BCA-EH
Formal Languages and
Automata

School of Computer Science & IT
Uttarakhand Open University,
Haldwan1

Uttarakhand Open University

Behind Transport Nagar, Vishwavidyalaya Marg,
Haldwani (Nainital) 263139 Uttarakhand

Toll Free : 1800 180 4025 (10 AM to 5 PM) | (Mon to Sat)
Operator : 05946-286000
Admissions : 05946286002

Book Distribution Unit : 05946-286001

Exam Section : 05946-286022
Website : http://uou.ac.in

Content
Block-1
UNIT-I
INTODUCTION TO FORMAL LANGUAGES AND AUTOMATA
1.1 Learning Objectives
1.2 Alphabets Strings and Languages
1.2. 1 Languages
1.2.2 Symbols
1.2.3 Alphabets
1.2.4 Strings or Words over Alphabets
1.2.5 Length of a string
1.2.6 Convention
1.2.7 Some String Operations
1.2.8 Powers of Strings
1.2.9 Powers of Alphabets
1.2.10 Reversal
1.3 Language
1.3.1 Set operations on languages
1.3.2 Reversal of a language
1.3.3 Language concatenation
1.3.4 Iterated concatenation of languages
1.3.5 Kleene's Star operation
1.4 Automata and Grammars
1.4.1 Grammar
1.5 Check your progress
1.6 Answer Check your progress
1.7 Model Question
1.8 References

1.9 Suggested readings

UNIT-II

FINITE AUTOMATA
2.1 Learning Objectives

2.2 Finite Automata

2.2.1 States, Transitions and Finite-State Transition System

2.2.2 Deterministic Finite (-state) Automata

2.3 Deterministic Finite State Automaton

2.3.1 Acceptance of Strings

2.3.2 Language Accepted or Recognized by a DFA

2.3.3 Extended transition function

2.3.4 Transition table

2.3.5 (State) Transition diagram

2.3.6 Removing = Transition

2.3.7 Equivalence of NFA and DFA
2.4 Multiple Next State

2.4.1 =- transitions

2.4.2 Acceptance

2.4.3 The Extended Transition function 3
2.5 Formal definition of NFA
2.5.1 The Language of an NFA
2.6 Check your progress
2.7 Answer Check your progress
2.8 Model Question
2.9 References

2.10 Suggested readings

UNIT-III
REGULAR EXPRESSIONS (RE)

3.1 Learning Objectives

3.2 Regular Expressions (RE)

3.3 Regular Expression and Regular Language
3.4 Regular Grammars

3.5 Some Decision Algorithms for CFLs

3.6 Check your progress

3.7 Answer Check your progress

3.8 Model Question

3.9 References

3.10 Suggested readings

UNIT-1V
MINIMIZATION OF DETERMINISTIC FINITE AUTOMATA (DFA)

4.1 Learning Objectives
4.2 Minimization of Deterministic Finite Automata (DFA)
4.3 DFA Isomorphisms
4.3.1 Showing that and M are isomorphic
4.4 The minimal DFA
4.5 A Minimization Algorithm
4.6 Some decision properties of Regular Languages
4.7 Finite Automata with output
4.7.1 Moore machines
4.7.2 Mealy machines
4.8 Equivalence of Moore and Mealy machines
4.9 Check your progress
4.10 Answer Check your progress
4.11 Model Question
4.12 References
4.13 Suggested readings

Block-II
UNIT-V
PUSHDOWN AUTOMATA
5.1 Learning Objectives
5.2 Pushdown Automata
5.2.1 Formal Definitions
5.2.2 Explanation of the transition function,
5.3 Configuration or Instantaneous Description (ID)
5.4 Nondeterministic Finite Automata (NFA)
5.4.1 Language accepted by a PDA
5.4.2 Equivalence of PDAs and CFGs
5.5 CFA to PDA
5.6 Some Useful Explanations
5.6.1 PDA and CFG

5.6.2 PDA to CFG
5.6.3 Inductive Hypothesis
5.6.4 Inductive Step
5.7 Conclusion
5.8 Check your progress
5.9 Answer Check your progress
5.10 Model Question
5.12 References
5.13 Suggested readings

UNIT-VI
DETERMINISTIC PUSHDOWN AUTOMATA (PDA)
6.1 Learning Objectives

6.2 Deterministic Pushdown Automata (DPDA) and Deterministic Context-free
Languages (DCFLs)

6.3 DPDAs and FAs: DCFLs and Regular languages
6.4 CFLs and DCFLs

6.5 Standard forms of DPDAs

6.6 Acceptance by final state and empty stack
6.7 Unambiguous CFGs and DPDAs

6.8 Parsing and DPDAs

6.9 Conclusion

6.10 Check your progress

6.11 Answer Check your progress

6.12 Model Question

6.13 References

6.14 Suggested readings

UNIT-VII

SIMPLIFICATION OF CFG

7.1 Learning Objectives

7.2 Chomsky Normal Form (CNF)
7.3 Greibach Normal Form (GNF)

7.4 Conclusion

7.5 Check your progress

7.6 Answer Check your progress
7.7 Model Question

7.8 References

7.9 Suggested readings

UNIT-VIII
CONTEXT FREE LANGUAGES
8.1 Learning Objectives
8.2 Pumping Lemma for Context Free Languages (CFLs)
8.3 Closure Property of Context Free Languages (CFLs)
8.4 Some Decision Algorithms for CFLs

8.4.1 Testing Emptiness

8.4.2 Testing Membership

8.4.3 CYK Algorithm to decide membership in CFL
8.5 Testing Finiteness of a CFL

8.5.1 Decision algorithm for testing finiteness of a CFL
8.6 Conclusion
8.7 Check your progress
8.8 Answer Check your progress
8.9 Model Question
8.10 References

8.11 Suggested readings

Block-III

UNIT-IX
TURING MACHINES
9.1 Learning Objectives

9.2 Informal Description
9.3 Formal Definition
9.4 Transition Function

9.5 Instantaneous Description (IDs) or Configurations of a TM

9.6 Moves of Turing Machines

9.7 Special Boundary Cases

9.8 More about Configuration and Acceptance
9.9 Conclusion

9.10 Check your progress

9.11 Answer Check your progress

9.12 Model Question

9.13 References

9.14 Suggested readings

UNIT-X

RECURSIVELY ENUMERABLE LANGUAGE

10.1 Learning Objectives

10.2 Recursive language
10.2.1 Recursively Enumerable (R.E) Language
10.2.2 Recursive (Or Decidable) Languages
10.2.3 Examples

10.3 Closure Properties

10.4 Post Correspondence Problem

10.5 Proof Sketch of Undecidability

10.6 Conclusion

10.7 Check your progress

10.8 Answer Check your progress

10.9 Model Question

10.10 References

10.11 Suggested readings

UNIT-XI

POST'S CORRESPONDENCE PROBLEM
11.1 Learning Objectives

11.2 Post's Correspondence Problem (PCP)

11.3 Post's Correspondence System (PCS)
11.4 Conclusion

11.5 Check your progress

11.6 Answer Check your progress

11.7 Model Question

11.8 References

11.9 Suggested readings

UNIT-XII

CHOMSKY HIERARCHY

12.1 Learning Objectives

12.2 Chomsky Hierarchy

12.3 Equivalence of Unrestricted grammars and TMs
12.4 Context-Sensitive Language and LBAs

12.5 Equivalence of Linear-bounded Automata and Context-sensitive Grammars
12.6 Conclusion

12.7 Check your progress

12.8 Answer Check your progress

12.9 Model Question

12.10 References

12.11 Suggested readings

Title Formal Languages and Automata

Authors

Adaption and Typesetting Dr. Ashutosh Kumar Bhatt
Associate Professor

School of Computer Science and IT
Uttarakhand Open University

ISBN:

Acknowledgement

This textbook has been adapted from * National Programme on Technology Enhanced
Learning (NPTEL)” available at https://nptel.ac.in/courses/106/103/106103070/

Published By: Uttarakhand Open University

Block-I

UNIT-I INTODUCTION TO FORMAL LANGUAGES
AND AUTOMATA

1.1 Learning Objectives

1.2 Alphabets Strings and Languages
1.2.1 Languages
1.2.2 Symbols
1.2.3 Alphabets
1.2.4 Strings or Words over Alphabets
1.2.5 Length of a string
1.2.6 Convention
1.2.7 Some String Operations
1.2.8 Powers of Strings
1.2.9 Powers of Alphabets
1.2.10 Reversal

1.3 Language
1.3.1 Set operations on languages
1.3.2 Reversal of a language
1.3.3 Language concatenation
1.3.4 Iterated concatenation of languages
1.3.5 Kleene's Star operation

14 Automata and Grammars
1.4.1 Grammar

1.5 Check your progress

1.6 Answer Check your progress

1.7 Model Question

1.8 References

1.9 Suggested readings

1.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Alphabets Strings and Languages, languages
and automata and grammar. We also understand String operation, language concatenation
and Kleene's Star operation.

1.2 ALPHABETS, STRINGS AND LANGUAGES

1.2.1 LANGUAGES :

A general definition of language must cover a variety of distinct categories: natural
languages, programming languages, mathematical languages, etc. The notion of natural
languages like English, Hindi, etc. is familiar to us. Informally, language can be defined as a
system suitable for expression of certain ideas, facts, or concepts, which includes a set of
symbols and rules to manipulate these. The languages we consider for our discussion is an
abstraction of natural languages. That is, our focus here is on formal languages that need
precise and formal definitions. Programming languages belong to this category. We start with
some basic concepts and definitions required in this regard.

1.2.2 SYMBOLS :

Symbols are indivisible objects or entity that cannot be defined. That is, symbols are the
atoms of the world of languages. A symbol is any single object such as(] #, a, 0, 1, #, begin,
or do. Usually, characters from a typical keyboard are only used as symbols.

1.2.3 ALPHABETS :

An alphabet is a finite, nonempty set of symbols. The alphabet of a language is normally
denoted by Z. When more than one alphabets are considered for discussion, then subscripts

may be used (e.g. 21,2 etc) or sometimes other symbol like G may also be introduced.

Example :

z={0, 1}

E={a, b, c}
E={a, b e, &, z}
Z={# V.M, £

1.2.4 STRINGS OR WORDS OVER ALPHABET :

A string or word over an alphabet Z is a finite sequence of concatenated symbols of .
Example : 0110, 11, 001 are three strings over the binary alphabet { 0, 1 } .
aab, abcb, b, cc are four strings over the alphabet { a, b, ¢ }.

It is not the case that a string over some alphabet should contain all the symbols from the
alphabet. For example, the string cc over the alphabet { a, b, ¢ } does not contain the symbols

a and b. Hence, it is true that a string over an alphabet is also a string over any superset of
that alphabet.

1.2.5 LENGTH OF A STRING :
The number of symbols in a string w is called its length, denoted by |w].
Example: | 011 |=4, |11|=2, |b|=1

It is convenient to introduce a notation e for the empty string, which contains no symbols at
all. The length of the empty string e is zero, i.e., | e | = 0.

1.2.6 CONVENTION :

We will use small case letters towards the beginning of the English alphabet to denote
symbols of an alphabet and small case letters towards the end to denote strings over an

alphabet. That is, % bcex (symbols) and - V- W= &0 2 are strings.

1.2.7 SOME STRING OPERATIONS :

Let * = %1995 = &y gpg ¥ T bbby € by be two strings. The concatenation

of x and y denoted by xy, is the string “1%% ™ e R is, the concatenation

of x and y denoted by xy is the string that has a copy of x followed by a copy of y without
any intervening space between them.

Example : Concatenation of the strings 0110 and 11is 011011 and concatenation of the
strings good and boy is goodboy.

Note that for any string w, we =ew =w. It is also obvious that if|x| =nand|y| =m,
then |x +y|=n+m.

u is a prefix of v if v = ux for some string x.
u is a suffix of v if v =xu for some string x.
u is a substring of v if v = xuy for some strings x and y.

Example : Consider the string 011 over the binary alphabet. All the prefixes, suffixes and
substrings of this string are listed below.

Prefixes: e, 0, 01, 011.
Suffixes: e, 1, 11, 011.
Substrings: e, 0, 1, 01, 11, 011.

Note that x is a prefix (suffix or substring) to x, for any string x and e is a prefix (suffix or
substring) to any string.

A string x is a proper prefix (suffix) of string y if x is a prefix (suffix) of y and x [y.

In the above example, all prefixes except 011 are proper prefixes.

1.2.8 POWERS OF STRINGS :

For any string x and integer #Z U we use " to denote the string formed by sequentially
concatenating n copies of x. We can also give an inductive definition of %" as follows:

] . . ro_ x-1
& =¢,ifn=0; otherwise & =~ &X

Example : Ifx = 011, then * =011011011, & =011 and * —¢

1.2.9 POWERS OF ALPHABETS :

We write Z° (for some integer k) to denote the set of strings of length k with symbols
from Z. In other words,

b { w|wis a string over Z and | w | =k}. Hence, for any alphabet, Z* denotes the set

of all strings of length zero. That is, 2= { e }. For the binary alphabet { 0, 1 } we have the
following.

e

= = {0, 1}.

T4 =400, 01,10, 111,

= = {000,001, 010, 011, 100, 101, 110, 111}

The set of all strings over an alphabet Z is denoted by =" That is,
2= o uRu e B ouee
= E

The set Z contains all the strings that can be generated by iteratively concatenating symbols
from Z any number of times.

Example : If Zi= {a,b},then == { e, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, ...}.

Please note that if Z=F then = thatis ® = &, It may look odd that one can proceed
from the empty set to a non-empty set by iterated concatenation. But there is a reason for this
and we accept this convention.

The set of all nonempty strings over an alphabet Z is denoted by =’ That is,

T el St weBtay webges

=t

Note that Z is infinite. It contains no infinite strings but strings of arbitrary lengths.

1.2.10 REVERSAL :

L

For any string % the reversal of the string is VT Gt A

An inductive definition of reversal can be given as follows:

CHECK YOUR PROGRESS
True/False type questions

1) A grammar is a mechanism used for describing languages.

2) The Kleene star operation on a language L, denoted as L*.

3) The transition from one configuration to the next (as defined by the transition function) is
called a turn.

4) The most important feature of the automaton is its control unit.

5) To concatenate to language L1 and L2 is defined as L1+L2

Answers-
1) True
2) True
3) False
4) True
5) False

1.3 LANGUAGE :

A language over an alphabet is a set of strings over that alphabet. Therefore, a language L is

&eE

any subset of = That is, any is a language.

Example :

1. F is the empty language.

2. Zisa language for any Z.

3. {e} is a language for any =. Note that, #= e} . Because the language F does not
contain any string but {e} contains one string of length zero.

4. The set of all strings over { 0, 1 } containing equal number of 0's and 1's.

5. The set of all strings over {a, b, ¢} that starts with a.

Convention : Capital letters A, B, C, L, etc. with or without subscripts are normally used to
denote languages.

1.3.1 SET OPERATIONS ON LANGUAGES :

Since languages are set of strings we can apply set operations to languages. Here are some
simple examples (though there is nothing new in it).

Union : Astringx ek Wik iff * E’I'lorxe’f'z

Example : {0,11,01,011} “ {1,01,110}={0, 11,01,011, 111}

Intersection : A string e Re iff *< b and *= IQ.

Example : {0,11,01,011} ™ {1,01,110 } ={ 01}
Complement : Usually, Z' is the universe that a complement is taken with respect to. Thus

for a language L, the complement is L(bar)={ * = z | KEL L

Example : Let L = { x | x| is even }. Then its complement is the language { ¥ = B | x| is
odd }.

Similarly we can define other usual set operations on languages like relative complement,
symmetric difference, etc.

1.3.2 REVERSAL OF A LANGUAGE :
The reversal of a language L, denoted as i , is defined as: L* = w*| wel} .
Example :

. LetL={0,11,01,011}. Then &% ={0,11,10,110}.

2. LetL={ r'e® | n is an integer }. Then ¥ — { r'e® | n is an integer }.

1.3.3 LANGUAGE CONCATENATION :

The concatenation of languages b and = is defined as

Ly

— (xy| ¥ % and Y€y,
Example : {a,ab }{ b, ba} = { ab, aba, abb, abba }.
Note that ,

1. Ay gy in general.

N CENAENE

1.3.4 ITERATED CONCATENATION OF LANGUAGES :

Since we can concatenate two languages, we also repeat this to concatenate any number of
languages. Or we can concatenate a language with itself any number of times. The

operation £ denotes the concatenation of L with itself n times. This is defined formally as
follows:

Ly ={e}

T

Example : Let L = { a, ab }. Then according to the definition, we have
Iy = {e}

L =L{g} = L = {a, ab)

L= LL={a, abl{a, abl = {aa, ach, aba, abab}

L =L L ={a abl{aa, ack, aba, abab}

= {aaa, aaab, aaba, aabab, abaa, abaab, ababa, ababab)

and so on.

1.3.5 KLEENE'S STAR OPERATION :

The Kleene star operation on a language L, denoted as L' is defined as follows :
L‘=(UnionninN) A
=& wull wl wus

= { x| x is the concatenation of zero or more strings from L }

Thus £ is the set of all strings derivable by any number of concatenations of strings in L. It
is also useful to define

L' = LL je., all strings derivable by one or more concatenations of strings in L. That is

o= (Union n in N and n >0) Ty

= B ol e

Example : Let L = { a, ab }. Then we have,
L= el wllgs

{e} “ {a,ab} “ {aa, aab, aba, abab} ...
ool ol we

= {a, ab} ' {aa, aab, aba, abab} ...
Note : eisin £ , for every language L, including .

The previously introduced definition of Z is an instance of Kleene star.

1.4 AUTOMATA AND GRAMMARS

. The most important feature of the automaton is its control unit, which can be in any
one of a finite number of interval states at any point. It can change state in some defined
manner determined by a transition function.

Input tape
i
J
f Y
P
Finite
Contral “ g Tg{gﬁggﬁ"

l Dutput e

Figure 1: The figure above shows a diagrammatic representation of a generic automation.

Operation of the automation is defined as follows.

