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1.1 INTRODUCTION 

Matter, in general, occurs in three states- solid state, liquid state and gaseous state. As we move 

from the solid state to gaseous state, the distance between the neighbouring atoms increases 

and their structures vary too. The solids are classified on the basis of their electrical behaviour 

as conductors, semiconductors and insulators. The conductors are the materials which have a 

large number of free electrons. These free electrons are responsible for carrying current. On 

the other hand, the insulators have practically no free electron to conduct electric current. 

Between the conductors and insulators, we have semiconductors. A semiconductor behaves 

like an insulator at absolute zero but its conductivity increases as its temperature increases. In 

this unit, you will study about different states of solids. You will also study about lattice, bases, 

different types of lattices and crystal structures.  

1.2 OBJECTIVES 

After studying this unit, you should be able to- 

 understand crystalline and amorphous solids 

 understand lattice and bases 

 understand different types of crystal structures 

1.3 CRYSTALLINE AND AMORPHOUS 

A most remarkable feature of matter in the solid state is the tendency of the constituent atoms 

of a great many solids to arrange themselves in an ordered periodic pattern. On the basis of the 

arrangements of its constituents, the solids are broadly classified into two categories- 

crystalline and amorphous.  

A crystalline solid, commonly a crystal, is a solid material with such a regular arrangement. A 

crystalline solid is formed by regular and periodic repetition of identical building blocks in 

three dimensions. These building blocks may be a single atom or a group of atoms. These 

identical building blocks are called motif. Crystals which have regularity and periodicity in the 

arrangement of atoms or molecules only in one dimension or two dimensions are known as 

semi or partially crystalline solids. Metals, in general, are crystalline in nature. On melting, 

these lose their crystalline structure but their electrical properties remain almost the same. In a 

crystal, all the bonds have the same bond strength. The crystalline solids both organic and 

inorganic, therefore, melt (and solidify) at a given fixed temperature. Diamond, rock salt, sugar 

etc. are some examples of crystalline solids. 

The amorphous solids are those in which there is no regularity and periodicity in the 

arrangement of atoms. All the bonds in an amorphous solid are not equally strong. When it is 

heated, the weak bonds are first to be broken. Thus, on heating, an amorphous solid gradually 

softens into a liquid. They, therefore, have no fixed melting point and freezing point. On 

cooling, the molten state of the amorphous solid gradually hardens into a solid at varying 
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temperatures on account of its high viscosity or the fast rate of cooling. The disordered form, 

thus, retained even in the solid state of an amorphous body. Glass is the best example of an 

amorphous solid. 

Thus, the presence of long range order is the defining property of a crystal while amorphous 

solids do exhibit short range order in their structures. 

1.4 SINGLE CRYSTAL AND POLY CRYSTAL 

In the single crystal, the periodicity extends throughout the material while in poly crystal (or 

polycrystalline crystal), the periodicity does not extend throughout the crystal but is interrupted 

at grain boundaries. The grains or crystallites are smaller than the size of the pattern unit which 

forms the periodicity. The size of the grains in which the structure is periodic may vary from 

macroscopic dimensions to several Angstroms. When the size of the grains or crystallites 

becomes comparable with the size of the pattern unit, the periodicity of structure is completely 

disturbed; it is no longer a crystal, single or polycrystalline but becomes an amorphous 

substance. 

1.5 ELEMENTARY IDEAS ABOUT CRYSTAL STRUCTURE 

Let us discuss some important terms in this section which play very important role in the 

formation of a crystal. 

1.5.1 Periodic Array of Atoms and Basis 

As you know that a crystal is a regularly repeated structure on an atomic scale i.e. a three-

dimensional periodic array of atoms. An ideal crystal is constructed by the infinite repetition 

in space of identical structural units. In other words, you can say that there exists some smallest 

grouping that repeats itself exactly in all directions in the crystal so that the environment at one 

location is identical in all respects to the environment at a corresponding location somewhere 

else. In the simplest crystals such as silver, copper, aluminium etc., the structural unit is a single 

atom. The structure of all crystals is described in terms of a lattice with a group of atoms 

attached to each lattice point. The group is termed as the basis. The basis is repeated in space 

to form the crystal structure. 

1.5.2 The Crystal Lattice and Crystal Structure 

A crystal is constructed by the infinite repetition in space or identical structural units (atoms, 

molecules or ions). One can replace each unit by a geometrical point. The result is a pattern of 

points having the same geometrical properties as the crystal. This geometrical pattern is the 

crystal lattice or simply the lattice. The points are called lattice points. Thus, the regular pattern 

of points which describes the three-dimensional arrangement of particles, atoms, molecules or 

ions) in a crystal structure is called the crystal lattice or space lattice. 

A crystal structure is formed by the addition of a basis to every lattice point i.e. 

Lattice + Basis = Crystal Structure. 
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The crystal structure is real whereas the lattice is imaginary. The simple logical relation 

between lattice, basis and crystal structure can be expressed as in figure (1). The crystal 

structure is formed by the addition of the basis (b) to every lattice point of the lattice (a). By 

looking at (c), you can recognize the basis and then you can abstract the space lattice. 

 

 

 

(a) space lattice 

 

 

 

(b) basis containing two different ions 

 

 

 

 

 

(c) crystal structure 

 

Figure 1.1 : Crystal structure 

1.5.3 Fundamental Translation Vectors 

You have seen that a crystal is composed of atoms arranged at the lattice points. An ideal crystal 

is composed of atoms arranged on a lattice defined by three fundamental translation vectors �⃗�, 

�⃗⃗�, 𝑐 such that the atomic arrangement looks the same in every respect when viewed from any 

point 𝑟 as when viewed from the point 

𝑟′⃗⃗⃗⃗  = 𝑟 + u �⃗� + v �⃗⃗� + w 𝑐        (1) 

where u, v, w are arbitrary integers. The set of points 𝑟′⃗⃗⃗⃗   specified by equation (1) for all values 

of the integers u, v, w defines a lattice. The lattice and the translation vectors  �⃗�, �⃗⃗�, 𝑐 are said 

to be primitive if any two points 𝑟,  𝑟′⃗⃗⃗⃗   from which the atomic arrangement looks the same 

always satisfy equation (1) with a suitable choice of the integers u, v, w. The definition of the 

primitive translation vectors shows that there is no cell of smaller volume that could serve as a 

building block for the crystal structure. 
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Often,the primitive translation vectors are used to define the crystal axes �⃗�, �⃗⃗�, 𝑐. The crystal 

axes �⃗�, �⃗⃗�, 𝑐 form three adjacent edges of a parallelepiped. If there are lattice points only at the 

corners of the parallelepiped, then it is a primitive parallelepiped. 

Lattice translation operator T is defined in terms of three fundamental translation vectors �⃗�, �⃗⃗�, 

𝑐  as follows- 

�⃗⃗�= u �⃗� + v �⃗⃗� + w 𝑐         (2) 

A vector �⃗⃗�  connects any two lattice points. 

You will see that the following figure 2gives the diagram of a two-dimensional lattice with 

lattice vector �⃗� and �⃗⃗�. The atomic arrangement in the crystal looks exactly the same to an 

observer at 𝑟′⃗⃗⃗⃗ as to an observer at 𝑟, provided that the vector �⃗⃗�which connects 𝑟′⃗⃗⃗⃗  and 𝑟 may be 

expressed as an integral multiple of the vectors �⃗� and  �⃗⃗�. 

 

 �⃗� 

 �⃗⃗� 

 𝑟 �⃗⃗� 

 

 

 𝑟′⃗⃗⃗⃗  

 

 

 

                                        Figure 1.2 : Fundamental translational vector 

 

1.5.4 Unit Cell 

The smallest portion of a space lattice which can generate the complete crystal by repeating its 

own dimensions in various directions is called unit cell. 

A unit cell is defined by the length of its edges and by the angles between them. In the figure 

3, OA = a, OB = b and OC = c are the dimensions of the unit cell. The angles between a, b ,b, 
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c and c, a are represented by γ, α and β respectively. They are called interfacial angles. The 

vectors �⃗�, �⃗⃗�, 𝑐 define the axes of the crystal. 

 

 Z 

                                                      C 

 

 

 B Y 

                                            A 

 

 X 

 Figure 1.3: Unit cell  

It is, however, traditional to choose a unit cell with minimum volume. A unit cell is thus a 

minimum volume cell which when repeated systematically in all the three directions gives the 

whole arrangement of atoms in the crystal. 

1.6 PRIMITIVE LATTICE CELL   

A unit cell is called a primitive cell or a simple cell, if it has atoms only at its corners. Thus, in 

figure 4, the unit cells ABCD is primitive cell but the unit cell PQRS is not a primitive cell. 

 

                   A                       B 

�⃗⃗� 

 D       �⃗� C  

                Q  

                                          P R 

   

 S 

                                                    Figure 1.4: Primitive lattice cell 

 

c 

β       α 

aγbb 
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Each atom at a corner of a unit cell is shared equally by eight adjoining cells and hence any 

atom at a corner contributes only 1/8 atom to each adjoining cell. Thus, the number of atoms 

per unit cell is 8 × 1/8 = 1. In this way, you may define a primitive cell as one which has only 

one lattice point associated with it. You, therefore, conclude that all primitive cells are unit 

cells but all unit cells are not primitive cells. 

The volume of a cell defined by �⃗�, �⃗⃗�, 𝑐 is- 

                                                  Vc = |�⃗�. (�⃗⃗� × 𝑐)|(3) 

The basis associated with a lattice point of a primitive cell is called a primitive basis. 

1.7 WIGNER-SEITZ CELL 

Wigner and Seitz have developed a method for getting information about the behavior of 

valence electrons with ions in a lattice. This is another way of choosing a cell of equal volume 

Vc. Their method of constructing a primitive cell in a lattice is given below- 

(i) Draw lines to connect a given lattice point to all nearby lattice points. 

(ii) Bisect these lines by planes perpendicular to these lines. 

The smallest volume enclosed in this way is the Wigner- Seitz primitive cell and is shown in 

figure 5. All space may be filled by these cells. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        Figure 1.5: Wigner-seitz cell 
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1.8 ALLOWED ROTATIONS 

Crystal lattices can be carried or mapped into themselves by the lattice translations �⃗⃗� and by 

various other symmetry operations. A typical symmetry operation is that of rotation about an 

axis that passes through a lattice point. Lattices can be found such that one-, two-, three-, four- 

and six- fold rotation axes carry the lattice into itself, corresponding to rotations by 2π, 2π/2, 

2π/3, 2π/4 and 2π/6 radians and by integral multiples of these rotations. The rotation axes are 

denoted by the symbols 1, 2, 3, 4 and 6. You cannot find a lattice that goes into itself under 

other rotations such as by 2π/7 or 2π/5 radians. One should not expect the lattice to have a five-

fold rotation axis. If we try to construct a periodic lattice having five-fold symmetry, the 

pentagons do not fit together to fill all space, showing that we cannot combine five-fold point 

symmetry with the required translational periodicity. 

1.9 BRAVAIS LATTICES       

There are various ways of positioning structure less points in space such that all points have 

identical surroundings. These are called Bravais lattices. There are five Bravais lattices in two 

dimensions and fourteen in three dimensions. For a cubic system, you have the following three 

types of Bravais lattices- 

1.9.1 Primitive or Simple Cubic (SC) 

There is one lattice point at each of the eight corners of the unit cell.This type of cell is called 

primitive or simple cubic cell (P) of the system (Figure 6). 

 

 

 

 c  

 

900             900          a 

                                        b 900 

 

 

                                Figure 1.6: Primitive or Simple cubic 
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1.9.2 Body Centred Cubic (BCC) 

There is one lattice point at each of the eight corners and one lattice point is at the centre of the 

cubic cell. This type of cell is called body centred cubic (BCC) cell (Figure 7). 

 

 

 

   

 

 

  

 

 

                                          Figure 1.7: Body Centred Cubic 

1.9.3 Face Centred Cubic (FCC)    

There is one lattice point at each of the eight corners and one lattice point is at the centres of 

each of the six faces of the cubic cell. Such a cell is called face centred cubic (FCC) cell (Figure 

8). 

 

 

   

 

 

  

 

 

                          Figure 1.8: Face Centred Cubic 
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1.10 CRYSTAL-LATTICE SYSTEMS: COMMON CRYSTAL 

STRUCTURES 

Depending upon the shape of the unit cells, all crystals are classified into seven systems. This 

classification can be conveniently expressed in terms of the relations between the axes of the 

unit cells. The axes are designated as a, b, c and the angles between them as α, β, γ (Figure 9). 

 

 

 

 α 

                                                                                  γ 

β 

 

 

                      Figure1.9: Axes and angle representation in Common crystal structures 

 

Seven systems of crystals are given in the following table- 

S. No. Name of the 

crystal system 

Relation of lengths 

of axes of unit cell 

Relation of angle 

between axes 

Number of 

lattice types 

1. Cubic a = b= c α = β = γ = 900 3 (P, I, F) 

2. Trigonal a = b= c α = β = γ ≠ 900, ˂ 1200 1 (P) 

3. Hexagonal a = b ≠ c α = β = 900, γ = 1200 1 (P) 

4. Tetragonal a = b ≠ c α = β = γ = 900 2(P, I) 

5. Orthorhombic a ≠ b ≠ c α = β = γ = 900 4 (P, C, I, F) 

6. Monoclinic a ≠ b ≠ c α = γ = 900 ≠ β 2 (P,C) 

7. Triclinic a ≠ b ≠ c α ≠ β ≠ γ 1(P) 

 

Here P means Primitive (simple), C means Base Centred, I means Body Centred, F means Face 

Centred 

From the table, it is obvious that the cubic system is the simplest while the triclinic crystals are 

least symmetrical. Cubic crystals are the commonest and more than half of the naturally found 

crystals belong to this system. Obviously, the seven crystals system is divided into fourteen 

Bravais lattices. 
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(i) Cubic 

In this case, all the sides are equal and all the angles are equal to 900 i.e. a = b= c and α = β = 

γ = 900. The cubic crystal systems are of three types- simple (P), body centred (I) and face 

centred(F). 

(ii) Trigonal 

In this case, all the sides are equal and all the angles are equal and less than 1200 but not equal 

to 900 i.e. a = b= c and α = β = γ ≠ 900, ˂ 1200. If all the angles become equal to 900, it becomes 

a cubic lattice. This crystal system is of one type- primitive or simple (P). 

(iii) Hexagonal 

In this case, two sides are equal and inclined at 1200 and the third side is perpendicular to both 

of them. The repetitive intervals along the axes which are 1200 apart are the same whereas the 

interval along the third axis is different i.e. a = b ≠ c and α = β = 900, γ =1200. This crystal 

system is of one type- primitive or simple (P). 

(iv) Tetragonal 

In this type of lattice, two sides are equal and all the axes are mutually perpendicular i.e. a = b 

≠ c and α = β = γ = 900. It is of two types- simple or primitive (P) and body centred (I) 

(v) Orthorhombic 

In this type of lattice, all the sides are unequal but all the angles are equal each equal to 900 i.e. 

a ≠ b ≠ c and α = β = γ = 900. It is of four types- simple or primitive (P), base centred (C), body 

centred (I) and face centred (F). 

(vi) Monoclinic 

In this case, all the three translation vectors of this lattice are unequal with one axis 

perpendicular to the other two i.e. a ≠ b ≠ c and α = γ = 900 ≠ β. It is of two types- simple (P) 

and base centred (C). 

(vii) Triclinic 

It is the most general type of lattice in which a ≠ b ≠ c and α ≠ β ≠ γ. It is the simple lattice (P). 

Example 1:What are the seven crystal lattice systems? 

Solution: There are seven crystal lattice systems- 

(i) Cubic (ii) Trigonal (iii) Hexagonal (iv) Tetragonal (v) Orthorhombic (vi) Monoclinic (vii) 

Triclinic 

Example 2:What are the cubical crystal systems? 
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Solution: In a cubical crystal system, the unit cell is a cube. All cubical systems have one atom 

each in all the corners of the cube. Each atom has 1/8th of its volume contained within the cube. 

In addition to this arrangement, each cubical system has its own extra atomic configuration. In 

general, there are three cubical crystal systems- 

(i) Simple cubical lattice   (ii) Body centred cubical lattice   (iii) Face centred cubical lattice 

Example 3: Fill in the blank- 

The ............cell is the smallest unit cell that can be repeated to form the lattice. 

Solution: primitive 

Self-Assessment Question (SAQ) 1:Fill in the blank- 

The seven crystal systems are................ 

Self-Assessment Question (SAQ) 2:Fill in the blank- 

A BCC system has............atoms in its unit cell. 

Self-Assessment Question (SAQ) 3:Fill in the blank- 

An FCC system has............. atoms in its unit cell. 

1.11 SUMMARY  

In this unit, you have studied about crystalline, amorphous, single crystal, poly crystal etc.  You 

have learnt that a solid material with an ordered periodic pattern and a regular arrangement is 

said to be crystalline whereas a solid material without such a structure is known as non-

crystalline or amorphous.  The unit has also covered crystal lattice and crystal structure, 

fundamental translation vectors, unit cell, primitive lattice cell, Wigner-Seitz cell. You have 

learnt that a crystal structure is formed by the addition of a basis to every lattice point.  You 

have studied about Bravais lattices and learnt that there are five Bravais lattices in two 

dimensions and fourteen in three dimensions. For a cubic system, there are three types of 

Bravais lattices- SC, BCC and FCC. In the present unit, you have studied about seven systems 

of crystals.We have included examples and self-assessment questions (SAQs) to check your 

progress. 

1.12 GLOSSARY 

Array- arrangement. 

Periodicity- the process of occurring something at equal intervals. 

Disordered- tangled, lawless. 

Macroscopic- visible to naked eye without use of any instrument. 
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1.15 TERMINAL QUESTIONS 

1. Write notes on- 

     (i) crystalline    (ii) unit cell  

2. What do you mean by primitive basis? 

3. What is meant by basis? 

4. What are crystalline and amorphous solids? Explain. 

5. Which rotations are allowed in a lattice? 

6. What are the different types of Bravais lattices for a cubic system? Give their names. 

7. How does a crystal differ from a lattice? 

8. What is the maximum number of possible Bravais lattices? 

9. What is the difference between single crystal and poly crystal? 

10. Explain the following- 

 (i) crystal lattice          (ii) seven crystal system 

11. What is primitive lattice cell? How are Wigner-Seitz cells formed? Discuss Bravais lattices. 

Give different types of crystal structure. 

12. Fill in the blanks- 

     (i) A .............crystal has one atom each on all its corners. 
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     (ii) A ...........crystal has one atom each on all its corners and an additional atom at the centre 

of the cube. 

13. Choose the correct option- 

      (i) Long range order is found in- 

     (a) amorphous       (b) crystalline    (iii) in both   (iv) none of these 

     (ii) Which relation is correct- 

(a) Lattice + crystal structure = basis    (b) lattice + basis = crystal structure 

(c) lattice – basis = crystal structure      (d) basis + crystal structure = lattice 

(iii) In three dimensions, the number of Bravais lattice is- 

(a) 7       (b)   5      (c)  10    (d) 14 

1.16 ANSWERS 

Self-Assessment Questions (SAQs): 

1.cubic, trigonal, hexagonal, tetragonal, orthorhombic, monoclinic, triclinic 

2. two 

3. four  

Terminal Questions: 

12. (i) SCC            (ii) BCC 

13.  (i) (b) crystalline 

     (ii) (b) lattice + basis = crystal structure 

(iii) (d) 14 
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2.10 Symmetry Operation 

      2.10.1 Translational Symmetry 

2.11 Liquid Crystals 

2.12 Summary  

2.13 Glossary 

2.14 References   

2.15 Suggested Readings 

2.16 Terminal Questions 

2.17 Answers 

 

 

 

 

 

 



16 
 

2.1 INTRODUCTION 

In the previous unit, you have studied about crystalline, amorphous, single crystal, poly crystal, 

crystal structure, primitive lattice cell, Wigner-Seitz cell etc. You have also learnt about 

Bravais lattices, common crystal structures etc. in the previous unit. In this unit, you will study 

coordination number, Miller indices, spacing of planes in crystal lattices, translational 

symmetry, liquid crystal etc. You will establish the expression for interplanar spacing.You will 

also calculate coordination numbers in some cases. You will also learn about lattice constant 

of a space lattice, density of lattice points in a lattice plane. 

2.2 OBJECTIVES 

After studying this unit, you should be able to- 

 understand crystal symmetry, Miller indices, liquid crystal etc. 

 calculate coordination number or ligancy. 

 to compute interplanar spacing. 

 find Miller indices. 

 distinguish between liquid crystal and glassy state. 

 solve problems based on atomic radius and packing fraction. 

2.3 COORDINATION NUMBER OR LEGANCY 

You know that the cations and anions are the alternate lattice points in an ionic solid. The 

number of anions surrounding a cation is called the coordination number (CN) or the ligancy. 

The coordination number may also be defined as the number of nearest atoms which are 

directly surrounding a given atom is called the coordination number or simply the number of 

nearest neighbours to a given atom in a crystal lattice. 

You know that usually the cation is smaller than anion in size. Each ion tends to surround itself 

with as many ions of opposite sign as possible so as to reduce the potential energy. The ligancy 

is a function of the size of an ion. You can work out from the space filling geometry when the 

following conditions are satisfied- 

(a) Anion and cation are treated as hard spheres which touch each other. 

(b) Anions are close enough to be in contact with one another. 

(c) Maximum anions surround a central cation to reduce the electrostatic energy. 

From the geometry, you can see that ligancies of 5, 7, 9, 10 and 11 are not permissible. The 

ratio of cation radius (rc) to the anion radius (ra) is known as radius ratio. When the anions just 

touch each other as well as the central cation, it is called the critical radius ratio. 

Ligancy 3:  

For ligancy 3, OQ = ra + rc 

 



17 
 

 

 S 

 

 

 

 

 

 

 

                                          Figure 2.1: Pictorial representation of Ligancy 3 

 

<OQS = 300 

In right angled triangle OSQ, cos 300 = QS/QO = ra/(ra + rc ) 

or                                                      √3 / 2 = ra/(ra + rc ) 

or                                                        rc/ra = 0.155 

Ligancy4 : 

For ligancy 4, anions touch each other along face diagonal. Therefore, you have- 

Face diagonal / Body diagonal = √2 / √3 

                                                  = 2 ra / 2 (ra + rc)=  ra /  (ra + rc) 

or                                             rc / ra = 0.225 

Ligancy 6:  

For ligancy6,  PR/PQ = √2 / 1 = 2 (ra + rc) / 2 ra 

                                          Or     rc / ra = 0.414 
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                                    Figure 2.2: Pictorial representation of Ligancy 4 

 

Ligancy 8 : 

For ligancy8, eight anions at the corners of cube touch each other along the edge of the cube 

and cation touches two anions along body diagonal. 

Therefore, √3 / 1 = 2 (ra + rc) / 2 ra 

or                                                        rc / ra = 0.732 

(a) Simple Cubic Structure (SC) 

In this type of structure, there are atoms at each corner of unit cell. Any corner atom has four 

neighbours in the same plane plus two nearest neighbours are exactly above and other exactly 

below of that corner atom. 

Therefore, coordination number (CN) = 4 + 2 = 6 

(ii) Hexagonal Close Packed (HCP) 

It contains two atoms per lattice point. In HCP structure, each sphere in a particular layer fits 

into the hollow formed by three spheres in the layer below it, hence each sphere is in contact 

with three spheres in the layers below and with three in the layers above it as well. Adding 

these six, it touches in its own layer, each sphere in close packed structure has 12 nearest 

neighbours hence coordination number is 12. 
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(iii) Face Centred Cubic (FCC) 

In this type of structure, for any corner atom of the unit cell the nearest are the face centred 

atoms of the surrounding unit cells in its own plane, 4 face centred atoms below this and 4 face 

centred atoms above this plane. 

Therefore, coordination number (CN) = 4 + 4+ 4 = 12 

(iv) Body Centred Cubic (BCC)  

In this structure for any corner atoms of the unit cell, the nearest atoms are the body centred 

atoms and corresponding to each corner atom of the unit cell there are 8 unit cells in neighbour 

which are having 8 body centred atoms. 

Therefore, coordination number (CN) = 8 

2.4 ATOMIC RADIUS 

The atomic radius is defined as the half the distance between nearest neighbours in a crystal of 

a pure element. The atomic radius is calculated below for different type of structures- 

(a)  Simple Cubic (SC) 

In this structure, there are 8 atoms at the corners and each of the 8 atoms is a member of 8 cells 

which enclose every corner. In such a lattice, a = 2 r and the radius r is therefore, r = a/2 

(b) Hexagonal Close Packed (HCP) 

In this structure, each atom touches 6 atoms at distance a that lie in the plane through the atom 

under consideration and 6 others at a distance [
𝑎2

3
+

𝑐2

4
]

1

2
, three lying above and three below the 

base plane. But for ideal case, you have- 

a2 = a2/3 + c2 /4 and r = a/2 

(c) Face Centred Cubic (FCC) 

For face centred cubic structure such as NaCl, the face diagonal is four times the radius of the 

atom. The lattice constant ‘a’ is related to the radius of the atom as- 

                                                       (AC)2 = (AB)2+ (BC)2 

                                                       (4r)2 = a2 + a2 

or                                                16 r2 = 2a2 

or                                                  a = 4 r/√2 
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                                                Figure 2.3: Face Centred Cubic 

(d) Body Centred Cubic 

In this structure, which has one atom at the centre and 8 at corners, the body diagonal is 4 times 

the radius of the atom. Therefore, 

 

   H                                                           G 
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                                                         4 r 
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 A                                                   B 
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                                             Figure 2.4: Body Centred Cubic  
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(ED)2 = (AD)2 + (AE)2 

                                                                  = (AD)2 + (AB)2 + (BE)2 

                                                      (4 r)2 = a2 + a2 + a2 

or                                                    16 r2 = 3 a2 

or                                                     a = 4 r/ √3 

2.5 PACKING FRACTION 

Packing fraction is defined as the ratio of the volume of the atoms per unit cell to the total 

volume occupied by the unit cell i.e. 

Packing Fraction (P.F.) = 
Ratio of the volume of the atoms per unit cell

Total volume occupied by the unit cell
 

 Volume of the atom is the ratio of the volume per unit cell to the volume of the unit cell. Now 

let us calculate the packing fraction for all the structures. 

(a)  Simple Cubic (SC) 

You know, for SC atoms per unit cell = 1 

Volume of one atom = 4/3 π r3 

Atomic radius r = a/2, where a is the edge of the cube. 

Therefore, packing fraction (P.F.) = 
1×

4

3
𝜋(

𝑎

2
)

3

𝑎3  = π/6 = 0.52 = 52% 

(b) Hexagonal Close Packed (HCP) 

Atoms per unit cell = 2 

Volume of one atom = 4/3 π r3 

Atomic radius r = a/2 

Therefore, packing fraction (P.F.) = 
2×

4

3
𝜋(

𝑎

2
)

3

1

2
√3𝑎2𝑐

 = 0.74 = 74%   ( with c/a = √8/3 ) 

(c) Face Centred Cubic (FCC) 

Atoms per unit cell = 4 

Volume of 4 atoms = 4 × (4/3 π r3 ) 
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Radius of atoms r = 
√2 

4
𝑎 

Therefore, packing fraction (P.F.) = 
4×

4

3
𝜋(√2

𝑎

4
)

3

𝑎3  = π√2  /6 = 0.74 = 74% 

(d) Body Centred Cubic 

In this structure, atoms per unit cell = 2 

Volume of 2 atoms = 2 × (4/3 π r3) 

Radius of atom r = 
√3 

4
𝑎 

Therefore, packing fraction (P.F.) = 
2×

4

3
𝜋(√3

𝑎

4
)

3

𝑎3
 = π√3 /8 = 0.68= 68% 

2.6 LATTICE CONSTANT OF A SPACE LATTICE 

You know that the smallest unit cell is Wigner-Seitz primitive cell. Let the lattice constant for 

cubic crystals be ‘a’. Obviously, the each side of the cube will be ‘a’. 

The volume of unit cell = a3 

If ρ be the density of the crystal then the mass of each unit cell = a3 ρ. 

If M be the molecular weight and N the Avogadro number, then the mass of each molecule = 

M /N 

Let ‘n’ be the number of molecules ( lattice points) per unit cell, then the mass in each unit cell 

= 
𝑛𝑀

𝑁
 

Therefore, a3 ρ = 
𝑛𝑀

𝑁
 

or        a = (
𝑛𝑀

𝑁𝜌
)

1

3
                                                                                                              .....(1) 

The above expression gives the lattice constant of a space lattice. 

Example 1:NaCl crystals have fcc structure. The density of NaCl is 2.18 gm/cm3. Determine 

the distance between two adjacent atoms. 

Solution: Given ρ = 2.18 gm/cm3, M = 23 + 35.5 = 58.5, n = 4 

Using a = (
𝑛𝑀

𝑁𝜌
)

1

3
  = (

4×58.5

2.18×6.02×1023)

1

3
 = 5.628 × 10-8 cm 

The distance between two adjacent atoms i.e. interplanar spacing d = a/2 = 5.628 × 10-8/2 

                                                                                                  = 2.814 × 10-8 cm 
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Self Assessment Question (SAQ) 1:Calculate the density of copper crystal. Copper has fcc 

structure. Atomic weight of Cu = 63.54, Lattice constant of Cu = 3.61 A0 

2.7 DENSITY OF LATTICE POINTS IN A LATTICE PLANE 

Let us consider N successive parallel lattice planes in a lattice having spacing ‘d’ and area of 

cross-section ‘A’. 

The volume of the part of lattice under consideration = NAd 

Let ‘V’ be the volume of each unit cell.  

The number of unit cells in this part of the lattice = 
𝑁𝐴𝑑

𝑉
 

Let ‘n’ be the number of lattice points per unit cell, then the total number of lattice points in 

this part of lattice = 
𝑁𝐴𝑑

𝑉
 𝑛 

If ρ is the density of lattice points in these planes i.e. the number of lattice points per unit area 

then the total number of lattice in the same part of lattice = AρN 

Therefore,          A ρ N = 
𝑁𝐴𝑑

𝑉
 𝑛 

or                     ρ = 
𝑛𝑑

𝑉
                                                                                                    .....(2) 

In the case of cubic, tetragonal and orthorhombic lattices, V = a b c 

Therefore,       ρ = 
𝑛𝑑

𝑎𝑏𝑐
                                                                                                     .....(3) 

For primitive lattice in each of these systems, there is one lattice point per unit cell, i.e. n = 1. 

Therefore,   ρ = 
𝑑

𝑎𝑏𝑐
                                                                                                        .....(4) 

2.8 MILLER INDICES 

In crystal structure analysis, it is very important to describe certain direction or position and 

orientation of a crystal plane. The direction is specified by coordinates of a first point through 

which a line is passing such that coordinates are whole numbers. Usually, square brackets are 

used to describe the directions e.g. Y-axis [0  1  0], Z-axis [0  0  1], negative X-axis [1  0  0] 

etc. The position and orientation of a plane is determined by any three points which are not 

collinear. Miller first used this index system to describe the crystal faces. Now, these are known 

as Miller indices. In general, a plane is inclined to all the crystallographic axes. The point of 

intersection of a plane on the axis is determined in terms of the lattice constants. 

The Miller indices are a set of integers in the ratio of the reciprocals of the fractional intercepts 

which the plane makes with the three axes. Usually, these are specified as (h k l). The plane 

has fractional intercepts of
1

ℎ
 , 

1

𝑘
 and 

1

𝑙
 with the axes and intercepts are  

𝑎

ℎ
 , 

𝑏

𝑘
 and 

𝑐

𝑙
. 
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Following the simple procedure given below, you can find the Miller indices of a plane- 

(i) Determine the coordinates of the intercepts made by the plane along the three 

crystallographic axes X, Y and Z. 

 

                            X                   Y                Z 

                           3a                  4b               2c 

                           pa                  qb                rc 

with p = 3, q= 4 and r = 2 

 

 

 Z 

 

 

 

 

 

                                                             2c 

 

                                                             c 

 

O     b        2b    3b      4b Y 

                                                   a 

                                              2a 

                                       3a 

 

 

X 

 

 

                      Figure 2.5: Representation of Miller Indices 

 

(ii) Express the intercepts as multiples of the unit cell dimensions or lattice parameters 

along axes i.e. 

3𝑎

𝑎

4𝑏

𝑏

2𝑐

𝑐
 

                                                3                4                2 

(iii) Obtain the reciprocals of these numbers 

 

1

3

1  

4

1

2
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(iv) Reduce these reciprocals to the smallest set of integral numbers and enclose them 

in bracket 

 

                                12×
1

3
             12×

1

4
             12×

1

2
 

( 4                       3                  6) 

Or                                           (4    3    6) 

Thus, (4  3  6) is the Miller indices of this hypothetical plane.    

In general, it is represented by (h   k   l) 

If the intercept is on negative direction, then put the sign of bar on the corresponding indices 

e.g. if the plane cuts an intercept on negative X-axis, then Miller indices are (4̅  3  6). If a plane 

is parallel to a given axis, its intercept on that axis is infinite. 

Characteristics of the Miller indices 

Following are the important characteristics of the Miller indices- 

(i) The Miller indices denote a single plane or a set of parallel planes. 

(ii) If the Miller indices of two planes have the same ratio, then the planes are parallel 

to each other. Thus, the planes (2  2  2) and (3  3  3) are parallel planes. 

(iii) If (h  k  l) are the Miller indices of a plane, then the plane cuts the X-, Y- and Z-

axes into h, k and l equal segments respectively. 

Example 2:Obtain the Miller indices of a plane with intercept at a, b/3, 3c in a simple cubic 

unit cell. 

Solution: Step I: Determine the coordinates of the intercepts made by the plane along the three 

crystallographic axes X, Y and Z- axes 

                                                       X         Y         Z 

                                                       a           
𝑏

3
        3c 

Step II:  Let us express the intercepts as the multiples of the unit cell dimensions 

𝑎

𝑎

𝑏
3
𝑏

3𝑐

𝑐
 

                                                      1          
1

3
         3 

Step III: Let us get the reciprocals of these numbers 

1

1

1

1
3

1

3
 

or                                                  1         3        
1

3
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Step IV: Let us reduce the reciprocals to the smallest set of integral numbers and enclose them 

in bracket 

                                                      1×3               3×3          
1

3
× 3 

                                                        3                   9                1 

Therefore, the Miller indices are (3  6  1) 

Example 3:Obtain the Miller indices of the lattice plane shown in the following figure- 

 Z 

 

 

 Miller plane (1 0 0) 

                                                   ( X 

 

 Y 

 

Solution: Obviously, you observe that the plane cuts the X-axis at 1. There are no intercepts on 

the Y- and Z-axes as the plane is parallel to the Y-Z plane. Therefore, X-intercept = 1, Y-

intercept = ∞ and Z-intercept = ∞. Now let us follow the following steps- 

Here, the coordinates of the intercepts are already as the multiples of the unit cell dimensions. 

                                                           1       ∞       ∞       

Let us get the reciprocals of these numbers- 

1

1

1

∞

1

∞
 

                                                       1         0        0 

Therefore, the Miller indices are:  (1 0 0) 

Self Assessment Question (SAQ) 2:In an orthorhombic crystal a lattice plane cuts intercepts 

of 3a, - 2b and 3c/2 along three axes. Deduce the Miller indices of the plane where a, b, c are 

primitive vectors of the unit cell. 

Self Assessment Question (SAQ) 3:Find the Miller indices of a plane that makes an intercept 

of 3a, 2b and c along the three crystallographic axes where a, b, c being the primitive vectors 

of the lattice. 

 

 

(000)  
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2.9 SPACING OF PLANES IN CRYSTAL LATTICES 

Let us consider O as origin and OX, OY and OZ as three rectangular axes. Let a reference plane 

passes through O and consider a set of parallel planes defined by Miller indices (h k l). Besides 

reference plane through O, if next plane passes through A, B and C then the respective 

intercepts are a/h, b/k and c/l as shown in figure 7. If ON, as shown, is the normal between this 

plane and reference plane, then ON =d is the inter-planar spacing.  

Let the normal ON makes angles α, β and γ with crystal axes such that < NOX = α, <NOY= β 

and <NOZ = γ. 

 

 Z 

 

 C 

 c/l 

 

 d N 

                                                          O  b/k Y 

 a/h B 

 

 A 

 X 

                                          Figure 2.6: Spacing of planes in crystal lattices 

By geometry, 

                                             d = a cosα/h = b cosβ/k = c cosγ/l 

or      cosα = 
𝑑

(
𝑎

ℎ
)
, cosβ = 

𝑑

(
𝑏

𝑘
)
, cosγ = 

𝑑

(
𝑐

𝑙
)
 

But, you know that                  cos2α + cos2β + cos2γ = 1                                    .....( 5) 

Putting for cosα, cosβ and cosγ in the above relation, you get- 

                                                          [
𝑑

(
𝑎

ℎ
)
]2 + [

𝑑

(
𝑏

𝑘
)
]2 + [

𝑑

(
𝑐

𝑙
)
]2 = 1 
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or                                              d2[
ℎ2

𝑎2
 +  

𝑘2

𝑏2
+

𝑙2

𝑐2
] = 1 

or                                      d = 
1

[(
ℎ

𝑎
)

2
+(

𝑘

𝑏
)

2
+(

𝑙

𝑐
)

2
]

1
2

                                                    .....(6) 

Spacing of planes (or inter-planar spacing) d is also written as dhkl. 

The above equation is applicable to primitive lattices and for cubic, orthorhombic and 

tetragonal systems only where the axes are mutually perpendicular (α = β = γ = 900). In the 

case of cubic system, a = b = c, then relation (6) becomes- 

                                                    d = 
𝑎

√ℎ2+𝑘2+𝑙2
                                                    .....(7) 

Obviously, planes with low index numbers have wide inter-planar spacing compared with those 

with higher index numbers. 

For a tetragonal crystal a =b, therefore, 

                                                 d = 
1

[(
ℎ

𝑎
)

2
+(

𝑘

𝑎
)

2
+(

𝑙

𝑐
)

2
]

1
2

 = 
1

[
ℎ2+𝑘2

𝑎2 +
𝑙2

𝑐2]

1
2

                              .....(8) 

The spacing between (1 0 0), (1 1 0) and (1 1 1) planes in the case of a simple cubic lattice 

from equation (7) are given by- 

           d100= a, d110= 
𝑎

√2
, d111 = 

𝑎

√3
 

Obviously, the ratio of spacing of the possible lattice planes in a simple cubic lattice are given 

by- 

d100 : d110 : d111 = a : 
𝑎

√2
 :

𝑎

√3
 = 1 : 

1

√2
 :

1

√3
 

Similarly, for bcc lattice, d100 = 
𝑎

2
,   d110= 

𝑎

√2
, d111 = 

𝑎

2√3
 

 

For fcc lattice, d100 = 
𝑎

2
,   d110= 

𝑎

2√2
, d111 = 

𝑎

√3
 

2.10 SYMMETRY OPERATION 

Let us discuss the symmetry operations for a two-dimensional crystal. If a body attains its initial 

configuration after undergoing a particular operation, it is said to possess a symmetry 

corresponding to that operation. Let us consider an example. You may consider rotating a book 

by 3600 about an axis passing through its centre and perpendicular to its plane. After this 

rotation, the book will assume its initial position. For an observer who is not aware of the 
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rotation of the book, it will appear as if the book has not been subjected to any operation. Thus, 

a symmetry operation may be defined as one which leaves the crystal environment invariant. 

The symmetry operation performed about a point or a line constitute point group elements and 

the symmetry operations performed by a combination of rotation and translation constitute the 

space group elements. The symmetry operations include the following- 

(i) translation operation which applies only to lattice 

(ii) point operation which includes- rotation operation about an axis, reflection in a 

plane and inversion about a point. These apply to all objects. 

(iii) Compound operation which includes translation operation and point operation. 

You should remember that in two-dimension, an axis of rotation is a point and a plane of 

reflection is a line. 

2.10.1 Translational Symmetry 

You have seen that a crystal is composed of atoms arranged at the lattice points. An ideal crystal 

is composed of atoms arranged on a lattice defined by three fundamental translation vectors �⃗�, 

�⃗⃗�, 𝑐 such that the atomic arrangement looks the same in every respect when viewed from any 

point 𝑟 as when viewed from the point 

𝑟′⃗⃗⃗⃗  = 𝑟 + u �⃗� + v �⃗⃗� + w 𝑐                                                                                             …..(9) 

where u, v, w are arbitrary integers. The set of points 𝑟′⃗⃗⃗⃗   specified by equation (9) for all values 

of the integers u, v, w defines a lattice. The lattice and the translation vectors  �⃗�, �⃗⃗�, 𝑐 are said 

to be primitive if any two points 𝑟,  𝑟′⃗⃗⃗⃗   from which the atomic arrangement looks the same 

always satisfy equation (9) with a suitable choice of the integers u, v, w. The definition of the 

primitive translation vectors shows that there is no cell of smaller volume that could serve as a 

building block for the crystal structure. 

 

Often, the primitive translation vectors are used to define the crystal axes  �⃗�, �⃗⃗�, 𝑐. The crystal 

axes �⃗�, �⃗⃗�, 𝑐 form three adjacent edges of a parallelepiped. If there are lattice points only at the 

corners of the parallelepiped, then it is a primitive parallelopiped. 

Lattice translation operator�⃗⃗� is defined in terms of three fundamental translation vectors �⃗�, �⃗⃗�, 

𝑐  as follows- 

�⃗⃗� = u �⃗� + v �⃗⃗� + w 𝑐                                                                                                …..(10) 

A vector  �⃗⃗�  connects any two lattice points. 

You will see that the following figure 8 gives the diagram of a two-dimensional lattice with 

lattice vector  �⃗� and  �⃗⃗�. The atomic arrangement in the crystal looks exactly the same to an 
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observer at  𝑟′⃗⃗⃗⃗  as to an observer at 𝑟, provided that the vector �⃗⃗� which connects  𝑟′⃗⃗⃗⃗  and 𝑟 may 

be expressed as an integral multiple of the vectors �⃗� and  �⃗⃗�. 

 

 �⃗� 

 �⃗⃗� 

 𝑟 �⃗⃗� 

 

 

 𝑟′⃗⃗⃗⃗  

 

 

 

                                         Figure 2.7: Translational Symmetry 

2.11 LIQUID CRYSTALS 

Some crystalline substances convert from solid to liquid phase during heating, not instantly but 

first passing into a thermodynamically stable transitional state in which the substances still 

retain the anisotropy in the properties such as dielectric, optical, magnetic and others, inherent 

in a crystal, although they simultaneously acquire the properties specific to liquids-fluidity, 

ability to form droplets etc. The substances exhibiting such an intermediate, mesomorphic, 

phase are known as liquid crystals. All liquid crystals are organic materials composed of rigid, 

moderately large rod-like molecules typically 1 to 3 mm in length and 0.3 to 1.0 mm across. 

At the end of molecules there are clusters of atoms exhibiting high polarizability. The ordered 

arrangement of molecules in the liquid crystalline state is provided by relatively weak Vander 

Waal’s force. Depending upon magnitude of these forces, three types of mesophase originate-

smectic,nematic and cholesteric. The most ordered smectic crystals have layered structure. 

