs(%) . ¥u(E) ¥s(E)

E

(AT TN T
Ll

Fig. 10.5: Representation of the wave-function of harmonic oscillatorfor n =0 to 5

k-
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But H, is representing a polynomial of degree n. Therefore, y, will be having n zeros or

points where y, will cut the zero line. The probability of finding the particle at these points will

be zero.

10.4.1 Probability inside or outside the classical region :

The wave functions for a linear harmonic oscillator may be put as follows :

v, (&) ={L} H,(&)e s>

”1/22n(n)!

In the ground state, i.e., n=0, the above equation becomes as follows :

1/2
VA

z//o(cf)z{ d } lef /2 ..(10.25)

The classical probability becomes as follows :

+a a o

= Jia lw |* dx = 2_"0 TP e*dx

=2[’ 2 ey ..(10.26)
i g

(The amplitude varies from —a to +a)

According to quantum mechanics, we have

E=tno =L [E]-lieor=— -1
207 2

m

x=t—, .(10.27)

1
a

. . 1 1 .
1.e., quantum mechanically x tends to vary from —— to + —. The classical and quantum
a a

mechanical limits have been depicted in Fig. 10.6. Hence quantum mechanical probability is
given by

P=2["" % ey ..(10.28)
T
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If we put ax=t, we get

P—ij‘e*dt (10.29)
L ...(10.
Or
2 el
P=—
2
| :
-a 0 +a
.-1/“ “+ 1/“‘
Fig. 10.6: Showing the classical and quantum mechanical limits.
2 e L 1
= t— + - — +...
N 3D 5@ 73)! 94! 0
2, 1 1 1 1
= 1- + - - +...
Jr O 3MY @) 73) 94!
P=0.83
or P=83%

BSCPH 301

Therefore, it can be concluded that the probability of finding the oscillator inside the classical

limit will be 83% while outside the classical limit will be only 17%.

Self Assessment Question (SAQ) 4: Write the physical significant of wave vector (\P).
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10.5 Spherical symmetric systems and potentials:

There are certain systems in which the potential energy of the particle is not dependent
upon 0 and ¢ but is only the function of radius vector ». Such systems are termed as spherical
symmetric systems.

A hydrogen atom consists of one electron which is moving around the positively
charged nucleus. Our interest lies in the motion of two particles namely nucleus and electron.
These two are attracted by a force which depends upon only on the distance between them.
Whenever this problem is to be solved, the important assumptions made are that the nucleus is at
rest while the mass of the electron is replaced by p. The potential energy V(r) of such a system is
given by —e’/r(Z=1). Actually, is equal to the attractive coulomb interaction between an atomic
nucleus of charge +e and an electron of charge —e. Thus,

2
e

V(r)=-—

Such potentials are termed as spherically symmetrical potentials.

10.5.1 The hydrogen atom: (Application of the Schrodinger’s equation)

In the field of atomic and molecular structure, the problem of structure of hydrogen atom
is regarded as very important because it forms the basis for the discussion of more complex
atomic systems. The wave-mechanical treatment, which is applied to hydrogen atom, is also used
for hydrogen-like or closely related atoms.

In the hydrogen atom there are two interacting particles, namely, nucleus and electron.
The interaction between these two particles gives rise to the Coulombic attraction. If the charge
on the nucleus is Ze and the charge on the electron —e, then the potential energy of the system in
the absence of electric field is —Ze?/r where r represents the distance between the electron and the
nucleus.

The Schrodinger’s wave equation for the system consisting of two particles of mass m;
and m, and having Cartesian coordinates x;, y;, z; and x;, y», z, may be put as follows :

2 2 2 2 2 2
L0, O, o), L0y, O, O,
m; \ Ox, Y, 0z, m, | 0Ox, », 0z,

+h%(ET ~Vy, =0 ..(10.30)
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In Eq. (10.30), the subscript T refers to total and is put along £ and y to indicate that these
quantities are referring to the complete system. Eq. (10.30) also defines the complete behaviour
of the system.

As the potential energy of the system depends upon the relative coordinates of the two
particles {V =¥ (x, - x,,y, - ,,2, — z, )} and the effect of external interaction is well shown by

centre of mass, it becomes essential to transform the above equation in terms of coordinates x, y,
z and coordinates of the centre of mass X, Y, Z which are represented as follows :

X=X]—X2 y=yi—y2 Z=Z1—Z)

MX =mx, + m,x,,

MY =my, +m,y,, ...(10.31)
MZ =mz, + m,z,.

In the above equation, M(=m;+m;) denotes the total mass of the system. If Egs. (10.31) are
substituted in Eq. (10.30), we obtain the equation in terms of new coordinates.

1 (821// . o’y . 621//j+ 1 (821// . o’y . 621//j

m\ax> or* 0z ) ulax’ @ o
87
o [(E, + E)-V(x,y,2) =0 .(10.32)

mm,
ml+m2

where y = is termed as the reduced mass of the system; £, = E, + E, with E, represents
the energy of translation and £ the total energy excluding that of translation.

It is possible to separate Eq. (10.32) into two equations given below:

1 (0w o o) 8z
_iu[a)g;+ayy;+azl/;j+ b =0 ~(10.33)
1(o*y o'y 0 87’

and ;( ax‘z”+ ay‘f+ 8Zl/2/j+ o lE-V(xyz )y =0 .(10.34)

Eq. (10.33) is applicable to the translation of the center of mass of the system while Eq. (10.34)
is concerned with the internal motion and is having the potential energy term.

As Eq. (10.33) yields the solution of a free particle only, it will not be discussed further.
However, Eq. (10.34) is our interest only.As the force is central and is acting along the line
connecting the particles, it becomes essential to express the potential energy as a function of
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single variable called r, the distance between the particles, in terms of spherical polar
coordinates. The Schrodinger’s wave equation may be put as follows:

Vi +2—m[E—V];u=O ..(10.35)

72
Here 7, the distance of the point from the origin, 6 is the angle from the Z-axis, ¢ is the angle
included between the XZ plane and the vector r.
From Fig. 10.7, it is seen that the spherical coordinates define

X =1sin 0 cos ¢

y =1 sin Osin¢

z=rcos 0

In terms of spherical polar coordinates, the value V> may be put as follows:

Vz Zli(l"z ij-ﬁ- 3 1 i(smé’ij +%i2 (1036)
ror\ or) r-sinf 06 00) r°sin” 6 0¢

Fig. 10.7: Spherical coordinates.

If the above equation is substituted in Eq. (10.36), we obtain the Schrodinger’s wave equation
with a spherically symmetric potential in spherical coordinates

%g(,,za_wj% 1 i(sm G_V/j
r-or dr - sinf 06 00
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1 1 o’y 2,u
e
sin® @ r* 0¢° h2

“E-V () =0 ..(10.37)

Equation (10.37) is a second order partial differential equation. This contains three variables. In
order to separate the variables it becomes necessary to assume that y may be represented by the
product of three wave functions, each having only one of the three variables, », fand ¢. If we let

y(r,0,4) = R(r)O(0)D(¢)

Now it is possible to separate Eq. (10.37) in different variables by using the above equation.

1 d( 2de 1 1 d°®
r*R dr dr) r’sin’6 ® dg’

1 1d 40\ 2u
n02 | 2P E_yyt=0  ..(1038
rsm@@de[ d@) p7 EZV ) (10.38)

If the above equation is multiplied by 1* sin’0, we get

{E-V(1)}=0
...(10.39)

sinzé’i[rzd_Rj+ 1 d’® sin d ( d@) 2ur’sin’® 0

——t nfd— 5
R dr dr) © d¢ ® do do h

As the second term of Eq. (10.39) depends on ¢ and rest part of this equation is independent of
@, it means that the second term should be equal to a constant, 1i.e.