. At any point of time the automaton is in some integral state and is reading a particular
symbol from the input tape by using the mechanism for reading input. In the next time step
the automaton then moves to some other integral (or remain in the same state) as defined by
the transition function. The transition function is based on the current state, input symbol
read, and the content of the temporary storage. At the same time the content of the storage
may be changed and the input read may be modifed. The automation may also produce some
output during this transition. The internal state, input and the content of storage at any point
defines the configuration of the automaton at that point. The transition from one
configuration to the next (as defined by the transition function) is called a move. Finite state
machine or Finite Automation is the simplest type of abstract machine we consider. Any
system that is at any point of time in one of a finite number of interval state and moves
among these states in a defined manner in response to some input, can be modeled by a finite
automaton. It doesnot have any temporary storage and hence a restricted model of
computation.

1.4.1 GRAMMAR

A grammar is a mechanism used for describing languages. This is one of the most simple but
yet powerful mechanism. There are other notions to do the same, of course.

In everyday language, like English, we have a set of symbols (alphabet), a set of words
constructed from these symbols, and a set of rules using which we can group the words to
construct meaningful sentences. The grammar for English tells us what are the words in it and
the rules to construct sentences. It also tells us whether a particular sentence is well-formed
(as per the grammar) or not. But even if one follows the rules of the english grammar it may
lead to some sentences which are not meaningful at all, because of impreciseness and
ambiguities involved in the language. In english grammar we use many other higher level
constructs like noun-phrase, verb-phrase, article, noun, predicate, verb etc. A typical rule can
be defined as

< sentence > —* < noun-phrase >< predicate >

meaning that "a sentence can be constructed using a 'noun-phrase' followed by a predicate".
Some more rules are as follows:

< noun-phrase > —* < article >< noun >

< predicate > —* <verb >

with similar kind of interpretation given above.

If we take {a, an, the} to be <article>; cow, bird, boy, Ram, pen to be examples of <noun>;
and eats, runs, swims, walks, are associated with <verb>, then we can construct the sentence-

a cow runs, the boy eats, an pen walks- using the above rules. Even though all sentences are
well-formed, the last one is not meaningful. We observe that we start with the higher level
construct <sentence> and then reduce it to <noun-phrase>, <article>, <noun>, <verb>
successively, eventually leading to a group of words associated with these constructs.

These concepts are generalized in formal language leading to formal grammars. The word
'formal' here refers to the fact that the specified rules for the language are explicitly stated in
terms of what strings or symbols can occur. There can be no ambiguity in it.

Formal definitions of a Grammar

A grammar G is defined as a quadruple.
G =(NZF5)

N is a non-empty finite set of non-terminals or variables,

Z is a non-empty finite set of terminal symbols such that NrZ=9

SeN js a special non-terminal (or variable) called the start symbol,
Po(NUZ) %(NUZY

and is a finite set of production rules.

The binary relation defined by the set of production rules is denoted by —*, i.e. =g
ifr (@B)EP,

In other words, P is a finite set of production rules of the form a— 8 , where FEik= [NUE)

g BE(WUT)

The production rules specify how the grammar transforms one string to another. Given a
string aay , we say that the production rule &= is applicable to this string, since it is
possible to use the rule &= £ (o rewrite the & (in day) to 8 obtaining a new string by .
We say that oay derives a8y and is denoted as

doy = J8y

Successive strings are dervied by applying the productions rules of the grammar in any
arbitrary order. A particular rule can be used if it is applicable, and it can be applied as many
times as described.

L]

a=

We write if the string 8 can be derived from the string ® in zero or more

4
steps; a=F if A can be derived from in one or more steps.

By applying the production rules in arbitrary order, any given grammar can generate many
strings of terminal symbols starting with the special start symbol, S, of the grammar. The set
of all such terminal strings is called the language generated (or defined) by the grammar.

G=(NZPS)

Formaly, for a given grammar the language generated by G is

Lﬁﬂ={wezWS$m@

Thatis Y€ 45 ir S=w.

we L{G) S=q=ay=a=>=a=w

If , we must have for some #=0 , denoted as

a derivation sequence of w, The strings §=00, 85,8, % =W oo denoted as sentential
forms of the derivation.

G=(NZ P35

Example : Consider the grammar , where N = {S}, Z={a, b} and P is the set

of the following production rules
{S —*ab, S —*aSb}

Some terminal strings generated by this grammar together with their derivation is given
below.

S =ab
S = aSb = aabb
S = aSb = aaSbb = aaabbb

It is easy to prove that the language generated by this grammar is
L(@) ={a'¥ |i 21}
By using the first production, it generates the string ab (fori=1).

To generate any other string, it needs to start with the production S —* aSb and then the non-
terminal S in the RHS can be replaced either by ab (in which we get the string aabb) or the
same production S —*aSb can be used one or more times. Every time it adds an 'a' to the left
and a 'b' to the right of S, thus giving the sentential form ¢ Sonwel . When the non-terminal
is replaced by ab (which is then only possibility for generating a terminal string) we get a
terminal string of the form “ Bl .

There is no general rule for finding a grammar for a given language. For many languages we

can devise grammars and there are many languages for which we cannot find any grammar.

. L={d"t™| n 21]

Example: Find a grammar for the language .

It is possible to find a grammar for L by modifying the previous grammar since we need to
1M

generate an extra b at the end of the string % B 721 We can do this by adding a

production S — Bb where the non-terminal B generates as given in the previous example.

Using the above concept we devise the follwoing grammar for L.

Lis [N’ =B, S:] where

N={S,B}
P={S—Bb,B—ab,B *aBb}

1.5 CHECK YOUR PROGRESS
Fill in the blanks
1) An alphabet is a nonempty set of symbols.

2) A grammar is a mechanism used for describing

L

3) For any string W % the reversal of the string is

4) is the simplest type of abstract machine we consider.

5) The transition from one configuration to the next (as defined by the transition function) is
called a

1.6 ANSWER CHECK YOUR PROGRESS
1) Finite

2) Language.

R

3) B e <1 L)
4) Finite automation.

5) Move

1.7 MODEL QUESTION

Qs-1) What do you understand by Languages and Theory of Computations? What is the most
important feature of Automation?

Qs-2) What is move?

Qs-3) What is Grammar? Give the Formal definitions of a Grammar? How will you find
grammar for a language?

Qs-4) What are Symbols? Symbols are indivisible objects or entity that cannot be defined.
Explain How.

Qs-5) What is Language? Explain about the natural languages, programming languages,
mathematical languages?

1.8 REFERENCES
https://nptel.ac.in/courses/106/103/106103070/

1.9 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH.

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI.
3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons.

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM.

UNIT-II FINITE AUTOMATA

2.1 Learning Objectives
2.2 Finite Automata
2.2.1 States, Transitions and Finite-State Transition System
2.2.2 Deterministic Finite (-state) Automata
2.3Deterministic Finite State Automaton
2.3.1 Acceptance of Strings
2.3.2 Language Accepted or Recognized by a DFA
2.3.3 Extended transition function
2.3.4 Transition table
2.3.5 (State) Transition diagram
2.3.6 Removing*= Transition
2.3.7 Equivalence of NFA and DFA
2.4 Multiple Next State
2.4.1 *=- transitions

2.4.2 Acceptance

2.4.3 The Extended Transition function 5
2.5 Formal definition of NFA
2.5.1 The Language of an NFA
2.6 Check your progress
2.7 Answer Check your progress
2.8 Model Question
2.9 References

2.10 Suggested readings

2.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Finite Automata, Finite State Automaton,
Multiple Next State, Formal definition of NFA and the Language of an NFA. We also
understand States, Transitions and Finite-State Transition System.

2.2 FINITE AUTOMATA

Automata (singular : automation) are a particularly simple, but useful, model of computation.
They were initially proposed as a simple model for the behavior of neurons. The concept of a
finite automaton appears to have arisen in the 1943 paper “A logical calculus of the ideas
immanent in nervous activity", by Warren McCullock and Walter Pitts. In 1951 Kleene
introduced regular expressions to describe the behaviour of finite automata. He also proved
the important theorem saying that regular expressions exactly capture the behaviours of finite
automata. In 1959, Dana Scott and Michael Rabin introduced non-deterministic automata and
showed the surprising theorem that they are equivalent to deterministic automata. We will
study these fundamental results. Since those early years, the study of automata has continued
to grow, showing that they are indeed a fundamental idea in computing.

2.2.1 STATES, TRANSITIONS AND FINITE-STATE
TRANSITION SYSTEM :

Let us first gives some intuitive idea about a state of a system and state transitions before
describing finite automata.

Informally, a state of a system is an instantaneous description of that system which gives all
relevant information necessary to determine how the system can evolve from that point on.

Transitions are changes of states that can occur spontaneously or in response to inputs to the
states. Though transitions usually take time, we assume that state transitions are instantaneous
(which is an abstraction).

Some examples of state transition systems are: digital systems, vending machines, etc.

A system containing only a finite number of states and transitions among them is called
a finite-state transition system.

Finite-state transition systems can be modeled abstractly by a mathematical model
called finite automation.

We said that automata are a model of computation. That means that they are a simplified
abstraction of “the real thing'. So what gets abstracted away? One thing that disappears is any
notion of hardware or software. We merely deal with states and transitions between states.
The distinction between program and machine executing it disappears. One could say that an
automaton is the machine and the program. This makes automata relatively easy to
implement in either hardware or software. From the point of view of resource consumption,

the essence of a finite automaton is that it is a strictly finite model of computation.
Everything in it is of a fixed, finite size and cannot be modified in the course of the computation.

2.2.2 DETERMINISTIC FINITE (-STATE) AUTOMATA

Informally, a DFA (Deterministic Finite State Automaton) is a simple machine that reads an
input string -- one symbol at a time -- and then, after the input has been completely read,
decides whether to accept or reject the input. As the symbols are read from the tape, the
automaton can change its state, to reflect how it reacts to what it has seen so far.

Thus, a DFA conceptually consists of 3 parts:

A tape to hold the input string. The tape is divided into a finite number of cells. Each cell
holds a symbol from Z.

A tape head for reading symbols from the tape
A control , which itself consists of 3 things:

finite number of states that the machine is allowed to be in (zero or more states are designated
as accept or final states),

a current state, initially set to a start state,
a state transition function for changing the current state.

An automaton processes a string on the tape by repeating the following actions until the tape
head has traversed the entire string:

The tape head reads the current tape cell and sends the symbol s found there to the control.
Then the tape head moves to the next cell.

he control takes s and the current state and consults the state transition function to get the
next state, which becomes the new current state.

Once the entire string has been processed, the state in which the automation enters is

examined. If it is anaccept state, the input string is accepted; otherwise, the string
is rejected . Summarizing all the above we can formulate the following formal definition:

2.3 DETERMINISTIC FINITE STATE AUTOMATON :

A Deterministic Finite State Automaton (DFA) is a 5-tuple : M=(2.2.9 4. F)

Q is a finite set of states.

2 is a finite set of input symbols or alphabet.

G L2%¥Z =0 is the “next state” transition function (which is total). Intuitively, & is a
function that tells which state to move to in response to an input, i.e., if M is in state q and

. . dlg.a
sees mput a, 1t moves to state [g, :] .

G €L is the start state.

Fog is the set of accept or final states.

2.3.1 ACCEPTANCE OF STRINGS :

=y

A DFA accepts a string W % if there is a sequence of states 9o- 9v " da gy Q such

that

1. 90 is the start state.
2 S g5 tm) = i forall 0 <% « &
3 %€ 7

2.3.2 LANGUAGE ACCEPTED OR RECOGNIZED BY A DFA :

The language accepted or recognized by a DFA M is the set of all strings accepted by M , and

MYy . L(M)= {weZ'| M accepts w}.

is denoted by Al ie.

The notion of acceptance can also be made more precise by extending the transition
function & .

2.3.3 EXTENDED TRANSITION FUNCTION :

Extend J:@xz—=0 (which is function on symbols) to a function on strings,
e g OxE =@

g : . . :
That is, l:g,w) is the state the automation reaches when it starts from the state q and finish
processing the string w. Formally, we can give an inductive definition as follows:

The language of the DFA M is the set of strings that can take the start state to one of the
accepting states i.e.

L(M)={ W& z | M accepts w }

- {WEE'| & 'I‘i'mW:'EF}

Example 1 :

M={Q,Z,84q,F)

@ ={a.a}

90 is the start state

F={q}

0(a90.0)=q Iq.0)=g

"j{@'u’l)=gl 5[g1,1)=g1

It is a formal description of a DFA. But it is hard to comprehend. For ex. The language of the
DFA is any string over { 0, 1} having at least one 1.

We can describe the same DFA by transition table or state transition diagram as following

TRANSITION TABLE :
0 1
— 4o 7o 41
#* g g1 &

It is easy to comprehend the transition diagram.

Explanation : We cannot reach find state 91 w/0 or in the i/p string. There can be any no. of

0's at the beginning. (The self-loop at 90 on label 0 indicates it). Similarly there can be any
no. of 0's & 1's in any order at the end of the string.

2.3.4 TRANSITION TABLE :

It is basically a tabular representation of the transition function that takes two arguments (a
state and a symbol) and returns a value (the “next state”).

Rows correspond to states,

Columns correspond to input symbols,
Entries correspond to next states

The start state is marked with an arrow

The accept states are marked with a star (*).

0 1
—dy &y i
H ooy oy oy

2.3.5 (STATE) TRANSITION DIAGRAM :

A state transition diagram or simply a transition diagram is a directed graph which can be
constructed as follows:

1. For each state in Q there is a node.

2. There is a directed edge from node q to node p labeled a iff g, a)=p . (If there are
several input symbols that cause a transition, the edge is labeled by the list of these
symbols.)

There is an arrow with no source into the start state.

4. Accepting states are indicated by double circle.

98]

5. Here is an informal description how a DFA operates. An input to a DFA can be any

string W& Z Puta pointer to the start state q. Read the input string w from left to

right, one symbol at a time, moving the pointer according to the transition function, &
. If the next symbol of wisaand the pointer is on state p, move the pointer

to o(p. a) . When the end of the input string w is encountered, the pointer is on some
state, 7. The string is said to be accepted by the DFA if 7€ and rejected if # & & .
Note that there is no formal mechanism for moving the pointer.

6. A language L€ =’ is said to be regular if L = L(M) for some DFA M

2.3.6 REMOVING = TRANSITION

=- transitions do not increase the power of an NFA . That is, any = -NFA (NFA with =
transition), we can always construct an equivalent NF4 without =-transitions. The
equivalent NFA must keep track where the = NFA goes at every step during computation.
This can be done by adding extra transitions for removal of every = - transitions from the = -
NFA as follows.

5[;' ’E) "9 from the €- NFA , then we need to moves from

state p to all the state ¥ on input symbol g€ which are reachable from state q (in the = -
NFA) on same input symbol ¢. This will allow the modified NFA to move from state p to all
states on some input symbols which were possible in case of ©-NFA on the same input
symbol. This process is stated formally in the following theories.

If we removed the = - transition

Theorem if L is accepted by an = - NFA N, then there is some equivalent NFA NV

without = transitions accepting the same language L
Proof:

N=(0.%584,F)

Let be the given € ~#F4 with

N =(0.Z.8.q,.F)

We construct

o~

d'(g.a) = e &(q,
Where, (2.¢) [p|p (q a:]] forall 4% & and ¢ €2, and
F'={TU{g,) if 8(,,€)\F = ¢ otherwise.

Other elements of N'and N
L{N)=L(V)

We can show that i.e. N' and N are equivalent.

We need to prove that vwe 2

we L(N) iff we (V)

YweZ &'(g,wieF' iff &g, w)eF

We will show something more, that is,

Ywe Z éq[qu,w:l = S[qu,w:l

. . .
We will show something more, that is, | |

Basis : ol =1 then X=a€X

But E[Q’nsﬂ) = '5[‘30"3) by definition of 5

- L
Induction hypothesis Let the statement hold for all Y= 27 with ol < 7 .

&' (g0, w) =8y, z
(40.w) I:?D %) By definition of extension of 2
= El:é”[qn,x:],cx)
” By inductions hypothesis.
= E(E[gu,x) .:z)
g (7, a) Assuming that
=U5;Ef,ﬂ:1 S[gn,x)=R,WhereRgQ
B pLZJR alpa) By definition of &'
- S[qw ez o
= 5 Since R =5(g0.%)
= 5(gq.w)

To complete the proof we consider the case

When =0 i.e. ¥ =%= then
3 (40.€) ={ %} and by the construction of F. 98 herever 2(g0.€) constrains a state
in F.

If #'=F (and thus 3(g0.€) is not in F'), then "% with p# =1, w leads to an accepting state
in N'iff it leads to an accepting state in N (by the construction of N'and N).

e~

Also, if (W =% | thus w is accepted by N' iff w is accepted by N (iff 40)

e T FUla) (and, thus inMwe load ?(40€) in £7), thus is accepted by
both N'and N .

WELI:N)

Z . . i
Let ik 1. If w cannot lead to 9% in N, then . (Since can add = transitions to get

an accept state). So there is no harm in making 90 an accept state in V',

Ex: Consider the following NFA with = - transition.

. A S ——

by l/,! —a (aodz) |{an a0
b,il Mo —H &) {q,) (.}

_/ F g, {a:) {aa}

Transition table @' for the equivalent NFA without = - moves

Since 5(40.€) =02 e-wra the start state go must be final state in the equivalent NFA .

5':‘1"05):‘3'2 dg[‘i'mo:':‘h d‘{"[‘i'ml:':‘i'z 5[g0,0)=g2

Since an an we add moves

and 3(a0:1)= 4, in the equivalent NFA . Other moves are also constructed accordingly.
= -closures:

The concept used in the above construction can be made more formal by defining the < -
closure for a state (or a set of states). The idea of =-closure is that, when moving from a
state p to a state g (or from a set of states S; to a set of states S;) an input #*= Z we need to
take account of all =-moves that could be made after the transition. Formally, for a given
state g,

[g) = {p ‘p can be reached from ¢ by zero ormore € -m oves}
= -closures:

Similarly, for a given set Red

=

| [Rj = {p (= Q|p catt be reached from any ¢ = Rby following zero or more £ —moves}
closures:

So, in the construction of equivalent NFA N'without = -transition from any NFA with =

moves. the first rule can now be written as 9 [q’aj Rkl [5[%4))

2.3.7 EQUIVALENCE OF NFA AND DFA
It is worth noting that a DFA is a special type of NFA and hence the class of languages
accepted by DFA s is a subset of the class of languages accepted by NFA s. Surprisingly,
these two classes are in fact equal. NFA s appeared to have more power than DFA s because
of generality enjoyed in terms of =-transition and multiple next states. But they are no more
powerful than DFA s in terms of the languages they accept.