Molecules align themselves in parallel layers gliding one relative to the other, thereby 

promoting fluidity (Figures 9, 10). 

 

 

 

 
       



31 
 

 

 

 

 

                                                  Figure 2.8: Liquid crystals 

 

 

 

 

 

 

                                                  Figure 2.9: Liquid crystals 

In a nematic mesophase, the molecules also have their axes parallel to each other but the 

location of their centres of gravity is as irregular as in conventional liquids (Figure 11). A 

cholesteric mesophase has its structure twisted about the helical axis lying perpendicular to the 

orientation of molecules (Figure 12). A cholesteric mesophase has its structure twisted about 

the helical axis lying perpendicular to the orientation of molecules (Figure 13). 

 

 

 

 

 

 

                                                           Figure 2.10: Nematic mesophase  

 

The interest in these crystals continuously grows because they are useful in various display 

applications. Liquid crystalline cells consume less power, are cheap and easy to manufacture 

in any size and shape and a variety of colours. But these cells also present some disadvantages, 
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namely, they operate in a limited temperature range, have comparatively large response times, 

short life etc. During last some years, many drawbacks of liquid crystals have 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       Figure 2.11: Twist in cholesteric mesophase 

been overcome and possibilities have been explored for the use of liquid crystals not only in 

displays but also in other systems. 

2.12 SUMMARY  

In this unit, you have studied about coordination number (or ligancy), atomic radius, packing 

fraction, lattice constant of a space lattice, density of lattice points in a lattice plane. In some 

cases, you have calculated coordination number, atomic radius and packing fraction. The 

number of anions surrounding a cation is called the coordination number (CN) or the ligancy. 

The coordination number may also be defined as the number of nearest atoms which are 

directly surrounding a given atom is called the coordination number or simply the number of 
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nearest neighbours to a given atom in a crystal lattice. You have defined the packingfraction 

as the ratio of the volume of the atoms per unit cell to the total volume occupied by the unit 

cell. In the unit, you have established the expressions for lattice constant of a space lattice and 

density of lattice points in a lattice plane. In the present unit, you have also learnt about Miller 

indices and its characteristics. You have also learnt the methods to find out Miller indices. You 

have learnt about spacing of planes in crystal lattices and derived the expression for this. You 

have learnt about symmetry operation for two-dimensional crystal and known that the 

symmetry operation performed about a point or a line constitute point group elements and the 

symmetry operations performed by a combination of rotation and translation constitute the 

space group elements. You have also studied about liquid crystals. We have included examples 

and self assessment questions (SAQs) to check your progress. 

2.13 GLOSSARY 

Lattice- web, network, pattern 

Ordered- well-organized 

Anisotropy- properties of a substance showing different physical properties in different    

directions 

Dielectric- non-conductor of electricity in which an electric field persists in the presence of an 

inducing field. 

Optical- ocular, visual, related to light 
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2.16 TERMINAL QUESTIONS 

1. What is coordination number? Find out the coordination numbers of SC, HCP,FCC and BCC 

structure. 

2. Define atomic radius. Calculate atomic radius in case of SC. 

3. What is meant by atomic radius? Determine the relationship between the lattice parameter 

‘a’ and the atomic radius ‘r’ for mono-atomic SC, BCC and FCC structures. 

4.  What do you understand by packing fraction? Compute the packing fraction of- 

    (i)  SCC structure 

   (ii) BCC structure 

   (iii) FCC structure 

   (iv) HCP structure 

5. Calculate the lattice constant of rock salt (NaCl) crystal. The molecular weight of NaCl =    

58.45, ρ = 2170 Kg/m3 

6. Obtain the Miller indices of the lattice plane shown in figure 7- 

 

                   Z          Miller Plane (001) 

 

  

 

 X 

 

 Y 

 

 

7. Estimate the inter-planar spacing for a (3 2 1) plane in a simple cubic lattice where lattice 

constant is 4.2× 10-10 m. 

8. What is lattice constant of a space lattice? Derive an expression for lattice constant of a space 

lattice. 

 

 

 (000) 
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9. What do you mean by density of lattice points in a lattice plane? Establish an general 

expression for it. 

10. What are the Miller indices and how are they computed? Illustrate your answer with a 

suitable example. 

11. Define the Miller indices of a plane. What is its importance in the determination of inter-

planar spacing of a crystal? Show that the [h k l] direction is normal to the plane (h k l) in a 

cubic crystal. 

12. Show that the distance between successive planes of Miller indices (h k l) is given by- 

                                                       d = 
1

[(
ℎ

𝑎
)

2
+(

𝑘

𝑏
)

2
+(

𝑙

𝑐
)

2
]

1
2

 

where a, b, c have their usual meanings. Hence show that for a cubic lattice, this expression 

reduces to- 

                                            d = 
𝑎

√ℎ2+𝑘2+𝑙2
 

13.  Explain symmetry operation. Discuss translational symmetry. 

14. What are liquid crystals? Explain their importance. 

15. Fill in the blanks- 

     (a) The plane with the Miller indices of (2 0 0) is designed as the ................plane. 

    (b) The distance between two neighbouring atoms touching each other is called................. 

    (c) Given that the Miller indices h = 2, k = 1 and l = 2 is designed as ............plane. 

16. Write notes on- 

      (i) Ligancy     (ii) Packing fraction   (iii) Liquid crystal    (iv) Symmetry operation 

17. What are Miller planes and directions? 

2.17 ANSWERS 

Self Assessment Questions (SAQs): 

1.  We know that a = (
𝑛𝑀

𝑁𝜌
)

1

3
 

or     ρ = 
𝑛𝑀

𝑎3𝑁
 = 

4×63.54

(3.61)3×6.02×1023
 = 8.973 gm/cc 

2. Step I: Determine the coordinates of the intercepts made by the plane along the three 

crystallographic axes X, Y and Z- axes 
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                                                       X         Y         Z 

                                                      3 a      -2b       
3𝑐

2
 

Step II:  Let us express the intercepts as the multiples of the unit cell dimensions 

3𝑎

𝑎
-

2𝑏

𝑏

3𝑐

2

𝑐
 

                                                      3            - 2         
3

2
 

Step III: Let us get the reciprocals of these numbers 

1

3
-

1

2

1
3

2

 

or                                                  
1

3
-

1

2

2

3
 

Step IV: Let us reduce the reciprocals to the smallest set of integral numbers and enclose them 

in bracket 

1

3
× 6-

1

2
× 6

2

3
× 6 

                      2                  - 3                4 

Therefore, the Miller indices are (2  3̅  4) 

3. Step I: Determine the coordinates of the intercepts made by the plane along the three 

crystallographic axes X, Y and Z- axes 

                                                       X         Y         Z 

                                                      3 a       2b        c        

Step II:  Let us express the intercepts as the multiples of the unit cell dimensions 

3𝑎

𝑎

2𝑏

𝑏

𝑐

𝑐
 

                                                      3            2         1 

Step III: Let us get the reciprocals of these numbers 

1

3

1

2

1

1
 

or                                                  
1

3

1

2
        1 

Step IV: Let us reduce the reciprocals to the smallest set of integral numbers and enclose them 

in bracket 
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1

3
× 6

1

2
× 61 × 6 

                                                        2                  3                6 

Therefore, the Miller indices are (2  3  6) 

Terminal Questions: 

5.  Given, The molecular weight of NaCl, M =  58.45,  ρ = 2170 Kg/m3 

Here, n = 4 

Using a = (
𝑛𝑀

𝑁𝜌
)

1

3
  = (

4×58.45

6.02×1023×2170
)

1

3
 = 5.64×10-10 m = 5.64 A0 

6. Obviously, you observe that the plane cuts the Z-axis at 1. There are no intercepts on the X- 

and Y-axes as the plane is parallel to the X-Y plane. Therefore, X-intercept = ∞, Y-intercept = 

∞ and Z-intercept = 1. Now let us follow the following steps- 

Here, the coordinates of the intercepts are already as the multiples of the unit cell dimensions. 

                                                           ∞       ∞       1       

Let us get the reciprocals of these numbers- 

1

∞

1

∞

1

1
 

                                                          0            0         1 

Therefore, the Miller indices are:  (0 0 1) 

7. You know, for a simple cubic lattice, a = b = c, Given a = 4.2× 10-10 m 

Using d = 
1

[(
ℎ

𝑎
)

2
+(

𝑘

𝑎
)

2
+(

𝑙

𝑐
)

2
]

1
2

 

dhkl = 
𝑎

√ℎ2+𝑘2+𝑙2
 

Therefore, d321 = 
4.2×10−10

√32+22+12
 = 1.123×10-10 m 

15. (a) 200       (b) lattice constant   (c) (2 1 2) 
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3.1 INTRODUCTION 

In the preceding unit, you have studied about coordination number, atomic radius, packing 

fraction, lattice constant of a space lattice, density of lattice points in a lattice plane. In the 

previous unit, you have calculated coordination number, atomic radius and packing fraction in 

some cases. You have learnt about the Miller indices, inter-planar spacing in crystal lattices, 

symmetry operation etc. In the present unit, you will study about reciprocal lattice, X-ray 

diffraction, Bragg’s law and learn about the determination of crystal structure. In the unit, you 

will also study of Laue and powder method for crystal structure. 

3.2 OBJECTIVES 

After studying this unit, you should be able to- 

 understand reciprocal lattice, Bragg’s law. 

 calculate primitive translation vectors of reciprocal lattice. 

 to compute atomic spacing. 

 solve problems based on Bragg’s law. 

3.3 RECIPROCAL LATTICE 

Every crystal structure has two lattices associated with it the crystal lattice and the reciprocal 

lattice. Vectors in the direct lattice have the dimensions of length while the vectors in the 

reciprocal lattice have the dimensions of 
1

length
. The reciprocal lattice is a lattice in the Fourier 

space associated with the crystal. 

 

 

                                                  b 

 

  

  

 

                                                                                                    a 

  

                                                 Figure 3.1: Reciprocal lattice 

 

A reciprocal lattice can be constructed by proceeding as follows- 
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(i) The normal to each plane from a common origin have been drawn. 

(ii) A point on the normal at a distance from the origin equal to 
1

𝑑ℎ𝑘𝑙
 has been placed. 

The collection of such points form a periodic array ( a net like structure). This array 

is called the reciprocal lattice because distances in this lattice are reciprocal to those 

in the crystal. 

Properties of Reciprocal Lattice Vectors 

(i) A general representation of reciprocal lattice vector is- 

𝜎ℎ𝑘𝑙̅̅ ̅̅ ̅ = 
1

𝑑ℎ𝑘𝑙
 

The reciprocal of �⃗�, 𝑎∗⃗⃗⃗⃗⃗ = 
�⃗⃗�×𝑐

�⃗⃗�.�⃗⃗�×𝑐
 = 

�⃗⃗�×𝑐

[𝑎⃗⃗⃗⃗⃗�⃗⃗�𝑐]⃗⃗⃗⃗
 

The reciprocal of �⃗⃗�, 𝑏∗⃗⃗ ⃗⃗  = 
𝑐×�⃗⃗�

�⃗⃗�.�⃗⃗�×𝑐
 = 

𝑐×�⃗⃗�

[𝑎⃗⃗⃗⃗⃗�⃗⃗�𝑐]⃗⃗⃗⃗
 

The reciprocal of 𝑐, 𝑐∗⃗⃗⃗⃗  = 
�⃗⃗�×�⃗⃗�

�⃗⃗�.�⃗⃗�×𝑐
 = 

�⃗⃗�×�⃗⃗�

[𝑎⃗⃗⃗⃗⃗�⃗⃗�𝑐]
 

 

(ii) The following relations hold good- 

𝑎∗⃗⃗⃗⃗⃗ . 𝑏∗⃗⃗ ⃗⃗  = 0, 𝑎∗⃗⃗⃗⃗⃗. 𝑐 = 0, 𝑏∗⃗⃗ ⃗⃗ . 𝑐 = 0, 𝑐∗⃗⃗⃗⃗ . �⃗� = 0, 𝑏∗⃗⃗ ⃗⃗ . �⃗� = 0, 𝑐∗⃗⃗⃗⃗ . �⃗⃗� = 0 

Here𝑎∗⃗⃗⃗⃗⃗, 𝑏∗⃗⃗ ⃗⃗  and 𝑐∗⃗⃗⃗⃗  are reciprocal lattice vectors. 

(iii) 𝜎ℎ𝑘𝑙̅̅ ̅̅ ̅ = 
1

𝑑ℎ𝑘𝑙
 

Where 𝜎ℎ𝑘𝑙̅̅ ̅̅ ̅ = h 𝑎∗⃗⃗⃗⃗⃗ + k 𝑏∗⃗⃗ ⃗⃗  + l 𝑐∗⃗⃗⃗⃗  and h, k, l are the Miller indices of the planes 

concerned. 

 

(iv) Volume of unit of reciprocal lattice is inversely proportional to the volume of direct 

lattice. 

Volume of unit of reciprocal lattice,  𝑎∗⃗⃗⃗⃗⃗ .𝑏∗⃗⃗ ⃗⃗ ×𝑐∗⃗⃗⃗⃗  = [𝑎∗⃗⃗⃗⃗⃗𝑏∗⃗⃗ ⃗⃗ 𝑐∗⃗⃗⃗⃗ ] 

                                          = 
(�⃗⃗� × 𝑐).{(𝑐 × �⃗⃗�)×(�⃗⃗� × �⃗⃗�)}

{�⃗⃗�.(�⃗⃗� × 𝑐)}
3  

=  
(�⃗⃗� × 𝑐).[{𝑐.⃗⃗⃗(�⃗⃗� × �⃗⃗�)}−{𝑐.⃗⃗⃗(�⃗⃗� × �⃗⃗�)}�⃗⃗�]

{�⃗⃗�.(�⃗⃗� × 𝑐)}
3  = 

1

{�⃗⃗�.�⃗⃗�×𝑐}
 

= 
1

Volume of unit cell of direct lattice
 

(v) Also, 𝑎∗⃗⃗⃗⃗⃗. �⃗� = 1, 𝑏∗⃗⃗ ⃗⃗ . �⃗⃗� = 1, 𝑐∗⃗⃗⃗⃗ . 𝑐 = 1 

In some texts on Solid State Physics, the primitive translation vectors �⃗�, �⃗⃗� and 𝑐 of a direct 

lattice are related to the primitive translation vectors 𝑎∗⃗⃗⃗⃗⃗,  𝑏∗⃗⃗ ⃗⃗  and 𝑐∗⃗⃗⃗⃗ of the reciprocal lattice as- 

𝑎∗⃗⃗⃗⃗⃗. �⃗� = 𝑏∗⃗⃗ ⃗⃗ . �⃗⃗� = 𝑐∗⃗⃗⃗⃗ . 𝑐 = 2π 

These equations can be satisfied by choosing the reciprocal lattice vectors as- 

 𝑎∗⃗⃗⃗⃗⃗⃗  = 2π 
�⃗⃗�×𝑐

�⃗⃗�.�⃗⃗�×𝑐
= 2𝜋

�⃗⃗�×𝑐

[𝑎⃗⃗⃗⃗⃗�⃗⃗�𝑐]⃗⃗⃗⃗
𝑏∗⃗⃗ ⃗⃗  =2π

𝑐×�⃗⃗�

�⃗⃗�.�⃗⃗�×𝑐
 =2𝜋

𝑐×�⃗⃗�

[𝑎⃗⃗⃗⃗⃗�⃗⃗�𝑐]⃗⃗⃗⃗
,𝑐∗⃗⃗⃗⃗  =2π

�⃗⃗�×�⃗⃗�

�⃗⃗�.�⃗⃗�×𝑐
 = 2𝜋

�⃗⃗�×�⃗⃗�

[𝑎⃗⃗⃗⃗⃗�⃗⃗�𝑐]
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The factor 2π are not used by crystallographers but are convenient in Solid State Physics. 

 

𝑎∗⃗⃗⃗⃗⃗ .�⃗⃗�×𝑐    can be written as [�⃗��⃗⃗�𝑐] which represents the volume of the unit cell. 

 

Example 1: The primitive translation vectors of a two-dimensional lattice are- 

�⃗� = 2 i^ + j^, �⃗⃗� = 2 j^ and 𝑐 = k^ 

Determine the primitive translation vectors of its reciprocal lattice. 

Solution: Given-               �⃗� = 2 i^ + j^, �⃗⃗� = 2 j^ and 𝑐 = k^ 

The primitive translation vectors of reciprocal lattice are given by- 

 

 𝑎∗⃗⃗⃗⃗⃗⃗  = 2𝜋
�⃗⃗�×𝑐

[𝑎⃗⃗⃗⃗⃗�⃗⃗�𝑐]⃗⃗⃗⃗
𝑏∗⃗⃗ ⃗⃗ =2𝜋

𝑐×�⃗⃗�

[𝑎⃗⃗⃗⃗⃗�⃗⃗�𝑐]⃗⃗⃗⃗
  ,𝑐∗⃗⃗⃗⃗  =2𝜋

�⃗⃗�×�⃗⃗�

[𝑎⃗⃗⃗⃗⃗�⃗⃗�𝑐]
 

 

[�⃗��⃗⃗�𝑐] =    
2 1 0
0 2 0
0 0 1

=   2   
2 0
0 1

 - 1 
0 0
0 1

+ 0
0 2
0 0

 

 = 4 units 

�⃗⃗� × 𝑐 = 2 i^ × k^ = 2 i^,  𝑐 × �⃗� = k^× (2 i^ + j^) = 2j^ - i^, �⃗� × �⃗⃗� = (2 i^ + j^) × 2 j^ = 4 k^ 

Therefore,  𝑎∗⃗⃗⃗⃗⃗⃗  = 2𝜋 
2�̂�

4
 ,        𝑏∗⃗⃗ ⃗⃗  =2𝜋 

2𝜋(2�̂�− �̂�)

4
= 

𝜋(2�̂�− �̂�)

2
 ,𝑐∗⃗⃗⃗⃗  = 2𝜋 (

4�̂�

4
) = 2π k^ 

Self Assessment Question (SAQ) 1: Find out reciprocal lattice vectors for a space lattice 

defined by the following primitive translation vectors- 

�⃗� = 5 i^  + 5j^ - 5 k^, �⃗⃗� = - 5 i^ + 5 j^ + 5 k^  and 𝑐 = 5 i^ - 5 j^ + 5 k^ 

3.4 X-RAY DIFFRACTION AND LAUE METHOD 

Soon after the discovery of X-rays in 1895, the nature of X-rays became a matter of concern. 

Results of early experiments indicated that if X-rays consisted of waves, their wavelengths 

were of the order of 10-8 to 10-9 cm. Laue suggested that the ordered arrangement of atoms in 

a crystal must make it to act as a three-dimensional grating. Since the spacing between the 

layers of these atoms in a crystal is of the order of 10-8 cm (which is of the order of wavelength 

of X-rays), therefore a crystal would be suitable for the diffraction of X-rays. 
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                                 Figure 3.2: Experimental arrangement of Laue 

The experimental arrangement of Laue and his co-workers is shown in Figure 2. A thin pencil 

of X-rays after passing through aligned slit was allowed to pass through a thin plate of crystal 

of zinc blende. The transmitted beam is received on a photographic plate. After the exposure 

of several hours, when the plate was developed, it had been found that in addition to the central 

spot, it consists of other fainter spots arranged regularly. These spots are called Laue spots 

(Figure 2). Each spot in the Laue pattern arises due to the constructive interference between 

the waves reflected from one of the various sets of parallel planes in the crystal. Figure 3 shows 

two such sets of planes by means of continuous and dotted lines. The corresponding planes will 

be perpendicular to the plane of the paper. A simple interpretation was given by W.L. Bragg. 

 

 

 

 

 

 

 

                                                              Figure 3.3: Lau Pattern 
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3.5 BRAGG’S LAW AND DETERMINATION OF CRYSTAL 

STRUCTURE 

Let us consider a set of parallel planes of the crystal, separated by spacing d. The crystal acts 

as a series of parallel reflecting planes. Let a beam of monochromatic X-rays strike the crystal. 

Since X-rays can penetrate the crystal, there would be partial reflection from every plane till it 

would be absorbed completely. The rays reflected from various planes will interfere 

constructively if they are in same phase. 

 E 

 A 

 C θ F 

 θ B 

                                                                           θ   θ 

                               d  

 

D 

 

                                                        Figure 3.4: Bragg’s law  

Let us consider two parallel rays AB and CD incident over the planes at glancing angle θ. 

Corresponding reflected rays from atoms B and D are BE and DF. 

The path difference between the rays = MD + DN 

M and N are the feet of perpendiculars from B on CD and DF respectively. 

MD = DN = d sin θ 

Therefore, the path difference = d sin θ + d sin θ = 2 d sin θ 

The two sets of scattered waves reinforce each other when the path difference is an integral 

multiple of wavelength λ i.e. 

                                                          2 d sin θ = n λ                                                     ….. (1) 

Here n = 1, 2, 3, …………… (an integer), θ = glancing angle, d = interlayer spacing 

The equation (1) is known as Bragg’s law. 

For first order reflection, n = 1 
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Therefore, 2 d sin θ = λ 

Similarly, n = 2, 3, 4, ….. for second, third, fourth order reflection………. respectively. 

Using Bragg’s equation and knowing lattice space d, you can determine the wavelength λ of 

X-rays. Alternatively, if you know the wavelength of X-rays, then you can determine the crystal 

lattice spacing. By Bragg’s law, you can study the crystal structure. 

Example 2:X-rays of wavelength 0.36 A0 diffracted in a Bragg spectrometer at an angle of 40 

48’. Determine the effective value of atomic spacing. 

Solution: Given-  λ = 0.36 A0 = 0.36 × 10-10 m, θ =  40 48’ 

Now using Bragg’s equation-             2 d sin θ = n λ 

or                                                        d = n λ / 2 sin θ = 1×0.36 × 10-10 / (2× sin 40 48’ ) 

=  2.15 × 10-10 m = 2.15 A0 

Self Assessment Question (SAQ) 2: Estimate the longest wavelength that can be analysed by 

a rock salt crystal of spacing d = 2.82 A0 in the (i) first order and (ii) second order 

3.6 POWDER METHOD 

When an X-ray is shined on a crystal, it diffracts in a pattern characteristic of the structure. In 

powder X-ray diffraction, the diffraction pattern is obtained from a powder of the material, 

rather than an individual crystal. Powder diffraction is often easier and more convenient than 

single crystal diffraction since it does not require individual crystals be made. Powder X-ray 

diffraction (XRD) also obtains a diffraction pattern for the bulk material of a crystalline solid, 

rather than of a single crystal, which doesn't necessarily represent the overall material. A 

diffraction pattern plots intensity against the angle of the detector, 2θ 

Since most materials have unique diffraction patterns, compounds can be identified by using a 

database of diffraction patterns. The purity of a sample can also be determined from its 

diffraction pattern, as well as the composition of any impurities present. A diffraction pattern 

can also be used to determine and refine the lattice parameters of a crystal structure. A 

theoretical structure can also be refined using a method known as Rietveld refinement. The 

particle size of the powder can also be determined by using the Scherrer formula, which relates 

the particle size to the peak width. The Scherrer formula is 

                                                       t = 
0.9 λ

√BM
2 −BS

2 cos θ

                                                            …..(2) 

withλ , the X-rays wavelength; BM ,the observed peak width; BS, the peak width of a 

crystalline standard and θ the angle of diffraction. 

 

https://chem.libretexts.org/Core/Analytical_Chemistry/Instrumental_Analysis/Diffraction/X-ray_Crystallography
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                                       Figure 3.5: Experimental set up of Powder Method 

3.7 EWALD’S CONSTRUCTION 

Intensity of diffraction spots  

The observed intensity I of the diffraction spots can be thought of as corresponding to the 'size' 

of the reciprocal lattice point ( I(hkl) is proportional to |F(hkl)|2). Clearly, either depends on the 

contents of the unit cell, and we already suspect that the space group symmetry will thus have 

some implications on the diffraction pattern symmetry. Before we investigate further, it may 

be useful to understand how the diffraction pattern can be derived from the reciprocal lattice. 

Let us look at a reciprocal lattice with spots in it. 

http://www.ruppweb.org/Xray/comp/ihkl.gif
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      Figure 3.6: Reciprocal Lattice in Ewald’s construction 

Here we see different magnitudes for the lattice points. The largest spot is at the origin 

corresponding to F(000), which we know already is the sum of all electrons in the unit cell. 

The reflection itself is at zero diffraction angle, i.e., in the primary beam path and not 

observable. Now, where do we expect all the other diffraction spots to appear? 

 

                            Figure 3.7: Ewald sphere 

A most useful means to understand the occurrence of diffraction spots is the Ewald 

construction. Let's begin slowly: We draw a sphere of radius 1/lambda, in the center of which 

http://www.ruppweb.org/Xray/comp/strufac.htm
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we imagine the real crystal. The origin of the reciprocal lattice (see above) lies in the 

transmitted beam, at the edge of the Ewald sphere.  

We know already that diffraction maxima (reflections, diffraction spots) occur only when the 

3 Laue equations, or equivalent, the Bragg equation in vector form, are satisfied. This condition 

occurs whenever a reciprocal lattice point lies exactly on the Ewald sphere. 

 

 

                      Figure 3. 8: Ewald sphere 

 

As you may have assumed already, the chance for this to occur is modest, and we need to rotate 

the crystal in order to move more reciprocal lattice points through the Ewald sphere. In the 

following, I have drawn a reciprocal lattice in the origin, and we rotate it along the vertical axis 

of the drawing. We actually accomplish this by rotating the crystal along the same axis. 

Just imagine turning the reciprocal lattice through the Ewald sphere: in the beginning, only 

(101) and (10-1) give rise to a reflection. After you turned the reciprocal lattice a bit (which 

actually means turning the crystal around the same axis), the reciprocal lattice point 201 will 

enter the sphere and create a diffraction spot.  
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                                                  Figure 3.9: Ewald sphere and reciprocal lattice 

 

 

3.8 SUMMARY  

In the present unit, you have learnt about reciprocal lattice, X-ray diffraction and Laue method. 

You have known that the reciprocal lattice is a lattice in the Fourier space associated with the 

crystal. You have studied the method to construct the reciprocal lattice. You have also studied 

Bragg’s law and learnt about the determination of crystal structure.Using Bragg’s equation and 

knowing lattice space d, you can determine the wavelength λ of X-rays or alternatively you can 

say that if you know the wavelength of X-rays, then you can determine the crystal lattice 

spacing. By Bragg’s law, you can study the crystal structure. You have also studied the powder 

method for the determination of crystal structure. In this unit, you have also learnt about 

Ewald’s construction. Some solved examples are given in the unit to make the concepts clear. 

To check your progress, self assessment questions (SAQs) are given place to place.  
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3.9 GLOSSARY 

Lattice- pattern, net, web. 

Diffraction- bending of waves at the corners of the object in their path whose size is one of the 

order of wavelength of wave. 

Transmitted- passed on, sent out. 

Refinement- improvement, modification. 

Intensity- strength, the average amount of energy of a wave transported by the wave per unit 

area of cross-section of the medium per second. 

3.10 REFERENCES 

1. Solid State Physics, Laser & Statistical Physics, Hari Prakash, Mahipal Singh, Ram Prasad 

& Sons, Agra 

2. Introduction to Solid State Physics, Arun Kumar, PHI Learning Private Limited, New Delhi 

3. Introduction to Solid State Physics, Charles Kittel, John Wiley & Sons (ASIA) Pte Ltd, 

Singapore 

4. www.google.com 

3.11 SUGGESTED READINGS 

1. Solid State Devices, B. Somanathan Nair, S.R. Deepa, PHI Learning Private Limited, New 

Delhi. 

2. Fundamentals of Solid State Physics, B.S. Saxena, R.C. Gupta, P.N. Saxena, Pragati 

Prakashan Meerut. 

3.12 TERMINAL QUESTIONS 

1. Describe Laue’s experiment for X-rays diffraction. Give its significance. 

2. Give mathematical definition of Bragg’s law. 

3. What is reciprocal lattice? How will you construct reciprocal lattice? Give its properties. 

4. What is Bragg’s law? Derive Bragg’s equation. How will you use Bragg’s law to determine 

the crystal structure? 

5. Describe powder method for the determination of crystal structure. 

6. Discuss Ewald’s construction. Give its importance and uses. 

7. Write note on-  
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    (a) Bragg’s law   (b) Reciprocal lattice 

8. A set of crystal planes reflects X-rays of wavelength 1.32 A0 at a glancing angle of 90 30’. 

Determine the possible spacing of this set of planes. 

9. Explain Laue pattern. 

10.  State True or False- 

     (i) Bragg’s equation will have no solution if λ ˃ 2 d 

    (ii) Laue spots show the diffraction property of X-rays. 

   (iii) The volume of unit of reciprocal lattice is inversely proportional to the volume of direct     

lattice. 

3.13 ANSWERS 

Self Assessment Questions (SAQs): 

1.  Given-       �⃗� = 5 i^  + 5j^ - 5 k^, �⃗⃗� = - 5 i^ + 5 j^ + 5 k^  and 𝑐 = 5 i^ - 5 j^ + 5 k^ 

The primitive translation vectors of reciprocal lattice are given by- 

 

 𝑎∗⃗⃗⃗⃗⃗⃗  = 2𝜋
�⃗⃗�×𝑐

[𝑎⃗⃗⃗⃗⃗�⃗⃗�𝑐]⃗⃗⃗⃗
𝑏∗⃗⃗ ⃗⃗ =2𝜋

𝑐×�⃗⃗�

[𝑎⃗⃗⃗⃗⃗�⃗⃗�𝑐]⃗⃗⃗⃗
  ,𝑐∗⃗⃗⃗⃗  =2𝜋

�⃗⃗�×�⃗⃗�

[𝑎⃗⃗⃗⃗⃗�⃗⃗�𝑐]
 

 

[�⃗��⃗⃗�𝑐] =    
5 5 −5

−5 5 5
5 −5 5

 

 

 = 5   
5 5

−5 5
   - 5    

−5 5
5 5

    -5    
−5 5
5 −5

 

 = 500 units 

�⃗⃗� × 𝑐 = (  - 5 i^ + 5 j^ + 5 k^   ) × (5 i^ - 5 j^ + 5 k^  ) = 50( i^ + j^) 

𝑐 × �⃗�=  (5 i^ - 5 j^ + 5 k^ ) × (5 i^  + 5j^ - 5 k^  ) = 50 ( - i^ + j^ + k^ ) 

�⃗� × �⃗⃗� = (5 i^  + 5j^ - 5 k^  ) × (- 5 i^ + 5 j^ + 5 k^  ) = 50 ( i^ + k^) 

Therefore,  𝑎∗⃗⃗⃗⃗⃗⃗  = π (i^ + j^)/5,𝑏∗⃗⃗ ⃗⃗  = π ( j^ + k^)/5,𝑐∗⃗⃗⃗⃗  = π (k^ + i^)/5 

2. Given- d = 2.82 A 0 = 2.82×10-10 m, for longest wavelength, sin θ = 1  ( maximum value) 

Using Bragg’s equation-             2 d sin θ = n λ 

 Or                                λ = 2 d sin θ / n 

(i) For first order, n = 1,   therefore λ = 2×2.82×10-10 × 1 / 1 = 5.64× 10-10 m = 5.64 A0 
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(ii) For second order, n = 2, therefore λ = 2× 2.82×10-10 × ½ = 2.82× 10-10 m = 2.82 A0 

Terminal Questions: 

8. Given- λ = 1.32 A0 = 1.32 × 10-10 m, θ = 90 30’ 

    Using Bragg’s equation-         2 d sin θ = n λ 

   Or        d = nλ / (2 sin θ),  n = 1, 2, 3………. 

   Or        d = n × (1.32 × 10-10) / (2 sin 90 30’) = 4 n × 10-10 m = 4 n A0,  n = 1, 2, 3, ……… 

  Thus possible spacing d = 4 A0, 8 A0, 12 A0, ……………….. 

10. (i) True     (ii) True       (iii) True 
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4.1 INTRODUCTION 

In the previous unit, you have studied about reciprocal lattice, X-ray diffraction, Laue method, 

Bragg’s law and determination of crystal structure, powder method and Ewald’s construction. 

You know that in solids, the different molecules are bound together by means of certain forces. 

Similarly, in a molecule, the atoms are bound to each other by means of some forces. Generally, 

the atoms and molecules are bound to each other by electrical forces. These forces are 

responsible for the cohesion of solids. Most of the physical properties of the solids can be 

explained on the basis of electron distribution in them. Depending upon the way in which the 

electrons are distributed in atoms, different types of bonds are formed between the atoms in a 

solid.In this unit, you will discussthe different types of bonding in crystals and their properties. 

Besides these, you will also study about Madelung constant, cohesive energy of an ionic crystal 

and Lennard-Jones potential. 

4.2 OBJECTIVES 

After studying this unit, you should be able to- 

 understand different types of bonding in crystal. 

 understand cohesive energy of an ionic crystal. 

 solve problems based on cohesive energy. 

4.3 BONDING IN CRYSTALS 

Crystals may be classified in terms of the dominant type of chemical binding force keeping the 

atoms together. All these bonds involve electrostatic forces, with the chief differences among 

them lying in the ways in which the outer electrons of the structural elements are distributed. 

The distinct types of bonds that provide the cohesive forces in crystals can be classified as 

follows- 

(i) Ionic bond. 

(ii) Covalent bond. 

(iii) Metallic bond. 

(iv) Vander Waals bond. 

(v) Hydrogen bond. 

4.4 IONIC BOND AND COHESIVE ENERGY OF AN IONIC 

CRYSTAL AND MADELUNG CONSTANT 

Ionic bonds are formed when atoms that have low ionization energies and hence lose electrons 

readily, interact with other atoms that tend to acquire excess electrons. The former atoms give 

up electrons to the latter. Thus, the atoms become positive and negative ions respectively. 

These ions come together in an equilibrium configuration in which the attractive forces 

between positive and negative ions predominate over the repulsive forces between similar ions.  
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Sodium chloride (NaCl) is an example of ionic crystal. In Na, the total number of valence 

electrons is 1 while in the case of Cl, the total number of valence electrons is 7. Here, a single 

valence electron is transferred from sodium (Na) atom to the chloride (Cl) atom. The Na+ and 

Cl- ions so formed are arranged in a face-centered cubic structure. 

 

 

                    Na***
*Cl**

** Na+ Cl- 

The cohesive energy of an ionic crystal is the energy that would be liberated by the formation 

of the crystal from individual neutral atoms. The main contribution to the cohesive energy of 

an ionic crystal is the electrostatic potential energy Ucoulomb of the ions. 

Let us consider an Na+ ion in NaCl. Its nearest neighbours are six Cl- ions, each one the distance 

r away. Therefore, the potential energy of Na+ ion due to 6 Cl- ions- 

U1 = −
1

4πε0

(6e)×e

r
 = - 

6e2

4πε0r
                                                                    …..(1) 

The next nearest neighbours are 12 Na+ ions, each one distance √2 r away. 

The potential energy of the Na+ ion due to 12 Na+ ions- 

                                          U2 = + 
12e2

4πε0√2r
                                          …..(2) 

Then, there are 8 Cl - ions at √3r distance, 6 Na+ ions at 2r distance and so on. 

When the summation is continued over all the +ve and –ve ions in a crystal of 

infinite size, the result is- 

Ucoulomb = - 
6e2

4πε0r
+

12e2

4πε0√2r
−  

8e2

4πε0√3r
+

6e2

4πε0(2r)
− … … … … … 

                                    = - 
e2

4πε0r
[

6

√1
−

12

√2
+

8

√3
−

6

√4
+  … … … … . . ] 

                                    = - 1.748 
e2

4πε0r
 

In general, Ucoulomb = -α
e2

4πε0r
                                                          …..(3) 

This result holds for the potential energy of a Cl - ion also. α is called Made lung 

constant of the crystal. It has the same value for all crystals of the same structure. 

For simple crystal structure- 

                                                 1.6 ≤ α ≤ 1.8  

Madelung constant is a property of crystal structure. It is very diffic ult to 

calculate its exact value although it can be approximated easily for simple 
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structure. Generally, the higher values of the Madelung constant indicate the 

stronger Madelungcontribution to the cohesive energy and hence greater stability 

of the structure. 

Two ions cannot continuously approach each other under coulomb attraction on 

account of Pauli’s exclusion principle. When they are at a certain small distance 

apart, they start to repel each other with aforce which increases rapidly with 

decreasing inter-nuclear distance r. The potential energy contribution of the short 

range repulsive forces can be expressed approximately in the form - 

                                      Urepulsive = 
B

rn                                                …..(4) 

Where B is a constant and n is a number (n≈ 9). Therefore, the total potential 

energy U of each ion due to its interactions with all the other ions is - 

 U = Ucoulomb + Urepulsive  

    = -α
e2

4πε0r
  + 

B

rn                                                                                …..(5) 

At equilibrium r = r0, U is minimum.  

Therefore, at r= r0, 
dU

dr
 = 0 

or                  α
e2

4πε0r0
2  + 

nB

r0
n+1 = 0 

or                      B = α
e2

4πε0n
r0

n−1                                                                   …..(6) 

The total potential energy at the equilibrium separation is - 

U=-
e2

4πε0r0
 + α

e2

4πε0nr0
n r0

n−1 = -α
e2

4πε0r0
(1 −

1

n
)                                                      …..(7) 

This is the magnitude of the energy needed to separate an ionic crystal into 

individual ions.  

For NaCl crystal, r0 = 2.81 × 10 -10 m, α = 1.748, n = 9  

and   
1

4πε0
 = 9 × 109 Nm2C-2 

The potential energy of an ion of either sign is - 

U = -α
e2

4πε0r
(1 −

1

n
) = 

−(9×109)×(1.748)×(1.60×10−19)
2

2.81×10−10 (1 −
1

9
) 

       = -1.27× 10-18 Joule = -7.96 eV 

The contribution per ion to the cohesive energy of the crystal = -
7.96

2
 = - 3.98 eV 
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Figure 4.1: Variation of potential energy with distance 

The energy needed to transfer an electron from a Na atom to a Cl atom to form a Na+- Cl- ion 

pair = Ionization energy of Na- electron affinity of Cl 

       = (+ 5.14 eV) – ( 3.61 eV) = 1.53 eV 

Contribution of each atom to the cohesive energy = +
1.53

2
 = + 0.77 eV 

Therefore, total cohesive energy per atom in NaCl crystal is- 

Ecohesive = ( - 3.98 + 0.77 ) eV/atom = - 3.21 eV/atom 

Properties of Ionic Bond 

The following are the properties of ionic bond- 

(i) Most ionic solids are hard, brittle and have high melting point. 

(ii) These are soluble in polar liquids like water. 

(iii) Their electrical conductivity is much smaller than that of metals at room 

temperature but with increase in temperature, the conductivity of these crystals 

increases. 

(iv) These solids crystallize in close-packed structures of which the NaCl and CsCl 

structures are the commonest. 
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4.5 COVALENT BOND 

In covalent bond, atoms are held together by the sharing of electrons. Each atom participating 

in a covalent bond contributes an electron to the bond. These electrons are shared by both atoms 

rather than being the virtually exclusive property of one of them as in an ionic bond. Diamond 

is an example of a crystal whose atoms are linked by covalent bonds. Other examples of 

covalent bonds are H2, HCl etc. This bond is also known as homopolar. 

   H* + *H   H 
∗
∗
 H       H – H   H2 

Properties of Covalent Bond 

The following are the properties of covalent bond- 

(i) Covalent bond is a strong bond. 

(ii) All covalent crystals are hard, have high melting points and are insoluble in all 

ordinary liquids. 

(iii) These bonds are strongly directional. 

(iv) These bonds have saturation property. 

(v) The conductivity of covalent crystals varies over a wide range. Some crystals are 

insulators (diamond) and some are semiconductors (Ge). The conductivity increases 

with the increase in temperature. 

(vi) These crystals are transparent to long wavelength radiation but opaque to shorter 

wavelengths. 

4.6 METALLIC BOND 

In metallic crystals, the metallic bond arises when all of the atoms share all of the valence 

electrons. The valence electrons of the atoms comprising a metal are common to the entire 

aggregate so that a kind of gas of free electrons saturates it. The crystal is held together by the 

electrostatic attraction between the negative electron gas and the positive metal ions. The best 

example of a metallic crystal is sodium. The cohesion of the metallic crystal results from a 

combination of forces- 

(i) The attraction of the electron cloud for the ion cores. 

(ii) The mutual repulsion of the electrons. 

(iii) The mutual repulsion of the ion cores. 
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                   Figure 4.2: Potential energy contribution as a function of nuclear spacing 

Figure 2 shows a sketch of a reasonable form for the potential (free) energy contribution, as a 

function of nuclear spacing, from each of these charge interactions. 

Properties of Metallic Bond 

The following are the properties of metallic bond- 

(i) These have high electrical and thermal conductivities due to the presence of free 

electrons. 

(ii) Metallic crystals have high optical reflection and absorption coefficients. 

(iii) Metallic bonds are weaker than ionic and covalent bonds. 

(iv) Ductility and metallic luster are the other characteristic properties of metals. 

4.7 VANDER WAALS BOND (LONDON INTERACTION) 

Vander Walls bond is also known as molecular bond. All atoms and molecules, even inert gas 

atoms such as those of helium and argon, exhibit weak, short range attractions for one another 

due to Vander Waals forces. These forces were proposed over a century ago by the Dutch 

physicist Johannes Vander Waals to explain the departures of real gases from the ideal gas law. 

Vander Waals forces are responsible for the condensation of gases into liquids and the freezing 

of liquids into solids in the absence of ionic, covalent or metallic bonding mechanisms. Such 

familiar aspects of the behavior of matter in bulk as friction, surface tension, viscosity, 

adhesion, cohesion and so on, also arise from these forces. The Vander Waals attraction 

between two molecules the distance r apart is proportional to r-7 so that it is significant only for 

molecules very close together. Vander Waals interaction is also known as London interaction 

or induced dipole-dipole interaction. It is the principal attractive interaction in crystals of inert 

gases and also in crystals of many organic molecules. The Vander Waals interaction does not 
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depend for its existence on any overlap of the change densities of the two atoms. The Vander 

Waals energy varies as - 
A

r6, A is a constant. 

Properties of Vander Waals Bond 

The following are the properties of Vander Waals bond- 

(i) The cohesive or binding energy of a molecular crystal is small. 

(ii) They have poor conductivity. 

(iii) They have low melting and boiling points. 

(iv) They are transparent to electromagnetic radiations. 

(v) The energy gap of a molecular crystal is large. 

4.8 LENNARD-JONES POTENTIAL 

The Pauli Exclusion Principle prevents multiple occupancy and electron distributions of atoms 

with closed shells can be overlap only if accompanied by the partial promotion of electrons to 

unoccupied high energy states of the atoms. Thus, the electron overlap increases the total 

energy of the system and gives a repulsive contribution to the interaction. 