2
IO __ o,
d¢
2
or TP =0, .(10.40)
d¢

With this value of second term equation (10.39) becomes as follows:

{E-V(r)}=0.

1 d(zde 1 1 d(. d@j m® 2ur
—— | — |t ——=—|sinf— |- ——— +—
R dr dr sin@ ® do d@ ) sin“@ /]

..(10.41)

In Eq. (10.41), the I and IV terms depend only on » and II and III terms only on 6. Therefore
each part has to be put equal to a constant:

2
li(,ﬂ de 2’”; (E-V)- 1 d [ 'ned—®J:/1,
R dr dr fi sin’ @ ®sm6’ do do
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so that we may write as follows :

2
1 4 (G099, ] - ”_le-=o. .(10.42)
sin@ do do sin” @
1 d( ,dR) [2u 2
and e e yon—L|r=0. .(10.43
e dr(r dé?j [hz{ ")} rz} (1043)

The equations (10.41), (10.42) and (10.43) are termed as ¢, € and r equations
respectively. The complete solution of equation (10.37) will be depending upon the solution of
(10.41), (10.42) and (10.43). Now the solutions of these equations will be given as follows :

10.5.2 Solution of ® equations:

The ® equation may be put as follows :

d*®

—+m’® =0.
d¢

The above equation is a second order differential equation having solution as given below :
® = 4™, ...(10.44)

where A4 is known as an arbitrary constant. It is possible to evaluate the constant 4 by
normalizing @, i.e.,

j:”cp*q)d¢=1

2 2
or jo A2dp=1. ..(10.45)

1

Jer)

Hence the solution becomes as follows :

or A=

LT .(10.46)

V(27)

As the function @ is single valued, it means that it should have same value at $=0 and ¢=2m, i.e.,
D =A=A4eP™
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F2mim

or e = cos 27zm F isin 27zm. ...(10.47)

The equation (10.47) will be valid only if m 1s zero or an integer (positive or negative). Thus it
may be written as follows :

D=L om (10.48)

where m=0, +1, £2, £3...

It implies that positive and negative values of m are corresponding to the distinct solution while
for m=0, there is only one solution.

The quantity m is termed as the magnetic quantum number which is having obviously the
integral nature: (the postulatory concept is now natural consequence of mathematical
formulation).

However, it is possible to get real solutions of ¢ equation by taking linear combinations
of complex solutions for @ and they are as follows

CD:Lsinm¢, or Lcosm¢, form==+1,%+2...

Vr Jr

and D= for m=0. ...(10.49)

1
V(27)

Thus, the wave functions of hydrogen atom are given by

Unim (1,0,9) =Ry (NGO (O)D,, ($)

The real form of the wave functions of hydrogen atom for ground state is given below:

Ri,o(r) © 0,0 6) D, (d) = Y1007, 6,$)
_2_,-r/a L L 1 -r/a
a R N Z mar e °

10.5.3 Energy of atomic levels and degeneracy:

IfE, is the eigen value, then we get
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uz’e’

..(10.50
2h*n? ( )

E,=-|E, |-~

Eq. (10.50) represents the equation for energy of an atomic state which is defined by the
principal quantum number, n. We know that associated Laugerre polynomial Lqp is accepted

solution of associated Laugerre equation in which both p and ¢ must be zero or integer.

It implies that for accepted solution of » equation the equivalent values of p and ¢ have to
follow the same rule, i.e., it means that (2/+1) and (n+/) must be zero or integral. As / takes
integral values (including zero), it means that » must be either zero or integral.

When n=0 is substituted in Eq. (10.50), it becomes infinite. However, it becomes
impossible as a normal electron will not be having infinite value of energy. Thus, the minimum
value of n will be unity and takes the values as 1, 2, 3, ...... , . Hence energy values of different
atomic energy levels are discrete.

For given value of n, the following equation will get satisfied for various combinations of n, and
l.

n=n,+l+1 ...(10.51)

It implies that several wave functions are possible for given energy value (7 is fixed) when it
takes place, the state is termed as to be degenerate. This will be true for every value of n except
unity. It is possible to calculate the degeneracy in the following manner.

In Fig. 10.8 the different eigen states in case of hydrogen like atom have been
depicted.From Eq. (10.50) it is evident that the energy eigen values depend upon n. Therefore,
they are degenerate with respect to both / and m.
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9 STATES

& STATES

| STATE

Fig. 10.8: Different eigenstates in hydrogen-like atom.

Hence for each value of n, [ can take values from 0 to n—1 and for each of these values, n, can
take values from —/ to +/. Hence the total degeneracy may be put as follows:

where

n—[

~

=0

m= 0,+1,+2, ..+

1=0,1,2..(n-1)

(2l+1):%+n:nz

..(10.52)

When n =2, [=0, m=0, [/=1, m=0] and /=1, m=+1 therefore yielding four wave functions or
quantum states in all. For n=3 there are nine states and for n=4, there are sixteen states and so on.

10.6 The normal state of hydrogen atom:

such an atom may become as follows:

—p/2
]ep.

But,

For ground state of hydrogen atom, n=1, /=0 and m=0. Therefore, the wave function for

Vioo = (

ma,

3

..(10.53)
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2zr 2 n?
p:arzﬂz—r [+ n=1,z=1]anda, = —
na, a, 4r°ue
1 —r
Vioo = \/(_3] exp {_} ...(10.54)
7a, a,
and
1 -2r
WiooV *100 = —36Xp-[ } ...(10.55)
e ay

As the above equations are independent of 0 and ¢, it means that normal hydrogen atom will be
spherically symmetric.

Suppose there is a small volume dV=r" sin 6dr d6d$. Now the probability of finding the
electron in this volume is given as follows :

Viool 00 Fdrsing do dg=—" exp{_ 2’"} dr sin 0d6d .(10.56)
7w, a,

For the whole surface of the sphere, the probability is given as follows :

_ 1 —2}" 2 T, 27
=— exp{ . }r dr jo smedejo dg

0

= i}exp .{_ Zr}fzdr.

a, a,

Hence the probability that the electron is lying between the distances » and r+dr from the
nucleus may be put as follows :

P(r)dr :éexp.[_zr}rzdr ..(10.57)

a, a,

The radial distribution function is given as follows :

P(r) =i3exp{_2r}r2 .(10.58)

a, a

The probability becomes maximum if dP/dr=0.
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dP 4| ,( 2 -2r -2r
—=—5|7r"| —— |exp| — |+2rexp| — [[=0
dr a, a, a, a,

2
or éexp.(zj{%—&} =0
a, ay a
2 2
or ZF—LIO
4
r=ap ...(10.59)

From the above equation it is evident that in the normal state the maximum probability will be at
a distance equal to the radius of the Bohr’s first orbit.

-

cmrrfpy™

Fig. 10.9

The radial distribution function P(r) dr is depicted in Fig. 10.9 together with y;¢pand (//2100. The
dotted curve is representing the probability distribution function for a Bohr orbit.