Converting DFA to NFA

Theorem: Every DFA has as equivalent NFA

Proof: A DFA is just a special type of an NFA . In a DFA , the transition functions is defined
from raiteg) whereas in case of anNFAit is defined from &%= t° 2

g D= (0.2.8.9,.7) N=(Q'%.8.4,F)

as follows.
{Q’z‘} 0 Vg, eQ
5’[[p},a)={5|:p,a)}, e

i wa)=a 4 ((7).a)~{g)

All other elements of N are as in D.

be a DFA. We construct an equivalent NFA

w=aa, ,a,€ L(D)

If then there is a sequence of states Go-91:92" -4 gych
that J[Qi—bai) = and dy = B

Then it is clear from the above construction of N that there is a sequence of states
(in N) EORCARCANSCY such that Ea[{g"‘l}’ﬂ")= e} and e F and
hence = L(w).

Similarly we can show the converse.

Hence, - [N) - L(D)

Given any NFA we need to construct as equivalent DFA i.e. the DFA need to simulate the
behaviour of the NFA . For this, the DFA have to keep track of all the states where the NFA
could be in at every step during processing a given input string.

There are 2' possible subsets of states for any NF4 with n states. Every subset corresponds to
one of the possibilities that the equivalent DFA must keep track of. Thus, the

equivalent DF4 will have 2" states.

The formal constructions of an equivalent DFA for any NFAis given below. We first
consider an NFA without = transitions and then we incorporate the affects of < transitions
later.

Formal construction of an equivalent DFA for a given NFA without = transitions.

N=(0.Z.8,4,F)

Given an without = - moves, we construct an equivalent DFA

_ D D D gh
D_(Q 207y F)as follows

o® = P(Q) p?={8ls c o},

1.€.

0 ={%}
FP={¢" Q"N F =g
a final state in DFA D)

52 (vt 1) ,4) = 5(ay)5 gy, 0)U U (g,.)

(i.e. every subset of Q which as an element in F is considered as

D= [N
forall € Z and ¢ {‘i’lsfhs sQ's-,}

where HEQ. 1815k
Eﬂ(gﬂ,a) = UD S(a;.a)
That is, d=g

To show that this construction works we need to show that L(D)=L(N) i.e.

vwe X 57(q w)e FP i 5(q, w)F =9

o TWET 87 ({ gy}, W) F = iff 8(q, Wi F = ¢

b

We will prove the following which is a stranger statement thus required.

Fwe 2, S‘D({gu} ,w) =$‘|:qu,w:]

Proof : We will show by inductions on]
Basis If |W| =0, then w =5

yil = =
so, & la)-€)={a) €)1y defimition.

Inductions hypothesis : Assume inductively that the statement holds Vwe I of length less
than or equal to n.

Inductive step

|w|=n+1 x|=?zandaEE.

Let , then ¥ = &2 with |

Now,

5 (g0})= % ({20} .)

I
= 57 [ED [{gn} ,x),a), by inductive extension of &°

57 (S[gu, x) ,.:z) by induction hypothesis

U E[c;i,a:l, by definition of &%

§ =508)

= &(g,.xa) by definition of 5 (extension of &)
= 8(g.w)

Now, given any NFA with € -transition, we can first construct an equivalent NFA without €
-transition and then use the above construction process to construct an equivalent DFA , thus,
proving the equivalence of NFA s and DFA s..

It is also possible to construct an equivalent DFA directly from any given NFA with = -
transition by integrating the concept of = -closure in the above construction.

Recall that, for any S,

£ . closure
_ [S:] = {g = Q|g cattbe reached from any p € Sby following zero or more € —transit ons}

In the equivalent DFA , at every step, we need to modify the transition functions 57 to keep
track of all the states where the NFA can go on =-transitions. This is done by

D¢ D
replacing 5(g.a) by =-closure [J[Q’a:‘) , 1.e. we now compute (’)at every step as
follows:

A% (qﬂ,aj = [g S Q‘g £ € —closure (E(gﬂ,a))] ;
Besides this the initial state of the DFA D has to be modified to keep track of all the states
that can be reached from the initial state of NF'4 on zero or more -transitions. This can be

D D
done by changing the initial state 90 to =-closure (0).

It is clear that, at every step in the processing of an input string by the DFA D, it enters a
state that corresponds to the subset of states that the NFA N could be in at that particular
point. This has been proved in the constructions of an equivalent NFA for any = -NFA

If the number of states in the NFA is n, then there are 2" states in the DFA . That is, each
state in the DFA is a subset of state of the NFA .

But, it is important to note that most of these 2" states are inaccessible from the start state
and hence can be removed from the DF4 without changing the accepted language. Thus, in

fact, the number of states in the equivalent DFA would be much less than 2" .

Example : Consider the NFA given below.

Transition table

Since there are 3 states in the NFA

| o I Jl= |
—dy {gusf?l} ¢ ||¢

g {Q’l} g {Q’:-}

i g ¢ {gu}

3o
There will be 2 =8 states (representing all possible subset of states) in the equivalent DFA .
The transition table of the DFA constructed by using the subset constructions process is

produced here.

The start state of the DFA is =-

The final states are all those
(since 91 = Fin the NFA).

Let us compute one entry,

subsets

0 1
g g g

—> gy {%.¢.9.} |9

Fla} ta-a) ||{g)
{3 4 (40}
Flaoa) |[{%-9.9) |2
(02} |{{%-9.92) ||{2]
Flaas) |laa)l ||l
Flaoaa:) {4992 ||{ 2]

that

closures [QU) - {gf'}

contains 71

57 [{gu,ﬂl}) == —closure[é‘[gu,li]))
=& =plo e [{gn,ql})
={2.91. %)

Similarly, all other transitions can be computed.

Corresponding transition fig. for the DFA is shown as

te that states {ql}’{qﬂ}’{gﬁ?}’{qu=%} and {‘i'u:ﬁifl}

removed. This gives us the following simplified DFA with only 3 states.

are not accessible and hence can be

It is interesting to note that we can avoid encountering all those inaccessible or unnecessary
states in the equivalent DFA by performing the following two steps inductively.

1. If 90 is the start state of the NFA, then make €- closure (g”) the start state of the
equivalent DFA . This is definitely the only accessible state.

If we have already computed a set @ of states which are accessible. Then &€,

(87 (8.a)] . :
compute because these set of states will also be accessible.

Following these steps in the above example, we get the transition table given below

0 1
J"{ﬁi’u} {fi'usfi’lsfi’z} ¢
{Q’u:ﬁi’lsﬁi’z} {Q’u,c}l,c}g} {gﬂ}

Non determinism is an important abstraction in computer science. Importance of non
determinism is found in the design of algorithms. For examples, there are many problems
with efficient nondeterministic solutions but no known efficient deterministic solutions. (
Travelling salesman, Hamiltonean cycle, clique, etc). Behaviour of a process is in a
distributed system is also a good example of nondeterministic situation. Because the
behaviour of a process might depend on some messages from other processes that might
arrive at arbitrary times with arbitrary contents.

It is easy to construct and comprehend an NFA than DFA for a given regular language. The
concept of NFA can also be used in proving many theorems and results. Hence, it plays an
important role in this subject.

In the context of FA nondeterminism can be incorporated naturally. That is, an NFA is

defined in the same way as the DFA but with the following two exceptions:

o multiple next state.
e = -transitions.

CHECK YOUR PROGRESS
True/False type questions

1) Finite-state transition systems can be modeled abstractly by a mathematical model
called Finite Automation.

2) Transitions are changes of states that can occur spontaneously or in response to inputs to
the states.

3) Every DFA has as equivalent NFA

4) £- transitions increase the power of an NFA .

5) A system containing only a finite number of states and transitions among them is called
a infinite state transition.

Answers:
1) True
2) True
3) True
4) False

5) False

2.4 MULTIPLE NEXT STATE :

In contrast to a DFA, the next state is not necessarily uniquely determined by the current
state and input symbol in case of an NFA. (Recall that, in a DFA there is exactly one start

state and exactly one transition out of every state for each symbol in E).

This means that - in a state q and with input symbol a - there could be one, more than one or
zero next state to go, i.e. the value of FG,9) is a subset of Q. Thus 3g,a) - CAE R
which means that any one of 91> 922" 9% could be the next state.

The zero next state case is a special one giving ﬁ(q,a}zé, which means that there is no

next state on input symbol when the automata is in state q. In such a case, we may think that
the automata "hangs" and the input will be rejected.

2.4.1 =- TRANSITIONS :

In an transition -, the tape head doesn't do anything- it doesnot read and it doesnot move.
However, the state of the automata can be changed - that is can go to zero, one or more

A(g.€)={qn. ¢ .45

states. This is written formally as implying that the next state could

by any one of 91 927" -9% /o consuming the next input symbol.

2.4.2 ACCEPTANCE :

Informally, an NFA is said to accept its input @ if it is possible to start in some start state and
process @, moving according to the transition rules and making choices along the way
whenever the next state is not uniquely defined, such that when @ is completely processed
(i.e. end of @ is reached), the automata is in an accept state. There may be several possible
paths through the automation in response to an input & since the start state is not determined
and there are choices along the way because of multiple next states. Some of these paths may
lead to accpet states while others may not. The automation is said to accept “ if at least one
computation path on input & starting from at least one start state leads to an accept state-
otherwise, the automation rejects input & . Alternatively, we can say that, @ is accepted iff
there exists a path with label ¥ from some start state to some accept state. Since there is no
mechanism for determining which state to start in or which of the possible next moves to
take (including the # -transitions) in response to an input symbol we can think that the
automation is having some "guessing" power to chose the correct one in case the input is
accepted.

Example 1 : Consider the language L = {# = {0, 1}* | The 3rd symbol from the right is 1}.
The following four-state automation accepts L.

The m/c is not deterministic since there are two transitions from state 7! on input 1 and no
transition (zero transition) from 94 onboth 0 & 1.

For any string & whose 3rd symbol from the right is a 1, there exists a sequence of legal

transitions leading from the start state g, to the accept state 4+ But for any string % where
3rd symbol from the right is 0, there is no possible sequence of legal tranisitons leading

from 9 and 9*. Hence m/c accepts L. How does it accept any string < = L?
The m/c starts at ?! and remains in the state 7! on any input until the 3rd symbol from the
right is encountered. (Of course, @ must satisfy | | £3). At this point, if the symbol is 1, it

goes to the state 42 and these enters 92 & 44 in the next two steps on any input 0 or 1. But if

the 3rd symbol from the right is 90 thus it will get stuck at that point, because of no
transition defined.

To enter the state 92 from 91, the m/c needs the input 1. If the 1 occur prior to the position 4
in the input or more from the right (instead of 3rd), thus it can enter 92 from 9! on that input

and finally will enter accept state 44 but at that point some of the input symbols may be left
i.e. the input will not be exhausted and hence, the string will not be accepted by the m/c.

2.4.3THE EXTENDED TRANSITION FUNCTION, ¢ :

To describe acceptance by an NFA formally, it is necessary to extend the transition function,

n

denoted as 5, takes a state ¢ = 2 and a string & = % , and returns the set of states, S = Q,
that the NFA is in after processing the string @ if it starts in state q.

Formally, & is defined as follows:

1. 3(g.€) ~{g} that is, without rending any input symbol, an NFA doesnot change

state.
2. Let @=X1 ¥ gome & rEZ and ¢ €%, Also assume that
&
a dlg,@)=| |&p,a
5[g=x:‘={P1=F’2:"'=Pk}_Then [) ;L.1J)

n

That is, ﬁ[q,m} can be computed by first computing ﬁ[q,x}, and by then following any
transitive from any of these stats that is labelled a.

2.5 FORMAL DEFINITION OF NFA :

M=(R.2.0.4.F) where Q, £, 90 and F bear the same

meaning as for a DFA, but & | the transition function is redefined as follows:

d: Px(Zuiel)— P(R)

Formally, an NFA is a quituple

where P(Q) is the power set of Q i.e. 28

2.5.1 THE LANGUAGE OF AN NFA :
From the discussion of the acceptance by an NFA, we can give the formal definition of a
language accepted by an NFA as follows :

If N=(2.%.0.4,7) is an NFA, then the langauge accepted by N is writtten as L(N) is

given by L2 =[m| @) O F = .;aﬁ])

That is, L(N)is the set of all strings win L such that 940 @) contains at least one
accepting state.

2.6 CHECK YOUR PROGRESS

Fill in the blanks

1) A systems can be modeled abstractly by a mathematical model called

2) There are states in the DFA

3) transitions do not increase the power of an NFA .

4) are changes of states that can occur spontaneously or in response to inputs to
the states.

5)A to hold the input string.

2.7ANSWER CHECK YOUR PROGRESS

1) Finite Automation.
2) &

3) €

4) Transitions

5) Tape

2.8 MODEL QUESTION

Qs-1) What is finite automation? Also explain States, Transitions and Finite-State Transition
System.

Qs-2) What is transition? Explain the difference between state transition diagram or simply a
transition diagram.

Qs-3) What is Deterministic Finite State Automaton? DFA conceptually consist of how many

parts?
Qs-4) What is Transition table? How can we remove epsilon transition?

Qs-5) What is the difference between NFA and DFA? How can we convert NFA to DFA?

2.8 REFERENCES
https://nptel.ac.in/courses/106/103/106103070/

2.9 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH
2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI
3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

UNIT-III REGULAR EXPRESSIONS (RE)

3.1 Learning Objectives

3.2 Regular Expressions (RE)

3.3 Regular Expression and Regular Language
3.4 Regular Grammars

3.5 Some Decision Algorithms for CFLs

3.6 Check your progress

3.7 Answer Check your progress

3.8 Model Question

3.9 References

3.10 Suggested readings

3.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Regular Expressions (RE),
Regular Expression and Regular Language, Regular Grammars. We also understand Some
Decision Algorithms for CFLs.

3.2 REGULAR EXPRESSIONS (RE)

RES: Formal Definition

We construct REs from primitive constituents (basic elements) by repeatedly applying certain

recursive rules as given below. (In the definition)

Definition : Let S be an alphabet. The regular expressions are defined recursively as follows.
Basis :

i) ?isaRE

il) =[Jisa RE

iii) " €& aisRE.

These are called primitive regular expression i.e. Primitive Constituents

REs: Formal Definition
We construct REs from primitive constituents (basic elements) by repeatedly applying certain

recursive rules as given below. (In the definition)

Definition : Let S be an alphabet. The regular expressions are defined recursively as follows.
Basis :

1) ?isaRE

il) =isa RE

iii) ¥ #€5 aisRE.

These are called primitive regular expression i.e. Primitive Constituents

Recursive Step :

¥ ¥
If "1 and "2 are REs over, then so are

Closure : r is RE over only if it can be obtained from the basis elements (Primitive REs) by a

finite no of applications of the recursive step (given in 2).

Example : Let 2= {0,1,2 }. Then (0+21)*(1+ F) is a RE, because we can construct this
expression by applying the above rules as given in the following step.

Steps RE Constructed
1 1
2 ¢
3 1+ %
4 (1+%)
5 2
6 1
7 21
8 0
9 0+21
10 (0+21)
11 (0+21)*
12 (0+21)*

Rule Used

Rule 1(iii)

Rule 1(i)

Rule 2(i) & Results of Step 1, 2

Rule 2(iv) & Step 3

1(iif)
1(iif)
2(3ii), 5, 6
1(iii)

23i), 7, 8
2(iv), 9
2(iii), 10
2(ii), 4, 11

Language described by REs : Each describes a language (or a language is associated with
every RE). We will see later that REs are used to attribute regular languages.

Notation : Ifr is a RE over some alphabet then L(r) is the language associate with r . We can
define the language L(r) associated with (or described by) a REs as follows.

1. ¢ is the RE describing the empty language i.e. L(';é) =¥ .

2.00%= [Jis a RE describing the language {=} i.e. L(T)={=}.

3. ¥ @ €5 aisaRE denoting the language {a} i.e . L(a) = {a} .

4.1f "1 and "% are REs denoting language L(rl) and L(&) respectively, then
1) M%7 s a regular expression denoting the language L(nt rﬂ) =1 d DO L(&)

ii) 3 isa regular expression denoting the language L(bk)=L(r1) L(rf‘)

L{r)= (L(rD)

-

i) M isa regular expression denoting the language

v) (rl) is a regular expression denoting the language L((rl)) = L(rl)
Example : Consider the RE (0*(0+1)). Thus the language denoted by the RE is
L(0*(0+1)) = L(0*) L(O+1) ceeveeeereieeee by 4(i1)

=L(0)*L(0) OOL(1)

= {£D, 0,00,000,.......} {0} “/ {1}

= {0, 0,00,000,........} {0,1}

= {0, 00, 000, 0000,.......... ,1,01, 001, 0001,............... }

Precedence Rule

Consider the RE ab + c. The language described by the RE can be thought of

either L(a)L(b+c) or L(ab)"~ L(c) as provided by the rules (of languages described by REs)
given already. But these two represents two different languages lending to ambiguity. To
remove this ambiguity we can either

1) Use fully parenthesized expression- (cumbersome) or

2) Use a set of precedence rules to evaluate the options of REs in some order. Like other
algebras mod in mathematics.

For REs, the order of precedence for the operators is as follows:
1) The star operator precedes concatenation and concatenation precedes union (+) operator.
ii) It is also important to note that concatenation & union (+) operators are associative and

union operation is commutative.

Using these precedence rule, we find that the RE ab+c represents the language L(ab) *
L(c) i.e. it should be grouped as ((ab)+c).

We can, of course change the order of precedence by using parentheses. For example, the
language represented by the RE a(b+c) is L(a)L(b+c).

Example : The RE ab*+b is grouped as ((a(b*))+b) which describes the
language L(a)(L(b))* - L(b)

Example : The RE (ab)*+b represents the language (L(a)L(b))* *~'L(b).