The repulsive potential is of the form 
B

r12, where B is a positive constant. Experimental data on 

the inert gases can be fitted well by an empirical repulsive potential of the form 
B

r12, where B is 

a positive constant, when used together with a long range attractive potential of the form of - 
A

r6 . The constants A and B are empirical parameters determined from independent 

measurements made in the gas phase; the data used include the virial coefficients and the 

viscosity. It is usual to write the total potential energy of two atoms at separation r as- 

U(r) = 4 ε[(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

]                                                                                                     …..(8) 

Where ε and σ are the new parameters with 4εσ2 ≡ A and 4εσ12 ≡ B. The potential given by 

equation (8) is known as Lennard-Jones potential. The force between two atoms is given by- 

                                                                    F = -
dU

dr
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                                      Figure 4.3: Lennard-Jones potential 

4.9 HYDROGEN BOND 

A hydrogen bond is a special type of Vander Waals bond which occurs between certain 

molecules containing hydrogen atoms. A hydrogen atom is electropositive as well as 

electronegative in character and as such, it can lose one electron or gain one electron to form 

inert gas configuration. Hydrogen bond is believed to be largely ionic in character, being 

formed only between the most electronegative atoms, oxygen, nitrogen in particular. In the 

extreme ionic form of hydrogen bond, the hydrogen atom loses its electron to one of the other 

atoms with the result that the probability of finding this electron on either atom or the hydrogen 

ion are equal. The positive hydrogen ion then attracts the two atoms more closely than their 

normal separation in the crystal. A hydrogen bond connects only two atoms because the two 

atoms adjacent to the hydrogen ion (proton) are so close that more than two atoms would get 

in each other’s way.  

Water molecules are exceptionally prone to be formed by hydrogen bonds because the electrons 

around the oxygen atom in H2O are not symmetrically distributed but are more likely to be 

formed in certain regions of high probability density. These regions of high probability density 

are at the vertices of a tetrahedron as shown (Figure 4). 
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                            Figure 4.4: Hydrogen bond in water molecule 

Obviously, hydrogen atoms are at two of its vertices which accordingly exhibit localized 

positive charges while the other two vertices exhibit somewhat more diffuse negative charges. 

Each water molecule (H2O) can, therefore, form hydrogen bonds with four other H2O 

molecules. In two of these bonds, the central molecule provides the bridging protons while in 

the other two the attached molecules provide them. 

Properties of Hydrogen Bond 

The following are the properties of hydrogen bond- 

(i) The hydrogen bond is much weaker than a covalent bond. 

(ii) This bond occurs in substances like protein, molecular genetics, hydrogen fluoride 

(HF), ice, water etc. 

Example 1:How Vander Waals force varies? 

Solution: That Vander Waals force varies as r-7. 

O2- 

H+ 
H+ 

H+ 

H+ 
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Self Assessment Question (SAQ) 1:Choose the correct option- 

Ionic bond is formed due to- 

(i) sharing of electrons   (ii) transference of electrons     (iii) both (i) and (ii)    (iv) none of these 

Self Assessment Question (SAQ) 2:Choose the correct option- 

NaCl is an example of- 

(i) covalent crystal   (ii) ionic crystal   (iii) metallic crystal   (iv) hydrogen bonded crystal 

Self Assessment Question (SAQ) 3:Fill in the blank- 

For simple crystal structure ……..≤ α ≤ ……….. 

4.10 SUMMARY  

In the present unit, you have learnt about crystal bonding and known how different types of 

crystals are formed due to different types of bonding. According to their bonding, crystals have 

been divided into different groups- ionic crystals, covalent crystal or homopolar crystals, 

metallic crystals, Vander Waals or molecular crystals and hydrogen bonded crystals. In this 

unit, you have studied about cohesive energy which is defined as the energy of an ionic crystal 

that would be liberated by the formation of the crystal from individual neutral atoms. The main 

contribution to the cohesive energy of an ionic crystal is the electrostatic potential energy 

Ucoulomb of the ions. You have also learnt the importance of Madelung constant which is a 

property of crystal structure.You have studied about Lennard-Jones potential.You 

have also discussed various types of bonding and their properties. To check your 

progress, self assessment questions (SAQs) are given in the unit.  

4.11 GLOSSARY 

Ionization- the process of forming ions. 

Cohesive energy- the energy due to the force of attraction between two similar molecules i.e. 

of the same substance. 

Electron affinity- the energy released when an electron is attached to an atom or molecule. 

Condensation- a change fromvapour to liquid the reverse of evaporation. 

4.12 REFERENCES 

1. Solid State Physics, Laser & Statistical Physics, HariPrakash, Mahipal Singh, Ram Prasad 

& Sons, Agra 

2. Introduction to Solid State Physics, Arun Kumar, PHI Learning Private Limited, New Delhi 

3. Physics Part-III, Mahipal Singh, Ram Prasad and Sons, Agra 
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4.13 SUGGESTED READINGS 

1. Solid State Devices, B. Somanathan Nair, S.R. Deepa, PHI Learning Private Limited, New 

Delhi. 

2. Fundamentals of Solid State Physics, B.S. Saxena, R.C. Gupta, P.N. Saxena, 

PragatiPrakashan, Meerut. 

3.  Introduction to Solid State Physics, Charles Kittel, John Wiley & Sons (ASIA) Pte Ltd, 

Singapore. 

4.14 TERMINAL QUESTIONS 

1. Write an essay on bonding in crystals. 

2. What is bonding in crystals? Describe different types of bonding that exhibit in crystals. 

3. What is meant by cohesive energy? Establish the expression for cohesive energy of an ionic 

system.  

4. Describe Lennard-Jones potential. 

5. What are metallic bonds? Give their properties. 

6. How are covalent bonds formed? List the properties of covalent bonds. 

7. What are ionic crystals? Give some examples. What are the characteristics of ionic crystals. 

8. What is Madelung constant? Give its significance. 

9. Choose the correct option- 

   The unit of Madelung constant is- 

   (i) m          (ii) cm           (iii) N/m         (iv) unitless 

10. Fill in the blank- 

     Diamond is ………. 

4.15 ANSWERS 

Self Assessment Questions (SAQs): 

1. (ii) transference of electrons 

2. (ii) ionic crystal    

3. 1.6, 1.8 
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5.1 INTRODUCTION 

In lattice vibrations theory, we ignored the effects occurring due to electrons in crystals. We 

supposed that the electrons surrounding the nucleus of an atom are tightly bound. This 

assumption is valid for insulators, but not for metal and semiconductors. To understand the 

properties of metal and semiconductors, it is essential to understand the behavior of electrons. 

In this unit we shall focus mainly on the nature of the existence of the role of electrons to 

discuss the properties of metals. The free electron theory was successful in explaining the 

properties such as electrical conductivity, thermal conductivity etc. Although, it was unable to 

explain even the observed facts that why some solids are conductors and some insulators. We 

know several types of energies associated with the atom, like heat energy, electrical energy, 

light energy and so on and so forth. But we know that the atoms and molecules can be described 

by quantum mechanics. The quantum mechanics is very tricky and complex field. In the 

quantum mechanics the scientists trust on the Fermi energy to define the energy of the electrons 

or protons.  In 1927, Pauli applied quantum statistics to explain the weak Para magnetism of 

alkali metals, that was the first success of the theory. The very subsequent year Sommerfeld 

published an improved free electron theory by switching classical statistics of Maxwell 

Boltzmann by Fermi Dirac statistics. The Sommerfeld free electron theory of metal could be 

better explained as the statistical behavior of the gas obeying Fermi Dirac statistics. In this unit, 

we shall study concept of free electron theory, Lorenz Drude theory, electrical conductivity, 

thermal conductivity, Fermi energy, Density of states, heat capacity of free electrons.  

5.2 OBJECTIVE 

After studying this unit, you should be able to- 

 Define free electron theory. 

 Apply free electron theory to calculate electrical conductivity, thermal conductivity. 

 Ohm’s law from free electron theory. 

 Fermi energy and density of states. 

 Solve problems using Fermi energy and density of states. 

 Concept of electronic heat capacity. 

5.3 FREE ELECTRON THEORY 

The Drude theory model of electrical conduction was proposed in 1900 by Paul Drude to 

explain the transport properties of electrons in materials especially metals. The model, which 

is an application of kinetic theory, assumes that the microscopic behaviour of electrons in a 

solid may be treated classically and looks much like a pinball machine, with a sea of constantly 

jittering electrons bouncing and re-bouncing off heavier, relatively immobile positive ions. The 

metals consist of positive ion cores with valence electrons moving freely among these cores. 

The electrons are however bound to move within the metal due to electrostatic attraction 

between the positive ion cores and the electrons. The potential field of these ion cores, which 

is responsible for such an interaction, is assumed to be constant throughout the metal and 

mutual repulsion among the electrons is neglected. The behaviour of free electron moving 
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inside the metals considered to be similar to that of atoms or molecules in the perfect gas. These 

free electrons are therefore referred to as free electron gas and the theory is named as free 

electron gas model. These free electrons are known as the conduction electrons. The total 

energy of conduction electron is equal to its kinetic energy. Also, since the movement of 

conduction electrons is restricted to within the crystal only, the potential energy of a stationary 

electron inside metals is less than the potential energy of identical electrons just outside it. This 

energy difference serves as the potential barrier and stops the inner electrons from leaving the 

surface of the metal. Thus, in free electron Gas model, the movement of free electrons in a 

metal is equivalent to the movement of free electron gas inside a potential energy box.  

5.4 LORENTZ DRUDE THEORY 

The Drude model is a purely classical model and treats both electrons and ions as solid spheres.  

On the basis of Drude considerations that the electron gas behaves as perfect gas, Lorentz 

postulated in 1909 that the electrons constituting the electron gas obey Maxwell Boltzmann 

statistics under the equilibrium conditions. These shared ideas of Drude and Lorentz establish 

the Drude Lorentz theory. The basic assumptions of Lorentz Drude theory are 

(i) in metals, there is large number of free electrons. These electrons are free to move 

about the volume of the metal as the molecules of a perfect gas in a container, 

(ii) Free electron motion in a metal is similar to the thermal agitation of a perfect gas. 

The assembly of free electrons in a metal is called the electron gas. The electrical 

and thermal conductivity of metals is due to these free electrons. 

(iii) In metals, the free electrons move randomly in all possible directions with different 

velocity like the molecules of a perfect gas. The average kinetic energy of an 

electron is 3kT/2, where k is Boltzmann’s constant and T absolute temperature. 

(iv) In the lattice, the free electrons make collisions from time to time with fixed positive 

ions.  

(v) In the absence of external electrical field, the random motion of free electrons is 

equally probable along all directions. In presence of external electric field, the 

electrons drift slowly with some average velocity, known as average drift velocity, 

in the direction opposite to that of electric field.  

(vi) The free electrons are accelerated and gain some additional kinetic energy in the 

presence of external electric field. The accelerated free electron on collision with 

positive ion fixed in the lattice loses its additional kinetic energy. Such a collision 

is called inelastic collision. 

(vii) Between two successive collisionswith the positive ions, the average distance 

traversed by the free electron is known as mean free path denoted by . 
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5.5 ELECTRICAL CONDUCTIVITY 

Let the time taken between two successive collisions be  and velocity along one direction u, 

then 

u


  , where  is the mean free path 

If the applied field on the electron of charge –e be E, then the equation of motion of electron is 

2

2

d x
m eE

dt
   

or, 
2

2
/

d x
eE m

dt
   

Integrating it, we get 

dx eE
t C

dt m
    

At t=0, dx/dt=0 

Therefore C=0 

Hence, 
dx eE

x t
dt m

    

Average velocity between two collisions is defined as 

0

1 eE
x tdt

m




    

On solving we get 

2

eE
x

m


  

If J is the current density and n the number of electrons per unit volume, then we have 

J nex  , putting the values, we get,  

21

2

ne E
J

m u


           (1) 

Since we know 21
3

2
mu kT         (2) 

Therefore from eq.(1) and eq. (2), we get 
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2

6

ne E u
J

kT


           (3) 

or J E  

where 
2

6

ne u

kT


           (4) 

which is defined as electrical conductivity. 

5.6 THERMAL CONDUCTIVITY 

Thermal conductivity is a process in which heat is transferred from one part of the body to 

another as a result of temperature gradient. In order to calculate the thermal conductivity, les 

us draw three parallel planes at E X and F, as shown in figure 5.1,  normal to the direction of 

heat flow which are separated by mean free path  , if two temperatures are equal, T1=T2, then 

there is no exchange of energy. 

 

Figure 5.1: Heat conduction from one part of body to another 

If T1is greater than T2, there is an exchange of energy from E to F, therefore the number of 

electrons per unit area per unit time is 
6

nu
 and each electron has energy 

2

1

2

mu
. 

Thus, Energy transferred from E to F 

2

1

6 2

munu


 

13

6 2

Bk Tnu


 

1

1

4
Bnuk T

 

Likewise, the energy transferred from F to E 

1

1

4
Bnuk T

 



69 
 

Therefore, the net energy transferred from E to F per unit area per unit time 

1 2

1
( )

4
Bnuk T T 

 

Therefore, the transfer of energy per unit area per unit time, when K is the thermal 

conductivity  

1 2( )

2

K T T






 

On solving  

1 2

1 2

( ) 1
( )

2 4

T T
K nuk T T




 

 

1

2
BK nuk

          (5)
 

where Bk is Boltzmann constant. 

Dividing (5) by (4), we get 
21

/
2 6

B

K ne u
nuk

kT





  

or 23( / )B

K
k e T




         (6)
 

or 
K

T

 , or 

K
LT


 .This is known asWiedemann-Franz relationwhere the constant of 

proportionality L is called the Lorenz number. Formetals, the thermal conductivity is quite 

high, and those metals which are the best electrical conductors are also the best thermal 

conductors. At a given temperature, the thermal and electrical conductivities of metals are 

proportional, but raising the temperature increases the thermal conductivity while decreasing 

the electrical conductivity. This behaviour is viewed in the Wiedemann-Franz Law. 

 Qualitatively, this relationship is based upon the fact that the heat and electrical transport both 

involve the free electrons in the metal. The thermal conductivity increases with the average 

particle velocity since that increases the forward transport of energy. However, the electrical 

conductivity decreases with particle velocity increases because the collisions divert the 

electrons from forward transport of charge. This means that the ratio of thermal to electrical 

conductivity depends upon the average velocity squared, which is proportional to the kinetic 

temperature. 

Self-Assessment Question (SAQ) 1:  A uniform copper wire of length 0.5 m and diameter 0.3 

mm has a resistance of 0.12 Ohm at 293 k. If the thermal conductivity of the specimen at the 

same temperature is 390 Wm-1K-1, calculate the Lorentz number. Compare the value with the 

theoretical value. 

 

http://hyperphysics.phy-astr.gsu.edu/hbase/pertab/metal.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/electric/conins.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/temper.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/temper.html#c1
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5.7 OHM’S LAW FROM FREE ELECTRON THEORY 

We know from Lorentz-Drude theory,

2

F

ne
J E

mv


  , if I is the current flowing through a 

conductor of l length and area of cross section A and potential difference V, then 

/J I A and /E V l  

or, 

2

/
F

ne V
I A

mv l


  

or. 

2

F

ne AV
I

mv l


 for a given conductor, if the physical conditions do not change l, A,   , Fv  

are constant.  

 

Hence, I V , that is at given physical conditions the current flowing through a conductor is 

proportional to the potential difference across it. That is Ohm’s law. 

5.8 ELECTRICAL CONDUCTIVITY OF METALS 

The mechanism of electrical conductivity of metal can be understood by the free electron 

theory. The crystal lattice of a metal consists of positive ions at the lattice points and the valence 

electrons free to move inside the crystal. When there is no electric field applied, the free 

electrons move in the random direction inside the crystal. It is because of that the electrons 

collide frequently with the imperfection in the crystal lattice, which occurs with the thermal 

vibrations of the ions about their equilibrium positions in the lattice and also from the presence 

of impurity ions. Following each collision, the electron is scattered in the new directions with 

new speeds, which makes their random motion. Let  be the average time between successive 

collisions of an electron, which gives
Fv


  . Where  is the average distance between 

collisions and Fv is the speed of those electrons whose kinetic energy is equal to the Fermi 

energy. It should be noted that electrons which are near the Fermi level contribute to the 

conductivity. In the presence of applied the electric field to the metal, the electrons modify 

their random motion in such a way that on an average they drift slowly in the direction opposite 

to that of the field (since electrons have negative charge) with a small speed, which is known 

as drift velocity, dv . When electric field is applied to an electron in the metal exerts on it a force

eE , which gives acceleration to electron, that is 

eE
a

m
 , where e and m are the charge and mass of electron respectively. Consider an electron 

that has just collided with the lattice imperfection. The drift speed of electron has become 

momentarily zero and it would now move in a purely random direction, gaining a drift speed 

a just before its succeeding collision. Therefore, the average drift speed during the interval of 

 is given as 
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2
d

a
v


  

or, 
2

d

eE
v

m


  

placing the value of , we get 

2
d

F

eE
v

mv


  

If n is the number of electrons per unit volume in the conduction band of the metal, then the 

current density j  is given as  

dj nev  

or, 

2

2 F

ne E
j

mv


  

We know the resistivity  of the metal, which is defined as  

E

j
   

Hence, we obtain 

2

2 Fmv

ne





  
 

This form is a sort of Ohm’s law, since the quantities Fv  and  which determine  do not 

depend on the applied field. Therefore, at given temperature the resistivity   is a constant for 

a given metal.   

Since conductivity of metal is defined as  

 

1/   

or, 

2

2 F

ne

mv


            (7) 

Mobility is defined as  

/dv E   

or, 
2 F

e

mv


   

Putting this expression in equation (7), we get  
ne   



72 
 

This is the general expression for conductivity. If the conductivity is due to holes and 

electrons, then the expression becomes 

e e h hn e n e     

Where, h and e are the mobility due to holes and electrons respectively.  

 

5.8.1 Effect of Temperature on Conductivity of Metals 

On increasing temperature of the metals, its conductivity decreases and the resistivity increases.  

In the metallic lattice, metals have electrical resistivity due to the scattering of free electrons 

by the imperfections. There are two types of imperfections. 

1. Occurring due to the thermal vibrations of the positive ions about their equilibrium 

positions in the lattice. 

2. Occurring due to structural defects as presence of impurity ions. Hence the resistivity 

of a metal can be given as 

t i     

Here t the resistivity due to thermal imperfections and i  is caused by impurity or structural 

imperfections. As the temperature increases, the amplitude of ion vibrations increases, because 

of that the scattering cross section of the ions increases. Hence, the resistivity t increases. The 

vibration of t with temperature is of the form
5

t T   at low temperature and t T   at high 

temperatures. We can explain metallic resistivity by this expression 

Fv



  

On rising temperature, the electron speed Fv increases and the mean free path  decreases, 

therefore, the resistivity  increases.  

 On the other hand, the resistivity i is independent upon the temperature. The variation of 

resistivity is shown in figure.  

 

5.9 FERMI ENERGY 

The Fermi energy is a concept in quantum mechanics usually referring to the energy difference 

between the highest and lowest occupied single-particle states in a quantum system of non-

interacting fermions at absolute zero temperature. In a Fermi gas, the lowest occupied state is 

taken to have zero kinetic energy, whereas in a metal, the lowest occupied state is typically 

taken to mean the bottom of the conduction band. 

5.9.1 Fermi Dirac Distribution of Energy in an Electron Gas in Metal 

In a metallic solid, the valence electrons are loosely bound to the individual atoms; we can treat 

these electrons as an ideal electron gas. Since electrons are Fermi particles, they obey Pauli’s 

exclusion principle and Fermi Dirac distribution law. 

According to this law, the number of electrons in with energy i  is given by 
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/
1F B

i

i k T

g
n

e
 




, where ig is the number of quantum states having the energy i  

In a solid, there are 1022 to 1023 atoms/ cm3 and the same number of valence electrons. As such 

there are an enormous number of quantum states which the electron can occupy. 

So, the number of electrons in energy ranges   to d   

/

( )
( )

1F Bk T

g d
n d

e
 

 
 





 

where ( )g d  is the number of quantum states available to these electrons.  

It can be shown that the number of allowed energy values between  to d  is 

3/2 1/2

3

4 2
( )g d Vm d

h
     , where m is the mass of electron and V is the volume of the electron 

gas.  Since there are two possible spin states (
1

2
 ,

1

2
 ) for an electron, each energy value can 

have by two electrons.  

Therefore,the number of energy states available to the electrons having energy between  to 

d  is given by 

3/2 1/2

3

8 2
( )g d Vm d

h
      

Hence 3/2 1/2

3 ( / )

8 2 1
( )

1F Bk T
n d Vm d

h e
 

    



  

( )n  , is known as Fermi Dirac distribution function. 

At absolute zero, there are two cases 

Case I: F  , 3/2 1/2

3

8 2
( )n d Vm d

h
    

 

Which represents a parabolic curve. 

Case II: F  , ( ) 0n d  
 

This means that no electrons have energy greater than Fermi energy at absolute temperature.  

Fermi energy is the maximum energy that a free electron in the metal can have at absolute zero. 

 

5.9.2 Calculation of Fermi Energy 

Suppose a given metal contains N free electrons. We can calculate its Fermi energy by filling 

up its energy states. At T=0, starting from 0  , all quantum states upto F  are filled. 

That is  

0

( )
F

N n d



    



74 
 

or, 3/2 1/2

3

0

8 2 F

N Vm d
h



   
 

or we get, 
2/32 3

2 8
F

h N

m V




 
  

   

This is the expression for the Fermi energy of a metal at T=0, the N/V is the density of free 

electrons. Thus, the Fermi energy is independent of the size of metal. Fermi energy can be 

written in terms of Fermi temperature defined as F FkT  , where k is the Boltzmann’sconstant. 

 

5.9.3 Density of States for Free Electron Gas in Three Dimensions 

Consider the behavior of free electron gas in 3D metallic crystal. The potential of the electrons 

inside the crystal is constant and may be taken zero, whereas it has a large value outside the 

crystal. For simplicity, the 3D crystal may be regarded as a cubical box having length of the 

edge equal to L. the free particle Schrodinger equation in 3D is given as 

2 2
( ) ( ) 0k k k

m
r E r   

       (8) 

The solution of it given by 

( ).( ) x y zi k x k y k zik r

k x Ae Ae
 

 
       (9) 

Where, A is an arbitrary constant. Such wave function must satisfy the periodic boundary 

conditions. They must be periodic in x, y, z with period equal to L. these boundary conditions 

are  

( , , ) ( , , )k kx L y z x y z  
       (10) 

( , , ) ( , , )k kx y L z x y z  
 

( , , ) ( , , )k kx y z L x y z  
 

An application of the first boundary condition in (10) to the wave function (9) gives 

1xik L
e 

 

or, 

2 4
0, , ,......xk

L L

 
  

 

Similar results are obtained for ,y zk k  

The allowed Eigen values of the state or orbital with wave vector k are obtained  

2 2 2
2 2 2( )

2 2
k x y z

k
E K k k

m m
   
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Where the magnitude of the wave vector k is related to the wavelength  as 

2
k




  

Thus, it is easy to see the energy spectrum consists of discrete energy levels. These energy 

levels are very close to each other. 

In a system of N free electrons, the occupied states or orbitals in the ground state may be 

represented by points inside a sphere in the k space. The energy corresponding to the surface 

of the sphere represents the Fermi energy as shown in figure 5.2. Let Fk be the wave vector 

from the origin of the k space to the surface of the sphere. Then the Fermi energy is written as  

 

Figure 5.2: Density of states sphere 

2 2

2

F
F

k
E

m


          (11) 

Fermi sphere volume is given by 

34

3
Fk

 

Volume occupied by one state in k space  

32
( )

L



 

The total number of electronic states or orbitals is (the number of states is equal to number of 

electrons) 

3 34 2
(2) / ( )

3
FN k

L




         (12) 

Where a factor 2 appears because there are two allowed values for each orbital. So, we get 

2
1/33

( )F

N
k

V




         (13) 
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Therefore, eq (12) and (13), we get the expression of Fermi energy  

2 2
2/33

( )
2

F

N

m V


 

 

The electron velocity Fv  at the Fermi surface is obtained  

 
2

1/33
( )F

F

k N
v

m m V


 

  
 

(Particle velocity is given by /F Fv k m ) 

The density of state function is obtained by using the fact that at absolute zero, all the energy 

states below Fermi energy are occupied and the total number of states is equal to the number 

of electrons. 

0
( ) ( )

F

N D f d


   
         (14) 

So, from (14) and (12), on solving we get 

3/2 1/2

2 2

2
( ) ( )

2

V m
D  




        (15) 

5.9.4 Average Kinetic Energy 

Av Kinetic Energy is defined as 

0

1
( ) ( )

F

D f d
N



       

Putting the values of ( )D   and Fermi function and integrating we get 

 

3

5
F   

or we can write at absolute zero as 

00

3

5
F            (16) 

 

5.10 HEAT CAPACITY OF FREE ELECTRON GAS 

Electron heat capacity or electronic specific heat describes the contribution of electrons to the 

heat capacity. Heat is transported by phonons and by free electrons in solids. For pure metals, 
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however, the electronic contributions dominate in the thermal conductivity. In impure metals, 

the electron mean free path is reduced by collisions with impurities, and the phonon 

contribution may be comparable with the electronic contribution. Theoretically the specific 

heat of metal shall get contribution from the atoms as well as free electrons 

atomic electronicc c c   

Since the FT (Fermi Temperature) is of the order of 104K, as the temperature increase some of 

the electrons close to the Fermi energy level are moved to occupy higher energy states due to 

the thermal excitation (around 100K). As is seen by the figure 5.3, only those particles that are 

indicated in graph by dots contribute the specific heat. It is only a fraction of electrons with 

energy near Fermi energy which can be excited. For most electrons, the states to which they 

will be excited are already occupied and because of the Pauli exclusion principal, they cannot 

be excited into these states. 

 

Figure 5.3:Contribution of electrons to the heat capacity 

The electrons in the metal which contribute to conduction are very close to the Fermi level. But 

to contribute to bulk specific heat, all the valence electrons would have to receive energy from 

the thermal energy Bk T  . But the Fermi energy ( B Fk T  ) is much greater than thermal energy, 

and the majority of the electrons cannot receive such energy since there are no available energy 

levels within of their energy.  

The small fraction of electrons which are within Bk T  of the Fermi level does contribute a small 

specific heat, and this electron specific heat becomes significant at very low temperatures. 

Using Fermi-Dirac statistics (as opposed to Einstein-Bose for phonons), a small fraction of the 

electrons is available to participate in specific heat. This fraction contributes a specific heat. 

Excited electrons will be only fraction given by 

/B B Fk T k T  

B Fk T  Corresponds to all the states and Bk T corresponds to the energy of thermal excitation.

/ /B B F Fk T k T T T , These are the fraction of electrons excited thermally. And each of them 

has the excitation of Bk T . Therefore, the excitation energy is of the order of 

( / )B Fk T T T  
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Or, 
2 /B Fk T T   

By definition of specific heat 

2( / )e B F

d
c k T T

dT


 

2 /e B Fc k T T , or we can write 

 

ec T , where (2 / )B Fk T   is constant.  

We know by Debye theory the specific heat due to lattice vibration 

3

atomicc T  

Thus, the total specific heat as shown in figure 5.4, is given by the sum of these two 

3

atomic electronicc c c T T    
 

 

Figure 5.4: Specific heat with temperature 

At very low temperature the atomic specific heat becomes small and the electronic specific 

heat becomes relatively high. For, example the atomic heat of silver becomes very small 

compared to its electronic specific heat from the temperature range 3K. In specific heat 

measurement Keesom and Cock found that in the range from 1.5 to 3K the specific heat varies 

according to ec T . This suggests that below the 3K for silver, free electrons become the 

chief contributor to the specific heat. Thus, the Fermi Dirac statistics has solved the problem 

of specific heat of metals. 

 

Examples 1:  Calculate the Fermi energy in electron volts for sodium assuming that it has one 

free electron per atom. (Atomic weight of sodium= 23, density of sodium= 0.97 g cm-3 

Solution: we have the expression of Fermi energy
2 2

2/33
( )

2
F

N

m V


   or 

2/32 3

8
F

h N

m V




 
  

   
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First calculate / AN
N V

W




 

We know 266 10 / .AN atoms kg mole 
 

Given 30.97 .g cm 
 

or, 3 30.97 10 /kg m  
 
28 3/ 2.53 10 /AN

N V electrons m
W


  

 

Planck’s constant h= 6.62 x 10-34 joule sec, mass of the electron m= 9.1 x 10-31kg 

Putting all these values in
2 2

2/33
( )

2
F

N

m V


    , we get 

105.032 10F jules  
 

Or, 
10 195.032 10 /1.6 10 3.14F eV     

 

Example 2: There are 2.54 x 1022 free electrons per cm3 in sodium. Calculate its Fermi energy, 

Femi velocity and Fermi temperature. (h= 6.67 x 10-34 Jsec, m=9.1 x 10-31 kg, k=1.38 x 10-

23J/K,  

1eV=1 x 10-19joule) 

Solution: 
2 2

2/33
( )

2
F

N

m V


 

 

First calculate N/V= 2.54 x 1028 / m3, putting in above equation, with the values of m and h, 

we get 

195.0 10 3.1F J eV     

At absolute zero, this is the maximum kinetic energy of the free electron  

2 191
5.0 10

2
Fmv J 

 

Therefore, on solving
61.05 10 /Fv m s 

 

Fermi temperate is defined as 
19

4

23

5.0 10
3.6 10

1.38 10

FT K
k

 




   

  

Example 3: The Fermi energy in silver is 5.51 eV. What is the average energy of the electrons 

in silver at 0K? At what temperature a classical free particle will have this kinetic energy. 

Solution: At 0K the average energy of an electron is 
00

3

5
F 
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0

3
5.51 3.31

5
eV   

 

The kinetic energy of a classical particle is  

3

2
kT

 

So, 
193

3.31 3.31 1.6 10
2

kT eV J   
 

On solving for T we get 

19
4

23

2 3.31 1.6 10
2.56 10

3 1.38 10
T K





 
   

  

Example 4: The Fermi energy of copper is 7eV. Calculate the average distance (mean free 

path) travelled by the conduction electrons between collisions. (conductivity of copper 6 x 

107/ ohm m, concentration of valence electrons 8.5 x 1028/ m3) 

Sol: The velocity of electrons is given by
2 F

Fv
m


 , putting the given values you may get

61.6 10 /Fv m s  , Conductivity is given as 

2

2 F

ne

mv


  or

22 /Fmv ne  , putting the given 

values you may get 88 10 m    

Example 5:  What would be the mobility of electrons in copper if there are 9 x 1028 valence 

electrons per metre3 and the conductivity of copper is 6 x 107 mho/meter 

Solution: conductivity of metal is given as ne  or
ne


  , putting the given values you 

may get 3 24.16 10 /m Vs    

Example6: Find the average drift velocity of electrons in copper conductor with a cross-

sectional area of 10-6 m2 carrying a current of 4 x 10-10meter. The atomic weight of copper is 

63.6 and the density is 8.9 gram/cm3. Avogadro’s number NA= 6.02 x 1023. 

Solution:
28 38.42 10 /AN

atoms m
M


  , you know the relation dj nev , therefore

43.0 10 /d

j i
v m s

ne neA

   
 

Self-Assessment Question (SAQ) 2: Calculate the Fermi energy in electron volts for sodium 

assuming that it has one free electron per atom. Given density of sodium = 0.97 g cm-3, atomic 

weight of sodium = 23. 
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Self-Assessment Question (SAQ) 3: Consider silver in metallic state with one free conduction 

electron per atom. Calculate its Fermi energy. The density of silver is 10.5 gram/cm3 and its 

atomic weight is 108. The Avogadro’s number is 6.02 x 1023 atoms/mole.  

Self-Assessment Question (SAQ) 4: The Fermi energy for lithium is 4.72 eV at absolute zero. 

Calculate the number of conduction electrons per unit volume in lithium. (h= 6.67 x 10-34 J-

sec, m=9.1 x 10-31 kg, k=1.38 x 10-23J/K) 

5.11 SUMMARY 

In this unit, we have briefly reviewed classical kinetic theories of an electron gas both by 

Drude and by Lorentz as simple models of metals. The free electron model explains 

successfully some of the properties of solids, such as electrical and thermal conductivities etc. 

We have also reviewed electrical conductivity of metals in terms of electron collisions and 

mean free path. The Fermi energy is useful in determining the thermal and electrical 

characteristics of the solids. It is the very important concepts in the quantum mechanics and 

the superconductor physics. It is used to metal, insulators and semi-conductors. We learned 

that the Fermi Level is the highest energy level which an electron can occupy at the absolute 

zero temperature. Since at absolute zero temperature the electrons are all in the lowest energy 

state hence the Fermi level is in between the valence band and the conduction band. Free 

electrons are associated with a continuous energy spectrum and bound electrons with a discrete 

energy spectrum. Moreover, you have learned Fermi Dirac energy distribution among free 

electrons in metals. Now, we understand that at low temperature the electronic specific heat of 

solid is found to be predominant and varies linearly with T.  

5.12 GLOSSARY 

Assumption- supposition. 

Randomly-arbitrarily. 

Collision–accident. 

Bouncing-Recoiling. 

Trust-Belief. 

Immobile-Steady. 

Imperfection-deficiency. 

Exclusion- rejection. 

Mobility- flexibility. 

Contribute-provide. 

Residual-remaining. 
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5.15   TERMINAL QUESTIONS 

1. What is the relation of electrical conductivity and the thermal conductivity agreeing to free 

electron theory? 

2. What is Fermi energy? 

3. What is the value of Fermi energy at absolute Zero? 

4. What is the value of mean energy in terms of Fermi energy at absolute zero? 

5.  How does Fermi energy depends upon temperature? 

6. How does electrical conductivity of a metal depends upon on temperature?  

7. Write the relation of Fermi energy F with Fermi temperature FT
 

8. Why do metals have high electrical conductivity? 

9. Why does metallic resistivity increase with rise in temperature? 

10. True or False statement? 

(i) Fermi energy of a metal depends upon the size of the metal. 

(ii) Fermi energy does not change when two identical metals are joined together. 

(iii) Only electrons near the Fermi level contribute to the conductivity. 

(iv) Conductivity of metals increase with rice in temperature. 

(v) Pure metals have some residual resistivity at absolute zero temperature. 

(vi) Electron, proton and neutron are fermions. 

 

11. Fill in the Blanks 

(i) In Quantum Physics, two or more identical particles are ……... 



83 
 

(ii) Fermions have…...spin. 

(iii) The highest energy level that can be occupied by an electron in a metal at 0K is 

called……level. 

(iv) The maximum energy that a free electron in a metal can have at absolute zero is 

called…. 

(v) The Fermi energy of a metal at 0 K temperatures depends on …. per unit volume in 

the metal. 

(vi) The ratio of Fermi energy to Fermi temperature equals to… 

(vii) In metals, the average distance covered by free electrons between collisions is 

called… 

 
12.       The electrical and thermal conductivities of silver at 20oC are 6.22 x 107 / ohm / meter 

and 423 W/m/K, respectively. Calculate the Lorentz number on the basis of free 

electron theory. 

 

13. Calculate the heat capacity of electron gas at room temperature in copper assuming one 

free electron per atom. Compare this with the lattice specific heat value of 2.4 x 104 

J/ kmol/K. the Fermi energy of copper is 7eV. 

 

14.  A copper wire of cross sectional area 5 x 10-2 sq. cm. carries a study current of 50 ampere. 

Assume one electron per atom; calculate the density of free electrons, the average 

drift velocity and the relaxation time. Given: the resistivity of copper 1.7 x 10-8/ 

ohm m. 

 

15. Objective questions 

(i) The formula relating the thermal conductivity and electrical conductivity is 

(a)  /K T const   (b) 2/K T const   (c) / KT const   (d) 2/ KT const 
        (ii) Fermi level is. 

 
(a) Lowest level filled with electrons 

(b) Highest level containing electrons 

(c) Sometimes 

(d) Highest vacant level 

(iii) The drift speed of an electron in presence of an electric field E across a metal, having 

relaxation time   is 

(a) / 2eE m (b) / 2e E m (c) / 2eE m  (d) 2 /mE e  

       (iv)  The current density in a metal in terms of drift speed and electron concentration per 

unit   volume n is 

(a) / dne v (b) /dv ne (c) dnev (d) /dev n  

(v) The resistivity of a metal 

(a) Increases linearly with absolute temperature t at high temperatures 

(b) Decreases linearly with temperature T at high temperatures 

(c) is proportional to T3 at high temperatures 

(d) is proportional to T1/3 at high temperatures. 

 

5.16ANSWERS 

Self-Assessment Question (SAQ) : 
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1. Given: l=0.5 m, d = 0.3 mm, r = 0.15 x 10-3 m, R = 0.12 W, Lorentz Number =?  

2 2

1 1
R

r r

 

 
 

75.89 10 / m   
 

7

390

5.89 10 293

K
L

T
 

   

8 22.26 10L W K     

2. The Fermi energy is given by 

2 2
2/33

( )
2

F

N

m V


 

 

First, we calculate electron density. Assuming one electron per sodium atom N/V is 

given by 

ANN

V W




 
26 36 10 0.97 10

23

N

V

  


 
28 32.53 10 /electrons m 

 2 2
2/3 193

( ) 5.02 10
2

F

N
jules

m V


   

 

3.145F eV 
 

3. Use the formula 

2 2
2/33

( )
2

F

N

m V


 

 

Here    
27 3/ 58.4 10 /N V atoms m 

 

Putting these values in eq

2 2
2/33

( )
2

F

N

m V


 

 

We get 
198.8 10F J  

 

or, 
5.5F eV 

 

4. 

2 2
2/33

( )
2

F

N

m V


 

 

Here N is the number of conduction electrons in a volume V of lithium metal. The 

number of conduction electrons per unit volume is given as 
28 3/ 4.64 10 /N V m 

 

Terminal Questions 

1., ,
K

Const
T
  electrical conductivity and, K thermal conductivity  

2. Fermi energy is the highest energy level containing electrons. 
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3. 

2/32 3

8
F

h N

m V




 
  

   

4. 
00

3

5
F 

 

5. Fermi energy increases with increasing temperature. 

6. On increasing temperature, the thermal agitation of electrons increases so electrons collide 

more frequently, thus leading to decrease in relaxation time consequently electrical 

conductivity decreases with increase in temperature. 

7. F FkT  , where k is the Boltzmann constant. 

8. Metals contain free electrons in abundance which is charge carriers. 

9. The metallic resistivity is expressed as
2

2 Fmv

ne





 
As temperature increases, Fv increases and  decreases, so  increases. 

10. (i) F, (ii) T, (iii) T, (iv) F, (v) T, (vi) T 

11. (i) indistinguishable (ii) half integral (iii) Fermi (iv) Fermi energy (v) Number of 

electrons (vi) Boltzmann constant k (vii) mean free path 

12. 2.32 x 10-8 W ohm K-2. 

13. 146 X 102 J kmol-1 K-1, 0.608 %. 

14. 8.4 x 1028 / m3, 7.4 x 10-4 m/s, 2.46 x 10-4 s. 

15. (i) a (ii) b (iii) b (iv) c (v) a 
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UNIT 6                  BAND THEORY OF SOLIDS 
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6.14 Terminal Questions 

6.15 Answers 

 

6.1 INTRODUCTION 

The electronic band structure of a solid describes the range of energies that an electron within 

the solid may have, named as energy bands, allowed bands, or simply bands and ranges of 

energy that it may not have named as band gaps or forbidden bands. Band theory derives these 

bands and band gaps by examining the allowed quantum mechanical wave functions for an 

electron in a large, periodic lattice of atoms or molecules. Band theory has been successfully 

used to explain many physical properties of solids. In this division, the one-electron energy 

band theories for the crystalline solids are proposed. The significance of energy band theories 

for a crystalline solid is due to the fact that many important physical and optical properties of 

a solid can be described using its energy band structure. In broad, the energy band structure of 

a solid can be raised by solving the one-electron Schrödinger equation for electrons in a 

crystalline solid that contains a large number of interacting electrons and atoms. To simplify 

the complex work of solving the Schrödinger equation for the many-body problems in a crystal, 

the results that arise from the motion of atomic nuclei must beignored;it is supposed that the 

nuclei are at rest in the equilibrium positions at each lattice site. In this unit, we shall study how 

the bands are formed and their classification on the basis of energy band gap. We shall use the 

concept of Bloch function to discuss the Kronig-Penney model for the behavior of an electron 

in periodic potential and describe how it leads to the origin of the energy bands and the 

forbidden bands in solids. 

6.2 OBJECTIVES 

After studying this unit, you should be able to- 

 Define origin of energybands. 

 Apply the theory to classify bands. 

 Understand Bloch function. 

 Motion of an electron in one dimensional periodic potential. 

 Kronig Penney Model and its consequences. 

 Apply the theory to solve problems. 

6.3 WHY BANDS AND BAND GAPS OCCUR 

To understand the physics of energy band, consider a solid enclosing a huge number of atoms 

packed closely together.  Each atom when isolated has a discrete set of electron energy levels 

1s, 2s, 2p, 3s, 3p……. If we consider all the N atoms of the solids to be isolated from one 

another, then they would have completely coinciding sets of energy levels. That is each of the 

energy levels of the N atoms system would have N fold degeneracy. They fill the energy levels 

in each atom independently. As the atom approach one another to form the solid, a continuous 
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increasing interaction occurs between them which causes each of the levels to split into N 

distinct levels. In practice, N is very large, therefore the split energy levels become so numerous 

and so close together that they form an almost continuous energy band. The amount of splitting 

is different for different energy levels as shown in figure 6.1. In general the lower levels are 

splitted less than the higher levels, the lowest levels remaining almost unsplitted. The reason 

is that the electrons in the lower levels are the inner electrons of the atoms. which are not 

significantly influenced by the presence of nearby atoms. On the other hand, the electrons in 

the higher levels are the valence electrons whose wave functions overlap appreciably. The 

formation of energy levels for some of the higher energy levels of isolated sodium atoms are 

shown in figure. The 2p level does not split until the interatomic distance become smaller than 

actually found in the solid sodium, the level 1s and 2s do not split at all. The 3s level is the first 

occupied level to be splitted into a band. The energy bands in the solid correspond to energy 

levels in an atom. An electron in a solid can have only energies that fall within these energy 

bands. The various energy bands in solids may or may not be overlapping depending upon the 

structure of the solid. If they do not overlap then the intervals between them represents energies 

which the electrons in the solid cannot have. These intervals are called forbidden band gap or 

the energy band gap. If there is overlapping between the bands then they have the continuous 

distribution of allowed energies. 

 

Figure 6.1: Splitting of Energy levels 

In a single isolated atom, the electrons in each orbit have definite energy associated with it. But 

in case of solids all the atoms are close to each other, so the energy levels of outermost orbit 

electrons are affected by the neighbouring atoms.  