Example 10.1: Consider two hypothetical spherical shells centred on the nucleus of a hydrogen
atom with radii v and r+dr. What is the probability P(r) that the electron will lie between these
shells, as a function of r? The motion of the electron in the atom is described by the wave
function
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1
3/2
Vmag

Sol.The volume between the shells is

Y= e~/ cos wt.

dV = 4nr? dr.
The probability of the electron being found between the shells is given by

P(r)dr =W¥?qdv

1
= <—36‘2T/a0 cos? cut) 4mtr? dr.
na

The average probability is obtained by replacing cos? wt by its average value which is V2. Thus

S 1 _2r /1
P(r) = {—3e %o (—)} 4mr?
mag 2

Example 10.2:Show that the degree of freedom of degeneracy of the nth energy level in
the hydrogen atom in n®.

Sol.The energy values given by

et /1
il
8e5h? \n?

Depend only on nand hence are degenerate with respect to both /and m(that is, the states having
same nbut different /’s or m;’s or have same energy).

For each value of n, [ can take n values from 0 to n-/, and for each value of / there are
(21+1) values of my(=0, £1,12, ....... £1). Therefore, the degeneracy of the nth energy level is

n-1
2(21 + 1) =14345....42n—1);
=0

A total of n terms

[2(1) + (n — 1)2] = n?.

NS
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Example 10.3: (a) The 2s and 2p; orbitals for a hydrogen atom are

1 ry -
lI’JZS = 3 (2 - _) e 2ap
2 ag

4/2ma?
r

r _r
) e 2a0 cosO

1
42 a2

(ap = Bohar radius = 0.5294)

Using these orbitals write explicitly expressions for the two diagonal (sp) hybrid orbitals along

the z-axis given by

(_( - z
E1,2 IZS IZp .
2 )

(b) For either (not both) of your hybrid functions, calculate the probability density (mod¥?) on
the z-axis at z = 3ay and z = -3ay, in terms of ay and other universal constants.

(c) Make a same calculation separately for the 2s function and for the 2p. function.

Sol: (a)
1
D1,2 = ﬁ (WZS + LP2pz)

1 T _ZL
3 [2 +—(—-1+ cosH)] e 2o
2t Qo

8vma?

(b) If z= 1£3a,, x=y=0, then

r=3ay,0 =0o0rm,cosf = %1,
_3a

1 3ay
2+ (m1x1)[e 22

a
8Vma 0

D1:

o Nlw

[(=1+ 3)]6_%

orD, =

o Nlw

8vma
-3,—-8

mod(D;)? = ==—[(~1 £ 3)’]

> (D6 =)’
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_ap’e”®
 4q
4Dy (0 = my)2 = ¢
and(D, (6 = m)? = =
(¢) The functions
_3
Wl = 3ay) = 273
r ay) = e 2
2s 0 N
_36_8
d(W,)2 = =
mod (¥y5) 32
_3
Similarly, ¥,, (r = 3a,,60 = 0 or ) £33, -2
imilarly, r=3a,0 =0o0rm) = e 2
Y, Top, 0 Ner
-3 _g
2 9ay e
mod(‘Pzpz) BT —
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Example 10.4:4 three-dimensional isotropic harmonic oscillator has the energy eigen-

values hw (n + %) wheren = 0,1,2, ... ..... What is the degree of freedom of degeneracy of the

quantum state n ?

Sol. A state of the three dimensional oscillator is uniquely specified by the set of three
numbers (n;, Ny, n3) with n;, ny, n3 = 0and n;+ ny+n3=n. The numbers n,, ny nz are the harmonic
oscillator quantum numbers for excitations along the x-, y-, z-axis respectively. For fixed n3 and

n, the number of pairs (n;,ny) for which n;+ n, =n-nj is

n—ns

Z 1=(n—n3+1)

n;=0

Finally summing over n3 we obtain the total degeneracy, d,,,

d, = zn:(n+1—n3)

Tl3=0
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nn+1) B n+2)(n+1)

= 1)2 —
n+1) > 5

Example 10.5:Consider the one-dimensional Schroedinger equation with

m 5 3

— X or x>0,
V(x)=<2 J

+ 0 for x<0.

Find the energy eigen values.

Sol. In the region x>0, y obeys the same differential equation as the two sided harmonic
oscillator however, the only acceptable solutions are those that vanish at the origin.

Therefore, the eigen-values are those of the ordinary harmonic oscillator belonging to
wave functions of odd parity. Now the parity of the S.H.O. wave functions alternates with
increasing n, starting with an even-parity ground state. Hence,

_ (4n+3)hw
2

E withn=0, 1, ...

10.7 Summary:

In this unit we have discussed the important applications of Schrodinger equation as the
linear harmonic oscillator and the hydrogen atom. We have described the physical significant of
linear harmonic oscillator and discrete eigen values. We also learned that the three dimensional
spherical structure of hydrogen atoms and its quantised eigen valves & eigen states. Further, we
learnt about the probability distribution of an electron in the hydrogen atom, and compare with
the Bohr orbit.

10.8 Glossary:
Harmonic- relating to component frequencies of a complex oscillation or wave function

Oscillator - to move repeatedly from one position to another (like shaking, swinging and
vibrating)

Asymptotic- asymptotic is a line that approaches a curve but never touches

Recursion- Recursion occurs when a thing is defined in terms of itself or of its type.
Recursion is used in a variety of disciplines ranging from linguistics to logic.

Depicted- to show, to represent
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10.11 Terminal Questions:
Objective Type Questions:

a) According to wave mechanics, a free particle can possess-
(v)  Discrete energies
(vi) Continuous energies
(vii) Only one single value of energy
(viii) None of these
b) A hydrogen atom remains in its ground state when electron-
(1) Resides inside the nucleus
(11) Escape from the atom
(i11)  Isin its first orbital
(iv)  Does not orbit round but is stationary

¢) The existence of zero-point energy for a linear harmonic oscillator is a consequence
of-

(1) Pauli exclusive principle
(11) Special theory of relativity

(ii1))  Matter waves
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(iv)  Uncertainty principle

d) According to the quantum mechanics, the most probable distance of electron from the
nucleus in 1% state of hydrogen atom (a is Bohr radius)-

i) 3ay?
()  ay?
(i) ap

(iv)  Infinite
Short Answer Type Questions:
Q. 10.1 What is linear harmonic oscillator? Explain.

Q. 10.2 Determine the energy levels of a linear harmonic oscillator on the basis of the
Schrédinger’s equation.

Q. 10.3 What is the physical significant of zero-point energy in case of linear harmonic
oscillator?

Q. 10.4 Calculate the zero-point energy of system consisting of a mass of 1 g.m. connected
to a fixed point by a spring which is stretched 1 cm by a force of 10,000 dynes, the particle
being constrained to move only along X-axis.

Q. 10.5 Discuss the complete wave function for one-dimension harmonic oscillator with its
normalization constant.

Q. 10.6 Draw the graph of wave-functions and probabilities of harmonic oscillator for n = 0
to 5. How these are differing from the classical behaviours?

Q. 10.7 Define the four quantum numbers (#, /, m;, and m).

Long Answer Type Questions:
Q. 10.8 Explain how one can solve the problem of the hydrogen atom quantum
mechanically. Solve the radial part of the Schrodinger equation for hydrogen atom and
obtain the energy eigen values.

Q. 10.9Show that the energy-level spacing of a harmonic oscillator is in accord with the
correspondence principle by finding the ratio A E,,/ E,, between adjacent energy levels and
seeing what happens to this ratio as n — oo.

Q. 10.10 What bearing would you think the uncertainty principle has on the existence of the
zero-point energy of a harmonic oscillator?
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Q. 10.11 Find the expectation values <x> and <x?> for the first two states of a harmonic
oscillator.

Q. 10.12 The potential energy of a harmonic oscillator is U = %kxz. Show that the

expectation value of <U> of U is E,/2 when the oscillator is in the n = 0 state. What is the
expectation value of the oscillator’s kinetic energy? How do these results compare with the
classical values of U and KE ?