Example : It is easy to see that the RE (0+1)*(0+11) represents the language of all strings
over {0,1} which are either ended with 0 or 11.

Example : The regular expression r =(00)*(11)*1 denotes the set of all strings with an even

= 2uq2m+l
number of 0's followed by an odd number of 1's i.e. Lr) ={0"1 | #20, m20}

. : . 2 3
Note : The notation " is used to represent the RE rr*. Similarly, #~ represents the RE rr,

2
denotes 7" r, and so on.

An arbitrary string over Z = {0,1} is denoted as (0+1)*.

Exercise : Give a RE rover {0,1} s.t. L(r)={ PEL | @ pag at least one pair of consecutive
1's}

Solution : Every string in L(r) must contain 00 somewhere, but what comes before and what

goes before is completely arbitrary. Considering these observations we can write the REs as
(O+1)*11(0+1)*.

Example : Considering the above example it becomes clean that the RE

(0+1)*11(0+1)*+(0+1)*00(0+1)* represents the set of string over {0,1} that contains the
substring 11 or 00.

Example : Consider the RE 0%10*10*. It is not difficult to see that this RE describes the set
of strings over {0,1} that contains exactly two 1's. The presence of two 1's in the RE and any
no of 0's before, between and after the 1's ensure it.

Example : Consider the language of strings over {0,1} containing two or more 1's.

Solution : There must be at least two 1's in the RE somewhere and what comes before,
between, and after is completely arbitrary. Hence we can write the RE as
(0+1)*1(0+1)*1(0+1)*. But following two REs also represent the same language, each
ensuring presence of least two 1's somewhere in the string

1) 0*10*1(0+1)*

i) (0+1)*10*10*

Example : Consider a RE r over {0,1} such that

@e { 0=1} | has no pair of consecutive 1's}

L) ={

Solution : Though it looks similar to ex , it is harder to construct to construct. We
observer that, whenever a 1 occurs, it must be immediately followed by a 0. This substring
may be preceded & followed by any no of 0's. So the final RE must be a repetition of strings
of the form: 00...0100....00 i.e. 0*100*. So it looks like the RE is (0*100*)*. But in this case
the strings ending in 1 or consisting of all 0's are not accounted for. Taking these observations
into consideration, the final RE is r= (0*100%)(1+ =)+0*(1+%=).

Alternative Solution :

The language can be viewed as repetitions of the strings 0 and 01. Hence get the RE as r=
(0+10)*(1+%=).This is a shorter expression but represents the same language.

CHECK YOUR PROGRESS
True/False type questions

1) The language that is accepted by some FAs are known as Regular language.
2) A language L is regular iff it has a regular grammar

3) Regular grammar and Finite Automata are equivalent

4) There are no algorithms to test emptiness of a CFL.

5) If a language is regular, then there is no RE to describe it.

Answers-
1) True
2) True
3) True
4) False
5) False

3.3 REGULAR EXPRESSION AND REGULAR LANGUAGE :

Equivalence(of res) with fa :

Recall that, language that is accepted by some FAs are known as Regular language. The two
concepts : REs and Regular language are essentially same i.e. (for) every regular language
can be developed by (there is) a RE, and for every RE there is a Regular Langauge. This fact
is rather suprising, because RE approach to describing language is fundamentally differnet
from the FA approach. But REs and FA are equivalent in their descriptive power. We can put
this fact in the focus of the following Theorem.

Theorem : A language is regular iff some RE describes it.

This Theorem has two directions, and are stated & proved below as a separate lemma

RE to FA :
REs denote regular languages :

Lemma : If L(r) is a language described by the RE r, then it is regular i.e. there is a FA such
that L(M) = L(r).

Proof : To prove the lemma, we apply structured index on the expression r. First, we show

how to construct FA for the basis elements: ';é, € and for any %= Z . Then we show how to
combine these Finite Automata into Complex Automata that accept the Union,
Concatenation, Kleen Closure of the languages accepted by the original smaller automata.

Use of NFAs is helpful in the case i.e. we construct NFAs for every REs which are
represented by transition diagram only.

Basis :

Case (i): "~ ¢ . Then % [rj - ';é. Then % [r) =¢ and the following NFA N recognizes L(r).

Formally ¥=(Q .2 547 ¢ where Q = {q} and Sgp] =P W ae Syt

0 © -®

Case (ii): " ~=. L[rj={e} , and the following NFA N accepts L(r).

N={{g).Z 8.4 (a)) pere Ol@.0)=¢ VaeX

~O00 —®

Since the start state is also the accept step, and there is no any transition defined, it will

Formally

accept the only string = and nothing else.

Case (iii) : r = a for some #= % Then L(r) = {a}, and the following NFA N accepts L(r).

—~(OD)———@)

N=({p.q}.Z. 4 p.{q})

Formally, - 5[p,g)={g}, sty =1dl for T*P or b=

where

Induction :

Assume that the start of the theorem is true for REs " ! and "2 . Hence we can assume that we

M, that accepts languages denoted by REs "1 and 2, respectively

L{My)=L(n)

have automata M, and

ie. L(Mlj =L[’"i)

and . The FAs are represented schematically as shown

below.

Each has an initial state and a final state. There are four cases to consider.

=A Lin) v Liny)

Case (i) : Consider the RE s T4 denoting the language . We construct

M and M

M , from

FA to accept the language denoted by RE "2 as follows :

e Create a new (initial) start state ¥ and give €- transition to the initial state of My

and M, .This is the initial state of M3.

A A

e Create a final state ¥ and give £ -transition from the two final state of "1 and ~2

. o is the only final state of M, and final state of L and My will be ordinary states
in M3.

M.

e All the state of ! and M, are also state of M3.

e All the moves of M and et are also moves of M3. [Formal Construction]

e It is easy to prove that LiM;) = L(r)

LiMs) = Lin)

Proof: To show that we must show that

_ L) w Liny)

_ L(3y) = L(M;) by following transition of M3.

’

Starts at initial state ¥ and enters the start state of either M, or M, follwoing the transition
i.e. without consuming any input. WLOG, assume that, it enters the start state of Ml. From

this point onward it has to follow only the transition of M to enter the final state of Ml,

because this is the only way to enter the final state of M by following the e-transition.(Which

is the last transition & no input is taken at hte transition). Hence the whole input w is
. . . M, M, M,
considered while traversing from the start state of to the final state of " !. Therefore

must accept s

Say, w e L{M) or ¥ EL[MQ)‘

WLOG, say w e L(M)

Therefore when M process the string w , it starts at the initial state and enters the final state

when w consumed totally, by following its transition. Then M, also accepts w, by starting at

state ¥ and taking € -transition enters the start state of M -follows the moves of L to

enter the final state of M, consuming input w thus takes = -transition to 7" Hence proved.

Lin) Lin My

Case(ii) : Consider the RE 2 ~ 12 denoting the language :'. We construct FA

M L(s)

from 7! & M, to accept as follows :

’

Create a new start state ¢ and a new final state
Add = - transition from

¢ to the start state of M,

qn’ to fn'
final state of M, to the start state of i,

All the states of M, are also the states of L . L has 2 more states than that of i,

namely 7 and .

All the moves of M, are also included in M3.

M.
* can accept =.

By the transition of type (b),
By the transition of type (a), ™ * can enters the initial state of *"! w/o any input and then

follow all kinds moves of M, to enter the final state of M and then following = -transition

can enter # . Hence if any W& ¥ is accepted by L then w is also accepted by M3. By the
transition of type (b), strings accepted by M, can be repeated by any no of times & thus

accepted by M, . Hence M, accepts = and any string accepted by M, repeated (i.e.

concatenated) any no of times. Hence B [L [Ml)) B (L [r)l) .

Case(iv) : Let € =(r1). Then the FA M, is also the FA for (rl), since the use of parentheses

does not change the language denoted by the expression.

FA to RE (REs for Regular Languages) :

Lemma : If a language is regular, then there is a RE to describe it. i.e. if L = L(M) for some
DFA M, then there is a RE r such that L = L(r).

Proof : We need to construct a RE r such that A {W %o L(M:‘} . Since M is a DFA, it

has a finite no of states. Let the set of states of M is Q = {1, 2, 3,..., n} for some integer n.
[Note : if the n states of M were denoted by some other symbols, we can always rename those
to indicate as 1, 2, 3,..., n]. The required RE is constructed inductively.

L]
Notations : ‘7 isa RE denoting the language which is the set of all strings w such that w is

i s
the label of a path from state i to state j L& g% n) in M, and that path has no intermediate
state whose number is greater then k. (1 & j (begining and end pts) are not considered to be

"intermediate" so iand /or j can be greater than k)
L]
We now construct '3 inductively, for all i, j = Q starting at k = 0 and finally reaching k = n.

(o
Basis : k=0, T e the paths must not have any intermediate state (since all states are
numbered 1 or above). There are only two possible paths meeting the above condition :

1. A direct transition from state i to state j.
(0}

o ¥ = a if then is a transition from stateito statejon symbol the single
symbol a.
.?"--(D} P IR o S CEIRE, iy S . - . .

o “H ="4"TR ® if there are multiple transitions from state i to state j on

symbols #1-%2: "7 %
(0
o ' =fifthere is no transition at all from state i to state j.
2. All paths consisting of only one node i.e. when i =j. This gives the path of length 0
(i.e. the RE € denoting the string €) and all self loops. By simply adding I to various
cases above we get the corresponding REs i.e.

0
o ' =€ +aifthere is a self loop on symbol a in state i .

W]

| S T S S . . :
o i =e4+hTH % if there are self loops in stateias multiple
symbols G Bam e
o]
o " =€ ifthere is no self loop on state i.

Induction :

Assume that there exists a path from state i to state j such that there is no intermediate

state whose number is greater than k. The corresponding Re for the label of the path
L3

is 8

There are only two possible cases :

1. The path dose not go through the state k at all i.e. number of all the intermediate states
are less than

k. So, the label of the path from state i to state j is tha language described by the
(-1
RE '

2. The path goes through the state k at least once. The path may go from i to j and k may
appear more than once. We can break the into pieces as shown in the figure 7.

r)k‘{k-1) rki,:k. 1
O—O—O

A path from i to j that goes through k exactly once

(rklr.'j”'1 ’)’

) <% T 7k
OO0

A path from i to j that goes through k more than once

Figure 7

3. The first part from the state i to the state k which is the first recurence. In this path, all
(k1)

intermediate states are less than k and it starts at iand ends atk. So the RE “ik
denotes the language of the label of path.

4. The last part from the last occurence of the state k in the path to state j. In this path

(k1)

also, no intermediate state is numbered greater than k. Hence the RE i denoting
the language of the label of the path.

5. In the middle, for the first occurence of k to the last occurence of k , represents a loop
which may be taken zero times, once or any no of times. And all states between two
consecutive k's are numbered less than k.

&Y’
Hence the label of the path of the part is denoted by the RE (rg) .The label of the path

from state i to state j is the concatenation of these 3 parts which is

-1 ot el
()

Since either case 1 or case 2 may happen the labels of all paths from state i to j is denoted by

the following RE

.1 .1 ot el
”"i_;!:k} :”"i;!:k }+”"i% }[”ﬂ }) ”igk)

(k)
We can construct ‘¥ for all 1,j £{1,2,...,n} in increasing order ofk starting with the

L3
basis k = 0 upto k =n since s depends only on expressions with a small superscript (and

hence will be available). WLOG, assume that state 1 is the start state and JI 2 e

the m final states whereji € {1, 2, .. ,n}, | 5 =#® and Ln According to the
convention used, the language of the automatacan be denoted by the RE

I Il Il
r1§13'+ 7 23'+---+r1§n3

Ly j
B) . .
Since Vi is the set of all strings that starts at start state 1 and finishes at final state i

following the transition of the FA with any value of the intermediate state (1, 2, ..., n) and

hence accepted by the automata.

3.4 REGULAR GRAMMARS

G = (NZP S5

A grammar is right-linear if each production has one of the following

three forms:

e A—cB,
e A7,

o« A—E
Where A, B € &' (with A =B allowed) and £= Z. A grammar G is left-linear if each
production has once of the following three forms.
A—7Bc,A—%c, A= E
A right or left-linear grammar is called a regular grammar.
Regular Grammars and Finite Automata
Regular grammar and Finite Automata are equivalent as stated in the following theorem.

Theorem : A language L is regular iff it has a regular grammar. We use the following two
lemmas to prove the above theorem.

Lemma 1 : If L is a regular language, then L is generated by some right-linear grammar.

M=(Q.Z, 8 q.F)

Proof : Let be a DFA that accepts L.

Lot @7 0 008 g T (a0 a1 0]

G = (¥ ZP S

We construct the right-linear grammar by letting

N=Q, "% andP={A+cB | 8(4 c)=Bluld—c | 8(4 c)eB)

W= it
Let =2

such that

a4, € LIM) . For M to accept w, there must be a sequence of states Go- 1o 0 G

5[@'0:“1) =
5[9’1:‘12 :' =
5[@'&-1’%) = dy

and &S 7

By construction, the grammar G will have one production for each of the above transitions.
Therefore, we have the corresponding derivation.

L e v M . B M e s N S B
G it = ey St S S e T
Hence w = 1L(g).

Conversely, if W=y € LG) , then the derivation of w in G must have the form as
given above. But, then the construction of G from M implies that

g0 mmyar) =4 , where 7 = 4 , completing the proof.

G- (NI PS5

Lemma 2 : Let be a right-linear grammar. Then L(G)is a regular

language.

Proof: To prove it, we construct a FA M from G to accept the same language.

M=(Q.Z, 8, 4. 7) is constructed as follows:

=MNu
¢ {gf } (97isa special sumbol not in N)

dq =S, F=[gf}
For any ¢ N and #€Zand ¢ is defined as

5(g.a)={pla—apefl cq—ae?

and 3(g.a)={pla—ape F}ufg,] fg—acP,
We now show that this construction works.

Let ¥~ %14 S L) . Then there is a derivation of w in G of the form

S:G?’ e ?ﬂlﬂgﬁz"z:g - ':G?’alﬂz Ty 3y (= W:'

By contradiction of M, there must be a sequence of transitions

5[@"0:“1) =
5[%%) =gy

5[‘5’&,—1=ak:‘ Sy

=ayd,...a, € LMY .

implying that ¥ i.e. w is accepted by M.

Conversely, if ¥~ %1% "% is accepted by M, then because 77 is the only accepting state

of M, the transitions causing w to be accepted by M will be of the form given above. These

. — . e L{TF
transitions corresponds to a derivationof w in the grammar G. Hence we L(G)

the proof of the lemma.

, completing

A—=ch|c|e

Given any left-linear grammar G with production of the form , we can construct

from it a right-linear grammar & by replacing every production of G of the form 4 —¢&
with 4 — e

4O~ (e)

It is easy to prove that . Since ' is right-linear, is regular. But then

o

B
L&
SO are (()) ie. L@ because regular languages are closed under reversal.

Putting the two lemmas and the discussions in the above paragraph together we get the proof
of the theorem-

A language L is regular iff it has a regular grammar.
Example: Consider the regular expression 101*. The DFA for 101* is shown below.

The right linear grammar generating the language denoted by 101* i.e accepted by the above
DFA is produced below follwoing the construction process given in the lemma 1.

S—>14|0C
A—0B|1C0

218001
B S| ie

Since, C is useless we can eliminate all productins involving C to produce a simpler grammar
for 101*

514
A—0B|0
3181

Example : Consider the grammar

G: 58— 040
A 18

It is easy to see that G generates the language denoted by the regular expression (01)*0.
The construction of lemma 2 for this grammar produces the follwoing FA.

This FA accepts exactly (01)*1.

3.5 SOMEDECISION ALGORITHMS FOR CFLS

n this section, we examine some questions about CFLs we can answer. A CFL may be
represented using a CFG or PDA. But an algorithm that uses one representation can be made
to work for the others, since we can construct one from the other.

Testing Emptiness :
Theorem : There are algorithms to test emptiness of a CFL.

Proof : Given any CFL L, there is a CFG G to generate it. We can determine, using the
construction described in the context of elimination of useless symbols, whether the start

symbol is useless. If so, then L&@H=¢ ; otherwise not.

Testing Membership :

Given a CFL L and a string x, the membership, problem is to determine whether * € £ 2

Given a PDA P for L, simulating the PDA on input string x doesnot quite work, because the
PDA can grow its stack indefinitely on = input, and the process may never terminate, even if
the PDA is deterministic.

G = (¥ %P S

So, we assume that a CFG is given such that L = L(G).

Let us first present a simple but inefficient algorithm.

Convert G to 3= I:N’E £ ’S) in CNF generating L) _{E}. If the input string # =%,

S=E
then we need to determine whether % and it can easily be done using the technique

given in the context of elimination of €-production. If , * *< then xeL(3) iff 7% 4 ICG:]
Consider a derivation under a grammar in CNF. At every step, a production in CNF in used,
and hence it adds exactly one terminal symbol to the sentential form. Hence, if the length of

the input string X is n, then it takes exactly n steps to derive x (provided x is in ()).

Let the maximum number of productions for any nonterminal in ¥ is K. So at every step in
derivation, there are atmost k choices. We may try out all these choices, systematically., to

derive the string x in G Since there are atmost K i.e. £" choices. This algorithms is of
exponential time complexity. We now present an efficient (polynomial time) membership
algorithm.

CYK Algorithm to decide membership in CFL

We now present a cubic-time algorithm due to cocke, Younger and Kasami. It uses the
dynamic programming technique-solves smaller sub-problems first and then builds up
solution by combining smaller sub-solutions. It determines for each substring y of the given
string x the set of all nonterminals that generate y. This is done inductively on the length of'y.

H

G = (N Z P 8

Let be the given CFG in CNF. Consider the given string x and let [=

o
. Let ¥ be the substring of x that begins at position i (i.e. i-th symbol of x) and has length j.

N) X
Let ¥ Dbe the set of all nonterminals A such that o8

. X=X Fgie X a11214n) . .
We write WAL K1 Bl Where each f{14i<a) is a terminal symbol.

L]

A=z,

1 iff A= e f

. Thus we construct the sets Ny forall 12i=#a

Ny . A=xg

Combining substrings of length 2, it is clear that, Ae i.e iff there is a

production 4 —* £% in G and =% and C= %y _

That is Ae N, iff A= BCeF and He N and Ce N

Thus we can construct the sets Mg from the already constructed sets Ny , by inspecting the
grammar.