When two single or isolated atoms are bring close to each other than the outermost orbit 

electrons of two atoms are interact or shared with each other. i.e., the electrons in the outermost 

orbit of one atom experience an attractive force from the nearest or neighbouring atomic 

nucleus.  Due to this the energies of the electrons will not be in same level; the energy levels 

of electrons are changed to a value which is higher or lower than that of the original energy 

level of the electron. The electrons in same orbit exhibit different energy levels. The grouping 

of these different energy levels is called energy band. However, the energy levels of inner orbit 

electrons are not much affected by the presence of neighbouring atoms.  

http://www.physics-and-radio-electronics.com/electromagnetics/electrostatics/atom.html
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There are number of energy bands in solids but three of them are very important as revealed in 

figure 6.2. These three energy bands are important to understand the behaviour of solids. These 

energy bands are  

1. Valence Band 

2. Conduction Band 

3. Forbidden Band 

 

 

 

Figure 6.2: Classification of bands 

6.3.1 Valence Band 

The energy band which is formed by grouping the range of energy levels of the valence 

electrons or outermost orbit electrons is called as valence band. Valence band is present below 

the conduction band as shown in figure. Electrons in the valence band have lower energy than 

the electrons in conduction band. The electrons present in the valence band are loosely bound 

to the nucleus of atom. 

6.3.2 Conduction Band  

The energy band which is formed by grouping the range of energy levels of the free electrons 

is called as conduction band. Generally, the conduction band is empty but when external energy 

is applied the electrons in the valence band jumps in to the conduction band and becomes free 

electrons. Electrons in the conduction band have higher energy than the electrons in valence 

band. The conduction band electrons are not bound to the nucleus of atom.  

6.3.3 Forbidden Band 

http://www.physics-and-radio-electronics.com/electronic-devices-and-circuits/introduction/valence-electrons.html
http://www.physics-and-radio-electronics.com/electronic-devices-and-circuits/introduction/valence-electrons.html
http://www.physics-and-radio-electronics.com/electronic-devices-and-circuits/introduction/free-electrons.html
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The energy gap which is present between the valence band and conduction band by separating 

these two energy bands is called as forbidden band or forbidden gap. In solids, electrons cannot 

stay in forbidden gap because there is no allowed energy state in this region. Forbidden gap is 

the major factor for responsible of electrical conductivity of a solid. The classification of 

materials as insulators, conductors and semiconductors are mainly depends on forbidden gap. 

The energy associated with forbidden band is called energy gap and it is measured in unit 

electron volt, eV (1 eV = 1.6 × 10-19 J). The applied external energy in the form of heat or light 

must be equal to the forbidden gap in order to push an electron from valence band to the 

conduction band.   

 

6.4 Classification of Solids on the basis of Band Structure 

The electrical properties of a solid depend upon its energy band structure. In common, each 

energy band has a total of N individual levels, and each level can hold 2(2l+1) electrons. In this 

way each band has 2(2l+1) N electrons. It means that the 1s, 2s, 2p, 3s…. bands can hold 2N, 

2N, 6N, 2N……electrons respectively. The classification of solids is based upon the nature of 

band occupation by electrons and the width of forbidden bands.  

A useful way to visualize the difference between conductors, insulators and semiconductors is 

to plot the available energies for electrons in the materials as displayed in figure 6.3. Instead 

of having discrete energies as in the case of free atoms, the available energy states form bands. 

Crucial to the conduction process is whether or not there are electrons in the conduction band. 

In insulators the electrons in the valence band are separated by a large gap from the conduction 

band, in conductors like metals the valence band overlaps the conduction band, and in 

semiconductors there is a small enough gap between the valence and conduction bands that 

thermal or other excitations can bridge the gap. With such a small gap, the presence of a small 

percentage of a doping material can increase conductivity dramatically. An important 

parameter in the band theory is the Fermi level, the top of the available electron energy levels 

at low temperatures. The position of the Fermi level with the relation to the conduction band is 

a crucial factor in determining electrical properties. 
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Figure 6.3: Comparative study of insulator, semiconductor and conductor 

 

6.4.1 Conductors 

In some solids, there is partially filled band above the completely filled lower bands. Such a 

band is formed from partially filled atomic levels as in case of Sodium. A sodium atom has a 

single valence electrons in its outer 3s level. Therefore, out of N atoms in a solid material of 

sodium, each contributes only one 3s electron to the solid, and so there are only N valence 

electrons in the 3s band. Thus the balance band 3s is only half full. A partially filled band may 

also be the result of overlapping of a completely filled band and an empty band, as in case of 

alkaline earth metals. As shown in figure the energy band of beryllium in which there is an 

overlap of the lower energy levels of the empty 2p band with the upper energy levels of the 

completed 2s band. Those electrons which would occupy the highest energy levels in the 2s 

band will actually go into the lowest levels of the overlapping 2p band. Thus, levels of the top 

of 2s band become unoccupied and the band is only partially filled. 

When an electric field is applied across a piece of solid sodium, the electrons in the partially 

filled valence band easily acquire additional energy to move to the higher unoccupied energy 

levels within the same band as depicted in figure 6.4, without crossing the energy gap. Thus, a 

partially filled valence band is a feature of conductors. As we know a conduction band is an 

empty band just above the valence band into which electrons can pass. So, in conductors the 

balance band itself is a conduction band. 
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Figure 6.4: Overlapping of bands in conductor 

 

6.4.2Semiconductor 

 

In semiconductor as shown in figure 6.5, the band gap is small enough that the thermal 

energy can bridge the gap for the small fraction of the electrons.    

         

     
     Figure 6.5: Band gap in semiconductor 

For intrinsic semiconductors like silicon and germanium, the Fermi level is essentially halfway 

between the valence and conduction bands. Although no conduction occurs at 0 K, at higher 

temperatures a finite number of electrons can reach the conduction band and provide some 

current. In doped semiconductors, extra energy levels are added. The increase in conductivity 

with temperature can be modelled in terms of the Fermi function, which allows one to calculate 

the population of the conduction band. However, the doping of semiconductors has a much 

more dramatic effect on their electrical conductivity and is the basis for solid state electronics. 

6.4.3 Insulator 

In insulators, there is a big gap between valence band and conduction band. Figure6.6  shows 

the energy bands of diamond. There is an energy band completely filled with electrons and 

above is the empty band separated by a gap of around 7 eV. At least 7eV of energy must be 

supplied to an electron in order to reach the conduction band where it can move freely.  

http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/intrin.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/sili.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/sili.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/fermi.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/fermi.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/fermi.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/intrin.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/dsem.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/fermi.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/fermi.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/dope.html#c1
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Figure 6.6: Band gap in insulator 

Most solid substances are insulators, and in terms of the band theory of solids this implies that 

there is a large forbidden gap between the energies of the valence electrons and the energy at 

which the electrons can move freely through the material (the conduction band). Glass is an 

insulating material which may be transparent to visible light for reasons closely correlated with 

its nature as an electrical insulator. The visible light photons do not have enough quantum 

energy to bridge the band gap and get the electrons up to an available energy level in the 

conduction band. The visible properties of glass can also give some insight into the effects of 

doping on the properties of solids. A very small percentage of impurity atoms in the glass can 

give it colour by providing specific available energy levels which absorb certain colours of 

visible light. The ruby mineral (corundum) is aluminium oxide with a small amount (about 

0.05%) of chromium which gives it its characteristic pink or red colour by absorbing green and 

blue light. While the doping of insulators can dramatically change their optical properties, it is 

not enough to overcome the large band gap to make them good conductors of electricity. 

6.5 BLOCH THEOREM 

A periodic potential appears because the ions are arranged with a periodicity of their Bravais 

lattice, given by lattice vectors a. 

V(x + a) = V(x) 

The Bloch theorem is a mathematical statement regarding the form of the solutions of the 

Schrodinger equation of an electron moving in a region of periodic potential, such as crystal 

lattice. It states that the eigenfunction of the electronic Schrodinger equation for a periodic 

potential are of the form .( ) ( )ik r

kr e u r  , where the function ( )ku r  has the period of the 

crystal lattice and k is the wave vector. This is the statement of Bloch theorem which means 

that the eigenfunctions of the wave equation for a periodic potential are of the form of plane 

waves .ik re , modulated by a function ( )ku r with the periodicity of the crystal lattice.  

6.6 EXTENDED, REDUCED AND PERIODIC ZONE SCHEME  
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In Bloch function, .( ) ( )ik r

kr e u r  , we have labeled the modulating factor ( )ku r by a subscript 

k to indicate that the form of this factor depends on the wave vector k . There are three ways 

called zone schemes to states in different energy bands. 

6.6.1Extended Zone Scheme 

Different energy bands are drawn in different Brillouin zones in the wave vector space.  

     
 

   Figure 6.7: Energy versus wave vector in extended zone scheme 

 

Three energy bands of a linear lattice have shown in figure 6.7for the first three Brillouin 

zones. The first zone is the region of k space with in the first energy gap; the second zone is 

the region between the first and the second energy gap and so on.  

 

6.6.2 Reduced Zone Scheme 

The representation using 
2 2

2
k

k
E

m
  shows all bands in the first Brillouin zone only and is 

known as the reduced zone scheme. 

 

     
    Figure 6.8: Energy vs wave vector in reduced zone scheme 
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6.6.3 Periodic zone Scheme 

In this pattern, energy band is drawn in every zone as shown in figure 6.9. We repeat a given 

Brillouin zone periodically through whole of k space. If we translate a band from other zones 

into the first zone, than we can translate a band in the first zone into every other zone. 

Therefore, in this pattern the energy E of the band is a periodic function in the reciprocal lattice. 

 

   
    Figure 6.9: Energy vs wave vector in periodic zone scheme 

 

6.7 BEHAVIOR OF AN ELECTRON IN PERIODIC 

POTENTIAL 

The free electron model of metals assumes the conduction electrons to move freely in a region 

of constant potential without interacting with the crystal lattice. Although this model explains 

certain properties of metals, such as conductivity, specific heat, Para magnetism etc., but it fails 

to explain satisfactorily properties of solids in general. Hence it needs to be modified. 

In general an electron in solid moves in a region of periodically varying potential caused by 

the ion cores situated at the lattice points. 

6.8 THEORY OF BAND STRUCTURE IN SOLIDS (KRONIG 

PENNEY MODEL) 

Kronig and Penney assumed that an electron experiences an infinite one dimensional array of 

finite potential well. Each potential well model attraction to an atom in the lattice, so the side 

of the wells must corresponds roughly to the lattice spacing as exposed in figure 6.10.  

In order to find the allowed energies of electrons in solids, we must solve the Schrodinger 

equation for an electron in a crystal lattice. The figure shows the actual potential as seen by the 

electron in the crystal lattice in one dimension. Kronig-Penney suggested a simplified model 

potential consisting of an infinite row of rectangular potential wells separated by barriers of 

width b, with space periodicity a is the periodicity of the lattice. The solution to the Schrodinger 
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equation for an electron in a periodic lattice can be found by Bloch theorem. According to this, 

the eigenfunction of the free electron travelling wave ( ) ikx

k x e  is modified by the periodic 

potential to be of the form ( ) ( ) ikx

k kx u x e  .   

Where ( ) ( )k ku x u x a   

 

 

 

Figure 6.10: Kronig and Penney square well potential 

On solving Schrodinger equation of the electron for the Kronig-Penney potential under the 

condition that   and /d dx  must be continuous at the boundaries of the well, a complicated 

expression for the allowed energies in terms of k of the electron is obtained which shows that 

the gap in the energy occur at values given by 

2 3
, , ,.......k

a a a

  
     

Figure 6.11 shows the relationship between energy  and wave number k for a one-

dimensional lattice. The dashed curve is the free electron parabola. 

At the above value of k we get energy gap, whereas for values of k not near these values the 

energy are much like that of free electron. The origin of the allowed energy bands are forbidden 

gaps are seen in figure. 
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Figure 6.11: Allowed and forbidden bands 

The occurrence of gaps can be understood in terms of Bragg reflection. The Bragg’s 

condition is 

2 sina n   

Where a is the spacing between the ions of the lattice. Since we are considering the lattice in 

one dimension only, the above equation becomes 

2a n  

or 2 2 / 2a n    

or, 
2 3

, , .....k n
a a a a

   
      

These are just the values of k at which the gaps in the k  curve occur. The waves 

corresponding to values of k not satisfying the above condition travel almost freely and those 

satisfying the condition are reflected resulting in standing waves.  

6.9 ORIGIN OF BAND GAP 

The wave function associated with Kronig-Penney modelmay be calculated on solving 

Schrodinger wave equation in two sections. 

We have 
2 2

2 2

8
0

d m
E

dx h

 
   for 0 < x < a 

or we can write 
2

2

2
0

d

dx


    
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Where the value of 
2

2

2

8 mE

h


   

Also, 
2 2

02 2

8
( ) 0

d m
E V

dx h

 
   for -b < x < a 

or we can write 
2

2

2
0

d

dx


    

Where 
2

2

02

8
( )

m
V E

h


    

Expected solutions of these Schrodinger equations should have the form of Bloch function, 

which requires that  and /d dx to be continuous throughout the crystal. Let us consider the 

general solutions of these Schrodinger equations 

1( ) exp( ) exp( )x A i x B i x      

And 2 ( ) exp( ) exp( )x C x D x      

Here, A, B, C, and D are the constant in region I and II. Values of these constant can be 

obtained using the boundary conditions as 

1 20 0
( ) ( )x x   

1 20 0
/ /

x x
d dx d dx 

 
  

And 
1 20
( ) ( )

x x b
x x 

 
  

Because for the periodic lattice that is ( ) ( )V x a V x  , it is supposed that the wavefunction 

will also show the same periodicity. Hence, the expected solution of the above said Schrodinger 

equation must have the same form as that of the Bloch function. 

So, we can write 

( ) ( )exp( ( ))k kx a b x ik a b      

( ) ( )exp( ( ))k kx x a b ik a b       

Now applying the boundary conditions we get the following relations 

A B C D    

( ) ( )i A B C D     

On simplifying these equation one can get 
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2 2

cos ( ) sin sinh cos cosh
2

k a b a b a b
 

   


 
   

 
 

To solve above equation, Kronig-Penney supposed that the potential energy is zero at lattice 

sites and equal V0 in side. Also assumed that, as the height of the potential barrier V tends to 

infinity and the width of the barrier b tends to zero so that the product V0 b remains finite. 

Under these assumptions 

sinh b b   

cosh 1b   as 0b  

Therefore 

2 2

cos sin cos
2

ka b a a
 

  


 
  
 

 

Hence on solving we get 

2

02

8
cos sin cos

2

m
ka V b a a

h


  



 
  
 

 

or, cos sin / coska P a a a     

Where 
2

02

4 ma
P V b

h

 
  
 

 
Figure 6.12: Origin of band gap 

This is the condition for the solutions of the wave equation to exist. As you see from figure 

6.12 that this is satisfied only for those value of a  for which its left-hand side lies between 

+1 and -1. It is because its right hand side must lie in range. Such values of a represent the 

wave like solution and are reachable. On the other hand, the other values of a  will be 
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inaccessible. The significances of this can be agreed very well by the figure. the part of vertical 

axis lying between the horizontal lines represents the range acceptable. Since 
2 is 

proportional to the energy so a  will be measure of energy. It is clear that the region for a  

where the value of sin / cosP a a a    does not lie between -1 and +1. Therefore, these 

values of a and henceforth of energy E, there is no solution. Such region of energy is 

disallowed and is named forbidden bands. This analysisled to the following inferences 

1. The energy spectrum of the electronconsists of alternate regions of allowed energy that is 

continuous band and forbidden energy band. Usually these bands are referred as allowed 

and forbidden energy bands. 

2. As the value of a increases the width of the allowed energy bands increases. 

3. The quantity P, which is noted as a measure of potential barrier strength. If P is large, means 

the potential barrier V0 b is large. For the infinite deep well the electron can be considered 

as confined into a single potential well. It is applied to the crystals where the electrons are 

very tightly bound with their nuclei. In second case, when P is small, the barrier strength is 

small that is 0P , the electron can be considered to be moving freely through the potential 

well. It is the case of crystal where the electron is almost free of their nuclei. Hence we 

conclude that the width of particular allowed band decreases as P increases. As P , the 

allowed bands are compressed into energy levels and the energy spectrum is thus a line 

spectrum. Whereas 0P , we have the free electron model of the energy spectrum. It is 

known as quasi continuous. In between these limits, the position and the width of the 

allowed and forbidden bands for any value of P are obtained. 

4. To calculate the energy spectrum in extreme cases ( P), we have 

a n   

or we can write
2 2 2

2

2mE
a n   

or you can write, 
2 2

2

22
E n

ma


  

It is the physically expected result because the large P makes the tunneling through the 

barrier nearly unlikely. In second case when 0P  

We get cos cosa ka   

Which implies k   

or, 
2 2k   

Which gives
2 2

2

k
E

m
 , this is equivalent to the case of free particle. Thus no allowed energy 

level exists.  

Example 1: Show that for the Kronig-Penney potential with 1P  , the energy of the lowest 

energy band at k=0 is given by 
2

2 24

h P
E

ma
  

Solution: for k=0  sin / cos cosP a a a ka    becomes  

sin / cos 1P a a a     

or we may write  
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/ 1 cos / sinP a a a     

On expanding sine and cosine function 

where cos 𝛼𝑎 = 1 −  
𝛼2𝑎2

2
 

And sin 𝛼𝑎 =  𝛼𝑎 

so, we can write 
2 2

/
2

a
P a


   

we know 
2

2

2

8 mE

h


  

hence, we get 
2

2 2

2

8
( / 2)

mE
P a

h


  

or 
2

2 24

h P
E

ma
  

Example 2: In germanium the energy gap is about 0.75 eV. Show that the crystal behaves as 

a transparent medium only for light of wavelength above 16533 Å. (given h= 6.63 x 10-34 J s, 

vel of light c= 3.0 x 108 m/s) 

Solution: first we calculate the energy of 16533 Å photon 

/E hc   

On putting the values we get  
34 8

10

6.63 10 3.0 10
/

16533 10
E hc 





  
 


 

= 1.2x 10-19 Joule 

or =1.2x 10-19 Joule/ 1.6 x 10-19= 0.75 eV 

Since the photon energy for light of wavelength above 16533 Å will be less than 0.75 eV which 

is energy band gap in case of germanium. Therefore, these photons will not be absorbed and 

the light will be transmitted through the crystal. Those photons for light below 16533 Å will 

have energy more than the energy gap of 0.75 eV and so they will be absorbed in exciting the 

electrons from the valence band to the conduction band. So, the crystal is opaque for the light 

below 16533 Å.  

Example 3: The energy gap in silicon is 1.1eV and in diamond it is 6eV. State the 

transparency of these substances to visible light. 

Solution: the wavelength of light corresponding to photon energies 1.1 eV 
34 8

19

6.63 10 3.0 10
/

1.1 1.6 10
E hc 





  
 

 
 

= 11.3 x 10-7 m  

= 11300 Å 

And for 6 eV 
34 8

19

6.63 10 3.0 10
/

6 1.6 10
E hc 





  
 

 
 

=2072 Å 
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So, we conclude the silicon is transparent only to radiation of 11300   Å. Because, it absorbs 

photons of shorter wavelength, and so it is opaque to visible light. Since diamond is transparent 

to radiation of 2072   Å, therefore it is transparent to visible light. 

 

 

6.10 SUMMARY 

 
In this unit, you have studied about the origin of the energy band theory in solids.  The large 

energy gap between the valence band and conduction bands in an insulator says that at ordinary 

temperature, no electron can reach the conduction band. It is discussed that, in semiconductor 

the band gap is small enough that the thermal energy can bridge the gap for the small fraction 

of the electrons. In, conductors, there is no band gap since the valance band overlap the 

conduction band. Making use of the Bloch theorem and the Kronig-Penney model, the energy 

spectrum of the electron is found to comprise a set of continuous band, separated by the region 

of forbidden energies which are called energy gaps. This can be understood from the 

construction of Brillouin zones. The first Brillouin zone is defined as the region in k space. The 

energy levels of an electron in a crystal can be determined by solving Schrödinger’s equation 

for a periodic potential and by studying changes to the electron energy structure as atoms are 

pushed together from a distance. The energy structure of a crystal is characterized by 

continuous energy bands and energy gaps. The ability of a solid to conduct electricity 

dependenceson the energy structure of the solid. In solids, the discrete energy levels of the 

individual atoms merge to form energy bands Energy gaps arise in solids because they contain 

standing wave states. The size of the energy gap between the valence and conduction bands 

determines whether a substance is a conductor, an insulator or a semiconductor. To check your 

progress, examples and terminal questions are given.  

 

6.11 GLOSSARY 
 

extended – extensive. 

Periodic- cyclic. 

Forbidden – prohibited. 

Contribute– provide. 

Crucial– critical. 

Doping– fixing. 

Dramatically–noticeably. 

Translate– interpret. 

Assumption– supposition. 

Accessible– reachable. 

Transmit– convey. 

Discrete -  isolated. 
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6.14TERMINAL QUESTIONS 

 
1. How does the electrical conductivity of a pure semiconductor change with rice in 

temperature? 

2. Why does the electrical conductivity of a pure semiconductor increase on heating? 

3. Name the charge carriers at room temperature in a conductor, an intrinsic semiconductor 

and an insulator. 

4. 16. The energy gaps in the energy band diagram of a conductor, an insulator and a 

semiconductor are E1, E2 and E3, arrange them in increasing order. 

5. Describe in what sense an insulator with infinite band gap cannot be a perfect insulator. 

6. Calculate the energy gap of a crystal which is transparent only for light of wavelength 

greater than 12345 Å.   

7. An insulator has an optical absorption only for wavelengths shorter than 1800 Å. Find 

the width of the forbidden band for the insulator. What is the order of magnitude of the 

forbidden gap in a semiconductor? 

8. The energy gaps of Si, Ge and Ag are 1.1, 0.7 and 0 eV respectively. Find the wavelength 

of electromagnetic radiation to which these solids are opaque. (given h= 6.63 x 10-34 J 

s, vel of light c= 3.0 x 108 m/s ) 

9. What are the two main approaches used to determine the energy levels of electrons in a 

crystal? 

10. How does the number of energy levels in a band correspond to the numberN of atoms? 

11. What is the main difference between an insulator and a semiconductor? 

12. A valence electron in a crystal absorbs a photon of wavelength, λ=0.300nm, this is just 

enough energy to allow the electron to jump from the valence band to the conduction 

band. What is the size of the energy gap?   
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13. In a band theory of solids, there are an infinite number of bands. If T = 0 K, the uppermost 

band to contain electrons is partially filled, and the gap between the band and the next 

lowest band is 0.8 eV, is the material a metal, an insulator, or a semiconductor. 

14. In a band theory of solids, there are an infinite number of bands. If T = 0 K, the uppermost 

band to contain electrons is completely filled and the gap between the band and the next 

lowest band is 8 eV, is the material a metal, an insulator, or a semiconductor? What if 

the gap is 0.8 eV?  

15. True/ False statements 

(a) When the large number of atoms is brought close together, the energy levels split and 

form energy band.  

(b) The conduction band of an insulator is empty. 

(c) The forbidden energy band in Si is 1.1 eV. 

(d) The conduction band of a conductor is empty. 

(e) Insulators are opaque to visible light. 

(f) All one electron configurations in an ideal crystal are Bloch functions. 

(g) Conductivity of semiconductors decreases with rice in temperature. 

(h) At temperature near absolute zero, the semiconductors become insulators. 

(i) Kronig-Penny model explains the behaviour of an electron in non-uniform magnetic 

field. 

16. Fill in the Blanks 

(a) Conductors have ……………..valence energy band. 

(b) The motion of electron in the periodic crystal lattice gives rise to ………… 

(c) The band energy of solids deals with electron motion in the ………..field of crystal. 

(d) In metals, there is an overlapping of ……..and…….bands. 

(e) The energy gap for a semiconductor is………..than for an insulator. 

(f) A solid having a band completely field and the next allowed band completely empty is 

called……. 

(g) Insulators are transparent to …….light. 

(h) Kronig-Penney model explain the behaviour of an electron moving in a periodically 

varying……... 

(i) Semiconductors are opaque to visible light but transparent to ….. 

6.15 ANSWERS 

2. Around absolute zero, a pure semiconductor is an insulator because the valence band is full 

and there are no free electrons in the conduction band. As the temperature rises, more and 

more of the electrons in the valence band gain energy to cross the energy gap and enter the 

conduction band, hence the conductivity increases.  

3. Free electrons, free electrons and holes, no charge carriers. 

4. E1 ˂ E2 ˂ E3. 

5. As long as band gapis finite, an electron can be elevated to the conduction band, resulting is 

conduction 

6. 1.0 eV 
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7. 6.9 e V 

8. For Si, = 0-11300 Å, For Ge,  = 0- 17760 Å, For Ag,  = 0-   Å 

9. (1). Solve Schrödinger’s equation for the allowed states and energies. (2) Determine energy 

levels for the case of very large lattice spacing and then determine the energy levels as this 

spacing is reduced. 

10. For N atoms spaced far apart, there are N different wave functions, all with the same energy 

(similar to the case of an electron in the double well of H2). 

As the atoms are pushed together, the energies of these N different wave functions are split. 

By the exclusion principle, each electron must each have a unique set of quantum numbers, 

so the N atoms bringing N electrons together must have at least N states. 

11. For an insulator, the energy gap between the valence band and the conduction band is larger 

than for a semiconductor. 

12. 4.13 keV. 

13. Metal. 

14. Insulator, semiconductor. 

15. (a) T, (b) T,(c) T, (d) F,  (e) F,  (f) T,  (g) F,  (h) T, (i) F. 

16. (a) partially filled, (b) energy gap, (c) periodic, (d) valence, conduction, (e) smaller (f) 

insulator (g) visible (h) potential (i) infrared radiation. 
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7.14 Suggested Readings 

7.15 Terminal Questions 

7.16 Answers 

 

7.1 INTRODUCTION 

Generally, solids can be classified into two broad categories, conductors and insulators. 

Conductors are those across which electric charge can flow very easily.  While insulators are 

those through which, there is no electric charge or difficult to flow the charge.  This difference 

between the conductors and insulators can be described on the basis of the number of free 

electrons in them. In conductors, there are large numbers of free charge carriers while insulators 

have nearly no free charge carriers. The electrical resistance increases with rise in temperature 

meaning that the temperature coefficient of resistance of conductor is positive. However, there 

are certain solids whose electrical conductivity is intermediate between conductors and 

insulators. These are called semiconductors. Ge, Si and C are some examples of 

semiconductors. The outermost valence shell electrons of semiconductors are neither so tightly 

bound with the atom as in insulator, nor so loosely bound as in case of conductors. The 

electrical resistance in case of semiconductors decreases with the increase in temperature that 

is why, the temperature coefficient of semiconductors is negative. At absolute zero temperature 

all the semiconductors become insulators. Some solids have a much smaller energy gap that is 

of the order of 1 eV, between valence band and the conduction band are known as the 

semiconductors. 

It may be explained in other way as in an ordered periodic crystal lattice, electrons as the 

carriers of electrical current are not allowed to move around freely. Instead, they have to obey 

certain rules enforced by quantum mechanics. As a consequence, electrons have to occupy 

certain energy bands which are separated from each other by small or large band gaps. This 

situation can be compared to a two-floor building consisting of a ground floor and a first floor. 

In the language of solid state physics, these two floors are called valence band and conduction 

band, respectively. Both floors are covered by a well-ordered array of quadratic tiles, 

representing the periodic lattice of atoms in a semiconductor crystal. The movement of 

electrons in a crystal is then analogous to the movement of citizens in our building, whose most 

important purpose is to transport charge from one end of the building to the other end.  

In this unit, we shall begin here by the overview of semiconductors. We shall study p type and 

n type semiconductors. Also, you will study, why the Fermi level shifted towards conduction 

band or valence band on doping the p type or ntype impurities in the semiconducting specimen. 

Also, in this unit, you shall also review electron hole concentration, drift current, mobility and 

conductivity, effective mass and Hall Effect.  

7.2 OBJECTIVES 
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After studying this unit, you should be able to- 

 define semiconductor 

 what are the difference between intrinsic and extrinsic semiconductors 

 what are the difference between n type and p type extrinsic semiconductors 

 how does temperature affect each type of semiconductor? 

 what are the difference between conductivity equation of intrinsic and extrinsic 

semiconductors 

 what are the relation of electron and hole mobility to conductivity 

 explain drift current 

 what is effective mass 

 understand Hall effect 

 solve problems using law of conservation of charges 

 apply Hall effect to calculate the number of charge carriers 

 

7.3 WHAT ARE SEMICONDUCTORS? 
The semiconductors are the solids whose conductivity lies between the very high conductivity 

of conductors and very low conductivity of insulators. The energy band gap between the 

conduction band and the valence band is narrow, which is of the order of 1 eV. At absolute 

zero the semiconductor has the energy band structure of an insulator with the difference that 

the forbidden band gap. But at room temperature a semiconductor is considered as 

1. A partially filled conduction band 

2. Partially unoccupied valence band  

3. A small energy gap of the order of 1eV 

7.4 PROPERTIES OF SEMICONDUCTORS 

Followings are some properties of semiconductors. 

1. The resistance of semiconductors decreases with the increase of temperature that is 

semiconductor have negative temperature coefficient. 

2. Electrical properties of semiconductors changes on adding some impurities.  

3. The bonding between valence electrons of semiconductors is covalent which are formed 

by sharing of valence electrons. 

7.5 TYPES OF SEMICONDUCTORS  

The semiconductors are the solids whose electrical conductivity lies between the very high 

conductivity of metals and the very low conductivity of insulators. They are characterized by 

the narrow gap of the order of 1 eV between the valence band and the conduction band. 

Germanium and silicon have the energy gaps of around 0.7 eV and 1.1 eV respectively. Pure 

semiconductors are insulators at low temperatures. At room temperature, although, some of the 

valence electrons acquire thermal energy greater than forbidden band gap and cross over to the 

conduction band. A vacancy is created in the valence band at each place where an electron was 

present before moving to the conduction band as shown in figure 7.1. This vacancy is called 
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the hole. The free electrons in the conduction band and the holes in the valence band can move 

about even under a small field. Therefore, semiconductors are slightly conducting. As the  

 

Figure 7.1: Energy Band gap 

temperature increases, more and more electrons are reaching to the conduction band, leaving 

behind equal number of holes in the valence band. Consequently, the conductivity of 

semiconductors increases with the increase in temperature.  

Depending upon the conductivity, there are two types of semiconductors: - 

1. Pure semiconductors (intrinsic semiconductors) 

2. Impure semiconductors (extrinsic semiconductors) 

7.5.1 Intrinsic Semiconductor 

A semiconductor in pure form is called an intrinsic semiconductor. The electrical conductivity 

of these semiconductors arises by the thermal excitation of electrons from the valence band to 

the conduction band. Pure Si and pure Ge are notable examples of intrinsic semiconductors. 

The electronic configurations of these semiconductors are as follows: 

2 2 6 2 2

14 1 ,2 2 ,3 3Si s s p s p  

2 2 6 2 6 10 2 2

32 1 ,2 2 ,3 3 3 ,4 4Ge s s p s p d s p  

Since, atoms of Si and Ge both have four valence electrons, because of that, these are 

tetravalent. 
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Figure 7.2: Intrinsic semiconductor 

The atoms of Si and Ge have four valence electrons surrounding an inner core as shown in 

figure 7.2. Each of the four valence electrons of an atom is shared by an electron of its four 

nearestneighoursatoms and formed the covalent bonds. At temperature near to zero, all valence 

electrons are tightly bound to the inner core and there are no free electrons available toconduct 

electricity through the specimen. At room temperature, although, some of the valence electrons 

are thermally excited into the conduction band and become free to move about. These excited 

electrons leave holes in the valence band as shown in figure 7.3. Greater the temperature, more 

is the number of electron-hole pairscreated. On applying the electric field, the free electrons in 

the conduction band move in a direction opposite to the field and holes in the valence band 

move in the direction of the field also both give growth to the electric current. Therefore, in a 

semiconductor electrons and holes both establish current. Thus, in an intrinsic semiconductor 

the conduction is due to electrons and holes both and the total current is the sum of currents 

due to free electrons and holes. The conductivity of an intrinsic semiconductor is very poor.At 

normal temperature, only one covalent bond breaks in 109 atoms of Ge. Meaning that, only one 

atom in 109 atoms is available for conduction. So, practically there is no use of intrinsic 

semiconductor. 

 

 

Figure 7.3: Bond formation in intrinsic semiconductor 
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In case of intrinsic semiconductor, the concentration of electrons in conduction band and holes 

in valence band are equal at a given temperature. If ne and nh are the electrons and holes 

concentration respectively, we have e h in n n  , where in is called the intrinsic concentration. The 

rate of destruction of electron hole pairs by recombination is given by e h

dn
n n

dt
  or, we can 

write as
2

e h i

dn
Qn n Qn

dt
   , where Q is the constant of proportionality also known as 

recombination coefficient. Here, negative sign shows that there is decrease in electron hole 

pairs with time due to recombination process. 

The rate of creation of electron hole-pairs per unit volume is related to 

1) Density of electrons available for thermal excitation, that is given as iN n , where N is the 

total number of covalent electrons per unit volume 

2) The Boltzmann factor 
( )

/C VE E

Be k T
 

 

We take forbidden energy gap g C VE E E  , therefore we can write 

( )
/ /gC V

EE E

B Be k T e k T
 

  

Therefore, the rate of creation of electron hole pairs is  

( ) /gE

i B

dn
N n e k T

dt


   

or,    ( ) /gE

i B

dn
L N n e k T

dt


   

Where, L is the constant of proportionality. Thus, we can write 

2 ( ) /gE

i i BRn L N n e k T


   

As, at normal temperature only a small fraction of covalent electrons is excited to the 

conduction band, therefore N >>𝑛𝑖 , hence we neglect 𝑛𝑖 from the term (𝑁 − 𝑛𝑖) 

Hence    
2 /gE

i B

L
n Ne k T

R


  

or we can write,  

/ 2gE

i Bn De k T


  

 Where,Dis a constant (D=LN/R). 
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7.5.1.1 Density of electron hole pair in an intrinsic semiconductor 

According to Quantum Mechanics, the density of energy states per unit volume in the 

conduction band is given by

3/2

2 1/2

2

2
( ) (1/ 2 ) ( )e

C

m
D E E E

 
  

 
, where em

 is the effective 

mass of an electron. We know the Fermi function  

( )/

1
( )

1F B
e E E k T

F E
e





 

If𝐸 −  𝐸𝐹 =  𝑘𝐵𝑇, the Fermi function becomes  

( )/

1
( )

F B
e E E k T

F E
e


  

or,   
( )/

( ) F BE E k T

eF E e
  

This is known as the Boltzmann approximation which says that all electrons in the conduction 

band are in narrow region at the bottom of conduction band. Now we can calculate the number 

of electrons per unit volume in the energy interval E and E +dE in the conduction band by this 

relation 

( ) ( ) ( )e en E dE D E F E dE  

On putting the values of Fermi function and density of states, we get 

3/2

( )/2 1/2

2

2
( ) ( ) (1/ 2 ) ( ) F BE E k Te

e C

m
n E d E E E e dE


  

  
 

, on integrating it between the limits E 

and , we obtain 

3/2

( )/2 1/2

2

2
( ) ( ) (1/ 2 ) ( ) F B

C

E E k Te
e C

E

m
n E d E E E e dE

 
  

  
 

  

or,  

3/2

( )/ ( )/2 1/2

2

2
( ) (1/ 2 ) ( )F C B C B

C

E E k T E E k Te
e C

E

m
n E e E E e dE


    

  
 

  

On substitution, C

B

E E
x

k T


  and differentiation it,

B

dE
dx

k T
  

On putting in the above equation we get 

3/2

( )/2 3/2 1/2

2

0

2
( ) (1/ 2 ) ( ) F C BE E k T xe

e B

m
n E k T e x e dx


   

  
 


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Where, 
1/2

0

xx e dx





  is the standard integral, whose integration is 1/2 / 2  

Therefore,  

   

3/2

( )/2 3/2 1/2

2

2
( ) (1/ 2 ) ( ) / 2F C BE E k Te

e B

m
n E k T e 


  

  
 

 

or,    

3/2

( )/

2

2
( ) 2 F C BE E k Te B

e

m k T
n E e

h

 
 

  
 

, where / 2h   

This is the equation of hole concentration in the conduction band. Similarly, we can calculate the 

concentration of holes in the valence band. Hence, the concentration on holes in the valence band is 

written as

3/2

( )/

2

2
( ) 2 V F BE E k Th B

h

m k T
n E e

h

 
 

  
 

, Multiplying these two equations, we have 

3

( )/3/2

2

2
4 ( ) V C BE E k TB

e h e h

k T
n n m m e

h

   
  

 
 

or we can write  

3

/3/2

2

2
4 ( ) g BE k TB

e h e h

k T
n n m m e

h

   
  

 
 

where, g C VE E E   is the forbidden energy gap. It shows that the electron and hole densities 

at thermal equilibrium is independent upon the Fermi level and depends only upon the 

forbidden energy band gap. For intrinsic semiconductors, e h in n n  , therefore the above 

equation becomes 

3

/3/2

2

2
4 ( ) g BE k TB

i e h

k T
n m m e

h

   
  

 
 

7.5.1.2 Fermi Energy 

It is the energy of latest occupied level below which all the states are completely occupied and 

above it is completely unoccupied.  

In intrinsic semiconductor, the electron and hole concentrations are given as  

3/2

( )/

2

2
( ) 2 F C BE E k Te B

e

m k T
n E e

h

 
 

  
 
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And   

3/2

( )/

2

2
( ) 2 V F BE E k Th B

h

m k T
n E e

h

 
 

  
 

  

In intrinsic case e h in n n   

Therefore,   

3/2 3/2

( )/ ( )/

2 2

2 2
2 2F C B V F BE E k T E E k Te B h Bm k T m k T

e e
h h

  
    

   
   

 

On solving, we have  

2

3/2( / )
F C V

B

E E E

k T

h ee m m

 

  , taking log on both sides, we have 

2
(3 / 2) log( / )F C V

h e

B

E E E
m m

k T

  
  

which gives,  2 (3/ 2) log( / )F C V B h eE E E k T m m     

or,    ( ) / 2 (3/ 4) log( / )F C V B h eE E E k T m m     

If effective mass of an electron is equal to the effective mass of holes ( h em m   ), putting these values 

in above equation, we get 

( ) / 2F C VE E E   

It shows that in case of intrinsic semiconductor, Fermi level lies in middle of valence band and the 

conduction band.  

EXAMPLE: Show that the electron and hole concentrations in intrinsic semiconductor is constant, also 

called Law of Mass Action.  

Solution: We have electrons and hole concentrations as  

3/2

( )/

2

2
( ) 2 F C BE E k Te B

e

m k T
n E e

h

 
 

  
 

 

3/2

( )/

2

2
( ) 2 V F BE E k Th B

h

m k T
n E e

h

 
 

  
 

 

On multiplying both equations, we get 

3/2 3/2

( )/ ( )/2

2 2

2 2
2 2F C B V F BE E k T E E k Te B h B

e h i

m k T m k T
n n n e e

h h

  
    

     
   

 

or,  
/2 3 g BE k T

e h in n n T e   
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or,   
/2g BE k T

in e  

where, 

3/2 3/2

2 2

2 2
4 e B h Bm k T m k T

A
h h

     
    

   
is a constant and Bk is the Boltzmann constant. 

This equation shows that at a given temperature and certain band gap, 
2

in is a constant. It does not 

depend upon the impurities introduced in it. This equation is known as law of mass action. For 

pure semiconductors conductivity increases with increasing temperatures, also increases on impurity 

doping.   

7.5.2 Extrinsic Semiconductors  

Extrinsic semiconductor is an impure semiconductor formed from a pure semiconductor by 

adding a small quantity of impurity atoms called dopants. The process of adding impurities to 

the semiconductor solid is known as doping. This added impurity is very small of the order of 

one atom per million atoms of pure semiconductor. Depending upon the type of impurity added 

to the extrinsic semiconductors are categorized as  

1. n type semiconductor. 

2. p type semiconductor. 

7.5.2.1 n-type Semiconductor 

To describe the formation of n-type semiconductor, consider that a pentavalent impurity (As), 

is added to a pure Ge semiconductor.As shown in figure 7.4, Four of the five valence electrons 

of the impurity atom form covalent bonds with one each valence electrons of four Ge atoms 

nearby it. The fifth valence electron of the impurity atom requires little energy to leaves its 

atom. Therefore, it becomes free to move about in the crystal and acts as a free charge carrier. 

Therefore, on adding thepentavalent impurity to the intrinsic semiconductor, the number of 

free charge carriers increases, henceforth, the conductivity of semiconductors increases. The 

impure Si or Ge semiconductor is called the n-type semiconductor since it has an excess of 

negative charge carriers. The impurity atoms are called the donor atoms because they donate 

the electrons to the crystal. 

 

Figure 7.4: n type semiconductor 
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n-type semiconductor energy band diagram is shown above. The valence electron of the 

impurity atoms occupies the energy level just below the conduction band. This is called the 

donor level. This level is around 0.01 eV below the conduction band. At normal temperature, 

nearly all the electrons in the conduction band come from the donor levels, only a few come 

from the valence band. therefore, in n type semiconductor, majority charge carriers are the 

electrons donated by donors. Because of the thermal excitation, there are few holes in the 

valence band, hence small current contributed due to holes also. Therefore, in an n type 

semiconductor the electrons are the majority charge carries and holes are the minority charge 

carriers.  The Fermi level in the n type crystal, which is measure of top filled energy state, shifts 

from the energy gap towards the conduction band. Let the density of ionized donor atoms is Nd 

and the density of electron hole pairs in the intrinsic semiconductors is ni at any temperature T, 

we have  𝑁𝑑 =  𝑛𝑖  because of recombination of electron hole in the presence of surplus 

electrons.  Hence, we have  
3/2

( )/

2

2
2 F C BE E k Te

d

m kT
N e

h

 
 

  
 

 

or,     

( )/F C BE E k T

d CN N e



 

Where,    

3/2

2

2
2 e

C

m kT
N

h

  
  

   

or, from above equations we get, 

( )/
/ F C BE E k T

C dN N e
 


 

Taking log on both sides, we get 

( )
log( / ) F C

C d

B

E E
N N

k T


 

 

or, it become   
log( / )F C B C dE E k T N N 

 

 

Figure 7.5: Fermi level in n type semiconductor 
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It shows in figure 7.5, that in n type semiconductor the Fermi level lies below the bottom of 

conduction band. As we increase the temperature, the Fermi level goes on falling below the 

conduction band ( CE ).  On application of potential difference across the n type semiconductor, the 

free electrons in the crystal are attracted towards the positive terminal and few holes towards the 

negative terminals. Thus, the current flow takes place. The current flow in the n type semiconductor 

is mainly due to the free electrons and hence in n type the majoritycharge carries are the electrons.  

In n type semiconductor, minority charge carriers are given as  
2 /h i en n n  

or,     
2 /h i dn n N  

Since, the density of free electrons is i dn n N  , where dN  is the density of donor impurity 

electron and in  is the density of intrinsic semiconductor electrons.  