Q. 10.13 A pendulum with a 1.00-g bob has a massless string 250 mm long. The period of
the pendulum is 1.00-s, (a) What is its zero-point energy? Would you expect the zero-point
oscillations to be detectable? (b) The pendulum swings with a very small amplitude such
that its bob rises a maximum of 1.00mm above its equilibrium position. What is the
corresponding quantum number?

Q. 10.14 What is the ground state of the hydrogen atom? Derive it. And also calculate the
probability for that.

Q. 10.15 Obtain and solve the radial equation for the hydrogen atom. Calculate the most
probable distance of the electron from the nucleus.

Q. 10.16 Write the Schrodinger equation in the spherical co-ordinates for the electron in the
hydrogen atom. Write down the expression for eigen functions. Calculate:

(a) The average distance of the electron from the proton in the ground state.

(b) The expectation value of kinetic energy for any state.
10.12 (a) Answers of Self Assessment Question (SAQ)
Ans.1: Refer section-10.3
Ans.2:E = 2.5 hw
Ans.3:v = (E5—E;)/ h
Ans.4:Refer section-10.4
(b) Answers of Terminal Questions:

Answer of objective questions: a) (1) b)(ii1) ¢)(iv) d)(iii)
Ans.104E, = %hw(): 5.25%x107% ergs.

Ans.10.11<x>=0, and <x’>= E/kfor both state.
Ans.10.13 (a) 2.07 X 107> eV, no (b) 1.48 x 1028
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11.1 Introduction:

All the motions in nature are relative to each other. A motion cannot be described until we
have a well define reference point or coordinate system. Simply, the motion of a train i.e. 80
km/h is defined with respect to an observer on earth. However, for another observer on train,
the train is at rest. In the development of science, generally the physics in the period prior to
1900 1is called classical physics. The mechanics of that period, i.e. classical mechanics was
developed by Newton and also known as Newtonian mechanics. Classical mechanics is based
on invariance of space, mass and time. Newton assumed that space, mass and time are
absolute and remain unaffected in all circumstances. This concept explains satisfactory the
ordinary motions in our physical world but this theory was not giving correct results when
applied to object moving with higher speed.

In 1905, Albert Einstein showed that measurement of space (length), mass and time
are affected by motion of observer and object. These measurements are not absolute velocity
has no meaning. We always need a reference point or coordinate system to describe motions.
Einstein’s theory of relativity revolutionized science specially physics and astrophysics. In
this chapter we discuss the theory of relativity and its consequences.

In 1905, Albert Eisenstein that the space (length), mass and time are affected by motion of
object and observer. These are measurements not absolute. He also concluded that motions
are related and absolute motion hah no meaning. Thus for describing the motion, we always
need a reference point or coordinate system. Einstein theory of relativity revolutionized the
science specially physics. In this chapter we discuss the theory of relativity and it
consequences.

11.2 Objective:

After learning this unit we will able to
+ Understand the meaning of relativity

K/

« Understand frame of reference and its types

+ Understand Michelson Morley experiment and its results

+»+ Understand Special theory of relativity

Lorentz Transformation

Length transformation

Consequences of relativity like length contraction, time dilation, variation of mass
Relativistic velocity addition.

Equivalence of mass and energy, relativistic momentum

Basic of general theory of relativity.

7 X/ X/ X/ X/ 7
L X X X R X S X4
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11.3 Frame of reference:

As we know all motion are relative to each other. When we say that anything is moving, it
means its position is changing relative to something. Thus to specify position and motion of
any thing we need a coordinate system. A frame of reference is a coordinate system relative
to which the position and events of body may be described. For example earth, laboratory,
sun can be considered as a frame of reference. Generally, Cartesian coordinate system is used
from denoting a frame of reference in which origin O is used for reference point. Position
vector of a point P is given as

P =ix +jy+ 2k
y

Figure 11.1 Cartesian coordinate system as frame of reference.
11.3.1 Inertial frame of reference:

Frame of reference in which Newton’s 1* and 2™ law of motion hold is called inertial frame
of reference. In such a frame, a body at rest remains at rest and a body in motion remains in
motion until an external force is applied. A non-accelerating frame of reference is inertial
frame of reference. All inertial frames of reference are equally valid. Any frame of reference,
moving with constant velocity with reference to an inertial frame is itself an inertial frame. In
1905 Einstein published special theory of relativity which deals the problem that involved
inertial frame of reference.

11.3.1 Non-inertial frame of reference:

Frame of reference in which Newton’s 1* and 2" law of motion do not hold is called Non-
inertial frame of references. If a frame of reference is accelerating with respect to an inertial
frame of reference such frame of reference is called non-inertial frame of reference. In fact
all accelerating and rotating frames are non-inertial. In accelerating frame, a force which
does not really act but appears due to acceleration (F=ma) of frame, is called fictitious or
pseudo force.
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11.4 Galilean Transformations:

Galilean transformations are used to transform the coordinates of one inertial frame to
another inertial frame of reference. Simply there transformations are relation between two
inertial frames of reference.

Let us consider two frames of reference S and S'. The second one S' moving with
constant velocity v along x axis with respect the first frame of reference S. There are two
observer O and O' at origins of frames of reference S and S' respectively as shown in figure
11.2.

y y
P(x + jy + 2k)

z z'

Figure 11.2: Galilean transformation

Let us consider a point P in space where an event is happened. The coordinates of point P are
(x,y,z,t)and (x', y', Z', t') with respect to frame S and S'respectively.

Since the S'is moving only along x axis with velocity v thus

Thus, x'=  x-vt
y= 'y
7'=  z
t'= t

These equations are called Galilean transformation equations.
Similarly the Galilean transformation for velocity can also be found out by
differentiating with respect to time.

11.6 Michelson Morley Experiment:

In 19" century, scientist assumed that the whole space was filled with hypothetical
medium named luminescent ether. This medium is perfectly transparent for propagation of
light and material bodies may pass in this medium without any resistance. At that time
scientist though that electromagnetic waves needed a medium for propagation. Ether remains
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fixed in space and considered as absolute frame of reference. It was also assumed that
velocity of light should be different in the direction of motion of earth and perpendicular to
the direction of motion of earth according to Galilean transformation.

Michelson Morley performed an experiment for the verification of existence of ether
and relative motion between ether and earth. If ether is assumed to be at rest, the velocity of
earth relative to ether medium will be equal to the orbital velocity of earth i.e., 3x10* m/s.
The aim of this experiment was to find out this drift velocity and its effect.

11.6.1 Experimental setup:

Michelson and Morley designed an interferometer as shown in figure 11.3. A monochromatic
beam of light is fall on a half silvered glass plate G. Some part of light is transmitted from
glass plate G and after passing through another glass plate G'falls on mirror M, and reflected
back. Similarly some part of light reflected from the Glass plate P called reflected
(transverse) part and fall on mirror M, and reflected back. The light reflected from mirror M,
and mirror M, finally reach in the direction along the telescope PT and produce interference
pattern.

¥
bes 14
sam half-silvered mirror

- -
beam 2

slit .IQ
light _| ___________ T ' .
source | - // £ Mz
. O_ -

P 4
v

— ¥
microscope Direction of earth motion

Figure 11.3. Michelson-Morley experiment

In this experiment the light is travelling in the direction of earth motion. Due to
motion of apparatus with earth, the optical path travelled by both reflected and transmitted
light are not same as velocity is different in both directions.