In general considering substrings % of length], Ae Ny ie. T iff there is a

*

production 4 —* 5T in G such that T and C= Ty for some TERA
That iS Ae MJ iff Be Ni’: and Ce NMJ]’: for some 18k ﬁj Such that A—=EBCel . The

idea is to divide, % into smaller substrings, using all possible wyas (i.e. for different values

of k), and construct Ny from already

*

Ny ie. A= x5,

Combining substrings of length 2, it is clear that, Ae iff there is a

=z

1 and &7 Al

production 4 = 5% in G and

Thatis A€ iff 4 BCe P gnq BE M 4ng O My

Thus we can construct the sets Mg from the already constructed sets My , by inspecting the
grammar.

In general considering substrings % of length i, HE ie. o iff there is a

Bz, C=x 14k <y

production 4 = FL" in G such that and #EI for some

A M

That is i iff BE My gng €V

#.i% for some 1<% $J such that 4—=>B5C€P The
idea is to divide, % into smaller substrings, using all possible wyas (i.e. for different values

of k), and construct Yy from already
Limitations of Finite Automata and Non regular Languages :

The class of languages recognized by FA s is strictly the regular set. There are certain
languages which are non regular i.e. cannot be recognized by any FA

. L={a"8"n 20}
Consider the language

In order to accept is language, we find that, an automaton seems to need to remember when
passing the center point between a's and b's how many a's it has seen so far. Because it would
have to compare that with the number of b's to either accept (when the two numbers are
same) or reject (when they are not same) the input string.

But the number of a's is not limited and may be much larger than the number of states since
the string may be arbitrarily long. So, the amount of information the automaton need to
remember is unbounded.

A finite automaton cannot remember this with only finite memory (i.e. finite number of
states). The fact that F4 s have finite memory imposes some limitations on the structure of
the languages recognized. Inductively, we can say that a language is regular only if in
processing any string in this language, the information that has to be remembered at any point

is strictly limited. The argument given above to show that @"5" is non regular is informal.

We now present a formal method for showing that certain languages such as a"5" are non
regular.

The Pumping Lemma

We can prove that a certain language is non regular by using a theorem called “Pumping
Lemma”. According to this theorem every regular language must have a special property. If a
language does not have this property, than it is guaranteed to be not regular. The idea behind
this theorem is that whenever a FA process a long string (longer than the number of states)

and accepts, there must be at least one state that is repeated, and the copy of the sub string of
the input string between the two occurrences of that repeated state can be repeated any
number of times with the resulting string remaining in the language.

Pumping Lemma :
Let L be a regular language. Then the following property olds for L.

There exists a number % Z 0 (called, the pumping length), where, if w is any string in L of

|w|2£:

length at least k i.e. , then w may be divided into three sub strings w = Xyz, satisfying

the following conditions:
y=e e P70

|xy|£ k
Ti2 0, nize l

M=(0.%.8,4,F)

Proof : Since L is regular, there exists a DFA that recognizes it, i.e. L =

L(M) . Let the number of states in M is n.

Say, C={q0.21.92."" . %)

. . 2 . . .
Consider a string ¥ € £ such that w2 (we consider the language L to be infinite and hence
such a string can always be found). If no string of such length is found to be in L, then the
lemma becomes vacuously true.

Since we Ll (g, w)eF . Say (40 %) = dm while processing the stringw, the DFA

M goes through a sequence of states of states. Assume the sequence to be

e P O PR P - .
: 4
start state final start

. 2 .
Since vl 2 " | the number of states in the above sequence must be greater than n + 1. But

number of states in M is only n. hence, by pigeonhole principle at least one state must be
repeated.

Let qi and ql be the gl same state and is the first state to repeat in the sequence (there may be
some more, that come later in the sequence). The sequence, now, looks like

ql]’g3:g2,q4,' ",q!.,"'qj,--.,gm

which indicates that there must be sub strings x, y, z of w such that

This situation is depicted in the figure

Ev S

Since ¥ (=) is the first repeated state, we have, | " and at the same time y cannot be

empty i.e b;|>0. From the above, it immediately follows that 5[qu,xz:l=gm'

Hence 2 =™ Z€L gimilarly,

A -
5(%’ = Z) T implying nzel

S8 ;
(gu,xy Z) e implying ® < L
and so on.

That is, starting at the loop on state can be omitted, taken once, twice, or many more times,
(by the DFA M) eventually arriving at the final state

Thus, accepting the string Xz, Xyz, xy2z.... i.e. xyiz for all £ [

Hence Wi ZD,xyzEL'

We can use the pumping lemma to show that some languages are non regular.

Please note, carefully, hat the theorem guarantees the existence of a number %= 0 as well as
the decomposition of the string w to xyz. But it is not known what they are. So, if the theorem
is violated for particular values of

3.6 CHECK YOUR PROGRESS

Fill in the blanks:

1) A language that is accepted by some FAs are known as

2) Given any CFL L, there is a G to generate it.
3) Regular grammar and are equivalent.
4) There are algorithms to test of a CFL.

5) If L is a regular language, then L is generated by some

3.7ANSWER CHECK YOUR PROGRESS

1) Regular language.
2) CFG

3) Finite Automata
4) Emptiness

5) Right-linear grammar.

3.8 MODEL QUESTION

Qs-1) What is Regular Expression explain with the help of example?

Qs-2) Why Regular expression and Finite automata are equivalent explain with the help of
example?

Qs-3) What is CFL? How emptiness of a CFL is tested?
Qs-4) What is precedence rule? Explain.

Qs-5) What is Context Free Grammar(CFG)? For Context Free Grammar(CFG) which
grammar is used?

3.9 REFERENCES
https://nptel.ac.in/courses/106/103/106103070/

3.10 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI
3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

UNIT-1V MINIMIZATION OF DETERMINISTIC
FINITE AUTOMATA (DFA)

4.1 Learning Objectives
4.2 Minimization of Deterministic Finite Automata (DFA)

4.3 DFA Isomorphisms

4.3.1 Showing that M, and M are isomorphic
4.4 The minimal DFA
4.5 A Minimization Algorithm
4.6 Some decision properties of Regular Languages
4.7 Finite Automata with output
4.7.1 Moore machines
4.7.2 Mealy machines
4.8 Equivalence of Moore and Mealy machines
4.9 Check your progress
4.10 Answer Check your progress
4.11 Model Question
4.12 References
4.13 Suggested readings

4.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of DFA Isomorphisms, The minimal DFA, A
Minimization Algorithm, Some decision properties of Regular Languages, Finite Automata
with output, Moore machines, Mealy machines. We also understand Equivalence of Moore
and Mealy machines.

4.2 MINIMIZATION OF DETERMINISTIC FINITE
AUTOMATA (DFA)

For any regular language L it may be possible to design different DFAs to accept L. Given
two DFAs accepting the same language L, it is now natural to ask - which one is more
simple? In this case, obviously, the one with less number of states would be simpler than the
other. So, given a DFA accepting a language, we might wonder whether the DFA could
further be simplified i.e. can we reduce the number of states accepting the same language ?

Consider the follwoing DFA M, ,

A minute observation will reveal that it accepts the language of the regular expression

a'h [a + E:':l‘
The same language is accepted by the following simpler DFA M, as well.

Q o

a, b

Figure 2

It is a fact that, for any regular language L there is a unique minimal state DFA (the
uniqueness is up to isomorphism to be defined next).

For any given DFA M accepting L we can construct the minimal state DFA accepting L by
using an algorithm which uses following generic steps.

o First, remove all the states (of the given DFA M) which are not accessible from the

start state i.e. sates P for which there is no string *< 24 s.t. 9(g0.x) = p . Removing
these states, clearly, will not change the language accepted by the DFA.

e Second, remove all the trap states, i.e. all states P from which there is no transition out
of'it.

o Finally, merge all states which are "equivalent" or "indistinguishable". We need to
define formally what is meant by equivalent or indistinguishable states; but at this
point we assume that merging these states would not change the accepted language.

Inaccessible states can easily be found out by using a simple research e.g. depth first search.
removing trap states are also simple. In the example, states 5 and 6 are inaccessible and hence
can be removed, states 1 and 2 are equivalent and can be merged. Similarly states 3 & 4 are

also equivalent and can be merged together to have the minimal DFA L as produced above.

To construct the minimal DFA we need to see how to find out indistinguishable or equivalent
states for merging.

we start with a definition and then proceed to find method to construct minimal state DFAs.

4.3 DFA ISOMORPHISMS :

Two DFAs are said to be isomorphism if they are identical upto renaming of the states.
Formally, DFA isomorphisms are defined as follows.

Definiton : Two DFAs M, = (2. 8.0 7)) and M, = (002 00.02. 7)) are isomorphic if

there is a bijection S 6 s.t. the follwoing hold.

L Sla)=a

2. WQ'EQE’ gER ifff[g)EFz

3. \?rgEQh‘v‘aeE
S(4lg.a))= & (S (q).q)

Theorem : For any regular language L there is a unique (upto isomorphism as defined)
DFA that has a minimum number of states. In fact, the minimum DFA is the same as the one

that has as states the equivalence classes of L (as defined in the context of Myhill-Nerode
Theorem).

Pron~f -7 ot M ='[QL=E=5L=‘E'DL=FL)
M

Let

I.

be the DFA which states are equivalence classes of TL,
= (QE 4.4y, F:‘
be any other DFA recognizing L. we have already shown that

"M is a right invariant equivalence relation of finite index s.t. L is the union of some
of its equivalence classes.

"M is a refinement of L.

This implies, the number of equivalence classes of i (which is equal to the number
of states in M) must be greater than or equal to the number of equivalence classes

of L (which is equal to the number of states in My , by construction).
p
That is 1012 ||

If |Q| 7 |QI'| , then we are done, i.e. My is the minimum state DFA for L.
If 121 [ex| , then to prove the theorem we need to show that DFAs M, and M are
isomorphism.

4.3.1 SHOWING THAT *: AND M ARE ISOMORPHIC

To show that My and M are isomorphic we have to define a bijection Jer=e that
satisfies all the three conditions given in the definition of DFA isomorphism.

1.

Recall that the states of M; are EAREARSNEA where M1:%2: 77+ % are the
representatives of each k equivalence classes of L

Let us define fig—=a as follows

F([%]) = 8(a0.%)

. That is, f maps state [x] of M to the state in M which can be arrived at processing

the string % from the start state of M. we know that THEE 5(%’%)6@.

Hence f'is well-defined.
f is onto since 12:|=1e]

To show that f is one-to-one, we need to show that g€l iff (p)=f Iig:],
vryes S (H)=7 (7)),

oy . . _
"k are the representative of different equivalence classes

thenp=q. That means, we need to show that
then * 27 (since M1+72:”

of TL , this proves that f is one-to-one).

ot T ()= () peg.

Then ﬁliqu"x:l=5{q|:|’y:l=p
Therefore (j[gﬂ’xz) = 5[9.0’-}2:] = 5{})’2) forany ZEE‘_

Hence, by definition of L ,
XZEL |ﬁ.}EEL oerE-}?.

This shows that f'is a bijection.

we now show in the following that it satisfies all the three conditions.

1. Note that, since fis a bijection, TRV = j[[x]) f[[y]) Also note that 702 =z [E]

I (g0r) = F{[€]) = 8(40.8) = 4, _

Hence, Therefore, the initial state [E] of M is

mapped to the initial state 90 of M thus satisfying the first condition.

-

2. We know that for any BES
3 %€ F
S HEL by definition)
4.
© dg.5)e F (Since M accepts L)
5.
e f(n)er (by definition of f)
6.
Thus final state of M; are mapped to final stat of M , satisfying the second condition.
7. Observe that, for any e aEx
5(f[x].a)=8(8(q0.%).a) (by definitionof #)
= 3(gy.%2)
= /([xe]) (by definiionof)
- 8 (x.a)) (Since [xa]=; &(x.q))

This satisfies the third condition of the definition, thus proving that M and M are isomorphic.

b
This also completes the prove that M, is the minimal state DFA for L since, now, |Q|‘ |Qf'|, (
i.e. the number of state Q in any arbitrary DFA M accepting the language L must be greater than

or equal to the number of states i of the DFA A that has as states the equivalence classes

of L.)

4.4 THE MINIMAL DFA

Given DFA M accepting a regular language L, we observe that

1. M is the minimal state DFA accepting L.

2. M refines EL, implying
Each equivalence classes of =L is the union of some equivalence classes of s
3. Hence, each staet of M, (which correspond to the equivalence class of EL) can be

obtained by merging states of M. (which correspond to equivalence classes of M)

But, how do we decide in general when two states can be merged without changing the language
accepted?

we now going to devise an algorithm for doing this until no more merging is possible. we start
with the following observations.

e |t is not possible to merge an accept state p and a non-accepting state q. Because

if £ gy x)EF and ¢ 340 ») & F for some , then x must be accepted
and y must be rejected after merging p and g. But, now, the resulting merged state can
neither be considered as an accept state nor as a non-accepting one.

nyeX

e If pand q are merged, then we need to merge 5[p’a) and 5{g’a) , for every @& Z , as
well, to maintain determinism.

From the above two observations we conclude that states p and q cannot be merged

if ap.x)e R and g.x)e F for some FEZ

Using the concept in the previous page, we now define an indistinguishability relation as follows:

[p,ijF i 5[g,x)EF

Definition : States p and g are indistinguishable if Vo xEZ 2 , and is

denotedas £ ~ 9 . Itis easy to see that indistingushability is an equivalence relation.

In other words we say that sattes p and q are "distinguishable" if dxex s.t ﬂp’x)EF

ﬁ[g,xjiﬁ'

and and is denoted as £ = ¢ |

we say that, states pand qof a DFA M accepting a language L can be merged safely (i.e.

without changing the accepted language L) if P4 e if p and q are indistinguishable. we can
prove this by showing that when p and q are merged. Then they correspond to the same state

in MI.

Formally, 2=4 it ¥ %2€Z 9(40.8)=2 oo Ader)=d =, =

Proof: (only if) Let® =9, {g0.7) =P and d0-7) " a for some YEZ Now, for
any Z€Z we have

5[(}0,:{2) = 5[p’Z)EF iff 5[@'0,-}2) = 5[Q,Z)EF (S|nce, £ EQ)
So, el iff.WEL = T y.

(if) Let # = ¢ | (g0, %)= and 5[qu,y)=q_

Hence, F2€Z st

5(p.z)eF 6(a.z)eF (P

S[qu,xz:l=5|:p,z:lEF S[qu,u}z)=5[q,z)¢ﬁ"

Hence and

This implies, %2 € & and Y2 &L

X &=
SO, e

4.5 A MINIMIZATION ALGORITHM :

We now produce an algorithm to construct the minimal state DFA from any given DFA
accepting L by merging states inductively.

The algorithm assume that all states are reachable from the start state i.e. there is no
inaccessible states. The algorithm keeps on marking pairs of states (p, q)as soon as it

determines that p and q are distinguishable i.e. 24 The pairs are, of course, unordered i.e.
pairs (p,q)and (q, p) are considered to be identical. The steps of the algorithm are given
below.

1. Forevery p,q £Q, initially unmark all pairs (p, q).

2. IfPE i and ¢ ¢F (or vice versa) then mark (p, q).
3. Repeat the following step until no more changes occur : If there exists an unmarked

[5[p,aj,5[g,a))

pair (p, q) such that is marked for some €2 | then mark (p,q).

4, P74 iff (p, q) is unmarked.

The algorithm correctly computes all pairs of states that can be distingusihed i.e. unmarked.

It is easy to show (by induction) that the pair (p,q)is mraked by the above algorithm

g 3XET gy dpxleF 4 I(an)e

nd 3 (or vice versa) i.e.if £ =4

Example : Let us minimize the DFA given below

Figure 3

we execute the algorithm and mark a pair by putting an X on the table as shown in figure 4. (

[n]
Note that the table is a diagonal one having - entries for a DFA having n states.)

g1 X

d3 X

3 X x

4 x| X

s X X | X

do g1 2 ek a4
Figure 4

Initially, all cells are unmarked. (i.e. at step 1 of the algorithm) . After step 2, all cells representing
pairs of states of which one is accepting and the other is non-accepting are marked by putting an
X. The table above shows the status after this step.

[Q’n:@'z)

In step 3, we consider all unmarked pairs one by one. Considering the unmarked pair
we find that 90 & 93 go to % and 95, respectively, on input 0. we use the

_
G s d CRLD) to indicate this. Since the pair Iicirl’gj:]is not marked, (40.43)
(40.45) — (92,45 and (92.45) is

notation

cannot be marked at this point. Again, we see that,

unmarked. Hence, we cannot mark [qu,q3) and since we have considered all input symbols (0 &
1) we need to examine other unmarked pairs. The observations and actions are shown below.

. (@0.00)——(a1.95)

. [gu,g,,);}(gg,gj) , cannot mark [gu,q4) since (ql’gj) & IIqf*’qj)are unmarked .

. laa) (a9,

. [gl’gﬂ)_l’\’[% %) , cannot mark (91.9:) since (25.24) is unmarked .

. (1.95) _}(%’gj) (1.2:) is marked since (4:.95) is already marked.

. (¢:.95) —?r[q4,q5) (42:45) is marked since (45.95) is already marked.

. (2.94) D_}l:gj’gj) (4545 is never marked since it is not in the table &
hence (45.4) is not marked.

1
o [Q’zsg-t:'_}(gs:gs)
e The resulting table after this pass is given below.

&1 X

g2 =

g X %

4 X X

s el o A I

g g1 g2] g4
Figure 5

e In the next pass we find that (40.95) ——(21.5) and (#.25) is marked in the
previous pass .Hence, [qu,q3) can be marked now.

1 :

e Similarly, (4-2:) (92.95) and hence (#.94) can be marked since (92:45) has
been marked in the previous pass. Other pairs cannot be marked and the resulting table
is shown below. By executing step 3 again we observe that no more pairs can be marked
and hence the algorithm stops with this table as the final result.

e The unmarked pairs left in the table after execution of the algorithm are I[ql,gg)
and (9:44) implying 71~ %2 and %2 *%* Now, we merge 71 & 72 and 92 & ?* to

have new states 712 & 73 , respectively.
e Transitions are adjusted appropriately to obtain the following minimal DFA.