 

7.5.2.2 p-type semiconductor 

In a pure (intrinsic) Si or Ge semiconductor, each nucleus uses its four valence electrons to 

form four covalent bonds with its neighbors as shown in figure.  Each ionic core, consisting of 

the nucleus and non-valent electrons, has a net charge of +4, and is surrounded by 4 valence 

electrons. Since there are no excess electrons or holes in this case, the number of electrons and 

holes present at any given time will always be equal. 

Now, if one of the atoms in the semiconductor lattice is replaced by an element with three 

valence electrons, as shown in figure 7.6, such as a Group 3 element like Boron B or Gallium 

Ga, the electron-hole balance will be changed. This impurity will only be able to contribute 

three valence electrons to the lattice, therefore leaving one excess hole as shown in figure. 

Since holes will accept free electrons, a Group 3 impurity of periodic table, is also called an 

acceptor. Sincean acceptor donates excess holes, which are considered to be positively charged, 

a semiconductor that has been doped with an acceptor is called a p-type semiconductor, p stands 

for positive. It is observed that the material as a whole remains electrically neutral. In p-type 

semiconductor, the population of holes in valence band is more, whereas the population of free 

electrons in conduction band is less. So, current conduction is mainly because of holes in 

valence band. Free electrons in conduction band constitute little current. Hence in p-type 

semiconductor, holes are called majority carriers and free electrons are called minority carriers. 

 

 
Figure 7.6: p type semiconductor 
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At room temperature, the number of holes in the valence band is greater than the number of 

electrons in the conduction band. Hence, the probability of occupation of energy levels by the 

holes in the valence band is greater than the probability of occupation of energy levels by the 

electrons in the conduction band. This probability of occupation of energy levels is represented 

in terms of Fermilevel. Therefore, the Fermi level in the p-type semiconductor lies close to the 

valence band. The expression for Fermi energy in p type semiconductor is given as 

log( / )F V B V aE E k T N N  ,  

Where, Nais the density of acceptor atoms and

3/2

2

2
2 h B

V

m k T
N

h

  
  

 
, the equation shows that 

the Fermi level lies above the top of the valence band as shown in figure 7.7 and 7.8. The Fermi 

level depends upon the number of impurity atoms and the temperature of the specimen. On 

increasing the number of impurity atoms, the number of holes in the valence increases and the 

Fermi level shifts towards the valence band. As temperature increases, the electrons from the 

valence band excited to the conduction band and the crystal behaves like an intrinsic 

semiconductor when the number of electrons in the conduction band is equal to the number of 

holes in the valence band.  At very high temperature, Fermi level shift towards the middle of 

the forbidden energy band gap.  

 

 

Figure 7.7: p type impurity semiconductor  Figure 7.8: Fermi level in p type 

 

Example 1: Pure Si at 300K has equal electron ne and nh concentration of 1.5 x 1016 /m3. 

Doping of Boron increases hole concentrations nh to 4.5 x 1022/ m3. Calculate ne in the doped 

Si.  

Solution:  We have in doped semiconductor, 
2

e h in n n  

Where, n is the intrinsic concentration in a pure semiconductor.  
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nh = 4.5 x 1022/ m3 

ni = 1.5 x 1016 /m3 

Putting these values in the above equation we get, 

16 2
2

22

(1.5 10 )
/

4.5 10
e i hn n n


 


 

= 5.0 X 109/m3 

Example 2: The number of electron hole pair in an intrinsic semiconductor is 2 x 1019/m3 at 

270C. if this semiconductor is doped by a donor impurity such as the number of conduction 

electrons becomes 2 x 1024/m3, calculate the number of holes. Also calculate the dopant 

concentration. 

Solution: for doped semiconductor, we know 
2

e h in n n  

ne = 2 x 1024/ m3 

ni = 2 x 1019 /m3 

19 2
2

24

(2 10 )
/

2 10
h i en n n


 


 

= 2 x 1014/m3 

 On doping it becomes an n type semiconductor. 

Therefore, the number of dopant  

24 32 10 /d eN n m  
 

7.6 DIFFERENCE BETWEEN INTRINSIC AND EXTRINSIC 

SEMICONDUCTORS 

Intrinsic Semiconductors Extrinsic Semiconductors 

1. It is pure form. Pure Si or Ge is 

known as the intrinsic semiconductor 

2. Holes and electrons are equal.  These 

are not practically used 

 

1. It formed by adding trivalent or 

pentavalent impurity to the pure 

semiconductor. 

2. Number of holes are more in p type 

and number of electrons are more in 

n type as shown in figure 7.9. 

 

3. Fermi level lies in between valence 

and conduction band 

3.Fermi level lies near valence band in n 

type and near conduction band in p type 

as shown in figure 7.10 
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Figure 7.9: Difference between intrinsic and extrinsic semiconductor 

 

Figure 7.10: Band gap diagram of semiconductors 

 

7.7 DRIFT CURRENT  

Drift current is defined as the flow of electric current due to the motion of the charge carriers 

under the influence of an external electric field. 

In a semiconductor, there are two types of charge carriers, they are electrons and holes. When 

the voltage is applied to a semiconductor, the free electrons move with drift velocity dv towards 

the other end as indicated in figure 7.11. 

  

Figure 7.11: Flow of charge carriers 
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If q is the charge carried through the section of wire in time t, then then current is given as

/i q t  

Let n be the charge density per unit volume, therefore the total number of charge carriers in passing 

per second through the cross-section of wire is dnAv . So, dnAv t electrons will pass through the cross 

section of wire in t second. Thus, charge passing through anycross-section of wire in t second is given 

as  

( )dq nAv t e  

Therefore, by definition  

dnAv t
i

t
  

or,    di neAv  

It is well known relation between electric current and the drift velocity. 

We may define current density, 

    / dj i A nev  , 

This is the relation of current density and drift velocity.  

In vector form, dj nev  

7.8 MOBILITY  

The ability of an electron to move through a semiconductor, in the presence of applied electric 

field is called electron mobility. 

Let us consider a specimen of length l, area of cross section A and having electron 

concentration ne and hole concentration nhas displayed in figure 7.12. If a potential difference 

V is applied across thesample semiconductor, it creates an electric field, given as 

/E V l  

 

Figure 7.12: Mobility of charge carriers 
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Due to the electric field, electrons and holes both drift in opposite direction with velocity dv and 

creates the current ei and hi  respectively. 

Hence,    e e di n eAv
 

And  

h h di n eAv  

Therefore, total current due to both charge carriers 

e h e d h di i i n eAv n eAv     

or, current density  / e d h di A n ev n ev   

If, R is the resistance of semiconducting specimen and  is the resistivity, we have a relation 

/R l A  

Therefore dividing /E V l by /R l A , we get 

/ /E i A   

On substituting the value of / e d h di A n ev n ev   in the above expression, we get 

/ ( )e d h dE e n v n v    

or,     1/ ( ) /e d h de n v n v E    

Let us define /e dv E  , mobility due to electrons and /h dv E  mobility due to holes, hence 

above equations become as 

1/ ( )e e h he n n     

or     ( )e e h he n n    ,  

Where  is reciprocal of resistivity, therefore defined as conductivity of semiconductor. Hence, the 

electrical conductivity of semiconductor is written as 

( )e e h he n n     

This is the expression of electrical conductivity of semiconductor, which depends upon the 

concentration and mobility of charge carriers. I would like to mention here; the mobility of electron is 

higher than the nobility oh holes.  
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Example 3: Find the conductivity of p type Ge crystal which is doped with acceptor atoms of 

concentration 2 x 1017 atoms/ cm3 and all acceptor atoms are active. Ignore minority 

concentration, given 21900 / sech cm volt 
 

Solution: In a p type semiconductor, the hole concentration is roughly equal to the acceptor 

concentration 

That is 

17 32 10 /h an N cm  
 

We know the expression of conductivity as 

e e h hn e n e   
 

In p type semiconductor 

𝑛ℎ > 𝑛𝑒  and holes are the majority charge carriers, so we have h hn e 
 

On putting the given values, we get  

= 6100/ ohm meter 

 

Example4: The mobility of electrons and holes sample intrinsic germanium at room temperature is 

0.36 and 0.17 m2/Volt/s respectively. If the electron and hole densities are each equal to 2.5 x 1019/ m3, 

calculate the electrical conductivity and resistivity of germanium. 

(a) e e h hn e n e     

 

e h in n n 

 

2.12 / /ohm m 

 Resistivity  

1
0.47 m


    

7.9 THE HALL EFFECT  

It isGiven by American Physicist Hall in 1879 a graduate student. When a magnetic field is 

applied perpendicular to the current carrying conductor, a potential difference is developed 

between those points on opposite sides of the conductor. This is called the Hall Effect. This 

phenomenon tells us how the charges constituting electric current moves through a conductor 

and what these charges are. 
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Figure 7.13: Hall effect 

 

Let us consider a conductor in the form of flat strip as shown in figure 7.13.  If the charge 

carriers are positive (+q). Let I (or, current density J= I /A) be the current flowing in the 

conductor which is placed in magnetic field as shown in figure. The force is exerted on the 

charge carriers due to this magnetic field and current. The moving charge is driven towards the 

upper edge of the strip given by the magnetic force 

z d yF qv B ,  

where dv is the drift velocity of chargecarriers. Due to this an excess positive charge 

accumulates at the upper edge of the strip leaving an excess negative charge to its lower edge. 

This accumulation continues until the resulting transverse electrostatic field E becomes large 

enough to cause a force
z zF qE , that is equal and opposite the magnetic force z d yF qv B . 

This electrostatic field causes a transverse potential difference between opposite edges of the 

strip, called the Hall Voltage. 

The polarity depends upon whether the moving charges are positive or negative. 

In steady state 

z d yqE qv B       

  

We know the current density 

x dJ nqv     

From these equations, we get 

 

x y

z

J B
n

E q
 ,  
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Where, n is the number of charge carriers. 

or,  

1 z
H

x y

E
R

nq J B
  ,  

The factor 1/nq is called the Hall coefficient RH of the material of the conducting strip. 

Example5: The carrier concentration in n type semiconductor is 1019/m3. What is the value of Hall 

coefficient? 

Solution: 
1

HR
nq



 

19 19

1

10 1.6 10
HR




 
 

= 0.262 m3/C 

7.10 EFFECTIVE MASS OF AN ELECTRON  

The electrons in a crystal are not free, but instead interact with the periodic potential of the 

crystal lattice. The behavior of interacting electron with crystal concerning the external forces 

is different from that of free electron. In the crystal lattice, the variation of the electron behavior 

can be grasped into account simply by seeing the electron to have an effective mass mrather 

than its free space mass m.It differs with the direction of the motion of the electron in the lattice. 

Consider an electron moving along x direction in electric field E . Let the electron acquires 

velocity v in time dt over a distance dx. Work done by the force is given as  

dW d eEdx eEvdt    

or,    gd eEv dt   (considering, gv v group velocity) 

We have Einstein De Broglie relation 

/ 2h h     , On differentiating it, we get   

/ 2 ( )
d

d h dk
dk


   

or,    2
g

h
d v dk


  

or,   
2

dk h
eE

dt 
  

We know,  
2

g

d d
v

dk h dk

  
  , 
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Differentiating it with respect to t, we get  

2
2

2

2
( )

gdv d
eE

dt h dk

 
 ,  

or,  

2
2

2

2
/ ( )

gdv d
eE

dt h dk

 


 

Left hand side is nothing but the dimension of inverse of mass, so we can write as  

2 2

* 2 2

1 4 d

m h dk

 


 

  

Figure 7.14: Electrons in periodic potential 
 

 

Where, mis define as the effective mass of an electron. The effective mass is a new concept 

and causes because of the interaction of the electron wave packet with the periodic lattice as 

shown in figure 7.14. The effective mass of an electron may be positive or negative as shown 

in figure. It is evident that the effective mass is positive in the lower part of the band and 

negative close to the zone boundary.  The effective mass may be equal to m, only when the 

energy is not close the edge of the band and E versus k curve is parabolic. In case of 

semiconductor, where full or almost full valence bands are concerned, effective mass varies 

with the mass m. 

7.11. SUMMARY 

In this unit, you have studied about the types of semiconductors such as intrinsic semiconductor 

and extrinsic semiconductor. To present it clear, valence band, conduction band and forbidden 
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band are discussed in details. You have studied how on adding trivalent impurity pure 

semiconductor becomes p type semiconductor and on adding pentavalent impurity pure 

semiconductor become n type semiconductor. You have also understood how the Fermi level 

shifted towards the valence band (due to trivalent impurity) or towards the conduction band 

(due to pentavalent impurity). You have seen that that in pure semiconductor, Fermi level is 

just in middle in valence band and conduction band. Here, you have learned that on increasing 

the temperature conductivity increases of semiconductor. You have also reviewed about the 

mobility and conductivity of the charge carriers. A new concept of electron effective mass is 

debated and it is shown that how the effective mass becomes negative or positive. You have 

also skilled about the Hall Effect and its applications. Many solved examples are given in this 

unit to make the concept clear. To check your progress, some conceptual questions are given 

at the end.  

7.12 GLOSSARY 

Across –through. 

Intrinsic– basic. 

Extrinsic – impure. 

Drift – flow. 

Specimen – sample. 

Characteristic – specific. 

Categorized – classified. 

Minority – lesser. 

Majority – bulk. 

Surrounded – bounded. 

Doped - fixed. 

Ignore – overlook. 

Donor – contributor. 

Phenomenon – fact. 

Effective – actual. 

Periodic – cyclic. 

Concerned– affected. 
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5. http://en.wikipedia.org/wiki/P-n_junction 

6. http://britneyspears.ac/physics/basics/basics.html 

 

7.15 TERMINAL QUESTIONS 
1. How does the energy gap in an intrinsic semiconductor vary, when doped with 

pentavalent impurity? 
2. Why is Ge preferred over Si for making semiconductor devices? 
3. What is hole? How does it behave? 

4. What is the purpose of making extrinsic semiconductor by adding impurity in intrinsic 

semiconductor? 

5. What is the effect of temperature rise on the resistivity and conductivity of a pure 

semiconductor? 

6. Why is semiconductor damaged when a strong current is passed through it? 

7. Why? Semiconductor is opaque to visible light, but transparent to infra-red radiation.  

8. Calculate the intrinsic conductivity and resistivity of pure Si at room temperature, 

assuming intrinsic carrier (electron hole pair) density at this temperature to be 1.5 x 

1016/ m3. The electron and hole mobilities in Si are 0.135 and 0.048 m2/V s respectively.  

9. The semiconductor has 6 x 1019 electrons and 7 x 1020 holes/m3. If the mobilities of 

electrons and holes are 0.10 m2/ V s and 0.06 m2/V s respectively. Calculate the 

conductivity of the semiconductor. 

10. A Ge crystal is doped with 1014 donor atoms/ cm3. Assuming that all the donors are 

ionized determine the resistivity of the doped sample. (
20.39 /e m Vs  ).  

http://www.chemistryexplained.com/Ru-Sp/Semiconductors.html
http://hyperphysics.phy-astr.gsu.edu/hbase/solids/band.html
http://en.wikipedia.org/wiki/P-n_junction
http://britneyspears.ac/physics/basics/basics.htm
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Select the right choice 

11. Silicon has 14 electrons. Its outermost orbit is  

(a) Empty 

(b) Completely filled 

(c) Half filled 

(d) None of the above 

12. Main current in an intrinsic semiconductor is due to 

(a) Conduction band electrons 

(b) Valence band holes 

(c) Valence band electrons 

(d) Thermally generated electrons 

13. When Ge is doped with indium, it becomes 

(a) N type semiconductor 

(b) P type semiconductor 

(c) An insulator 

(d) Photo transistor 

14. The energy gap between the valence and conduction bands in a semiconductor is of the 

order of 

(a) 0.025 eV 

(b) 1 eV 

(c) 6 eV 

(d) Negligible 

15. An example of p type semiconductor is  

(a) pure Ge 

(b) germanium doped with arsenic 

(c) silicon doped with boron 

(d) germanium doped with carbon 

7.16 ANSWERS 

1.  Energy gap decreases. 

2. The energy gap for Ge is only about 0.7 eV while for Si it is about 1.1 eV. 

3. A hole indicates a vacancy left by an electron in the p type semiconductor. It behaves 

like a positively charged particle. 

4. Since the conductivity of intrinsic semiconductor is very small. By introducing impurity 

in it, the conductivity of semiconductor is increased. 

5. The resistivity decreases, conductivity increases. 

6. Since at room temperature, a semiconductor has a finite resistance. When a strong current 

is passed through it, it gets heated and the covalent bonds break up. This give rise to a very 
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large number of free electrons. The semiconductor then behaves like a conductor that is 

why; it ceases to be a conductor. 

7. Valence band of semiconductor is full; above it there is an empty conduction band with 

a very small gap of around 1 eV in between them. Photons of visible light have energies 

roughly between 1 and 3 eV and so they are absorbed by the valence electrons which are 

excited to the conduction band. Thus, the semiconductor is opaque to the visible light. The 

photons of infra-red radiation are of much smaller energies and fail to excite the electrons 

in the valence band. So, the infra-red radiation passes through the semiconductor, because 

of that, the semiconductor is transparent to it. 

8.   Conductivity = 4.4 x 10-4 / ohm meter, resistivity = 2.27 x 103 ohm meter 

9.  Conductivity = 7.68 / ohm meter 

10. Resistivity = 0.16 ohm meter 

11. c 

12. a 

13. b 

14. c 

15. c 
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UNIT 8   LATTICE VIBRATIONS AND SPECIFIC 

HEAT OF SOLIDS 
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8.1 INTRODUCTION 

A lattice may be considered as a periodic arrangement of atoms, ions or molecules 

which are joined together by elastic springs as shown in figure 1.  The displacement of 

any atom is shared by all the surrounding atoms. The lattice may vibrate in normal 

modes due to their internal energy or may experience forced vibrations under the effect 

external forces which may be mechanical or electromagnetic in nature. The vibration of 

first type gives information about the thermal properties of solids like specific heat, 

thermal conductivity etc, while the second types of vibrations gives the optical or 

acoustical properties of solids.  

 

Figure 1 

 

8.2 OBJECTIVES 

This chapter includes the study of interactions between atoms and molecules of the 

solids via phonon as a mediator. After the study of this chapter we shall be able to know  

 The lattice vibrations in monoatomic lattices. 

 Lattice vibrations in diatomic lattices. 

 What is phonon and how to calculate its momentum? 

 Classical model of specific heat. 
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 Quantum model of specific heat. 

 Limitations of classical and quantum models. 

 Specific heat of gases. 

 Contribution of vibrational motion to the specific heat etc. 

 

8.3 VIBRATIONS OF ONE DIMENSIONAL MONOATOMIC 

LATTICE 

 

Figure 2 

Consider a one dimensional array of atoms with each atom of having mass m and these 

masses are attached to one another by massless springs. Consider the equilibrium state 

of the atoms when these are situated at equal spacing, atomic sites are represented by 

n-1, n-2, n, n+2 etc. as shown in figure 2. In the state of vibratory motion along the x-

axis the atom will execute periodic motion about their equilibrium position and become 

source of elastic wave which propagate through the medium. Suppose at any instant of 

time the displacement of nth, (n+1)th, (n+2)th etc.  atoms from their mean position be un, 

un+1, un+2 etc. respectively. Assuming the imaginary springs are perfectly elastic, the 

force between any two atoms will follow Hooke’s law i.e. the force required to produce 

an atomic displacement is proportional to the displacement itself. If u is the 

n - 2         n - 1          n              n + 1        n + 2 

u
n-2

           u
n-1                  

u
n   

           u
n+1

        u
n+2

 

x 
a Equilibrium state 

State with small displacement  
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displacement of a spring with spring constant γ, the force exerted by any spring on the 

atom is given by 

 𝐹 = 𝛾𝑢                                                                    (1) 

Since the nth atom is attached to (n-1)th and (n+1)th atoms by two springs. The net 

force on nth atom is  

𝐹 = 𝛾{(𝑢𝑛+1 − 𝑢𝑛) − (𝑢𝑛 − 𝑢𝑛−1)} 

= 𝛾(𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1)                                     (2) 

By Newton’s second law  

𝐹𝑜𝑟𝑐𝑒 = 𝑚𝑎𝑠𝑠 × 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

Hence 

𝑚
𝑑2𝑢𝑛

𝑑𝑡2
= 𝛾(𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1)                                 (3) 

where 
𝑑2𝑢𝑛

𝑑𝑡2
 represents the accelerations of the nth atom. The periodic solution of this 

equation is given by 

𝑢𝑛 = 𝑢𝑜𝑒𝑖(𝜔𝑡−𝐾𝑛𝑎)                                                   (4) 

where K is wave vector or propagation vector and ω is the angular frequency of the 

wave. Similarly the solutions of (n+1)th and (n-1)th atoms may be written as 

 

𝑢𝑛+1 = 𝑢𝑜𝑒𝑖{𝜔𝑡−𝐾(𝑛+1)𝑎}                                                  (5) 

𝑢𝑛−1 = 𝑢𝑜𝑒𝑖{𝜔𝑡−𝐾(𝑛−1)𝑎}                                             (6) 

FromEquation (4) we get
𝑑2𝑢𝑛

𝑑𝑡2
= −𝜔2𝑢𝑜𝑒𝑖(𝜔𝑡−𝐾𝑛𝑎)   (7) 

Putting the value of 
𝑑2𝑢𝑛

𝑑𝑡2
 , 𝑢𝑛+1 𝑎𝑛𝑑 𝑢𝑛−1 in Equation (3) 

−𝑚𝜔2𝑢𝑜𝑒𝑖(𝜔𝑡−𝐾𝑛𝑎) = 𝛾(𝑢𝑜𝑒𝑖{𝜔𝑡−𝐾(𝑛+1)𝑎} − 2𝑢𝑜𝑒𝑖(𝜔𝑡−𝐾𝑛𝑎) + 𝑢𝑜𝑒𝑖{𝜔𝑡−𝐾(𝑛−1)𝑎}) 
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−𝑚𝜔2 = 𝛾(𝑒𝑖𝐾𝑎 − 2 + 𝑒−𝑖𝐾𝑎) 

−𝑚𝜔2 = 𝛾(𝑒𝑖𝐾𝑎/2 − 𝑒−𝑖𝐾𝑎/2)2                               (8) 

since  

sin 𝐾𝑎 =
𝑒𝑖𝐾𝑎−𝑒−𝑖𝐾𝑎

2𝑖
   (9) 

sin2 𝐾𝑎 = −
(𝑒𝑖𝐾𝑎−𝑒−𝑖𝐾𝑎)

2

4
                                          (10) 

Using this expression in equation (8), 

 

𝑚𝜔2 = 4𝛾𝑠𝑖𝑛2 (
𝐾𝑎

2
)                                                   (11) 

𝜔 = ±√
4𝛾

𝑚
𝑠𝑖𝑛 (

𝐾𝑎

2
)                                          (12) 

If  

𝑞 = 𝛾𝑎   (13) 

          and                               𝜌 = 𝑚/𝑎   (14) 

where q is longitudinal stiffness and ρ is the mass per unit length of atomic chain. 

Therefore equation (12) becomes 

𝜔 = ±
2

𝑎
√

𝑞

𝜌
𝑠𝑖𝑛 (

𝐾𝑎

2
)                                          (15) 

𝜔 =
2

𝑎
𝑣𝑠𝑠𝑖𝑛 (

𝐾𝑎

2
) (𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑖𝑠 𝑎𝑙𝑤𝑎𝑦𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 )      (16) 

where  𝑣𝑠  is a constant for a given lattice and represents the velocity of sound in 

lattice.Since the value of frequency ω is always positive or we can say its magnitude 

does not depend on the sign of K i.e. 

𝜔 =
2

𝑎
𝑣𝑠 |𝑠𝑖𝑛 (

𝐾𝑎

2
)|                                             (17) 

Equation(17) is known as dispersion relation and is plotted in figure 3.  
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Figure 3 

The following important results are obtained from this relation: - 

1. At low frequencies, 

lim
𝐾→0

𝑠𝑖𝑛 (
𝐾𝑎

2
) =

𝐾𝑎

2
                                         (18) 

Equation (17) gives   

𝜔 = 𝐾𝑣𝑠                                                           (19) 

The phase velocity of the wave is defined as the ratio of frequency with wave vector 

and is given by  

𝑣𝑝 =
𝜔

𝐾
                                                              (20) 

The group velocity is defined as the velocity of a group of waves and is given by 

𝑣𝑔 =
𝑑𝜔

𝑑𝐾
                                                            (21) 

2. At high frequencies, phase and group velocities are different and can be obtained 

from equation (17) as  

𝑣𝑝 =
𝜔

𝐾
=

2𝑣𝑠

𝑎𝐾
𝑠𝑖𝑛 (

𝐾𝑎

2
)                                      (22) 



137 
 

and  

𝑣𝑔 =
𝑑𝜔

𝑑𝐾
= 𝑣𝑠𝑐𝑜𝑠 (

𝐾𝑎

2
)   (23) 

Thus, both vp and vg are the function of frequencies. This is referred to as the 

phenomenon of dispersion and the medium is called dispersive medium. 

 

8.4. VIBRATIONS OF ONE DIMENSIONAL DIATOMIC 

LATTICE 

Consider a chain of one dimensional primitive lattice consisting two atoms of masses 

m and M which are placed alternatively along the x-axis with an inter atomic spacing 

‘a’. Suppose the atoms are located at sites represented by 2n-2, 2n-1, 2n, 2n+1, 2n+2, 

2n+3 etc as shown in figure 4. Let u2n is the displacement of an atom corresponding to 

the 2nth site at any time. Using the atom similar to monoatomic lattice we can obtain 

the equation of motion for lighter and heavier atoms separately. 

 

Figure 4 

Equation of motion for mass ‘m’ is 

𝑚
𝑑2𝑢2𝑛

𝑑𝑡2
= 𝛾(𝑢2𝑛+1 − 2𝑢2𝑛 + 𝑢2𝑛−1)                                 (24)   

and equation of motion for mass ‘M’ is 

𝑀
𝑑2𝑢2𝑛+1

𝑑𝑡2
= 𝛾(𝑢2𝑛+2 − 2𝑢2𝑛+1 + 𝑢2𝑛)                               (25) 

2n - 2      2n - 1        2n           2n+ 1    2n + 2       2n+3 

u
2n-2

         u
2n-1             

u
2n

          u
2n+1

      u
2n+2

 

x 
a Equilibrium state 

State with small displacement  

2a 
State of equilibrium  
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where 
𝑑2𝑢2𝑛

𝑑𝑡2
 represents the accelerations of the 2nth atom. The periodic solution of these 

equations are given by 

𝑢2𝑛 = 𝐴𝑒𝑖(𝜔𝑡−2𝐾𝑛𝑎)                                                               (26) 

       and             𝑢2𝑛+1 = 𝐵𝑒𝑖(𝜔𝑡−(2𝑛+1)𝐾𝑎)   (27) 

where K is wave vector or propagation vector and ω is the angular frequency of the 

wave. Here we assumed that the vibrational frequency of both type of atoms is same. A 

and B are the amplitude of vibrations.   

Substituting the values of u2n and u2n+1 from equation (26) and (27) in equation (24) and 

(25) we get 

−𝑚𝜔2𝐴 = 𝛾𝐵(𝑒𝑖𝐾𝑎+𝑒−𝑖𝐾𝑎) − 2𝛾𝐴                                             (28) 

or (2𝛾 − 𝑚𝜔2)𝐴 − 2𝛾 cos 𝐾𝑎 𝐵 = 0   (29)                  −𝑀𝜔2𝐵 =

𝛾𝐴(𝑒𝑖𝐾𝑎+𝑒−𝑖𝐾𝑎) − 2𝛾𝐵 

          or      −2𝛾 cos 𝐾𝑎 𝐴 +  (2𝛾 − 𝑀𝜔2)𝐵(30) 

Equation (29) and (30) are the homogeneous equations. The nonzero solution for A and 

B only if  

|
2𝛾 − 𝑚𝜔2       − 2𝛾 cos 𝐾𝑎

−2𝛾 cos 𝐾𝑎              2𝛾 − 𝑀𝜔2| = 0                                        (31) 

           or      (2𝛾 − 𝑚𝜔2)(2𝛾 − 𝑀𝜔2) − 4𝛾2 cos2 𝐾𝑎 = 0   (32) 

(4𝛾2 − 2𝛾𝑚𝜔2 + 𝑚𝑀𝜔4 − 2𝛾𝑀𝜔2) − 4𝛾2 cos2 𝐾𝑎 = 0 

𝑚𝑀𝜔4 − (2𝛾𝑚 + 2𝛾𝑀)𝜔2 + 4𝛾2(1 − cos2 𝐾𝑎) = 0 

𝜔4 −
2𝛾(𝑚+𝑀)

𝑚𝑀
𝜔2 +

4𝛾2 sin 2 𝐾𝑎

𝑚𝑀
= 0                                                 (33) 

We can solve this equation exactly for 𝜔2, but it is simpler to examine the limiting case 

𝐾𝑎<<1 and 𝐾𝑎 = ±𝜋 at the zone boundary. For small 𝐾𝑎 we have sin 2 𝐾𝑎 ≅ 𝐾2𝑎2, 

and the two roots are  
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𝜔2 = 2𝛾 (
1

𝑚
+

1

𝑀
)(Optical branch)(34) 

𝜔2 =
𝛾

2
(

𝐾2𝑎2

𝑚+𝑀
)(Acousticalbranch)(35) 

 The extant of the first Brillouin zone is −
𝜋

𝑎
≤ 𝐾 ≤ +

𝜋

𝑎
 where ‘a’ is lattice constant. At 

𝐾𝑚𝑎𝑥 = ±
𝜋

𝑎
 the roots are 

 

Figure 5 

𝜔2 =
2𝛾

𝑀
(36)          𝑎𝑛𝑑         𝜔2 =

2𝛾

𝑚
                                        (37) 

The dependence of ω on K is shown in fig. 5 for M > m 

The particle displacement of transverse acoustical (TA) and transverse optical 

(TO) branches is shown in fig 6. For the K = 0 we find 

𝑢2𝑛+1

𝑢2𝑛
= −

𝑚

𝑀
                                                          (38) 
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Figure 6 

The atoms vibrate against each other, but their centre of mass is fixed.  

 

8.5 CONCEPT OF PHONON 

The energy of lattice vibrations is quantized and the quantum of this energy is called 

phonon. Phonon is analogues to photon, the quanta of electromagnetic wave.  All types 

of lattice vibrations in crystals comprise phonons, thermal vibrations are thermally 

excited phonons, sound waves are acoustical phonons and excitations of optical branch 

generate optical phonons. If n is the number of phonons in a particular mode of vibration 

the total energy of the mode is written as  

𝜖 = (𝑛 +
1

2
) 𝜔ħ                                                           (39) 

n can be zero or positive integer. Since the number of phonon may change with 

temperature, the average number of phonons in a vibrational mode is given by  

�̅� =
1

exp(
𝜔ħ

𝑘𝐵𝑇
)−1

                                                             (40) 

where kB is the Boltzmann’s constant and T is absolute temperature of the crystal. Hence 

the number of phonons can be increased and decreased by raising or lowering of the 

temperature. The frequency of the phonon waves may vary from 104 to 1012 Hz. The 

concept of wave particle duality, which applies to photons, applies equally well as to 

photons. There is however no experimental evidence that the energy of an elastic wave 
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is quantized but it does exist for photons e.g. photoelectric effect. Despite this we have 

following evidences. 

 

1. The approach of the lattice heat capacity to zero as the temperature 

approaches zero can be explained only if the lattice vibrations are 

quantized. 

2. X-rays and neutrons are scattered inelastically by crystals. The change 

of energy and momentum in this process corresponds to the gain or loss 

of one or more quanta of energy.  

 

8.6 MOMENTUM OF PHONON 

 

A lattice phonon does not carry any momentum, but it interacts with other 

particles as if it has a momentum ħ𝐾, where K is wave vector of the phonon. Using 

de Broglie relation we can write 

𝑝 =
ℎ

𝜆
= ħ𝐾                                                                          (41) 

The quantity ħ𝐾 is sometimes called the crystal momentum. The physical significance 

of ħ𝐾 is provided by the momentum conservation law in crystal. 

 

 

8.7 SPECIFIC HEAT OF SOLIDS: 

According to first law of thermodynamics, the amount of heat 𝑑𝑄 given to a 

system must be equal to the sum of increase in energy 𝑑𝐸 of the system and work done 

by the system. We may write this process mathematically as 

𝑑𝑄 = 𝑑𝐸 + 𝑝 𝑑𝑉                                                                  (42) 

The energy added to the system may be expressed as 

𝑑𝐸 = (
𝜕𝐸

𝜕𝑇
)

𝑉
𝑑𝑇 + (

𝜕𝐸

𝜕𝑉
)

𝑇
𝑑𝑉                                                (43) 

Using this equation, (42) may be expressed as 

     𝑑𝑄 = (
𝜕𝐸

𝜕𝑇
)

𝑉
𝑑𝑇 + (

𝜕𝐸

𝜕𝑉
)

𝑇
𝑑𝑉 + 𝑝 𝑑𝑉                                      (44) 
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𝑑𝑄 = (
𝜕𝐸

𝜕𝑇
)

𝑉
𝑑𝑇 + [(

𝜕𝐸

𝜕𝑉
)

𝑇
+ 𝑝]  𝑑𝑉                                 (45) 

The specific heat of any substance is defined as the quantity of heat 

required to raise the temperature of unit mass of substance through 1oC. The specific 

heat of same substance is different at different temperatures; generally the specific heat 

determined experimentally is the mean specific heat. There exists an infinite number of 

specific heats but here we are interested in only two 

1. Specific heat at constant volume 𝐶𝑉. 

2. Specific heat at constant pressure𝐶𝑃. 

If 𝑑𝑄 units of heat raise the temperature of mass m of a substance 𝑑𝑇, at constant 

volume, then the mean specific heat of the substance using equation (45) is 

𝐶𝑉 =
1

𝑚
(

𝑑𝑄

𝑑𝑇
)

𝑉
=

1

𝑚
(

𝑑𝐸

𝑑𝑇
)

𝑉
                                                     (46) 

For solids at low temperature only specific heat at constant volume𝐶𝑉exists while for 

liquid and gases both 𝐶𝑉 𝑎𝑛𝑑 𝐶𝑃exist. In following figure 7𝐶𝑉 𝑎𝑛𝑑 𝐶𝑃 as a function 

of temperature for copper are shown. It is clear that at low temperature their 

difference becomes very small and both go to zero at absolute zero of temperature. 

 

Figure 7. Variation of specific heat of copper. 
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8.8 CLASSICAL THEORY OF SPECIFIC HEAT (DULONG 

PETIT’S LAW) 

According to this law “the product of atomic weight and the specific heat of 

an element at constant volume is constant for a number of elements in solid state and 

is equal to 5.96”. This value agrees with the value derived from kinetic molecular 

theory.  

According to classical kinetic theory of the atoms of a solid are at rest at absolute 

zero of temperature. The energy of solids in this state is assumed to be zero. When 

the temperature of the substance is raised, the atoms are set into vibrations about their 

position of equilibrium symmetrically. Thus the vibrations of the atoms are simple 

harmonic in nature. In this case total energy of atom is given by 

 

𝐾. 𝐸. +𝑃. 𝐸. 

1

2
𝑚�̇�2 −

1

2
𝐾𝑥2                                                  (47)                                                 

where K is force constant and x is displacement. But in this case the average K.E. 

is equal to the average potential energy. Hence the average energy corresponding to one 

mode of vibration is equal to twice the kinetic energy corresponding to one degree of 

freedom. Thus the vibration of an atom in an elastic solid along one co-ordinate is 

equivalent to two degree of freedom. 

Thus, according to law of equipartition of energy the average energy associated 

with the motion of an atom along one co-ordinate 𝑘𝑇, where k is Boltzmann’s constant.  

As we know each atom is free to vibrate along three co-ordinate axes, the total 

average energy of each atom = 3𝑘𝑇 

The total energy of one gram atom of solid containing N atoms is given by  

𝐸 = 3𝑁𝑘𝑇 

                                                 = 3𝑅𝑇                                       (48) 
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where 𝑅 = 𝑁𝑘 is gas constant for one-gram atom. If the whole energy given to 

the solid is used to increase the energy of vibrations of atoms and during the rise in 

temperature the volume of the substance remains constant, then the atomic heat at 

constant volume, i.e. the energy required to raise the temperature of one gram atom 

through 1oC will be given by  

𝐶𝑉 =
𝑑𝐸

𝑑𝑇
= 3𝑅                                               (49) 

Clearly the atomic heat of solid at constant volume is  

1. constant and independent of temperature. 

2. equal to three times the gas constant R. 

The numerical value of R= 1.9856 cal. per gm. atom, the value of atomic heat at 

constant volume  

= 3 𝑅 

= 5.9568 

which is Dulong and Petit’s law. 

 

8.9 EINSTEIN’S THEORY OF SPECIFIC HEAT 

A great step to explain the variation of specific heat with temperature was made by 

Einstein in 1906 on the basis of quantum theory. According to quantum theory heat 

energy is radiated in the form of discrete particles called photons, whose energy is equal 

to 𝑛ℎ𝜈, where h is Planck’s constant and ν is the frequency of heat radiation and 𝑛 =

0,1,2,3 … … . 

Einstein’s assumed that  

1. The energy of the solid at absolute zero temperature state is zero. As the solid is 

heated the atoms are set into simple harmonic vibrations about their position of 

equilibrium.  

2. Each atom of solid has three degrees of freedom like a molecule of monoatomic 

gas. The mean energy per degree of freedom is not kT as given by equilibrium law 

but equal to
ℎ𝜈

𝑒ℎ𝜈/𝑘𝑇−1
. 
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The energy of one atom =
3ℎ𝜈

𝑒ℎ𝜈/𝑘𝑇−1
 . 

Energy of one-gram atoms containing N atoms  =
3𝑁ℎ𝜈

𝑒ℎ𝜈/𝑘𝑇−1
. 

Atomic specific heat at constant volume 

𝐶𝑉 =
𝑑𝐸

𝑑𝑇
 

= 3𝑁ℎ𝜈 [
−1

(𝑒
ℎ𝜈
𝑘𝑇−1)2

] 𝑒
ℎ𝜈

𝑘𝑇 (
−ℎ𝜈

𝑘𝑇2
)     (50) 

 

= (
3𝑁𝑘(ℎ𝜈)2

(𝑘𝑇)2
) [

𝑒
ℎ𝜈
𝑘𝑇

(𝑒
ℎ𝜈
𝑘𝑇−1)2

]              (51) 

= 3𝑁𝑘 (
ℎ𝜈

𝑘𝑇
)

2

[
𝑒

ℎ𝜈
𝑘𝑇

(𝑒
ℎ𝜈
𝑘𝑇−1)2

]             (52) 

It is convenient to introduce the Einstein temperature θE defined by 𝜃𝐸 =  
ℎ𝜈

𝑘
. The 

frequency corresponding to 𝜃𝐸 is called Einstein’s frequency. 

 

 

𝐶𝑉 = 3𝑅 (
𝜃𝐸

𝑇
)

2

[
𝑒

𝜃𝐸
𝑇

(𝑒
𝜃𝐸
𝑇 −1)2

]                      (53) 

𝑤ℎ𝑒𝑟𝑒, 𝜃𝐸 =  
ℎ𝜈

𝑘
 

This is Einstein’s equation for the atomic heat of solid at constant volume. The 

equation represents that the atomic heat is a function of temperature. The behaviour of 

atomic heat in two temperature regions is as follows. 

 

 

Case 1- At high temperatures, 
𝜃𝐸

𝑇
 approaches very small values and so we have 
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(𝑒
𝜃𝐸
𝑇 − 1)2 = [1 +

𝜃𝐸

𝑇
+

1

2!
(

𝜃𝐸

𝑇
)

2

+
1

3!
(

𝜃𝐸

𝑇
)

3

+ ⋯ … ..   −1]

2

 

= (
𝜃𝐸

𝑇
)

2

                                                             (54) 

putting this value in equation (i)  

𝐶𝑉 = 3𝑅 (
𝜃𝐸

𝑇
)

2

[
1+

𝜃𝐸
𝑇

+
1

2!
(

𝜃𝐸
𝑇

)
2

+
1

3!
(

𝜃𝐸
𝑇

)
3

+⋯   

(
𝜃𝐸
𝑇

)
2 ]              (55) 

𝐶𝑉 = 3𝑅 [1 +
𝜃𝐸

𝑇
+

1

2!
(

𝜃𝐸

𝑇
)

2

+
1

3!
(

𝜃𝐸

𝑇
)

3

+ ⋯ ](56) 

𝐶𝑉 = 3𝑅𝐹𝐸 (
𝜃𝐸

𝑇
)                                                     (57) 

where 𝐹𝐸   is called Einstein function, it determines the ratio of the specific heat at 

temperature T and the classical value 3R 

as T→ ∞, 
𝜃𝐸

𝑇
→0 

Hence  𝐶𝑉 = 3𝑅   (58) 

Thus, according to Einstein’s theory at high temperature the specific heat approaches 

3R, which is in good agreement with experiments and Dulong’s and Petit’s law.  

Case 2-When the value of temperature is very low i.e. 𝑇 → 0,
𝜃𝐸

𝑇
→ ∞, thus 1 may be 

neglected in the denominator of equation (52).Hence 

 

𝐶𝑉 = 3𝑅 (
𝜃𝐸

𝑇
)

2

[
𝑒

𝜃𝐸
𝑇

(𝑒
𝜃𝐸
𝑇 )2

]                                    (59) 

= 3𝑅
(

𝜃𝐸
𝑇

)
2

𝑒
𝜃𝐸
𝑇

                                                  (60) 

= 3𝑅
(

𝜃𝐸
𝑇

)
2

[1+
𝜃𝐸
𝑇

+
1

2!
(

𝜃𝐸
𝑇

)
2

+
1

3!
(

𝜃𝐸
𝑇

)
3

+⋯ ]

                                (61) 

 

= 3𝑅
1

[
1

(
𝜃𝐸
𝑇

)
2+

1
𝜃𝐸
𝑇

+
1

2!
+

1

3!

𝜃𝐸
𝑇

+⋯ ]

= 0                            (62) 
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Therefore, as the temperature tends to absolute zero the specific heat also tends to zero. 

It is obvious from equation (52) that specific heat of different substances differs 

only because of difference in characteristic frequency 𝜈. At corresponding temperature 

𝜈/𝑇 is same for all elements. Hence the experimental curve for all substances has same 

form.  

Thus, the Einstein’s theory is in good agreement with experiments. 

Example1. Calculate Einstein’s frequency if 𝜃𝐸 = 236𝐾 . Given 𝑘 = 1.4 × 10−23𝐽/

𝐾and ℎ = 6.6 × 10−34𝐽. 𝑠𝑒𝑐. 

Solution:  Einstein’s temperature is defined as 

𝜃𝐸 =
ℎ𝜈

𝑘
 

or  

𝜈 =
𝑘𝜃𝐸

ℎ
=

1.4 × 10−23 × 236

6.6 × 10−34
= 5 × 1012𝐻𝑧 

Example 2. (a) For copper Einstein frequency is 2.49 × 1012𝐻𝑧 , calculate the 

characteristic temperature 𝜃𝐸. 