If 1 is the distance between plate P to M; and P to M, , and t is time period in which
the light reaches from point P to A then according to figure 11.4.
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]

Qs

5

e

\ﬁ\
2
«a—“q‘
b

.

- -Lm- -

microscope
Figure 11.4: Optical path of reflected light

Total path travelled by reflected light =P A'P'
=2 PA'

Since velocity along direction of motion of apparatus (along x axis) is v

then PA'=ct and A A'=vt
(PA)’ = (PQ)+(OAY’
c?t? = v?t? + 12
l
If t; is time taken by reflected light to travel the total path [

21 21 21
tl =2t =

t =

Vez—p2 = (c2-p2)1/2 - c(l v2)1/2

20 v\TV? 20 102
(-5 -
Now the transmitted light has velocity (c-v) relative to apparatus from P to B and (c+v) from
B'to P'.
Total time taken by transmitted light to travel total path t;

, Lot 20 2lc[ w2 2l1+v2
27 c—v c+v c2—v2 2 c? ) c?
2 2 2 2
TimedifferenceAtztz—tl=2—l[1+v—2]—2—l[1+v—2 :2_11;_2:1%
(o (o (o 2C c 2¢c C
[ v2

Thus the path difference between two rays =c. At = =
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If A is the wavelength of light used, the path difference in terms of fring shift
Ax = nA

_he W?
orn=—=-—
In This experiment [ = 1m, A = 6x107 m, v =3x10* m/s, c=3x10%m/c then the calculated values

ofn = 0.37

. . . . . w2 ..
Thus if apparatus is at rest and start motion there should be a fringe shift of ;7 But it is

not possible to make earth at rest. The problem was resolved by using a concept that if whole
apparatus of Michelson Morley experiment was turn through 90. The fringe shift should be
observed. The experiment was performed by many scientists, many times but fringe shift was
not observed. This is called negative result of Michelson Morley experiment and it shows:

1. The existence of stationary ether medium is disproved.

2. There is no any absolute frame of reference.

3. The speed of light is same in all directions.

11.6.1 Einstein’s explanations:

In 1905, Einstein proposed an explanation of negative result of Michelson Morley
experiment. He argued that the velocity of light is same in all directions thus velocity of light
is invariant. This is one of the postulates of special theory of relativity.

11.7 Special Theory of Relativity:

After the negative result of Michelson-Morley experiment, Einstein felt that there was no
such thing which can be an absolute or fixed frame of reference. He worked on the absence
of such absolute frame of reference and examined the consequences of such theory. On the
basis of this revolutionary idea, in 1905 he published his special theory of relativity which
deals the problems that involve inertial frame of reference. After 10 year later, in 1915 he
also proposed second part of his theory of relativity which was more complex in the form of
general theory of relativity which deals the problems that involve non inertial frame of
reference.

Postulates of special theory of relativity:

1. The laws of physics are same in all inertial frames of reference.
2. The velocity of light in free reference is same in all frames of reference.

According to ond postulate the velocity of light (¢) is invariant to transform from one
inertial frame to another but according to Galilean transformation the velocity of light is not
invariant. For example if ¢ be the velocity of light in a frame S, and another frame S'is
moving with velocity v with respect to S, then according to Galilean transformation the
velocity of light in frame S'must be ¢’ = ¢ — v , however we have ¢’ = ¢. Thus after new
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postulate, there was a variance with Galilean transformation. After this concept, we look for
a new transformation system called Lorentz transformation.

11.8 Lorentz transformation:

Let us consider there are two inertial frames of reference S and S, S’having a uniform
velocity v relative to S.

y y'
P(ix + Jy + bk
(ix"+ jy" + 2Kk
X
0 0} x'v -
z 7

Figure 11.5: Lorentz transformation

An event at P is determined by the coordinates (x, y, z, t) and (X, y', Z', t') by
observers at O" and O’. Let a light pulse produced at t=0, which will spread out a glowing
sphere. Then the coordinate of this event for observer O in S frame:

x% 4+ y? + z% = c*t?

orx?+y*+z2—-c*t?=0 (1)
Similarly the coordinate of same event for observer O’ in S’ frame is

X2 +y? 472 = 22
orx?+y?+27%—-c%t?*=0 ()
by equation (1) and (2)
X2+ y2 422 -2 =Ax"" +y'* + 2% = c%t'?) (3)
Where A is undetermined constant.

Since S’ is moving along x axis thus y = y’ and z = z' thus A=1. Then equation (3) becomes

2

2 2
x% —c’t? =x"" =t

Now consider a linier transformation equation which relates x and x’ as
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x'=y(x —vt)
Where y is constant.
If we assume that S is moving related to S' with velocity —v then
x =y +vt)
Putting the value of x" in this equation
=y[y(x —vt) + vt']
= y2%(x — vt) + yvt'

yvt' = x —y%(x — vt)

t’=yx—v—%(x—vt)
LR
e =yle=3(1-5) ©)

Put the value of x" and t’ in equation (4)

1 2
2 _ 0242 — y2(x — pt)2 — (2 [t——(l— )]
x“—c ye(x —vt)s —cy - 2

x2 1\* 2axt 1
x%—c ye(x*+v xvt) + c*y [ +v2 )2 - 2

Since equation is an identity thus the coefficients of , t, x2, t? and xt must be zero.

Comparing the coefficients of xt

V2
c? 1
U——(l——2>=0
v 14

1
vz—cz(l——2>=0
14
2
c
v:i—ct+—==0
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Putting this equation in (6)

XV
t=22
tl — C
1Y
c2
Thus the set of transformations:
pa
1 x—vt ' ' t_c_Z

Which is called Lorentz transformation.

Lorentz transformation is relativistic and Lorentz first time showed that this
transformation have same form for law of electricity and magnetism in inertial frames of
reference.

1

y:, 1_v2/cz

case the Lorentz relativistic transformation reduces to Galilean transformation. Thus it can be
stated that the Galilean or Newtonian physics is a particular case of relativistic physics. In
our daily life in planet earth the concern velocities are very small even the speed of earth

It can also observed that when v<<c or v/c— 0. We have ~ 1, in this

motion is 29.6 km/sec. which is approximately 1/1000 of c, thus Newtonian of Galilean

physics is perfectly valid our particular cases. But when the value of v is very high and
comparable to ¢ in cases of electron, proton, neutrons etc. then only relativistic physics is
valid.

Inverse Lorentz transformation:
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If we exchange the frame S and S' (or S moves with a velocity-v) the Lorentz
transformation becomes:

xIv
_ xr4vtr ' . _ Utz
y H Z=2Z t=

- l1 2 T 1-2
c? c?

This set of transformation is called inverse Lorentz transformation which is also equally
valid. Now we will examine some consequences of relativistic effect which can be obtained
with the help of Lorentz transformation.

11.9 Length contraction:

Consider a rod is laid along the x axis in a frame of references S'. The rod is at rest
with respect to an observer O’ in S’ frame. The length of rod, as measured in S’ frame of
reference at rest by an observer O'is called proper length Ly as shown in figure 11.6. If x,"and
x,' are the coordinates of rod’s ends with respect to O’ then paper length of rod

Lo=x' -x
!

y y
X1 X2

X1,X2,

Figure 11.6: Length contraction of a rod in moving frame.

Similarly the coordinates of its ends with respect to observer O are x, and x;. Consider frame
S' is moving with velocity v along x axis with respect to S and we are interested to find out
the length of rod when observed from frame S.