Figure 6

o 912 is afinal state, since both 91 & 92 were final states. Similarly 93 is a non-final state.

o goes to 912 on input 0 and 1, since o go to 91 and 92 respectively on 0 and 1.Similar,
justifications suffice for other adjusted transitions.

CHECK YOUR PROGRESS

True/False type questions

1)For any regular language Lit may be possible to design different DFAs to
accept L.

2) For any regular language L there is a unique (upto isomorphism as defined) DFA .
3) Moore and Mealy machines both produces output
4) A Mealy machine is a four-tuple

5) Two DFAs are said to be isomorphism if they are not identical upto renaming of the
states.

Answers-
1) True

2) True

3) True

4) False

5) False

4.6 SOME DECISION PROPERTIES OF REGULAR
LANGUAGES

At this point we would like to find out answers to some important questions related to regular
languages. The questions we consider here all have answers which may be either “yes” or “no”.
These are known as decision problems since we used to decide whether the answer is “yes” or
“no”. [The reason for considering decision problems is that a regular language is recognized by a
FA, which, in response to an input string, either ‘accepts' or ‘rejects' the input string and can be
considered as producing “yes” or no “answers”, respectively.]

Consider the following typical and important question:

w and a regular language L , is an element of L ?

The answer is either yes or no.

While w is represent explicitly, we wonder how L given to us. Obviously, L cannot be given as an
enumeration of strings (L may be infinite). L will be represented either by a DFA , NFA or regular

expression.

The question presented above is called the “membership problem” for the corresponding regular
language L.

If L is represented by a DFA , the problem has an easy solution-

e Simulate the DFA on input w
o Ifthe DFA ends in an accepting state, the answer is “yes”. Otherwise, the answer is “no”.

The algorithm is very efficient and it can easily be verified that it takes linear time on the length of
the input w

If Lis given as an NFA, we can first convert it to an equivalent DFA and than use the above
algorithm to find the answer. This is not efficient, since the conversion algorithm
from NFA to DFA (by using subset constructions) is expensive.

Similarly, if L is expressed by using a regular expression, we can first convert it to an NFA and
than use the above algorithm. We see that this is also an expensive method.

We will consider some more decision problems related to regular languages as given below.
e GivenaFAM,is L(M) empty?
e Given a FAM, is L(M) infinite?
e Given twoFAsM1and M2, do they accept the same language? That is,
whether L(M1)=L(M2)?

The list is not extensive. We will consider decision algorithm for the above mentioned problem
only.

It is interesting to note that we can use the pumping lemma to determine whether the language
accepted by a DFA is empty or infinite. The following theorem states this result.

Theorem : If M is a DFA with n states, than the language accepted by M (i.e. L(M)) is

1. non empty if, and only if, M accepts some string w with |W| N

4
2. infinite if, and only if, M accepts some string w such that s |w| S

Proof:

3. IfMaccepts a string w with |W|< % , thenL(M)is clearly non empty. Conversely,
let L(M) be non empty, and let w be the shortest string accepted by M. Then it must be

the case that |W| o . Otherwise, according to the pumping lemmaw can be
decomposed as w=xyz satisfying all the three constraints of the pumping lemma. So,

i e {1
@ZEL[M)’WE_O For the casei=0, the string WETX s a string which is shorter
than w (since ¥ * <)

This contradicts that w is the shortest string accepted by M. Hence, |W| wa .

. L BE |w| < 2M .
* LetMaccept a stringw with . Then by pumping lemmawcan be
decomposed as w=xyz satisfying all the three constraints of the pumping lemma. Hence

vi2 0,xn'ze L(M)

Therefore, L(M) must be infinite.

Conversely, let L(M) be infinite, and let w be the shortest string accepted by M whose length

is at leastni.e. w |w| 3 (Note that such a string must exist, since L(M) is infinite and there
are only a finite number of strings of length less thann). Then, it must be the case

?zi|w|<2?z. if|w|>2m

that, Otherwise (i.e. , by the pumping lemma we can
decompose w as w=xyz satisfying all the constrains of the pumping lemma. So,

wi2 0, 'ze L(M) 'z =xze L(M)

Fori=0, in particular, is a shorter string

4
than w (since ¥ *<), leading to a contradiction. Hence, " = o] < 2 .
This theorem gives us the following naive algorithm to determine the emptiness and
finiteness of a language L(M) accepted by a DFA M .

Algorithm to decide emptiness

* Run M on all strings of length less than n , where n is the number of states.

« IfMaccepts any of these, than L(M)is nonempty. Otherwise, L(M) is
empty. (From part (1) of the theorem).

But the algorithm is highly inefficient, since the DFA M may have to check all the strings of

0
length less than n and there are U) strings of such length.

Algorithm to decide finiteness of L(M) .

* Run M on all strings of length between n and 2n

If M accepts any string of these, then L(M)is infinite. Otherwise, L(M) is
finite.(From part (2) of the theorem)

Once again, we observe that the algorithm is highly inefficient (i.e. experimental)

But, efficient algorithms exists to decide these problem. We know that a DFA can be
represented by a directed graph and for a DFA to accept a string there must exist a path from
the start state to any final state. Using this fact, we have the following efficient algorithm to
decide emptiness. (Assume, DFA M is given as a directed graph)

* Do DFA from the start state q0

« If any of the final state is reachable from the start state q0 , than L(M) is
nonempty. Otherwise, L(M) is empty

We now consider an efficient algorithm to determine whether L(M) is infinite.

We know that all the states which are not reachable from q0 can be detected (along with the
associated transition) without changing the accepted language.

Similarly, the accepted language does not change if all the states that cannot lead to an
accepting state (also called ‘trap’ states) are detected.

Claiml : If L(M) is infinite, then there must exist a cycle in the directed graph.

Proof : Since L(M)is infinite, according to the previous theorem, there exists a

£
string we L () with " = po| 2 where 7 is the number of states in the DFA M . Since the

length of the accepted string wis greater than the number of states, there must exist a
repeated state in the path from g0 to the final state while processing the string w. His
repetition of (at least one) state in the path implies the existence of a cycle.

Claim 2: If there is a cycle in the directed graph (for the DFA M), then L(M) must be
infinite.

Proof : We know that all states are reachable from the start state g0. Also, there can not be
any cycle involving “useless” states, because these have already been removed.

Hence if there exists a cycle, there must be a path from the start state g0 to one of the states
involved in the cycle and, also, there must be a path from on e of the states involved in the
cycle to an accepting state. The situation is depicted in the following figure.

QJ\{“{NJ@

e -

So, clearly, starting at , than following the cycle infinitely many times, the DFA can accept
infinitely many strings.

Hence, L(M) is infinite.
It is a well-known fact that there exists efficient algorithm to detect a cycle in directed graph.
From the above, we have the following efficient algorithm to decide infiniteness of L(M).

* Delete all states not reachable from the start state and delete all states that

cannot lead to an accept state (DFS can be used for this).

» Ifthere is a cycle, then L(M) is infinite. Otherwise, L(M) is finite.

It is observed that using the decision algorithm for emptiness and finiteness together with
closure properties we can find more decision algorithms. Here is an example.

Example : Given DFA s M1 and M2. Is L(M1) = L(M2)?

Solution : Observe that . [Mlj o [Mg) and 4 [Ml)m L I:Mf*) =¢

LM) L(M,) L(M;)c L(M]

Thus L(M1) = L(M2), iff and

(L) NEQLYU(L(M)INZ(M,)) =

This implies that

L(M1) = L(M2) iff
Since regular languages are closed under union, intersection and complement, we can

(Z()NZ(4)) V(2 (24)N L (043))

construct a DFA M3 recognizing the language

L{M,] L{M) = L(M,)

If M3 accepts any string (i.e. ;ﬁd’) then) .Otherwise ,L(MI1) =

L(M2)

We can use emptiness algorithm to decide if L(85) = ‘3})

4.7 FINITE AUTOMATA WITH OUTPUT

The definition of FA that we have already considered allows only two possible outputs is
response to an input string, accept or reject. The definition can be extended so that the output
can be chosen from some alphabet. Considering two different approaches to associate the
output we have two different types of machines in the category- Moore machines and Mealy
machines (They are named after the inventors). In a Moore machine the output is associated

with the state, whereas in a Mealy machine the output is associated with the transition. Even
though the two models look different, we can prove that they are equivalent.

4.7.1 MOORE MACHINES :
A Moore machine is a six-tuple

M,=(Q.ZT,82.49,)

and Ai@=>T , 1s a mapping which gives the output associated with each state. Note that
there is no final state and the input and output alphabet need not to be same.

SR

where and qO are as in DFA . [is the output alphabet

et the sequence of states the machine goes through in response to the input

=iy oy, 920 is Jo- 91

sequence *%= Then the output produced by the machine in

response to this input © %1% % is defined as Alg0) 2 (1) 2 () Note that a Moore

machine produces an output without taking any input on state q0. That is, A(a0) is the output
in response to input =. Hence, the length of the output string is always one more than that of
the input string.

Example 1: Suppose we wish to determine exactly low many times the sub string baa oceurs
in the input string. The Moore machine presented by the given transition diagram

Keeps count of this number.

Note that, a state phere is annotated with Pla it it the output symbol '@’ is
Ap)l=a .

associated with the state p i.e. if

Every state outputs 0 except the state q3 which outputs & 1 start state q0, following any

path, we arrive at state q3 the last three input symbols read must be bya,anda . As soon as we
arrive at q3, it outputs & 1(prior to that it outputs all Os) indicating that it has read the sub
string baa in the input. From q3 we can arrive atql on inputb and then again arrive

at q3(following some path) provided the last three input symbols read are b.a,anda Thus,

the machine outputs & 1 as soon as it read the sub string baa ; otherwise, it outputs 0s. So,

the number of sub string baa i the input is given by the number of 1s in the output string at
the point when the machine finishes processing the input string.

For example, on input abbabagababaal the machine will go through the

states Y09 hdahadadodid 129z producing the output sequence 000000010000010

indicating that the sub string baa occurs twice in the input string as the number of 1s in the
output string is 2.

he Moore machine can also be represented by a table, where the table to represent the

transition (&) remains same as in FA , but there is a separate column (separated by a double
line) to represent the output associated with each state. The tabular form of the Moore
machine of the above example is given below.

a b
Qo Qo q1 0
q1 Q2 q1 0
Q2 g3 q1 0
(ok] Qo q1 1

A Moore machine does not define a language of accepted strings, because in response to any
input string it produces an output string and there is no concept of final states. The processing
of the input string terminates when it outputs the symbol corresponding to the last input
symbol.

For a given FA M, accepting the language L(M), if we associate 0 to any nonaccepting state
and 1 to each accept state, then the 1's in any output sequence (produced in response to some
input sequence) mark the ending of all sub strings of the input starting from the first symbol
that are in L(M).

rom this, we can consider F4 to be a special case of a Moore machine where the output

alphabet r={0.3 and a state p is ‘accepting' if and only if 4{n)=1 .

So, a Moore machine can be said to recognize the language of all input strings whose outputs
ends in a 1. In the example Moore machine given above if we make ¢3 as final state and

remove all outputs associated with the states, it will be a DF4 accepting all string over a4}
that ends with #2¢

4.7.2 MEALY MACHINES :

M,=(0.ZT.8.1.q,)

A Mealy machine is a six-tuple, , where all elements are as in Moore

machine, except for 4 which is defined as

L ORESTE

: A
This means that (g.4) gives the output associated with the transition from state g on
input & .
Let the sequence of states the machine goes through in response to the input

W=y, P20 . god o G, G ‘

string is

Then the output produced by the machine in response to this input * 9% %= js defined
by Algoa) A (@) A g 2)
machine.

. The length of the output sequence unlike for the Moore

Example:2 Consider the Mealy machine given below.

The machine outputs # 1 in the output string in response to some input string to indicate two
consecutive occurrences of in the input.

For example, the out put corresponding to the input abbagabaablb 5 00001100100.

We can express the Mealy machine in tabular form as indicated below.

The entry b/0 for the raw ql & column q2indicates that there is a transition from state ql to
state g2 on input b and the output associated with this transition is 0. For no transition defined

from state p to state q the entry for raw p & column q will be ¢

qo q1 q2

qo g 2/0 | b0
q1 g @/1 | bl
Q2 il 2/0 | b0

4.8 EQUIVALENCE OF MOORE AND MEALY MACHINES

Since Moore and Mealy machines both produces output (instead of normal convention of
accepting a language by a FA). We can compare them in the sense that they are equivalent if
they always produce the same output string in response to the same input string. But there can
never be an exact match between the output strings produced by them since the length of the
output string of a Moore machine is always one more than that of a Mealy machine in
response to the same input string. However, if we ignore the response of a Moore machine for
its initial state (i.e. response to input =), then we can define the equivalence of a Moore

machine, M, and a Mealy machine M, by saying that if for all input
- ow M, (w)=aM, (w)
string)

g 290,22, ()

where # is the output of M, for its initial state

are outputs of M, and M, on w respectively. Then they are equivalent

he following two theorems prove the equivalence of Moore and Mealy machines in this
sense.

Theorem : If M, =(Q.ZT. 81,9,

and M, .

is a Moore machine, then there is a Mealy machine M,

Proof':

We construct a Mealy machine

M,=(QZT.8 4.4

except A are as in M’. A is defined as

from the given Moore machine M, , where all the elements

4 (a.a)=2(5(a.4)

That is, the output associated with state g in the Moore machine will be associated with the
transitions going to the state g (from other state) on the same input symbol & in the Mealy
machine as shown below —

Now, for any given input string © % % If M, goes through a sequence of
states F09192 " @nsSE ACEE Yt then it produces the output
sequence M, (w)=2(g0) 2 (1) 2 (4n) . According to the construction, the Mealy

machine M, also goes through the same sequence of states but produces the following output
sequence.

M (w)=A (g a) 2 (anay) - A (g)
‘1((0.)) ((1, ﬂz)) "l(gigm_lsﬂ))
=d{a)d(a) - Agn)

Hence: M, (w) = 2(g0) M, (w) , proving the equivalence as defined.

Note that, to construct an equivalent Moore machine from a Mealy machine we cannot adopt
the reverse process given in the above constructions i.e. simply push the output associated
with a transition to the state (where this, transition leads to) to be considered as the output
produced by the state. This is because, there may be two transitions going to a state with
different outputs associated with it as shown below.

This is an ambiguous situation as we are not sure which output symbol (0 or 1) is to be
associated with the state q

This situation can be handled by creating copies of the state q for all different outputs
associated with incoming transitions (keeping all other things same) as shown below.

N
ot . m’l'
a ;
J

Number of states are increase to remember different output symbols associated with moving
transitions, and hence, states are considered to be order pairs in the Mealy machine. This
construction is presented formally in the theorem given below.

Theorem : If =(@2T84,.4) is a Mealy machine, then there is a Moore machine M,

equivalent to Mf‘ .

Proof : We construct a Moore machine

=[OXTZL, 8.4 (a4])

Where b0 is any symbol in [. Transition ¢ is defined as
5'([g.8).a) =[8(a.a). 2 (g.a)]

That is, the first component of Mf's state determines the moves of M, and the second

component of M, is the output associated with some transition in M, into the state g.

M A([a.p])=b

Output functions 4 ' of “*¢ is defined as

Following the construction, it can easily been shown that if M, produces the output

ety it

string L response to the input string = after going through the

states 90917 +%n then M, also produces the same output string in response to the same input

string after going through the states (4.2 |- 1.2+ [4 e

Example 3 : The equivalent Mealy machine for the Moore machine given in example 1 is
produced below.

Example 3 : The equivalent Mealy machine for the Moore machine given in example 1 is
produced below.

Example: 4 The Moore machine which is equivalent to the Mealy machine given is example
2 is shown below.

[¢.0]/0

x,ﬁ

Q’zf':')

,,©<

The states /q1,0] & [ql,1] an be renamed as g/ & g3 respectively.

LA

4.9 CHECK YOUR PROGRESS

Fill in the blanks:

1) A Moore machine is a

2) Two DFA are isomorphic if they accept

3) For any regular language L there is a

4) Moore and Mealy machines both produces

5) If L(M) is infinite, then there must exist a in the directed graph.

4.10 ANSWER CHECK YOUR PROGRESS
1) Six tuple

2) Bijection

3) Unique DFA

4) Output

5) Cycle

4.11 MODEL QUESTION

Qs-1) What is Deterministic Finite Automata (DFA) isomorphism explain with the help
of example?

Qs-2) What is Equivalence of Moore and Mealy machines?
Qs-3) What is Mealy machine?

Qs-4) What is Moore machine? What do you understand by equivalence of moore
and mealy machines

Qs-5) Write Algorithm to decide emptiness?

4.12 REFERENCES
https://nptel.ac.in/courses/106/103/106103070/

4.13 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI
3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

Block-I1
UNIT-V PUSHDOWN AUTOMATA

5.1 Learning Objectives
5.2 Pushdown Automata

5.2.1 Formal Definitions

5.2.2 Explanation of the transition function, d
5.3 Configuration or Instantaneous Description (ID)
5.4 Nondeterministic Finite Automata (NFA)
5.4.1 Language accepted by a PDA

5.4.2 Equivalence of PDAs and CFGs

5.5 CFA to PDA

5.6 Some Useful Explanations

5.6.1 PDA and CFG

5.6.2 PDA to CFG

5.6.3 Inductive Hypothesis

5.6.4 Inductive Step

5.7 Conclusion

5.8 Check your progress

5.9 Answer Check your progress

5.10 Model Question

5.12 References

5.13 Suggested readings

5.1 LEARNING OBJECTIVES

This chapter gives the basic understanding Pushdown Automata, Formal Definitions,
Explanation of the transition function, Configuration or Instantaneous Description (ID),
Nondeterministic Finite Automata (NFA), Language accepted by a PDA. We also understand
Equivalence of PDAs and CFGs, CFA to PDA

5.2 PUSHDOWN AUTOMATA

Regular language can be characterized as the language accepted by finite automata.
Similarly, we can characterize the context-free language as the language accepted by a class
of machines called "Pushdown Automata" (PDA). A pushdown automation is an extension of
the NFA.