(b) Specific heat 𝐶𝑉  for copper is 23.8
𝑗𝑜𝑢𝑙𝑒

𝑚𝑜𝑙𝑒.𝐾
 and for diamond it is 6.1

𝑗𝑜𝑢𝑙𝑒

𝑚𝑜𝑙𝑒.𝐾
. 

Why this difference is? Given that 𝑘 = 1.4 × 10−23𝐽/𝐾. ℎ = 6.6 × 10−34𝐽. 𝑠𝑒𝑐 

Solution: (a) Einstein’s temperature is given by  

𝜃𝐸 =
ℎ𝜈

𝑘
 

=
6.6 × 10−34 × 2.49 × 1012

1.4 × 10−23
 

= 117.4 K 

(b)  According to Einstein’s theory of specific heat 
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𝐶𝑉 = 3𝑅 (
𝜃𝐸

𝑇
)

2

[
𝑒

𝜃𝐸
𝑇

(𝑒
𝜃𝐸
𝑇 − 1)2

] 

For same temperature T the value of CV are different due to their different values of 

characteristic frequency ν. 

8.10 DEBYE’S THEORY OF SPECIFIC HEAT 

The Einstein’s theory could provide a definitely much better explanation of the 

variation of specific heat with temperature than the classical theory. But the agreement 

is not perfect in low temperature region. Figure 8 represents the variation with 

temperature of atomic heat at constant volume of two solids gold and cobalt. This 

discrepancy between the theory and low temperature experimental region is because of 

oversimplified model employed by Einstein in which he assumed that all the atomic 

oscillators vibrate independently at the same frequency. In fact they are coupled 

oscillators, and thus there is a range of possible values of the vibration frequencies rather 

than just a single frequency. This is taken into account by Debye’s theory, which gives 

excellent agreement with experiment over the whole observable temperature range. 

 

Figure 8- The variation of specific heat with temperature for Gold and Cobalt. 

 

Debye assumed that any solid is capable of vibrating elastically in many different 

modes, the frequency varying from one mode to another mode and the numbers of 
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modes of vibration of solids are limited in numbers. When a solid is subjected to elastic 

vibrations, two kinds of vibrations are produced: 

1. transverse vibrations and 

2. longitudinal vibrations. 

The numbers of modes of longitudinal vibrations per unit volume with frequencies 

between 𝜈 𝑎𝑛𝑑 𝜈 + 𝑑𝜈 are 

=
4𝜋𝜈2 𝑑𝜈

𝑐𝑙
3  

where 𝑐𝑙 being the velocity of longitudinal vibrations. 

The number of modes of transverse vibrations per unit volume with frequencies 

between 𝜈 𝑎𝑛𝑑 𝜈 + 𝑑𝜈 are 

=
4𝜋𝜈2 𝑑𝜈

𝑐𝑡
3                                                                 (63) 

where 𝑐𝑡 being the velocity of transverse vibrations. 

Since transverse vibrations have two independent directions of vibrations or we may 

say they are equivalent to two waves polarized at right angles to each other. Therefore, 

the number of independent vibrations per unit volume with frequency between 

𝜈 𝑎𝑛𝑑 𝜈 + 𝑑𝜈 is 

= 4𝜋 [
1

𝑐𝑙
3 +

2

𝑐𝑡
3] 𝜈2 𝑑𝜈 

If V is the volume of one-gram molecule of any solid, then the number of modes of 

vibrations for this amount within the same frequency range is 

= 4𝜋𝑉 [
1

𝑐𝑙
3 +

2

𝑐𝑡
3] 𝜈2 𝑑𝜈 

The total number of modes of vibrations is given by 
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= ∫ 4𝜋𝑉 [
1

𝑐𝑙
3 +

2

𝑐𝑡
3] 𝜈2 𝑑𝜈

𝜈𝑚

0

 

Debye assumed that the frequencies can only reach a definite upper limit 𝜈𝑚. Since each 

atom has three degrees of freedom. If there are N atoms in volume V then the total 

number of vibrations will be equal to 3N. Hence  

∫ 4𝜋𝑉 [
1

𝑐𝑙
3 +

2

𝑐𝑡
3] 𝜈2 𝑑𝜈

𝜈𝑚

0
= 3𝑁                               (63) 

or  

4𝜋𝑉 [
1

𝑐𝑙
3 +

2

𝑐𝑡
3]

𝜈𝑚
3

3
= 3𝑁                                          (64)      

4𝜋𝑉 [
1

𝑐𝑙
3 +

2

𝑐𝑡
3] 𝜈𝑚

3 = 9𝑁                                             (65) 

Quantum mechanically energy associated with each degree of freedom is 
ℎ𝜈

𝑒ℎ𝜈/𝑘𝑇−1
 . 

Thermal energy of one-gram atom of solid between frequency ranges 𝜈 𝑎𝑛𝑑 𝜈 + 𝑑𝜈 

will be 

=
ℎ𝜈

𝑒ℎ𝜈/𝑘𝑇 − 1
. 4𝜋𝑉 [

1

𝑐𝑙
3 +

2

𝑐𝑡
3] 𝜈2 𝑑𝜈 

Using Eq. (65) 

=
ℎ𝜈

𝑒
ℎ𝜈
𝑘𝑇 − 1

.
9𝑁

𝜈𝑚
3

 𝜈2 𝑑𝜈 

=
9𝑁

𝜈𝑚
3

.
ℎ 𝜈3

𝑒
ℎ𝜈
𝑘𝑇 − 1

. 𝑑𝜈 

Total thermal energy for one-gram atom is given by 

𝐸 = ∫
9𝑁

𝜈𝑚
3

.
ℎ 𝜈3

𝑒
ℎ𝜈
𝑘𝑇−1

. 𝑑𝜈
𝜈𝑚

0
                                   (66) 
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Let 

ℎ𝜈

𝑘𝑇
= 𝑝, 𝑡ℎ𝑒𝑛 𝜈 =

𝑘𝑇

ℎ
𝑝 

𝑑𝜈 =
𝑘𝑇𝑑𝑝

ℎ
 

𝐸 =
9𝑁

𝜈𝑚
3 ∫ (

𝑘𝑇

ℎ
)

3  𝑝3

𝑒𝑝−1
𝑘𝑇𝑑𝑝

ℎ𝜈𝑚
𝑘𝑇

0
(67) 

Quantity  
ℎ𝜈𝑚

𝑘
  has the dimension of temperature. Here as in Einstein’s theory, it is 

convenient to introduce a characteristic temperature θD, called as Debye 

temperature 
ℎ𝜈𝑚

𝑘
= 𝜃𝐷, thus equation (66) becomes 

𝐸 = 9𝑁𝑘
 𝑇4

𝜃𝐷
3 ∫

 𝑝3

𝑒𝑝−1
𝑑𝑝

𝜃𝐷
𝑇

0
                                                        (68) 

The upper limit of integration is equal to 
𝜃𝐷

𝑇
. It is observed that for high 

temperature (T>>𝜃𝐷 ), p is small compared with unity for the whole range of 

integration. In that case the denominator of the integration in equation (v) by be 

replaced in first approximation by x, i.e. 

𝐸 = 9𝑁𝑘
 𝑇4

𝜃𝐷
3 ∫

 𝑝3

1+𝑝+
1

2!
𝑝2+

1

3!
𝑝3+⋯−1

𝑑𝑝
𝜃𝐷
𝑇

0
                      (69) 

= 9𝑁𝑘
 𝑇4

𝜃𝐷
3 ∫

 𝑝3

𝑝
𝑑𝑝

𝜃𝐷
𝑇

0
                                                  (70) 

= 9𝑁𝑘
 𝑇4

𝜃𝐷
3 ∫ 𝑝2𝑑𝑝

𝜃𝐷
𝑇

0
                                                   (71) 

= 9𝑁𝑘
 𝑇4

𝜃𝐷
3 [

𝑝3

3
]

0

𝜃𝐷
𝑇

                                                         (72) 

= 3𝑁𝑘
 𝑇4

𝜃𝐷
3

𝜃𝐷
3

 𝑇3
= 3𝑁𝑘𝑇                                            (73) 
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Thus, the specific heat  

𝐶𝑉 =
𝑑𝐸

𝑑𝑇
= 3𝑁𝑘 = 3𝑅  𝑓𝑜𝑟 𝑇 ≫ 𝜃𝐷(74) 

this is identical with the classical theory. 

In case of very low temperature such that  𝑇 ≪ 𝜃𝐷,  the upper limit of integration may 

be replaced by infinity in equation (68), i.e. 

𝐸 = 9𝑁𝑘
𝑇4

𝜃𝐷
3 ∫

𝑝3

𝑒𝑝−1
𝑑𝑝

∞

0
                                       (75) 

Now the quantity ∫
𝑝3

𝑒𝑝−1
𝑑𝑝

∞

0
 is a standard integration, and the solution of this 

integration comes out to be  
𝜋4

15
, thus 

𝐸 = 9𝑁𝑘
𝑇4

𝜃𝐷
3

𝜋4

15
=

3

5
𝜋4𝑁𝑘𝑇

𝑇3

𝜃𝐷
3 , 𝑓𝑜𝑟𝑇 ≪ 𝜃𝐷                   (76) 

The specific heat at low temperature according to Debye theory is  

𝐶𝑉 =
𝑑𝐸

𝑑𝑇
=

12

5
𝜋4𝑁𝑘

𝑇3

𝜃𝐷
3 𝑓𝑜𝑟𝑇 ≪ 𝜃𝐷                                    (77) 

This is a famous Debye 𝑇3 law.  The general expression for specific heat as a function 

of temperature may be obtained by differentiating equation (68) with respect to T. 

𝐶𝑉 = 3𝑅𝐹𝐷 (
𝜃𝐷

𝑇
)                                                            (78) 

where FD is the Debye function. The comparison between Debye theory and 

experimentally observed specific heat curve are shown in following figure 9. 
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Figure 9- Debye specific heat is shown by curve and experimental values are shown by dots. 

From such curves it is possible to calculate the Debye temperature of the solid involved.  

8.11 LIMITATIONS OF DEBYE MODEL 

1. The theory completely ignores the interactions among the atoms and the 

contributions of electrons to the specific heat. 

2. Debye temperature 𝜃𝐷  is independent of temperature T, whereas really it is 

found to vary up to an extant of 10% or more. 

3. This theory does not take into account the actual crystalline nature of the solid. 

The theory cannot be applied to the crystals containing more than one type of 

atoms. 

4. Debye model is valid for long wavelengths or shorter frequencies only. 

5. Cut off frequency is same for both transverse and longitudinal waves, while the 

velocities of longitudinal and transverse waves have different values for different 

frequencies.  
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8.12 THERMAL CONDUCTIVITY 

There are three ways by which heat may travel from one place to another (i) 

conduction, (ii) convection and (iii) radiation. In the process of conduction, heat flows 

from one particle to another particle in the direction of fall of temperature without any 

visible movement of the particles. 

The basic experimental fact is that the heat current Q that is, the amount of 

thermal energy crossing a unit area per unit time is proportional to the temperature 

gradient  
𝑑𝑇

𝑑𝑥
 :-  

𝑄 = −𝐾 (
𝑑𝑇

𝑑𝑥
)                                                                      (79) 

A theory of thermal conductivity of insulators was developed in 1914 by Debye as in 

his theory of specific heat. He assumed that lattice vibrations may be described by a 

model in which elastic waves are propagated through a continuum. Since solids expand 

upon heating, these waves cannot be purely harmonic but must be anharmonic. The 

various normal modes of the system are not completely independent; they are rather 

coupled with each other. In terms of the phonons we may say that phonons 

corresponding to the various normal modes now interact with one another. It is clear 

from the discussion that the finite value of the thermal conductivity is associated 

essentially with the anharmonicity of the lattice vibrations. Now since the magnitude of 

anharmonicity increases with increase in the vibration amplitude. This effect is quite 

generally observed experimentally at sufficiently high temperatures.  

We shall first develop a formula for the thermal conductivity of an ideal 

monoatomic gas and then examine how it may be applied to the lattice of a crystalline 

solid. Suppose now  𝑛(𝑣)𝑑𝑣 represents the number of particles per unit volume having 

velocity in the range 𝑣 𝑎𝑛𝑑 𝑣 + 𝑑𝑣 we have for the desired number  

𝑑𝑛 =
1

2
𝑣. 𝑛(𝑣)𝑑𝑣

4𝜋𝑠𝑖𝑛𝜃𝑑𝜃

4𝜋
 𝑑𝑠 𝑐𝑜𝑠𝜃                                         (80) 

=
1

2
𝑣. 𝑛(𝑣) 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑑𝑣 𝑑𝜃 𝑑𝑠                                         (81) 
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The factor 
4𝜋𝑠𝑖𝑛𝜃𝑑𝜃

4𝜋
 is the ratio of the two solid angles.  

Using Maxwell-Boltzmann distribution  

𝑛(𝑣)𝑑𝑣 = 4𝜋𝑛 (
𝑚

2𝜋𝑘𝑇
)

3

2
𝑣2𝑒

(−
𝑚𝑣2

2𝑘𝑇
)
𝑑𝑣                                   (82) 

Putting this value in equation (81) 

𝑑𝑛 =
1

2
. 4𝜋𝑛 (

𝑚

2𝜋𝑘𝑇
)

3

2
𝑣3𝑒

(−
𝑚𝑣2

2𝑘𝑇
)
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑑𝑣 𝑑𝜃 𝑑𝑠             (83) 

Integrating this expression over 𝑣 we may write 

𝑛(𝜃)𝑑𝜃 =
1

2
. 4𝜋𝑛 (

𝑚

2𝜋𝑘𝑇
)

3

2
.

1

2
(

2𝑘𝑇

𝑚
)

2

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑑𝜃 𝑑𝑠              (84) 

=
1

2
. 𝑛. (

8𝑘𝑇

𝜋𝑚
)

1

2
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑑𝜃 𝑑𝑠                                  (85) 

=
1

2
. 𝑛. �̅�𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑑𝜃 𝑑𝑠                                          (86) 

where �̅� is the average thermal velocity of a particle. Now suppose the situation as 

shown in following figure 10, a temperature gradient is exist along x-axis. The particles 

at origin have average energy E and those at a short distance to the left have average 

energy. 

𝐸 + ∆𝐸 ≈ 𝐸 + (
𝜕𝐸

𝜕𝑥
) ∆𝐸                                     (87) 
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Figure 10 

The energy of particle at a distance l away from the origin in a direction θ may be 

expressed as  

𝐸 + ∆𝐸 ≈ 𝐸 + (𝑙 𝑐𝑜𝑠𝜃)
𝜕𝐸

𝜕𝑥
                                    (88) 

If we assume that this particle gives up whole of its energy to the distribution at the 

origin through a collision, then there will be a particle leaving the origin and thus 

carrying energy E. The net transport of energy is thus  

𝐸 + ∆𝐸 ≈ 𝐸 + (𝑙 𝑐𝑜𝑠𝜃)
𝜕𝐸

𝜕𝑥
       (89) 

The average value of l is simply the mean free path λ between randomising collision. 

The net energy transport per particle averaged over the distribution of path lengths l is 

∆𝐸̅̅ ̅̅ = (𝜆 𝑐𝑜𝑠𝜃)
𝜕𝐸

𝜕𝑥
. Extending this result for the number of particles represented by 

equation (82) we get 

∆𝐸̅̅ ̅̅  𝑛(𝜃)𝑑𝜃 = (𝜆 𝑐𝑜𝑠𝜃)
𝜕𝐸

𝜕𝑥
.

1

2
. 𝑛. �̅�𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑑𝜃 𝑑𝑠                  (90) 

=
1

2
. 𝑛. �̅�𝜆

𝜕𝐸

𝜕𝑥
. 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠2𝜃 𝑑𝜃 𝑑𝑠                            (91) 

The net energy flux is thus  
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∆𝐹 =
1

2
. 𝑛. �̅�𝜆

𝜕𝐸

𝜕𝑥
. 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠2𝜃 𝑑𝜃 𝑑𝑠                         (92) 

Integrating over the angle θ between limits of 0and π, total energy flux comes out to be  

1

3
. 𝑛. �̅�𝜆

𝜕𝐸

𝜕𝑥
 

But from the definition of thermal conductivity this quantity must be equal to  

1

3
. 𝑛. �̅�𝜆

𝜕𝐸

𝜕𝑥
= 𝐾 (

𝑑𝑇

𝑑𝑥
)                                                (93) 

𝐾 =
1

3
. 𝑛. �̅�𝜆

𝜕𝐸

𝜕𝑇
                                            (94) 

𝐾 =
1

3
. �̅�𝜆𝐶𝑉                                               (95) 

where 𝐶𝑉 = 𝑛
𝜕𝐸

𝜕𝑇
  is specific heat. 

Debye showed that the equation (95) is also good for a gas of phonons, provided for the 

velocity �̅� is understood to refer to an average phonon velocity i.e. to an average sound 

velocity in the crystal.  

 

8.13 SPECIFIC HEAT OF GASES 

As we discussed earlier that heat can be added to a gaseous system in two 

different conditions either at constant pressure or at constant volume.  

The specific heat of a gas at constant volume is the amount of heat required to 

raise the temperature of one gram of gas through 1oC, keeping volume constant. It is 

denoted by CV. In this case the whole heat supplied to the system increases the internal 

energy of the gas only. The specific heat of the gas at constant pressure is the amount 

of heat required to raise the temperature of one gram of gas through 1oC, keeping 

pressure constant. It is denoted by CP. In this case the gas is allowed to expand against 

a constant pressure and in doing so it does external work in addition to the work done 
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in increasing the temperature by 1oC. Hence the specific heat at constant pressure is 

greater than the specific heat at constant volume by an amount to the external work done 

by the gas. Therefore  

𝐶𝑃 − 𝐶𝑉 = 𝑊                                              (96) 

If  𝐶𝑃 𝑎𝑛𝑑 𝐶𝑉 are the molar specific heats at constant pressure and constant volume, 

which are defined as 𝐶𝑃 = 𝑀𝐶𝑃 and 𝐶𝑉 = 𝑀𝐶𝑉, where M is molecular weight of gas, 

then 

      𝐶𝑃 − 𝐶𝑉 = 𝑅                                                (97) 

This expression is known as Mayer’s formula. 

8.13.1Contribution of vibrational motion to specific heat 

At high temperatures vibrational motion comes into existence in addition to 

rotational motion. The actual motion is very complicated, but it may be imagined that 

the motion is simple harmonic. According to Maxwell-Boltzmann’s distribution law the 

number of simple harmonic resonators having energy 𝐸𝜈 are given by 

𝑁𝜈 = 𝑁𝑜𝑒− 
𝐸𝜈
𝑘𝑇                                              (98) 

(where ν is frequency)According to Planck’s quantum theory energy is quantized 

as  

𝐸𝜈 = 𝑛ℎ𝜈                                                        (99) 

Substituting Eq. (99) in Eq. (98) 

𝑁𝜈 = 𝑁𝑜𝑒− 
𝑛ℎ𝜈

𝑘𝑇                                                 (100)     

The observation of wave mechanics shows that 

𝐸𝜈 = (𝑛 +
1

2
) ℎ𝜈                                           (101) 
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According to wave mechanics the total vibrational energy of 𝑁𝜈 (number of 

oscillators) is 

𝑊𝜈 = ∑ 𝑁𝜈𝐸𝜈𝜈       (102) 

= ∑ 𝑁𝜈 (𝑛 +
1

2
) ℎ𝜈𝜈                                          (103) 

=
1

2
𝑁𝜈ℎ𝜈 + ∑ 𝑁𝜈𝑛ℎ𝜈𝜈                                     (104) 

=
1

2
∑ 𝑁𝜈𝜈 ℎ𝜈 + 𝑁𝑜 ∑ 𝑛ℎ𝜈𝑒− 

𝑛ℎ𝜈

𝑘𝑇𝜈                    (105) 

=
1

2
𝑁ℎ𝜈 + 𝑁𝑜 ∑ 𝑛ℎ𝜈𝑒− 

𝑛ℎ𝜈

𝑘𝑇𝜈                           (106) 

where N is number of oscillators. 

Partition function for harmonic oscillator is defined as  

𝐹𝜈 = ∑ 𝑒− 
𝑛ℎ𝜈

𝑘𝑇∞
𝑛                                                         (107) 

Nowsince 𝑁 = ∑ 𝑁𝜈 = 𝑁𝑜 ∑ 𝑒− 
𝑛ℎ𝜈

𝑘𝑇 = 𝑁𝑜𝐹𝜈 

Assuming
ℎ𝜈

𝑘𝑇
= 𝑝, we have 

𝐹𝜈 = ∑ 𝑒− 𝑛𝑝∞
𝑛                                                       (108) 

hence  

𝜕𝐹𝜈

𝜕𝑝
= − 𝑛 ∑ 𝑒− 𝑛𝑝∞

𝑛    (109) 

Now Equation (107) becomes  

𝑊𝜈 =
1

2
𝑁ℎ𝜈 − 𝑁𝑜ℎ𝜈

𝜕𝐹𝜈

𝜕𝑝
(110) 

=
1

2
𝑁ℎ𝜈 −

𝑁𝑜ℎ𝜈𝐹𝜈

𝐹𝜈

𝜕𝐹𝜈

𝜕𝑝
                                     (111) 
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𝑊𝜈 =
1

2
𝑁ℎ𝜈 − 𝑁ℎ𝜈

𝜕(log 𝐹𝜈)

𝜕𝑝
                                (112) 

Therefore, the contribution of vibrational motion to specific heat  

𝐶𝜈 =
𝑑𝑊𝜈

𝑑𝑇
= −𝑁ℎ𝜈

𝑑

𝑑𝑇
{

𝜕(log 𝐹𝜈)

𝜕𝑝
}                         (113) 

= −𝑁ℎ𝜈
𝜕2(log 𝐹𝜈)

𝜕𝑝2
(

𝑑𝑝

𝑑𝑇
)                                (114) 

= −𝑁ℎ𝜈
𝜕2(log 𝐹𝜈)

𝜕𝑝2
(−

𝑘𝑝2

ℎ𝜈
)                          (115) 

= 𝑁𝑘𝑝2
𝜕2(log 𝐹𝜈)

𝜕𝑝2
                                           (116) 

= 𝑅𝑝2
𝜕2(log 𝐹𝜈)

𝜕𝑝2
                                             (117) 

Using and simplifying equation (107) 

𝐶𝜈 = 𝑅
𝑝2𝑒𝑝

(𝑒𝑝−1)2
                                                        (118) 

The translational energy per gram molecule is same as in classical theory, i.e. 

                                    𝐸𝑡 =
3

2
𝑅𝑇                                                                     (119) 

The contribution of translational motion to the specific heat is given by  

𝐶𝑡 =
𝑑𝐸𝑡

𝑑𝑇
=

3

2
𝑅                                                                (120) 

In case of diatomic molecule, the contribution of rotational motion in specific heat is 

given by 

𝐶𝑟 = 𝑅                                                                               (121) 

Therefore the value of specific heat of diatomic gases may be summarized as  

                                             𝐶𝑉 = 𝐶𝑡 + 𝐶𝑟 + 𝐶𝜈                                                         (122) 
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                                            𝐶𝑉 =
3

2
𝑅 + 𝑅 +  𝑅

𝑝2𝑒𝑝

(𝑒𝑝 − 1)2
                                      (123) 

𝐶𝑉 =
5

2
𝑅 +  𝑅

𝑝2𝑒𝑝

(𝑒𝑝 − 1)2
  , 𝑤ℎ𝑒𝑟𝑒  𝑝 =

ℎ𝜈

𝑘𝑇
                        (124) 

At very low temperatures the total energy of the molecules is very small and is 

less than the minimum energy needed to set up the rotational and vibrational motions. 

Hence the specific heat is due to only translational motion equal to 
3

2
𝑅. Consequently, 

at very low temperatures the specific heat for all diatomic gases is equal to 
3

2
𝑅. 

As the temperature increases slightly, rotational motion arises. As the energy 

required to set up rotational motion is supplied gradually, and the specific heat becomes 

𝐶𝑡 + 𝐶𝑟. After that the specific heat remains constant until the energy supplied to the 

gas is sufficient to set up the vibrational motion. As the temperature of the gas increases 

and hence the specific heat again increases and finally becomes 𝐶𝑉 = 𝐶𝑡 + 𝐶𝑟 + 𝐶𝜈 . 

Figure 11 shows the variation for diatomic hydrogen gas. 

 

Figure 11. The variation of specific heat CV for hydrogen with temperature. 

Example 3. It is assumed that the molecule of an ideal is rigid but free to rotate 

about its two mutually perpendicular axes. Determine Cp, Cv and γ for such a gas and 

compare with the experimental values of  γ for diatomic gases.  
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Solution. Here the molecules of diatomic gas are rigid; there exist only five 

degree of freedom, three of translation and two of rotation. 

The kinetic energy per degree of freedom according to equipartitional principle 

of energy is equal to   
1

2
𝑘𝑇. Therefore the kinetic energy associated with five degree of 

freedom is equal to 
5

2
𝑘𝑇. 

Thus the kinetic energy per molecule =
5

2
𝑘𝑇 

and the kinetic energy per gram molecule 𝐸 =
5

2
𝑁𝑘𝑇 

hence specific heat is 𝐶𝑉 =
𝑑𝐸

𝑑𝑇
=

5

2
𝑁𝑘 =

5

2
𝑅 

and 𝐶𝑝 = 𝐶𝑉 + 𝑅 =
7

2
𝑅 

therefore  𝛾 =
7

5
= 1.40 

The experimentally observed values of γ at 150C are given in the following table  

Diatomic gas Values of   γ 

H2 1.41 

N2 1.404 

O2 1.401 

 

8.14 SUMMARY 

In this chapter we studied the vibration of atoms in monoatomic and diatomic 

lattices. The phonon is the mediator for energy transfer. In monoatomic lattice there 

exists only one mode of vibration while in diatomic lattice there exist two modes of 

vibrations i.e. optical mode and acoustical mode. 

In this chapter we also studied the different models to determine the specific heat 

of solids and gases. Dulong and Petit’s law is the classical model of specific heat. 
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According to this law specific heat is not the characteristic of substance it is same for 

all materials and equal to 3R. This law fails to explain the decrease of specific heat in 

low temperature region. Einstein’s theory of specific heat is quantum mechanical 

theory. This theory is successful to explain the variation of specific heat with 

temperature up to a great extent.  Debye’s modified Einstein’s theory of specific heat 

which gives excellent agreement with experiment over the whole measurable range of 

temperature. In monoatomic substances heat supplied is used only electronic transition 

while in diatomic or polyatomic substances heat supplied is used in electronic as well 

as in vibrational and rotational motions of the molecules. 

8.15 GLOSSARY 

Latent  – Hidden 

Mode of vibrations – kinds of oscillations  

Specific – characteristic  

Phonon – quanta of lattice vibrations (equivalent to photon) 

Lattice – array of atoms or molecules 

Equipartition – equal distribution 

Thermal properties – heat related properties  

8.16 TERMINAL QUESTIONS 

1. The specific heat C of a certain substance  at very low temperature is found to depend 

on the absolute temperature T according to the relation 𝐶 = 𝐴𝑇3  where A is a 

constant .  

(i)   If units are in calorie, gram and degree Kelvin, so what should be the unit of 

constant A. 

(ii) How much heat must be added to raise the temperature of a mass m of   the 

material from T1 to T2? 
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2. Consider diatomic gas with two rotational degree of freedom and one vibrational 

degree of freedom. Find Cp, Cv and γ. It may be assumed that the vibrations of 

molecules are simple harmonic in nature.  

[Ans. 7/2R, 9/2R and 9/7]  

3.  The bond length of HCl molecule is 13×10-8 cm. Calculate  

    (i) First five excited rotational energy states. 

    [Ans.  3.7×10-15 ergs. 10.8×10-15 ergs. 2.28×10-15 ergs. 3.6×10-14 ergs.  5.4×10-14  

ergs ] 

    (ii) The rotational energy gap between first five consecutive states.  

[Ans. 3.6×10-15 ergs. 7.2×10-15 ergs. 1.2×10-14 ergs . 1.32×10-14 ergs.    1.8×10-14 

ergs]  

4. Calculate the specific heat at constant volume for air given that specific heat at 

constant pressure is equal to 0.23. Density of air at 270C and normal atmospheric 

pressure is equal to 0.18 gm/litre and J=4.2 joule/calori.             

[Ans. 1618] 

5. copper has an atomic weight 63.5, a density of 8.9×103 kg/m3, and ct = 2.32×103 m/s 

and  cl = 4.76×103 m/s. Determine the specific heat at low temperature say 30K.                                                      

[Ans.1.328Jmole-1K-1] 

6.  Estimate the relative contribution of electrons and lattice to the specific heat at 

constant volume of sodium at 20K. The Fermi temperature of sodium is 3.6×104 K 

and its Debye temperature is 150K.  

[Ans. (Cv)el = 22.78 J/kmole/K, (Cv)la = 4.6×103J/kmole/K] 
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UNIT 9      DIELECTRIC PROPERTIES OF 
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9.1 INTRODUCTION: 

A conducting material generally refers to the material consisting of a large number of 

mobile free electrons, such as a metal in which the concentration of free electrons is of the 

same order as that of atoms, i.e., about 1022 to 1023 cm-3. In these conducting materials, the 

electrostatic induction phenomenon occurs. But in other materials the number of mobile charge 

carriers is very less than the number of atoms; such materials are called dielectric materials. In 

other words, we can say that dielectrics are the materials in which all the electrons are tightly 

bound to the nuclei of the atoms and no free electrons to carry current. All the dielectrics are 

classified into two main categories: 

1. Polar dielectric, e.g. HCl, NaCl, H2O etc. 

2. Non-polar dielectric, e.g. H2, N2, O2 etc. 

 

9.2 OBJECTIVE: 

After studying this chapter,we shall be able to know 

 What are dielectric materials? 

 What is displacement vector? 

 Ferroelectricity. 

 The different ways of polarization of materials. 

 The temperature dependence of dielectric constant. 

 

9.3 DIELECTRIC CONSTANT: 

 Faraday discovered that when a dielectric material is placed between the plates of a 

capacitor, the capacitance of the capacitor increases. The ratio of the capacitance of a given 

capacitor when dielectric is fully filled between the plates to the capacitance of the same 

capacitor in vacuum is called dielectric constant of that dielectric. Thus, if Co is the capacitance 

in vacuum and C is the capacitance with dielectric, then dielectric constant 

𝐾 =
𝐶

𝐶𝑜
                                                                                                                  (1) 

Since it is a ratio of two same quantities hence it is dimensionless quantity. It is independent 

of the shape and size of the capacitor, but its value is different of different materials. For 

vacuum  𝐾 = 1, for distilled water 𝐾 = 80 for air 𝐾 = 1.0006 etc.  
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In the S.I. system of units, the capacitance is measured in farad. The capacitance of a conductor 

is 1 farad (1f) if a charge of 1 coulomb raises its potential by 1 volt. The farad is too large unit. 

Hence in practice, smaller units are used. They are microfarad and picofarad. 

1 microfarad(1𝜇𝑓) = 10−6𝑓    

1 picofarad (1𝑝𝑓) = 10−12𝑓 

Example1: Can a parallel plate air capacitor of 1 farad capacitance having plate separation 

1mm be constructed in laboratory? 

Solution: the capacitance of a parallel-plate capacitor is  

𝐶 =
𝐾𝜀𝑜𝐴

𝑑
 

𝐴 =
𝑑𝐶

𝐾𝜀𝑜
 

Here C = 1f, d = 1mm, K =1 and 𝜀𝑜 = 8.85 × 10−12𝐶𝑜𝑢𝑙2/(𝑁𝑚2) 

Hence  

𝐴 =
1 × 1 × 10−3

1 × 8.85 × 10−12 

= 1.13 × 108    𝑚2 

= 113   𝑘𝑚2 

A capacitor of plate area of about 133 km2 cannot be constructed in laboratory. 

 

9.4 POLAR AND NON-POLAR MOLECULES 

A system of two charges, q and – q separated by a certain distance l, is called electric 

dipole e.g. HCl, NaCl etc.  The electric dipole moment of an electric dipole is defined as  

p = q×l                                    (2) 

The dipole moment is a vector quantity and its direction is towards positive charge from 

negative charge. 

 

Figure 1: Schematic of a dipole 

The molecules having dipole moment greater than zero are called polar molecules and 

those molecules having dipole moment zero are called non-polar. Water molecule has a 

+ q - q 
l 
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triangular structure: two H-O bonds have dipole moments p1 as shown in following figure, 

hence the resultant dipole moment p is directed from O towards H-H base. Thus, H2O molecule 

is a polar molecule. On the other hand, CO2 molecule has a linear symmetrical structure hence 

the resultant dipole moment is zero. Thus, CO2 is a non-polar molecule. 

 

Figure 2: polar and non-polar molecules 

 

9.5 TYPES OF ELECTRIC POLARIZATION IN A MATTER 

A dielectric material is made up of atoms or molecules. When a dielectric material is 

placed in an electric field the positive and negative charges experience electrostatic forces in 

opposite directions. Electric polarization refers to a phenomenon of the relative displacement 

of the negative and positive charges of atoms or molecules, the orientation of existing dipoles 

toward the direction of the field, or the separation of mobile charge carriers at the interfaces of 

impurities or other defect boundaries, caused by an external electric field. 

All dielectrics possess one or more of five basic types of electric polarization.  

1. Electronic or optical polarization. 

2. Atomic or ionic polarization. 

3. Orientation polarization. 

4. Spontaneous polarization. 

5. Space charge polarization. 

Each type of polarization takes some time to perform properly. That is why the degree of 

polarization depends on the frequency of polarizing electric field.  

 

9.5.1 Electronic polarization or optical polarization: 

When a dielectric (non-polar) material is placed in an electric field the positive and 

negative charges of its molecules or atoms experience electrostatic force in opposite direction.  

+     H H     + 

-

O 

P > 0 

P1 P1 

O C O 

-              p1               +             p1              - 

P = 0 
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Center of the gravity of the two charges are separate from each other, and the molecules thus 

acquire an induced electric dipole moment in the direction of field. The noble gas atoms, such 

as He, Ne, Ar, Kr, Xe, and Ra, whose shells are completely filled have the lowest 

polarizabilities for their atomic numbers. The elements, such as H, Li, Na, K, Rb, and Cs, with 

only one electron in the outermost shell, have the highest polarizabilities for their atomic 

numbers, possibly due to the ease of polarization of a single electron in the outermost orbit.  

 

Figure 3: Displacement of electron cloud relative to nucleus due to external 

electric field. 

If the external field E produces a displacement δ of the electron cloud relative to the nucleus of 

positive charge eZ due to the polarization. Then induced dipole moment δeZ arises in the 

molecule of atom.Suppose that the electron cloud of charges –Zq is uniformly distributed in a 

sphere of radius R and that its center of gravity originally coincided with that of the nucleus 

and suppose that it is displaced by the field to a distance δ from the center of the nucleus, as 

shown in Figure 3. There is a Coulombic restoring force tending to bring the electron cloud 

back to its initial position. According to Gauss’s law, the Coulombic force is only exerted on 

the electron cloud that does not surround the positive nucleus charges +Zq. This part of the 

electron cloud is contained in the sphere of radius δ and it is 

                                                  𝑄 =
𝑍𝑞(4𝜋𝛿3 ⁄ 3)

(4𝜋𝑅3 ⁄ 3)

= 𝑍𝑞
𝛿3

𝑅3
                                                              (3) 

 

Thus, Coulombic force is  

δ 

E 

E
e
 

-        + 
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                                             𝐹 =
𝑍𝑞. 𝑍𝑞

𝛿3

𝑅3

4𝜋𝜀𝑜𝛿2
=

(𝑍𝑞)2𝛿

4𝜋𝜀𝑜𝑅3
                                                                      (4) 

This force must balance the displacement force 

                                                𝐹

= 𝑍𝑞. 𝐸                                                                                                  (5) 

Comparing equation (4) and (5)  

                                                                     𝑍𝑞𝐸 =
(𝑍𝑞)2𝛿

4𝜋𝜀𝑜𝑅3
                                                                  (6) 

                                                                  𝛿 =
4𝜋𝜀𝑜𝑅3

𝑍𝑞
𝐸                                                                       (7) 

Dipole moment produced will be given by 

                                                             𝑝𝑒 = 𝑍𝑞. 𝛿 = 4𝜋𝜀𝑜𝑅3𝐸                                                            (8) 

Therefore, the electronic polarizability is 

                                                           𝛼𝑒 =
𝑝𝑒

𝐸
= 4𝜋𝜀𝑜𝑅3 = 3𝜀𝑜𝑉𝑎                                                     (9) 

where 𝑉𝑎 is the volume of the atom, 𝛼𝑒 is proportional to the volume of the atom. For the 

hydrogen atom, R is about 0.50Å, 𝛼𝑒= 1.57×10-24𝜀𝑜cm3. For E = 104Vcm-1, δ = 10-14 cm. The 

displacement distance δ is extremely small. 

 

9.5.2 Atomic or Ionic polarization:  

This type of polarization is also called vibrational polarization. If we have a solid 

whose molecules are made up of ions there is a relative motion of positive and negative ions 

i.e. cations and anions in an ionic crystal are displaced with respect to each other resulting 

an induced dipole moment. 

In general, there are two types of ionic solids. One type does not possess permanent 

dipoles, such as NaCl, which forms a simple cubic lattice so that the lattice symmetry and the 

overall charge neutrality ensure that electric dipoles formed by each ion pair everywhere cancel 

each other. The other type possesses permanent dipoles, because the crystal lattice in this case 

is less symmetrical, as with HCl. In fact, the internal field at the positive ion sites is generally 

different from that at the negative ion sites. Commonly, most ionic solids are asymmetrical and 
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the electronegativities of both ions are different. They possess permanent dipoles, but these 

dipoles are tightly bound in the solid and cannot be aligned by an electric field. Therefore, in 

most ionic solids belonging to this group; the permanent dipole moments do not contribute to 

the polarizability in the solid state although the materials possess them. 

 

Figure 4: Schematic of atomic or ionic polarization 

Suppose a linear chain of ions A and ions B placed at equal distances along the x direction, as 

shown in Figure 4(a). In thermal equilibrium and in the absence of an electric field, the positive 

ions A at x2n, x2n+2, x2n-2, etc., and the negative ions B at x2n+1, x2n+3, x2n-1, etc., will always 

undergo lattice vibrations, but their interatomic distance is x2n+1-x2n=a, on average. Now if a 

step-function electric field is applied in the x direction, the electron clouds immediately shift 

to the left, and it takes only about 10-15 sec to produce electronic polarization, as shown in 

Figure 4(b).After  about 10-13 sec of the application of the field, the positive ion at x2nand the 

negative ion at x2n+1 tend to attract and move toward each other, making the interatomic distance 

Δx1= x2n+1- x2n<a and Δx2= x2n- x2n-1>a. The same tendency prevails in other ions. The 

displacement in both the electron clouds and the ions themselves produces electronic 

polarization, as well as ionic polarization, as shown in Figure 4(c). Displacement of atoms or 

ions from their equilibrium sites will generate a force which tends to bring them back to their 

original position. We can write the equation of motion for ions MA and MB 

                                      𝑀𝐴

𝑑2𝑥2𝑛

𝑑𝑡2

= 𝛽𝑖[𝑥2𝑛+1 + 𝑥2𝑛−1 − 2𝑥2𝑛]                                                    (10) 

𝑀𝐵

𝑑2𝑥2𝑛−1

𝑑𝑡2
= 𝛽𝑖[𝑥2𝑛 + 𝑥2𝑛−2 − 2𝑥2𝑛−1]                                                   (11) 

where 𝛽𝑖 is the restoring force constant and its value is given by 

(a) E = 0 

(b)E > 0 

(c) E > 0 
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𝛽𝑖 =
2𝑍2𝑞2

4𝜋𝜀𝑜𝑎3
                                                                        (12) 

The solutions of equations (10) and (11) comes out as  

                                              𝑥2𝑛 = 𝑥𝐴 exp[𝑗𝑘(2𝑛)𝑎]                                                             (13) 

𝑥2𝑛−1 = 𝑥𝐵 exp [𝑗𝑘(2𝑛 − 1)𝑎]                                                           (14) 

where xAand xBare periodic functions of time and the exponential is a phase factor and k is 

wave number. Therefore equations (10) and (11) modified as  

                                              𝑀𝐴

𝑑2𝑥𝐴

𝑑𝑡2

= −2𝛽𝑖[𝑥𝐴 − 𝑥𝐵]                                                                  (15) 

                                            𝑀𝐵

𝑑2𝑥𝐵

𝑑𝑡2

= −2𝛽𝑖[𝑥𝐵 − 𝑥𝐴]                                                                   (16) 

Simplifying equations (15) and (16) 

                                        𝑀𝑟

𝑑2𝛥𝑥

𝑑𝑡2

= −2𝛽𝑖𝛥𝑥 − 𝛾
𝑑∆𝑥

𝑑𝑡
− 𝑍𝑞𝐸                                                     (17) 

where 𝑀𝑟 =
𝑀𝐴𝑀𝑩

𝑀𝐴+𝑀𝑩
 is the reduced mass and𝛥𝑥 = 𝛥𝑥𝐵 − 𝛥𝑥𝐴  is the relative displacement of 

positive and negative ions.We can express 𝛽𝑖in terms of natural frequency (lattice vibration) 

ωo as 2𝛽𝑖 = 𝑀𝑟𝜔𝑜
2. If applied electric field is alternating field with the frequency ω, then the 

solution of equation (17) gives 

                                   𝛥𝑥

=
𝑍𝑞𝐸

𝑀𝑟(𝜔𝑜
2 − 𝜔2) + 𝑗𝛾𝜔

                                                                       (18) 

The induced dipole moment is 

𝜇𝑖 = 𝑍𝑞. ∆𝑥 =
(𝑍𝑞)2𝐸

𝑀𝑟(𝜔𝑜
2 − 𝜔2) + 𝑗𝛾𝜔

                                                 (19) 

Thus, ionic or atomic polarizability is  
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𝛼𝑖 =
(𝑍𝑞)2

𝑀𝑟(𝜔𝑜
2 − 𝜔2) + 𝑗𝛾𝜔

                                                                           (20) 

In steady state 𝜔 = 0, therefore static ionic polarizability 

                                           𝛼𝑖

=
(𝑍𝑞)2

𝑀𝑟𝜔𝑜
2

                                                                                         (21) 

The time required for electronic polarization is about 10-15sec, and that required for the 

ionic polarization is about 10-13 sec, simply because ions are heavier than electrons by more 

than 103 times. Therefore, the resonances for these two polarizations occur in different 

frequency regions. 

 

9.5.3 Orientational polarization: 

If there are molecules with permanent dipole moments randomly oriented, they tend to 

align in the direction of applied field thus producing a net dipole moment. This is called dipolar 

or orientational polarization. A dielectric whose molecules are polar and thus have a permanent 

electric dipole moment. In the absence of any external electric field the individual dipoles are 

oriented at random and no net dipole moment is observed in the dielectric. When the dielectric 

is placed in an electric field, The molecules tend to be aligned in the direction of the field.  The 

alignment is, however incomplete due to the thermal agitation of the molecules. Hence a net 

dipole moment is produced in the dielectric. 