According to inverse Lorentz transformation:

x' + vt
X = —
vZ
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Putting the value of t' from Lorentz transformation equation t' = = we have
v
-z
Xv
t —_—
x' +v c2
1-Z
. 2
12
1-=
c
x' vt vix
X =
2 2
2 v v
v -2 2=
1- C_Z CZ ( CZ)
v :
C X vt
x|1+ > + >
1Y v: v
c2 1-— c_2 c2
X x' vt
2~ 2
1= v: oV
c2 1-— C_Z c2

or

If x, —x; = L and x," — x;" = Lo(proper length)

BSCPH 301
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It is clear that L<L, and if v is higher or rod is moving faster then the length is observed
shorter in comparison to proper length. This is called length contraction. It can also be
noticed that there is no contraction along y and z axis as the rod is moving only along x axis.
In another case if the rod moves with speed of light c, its length would be zero.

11.10 Time Dilation:

Consider two frame of references S and S', S'is moving with velocity v along x axis as
shown in figure 11.5. Let a clock is situated at point P in S' gives signal at time interval At
with respect to S and At' with respect to S'. Using inverse Lorentz transformation

At is time measured by observer is S frame and At’ proper time. It can be noticed that

At >At" as |1 — UZ/CZ is always less than 1.

Thus the measurements of time interval are affected by relative motion between and
observer and object, if a clock moves with respect to an observer the clock get slower, all the
processes in such moving frame occur more slowly. The biological process and life period
are also become slower in such a moving frame if observed from a different inertial frame.

11.10.1 Twin paradox:
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Consider there are two identical twin brothers. One of them goes to a long space journey in a
spaceship at a speed near to speed of light (¢) and second one stay behind on earth. The clock
in the moving space ship will appear to go slower and biological processes of his body also
go slower. When the first one returns to the earth he will find himself younger than second
who stayed on earth. This phenomenon due to time dilation is called twin paradox.

11.11 Velocity Addition:

Suppose we have two frames of reference S and S'. S' is moving with a uniform velocity v
along x axis with respect to S. Suppose a particle is moving in x axis with velocity u as
measured by frame S and u' as measured by frame S'.

In S frame u = u, + uy, + u, (1)
In S' frame v’ = u," +u," +u,’ (2)
The velocity measured by frame S and frame S' are u, = % and u,’ = %
Differentiate Lorentz transformation
_ dt—2dt
dxl:dx vdt ;dt’:—cz : dy’:dy : dz' = dz (3)

2
v
1—(:_2 1_C_2

Dividing above transformation relations for dx', dy'and dz' by dt’

dx’ dx—vdt Uy—V
av - a—Zax OF ux,=1x" )
_C_z X —C—Zux
, 2 2
dy 1-Z Uy [1——
dy’ 2 y 2
av  at "dc or uy'= 1-2 : )
2 c2tx
2 2
dz [1-% u /1—"—
dzr 2 4 2
— = — Oor U, = —5— (6)
datrs dt——zdx 1——2ux
C C

These equations (4), (5) and (6) are the relation for relativistic velocity additions.

If a photon is moving with velocity ¢ in S'frame, u,’ = ¢ and this frame is also moving with
velocity c, 1.e., v=c then the velocity of this photon when observed from S frame can be
calculated by above relation:

Ux—7V
or u, =—%— hereu,’ =c,v=c
1——2‘U.x
—C
or ¢c= —%—0r Uy ==C
o
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Thus this particular velocity ¢ remains same in all frames of reference and remains invariant.
By using inverse Lorentz transformation (replacing v by -v) the above relativistic velocity
equations (4), (5) and (6) becomes:

v2 v2
uptv W lma i

v B} - v v
1+C—2ux y 1+C—2ux’ 1+C—2ux’

or U, =

11.12 The relativity of mass (mass variation):

The mass of moving body also varies like length and time its variation is direct consequence
of time dilation. Let us consider two frames of references S and S' as shown in figure 11.7. S'
is moving with a constant velocity v relative to S. Suppose there are two balls A and B of
equal masses m in S' frame, both balls are approaches toward each other at equal speeds u
and —u. after collision, the balls coalesce into one body.

If S' frame according to conservation of momentum:
Momentum of ball A + momentum of ball B = momentum of coalesced mass
mu-mu = momentum of coalesce mass = 0

Thus coalesced mass must be at rest in S'frame. In S frame if u; and u; are the velocity of two
balls A and B then

u+v

U =1+u—v/cz (1)

—u+v
1— ‘uv/cz (2)

Since frame S'is moving with velocity v and therefore after collision coalesced mass
have velocity v with respect to S. if m; and m; are mass of balls A and B measured from S
frame then according to conservation of momentum;

u2=

myu; + mpu, = (Mg + my)v (3)
u+v -u+v
my\——p— | t e | 7 — ) = (my + my)v
1+ /cz 1-— /cz
Iu+v—v—uv/cz' 'v—uv/cz+u—vl
m =m
1 1+u17/c2 | 2_ 1_u17/c2
_ , . _ , .
u+(1—v/cz> u+(1—v/cz>
m =m
1 1+uv/cz 2 1_1117/62
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ms

Using equation (1)

u?v? 2uv u? v? 2w
wl_, @rv? M Ta e e g
2 2
‘ c? (1 + uv/cz) (1 + uv/cz)
u?\ v? u?
(1 - cz) _c_2<1 - cz)
B w; \°
(1 + /cz)
uz Uz
1-2)(1-%
_ u_l2 — ( Cz)( C:) (5)

c? (1+uv/cz)
Similarly using equation (2) we get
u2 172
_u® (1-2)(-%)

= (6)
¢ (1_uv/c2)

Dividing equation (6) by equation (5)

u
uv 2
1+ /Cz 1 CZ
—uv
1 /CZ 1— u12
2
Putting this value in equation (4)
_ Ut
m c’
m, u1
uz
my |1 ——=m, |1 —— = my(constant)
my = mOZ or my = —=
ui up?

15 1-2-

BSCPH 301

m, is constant and is called rest mass of the body. m;and m, are the masses at velocities u,
and u, respectively. Similarly if m, is mass of body in S' frame of reference when it is
moving with velocity v with respect to S, and m is mass of this body in S frame, then

Mo

mz\/T‘;_; (7)
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This is the relation for mass variation. If the velocity of particle becomes ¢ i.e. v— ¢ then m

= ?200. Thus if a particle moves with velocity of light its mass becomes infinity. But in

actual no material body have velocity equal to c.
11.12.1 Experimental verification of mass variation:

In 1906 Kaufman experimentally verified the increase in mass with velocity. He observed
that during f decay from a radioactive material, when the velocities of § particles are high,
their masses were found is greater than actual rest mass corresponding to velocities.
Similarly In particle accelerator (a device used to accelerate particles) when proton or
electrons are accelerated to a high velocities, their masses increased as predicted by
relativistic mass formula.

11.13 Equivalence of Mass and Energy:

Einstein obtained his most famous mass energy relation (E=mc?) from the postulates of
special theory of relativity.

Derivation:
We know that the work is defineas W = F.s

If there is no other external forces act on an object, and object starts with rest and acquire a
velocity v then all the work done on it becomes it kinetic energy.

v
KE = f F.ds
0
Relativistic 2™ law of motion F = % (mv)

vd
KE = | —(mv).ds
fo = (mv)
Since m is not constant and vary with velocity then

KE—fvd( =
—0 mvdt

KE = fvv.d(mv)
0

(1)
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Integrating above equation by integration by part as

fxdyzxy—fdxy

KE = U.M—fvdv MoV )

Now integration | Ov dv

= becomes
v
1_C_2
, ) L )
2 ——
T2 —mpcctdt c2
I(say)= [ “———

= —myc?[t]]

I——moclfl——— 1] myc? 1——+moc

Putting this value in equation (2)

2 2
myv v
= —— 4+ myc? 1——2—moc2
12 c
1 -
w/ 2

2
mov? + myc?(1 — v_z)
KE = C — myc?
vz
-z
2
myc
KE = ——— — m,c?
vz
-z
KE = mc? — myc? (3)

Total Energy E = KE + rest mass energy

BSCPH 301
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E = mc? —mgc? + myc?