It is observed that FA have limited capability. (in the sense that the class of languages
accepted or characterized by them is small). This is due to the "finite memory" (number of
states) and "no external memory" involved with them. A PDA is simply an NFA augmented
with an "external stack memory". The addition of a stack provides the PDA with a last-
in, first-out memory management cpapability. This "Stack" or "pushdown store" can be used
to record a potentially unbounded information. It is due to this memory management
capability with the help of the stack that a PDA can overcome the memory limitations that

M
prevents a FA to accept many interesting languages like {a s D} . Although, a PDA can
store an unbounded amount of information on the stack, its access to the information on the
stack is limited. It can push an element onto the top of the stack and pop off an element from
the top of the stack. To read down into the stack the top elements must be popped off and are
lost. Due to this limited access to the information on the stack, a PDA still has some

limitations and cannot accept some other interesting languages.

inpul tape

dn

Read-only head

finite

19

control

push/pop

As shown in figure, a PDA has three components: an input tape with read only head, a finite
control and a pushdown store.

The input head is read-only and may only move from left to right, one symbol (or cell) at a
time. In each step, the PDA pops the top symbol off the stack; based on this symbol, the
input symbol it is currently reading, and its present state, it can push a sequence of symbols
onto the stack, move its read-only head one cell (or symbol) to the right, and enter a new
state, as defined by the transition rules of the PDA.

PDA are nondeterministic, by default. That is, = - transitions are also allowed in which the
PDA can pop and push, and change state without reading the next input symbol or moving its
read-only head. Besides this, there may be multiple options for possible next moves.

5.2.1 FORMAL DEFINITIONS

Formally, a PDA M is a 7-tuple M _(@.2L. 0.4, 5. F)

where,

. e is a finite set of states,
e I is a finite set of input symbols (input alphabets),
o [is a finite set of stack symbols (stack alphabets),

« & is a transition function from i [E L {E}) L to subset of @xT

. W ¢ is the start state

zg€l , 1s the initial stack symbol, and

. FE & , 1s the final or accept states.

5.2.2 EXPLANATION OF THE TRANSITION FUNCTION, ¢ :

If, for any 2€Z 3lg.4.2) ={(p1”31)’[p2’ ’%)’""[‘p"’”@)}. This means intitutively that
whenever the PDA is in state q reading input symbol a and z on top of the stack, it can
nondeterministically for any i, 1 =¢ = k

e go to state s

e pop z off the stack

e push A onto the stack (where ,a?iel") (The wusual convention is that

if B=A44 X, , then = will be at the top and Xy at the bottom.)

e move read head right one cell past the current symbol a.

o Final states are indicated by double circles and the start state is indicated by an arrow
to it from nowhere.

5.3 CONFIGURATION OR INSTANTANEOUS DESCRIPTION
(ID) :

e A configuration or an instantaneous description (ID) of PDA at any moment during its

computation is an element of @xz %[describing the current state, the portion of
the input remaining to be read (i.e. under and to the right of the read head), and the
current stack contents. Only these three elements can affect the computation from that
point on and, hence, are parts of the ID.

e The start or initalconfiguartion (or ID) on input & is (g0, 2, 2'3:'. That is, the PDA
always starts in its start state, 91 with its read head pointing to the leftmost input

symbol and the stack containing only the start/initial stack symbol, %,
e The "next move relation" one figure describes how the PDA can move from one
configuration to another in one step.

Formally,

[g,m‘ﬂ,z&) ey [p, Prig ,5-::&)
iff (p.8)ed(gq.a.z2)

'a' may be £ or an input symbol.

i

LetL, J,Kbe IDs of aPDA. We define we write I #K, if IDIcan become K after
N -

exactly i moves. The relations F # and ' # define as follows

[F¥K

#+l

] 1
[& JifEIK suchthat | F# Kand KF# J

1Ha3if 3220 Gch that 1 H# 7,

5.4 NONDETERMINISTIC FINITE AUTOMATA (NFA)

- -

That is, ™ is the reflexive, transitive closure of . We say thatl = Jif the
ID J follows from the ID I in zero or more moves.

(Note : subscript M can be dropped when the particular PDA M is understood.)

5.4.1 LANGUAGE ACCEPTED BY A PDA M

There are two alternative definiton of acceptance as given below.
1. Acceptance by final state :

Consider the PDA M=(Q.2.T.0.4. 4 F). Informally, the PDA M is said to accept its
input @ by final state if it enters any final state in zero or more moves after reading its entire

input, starting in the start configuration on input % .

Formally, we define L(M), the language accepted by final state to be

(@ s = | [qn,m,Zu) ,_;,rlip,E, ﬁ) for some pEFand Ae 1"'}

2. Acceptance by empty stack (or Null stack): The PDA M accepts its input ¢ by empty
stack if starting in the start configuration on input & , it ever empties the stack w/o pushing
anything back on after reading the entire input. Formally, we define N(M), the language
accepted by empty stack, to be

(@ € = | 'Iqbﬂzﬂ) }—:‘-r 'IRE’E) for some PEL))

Note that the set of final states, F is irrelevant in this case and we usually let the F to be the
empty seti.e. F=Q.

B |n 20
Example 1 : Here is a PDA that accepts the language {a L } .

M=[Q,E, [, 8, aq. Z,F)
9'1’9'2’9'3’9'4}

, and & consists of the following transitions

1. 8(gp.a.2) ={(g;,a2))
2. 3gy.a.@) = {(g;.2a)]
3. 8g,. b,a) ={(g5.€))

4. &gy, ba) = {(g:.€)
5. 8gs.€.2) ={(24.2))

The PDA can also be described by the adjacent transition diagram.

a, a‘aa b, ale

formally, whenever the PDA M sees an input a in the start state 91 with the start symbol z on
the top of the stack it pushes a onto the stack and changes state to 92 (to remember that it
has seen the first 'a'). On state 92 if it sees anymore a, it simply pushes it onto the stack. Note

that when M is on state 2 , the symbol on the top of the stack can only be a. On state 91 if it
sees the first b with a on the top of the stack, then it needs to start comparison of numbers
of a's and b's, since all the a's at the begining of the input have already been pushed onto the
stack. It start this process by popping off the a from the top of the stack and enters in state q3

(to remember that the comparison process has begun). On state % it expects only b's in the

input (if it sees any more a in the input thus the input will not be in the proper form of anbn).

Hence there is no more on input a when it is in state %2 On state 2 it pops off an a from the
top of the stack for every b in the input. When it sees the last b on state q3 (i.e. when the
input is exaushted), then the last a from the stack will be popped off and the start symbol z is
exposed. This is the only possible case when the input (i.e. on =-input) the PDA M will

move to state 4* which is an accept state.

we can show the computation of the PDA on a given input using the IDs and next move
relations. For example, following are the computation on two input strings.

Let the input be aabb. we start with the start configuration and proceed to the subsequent IDs
using the transition function defined

(qr.aabbz) | (g;.abb,az) (using transition 1)

- [gﬂ ,bb,cmz:l (using transition 2)
— (¢5.8.a2) (‘using transition 3)
- '[9'3 ’E’Z:] (using transition 4)

—(g4.62)(using transition 5)

9+ is final state. Hence ,accept. So the string aabb is rightly accepted by M.

we can show the computation of the PDA on a given input using the IDs and next move
relations. For example, following are the computation on two input strings.
1) Let the input be aabab.

(g, aabab,z) | (g,,abab,az)
(g, bab,aaz)

- [9'3 cab, ‘IZ)

No further move is defined at this point.

Hence the PDA gets stuck and the string aabab is not accepted.

Example 2 : We give an example of a PDA M that accepts the set of balanced strings of
parentheses [] by empty stack. The PDA M is given below.

[{ } {[]} { [} ";é) where g is defined as
2.1.2) ={(a.[2)}

E L) ={(a.D)

8(¢.10) ={(2.€)}

i(¢.82)={(2))

Informally, whenever it sees a [, it will push the] onto the stack. (first two transitions), and
whenever it sees a | and the top of the stack symbol is [, it will pop the symbol [off the stack.
(The third transition). The fourth transition is used when the input is exhausted in order to
pop z off the stack (to empty the stack) and accept. Note that there is only one state and no
final state.

The following is a sequence of configurations leading to the acceptance of the string [[][]]

[].
(L1010 02) = (L1010 LL2) = (L DIL L) = (@ L1000 02) = (@ 100 L1z

Equivalence of acceptance by final state and empty stack.
It turns out that the two definitions of acceptance of a language by a PDA - accpetance by
final state and empty stack- are equivalent in the sense that if a language can be accepted by
empty stack by some PDA, it can also be accepted by final state by some other PDA and vice
versa. Hence it doesn't matter which one we use, since each kind of machine can simulate the
other.Given any arbitrary PDA M that accpets the language L by final state or empty stack,
we can always construct an equivalent PDA M with a single final state that accpets exactly
the same language L. The construction process of M' from M and the proof of equivalence
of M & M' are given below.

There are two cases to be considered.

CASE I : PDA M accepts by final state, Let M=(Q.2.T.8.40, Iy, F)

- [Qu{gf} ,E,r,ﬁ",gn,zu,{q;})

Let qf be a new state

not in Q. Consider the PDA where " as well as the
following transition.

5'(g.e. X g, %) ¥ qeF

) contains (and £ €I It is easy to show that M and M' are
equivalent ie.

LM)=L(#")

Let @ €L(M) . Then (@.@.2) -2 (2.57) for some €& ang ¥ET

Then L0 @7] e (e e 2.5 7)
Thus M* accepts &

* 1
Conversely, let ¥ accepts @i.e. @ EL(M"), then (0.@2) 13 (9.57) 1y (gf’e’ ;V)

for ¢ €F M inherits all other moves except the last one from M. Hence (9.2.20) 1 24
(¢.57) for some 7 < £ .
Thus M accepts @ . Informally, on any input &~ simulate all the moves of M and enters in its

own final state ¥/ whenever M enters in any one of its final status in F. Thus & accepts a
string @ iff M accepts it.

CASE Il : PDA M accepts by empty stack.
We will construct #° fromMin such a way that # simulates M and detects

when M empties its stack. # enters its final state 9 when and only when M empties its
stack.Thus 4 will accept a string @ iff M accepts.

Lt -(evlare) 2T (2} 8 0. X) where 90 9 #€ ang X Tand &°

contains all the transition of ¢ , as well as the following two transitions.
L&' (a.e.%) ={(400.2X)} 4

2 d(g.e.X)= [(g_,. ,e)] . Yge(

Transitions 1 causes M to enter the initial configuration of M except that #" will have its
own bottom-of-stack marker X which is below the symbols of M's stack. From this point

onward #" will simulate every move of M since all the transitions of M are also in 4" .
If M ever empties its stack, then &~ when simulating M will empty its stack except the

symbol X at the bottom. At this point, #* will enter its final state ch by using transition rule
2, thereby (correctly) accepting the input. We will prove that M and M are equivalent.
Let M accepts ¥ . Then

(%, @2) 1 (2.6, €] for some ¢ =€ But then

1
(. @ X) 12 (0. 2.2) (by transition rule 1)

e (2.8) (Since #" includes all the moves of M)

1 JE,E ..
= ae (gf) (by transition rule 2)
Hence, ¥ also accepts @ .

Conversely, let ¥ accepts @ .
Then I[g,;,m,X:I }—}xf [‘i'mm:qu:' }—.:xr [‘5'=E=X:' |—}xf (QI’E’E) for some ge

Every move in the sequence

(%0, @ 2X) 0 (9.6.X) were taken from M.

Hence, M starting with its initial configuration will eventually empty its stack and accept the
input i.e.

(9. @.2) - 3 (0.5.€)

5.4.2 EQUIVALENCE OF PDAS AND CFGS

We will now show that pushdown automata and context-free grammars are equivalent in
expressive power, that is, the language accepted by PDAs are exactly the context-free
languages. To show this, we have to prove each of the following:

1) Given any arbitrary CFG G there exists some PDA M that accepts exactly the same
language generated by G.

ii) Given any arbitrary PDA M there exists a CFG G that generates exactly the same language
accepted by M.

CHECK YOUR PROGRESS
True/False type questions

1) A pushdown automation is an extension of the NFA.

2) FA have limited capability.

3) The langauge accepted by a class of machines called Pushdown Automata
4) PDA does not accepts by empty stack.

5) A PDA has Five components

Answers-

1) True
2) True
3) True
4) False

5) False

5.5 CFA to PDA

We will first prove that the first part i.e. we want to show to convert a given CFG to an
equivalent PDA.

Let the given CFG is G=(N.ZP.8) . Without loss of generality we can assume that G is in

Greibach Normal Form i.e. all productions of G are of the form .
A=eB By By 4o cEEu{E}and k=0
From the given CFG G we now construct an equivalent PDA M that accepts by empty stack.

Note that there is only one state in M. Let

M=((a). ZV.60.5.6) o

e qis the only state

e Zisthe input alphabet,
e N is the stack alphabet ,
e qis the start state.

o S is the start/initial stack symbol, and 5, the transition relation is defined as follows
1.

For each production A= cBB - B el (4.B,8,.8,1€ 8(g.c.4) '

We now want to show that M and G are equivalent i.e. L(G)=N(M). i.e. for any W= ¥

_ Wwe L[G) g WE N[M)

ir¥E 1G] , then by definition of L(G), there must be a leftmost derivation starting

with S and deriving w.

S oa=w
Le. ¢

M)

Again if e , then one sysmbol. Therefore we need to show that for any W= 2

*

S iff lg.w.5) [‘5'=E=E)'

But we will prove a more general result as given in the following lemma.
Replacing A by S (the start symbol) and yby = gives the required proof.

"
' A=x
Lemma For any ™ ¥ = , e Mand Ael ¢ 4 via a leftmost derivative iff (4. %.4)
iy [Q',.}’, F'”)

Proof : The proof is by induction on n.

Basis :n=0

JliIZI
==X _ L
5 i A=FY (o 1= gng ¥ =4

o (g0 4)=(q.0.7)

o (@A) G (a0 7)
Induction Step :

#+l

A=x
First, assume that % g via a leftmost derivation. Let the last production applied in their

derivation is B—cf for some CEEU{E} and se N .

Then, for some @E€Z | ae N
] 1

ﬁ—?“ achr—?“ aw fo = xy

where * = &% gnd y=Ha

Now by the indirection hypothesis, we get,

Again by the construction of M, we get
(g,8)€8(q,c.B)

so, from (1), we get

(¢, @0, 4) | la.ev.Ba) (2.0, Be)

since + = & and ?:’8&, we get

ml

(g.9.4) — ,, (g.7.¥)

1+l nl ml

That is, if A:G,%x;v7 then [{LW=A3' = ar '['5’:-%?”3'_ Conversely, assume that [q’@’"’q) = &
[q’y’ﬂ and let

§[q,r:, B} = [q’ ”3} be the transition used in the last move. Then for some ¥ © eZu(e

(g.@0p. 4) | S(aov.Ba) (@0, 82) oo x= ac gng =08

Now, by the induction hypothesis, we get

X
A= aba
7 via a leftmost derivation.

Again, by the construction of M, B—ch

(g, 8) € 8(q c B)

must be a production ofG. |

Since]. Applying the production to the sentential form @B \ye get

» 1
ﬁ:t; a:rfi‘.::r:; aw Ja = xy

#+l
o A=y
ie. 7

via a leftmost derivation.

Hence the proof.

Example : Consider the CFG G in GNF

S—~aAB
A—a/aA
B—a/bB

The one state PDA M equivalent to Gis shown below. For convenience, a production
of G and the corresponding transition in M are marked by the same encircled number.

(1) S—aAB

Q) A —“a

(3) A7aA

(4B —“a

(5)B —?bB
M=({g}.{2.8}.{5.4,B},8,9.5,%)

We have used the same construction discussed earlier.

5.6 SOME USEFUL EXPLANATIONS :

Consider the moves of M on input aaaba leading to acceptance of the string.
Steps

1]

|_}
1. (q, aaaba, s) # (g, aaba, AB)
(2]

|_}
2. M (q,aba, AB)
)
|_>
3. ¥ (q,ba,B)
[+]
H
4. ¥ (q,a,B)
%)
H
5. M (q,%,%) Accept by empty stack.

Note : encircled numbers here shows the transitions rule applied at every step.

Now consider the derivation of the same string under grammar G. Once again, the production
used at every step is shown with encircled number.

(1 L2 2 [3 (4

= = = = =
S 7 aAB %7 aaAB % aaaB % aaabB % aaaba
Steps™1—= 2 — 3 —7 4 —7 5

Observations:

e There is an one-to-one correspondence of the sequence of moves of the PDA M and
the derivation sequence under the CFG G for the same input string in the sense that -
number of steps in both the cases are same and transition rule corresponding to the
same production is used at every step (as shown by encircled number).

e considering the moves of the PDA and derivation under G together, it is also
observed that at every step the input read so far and the stack content together is
exactly identical to the corresponding sentential form ie.
<what is Read><stack> = <sentential form>

Say, at step 2,

Read so far=a
stack = AB
Sentential form = aAB

From this property we claim that

-

i S=aa
(4.2.8) 13 (2.6.0) iff @ . Ifthe claim is true, then apply with ¢ =% and we get

I[g,x, S) o .:.4 [g,E,E) iff S:u:—'> o

xe N(M) . xel
T

0 it *€2(5) (1y definition)

Thus N(M) = L(G) as desired. Note that we have already proved a more general version of
the claim.

5.6.1 PDA and CFG

We now want to show that for every PDA M that accpets by empty stack, there is
a CFG G such that L(G) = N(M)

we first see whether the "reverse of the construction" that was used in part (i) can be used
here to construct an equivalent CFG from any PDA M.

It can be show that this reverse construction works only for single state PDAs.

e That is, for every one-state PDA M there is CFG G such that L(G) =N(M). For

[G': 313:4"'33-’)'5 5[‘5" £ ‘q) we introduce a

G=(N Z, P 5)

every move of thePDAM
A e BB B

T

production £ in the grammar

where N =T and

we can now apply the proof in part (i) in the reverse direction to show that L(G) = N(M).
But the reverse construction does not work for PDAs with more than one state. For example,

"ha® |n 21
consider the PDA M produced here to accept the langauge {a gt }

M=({2, &} .(a 8 {2, 4.6.7,2.0)

G=(N,Z, P, 5)

Now let us construct CFG using the "reverse" construction.