 

Figure 5: Schematic of orientational polarization 

Field No field 
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This process is generally referred to as the relaxation process. This polarization involves the 

inelastic movement of particles, and its interaction is an intermolecular phenomenon; hence, 

orientational polarizability is strongly temperature-dependent. 

Suppose the permanent dipole moment 𝑝𝑜 of the molecule, unaffected by external field 

and temperature. Component of dipole moment in the direction of field as shown in figure 6 is 

given by 

                                                       𝑝𝐸

= 𝑝𝑜𝑐𝑜𝑠𝜃                                                                                   (22) 

where θ is the angle between dipole moment and applied field. 

 

Figure 6: the orientation of a dipole: (a) stable position (b) unstable position and (c) orienting 

to the field direction. 

At zero applied field, the number of dipoles having an inclination of their axes to the axes lying 

between θ and θ + dθ as shown in figure 7, is  

 

                                              𝑑𝑁

= 𝑁
1

2
𝑠𝑖𝑛𝜃𝑑𝜃                                                                                   (23) 

 

Figure 7: calculation of the number of dipoles having the inclination of their axes to the x-axis 

between θ and θ + dθ.  

E 

E 
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with an applied electric field E and the effect of temperature using Boltzmann’s statistics 

equation (23) modifies as  

                                           𝑑𝑁

= 𝐴𝑒𝑥𝑝 (−
𝑈

𝑘𝑇
)

1

2
𝑠𝑖𝑛𝜃𝑑𝜃                                                                 (24) 

Where U is the potential energy of dipole in electric field E at angle θ, i.e. 

                                    𝑈

= 𝑝𝑜𝐸𝑐𝑜𝑠𝜃                                                                                                     (25) 

The average dipole moment in the field direction is  

< 𝑝𝐸 >= 𝑝𝑜 < 𝑐𝑜𝑠𝜃 >                                                                                       (26) 

Introducing 𝑦 = 𝑐𝑜𝑠𝜃 and 𝑥 = 𝑝𝑜𝐸/𝑘𝑇 we obtain 

< 𝑐𝑜𝑠𝜃 >  =  𝑐𝑜𝑡ℎ𝑥 −
1

𝑥
= 𝐿(𝑥)                                                                          (27) 

The function 𝐿(𝑥) is called Langevin’s function which is shown in figure 8. At low value of x, 

𝐿(𝑥) varies linearly with the relation  

                           𝐿(𝑥) =< 𝑐𝑜𝑠𝜃 > 

=
𝑝𝑜𝐸

3𝑘𝑇
                                                                                         (28) 

 

Figure 8: The Langevin function 

For x>>1, 𝐿(𝑥) can be estimated by  

                                                               𝐿(𝑥)

= 1 −
1

𝑥
                                                                         (29) 

Substituting equation (28) in equation(26) we obtain 

L
(x

) x/3 
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< 𝑝𝐸 > =
𝑝𝑜

2𝐸

3𝑘𝑇
                                                                       (31) 

and orientational polarizability is  

𝛼𝑜  =
< 𝑝𝐸 >

𝐸
=

𝑝𝑜
2

3𝑘𝑇
 

In general, orientational polarizability is much larger than electronic and atomic polarizabilities 

at normal conditions, since αe and αi are practically independent of temperature but αo is 

strongly temperature dependent.  

 

9.5.4 Spontaneous Polarization: 

There is another kind of polarization, called spontaneous polarization. Spontaneous 

polarization occurs in materials whose crystalline structure exhibits electrical order. By 

analogy to magnetization, electric polarization can be grouped into two major polarizations: 

a.  Paraelectric polarization, which includes mainly electronic, ionic, and orientational 

polarizations, with 𝜒always positive. 

b. Ferroelectric polarization, with 𝜒 very large, like ferromagetization. 

In ferroelectric materials, electric polarization occurs spontaneously due to a phase 

transition at a critical temperature called the Curie temperature, Tc, without the help of an 

external electric field. At and below Tc, the crystal undergoes a phase transition, usually from 

a nonpolar cubic structure to a polar structure. BaTiO3 is a typical example of a ferroelectric 

crystal. 

In a single crystal or a crystallite, there are many domains with moments pointing in 

various directions. But the vector sum of the dipole moments of all domains vanishes. Each 

domain can be considered as a large dipole. Under an external electric field, all of these 

randomly arranged domains tend to move toward the direction of the field, resulting in a net 

total spontaneous polarization. Upon the removal of the field, spontaneous polarization does 

not vanish but remains inside the material. The electric field and polarization forms a hysteresis 

loop, called p-E loop, similar to the hysteresis loop for ferromagnetic materials. This is 

discussed in Ferroelectricity section of this chapter. 

 

9.5.5 Space charge polarization: 

This occurs mainly in amorphous or polycrystalline solids or in materials consisting of 

traps.  At higher fields, carrier injection becomes important. For materials consisting of a high 
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concentration of charge carriers, polarization due to the migration of charge carriers to form 

space charges at interfaces or grain boundaries becomes important. 

There are two possible ways in which space charge polarization may result. 

a. Hopping Polarization. 

b. Interfacial Polarization. 

Since these two types of polarization involve the movement of charged particles, there 

is no easy experimental method to separate these two different mechanisms. 

Example2: Assuming that the negative charge in a hydrogen atom is uniformly 

distributed in a sphere of radius 0.5×10-10 meter around the proton. This atom is placed in an 

electric field of 106V/m. Determine the separation produced between the positive and negative 

charges of the atom due to the electric field.  

Solution: Each of the positive and negative charge in the hydrogen atom is e. Let d be 

the equilibrium separation produced by the electric field E. At this separation, the force eE on 

the positive charge due to the field is balanced by electrostatic force of attraction between the 

two charges. i.e.  

1

4𝜋𝜀𝑜

𝑒2𝑑

𝑅3
= 𝑒𝐸 

𝑑 =
𝑅34𝜋𝜀𝑜

𝑒
𝐸 

𝑑 =
(0.5 × 10−10)3 × (106)

(9 × 109)(1.6 × 10−19)
 

𝑑 = 8.7 × 10−17𝑚 

9.6 ELECTRIC SUSCEPTIBILITY 

When a dielectric is placed in an electric field, it becomes electrically polarized. For 

most materials the polarization vector �⃗⃗�  is proportional to the electric field, i.e. 

�⃗⃗� = χe�⃗⃗�                                                                       (32) 

χe is called the electric susceptibility of the dielectric material.   

The electric susceptibility χe of a dielectric material is a measure of how easily it polarizes in 

response to an electric field. 
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9.7 ELECTRIC DISPLACEMENT �⃗⃗⃗� 

 If σ is the surface charge density of free charges and σ΄is the surface charge density due to 

induced charge on the capacitors plate and dielectric surface. The magnitude of electric fields 

due to σ and σ΄at any point between the plates of the capacitor are 

Eo=   σ/εo    and E΄=σ'/εo                                                                                        (33) 

These are oppositely directed. The magnitude of resultant field within the dielectric is therefore  

E = Eo-E΄                                                                        (34) 

putting the values of Eo and E from above relations 

Eεo= σ - σ΄ 

σ = Eεo + σ΄                                                                  (35) 

the term σ΄is induced charge density which is equal to the magnitude of electric polarization 

vector P. hence 

σ= Eεo + P                                                             (36) 

Quantity Eεo + P has a significance in electrostatics and is known as electric displacement 

vector D 

�⃗⃗⃗� = �⃗⃗�𝜀𝑜 + �⃗⃗�                                                                     (37) 

Or                                 D = σ                                                                             (38) 

σ is also called free charge density. The units of D are also same as of surface charge density 

i.e. coulomb/m2. Since D is a vector quantity hence it has the same direction as of E and P. 

From the definitions and nature of D, E and P we reach on following conclusions. 

1. D is linked with free charge only. This quantity can be represented by lines of electrical 

displacement similar to electric line of forces. The electric displacement lines arise and 

end at free charges only. 

2. P is associated with polarization charges. The lines of polarization begin and end on the 

polarization charges only. 
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3. E vector is related to all kinds of charges present in the system. 

 

Figure 9: Dielectric inside the plates of a capacitor  

For a homogeneous and isotropic dielectric D, E and P are in same direction. 

again, if we assume a relation  

                                  𝜎 = 𝜖𝑜 (
𝜎

𝜖𝑜
)                                                                            (39) 

Now in vacuum 

σ = D and (
σ

ϵo
) = Eo(electric field in vacuum)                                                (40) 

Hence 

                                 D = Eoϵo                                                 (41) 

If K is dielectric constant of the material and E is the field in dielectric, then 

 

Eo = KE                                                                     (42) 

putting this value in above equation 
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      D = KEϵo                                                             (43) 

Comparing equation (37) and (43) 

KEϵo = Eϵo + 𝑃                                                                                                          

𝑃 = Eϵo(K − 1)                                                           (44) 

in vacuum K=1, thus P = 0, i.e. polarization is not possible in vacuum. 

Example 3: The dielectric constant of neon gas at NTP is 1.000134. Calculate the dipole 

moment induced in each atom of the gas when it is placed in an electric field of intensity 

90kV/m. Also find the atomic polarizability of neon. Avogadro number is 6.023 ×

1026 𝑎𝑡𝑜𝑚𝑠

𝑘𝑔−𝑚𝑜𝑙𝑒
 . 

Solution: let p be the dipole moment induced in each neon atom and n the number of neon 

atoms per meter3.  Then the electric polarization of the gas is given by  

P = np = (K − 1)𝜀𝑜𝐸          

𝑝 =
(K−1)𝜀𝑜𝐸

𝑛
                         (i) 

Now at NTP 1kg-atom of neon gas occupies a volume of 22.4meter3 and contains 6.023 ×

1026 atoms. Therefore the number of neon atoms in 1 m3 is given by  

𝑛 =
6.023 × 1026

22.4
= 2.69 × 1025 

Substituting  𝐾 = 1.000134, 𝐸 =
90𝑘𝑉

𝑚
  and 𝑛 = 2.69 × 1025 in eq.(i) we have  

𝑝 =
(1.000134 − 1) × 8.85 × 1012 × 90000

2.69 × 1025
 

= 3.97 × 10−36𝑐𝑜𝑢𝑙 − 𝑚 

The atomic polarizability is given by 

𝛼 =
p

𝐸
=

3.97 × 10−36

90000
 

= 4.4 × 10−41
(𝑐𝑜𝑢𝑙 − 𝑚2)

𝑣𝑜𝑙𝑡
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9.8 MOLECULAR POLARIZABILITY AND ELECTRICAL       

SUSCEPTIBILITY 

When a nonpolar molecule is placed in an electric field the center of gravity of positive and 

negative charges becomes separate from each other. The molecule or atom thus acquires an 

induced electric dipole moment. It is found that for most atoms or molecules the dipole moment 

is proportional to the applied electric field. 

p ∝  E 

                                                           p = α E                                                                (45) 

p and E both are vector quantities. Constant α is known as atomic or molecula 

polarizability.  

Again, polarization vector P is proportional to the electric field, thus 

P⃗⃗⃗ = χ
e
E⃗⃗⃗ 

χ
e

=
P

E
                                                                          (46) 

where χ
e
 is a constant called electrical susceptibility of the dielectric material. 

Thus, in a dielectric electric susceptibility is defined as the ratio polarizationto the electric field 

intensity. As we know there is no polarization occurs in vacuum hence value of χ
e
 is zero. The 

dielectrics having molecules of permanent dipole moment, their χ
e
 depends on temperature 

while for non-polar dielectrics χ
e
 is temperature independent. 

Example4: the polarizability of NH3 molecule is found experimentally by the measurement of 

dielectric constant as 2.5 × 10−39 𝑐2−𝑚

𝑁
 at 300K and 2.0 × 10−39 𝑐2−𝑚

𝑁
 at 400K. Calculate for 

each temperature the polarizability due to permanent dipole moment and that due to 

deformation of the molecules. 

Solution: the total polarizability α of a polar molecule is the sum of deformation polarizability 

and orientational polarizability. Thus  

α = αd + αo                                                                      (i) 
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αd is independent of temperature, but αo inversely proportional to the absolute temperature, 

so that we may write. 

αo =
β

T
                                                                             (ii) 

where β is constant. Thus we can write eq.(i) for temperature 300K and 400K as 

2.5 × 10−39 = αd +
β

300
                                                         (iii) 

2.0 × 10−39 = αd +
β

400
                                                         (iv) 

subtracting eq(iv) from (iii), we get 

0.5 × 10−39 =
β

300
−

β

400
=

β

1200
 

𝛽 = 0.5 × 10−39 × 1200 = 6 × 10−37 

substituting this value of β in eq.(iii), we get 

2.5 × 10−39 = αd +
6 × 10−37

300
 

αd = 2.5 × 10−39 − 2 × 10−39 

αd = 0.5 × 10−39   
𝑐2 − 𝑚

𝑁
 

Again, substituting the value of β in eq.(ii), we get 

αo 𝑎𝑡 300𝐾 =
6 × 10−37

300
=  2 × 10−39  

𝑐2 − 𝑚

𝑁
 

αo 𝑎𝑡 400𝐾 =
6 × 10−37

400
=  1.5 × 10−39  

𝑐2 − 𝑚

𝑁
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9.9  RELATION BETWEEN DIELECTRIC CONSTANT AND 

SUSCEPTIBILITY 

As we know displacement vector 

�⃗⃗⃗� = �⃗⃗�𝜀𝑜  + �⃗⃗�                                                            (47) 

But polarization vector   

P⃗⃗⃗ = χ
e
E⃗⃗⃗                                                                         (48) 

Hence   

 

�⃗⃗⃗� = �⃗⃗�𝜀𝑜  + χ
e
E⃗⃗⃗                                                            (49) 

�⃗⃗⃗� = �⃗⃗�(𝜀𝑜  + χ
e
 )                                                               (50) 

�⃗⃗⃗� = �⃗⃗�𝜀𝑜 ( 1 +
χ

e

𝜀𝑜
)                                                                  (51) 

The quantity 1 +
χe

𝜀𝑜
 is known as dielectric constant of the substance. Therefore 

𝐾 = 1 +
χ

e

𝜀𝑜
                                                                     (52) 

For vacuum susceptibility is zero thus 𝐾 = 1. 

Now eq.(51) becomes  

�⃗⃗⃗� = �⃗⃗�𝐾𝜀𝑜                                                                              (53)   

                                            𝐸 =
D

𝐾𝜀𝑜
                                                                       (54) 

The term  𝐾𝜀𝑜is known as permittivity of the substance and denoted by 𝜀.i.e. 

𝜀 = 𝐾𝜀𝑜                                                                                                        (55) 

In vacuum 𝐾 = 1 
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Hence 𝜀 = 𝜀𝑜called permittivity of free space. We can write the Eq.(55) as 

𝜀

𝜀𝑜
= 𝐾                                                                                (56) 

Thus, dielectric constant of the material also known as relative permittivity of the material. 

  9.10 CLASSIUS-MOSSOTTI RELATION 

Dielectric properties of any substance are macroscopic properties. Classius-Mossotti made a 

relation between dielectric constant of any dielectric and its microscopic parameters like 

molecular polarizability and electron density etc.  

As we discussed already in this chapter that when we place a non-polar molecule in any external 

electric field its molecules get induced polarization. An internal electric field is setup in 

dielectric. The resultant electric field at any point inside the dielectric is called local field. 

Clausius and Mossotti found that induced dipole moment p is proportional to the local field. 

That is  

       p ∝ Elocal                                                                                     (57) 

                 p = αElocal                                                                (58) 

‘α’ is the polarizability of a molecule. If n numbers of atoms or molecules per unit volume, then 

the polarization is given by 

P = nαElocal                                                             (59) 

Elocal is given by  

Elocal = E +
P

3𝜀𝑜
                                                                  (60) 

Hence 

P = nα (E +
P

3𝜀𝑜
)                                                          (61) 

As we proved earlier that polarization is, 

𝑃 = Eϵo(K − 1)                                                      (62) 
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 Comparing above two expressions (61) and (62) we have 

Eϵo(K − 1) = nα (E +
Eϵo(K−1)

3𝜀𝑜
)                                           (63) 

ϵo(K − 1) = nα (
(K+2)

3
)                                                         (64) 

𝐾 − 1

𝐾 + 2
=

𝑛𝛼

3𝜀0
                                                   (65)  

   This is the Clausius-Mossotti relation in terms of number of molecules or atoms per unit volume. 

‘α’ can be determined easily because all the parameters are generally known or can be measured. 

This relation is true only for non-polar molecules. When 
𝑛𝛼

3ϵo
 approaches to unity, K becomes 

infinite. Hence the equation (65) is reasonable for low ρ and low ‘α’ for non-polar materials. 

    9.11 DIELECTRIC STRENGTH 

Very high electric fields can free electrons from atoms and accelerate them to such high energies 

that they can, in turn, free other electrons, in an avalanche process (or electrical discharge). This 

is called dielectric breakdown, and the field necessary to start is called the dielectric strength or 

breakdown strength. The theoretical dielectric strength of a material is an intrinsic property of 

the bulk material and is independent of the configuration of the material or the electrodes with 

which the field is applied. Breakdown occurs quite abruptly (typically in nanoseconds), resulting 

in the formation of an electrically conductive path and a disruptive discharge through the 

material. For solid materials, a breakdown event severely degrades, or even destroys, its 

insulating capability. 

Factors affecting apparent dielectric strength. 

1. It decreases with increased operating temperature. 

2. It decreases with increased frequency. 

3.      For gases it normally decreases with increased humidity. 

4. For air, dielectric strength increases slightly as the absolute humidity increases but 

decreases with an increase in relative humidity. 
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Substance Dielectric Strength (106 V/m) 

Air 3.0 

Alumina 13.4 

Window glass 9.8 - 13.8 

Borosilicate glass 20 - 40 

Benzene 163 

Distilled water 65 - 70 

Mica 118 

Diamond 2000 

Vacuum 1012 

 

9.12 DIELECTRIC CONSTANT OF A CONDUCTOR 

As we know that conductor is a material having large number of free electrons. When we put 

this conductor between the plates of a capacitor the free electrons in the conductor moves 

towards the surface facing positive plate and another surface of the conductor becomes 

positive. This motion continues until the electric field due to the induced charge becomes equal 

to the external applied field. Thus, inside the conductor electric field is zero everywhere.  

 

Figure 10: A conductor inside the plates of a capacitor  
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In figure 10(a) field lines starting from positive plate ends at negative plate. In figure 10(b) all 

the lines of force leaving the positive plate of the capacitor terminate on the induced negative 

charge on the left face of the conductor. 

Similarly, the equal number of lines produced at the induced positive charges on the right face 

of the conductor and terminate on the negative charge on another plate of the capacitor. The 

induced charge produced on the face of the conductor are equal and opposite to the original 

charges on the capacitor plates. Since E = 0 inside the conductor, hence K = ∞, thus dielectric 

constant of a conductor is infinite. 

 

  9.13 FERROELECTRICITY 

Since the dielectric behavior of some materials is in many respects analogous to the magnetic 

behavior of ferromagnetic materials, they are called ferroelectric solids or ferroelectrics.  It is 

spontaneously polarized in the absence of external electric field. The direction of spontaneous 

polarization may be altered under influence of an applied electric field. In general, the direction 

of spontaneous polarization is not the same throughout in a macroscopic crystal. Rather, the 

crystals consist of a number of domains. Within each domain the polarization has a specific 

direction. In figure 11 consider a crystal which initially has an over-all polarization equal to 

zero. When an electric field is applied to the crystal, the domains with polarization components 

along the applied field direction grows at the expense of the antiparallel domains; thus, the 

polarization increases (OA). When all domains are aligned in the directions of the applied field, 

the polarization saturates (BC) and the crystal has become a single domain. Extrapolation of 

the linear part BC to zero external field gives the spontaneous polarization Ps. when the applied 

field for the crystal corresponding to point B is reduces the polarization of the crystal decreases, 

but for zero applied field there remain the remanent polarization Pr. 
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Figure 11: Representation of hysteresis in the electric polarization versus applied electric field. 

  To remove the remanent polarization, the polarization of about half the crystal must be 

reversed and this occurs only when a field in the opposite direction is applied. The field 

requires to make the polarization zero again is called the coercive field Ec. 

The ferroelectric properties of a ferroelectric disappear above a critical Temperature Tc, this 

temperature is called ferroelectric curie temperature. Associated with the transition from the 

ferroelectric to the non-ferroelectric phase. The dielectric constant of ferroelectrics is not a 

constant but depends on the field strength at which it measured. The best example of 

ferroelectric material is barium titanate. 

 

Figure 12: Structure of BaTiO3, for T>TC. 
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9.14 SUMMARY 

In this chapter we studied various types of electric polarization and polarizability of dielectric 

solids. In electronic polarization (also called optical polarization) the electric field causes 

deformation or translation of the originally symmetrical distribution of the electron clouds of 

atoms or molecules. This is essentially the displacement of the outer electron clouds with 

respect to the inner positive atomic cores. In atomic or ionic polarization, the electric field 

causes the atoms or ions of a polyatomic molecule to be displaced relative to each other. This 

is essentially the distortion of the normal lattice vibration and this is why it is sometimes 

referred to as vibrational polarization. In orientational polarization the polarization occurs only 

in materials consisting of molecules or particles with a permanent dipole moment. The electric 

field causes the reorientation of the dipoles toward the direction of the field. Ferromagnetic 

materials are those which exhibit spontaneous electric dipole moment in the absence of applied 

electric field. These are analogous to ferromagnetic material. Ferroelectric materials possess a 

Curie point and exhibit hysteresis loop. This occurs mainly in amorphous or polycrystalline 

solids or in materials consisting of traps. 

 

9.15 GLOSSARY 

Polarization – separation of charges 

Monoatomic substance – containing one atom in its molecule e.g. He, Ne, Ar etc 

Diatomic substance - containing two atoms in its molecule e.g. H2, N2, HCl etc 

Dielectric breakdown – loss of dielectric properties  

Bound charge – the charge which cannot move  

Non polar molecule – molecules having symmetrical structure 

       

9.16 TERMINAL QUESTIONS  

1. Find the total polarizability of CO2, if its susceptibility is 0.985×10-3. Density of carbon 

dioxide is 1.977 kg/m3.   [Ans. 3.24×10-40 Fm2] 

2. The relative permeability of argon at 0oC and atmosphere pressure is 1.000435. 

Calculate the polarizability of the atom.  [Ans. 1.43×10-40 Fm2] 

3. Prove that the gravitational force is negligible in comparison to electrostatic force in 

the hydrogen atom in which the electron and proton are about 0.53Ǻ apart.  



191 
 

4. The polarizability of neon gas is 0.35×10-40 Fm2. If the gas contains 2.7×1025 atoms/m3 

at 0oC and one atmosphere pressure; calculate its relative dielectric constant.  

    [Ans. 1.000108] 

5. There are 1.6×1020 NaCl molecules/m3 in a vapour. Determine the orientational 

polarization at room temperature if the vapour is subjected to an electric field 5000V/cm. 

Assume that the NaCl molecule consists of Na+ and Cl- ions separated by 0.25nm.  

     [Ans. 10-11C/m2] 

6. One gram molecule of a certain polar substance is dissolved into 1000cm3 of a nonpolar 

liquid. The liquid itself has a dielectric constant 3.000 at 27oC, whereas the solution has a 

dielectric constant of 3.200 at that temperature. Calculate the dipole moment of polar 

molecule.    [Ans. 0.355×10-29 Cm] 

7. A parallel plate has an area of 8cm2 with a separation of 0.08 mm. The space is filled 

with polystyrene. The real part of the relative dielectric constant is 2.56 and the loss tangent 

is 0.7×10-4 at a frequency of 1 MHz. Calculate the capacitance and the equivalent parallel loss 

resistance.   [Ans. 226μF, 10MΩ] 
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10.1 INTRODUCTION: 

Magnetic materials fascinated human beings for over 4000 years. Magnetism is a 

phenomenon through which materials assert an attractive or repulsive force or influence 

on other materials. In the modern concept all materials are said to exhibit magnetism, 

though of different nature.   

When a substance is placed in a magnetic field H substance gets magnetized. The magnetic 

moment per unit volume M is produced inside the substance M is called magnetization. 

The relation between magnetization and magnetic field is given by the equation  

�⃗⃗⃗� = 𝜒𝑚 �⃗⃗⃗�                                                                               (1) 

The constant 𝜒𝑚is called magnetic susceptibility of the material. It may be defined as the 

ratio of magnetization M and magnetic field intensity H. The value of 𝜒𝑚 for vacuum is 

zero because there is no magnetization in vacuum. 

In this unit we shall discuss the various types of magnetic materials and their 

characteristics. We shall also discuss the different theories of magnetization broadly. In 

last we will discuss the temperature dependence of susceptibility using Langevin’s 

function. 

10.2 OBJECTIVES: 

After studying this unit, you should be able to- 

 Know magnetic permeability, susceptibility, retentivity etc. 

 Know the difference between magnetic and non-magnetic materials. 

 Differentiate the paramagnetic, diamagnetic, ferromagnetic, antiferromagnetic and 

ferrimagnetic materials.  

 Understand the hysteresis curve and hysteresis losses. 

 Understand the domain theory of ferromagnetism. 

 Learn the Langevin’s theory of diamagnetism and paramagnetism. 
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10.3 MAGNETIC PERMEABILITY 

When a specimen is placed in a magnetic field H it is magnetized due to alignments of 

current loops. The magnetic flux density within the specimen is the resultant of 

magnetizing field and intensity of magnetization M. The relation is given by  

�⃗⃗� = 𝜇𝑜(𝐻⃗⃗ ⃗⃗⃗ + �⃗⃗⃗�)                                                                     (2) 

By susceptibility equation, we know that 

�⃗⃗⃗� = 𝜒𝑚 �⃗⃗⃗�                                                                           (3) 

Hence�⃗⃗� = 𝜇𝑜(𝐻⃗⃗ ⃗⃗⃗ + 𝜒𝑚 �⃗⃗⃗�) 

�⃗⃗� = 𝜇𝑜(1 + 𝜒𝑚)�⃗⃗⃗�                                                                                   (4) 

If we write  

𝜇 = 𝜇𝑜 (1 + 𝜒𝑚) 

Then we have 

 �⃗⃗� = 𝜇�⃗⃗⃗�                                                                (5) 

The constant 𝜇 is called magnetic permeability if the material. Magnetic permeability may 

be defined as the ratio of magnetic induction to the magnetic intensity. For vacuum, it is 

denoted by 𝜇𝑜 (4𝜋 × 10−7 𝑊𝑏

𝐴−𝑚
) and called permeability of vacuum. Hence magnetic 

induction in vacuum will be 

𝐵𝑜
⃗⃗⃗⃗⃗ = 𝜇𝑜 �⃗⃗⃗�                                                                            (6) 

The ratio  

𝐵

𝐵𝑜
=

𝜇

𝜇𝑜
= 𝜇𝑟                                                                       (7)          

is called relative permeability.  

Example 1: A magnetic field of 20 CGS units produces a flux of 2400 CGS units in a bar 

of iron of cross section 0.2cm2. Calculate the permeability, intensity of magnetization and 

susceptibility of a bar.  

Solution: the flux density in a bar is  

𝐵 =
∅

𝐴
=

2400

0.2
= 12000 𝑔𝑎𝑢𝑠𝑠 
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Therefore, the permeability of the bar is  

𝜇 =
𝐵

𝐻
=

12000

20
= 600 𝐶𝐺𝑆 𝑢𝑛𝑖𝑡𝑠 

The intensity of magnetization is  

𝐼 =
𝐵 − 𝐻

4𝜋
=

12000 − 20

4 × 3.14
= 953.8 

The relation between permeability μ and susceptibility χm is  

χm =
𝜇 − 1

4𝜋
=

600 − 1

4 × 3.14
= 47.7 𝐶𝐺𝑆 𝑢𝑛𝑖𝑡𝑠 

10.4 TYPES OF MAGGNETISM 

According to modern theories, magnetism in solids arises due to orbital and spins motion 

of electrons as well as spin motion of nuclei. The motion of electrons is equivalent to an 

electric current which produces magnetic effect. The major contribution in magnetism 

comes from the spin of unpaired valence electrons which produces permanent magnetic 

moments. A number of such magnetic moments align themselves in different directions to 

generate a net non-zero magnetic moment. Therefore, the nature of magnetization 

produced depends on the number of unpaired valence electrons present in the atoms of the 

solid and on the relative orientations of the neighboring magnetic moments. The 

magnetism in solid materials can be classified into five main groups according to their 

magnetic properties. 

1. Diamagnetism. 

2. Paramagnetism. 

3. Ferromagnetism. 

4. Antiferromagnetism. 

5. Ferrimagnetism. 

Diamagnetism is a very weak magnetic effect and is found in those solids which do not 

contain any permanent magnetic moments.  

10.4.1 Diamagnetism: 

Diamagnetic materials do not have unpaired electrons in them. In these materials electron 

spin moments are mutually cancelled and there is no interaction between individual 

magnetic moments. These materials are weakly repelled in a magnetic field because they 
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have a weak, negative magnetic susceptibility. Examples of diamagnetic materials are 

MgO, Cu, Ag, Au etc. The behavior of diamagnetic material in external magnetic field is 

shown in figure 1. 

 

Figure 1: Atomic dipole configuration for a diamagnetic material without and with 

magnetic field. 

10.4.2 Paramagnetism: 

For some materials, each atom possesses a permanent dipole moment by virtue of 

incomplete cancellation of electron spin and/or orbital magnetic moments e.g. Mg, Mo, Li 

etc. In the absence of an external magnetic field, the orientations of these atomic magnetic 

moments are random, such that a piece of material possesses no net macroscopic 

magnetization. Paramagnetism results when they preferentially align, by rotation, with an 

external field as shown in figure 2. The susceptibility of the paramagnetic materials 

depends on temperature, 

 

          Figure 2: Atomic dipole configuration for a paramagnetic material without and 

with magnetic field. 

 

 following the Curie law: 

χ =
𝐶

𝑇
                                                                                    (8) 
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  where C is called Curie constant. In real systems interactions between the magnetic 

moments are present, and the susceptibility dependence on the temperature follow the 

Curie-Weiss law: 

χ =
𝐶

𝑇−𝜃
                                                                                  (9) 

where θ is called Curie Weiss temperature and it is related to the strength of the 

interactions between moments. 

10.4.3 Ferromagnetism: 

Certain metallic materials possess a permanent magnetic moment in the absence 

of an external magnetic field (figure 3), and exhibit very large and permanent 

magnetizations e.g. Fe, Co, Ni etc. Permanent magnetic moments in ferromagnetic 

materials result from atomic magnetic moments due to uncancelled electron spins as a 

consequence of the electron structure. Above a particular temperature called Curie 

temperature (Tc) the ferromagnetic material exhibits paramagnetism.  

 

Figure 3: The orientation of atomic dipoles for a ferromagnetic material. 

According to Weiss theory of ferromagnetism a specimen of ferromagnetic 

material contains a number of small regions called domains which are spontaneously 

magnetized. The magnitude of spontaneous magnetization of the specimen as a whole 

is determined by the vector sum of the magnetic moments of individual domains. The 

spontaneous magnetization of each domain is due to the presence of an exchange field, 

BE, which tends to produce a parallel alignment of the atomic dipoles. The field BE is 

assumed to be proportional to the magnetization M of each domain, i.e. 

𝐵𝐸 = 𝜆𝑀                                                                              (10) 
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where λ is a constant called Weiss-field constant and is independent of temperature. 

The field BE is also called the molecular field, it is generally quite strong as compared 

to the applied field B. BE =1000Tesla for iron. Thus, the effective magnetic field on 

atom becomes 

𝐵𝑒𝑓𝑓 = 𝐵 + 𝜆𝑀                                                                   (11) 

The magnetization produced in the ferromagnetic material in the presence of an external 

magnetic field may be attributed to  

1. Growth in the size of domains having favourable orientation and corresponding 

shrink in the size of domains having unfavourable orientations with respect to 

the applied field. 

2. Rotation of the directions of magnetizations of various domains along the 

direction of applied field.  

These two magnetization processes are illustrated below in figure 4 

 

 

 

Figure 4: two fundamental processes of magnetization in ferromagnetic materials. 

In weak fields, the magnetization usually takes place by means of domain 

boundary displacement so that the favourably oriented domains increase in size. In 

strong field the magnetization occurs by the rotation of domains. When the field is 

removed the domain boundary do not move completely back to their original position, 

and the substance remains still magnetized. Now the substance becomes permanent 

magnet. At high temperature the domains are broken up and the ferromagnetic 

substance becomes paramagnetic having individual atomic dipoles.  

H H 

(a) Unmagnetized             (b) Magnetization             (c) Magnetization by 

            Specimen                    by domain growth             domain rotation 
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Above the Curie temperature, TC, the susceptibility of a ferromagnetic material obeys 

the    Curie-Weiss law i.e. 

𝜒 =
𝐶

𝑇−𝑇𝐶
                                                                          (12) 

where C is the Curie- Weiss constant  

In figure 5 the variation of flux density with magnetic field strength is shown 

for diamagnetic, paramagnetic, ferromagnetic materials and vacuum. Flux density is 

maximum for ferromagnetic and minimum for diamagnetic materials.   

 

 

Figure 5: Flux density B versus the magnetic field strength H for different 

magnetic materials. 

 

10.4.4 Antiferromagnetism: 

This phenomenon of magnetic moment coupling between adjacent atoms or ions 

occurs in materials other than those that are ferromagnetic. In one such group, this 

coupling result in an antiparallel alignment; the alignment of the spin moments of 

neighboring atoms or ions are in exactly opposite directions, is termed 

antiferromagnetism. Manganese oxide(MnO) is one material that displays this behavior 
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(figure 6). Antiferromagnetism occurs below a critical temperature called Neel 

temperature TN. Above TN, antiferromagnetic material becomes paramagnetic. 

 

Figure6: Antiparallel alignment of spin magnetic moments for antiferromagnetic 

manganese oxide. 

 

10.4.5 Ferrimagnetism: 

The macroscopic magnetic characteristics of ferromagnets and ferrimagnets are similar; 

the distinction lies in the source of the net magnetic moments. These materials may be 

represented by the chemical formula MFe2O4 in which M represents any one of several 

metallic elements. The prototype ferrite is Fe3O4, the mineral magnetite, sometimes 

called lodestone. The formula for Fe3O4 may be written as (Fe+2)[Fe+3]2O
-2

4 in which 

the Fe ions exist in both +2 and +3 valence states in the ratio of 1:2. A net spin magnetic 

moment exists for each Fe+2 and Fe+3 ions, which corresponds to 4 and 5 Bohr 

magnetons, respectively. There are antiparallel spin-coupling between the Fe ions, 

similar in character to antiferromagnetism. However, the net moment arises from the 

incomplete cancellation of spin moments. Figure 7 shows the opposing magnetic 

moments of two different sites. As a result, the solid as a whole possesses some net 

magnetic moment. 
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Figure 7: Antiparallel alignment of spin magnetic moments for ferrimagnetic 

materials. 

 

10.5 RETENTETIVITY, COERCIVITY AND HYSTERESIS:  

When a specimen of ferromagnetic material is placed in an external magnetic 

field the specimen is magnetized by induction. As the magnetic field intensity is varied 

the flux density in the material does not varies linearly which means the permeability 

is not constant. Permeability depends not only on the value of H but also on the past 

history of the material. The variation of B with the variation of H is shown in following 

figure 8. Point O represents an initially unmagnetised specimen at zero magnetic field 

intensity. As H is increased B also increased but not uniformly, and a point such as ‘a’ 

is reached where B becomes constant, and substance is called magnetically saturated. 

Magnetization corresponding to this point is called saturation magnetization Ms. 
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Figure 8: Hysteresis loop of a ferromagnetic material. 

 

If H is now decreased, B also decreases but following a different path abc, thus 

B lags behind H. when H becomes zero B still has a value Ob. This magnetic flux 

density remaining in the specimen in the absence of any external field is called residual 

magnetism. The property of bearing this magnetism is called retentivity or remanence 

of the material. If the magnetic field intensity H is increased in reversed direction, the 

value of B further decreased, still lagging behind H, and becomes zero when magnetic 

field intensity H has a value equal to Oc. This value of magnetic intensity is called the 

coercivity of the specimen. Thus, coercivity is a measure of the magnetic intensity 

required to destroy the residual magnetism of a specimen. 

When H is increased beyond Oc the specimen is strongly magnetized in opposite 

direction and a point such as d is reached after which magnetization becomes constant. 

Magnetization corresponding to this point is also called saturation magnetization Ms 

.reducing H from this point d to zero and again increasing in another direction a similar 

curve defa is obtained at point b and e where substance consist magnetization in the 

absence of external magnetic field, is said to be permanent magnet. 

The closed curve abcdefa is known as hysteresis curve of the substance. 

Hysteresis curve shows that B always lags behind H when H changes. 

Example 2: the hysteresis loop for a specimen of 12 kg is equivalent to 3000 ergs/cm3. 

Find the loss of energy per hour at a frequency of 50 cycle/ sec, if density of iron is 7.5 

gm/cm3.  
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Solution: the energy dissipated per cm3 per hysteresis loop is given to be 3000 ergs. 

The volume of the core is mass/ density. 

12000

7.5
= 1600 𝑐𝑚3 

Therefore the energy dissipated in the specimen per cycle  

= 1600 × 3000 = 4.8 × 106 𝑒𝑟𝑔𝑠 

The number of cycles in one hour is 

= 50 × 60 × 60 = 1.8 × 105 

energy loss per hour = 1.8 × 105 × 4.8 × 106 

= 8.64 × 1011𝑒𝑟𝑔𝑠 

10.6 SOFT AND HARD MAGNETIC MATERIALS 

The wide variety of magnetic materials can be sharply divided into two groups, 

the magnetically soft (easy to magnetize and demagnetize) and the magnetically hard 

(hard to magnetize and demagnetize). The distinguishing characteristic of the first 

category is high permeability. Magnetically hard materials, on the other hand, are made 

into permanent magnets; here a high coercivity is a primary requirement because a 

permanent magnet once magnetize must be able to resist the demagnetizing action. 

Most widely used permeable materials are iron and iron alloys. Almost pure iron is used 

as the magnetic core for direct current applications. The maximum permeability is 

obtained for a composition of about 79% nickel and the balance is iron. Such an alloy 

shows zero magnetostriction and zero anisotropy and that is why the permeability is 

high. The addition of molybdeneum or chromium increases as the electrical resistivity 

thereby reducing the eddy current losses. 

The most widely used permanent magnetic materials are low alloy steels 

containing 0.6 to 1% carbon which are hardened by quenching. The permanent 

magnetic materials usually hard, brittle and difficult to shape so that they must be cast 

and finished by grinding. 

For many applications a permanent magnet is the better choice, because it 

provides a constant field without the continuous expenditure of electric power and 

without the generation of heat. A magnet can be regarded as an energy storage device. 

This energy is put into it when it is first magnetized and it remains in the magnet. In 

short the magnetism is permanent. Moreover, the energy of a magnet, which is chiefly 
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the energy of its external field, is always available for use and is not drained away by 

repeated use, like the energy of a battery, because a magnet does no net work on its 

surroundings. 

10.7 SUPERPARAMAGNETISM: 

Superparamagnetism is a phenomenon by which magnetic materials may exhibit a 

behavior similar to paramagnetic material at temperatures below the Neel or the Curie 

temperature. In the absence of external magnetic field net magnetic moment is zero 

(figure 9). Normally, coupling forces in magnetic materials cause the magnetic 

moments of neighboring atoms to align, resulting in very large internal magnetic fields. 

At temperatures above the Curie temperature or the Neel temperature, the thermal 

energy is sufficient to overcome the coupling forces, causing the atomic magnetic 

moments to fluctuate randomly. Because there is no longer any magnetic order, the 

internal magnetic field no longer exists, and the material exhibits paramagnetic 

behavior. Superparamagnetism occurs when the material is composed of very small 

crystallites (lower than 100 nm). In this case even though the temperature is below the 

Curie or Neel temperature and the thermal energy is not sufficient to overcome the 

coupling forces between neighboring atoms, the thermal energy is sufficient to change 

the direction of magnetization of the entire crystallite. The material behaves in a manner 

similar to paramagnetic, except that instead of each individual atom being 

independently influenced by an external magnetic field, the magnetic moment of the 

entire crystallite tends to align with the magnetic field. The energy required to change 

the direction of magnetization of a crystallite is called the crystalline anisotropy energy 

and depends both on the material properties and the crystallite size.  

 

Figure 9: Ordering of the atomic dipoles in a superparamagnetic material. 
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10.8 ATOMIC MODEL OF MAGNETISM 

It is impossible to separate the north and south poles of a magnet.  When a magnet is 

divided into small pieces, each piece is a complete magnet. Every matter is made up of 

atoms. According to atomic model of magnetism, each atom is a complete magnetic 

dipole. Each atom consists of a positively charged nucleus at the center and electrons 

revolve around the nucleus in definite orbits. The motion of electrons around the 

nucleus is identical to that of earth around the sun. Accordingly electron revolving 

nucleus has two types of motion.  

(i). Orbital Motion: electrons revolve around the nucleus in a definite obit (this motion 

is identical to the motion of earth around the sun). 

(ii). Spin Motion: electrons spin about its own axis. This spin motion may be clockwise 

or anticlockwise (this motion is identical to the rotation of earth about its own axis).  

As electron has negative charge, therefore the revolving electron is a current loop. A 

current loop is equivalent to a magnetic dipole and possesses a magnetic moment. This 

magnetic moment is resultant of both due to orbital motion and spin motion of the 

electron. However, the most of magnetic moment is produced due to spin motion and a 

very small contribution due to orbital motion. 