E = mc?

Thus the classic law of conservation of mass and energy combined in to a single principle of
mass and energy equivalence.

11.14 Relativistic momentum and energy relationship:

Mo

Relativistic mass m = =
=
[

o e e mov
Relativistic Momentum p = mv = —02
v
-z
E E = mgyc?
nergy E = \/7
-z
Now we calculate a quantity
2,2 .2
my“vec
p%c? + my?ct = + my?c*
2
1-—=
c2
my?v?c? + my?c* — my?vic?
= ; 2
c2
2.4
my“c 5
2
%
1-=
c
E? = p%c? + my2c*

This is the relation between energy and momentum.
For mass less particles E? = pc? or E= pc

11.14.1 Kinetic speed at low speed:
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According to relativistic kinetic energy

moc?

90~
2

v
-z

-1/2
2 vz ! 2
=moc“|1——= — myC
c

= mqc? (1 + %) — myc? (using binomial theorem) =

KE = mc? —myc? = — mgyc?

Thus at v << ¢ the formula for relativistic KE reduce to classical formula.
11.15 General theory of relativity:

Einstein special theory of relativity deals the motion and events in inertial frames. In
1915, Einstein published general theory of relativity which deals with motions and events in
accelerating frame. Thus the general theory of relativity is generalization of theory of
relativity regardless of their state of motion whether accelerating or non-accelerating.
General relativity provides a unified description of Newton’s laws of motion, laws of
gravitation, gravity, special relativity, geometrical properties of space and time. After
unification of all theories, the law of physics may be expressed by Einstein field equations, a
system of partial differential equations.

Some predictions of general theory of relativity differ significantly from classical
physics, like concerning the passage of time, geometry of space, propagation of
electromagnetic wave, etc. some new phenomenon like gravitational time dilation,
gravitational Lansing, gravitational red shift. Gravitational time delay is consequences of
general theory of relativity. The predictions of general theory of relativity have been
confirmed in observation and experiments. Einstein theory has improved astrophysics and
different other events taking place in universe like black hole, massive starts, nova, super
nova, quasar, gravitational waves etc. The more details of this theory is an advance course
and will be studies in higher advanced books.

Example 11.1: The length of a rod as is measured in different frames is 20.0 cm, 19.8 cm, 19.9
cm. In which frame the rod is at rest. Explain why.

Solution: The rod will be at rest in the frame in which its length is maximum, and maximum
measured lengths 10.1 cm. It is because in a moving frame length contraction takes place and it
appears that length decreases. So the frame at rest is that in which the length has the highest
values.
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Example 11.2: A rod of 1 m long is moving along its length with a velocity 0.6 c. Calculate its
length as it appears to (i) an observer on the earth (i1) moving with the rod itself.
Solution: The length of the rod in the moving (S”) frame i.e. proper length is
L(): 1m

If the observer moving with the rod itself, then there will be no relative motion and length
appears to be 1 meter. As the rod is moving when observed by an observer on the earth, the
length of the rod appears to be shorter, then

L=1L, /1 —%-1/T- (0.6)>~VT - 036 - 0,64

L =0.8 m

Example 11.3: A rod has a length of 2m. Find its length when carried in a rocket with a speed
2.7 X 108 m/s.

Solution: The length of the rod is given by

L =1L, /1—:—2 =2 /1—(2;);10:)2=2\/1—0.81

=2 X+v0.19 =2 x0.436 = 0.872m

Example 11.4: The apparent length of a rod in the direction of motion moving with a velocity
2 x 108 m/s is 1 meter. What is the proper length of the rod at rest?

Solution: Length of rod at rest, Ly=——

-z

= =134m

2
(2x108)
(3%108)2

Example 11.5: The length of a spaceship is 90 m when measured on the earth. It length when it
was flying was 80m measured by an observer on the earth. Find out the velocity of spacecraft.

Solution: The length of a spaceship is given by
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UZ
80 =90 1= 35351016
) v2 ~ 80x80
3x3x1016/ 90 x90

2 _, 80><80_02098
3x3x1016) 90 x 90

v = 0.4580 x 3 x 10% = 1.37 x 10%m/s

Example 11.6: A rod is placed in a spacecraft moving with a velocity .8c with respect to earth
along the direction (i) parallel to earth and (ii) along a direction 30° with the length of rod.
Calculate the percentage contraction in the length of rod in both cases.

Solution: (i) In case rod is moving parallel to the length (say along x axis), then the measured
length L of the rod with proper length L is given as

.8¢)?
L:LO 1_( ) :LOV1_.64:LOV.36:.6L0

c?

Percentage contraction in the length of rod = @ X 100 = 40%
0

(ii) In case rod is moving in a direction along 30° with the length of rod (along x axis), then the

length of rod along direction of motion (along x axis) = L, cos 30° = ?LO

The observed length L’ along the direction of motion (along x axis) as rod is moving with .6¢

gLO 1— (802 _ V3

c? 2

L= Ly X .6 = 0.52L, (1)

The length of rod along direction perpendicular to motion (along y axis) = Lq sin 30° = 0.5L,

The observed length L" along the direction perpendicular to motion (along y axis) remains same
as rod is moving perpendicular to this direction.

Thus the observed length L" along the y axis L' = 0.5L, (2)
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Using eq. (1) and eq. (2) we can find the total observed length of rod as

L=+L*+1"* = \/(O.SZLOZ + (0.5Ly)? = 0.72L,

Lo—0.72Lg

Percent contraction = X 100 = 22.72%

0

Example 11.7: Mass of a moving particle becomes 3 times of its rest mass. Find out the speed of
the particle.

Solution: The mass of a moving body m is given as

my
m= >
v
-z
m
3my = 0
12
-z
1 v2_1
c2 3
. v2_1
c2 9
2_1 1_8
c2 9 9
v =.94c

Example 11.8: In the laboratory there are two particles moving in opposite to each other with
the velocities 2.8x10® m/s. Calculate their relative velocities.

Solution: We can consider one particle is placed in S' frame which is moving with velocity v = -
2.8x10% m/s (say along —x axis) and the velocity of particle is u = 2.8 10® m/s. For relative
velocity u’” we have to calculate velocity of particle with respect to S by using Lorentz velocity
transformation as

, u-—v
o =
uv
1+
Cc

, 28X 108 — (—2.8 x 108)

b =8 x 108 x 2.8 X 10°
_ X

1
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8
w = 81 5 095%10° m/s
1.87

Thus the velocity relative to each other is 2.995x10® m/s.

Example 11.9: Two 3 particles are emitted by a radioactive source. The particles are moving in
opposite direction to each other with velocity 0.9c. Calculate their relative velocity.

Solution: We can consider two particles A and B. Particle A is placed in frame S' which is
moving with velocity -0.9c with respect to S. Thus the velocity of particle A is -0.9c with respect
to S. If the particle B has velocity 0.9¢c with respect to S, then

velocity of particle A =v = -0.9¢
velocity of particle B=u= 0.9c

According to Lorentz velocity transformation the relative velocity of a and B is u' and given as

, u-—v
u = uv
1=z
, 9¢ — (—.9¢)
u 9¢ X (—.9¢)

u' = (i':i)—0.994c= 2.98x10° m/s

Example 11.10: An electron moves with velocity 0.6x10° m/s If its rest mass is 9x10>" kg
Calculate it’s mass.

Solution: We know my = 9 X 10731 kg
mg 9 x 10731
m = =
/l_v_z \/1_.6><108><.6><108
c? 3x 108 x3x108
Example 11.11: Calculate the ratio of mass of an electron to its rest mass if it is moving with
kinetic energy 9.5MeV. The rest mass of electron is nearly 0.5MeV.

=9.18 x 10731 kg

Solution: We know that

KE = mc? — myc?
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KE = mc? —myc? = 9.5 MeV
mc? =9.5+ 0.5 =10 MeV

m mc? _10_20
my myc® .5

11.16 Summary:

1. A frame of reference is a coordinate system relative to which the position and events of
body may be described. For example earth, laboratory, sun can be considered as a frame of
reference.

2. Frame of reference in which Newton’s 1% and 2™ law of motion hold is called inertial
frame of reference. A non-accelerating frame of reference is inertial frame of reference.

3. Frame of reference in which Newton’s 1% and 2™ law of motion do not hold is called Non-
inertial frame of references. If a frame of reference is accelerating with respect to an inertial
frame of reference such frame of reference is called non-inertial frame of reference. In fact
all accelerating and rotating frames are non-inertial.

4. Galilean transformations are used to transform the coordinates of one inertial frame to
another inertial frame of reference.

5. Michelson Morley performed an experiment for the verification of existence of ether and
relative motion between ether and earth. The negative result of Michelson Morley
experiment and it shows:

4. The existence of stationary ether medium is disproved.
5. There is no any absolute frame of reference.
6. The speed of light is same in all directions.

6. Postulates of special theory of relativity:

3. The laws of physics are same in all inertial frames of reference.
4. The velocity of light in free reference is same in all frames of reference.

7. Lorentz transformation is relativistic and Lorentz first time showed that this
transformation have same form for law of electricity and magnetism in inertial frames of
reference. The set of transformations:
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7. If we exchange the frame S and S' (or S moves with a velocity-v) the Lorentz
transformation becomes inverse Lorentz transformation which is also equally valid.

xIv
22
— c?

X="=: y=y; z=z; t=45
v v
1-> /1—C—2

8. If a rod is laid along the x axis in a frame of references S’ and this frame is moving with
velocity v with respect to another frame S. When an observer in S frame observes the length
L of this moving rod, it is observed shorter in comparison to proper length L. This is called
length contraction.

9. The measurements of time interval are affected by relative motion between and
observer and object, if a clock moves with respect to an observer the clock get slower, all the
processes in such moving frame occur more slowly. This is called time dilation. At is time
measured by observer is rest(in S frame) and At’ time period measured in moving frame

called proper time.

At'

At = —
v

-z
10. If we have two frames of reference S and S'. S' is moving with a uniform velocity v along
x axis with respect to S. Suppose a particle is moving in x axis with velocity u (u = u, +
uy, + u,) as measured by frame S and u' (u’ = u,’ + u,’ + u,')as measured by frame S'. Then

the relations for relativistic velocity addition are:

2 2
v v
Uy [1—— Uy [1——
’ Ux—V . ’ VT2 . ’ Z\ "2

ux -_ v By uy - v
1——2ux 1—C—2ux 1—C—2ux
v2 v2
or U = uptv w = uy' 1=z w = uz! 1=z
x T T, WET e s W =T
1+C2ux 1+C2ux 1+Czux

11. If m, is mass of body in S' frame of reference when it is moving with velocity v with

respect to S, and m is mass of this body in S frame, then
Mo

mz\/ﬁ
CZ

This 1s the relation for mass variation.

12. Kinetic energy is given as KE = mc? — m,c?
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Total Energy E = KE + rest mass energy= mc? — myc? + myc? = mc?

The classic law of conservation of mass and energy combined in to a single principle called
mass and energy equivalence.

mov
l1 v
o2

14. Relation between energy and momentum:
E? = p2c? + my2c*

13. Relativistic Momentum p =mv =

11.17 Glossary:

Frame of reference : an specified space define by a coordinate system
Inertial : non accelerating

non-inertial : accelerating

Transformation : correlation from one system to another

ether : A hypothetical medium

D AW~
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11.19 Terminal Questions:

11.19.1 Short answer type question

Q1. Define inertial and non inertial frame of reference.

Q2. What is the negative result of Michelson Morley experiment?
Q3. Explain is Earth is an inertial Frame of reference?

Q4. Deduce the Galilean transformation equations.

Q5. What is Newtonian relativity? Give the basic assumption of Newtonian mechanics.
Q6. State the postulates of special theory of relativity.

Q7. What do you mean by velocity of light is absolute?

Q8. Why Lorentz transformation is needed?

Q10. What do you mean by proper length and length contraction?
Q11. What is meant by twin paradox?

Page 346



BSCPH 301

Q12. Explain the time dilation.

Q13. State Einstein’s velocity addition formula.

Q14. What is mass energy equivalence relation?

QI15. What is rest mass? Show that the rest mass of photon is zero.

11.20.2 Essay type question:

Q1. What is Michelson- Morley experiment? Why this experiment was performed? Explain its
result.

Q2. State and explain the special theory of relativity. What are the consequences of this theory?
Q3. Deduce Lorentz transformation equation.

Q4. Define proper length and length contraction. On the basis of Lorentz transformation obtain a
relation for length contraction.

Q5. What is time dilation? On the basis of Lorentz transformation obtain a relation for time
dilation. Explain why moving clock appears to go slow.

Q6. What do you mean by twin paradox?

Q7. Deduce Einstein’s velocity addition formula and show that speed of light remains same.

Q8. Deduce the formula for relativistic variation of mass.

Q9. Deduce Einstein’s mass energy equivalence relation.

Q10. Give basic idea about general theory of relativity.

11.20.3 Numerical question:

QI. An electron is moving with velocity 0.8c. The mass of electron is 9.1x107! kg. What is the
mass of electron when it is observed? (Ans. 1.5%x107° kg)

Q2.A rocket has rest mass 100kg. When is moving its mass changes by lkg. Calculate the
velocity of rocket. (Ans. 4.2x10" m/s)

Q3. A clock keeps correct time. What should be speed of this clock so that it delayed by 1
second in 24 hours? (Ans. 0.11x10®* m/s)

Q4. A rod of length 2m is moving with velocity 2.7x10% m/s with respect to earth in the
direction along its length. Find out the length of the rod when observed from earth.

(Ans. 0.87 m)
Q5. Calculate the percent contraction in the length of a rod in a frame of reference moving with
velocity 0.8 m/s along the direction of length. (Ans. 40%)

Q6. A clock seems to be slow by 1 minute in one hour. Calculate the speed of the clock.

(Ans. 0.1819c¢)
Q7. In the laboratory, the life time of a moving particle is 2x10” sec. The particle is moving with
velocity 2.8x 10® m/s. Find out the proper life time of the particle.

(Ans. 7.17x107 s)
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Q8. Two spacecrafts A and B are moving away from earth in the same direction with velocities
0.8c and 0.6c. respectively. Find out the velocity of b with respect to A.

(Ans. 0.38¢)
Q9. At what speed the mass of a proton is exceeded by 1% ? What will be kinetic energy of this
particle in eV? (Ans. 4.2x10" m/s , 9.3x10" eV)
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