�⃗⃗⃗�𝑙 = −
𝑒

2𝑚𝑒
�⃗⃗�                                                                           (13) 

In addition to orbital angular momentum L, electron possesses spin angular 

momentum S. which contribute to spin magnetic moment, given by 

�⃗⃗⃗�𝑠 = −
𝑒

𝑚𝑒
𝑆                                                                               (14) 

Therefore, the total magnetic moment will be  

𝑚 = �⃗⃗⃗�𝑙 + �⃗⃗⃗�𝑠                                                                              (15) 

= −
𝑒

2𝑚𝑒
�⃗⃗� −

𝑒

𝑚𝑒
𝑆                                                                    (16) 

= −
𝑒

2𝑚𝑒
[�⃗⃗� + 2𝑆]⃗⃗ ⃗⃗ ⃗⃗⃗                                                                         (17) 
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10.9 LANGEVIN’S THEORY OF DIAMAGNETISM: 

Those substances which are weakly magnetized in the opposite direction to the applied  

field are known as diamagnetic materials. According to Langevin’s theory an electron 

revolving in orbit behaves as a current loop, and the value of the current equals the rate at 

which charge passes any given point of the loop. Thus  

𝑖 = 𝑒𝑣                                                                                        (18) 

where 𝑣  is the angular frequency of the motion of the electron and  

𝑣 =
𝜔

2𝜋
. The magnetic dipole moment associated with this current would be 

 𝑝 = 𝑖𝐴 = 𝑒𝑣𝐴                                                                                      (19) 

where 𝐴 is the area of the orbit and 𝐴 = 𝜋𝑟2, r is the radius of the orbit. Thus  

𝑝 = 𝑒(
𝜔

2𝜋
) (𝜋𝑟2) =

1

2
𝑒𝜔𝑟2                                                    (20) 

In a diamagnetic material the number and orientations of electron orbits in each atom are 

such that the net magnetic moment of the atom is zero. Whenever a diamagnetic material is 

placed in a magnetic field the electronic currents in each atom are modified in such a way 

that a magnetic moment is induced whose direction is opposite to the applied field. In the 

absence of magnetic field, the Coulomb force on the electron by atomic nucleus is the 

required centripetal force, that is  

𝐹𝑐 = 𝑚𝜔𝑜
2𝑟                                                                        (21) 

where 𝜔𝑜 is the angular velocity of the electron of mass m in its orbit. When an external 

magnetic field is applied perpendicular to the plane of the orbit, an external magnetic force 

acts on the electron. This force, being perpendicular to the direction of motion of the electron 

as well as to the magnetic field. Hence the new centripetal force on the electron is  

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐𝑓𝑜𝑟𝑐𝑒 ± 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐𝑓𝑜𝑟𝑐𝑒 

𝐹𝑐 ± 𝐹𝑚                                                                        (22) 
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a change in centripetal force requires a change in the angular velocity of the electron. if 𝜔 

be the new angular velocity, then we have  

𝐹𝑒 ± 𝐹𝑚 = 𝑚𝑟𝜔2                                                                     (23) 

𝑚𝜔𝑜
2𝑟 ± 𝐵𝑒𝑣 = 𝑚𝑟𝜔2                                                       (24) 

±𝐵𝑒𝑟𝜔 = 𝑚𝑟𝜔2 − 𝑚𝜔𝑜
2𝑟                                                         (25) 

±𝐵𝑒𝜔 = 𝑚(𝜔2 − 𝜔𝑜
2) = 𝑚(𝜔 − 𝜔𝑜)(𝜔 + 𝜔𝑜)                                   (26) 

The quantity (𝜔 − 𝜔𝑜) is (∆𝜔) change in angular frequency of the electron. (𝜔 + 𝜔𝑜) is 

approximately 2𝜔 because 𝜔 differs slightly from 𝜔𝑜 even in high magnetic field. Thus  

±𝐵𝑒𝜔 = 𝑚∆𝜔 2𝜔                                                            (27) 

∆𝜔 = ±
𝐵𝑒

2𝑚
                                                                   (28)                          

This change in angular velocity results a change in magnetic moment whose magnitude is 

given by modifying equation (20) 

∆𝑝𝑚 =
1

2
𝑒𝑟2∆𝜔                                                                 (29) 

=
1

2
𝑒𝑟2 𝐵𝑒

2𝑚
                                                                (30)          

= 𝑒2𝑟2 𝐵

4𝑚
                                                                      (31) 

If an atom consists j electrons, the total induced magnetic moment is  

 

∑ ∆𝑝𝑚𝑗 =
𝑒2𝐵

4𝑚
∑ 𝑟𝑗

2
𝑗                                                               (32) 

If n be number of atoms of the material per unit volume, then magnetic moment per unit 

volume will be  

𝐼 = 𝑛 ∑ ∆𝑝𝑚𝑗                                                           (33)                              

𝐼 = 𝑛
𝑒2𝐵

4𝑚
∑ 𝑟𝑗

2                                                                     𝑗 (34)      
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Now 𝐵 = 𝜇𝜊(𝐻 + 𝐼). Since I is very small for diamagnetic material, hence 𝐵 = 𝜇𝜊𝐻, thus 

 

𝐼 = 𝑛
𝑒2𝜇𝜊𝐻

4𝑚
∑ 𝑟𝑗

2
𝑗                                                             (35) 

in vector form this equation will be written as  

𝐼= −𝑛
𝑒2𝜇𝜊

4𝑚
∑ 𝑟𝑗

2
𝑗 �⃗⃗⃗�                                                         (36) 

Negative sign indicates that 𝐼 𝑎𝑛𝑑 �⃗⃗⃗� are in opposite directions. Magnetic susceptibility of the 

diamagnetic material is therefore given by  

 

𝜒 =
𝐼

�⃗⃗⃗�
= −𝜇𝜊

𝑛𝑒2

4𝑚
∑ 𝑟𝑗

2
𝑗                                                       (37)        

This expression shows that for a diamagnetic material the magnetic susceptibility is negative 

and is independent of the temperature. Thus, diamagnetism is a universal property of the 

material. 

10.10 LANGEVIN’S THEORY OF PARAMAGNETISM 

A paramagnetic material is one which when placed in a magnetic field becomes weakly 

magnetized in the same direction as the field. Langevin explained paramagnetism on the basis 

that the atoms or molecules of a paramagnetic material have a net intrinsic magnetic moment 

due to the spin and orbital motion of electrons in it. In the absence of magnetic field, a 

macroscopic amount of paramagnetic material is not magnetized because molecules are 

randomly oriented due to thermal vibrations so that the net magnetic moment of the specimen 

is zero.  

When paramagnetic material is placed in an external magnetic field the molecule experience 

torque which tries to align them in the direction of the field. But the alignment is not complete 

because the thermal motion of the molecule which favors random orientation. The average 

alignment gives raise a net magnetic moment per unit volume in the direction of the field. If 

the temperature of the specimen is raised the magnetization becomes smaller due to the increase 

of thermal agitation.  
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Let us now calculate the net magnetic moment per unit volume produced by alignment of the 

molecules at certain temperature T. suppose n be the number of molecules per unit volume of 

the specimen and θ the angle which the magnetic moment 𝑝𝑚⃗⃗ ⃗⃗⃗⃗  of a molecule makes with the 

external magnetic field �⃗⃗� the potential energy of the molecule in the field is  

𝑈 =  − pm B cos 𝜃                                                             (38) 

Statistically the number of molecules having energy U at a temperature T is proportional 

to𝑒−𝑈/𝑘𝑇 , where k is Boltzman’s constant. The number of molecules per unit volume 𝑑𝑛, 

having energy U and oriented at angles between 𝜃𝑎𝑛𝑑 𝜃 + 𝑑𝜃with respect to the direction of 

�⃗⃗� is given by 

𝑑𝑛 = 𝐶𝑒−𝑈/𝑘𝑇𝑑𝜔                                                                   (39) 

Where C is a constant and 𝑑𝜔 is solid angle between two hollow cones of semi vertex angles 

𝜃𝑎𝑛𝑑𝜃 + 𝑑𝜃 and is given by 

𝑑𝜔 = 2𝜋 sin 𝜃𝑑𝜃                                                                    (40) 

substituting the value of U and 𝑑𝜔 in equation (39) using equation (38) and (40) we get 

𝑑𝑛 = 𝐶𝑒pm B cos 𝜃/𝑘𝑇2𝜋 sin 𝜃𝑑𝜃 

or  

𝑑𝑛 = 𝐴𝑒x cos 𝜃 sin 𝜃𝑑𝜃                                                         (41) 

where 

𝑥 =
pmB

𝑘𝑇
                                                                              (42) 

and 𝐴 = 𝐶2𝜋is a new constant. Integrating equation (41) from 𝜃 = 0 to 𝜃 = 𝜋, we get the total 

number of molecules per unit volume i.e. 

𝑛 = 𝐴 ∫ 𝑒x cos 𝜃 sin 𝜃𝑑𝜃
𝜋

0
                                                       (43)              

putting cos 𝜃 = 𝑟, sin 𝜃𝑑𝜃 = −𝑑𝑟 we have 

𝑛 = −𝐴 ∫ 𝑒𝑥𝑟𝑑𝑟
−1

1
                                                                  (44)                   
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= −𝐴 [
𝑒𝑥𝑟

𝑥
]

1

−1

                                                                         (45) 

= −
𝐴

𝑥
(𝑒−𝑟 − 𝑒𝑟)                                                                               (46) 

=
𝐴

𝑥
(𝑒𝑟 − 𝑒−𝑟)                                                                      (47)    

=
2𝐴

𝑥
(sinh 𝑥)                                                                                  (48) 

Since each molecule of 𝑑𝑛 has a component of magnetic moment 𝑝𝑚 cos 𝜃 along the direction 

of magnetic field. Thus, the magnetic moment of 𝑑𝑛 molecules along the direction of magnetic 

field 𝑝𝑚 cos 𝜃 𝑑𝑛. The total magnetic moment 𝐼 along the direction of field due to all molecules 

per unit volume is given by 

𝐼 = ∫ 𝑝𝑚 cos 𝜃 𝑑𝑛
𝜋

0
                                                                 (49)       

using equation (48) 

𝐼 = 𝐴𝑝𝑚 ∫ 𝑒x cos 𝜃 cos 𝜃 sin 𝜃𝑑𝜃
𝜋

0
                                         (50)                                        

Assuming cos 𝜃 = 𝑟so that sin 𝜃𝑑𝜃 = −𝑑𝑟 we have  

𝐼 = −𝐴𝑝𝑚 ∫ 𝑟𝑒𝑟𝑥𝑑𝑟                                                                            (51)

−1

1

 

= −𝐴𝑝𝑚 [𝑟
𝑒𝑟𝑥

𝑥
− ∫

𝑒𝑟𝑥

𝑥
𝑑𝑟

−1

1
]

1

−1

                                             (52)                   

= −𝐴𝑝𝑚 [𝑟
𝑒𝑟𝑥

𝑥
−

𝑒𝑟𝑥

𝑥2
]

1

−1

                                                               (53) 

= −𝐴𝑝𝑚 [{−
𝑒−𝑥

𝑥
−

𝑒−𝑥

𝑥2 } − {
𝑒𝑥

𝑥
−

𝑒𝑥

𝑥2}]                                           (54) 

=
𝐴𝑝𝑚

𝑥
[{𝑒−𝑥 +

𝑒−𝑥

𝑥
} + {𝑒𝑥 −

𝑒𝑥

𝑥
}]                                                 (55) 

=
𝐴𝑝𝑚

𝑥
[{𝑒𝑥 + 𝑒−𝑥} −

1

𝑥
{𝑒𝑥 − 𝑒−𝑥}]                                             (56) 
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=
2𝐴𝑝𝑚

𝑥
[cosh 𝑥 −

sinh 𝑥

𝑥
]                                                                (57) 

Using Eq. (48), 
2𝐴

𝑥
=

𝑛

sinh 𝑥
 , we have 

𝐼 = 𝑛𝑝𝑚 [coth 𝑥 −
1

𝑥
]                                                                    (58) 

[coth 𝑥 −
1

𝑥
]  is termed as Langevin’s function and is denoted by 𝐿(𝑥) . Hence  

𝐼 = 𝑛𝑝𝑚𝐿(𝑥)                                                                 (59) 

where 

𝑥 =
𝐵𝑝𝑚

𝑘𝑇
                                                                 (60)      

for small value of  𝑥 the series expansion of  𝐿(𝑥) shows that  

𝐿(𝑥) =  coth 𝑥 −
1

𝑥
≃

𝑥

3
                                                              (61) 

 

Figure 10: Variation of Langevin function with x 

so that 

𝐼 = 𝑛𝑝𝑚
𝑥

3
=

𝑛𝑝𝑚
2

3𝑘𝑇
𝐵                                                                    (62) 



212 
 

we know that 𝐵 = 𝜇𝜊(𝐻 + 𝐼), 𝐼is very small for paramagnetic substances hence 𝐵 = 𝜇𝜊𝐻. 

Then we have 𝐼 = 𝜇𝜊
𝑛𝑝𝑚

2

3𝑘𝑇
𝐻 

Since magnetization is a vector quantity, hence 

𝐼 = 𝜇𝜊
𝑛𝑝𝑚

2

3𝑘𝑇
�⃗⃗⃗�                                                                                (63)         

In paramagnetic materials  𝐼𝑎𝑛𝑑�⃗⃗⃗� are in same direction. The magnetic susceptibility of a 

paramagnetic material is given by 

𝜒 =
𝐼

�⃗⃗⃗�
= 𝜇𝜊

𝑛𝑝𝑚
2

3𝑘𝑇
                                                  (64)   

𝜒 ∝
1

𝑇
                                                                    (65) 

Thus, for a paramagnetic material the magnetic susceptibility is inversely proportional to the 

absolute temperature. This relation is known as Curie’s law. 

10.11 SUMMARY 

In this chapter we concluded that diamagnetism is a very weak magnetic effect. It is observed 

in those solids which do not contain any permanent magnetic moment. The small non-zero 

magnetic moment in these materials is due to the orbital motion of electrons. This magnetic 

moment is always directed to the opposite of applied magnetic field. Paramagnetism is also a 

weak magnetic effect, unlike diamagnetism, the magnetic moments are aligned in the directions 

of the field. Ferromagnetism a strong magnetic effect and arises when the adjacent magnetic 

moments align themselves in the same direction. In antiferromagnetism, the adjacent magnetic 

moments are equal and opposite of each other and hence complete cancellation of magnetic 

moments takes place. Ferrimagnetism is similar to antiferromagnetism except that adjacent 

magnetic moments are unequal in magnitude therefore the complete cancellation of moments 

does not take place. It is also found that above a certain temperature the difference in magnetic 

properties disappears and all the materials becomes paramagnetic. 

10.12 GLOSSARY  

Specimen – sample 

Flux density – Flux passing through per unit volume 
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Domain – small regions 

Orientation - direction  

Susceptibility – sensitivity  

Retentivity – tendency to retain  

Saturation magnetization – limit to be magnetized 

Remanence – residual magnetism 

Hysteresis – tendency to remember their magnetic history. 

 

10.13 TERMINAL QUESTIONS 

1. What is hysteresis? Discuss a brief laboratory method for determining the hysteresis 

curve of a sample of iron. What is the utility of the curve? Derive an expression for the 

energy dissipated in hysteresis cycle. 

2. Write short notes on (i) Hysteresis, (ii) magnetic circuit and (iii) Magnetic reluctance. 

3. A paramagnetic substance of volume 40 cm3 is placed in a magnetic field of intensity 

500 oersted. Find (i) the magnetization, (ii) permeability and (iii) mass susceptibility. 

Given that susceptibility = 0.3 × 10−3 and density = 5.0
𝑔

𝑐𝑚3. 

[Ans. (i) 150 joule/ weber-m3, (ii) 1.0038, (iii) 6 × 10−8𝑘𝑔 − 𝑚3] 

4. Two rectangular blocks of length 20 cm and 10 cm, each of area 3cm×5cm are 

connected in series. Assuming magnetic induction uniform throughout the blocks, find 

the net reluctance and permeance. The relative permeabilities of blocks are 500 and 

2000 respectively.                                           [Ans. 1.59 × 105 h-1, 6.3× 10−6h] 

5. Consider a typical magnetic field of 104 gauss and compare the magnetic potential 

energy of an electron spin dipole moment with kT at room temperature.                  [Ans. 

𝜇𝐻

𝑘𝑇
≈ 2.3 × 10−3] 

6. A magnetic material has magnetization of 3300 ampere/meter and flux density of 

0.0044 Wb/m2. Calculate the magnetizing field and the relative permeability of the 

material.        [Ans. 203A/m, 

17.3] 

7. The magnetic field intensity in a piece of ferric oxide is 106 ampere/ meter. If the 

susceptibility of the material at room temperature is 1.5 × 10−3 , compute the flux 

density and magnetization of the material.  [Ans. 1.259Wb/m2,1500A/m] 
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11.1 INTRODUCTION 

When certain materials or alloys are cooled to sufficiently low temperatures (say beyond the 

critical temperature TC), the electrical resistivity of many material and alloys suddenly drop to 

zero. This critical temperature is of the range of temperature of liquid helium. Such materials 

and alloys are termed as superconductors and this phenomenon is called superconductivity. 

The zero resistance of the material leads to the maximum conduction in the material. Thus, it 

is named as superconductors. At critical temperature TC, a phase transition is observed in the 

specimen from normal conducting state to superconducting state. 

In superconducting state, the dc resistivity of a superconducting specimen is zero or very close 

to zero thus the electric current in a superconducting loop can flow for many years without any 

attenuation.   The variation of the superconducting behaviour of superconductor and metals 

(pure or impure) is shown in Fig.14.1. 

 

Figure 11.1 Variation of resistance of a metal and a superconductor with temperature. 

Following are some important features of superconductivity: 

 The crystal structure did not get altered during transition from normal state to 

superconducting state. This can be proved by X-ray diffraction. This also validates that 

the superconductivity is a phenomenon related to free electrons and not the atoms. 

 The photoelectric properties did not change. 

 Thermal expansion and elastic properties remained unchanged. 

 Latent heat and volume remain unchanged. 

 During the phase transition, the magnetic flux is fully ejected out of the material and it 

behaves as a perfect diamagnetic material. 

 If the field equal to critical field Hc is applied to the material, it loses its 

superconductivity. 
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 Specific heat shows exponential change with temperature. 

11.2 OBJECTIVE 

After studying this unit, we should be able to understand- 

 Superconductivity 

 Critical field and critical temperature 

 Meissner Effect 

 Thermodynamic properties of superconductor  

 London Equation 

 London Penetration depth 

 Coherence length 

 BCS Theory 

 

11.3 DISCOVERY OF SUPERCONDUCTIVITY AND 

OBSERVATIONS 

In 1908, Kamerlingh Onnes was first liquidify the helium. He used an ingenious apparatus to 

cool helium and converts it in liquid form. This liquid helium and its properties were studied. 

Based on this theory, cooling of different substances and framing their properties at low 

temperatures was also done. Later, this theory became base for the generating of the new theory 

of superconductors. In 1911, Kamerlingh Onnes observed that the electrical resistance of 

mercury dropped abruptly and completely disappeared at temperatures a few degrees above the 

absolute zero, and named this phenomenon as superconductivity. Kamerlingh demonstrated 

the superconducting phases for 25 elements. Many alloys and intermetallic compounds have 

also been shown to be superconductors. A few of them are mentioned in Table 1.  

Table 1: Some elements and compounds show superconductivity 

Element TC (K) Compound TC (K) 

Niobium 9.46 Nb3Ge 23.2 

Lead 7.18 Nb3Ga 20.3 

Mercury 4.15 Nb3Sn 18.05 

Indium 3.41 NbN 16 

Aluminium 1.19 Mo3Lr 8.8 

Cadmium 0.56 PdSb2 1/25 

Titanium 0.40 AuBe 2.64 

Iridium 0.14 AuSb2 0.58 

Tungsten 0.01 ZrAl2 0.30 

 

In case of the superconductors, the resistance decreases with the decrease in temperature and when 

the metal became a superconductor the resistivity abruptly drops to 0 at Tc.  This temperature is 

termed the critical temperature. As predicted by Cohen, superconductivity had been observed in 
semiconductor crystals with large free electron densities. There is a possibility of every pure element 
showing superconducting behaviour below critical temperature, though it may take a long time for 
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the transition to occur. The monovalent alkali and noble metals had been investigated to less than 
0.1K without showing any evidence of superconductivity. Superconductivity is also absent in the 
ferromagnetic metals, and it is well known that magnetic impurities have a deleterious effect on 
superconductivity in their host solid. This is easy to reconcile with the startling magnetic behaviour of 
a superconductor.  

11.4 DESTRUCTION OF SUPERCONDUCTIVITY BY 

MAGNETIC FIELD 

In 1913, Kammerlingh observed that superconductivity is destroyed if sufficient strong 

magnetic field is applied. In other words, we can say that the electrical resistivity of any 

material remains unaltered or restored due to the presence of a strong magnetic field. The 

externally applied magnetic field necessary to destroy the superconductivity of any material is 

called the critical magnetic field HC(T).  HC(T) is the function of temperature and is expressed 

by the equation given as: 

𝐻𝐶(T) =  𝐻𝐶(0) [1 − (
𝑇

𝑇𝐶
)

2

]        (1) 

Where HC(0) is the critical magnetic field at absolute zero.  

This expression is often called Tuyn's law. The relation between critical field and temperature 

is shown in figure 14.2 which is result of this expression. It shows the phase boundary between 

the superconducting and normal state.  

 

Figure 14.2 Variation of critical magnetic field with temperature. 

 

 

11.5 MEISSNER EFFECT 

In 1933, Meissner and Ochsenfeld found that if a superconductor is cooled in a magnetic field 

below the transition temperature, the magnetic field lines are pushed out from the bulk 
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superconductor. They named this phenomenon “Meissner effect”. In other words, the bulk 

superconductor behaves as the inside of superconductor B = 0. The relatively weak magnetic 

fields are entirely repulsed from the interior of superconductors. The Fig 14.3 shows the 

behaviour of magnetic field lines when a superconductor is placed in magnetic field. 

 

Figure 3 Meissner effect in Superconductors. 

The Meissner effect can be understand by assuming that the destruction of magnetic field inside 

the bulk superconductor is due to an electric current flowing inside the material, which 

produces a magnetic field which cancel the applied magnetic field. Thus the net magnetic field 

inside the superconducting material is zero as 

B = 0        (2) 

    𝐵 = 𝜇0(𝐻 + 𝑀)     (3)

   

𝐻 = −𝑀 
And, magnetic susceptibility is given as 

     𝜒 =
𝑀

𝐻
= −1      (4) 

 

This gives the negative magnetic susceptibility of which show the superconductivity behaves 

as perfect diamagnetic material. 

 

11.6 TYPES OF SUPERCONDUCTIVITY 

Superconductors have been classified as the type I and type II depending upon their behaviour 

in an external magnetic field, i.e., how they follow the Meissner effect.  
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Figure 11.4 Types of superconductors and magnetization curves. 

Type I superconductors: 

In type I superconductor, as critical field reaches the superconductivity destroyed suddenly and 

entire specimen change to normal state. Figure 14.4(a) shows the magnetization curve. At 

critical field the magnetization suddenly becomes zero and superconductivity destroyed. 

Material exhibits such behavior is call type I superconductors or soft superconductor. These 

superconductors easily lose the superconducting state by low-intensity magnetic field. 

Therefore, Type-I are also known as soft superconductors. Some properties of Type I 

superconductors are: 

 Low critical temperature (typically in the range of 0K to 10K) 

 Perfectly obey the Meissner effect and magnetic field cannot penetrate inside the 

material. 

 The transition from a superconducting state to a normal state due to the external 

magnetic field is sharp and abrupt for type-I superconductors. 

 Type-I superconductors are generally pure metals. 

 These are completely diamagnetic. 

 Pure metals like Hg, Pb, Zn, etc. are few examples. 

Type II superconductors have the following properties: 

In type II superconductor, as critical field HC1 reaches the superconductivity start destroying 

gradually. Figure 14.4 shows the magnetization curve for Type II. There are two critical fields, 

at critical field HC1 the magnetization start decreasing and gradually becomes zero at critical 

field HC2 and superconductivity totally destroyed. The state between lower critical magnetic 

field HC1 and upper magnetic field HC2 is known as an intermediate state or mixed state. 

Material exhibits such behavior is call type II superconductors. These materials do not easily 

lose the superconducting state by external magnetic field thus also called as Hard 

Superconductors.Type-II superconductors are generally alloys and complex oxides of 

ceramics. These are also called as High-temperature Superconductors. The critical temperature 

is typically greater than 10K. Some features of type II superconductors are: 
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 Partly obey the Meissner effect but not completely: Magnetic field can penetrate inside 

the material. 

 Due to the high critical magnetic field, type-II superconductors can be used for 

manufacturing electromagnets used for producing strong magnetic field. 

 Slight impurity greatly affects the superconductivity of type-II superconductors. 

 Due to the high critical magnetic field, type-II superconductors have wider technical 

applications. 

 Compounds like Nb, Ta, Nb3Sn, etc. are few examples. 

11.7 THERMODYNAMIC PROPERTIES OF 

SUPERCONDUCTOR 

Thermodynamic properties are defined as characteristic features of a system, capable of 

specifying the system's state. There are free electrons pairs present in conductors which are the 

reason of the conduction. In normal conductors these conduction electrons are scattered by 

impurities, dislocations, grain boundaries, and lattice vibrations (phonons). Unlike normal 

conductors there is an ordering among the conduction electrons that prevents this scattering. 

This ordering is named as cooper pairs. The thermodynamic parameters have direct relation 

with the cooper pairs. Some thermodynamic properties of superconductors are mentioned 

below. 

11.7.1 Entropy 
The disorderness and the randomness of the particles of any system is explained by the 

entropy of the system. The entropy of the normal conductors increases with the rise in 

temperature. But in case of superconductors, the entropy decreases on cooling below the 

critical temperature. This validates the ordering of the superconducting state. Figure 14.5 

shows the variation of entropy of a normal conductor and a superconductor with 

temperature.  

 
 

Figure 14.5: Change of entropy of normal conductor and superconductor with temperature. 

11.7.2 Thermal Conductivity 

Thermal conductivity accounts the level of conduction in superconductors due to the rise in 

temperature. A continuous change between the two phases is observed in the thermal 

conductivity of superconductors (Fig. 14.6). A superconductor is a perfect conductor of charge, 

but it cannot conduct heat. At normal temperature, electronic heat conduction of a 

superconductor goes to zero, as there are no thermally-excited quasiparticles to carry heat 

Therefore, the superconducting electrons possibly playing no part in heat transfer. 
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Figure 14.6: Thermal conductivity of normal conductor and a superconductor with temperature. 

11.7.3 Isotopic Effect 

It has been observed that the critical temperature TC of superconductors varies with isotopic 

mass. The Isotope effect is one of the major properties of the superconductors. Higher TC is 

found in lighter nuclei. The transition temperature TC of superconductors found to have the 

dependency on the isotopic mass as  

𝑇𝑐 ∝ 𝑀−𝛼 

𝑇𝑐𝑀𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡    (5) 

Where M is atomic mass and  𝛼 = 0.5 which is valid for most of the materials. It is also 

observed that transition temperature changes smoothly when we mix different isotopes with 

same element. For example, Tc for mercury varies from 4.18 K to 4.14 K as the isotopic mass 

varies from 199.5 to 203.4. Isotopic mass is involved in the formation of the superconducting 

phase of any material.  

11.7.4 Heat Capacity and Specific Heat 

Electronic specific heat for superconducting materials is found to vary with temperature. 

Lattice specific heat variation of superconductor however remains unaltered by change in 

temperature (proportional to T3). The given equation shows the variation of specific heat of 

superconductivity.  

𝐶𝑛(𝑇) = 𝐴𝑇 + 𝐵𝑇3       (6) 

In this relation the first term is specific heat contribution due to electrons and the second term 

is contribution due to lattice vibration. When a small amount of heat is given to a 

superconductor system, some of the energy is used to increase the lattice vibrations, and the 

remained energy is used to increase the energy of the conduction electrons. The electronic 

specific heat (Ce=AT) of the electrons is defined as the ratio of that portion of the heat used by 

the electrons to the rise in temperature of the system. Superconductivity affects electrons 

mainly thus we assume that lattice vibration part remains same for both superconducting and 

normal states. The specific heat of the electrons in a superconductor varies with the absolute 

temperature (Tc) in the normal and in the superconducting state as shown in the Fig. 14.7.   
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Figure 14.7: Specific Heat of normal conductor and a superconductor 

11.7.5 Energy Gap 

In a superconductor the important interaction is electron-electron interaction. These electrons 

are paired and known as cooper pair, may be considered as the single-particle of the system 

with zero spins. All the electrons related to the Cooper pair can be considered as the bosons. 

At T=0, all the electrons in the superconducting states are cooper pairs in the ground state. The 

energy can be absorbed or emitted only when the Cooper pair will break. This can be compared 

with the energy associated with the dissociation of atoms. The bonds of the atoms need the 

energy to break. Thus, the energy required to break up the Cooper pairs of the superconductors 

is defined as the superconducting energy gap Eg.  

 

Figure 11.8: Energy gap as a function of temperature.  

The energy gap in superconductor is entirely different that the nature of band gap of 

semiconductor. In semiconductor band gap arises due to electron lattice interaction and prevent 

the flow of electron. Energy needed to move the electron from valance band to conduction 

band. But in superconductor, this interaction ties the electron to lattice and the electrons flow 

in ordered way in the presence of this energy gap. The existence of energy gap can be confirmed 

by number of experiment and theoretically explained by BCS theory. The energy gaps of some 

superconductors are given in table 14.2. As temperature increases, the energy gap increases as 

shown in figure 14.8. 
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Table 11.2: Energy gaps and transition temperature of some superconductors 

Elements Energy gap 

Eg(0) in 10-4eV 

 

TC 2 Eg(0)/kTT 

Nb 3.05 9.5 3.8 

Ta 1.40 4.48 3.6 

Al 0.34 1.2 3.3 

Sb 1.15 3.72 3.5 

 

 

11.8 LONDON EQUATIONS 
Maxwell equations of electromagnetism were not sufficient to explain the zero resistivity and 

perfect diamagnetic nature of superconductors. Following this array, F. London and M. London 

came up with two equations in 1934. These equations are termed as London equations and 

explain the Meissner effect and zero resistivity and superconductors. In superconductors, the 

conduction is due to the superconducting electrons. Superconducting electrons (cooper pairs) 

are different than free electron. As Temperature decreases, the numbers of free electrons 

decrease and superconducting electrons increase.  

The equation of motion of superconducting electron is given as 

    𝑚
𝑑𝑣𝑠

𝑑𝑡
= 𝐹 = −𝑒𝐸     (7) 

Where E is electric field. The current density is 

   𝐽 = −𝑛𝑠𝑒𝑣𝑠       (8) 

Where ns is the number of superconducting electrons per unit volume and vs is the velocity 

corresponding to superconducting electrons. 

From derivation of eq. (8) 
𝑑𝐽

𝑑𝑡
= −𝑛𝑠𝑒

𝑑𝑣𝑠

𝑑𝑡
 

 

Put the value of  
𝑑𝑣𝑠

𝑑𝑡
 from eq. (7)              

𝑑𝐽

𝑑𝑡
= −𝑛𝑠𝑒

−𝑒𝐸

𝑚
 

𝑑𝐽

𝑑𝑡
=

𝑛𝑠𝑒2

𝑚
𝐸    (9) 

 

 

This is first London equation. The superconducting electrons act like free electrons to the 

electric field. Taking curl of the first London equation  

 

   𝑐𝑢𝑟𝑙 
𝑑𝐽

𝑑𝑡
=

𝑛𝑠 𝑒
2

𝑚
 𝑐𝑢𝑟𝑙(𝐸)     (10) 

Using Maxwell 3rd equation  {𝑐𝑢𝑟𝑙 𝐸 = −µ0
𝛿𝐻

𝛿𝑡
} eq. 10 becomes 

𝑐𝑢𝑟𝑙 
𝑑𝐽

𝑑𝑡
=

𝑛𝑠 𝑒
2

𝑚
[−µ0

𝛿𝐻

𝛿𝑡
] 

 

𝑐𝑢𝑟𝑙 
𝑑𝐽

𝑑𝑡
=

−µ0𝑛𝑠 𝑒
2

𝑚
[

𝛿𝐻

𝛿𝑡
]     (11) 

 

Integrating the above eq. (11) 
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𝑐𝑢𝑟𝑙 𝐽 =
−µ0𝑛𝑠 𝑒

2

𝑚
 𝐻 − 𝐻0     (12) 

For the Meissner effect, the field inside the material is zero, i.e., H0=0. Then 

   𝑐𝑢𝑟𝑙 𝐽 =
−µ0𝑛𝑠 𝑒

2

𝑚
 𝐻      (13) 

According to the Maxwell’s 4th  equations:  

𝑐𝑢𝑟𝑙 𝐻 = (𝐽 + 𝐽𝐷)      (14) 

 

where J is the current density related to the material and JD is the displacement current. If the 

applied external field is varying, then the JD is very small as compared to the J value. Thus, for 

superconductor, Maxwell’s eq. 4 can be written as above can be written as𝑐𝑢𝑟𝑙 𝐻 = 𝐽 

Putting this value of 𝐽 in eq. 13 we get  

−𝛻2𝐻 =
−µ0𝑛𝑠 𝑒

2

𝑚
 𝐻 

 

𝛻2𝐻 =
µ0𝑛𝑠 𝑒

2

𝑚
 𝐻    (15) 

 

𝛻2𝐻 =
1

λ2 𝐻                                                                 (16) 

                                          Whereλ2 =
𝑚

µ0𝑛𝑠 𝑒2
                                              (17) 

Where λ is another constant. This is known as London’s second equation which explains 

Meissner’s effect.  

 

 

11.8.1 London Penetration Depth 

Equation (16) is second order differential equation. The standard solution of this equation can 

be given as  

                   𝐻(𝑥) = 𝐻0𝑒−𝑥/λ                                                    (18) 

where H0 is defined as the externally applied magnetic field and H(x) is the magnetic field 

present inside the material at a distance x from the surface. λ is named as London penetration 

depth. The London penetration depth can be defined as the measure of the distance from the 

surface of a superconductor at which the magnetic field decays to 1/e of its value and the 

surface of the superconductor as shown in figure 14.9. The penetration depth did not remain 

constant and vary with temperature. At low temperature the depth remains constant but when 

the temperature is raised, the depth increases rapidly. When the temperature reaches its 

transition value, the depth approaches to infinite. The dependency of temperature on 

penetration depth is given by the equation  

λ(𝑥) =  
λ(0)

√[1−(
𝑇

𝑇𝑐
)

4
]

    (19) 
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Figure 14.9: Decay of magnetic field inside a superconductor 

11.8.2 Coherence Length 

The coherence length is the characteristic exponent of the variations of the density of 

superconducting component. In eq. (18) the x component in the exponent term is coherence 

length. The average distance between the two electrons in a Cooper pair is known as the 

coherence length. It is represented by ξ. The coherence length depends upon the particular 

superconducting material. 

 

11.9 BCS THEORY 

BCS theory gave a satisfactory explanation for the Superconductivity of the material. In 1957 

Bardeen, Cooper, and Schrieffer (BCS) gave an explanation for the superconductor based on 

the formation of cooper pairs. In normal state the force between the electrons is observed to be 

repulsive. Superconductors the force between two electrons becomes attractive due to the 

formation of the Cooper pairs. The BCS theory postulated that the electrons present inside the 

superconductor experience a special kind of neutral attraction. This attraction dominates over 

the coulombic repulsion and results in the formation of cooper pairs at very low temperature. 

Cooper pairs move within the letters without catering and result in the transition of material 

from normal conductor to superconductor. BCS theory has very wide range of applicability as 

for He, Type I, Type II and high temperature superconductors. It is assumed that there is a BCS 

wave function composed of particle pairs 𝑘 ↑   and 𝑘 ↓. The BCS theory can be understood 

with the help of following accomplishments. 

(1) Attractive interaction of electrons:  

An attractive interaction among the electrons in a superconductor results a ground state 

separation from excited state by energy gap Eg. The critical field thermal properties are due to 

this energy gap. 

(2) Electron – Lattice – Electron Interaction 
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The electron pair experiences an attractive force. The ion core undergoes a slight displacement 

due to the attractive force. This displacement is termed as lattice distortion. Similar thing 

happens with the nearby electrons which ever came in the field of this attractive force. This 

process is known as Electron–Lattice–Electron Interaction. Any two electrons can interact 

via lattice distortions. The interaction leads to the subsequent reduction of energy of the 

electron. Thus, the interactions between electrons give results in attractive forces. 

 
Figure 11.10: Electron – Lattice – Electron Interaction due to phonon field. 

 

(3) Cooper Pair 

The lattice distortions result in the generation of momentum of lattice which leads to the 

generation of phonons. These phonons interact to give free electrons called cooper pairs. Thus, 

Cooper pairs are the pair of free electrons formed by the interaction between the electrons in 

the phonon field. The cooper pairs do not experience any scattering and flow with zero 

resistance. 

(4) Penetration depth and coherence length: 

The penetration depth and coherence length are the natural consequences of BCS theory. If we 

go in detail, we will find the explanation of out the results as penetration depth and coherence 

length Meissner effect.   

(5) Transition temperature: 

The transition temperature depends on the density of state 𝐷(𝜖𝐹) and lattice interaction energy. 

BCS theory predicts that  

𝑇𝐶 = 1.14𝜃 𝑒𝑥𝑝[−1/𝑈 𝐷(𝜖𝐹)]    (20) 

Where  𝜃 is Debye temperature and U is attractive interaction energy. 

(6) Magnetic Flux quantization: 

The magnetic flux through a superconducting loop is quantised in terms of 2e in place of e. 

The superconducting state contains electron pair thus the charge is quantised in term of 2e.  

 

11.10 HIGH TEMPERATURE SUPERCONDUCTORS 

High temperature superconductors (HTS) are mainly oxides with high transition temperature 

and critical field.   The discovery of high temperature superconductors had given new field of 

research in superconducting materials. The chemical bonding and physical properties at high 

temperature vary from low transition temperature. A minor hindrance in the oxygen atoms and 

cations doping converts the material into low carrier density metal first and then into the 

superconducting one. Some high temperature oxide superconductors are: 
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 BaPb0.75Bi0.25O3           (BPBO)   TC = 12K   

La1.85Ba0.15CuO4  LBCO)  TC = 36K 

 YBa2Cu3O7  (YBCO)  TC = 12K 

Tl0.75Ba2Ca2Cu3O10 (TBCO)  TC = 120K 

The high temperature oxide semiconductors can have the following properties: 

 They are derived from ideal perovskite composition ABX3 here A is larger cation, B is 

smaller cation, and X is anion. 

 Copper is present in the mixed valance state involving a partial oxidation of Cu2+ into 

Cu3+. 

 There is a charge transfer to and from CuO2 layer which is induced by doping near the 

metal-insulator phase boundary existing in all oxide high temperature superconductors. 

 The crystal structures of all these are highly anisotropic. The bonding in these materials 

is highly directional and covalent. 

 The coherence length and the penetration depth are also highly anisotropic. 

 The lower critical field Hc1, and upper field Hc2 are highly anisotropic. 

 

14.11 APPLICATIONS 
In practical and applied physics, superconductors have wide applicability. A few of them are 

mentioned below: 

A. Power transmission: Electrical power transmission through any conductor is always 

accompanied by energy loss I2R.  If superconductors are used for power transmission, 

the losses will be eliminated and the power transmission can be done at a lower voltage 

level with much higher efficiency. 

 

B. Superconducting magnets: An Electromagnet is made by using superconducting wire 

is called a superconducting magnet.  The advantage of such wires or cables is that once 

the current is set up the coil requires no source of electromotive force to derive the 

current. Superconducting magnets are used in Magnetic resonance imaging (MRI) 

employed to generate images of bodies. This technique has very less harmful and can 

be used over X-rays. 

 

C. Electrical applications in cryotron: Cryotron consists of a wire of superconducting 

material A around which another wire of superconducting material B is bound in the 

form of a solenoid. The cryotron Based on the principle of activity above the critical 

temperature. At 4.4 K temperature, both A and B materials are in the superconducting 

state. Cryotron has wide applications in fast-acting switches. 

 

D. Very strong magnetic fields: The strong magnetic field is of the order of 50 Tesla by 

consuming only 10 KV can be generated with the poles made of superconducting 

material.  Such coils are cost-effective than the regular conventional 

electromagnets.  High magnetic fields are required in many areas of research and in 

pharmaceutical science. 
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E. Superconducting quantum interference devices: Superconducting Quantum 

interference devices (SQID) are fundamentally superconducting rings that act as 

storage devices for magnetic flux they are used to detect very minute changes in the 

magnetic field of a human brain or body or any other part. 

 

F. In computer technology: Due to heat generated (loss I2R), there is a limit to which the 

components can be crowded on a chip of given size. The use of superconductors in 

makes it possible to assemble more circuit in the given area of the chip. 

11.12 SUMMARY 

1. When certain materials or alloys are cooled to sufficiently low temperatures (say beyond the 

critical temperature TC), the electrical resistivity of many material and alloys suddenly drop to 

zero. Such materials and alloys are termed as superconductors and this phenomenon is called 

superconductivity.  

2. Kammerlingh observed that superconductivity is destroyed if sufficient strong magnetic field 

is applied. The externally applied magnetic field necessary to destroy the superconductivity of 

any material is called the critical magnetic field HC(T) is the function of temperature. 

𝐻𝐶(T) =  𝐻𝐶(0) [1 − (
𝑇

𝑇𝐶
)

2

]  

3. Meissner and Ochsenfeld found that if a superconductor is cooled in a magnetic field below 

the transition temperature, the magnetic field lines are pushed out from the bulk 

superconductor. They named this phenomenon “Meissner effect”. 

4. The transition temperature TC of superconductors found to have the dependency on the 

isotopic mass as  

 𝑇𝑐𝑀𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

5. The specific heat of superconductivity  

𝐶𝑛(𝑇) = 𝐴𝑇 + 𝐵𝑇3   

6. This is first London equation 

𝑑𝐽

𝑑𝑡
=

𝑛𝑠𝑒2

𝑚
𝐸     

Second London equation 

𝛻2𝐻 =
1

λ2 𝐻     whereλ2 =
𝑚

µ0𝑛𝑠𝑒2
 

7. London penetration depth  

  𝐻(𝑥) = 𝐻0𝑒−𝑥/λ 

λ(𝑥) =  
λ(0)

√[1 − (
𝑇
𝑇𝑐

)
4

]
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8. Flux quantization:  

ϕ = ∮ �⃗⃗� . 𝑑𝑠 = n
h

2𝑒
= n ϕ0     

where  ϕ0 =
h

2𝑒
= 2.07 × 10−15weber , is a constant called fluxon or fluxoid.  

 

11.13 GLOSSARY 
Superconductivity: Zero resistance ability.  

Critical: Involving a deep analysis. 

Hard superconductor: These materials do not easily lose the superconducting state by external 

magnetic field. 

Soft superconductor: These superconductors easily lose the superconducting state by low-

intensity magnetic field. 
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14.19 TERMINAL QUESTIONS 

Short answer type questions: 

Q1. At what temperature is Hc (T) = 0.1 Hc (0) for Lead having Tc equals to 7.2K? 

Q2. Why do superconductors expel magnetic fields? 
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Q3. Is plasma a superconductor? 

Q4. Prove that the value of magnetic susceptibility for diamagnetic materials is -1. 

Q5. Do all superconductors expel magnetic flux? 

Q6. What happens to the magnetic field when a superconductor is placed in a weak external magnetic 

field H, and cooled below its transition temperature? 

Q7. Describe the physical meaning of the coherence length (ξ) in superconductors. 

Long answer type questions: 

Q1.  What is Type 1 and Type 2 superconductors? Mention important differences.  

Q2. Explain the occurrence of superconductivity. 

Q3. Explain and derive the London equations. 

Q4. Why do various superconductors have different Tc? 

Q5. The critical temperature of mercury is 4.153 k for its one isotope of mass 200.59 

amu.  Calculate the critical temperature of Mercury for its one isotope of mass 20 amu. 

 

Answers: 

Short Answer – 1. 6.83K 

 

 