N={z, 4}, 5=z)

(Note
Transitions in M Corresponding Production in G
@,z [A z, —ad
a, AfA4 A—=wdA

B, AfA A—sbd

a, Afs A—=a

We can drive strings like aabaa which is in the language.

§=27y= .:;1.:;126:> acxﬂﬂ:; aabﬂ.ﬂ:ﬁ; aabcxﬂ:; et daleted

But under this grammar we can also derive some strings which are not in the language. e.g

Therefore, to complete the proof of part (ii) we need to prove the following claim also.

Claim: For every PDA M there is some one-state PDA M such that N(M)=N(¥) .

It is quite possible to prove the above claim. But here we will adopt a different approach. We
start with any arbitrary PDA M that accepts by empty stack and directly construct an
equivalent CFG G.

5.6.2 PDA to CFG

We want to construct a CFG G to simulate any arbitrary PDA M with one or more states.
Without loss of generality we can assume that the PDA M accepts by empty stack.

The idea is to use nonterminal of the form <PAqg> whenever PDA M in state P with A on top

of the stack goes to state 90 That is, for example, for a given transition of the PDA
corresponding production in the grammar as shown below,

*

Ag :;:> a

iff the PDA M, when started from
state P with A on the top of the stack will finish processing &, arrive at state q and
remove A from the stack.

And, we would like to show, in general, that

But we have to consider the more general transition rule as shown below.

With this, we are now ready to give the construction of an equivalent CFG G from a given
PDA M. we need to introduce two kinds of producitons in the grammar as given below. The
reason for introduction of the first kind of production will be justified at a later point.
Introduction of the second type of production has been justified in the above discussion.

Let M=(Q.2.T. 5, 4. 20, §) be a PDA. We construct from M a equivalent

crg 3= (M.Z, 2. 5)

Where

Nis the set of nonterminals of the form <PAg> for #- gEg and A€l
and P contains the follwoing two kind of production

S_}{Q'uzug} Vg
If [gl, BIB;.---BH)E 5[@', i, A)
#EL 2<ign+l

, then for every choice of the sequence 92-93:7" a1

b

nclude the follwoing production

<‘L1 ‘i’n+1> —a {‘5'131‘5'2 }{‘5'232'5'3 } '<‘i'm3x‘i'm+1>

If n = 0, then the production is gan)—a .

For the whole excercise to be meaningful we want

{q_,q 41 >:|; &3 . " . .
means there is a sequence of transitions (for PDA M), starting in

state q, ending in %#+1, during which the PDA M consumes the input string @ and
removes A from the stack (and, of course, all other symbols pushed onto stack in A's
place, and so on.)

That is we want to claim that

-

<pﬂg}:6‘>m iff [p, @, “1) — [g,E,E)

L]

: . = = Qo Zp =@ -
If this claim is true, then let ¥ ~ 90’ A=20 44 get o % & iff (40 @, 20) -

(¢.€.€) for some ¢ = Q‘ But for all ¥ € & we have S (@79} as production in G.
Therefore,

L] -

1
S?@”Z”q}? iff (0. @. 20 (2.6.€]

stack or L(G) = N(M)

A=W
ie. % iff PDA M accepts w by empty

Now, to show that the above construction of CFG G from any PDA M works, we
need to prove the proposed claim.

Note: At this point, the justification for introduction of the first type of production (of

5=

the form guzug}) in the CFG G, is quite clear. This helps use deriving a string

from the start symbol of the grammar.

Pﬂq) .
Proof : Of the claim () ¢ iff (Zw. 4) - (g.85) for some WEZ | Ael
and 7+ 4 €€

The proof is by induction on the number of steps in a derivation of G (which of

course is equal to the number of moves taken by M). Let the number of steps taken
is n.

e he proof consists of two parts: ' if ' part and ' only if ' part. First, consider the ' if ' part

-

o If (2w 4) (g.5) then <Pﬂq):é‘>w-

e Basis isn=1
Then [P’W’ ﬂ) [g,E,E). In this case, it is clear that WEEU{E’}. Hence, by
construction (PAg) v is a production of G.

5.6.3 INDUCTIVE HYPOTHESIS :

Vi<a (Pow, 4) | (g.6€) = (Pl)Zw

« 564 INDUCTIVE STEP : LE-7- 4) 1 (2.€.€)

& EEU{E} and xeX’ consider the first move of the

[gl, BB, ---ije 5[p,a,ﬂ)(p,w,ﬁ)

e Forn>1, let w=ax for some

PDA M which uses the general transition
[p, ax, A) i [gl, x, BB, ---Bx:l — [q,E,E)‘

from stack while consuming x in the remaining n-1 moves.

Now M must remove 5By By

e Let ™ %% where ™ % is the prefix of x that M has consumed when Bia

first appears at top of the stack. Then there must exist a sequence of states in M (as
per COl’lStI'llCtIOIl) gﬂ’ g3 20 .g?é - I:2.:'¢+1 (WIth E2‘:’¢+1 =p)’ SuCh that
e So, applying inductive hypothesis we get

giBiq = %, ; . ‘o
< i ”‘1} e , 1Z2iZm+l But corresponding to the original

ove (W)= (P A) (¢, % BB, B,)

production in G.

in M we have added the following

e We can show the computation of the PDA on a given input using the IDs and next
move relations. For example, following are the computation on two input strings.

1) Let the input be aabb. we start with the start configuration and
proceed to the subsequent IDs using the transition function defined

I[ql,ﬂﬂf?bsz) — '[‘5'2 "Ibb’az) ('using transition 1)

- '[‘5'2 ’bb’mz) ('using transition 2)

- (.5.az) (using transition 3)

we can show the computation of the PDA on a given input using the IDs and next move
relations. For example, following are the computation on two input strings.

i) Let the input be aabab.
(g, aabab,z) — (gy.abab,az)

— [gz,bab,aaz)

(a.ab,az)
No further move is defined at this point.
Hence the PDA gets stuck and the string aabab is not accepted.

The following is a sequence of configurations leading to the acceptance of the string [[][]]

[1
(@l[11101.2) — (& L10110 0020 — (g 1L 110 1.002)

=7 0101 12) 4= (g, 1L LI 12) 4= ig. 1L 1L 2)

=(2.012) = (2. Ll2) = (2.6 2) = (5.6, €)
Equivalence of acceptance by final state and empty stack.

It turns out that the two definitions of acceptance of a language by a PDA - accpetance by
final state and empty stack- are equivalent in the sense that if a language can be accepted by
empty stack by some PDA, it can also be accepted by final state by some other PDA and vice
versa. Hence it doesn't matter which one we use, since each kind of machine can simulate the
other.Given any arbitrary PDA M that accpets the language L by final state or empty stack,
we can always construct an equivalent PDA M with a single final state that accpets exactly
the same language L. The construction process of M' from M and the proof of equivalence
of M & M' are given below.

There are two cases to be considered.

M=(0.5.T.8.q, %, F)

CASE 1 : PDA M accepts by final state, Let . Let %/ be a new

A= (Qu{gf} ,z,r,ﬁ'c":‘IIJ’ZU’{gf})

state not in Q. Consider the PDA where 9" as well as

the following transition.

&'(q.e X (¢,.%) ¥ gqeF

) contains and £ It is easy to show that M and M are
equivalent i.e. L{s)= L) .

Let i . Then (#0:@.20) 124 (2.5) for some 9% and FeZ’

Then (40 @.20) -3 (9.587) -3 (ti'f,E, }’)_

Thus ¥ accepts @ .

g . * 1 E
Conversely, let M' accepts @ ie. L) , then (@.@.2) 13 (@5) g (gf’ ’;V)
for some 7 F . M inherits all other moves except the last one from M. Hence (4. 0.2,)
(2.5 7) for some ¥ €&

Thus M accepts @ . Informally, on any input ¥ simulate all the moves of M and enters in

its own final state 74 whenever M enters in any one of its final status in F. Thus 3" accepts
a string @ iff M accepts it.

CASE 2 : PDA M accepts by empty stack.
we will construct ¥ fromMin such a way that 3 simulates Mand detects

when M empties its stack. M enters its final state 27 when and only when M empties its

stack. Thus " will accept a string @ iff M accepts.

Let A (Q U{qn,qf} BT 8 ’gD’X’{g‘f}) where du- 4y & Qand Aelang &
contains all the transition of ¢ , as well as the following two transitions.

1. 51%’5’}{) ={[‘i'u’ZuX)} and

2 d(g.e.X)= [(g_,. ,e)] . Yge(

Transitions 1 causes M to enter the initial configuration of M except that * will have its
own bottom-of-stack marker X which is below the symbols of M's stack. From this point

onward M' will simulate every move of M since all the transitions of M are also in M
If M ever empties its stack, then M’ when simulating M will empty its stack except the

symbol X at the bottom. At this point, " will enter its final state s by using transition rule
2, thereby (correctly) accepting the input. we will prove that M and M’ are equivalent.

Let M accepts % . Then

(%, @2) (9.6, €) for some ¢ € But then,

1
(#.2.%) 3 (2. 2.2X) (by transition rule 1)

— M (¢.2.4) ('since M’ include all the moves of M)

1
==
= M (gf T) (by transition rule 2)

Hence, " also accepts & .

Conversely, let M accepts & .

‘ 1 i 1
Then (9. @.0) 3 (4. 0.50) 1 e (08.5) 1 4 (gf’e’e) for some Q .
Every move in the sequence

*®
(0. @2 M (a.6.%) were taken from M.

Hence, M starting with its initial configuration will eventually empty its stack and accept the
input i.e.

(90, @.2) -3 (9.€.€)

5.7 CONCLUSION

This module explains about the basic understanding Pushdown Automata, Formal
Definitions, Explanation of the transition function, Configuration or Instantaneous
Description (ID), Nondeterministic Finite Automata (NFA), Language accepted by a PDA,
Equivalence of PDAs and CFGs, CFA to PDA.

5.8 CHECK YOUR PROGRESS

Fill in the blanks:

1) A PDA has components.

2) A is an extension of the NFA. Pushdown automation

3) APDA Mis a 7-tuple M

4) can be used to record a potentially unbounded information.

5) The Grammer accepted by CFG is

5.9 ANSWER CHECK YOUR PROGRESS
1) Three

2) Pushdown automation

3 (0.Z.T.8, 45 Zy. F)

4) "Stack" or "pushdown store"

5) PDA

5.10 MODEL QUESTION
Qs-1) What is PDA explain with example?

Qs-2) How many components are there in PDA explain?
Qs-3) How many tuples are there in PDA write all of them?
Qs-4) What are two language accepted by PDA explain?

Qs-5) What is the full form of CFG And PDA?

5.12 REFERENCES
https://nptel.ac.in/courses/106/103/106103070/

5.13 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI
3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

UNIT-VI DETERMINISTIC PUSHDOWN AUTOMATA
(PDA)

6.1 Learning Objectives

6.2 Deterministic Pushdown Automata (DPDA) and Deterministic Context-free Languages
(DCFLs)

6.3 DPDAs and FAs: DCFLs and Regular languages
6.4 CFLs and DCFLs

6.5 Standard forms of DPDAs

6.6 Acceptance by final state and empty stack
6.7 Unambiguous CFGs and DPDAs

6.8 Parsing and DPDAs

6.9 Conclusion

6.10 Check your progress

6.11 Answer Check your progress

6.12 Model Question

6.13 References

6.14 Suggested readings

6.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Deterministic Pushdown Automata (DPDA)
and Deterministic Context-free Languages (DCFLs) along with the concepts of DPDAs and
FAs: DCFLs and Regular languages. It discusses CFLs and DCFLs, Standard forms of
DPDAs, Acceptance by final state and empty stack. We also understand the deep insights of
Unambiguous CFGs and DPDAs. Parsing and DPDAs are also elaborated in the chapter.

6.2 DETERMINISTIC PUSHDOWN AUTOMATA (DPDA) and
DETERMINISTIC CONTEXT-FREE LANGUAGES (DCFLs)

Pushdown automata that we have already defined and discussed are nondeterministic by
default, that is, there may be two or more moves involving the same combinations of state,
input symbol, and top of the stock, and again, for some state and top of the stock the machine
may either read and input symbol or make an *=- transition (without consuming any input).

In deterministic PDA, there is never a choice of move in any situation. This is handled by
preventing the above mentioned two cases as described in the definition below.

Definition: Let M =(Q.2T. 8,40, 20, F) be a PDA. Then M is deterministic if and only if
both the following conditions are satisfied.

3(g.0. %) has at most one element for any 7 sQaeszlie}, and £ €L (this

g,aandX)

l.
condition prevents multiple choice for any combination of

2. If S(g.cX)=9 and 3(g.0.X)=¢ for every €2
(This condition prevents the possibility of a choice between a move with or without

an input symbol).

A language L is said to be deterministic context-free (DCFL) if there is some DPDA
accepting L.

L={wew' rwe (0+1))

Example: The language is a DCFL. The following DPDA accepts L

£,0/0 > ey
e, 111
£yl 2,

0,z, 0z, 0.0fe

Fizg i Elbe

0,000

0,101

L0410

1L1/11

The moves satisfying the conditions given in the definition. As the PDA reads the first half of
the input, it remains in the start state q0and pushes the input symbols on the stock. When it
reads the symbol ¢ it changes the state from q0 to qlwithout changing the stock. On state
ql it simply matches input symbols with the stock symbols and erases in case of a match.
That is, the symbol the moves satisfying the conditions given in the definition. As the PDA
reads the first half of the input, it remains in the start state g0 and pushes the input symbols
on the stock. When it reads the symbol ¢, it changes the state from q0 to q1 without changing
the stock. On state ql it simply matches input symbols with the stock symbols and erases in

case of a match. That is, the symbol in wew™ tells the m/c when to start looking for W Once
the input is extended, then the symbol z0 on stock indicates a proper match for the input to

R . . Cqe
be W and hence it accepts by entering state q2, which is a final state.

. L=[wwﬂfwe[o+1)‘] . _
Example: Consider the language In this case there is no way to
determine when to start comparison because of absence of the symbol “in the middle/
The PDA in this case has to guess non-deterministically when the middle symbol comes in

the input.

6.3 DPDAs and FAs: DCFLs and REGULAR LANGUAGES

Equivalence of DFA & NFA proves that non determination does not add power in case
of FA s. But it is not true in case of PDA s, i.e., it can be shown that nondeterministic PDA s
are more powerful than DPDA s. In fact, DCFL s is a class of languages that lies properly
between the class of regular languages and CFL s. The following discussion proves this fact.

Theorem: If L is a regular language, then there is some DPDA M such that L=L(H) .

Proof: Since L is regular, then exists a DFA D such that L~n(8) .

The PDA M can be constructed from D (with an additional stock) that simulates all the

o o . D=(0.5(2).8.2F)
moves of Don any input just by ignoring its stock. That is if

5(p.a.z)=(q.2)p.qc@ Such that 5(p.a)=q It

(009,213 (7.2, 2) i & (0.) - 7

when is easy to see

that

Again, the language WCWRcan be shown to be non-regular by using pumping lemma. But,
the DPDA presented in the example above accepts this language.

Hence the class of DCFL s properly includes the class of regular languages.

6.4 CFLs and DCFLs

We now show that class of languages accepted by DPDA s is properly included in the CFLS.
First, note that, every DCFL is a CFL since every DPDA is a special case of a PDA.
Now, there are two ways to prove the proper inclusion- direct method or indirect method.

In the direct method we need to show that there exists a language which is CFL but

not DCFL. We have already argued intuitively that the language v is a CFL but not
a DCFL. We will show later that there is a CFL which is not a DCFL.

The indirect method follows the following steps to prove the fact-

First, prove the fact that DCFLs are closed under complement.
But, it is fact thatCFL's are not closed under complement.
Hence, there must exist a CFL that is not s DCFL .

6.5 STANDARD FORMS of DPDAs

It is possible to put every DPDA in some standard form where the only stack operations are
to erase the top symbol without putting anything else on the stack; or to push a single symbol
onto the stack on top of the symbol that was previously on top; or to leave the stack
unchanged. The following two lemma establishes this fact.

DPDAM =(0,%.T,8,90,Z,, F)

Lemma 1: If L is a DCFL, then L=L(M) for some such that

i c?[g,a,}f) = I:p,&)’ then |.f.z|i 2

Proof: Let the DPDAM' = (Q"Z,1",8 4y, 20.F')

move F(g.a.X)=(r.a) with || >2 The DPDAM simulates this move by using some
more states and a sequence of moves as follows.

accepts L and has a

Let g=0F--F, where n23

Let #1°#2:""Fr=2 gre nonaccepting states in M (which is not in M'). The move

é‘f{g,ﬂ,X:]=|:p,QZ:] E(grarX)=(pl=};—l’};:] 11,11\/[

in M' is redefined as

Then the following moves are introduced in M.

S(p.e)= (Pua Fiiabi) for 1 28 27 =3 finally introduce,

5(?»—2’6’};) = I:p’ylyﬂ)

That is, the DPDA M enters the state p after replacing X with “ ™ L (after starting at
state g, on input a and with X on the top of the stack). But ---- it now takes a sequence of

moves (¥~ 1 number of moves to be precise) for the same.

Lemma 2: If L is a DCFL, then L=L(M) for some DPDAM =(Q.Z.T.8.9,. 2, F)

ifc'i‘[g,a,X)=[p,a) G

such that

,then & is either S<L or of the form XY for some ¥ €T

Proof: Let L= L] for some DPDA.
M =(Q 2T, 8.9, 2, 7
without loss of generality assume that M'

satisfies Lemma 1 given above. We now construct M from M' as follows.

0=0'xT
gn=[96=25]
H=F=T

T =T'IU{Z,} and Sis defined by the following rules:

1. If M' pops its stock, then M pops its stock and remembers the symbol popped (in its
finite control) by the move

5[[‘3"}{]"1’}’) =[[p,}’],E)‘?‘FEr if, 5'(g.a.4)=(p.€) is in M.

2. If M' changes its top symbol of the stock, then M remembers this without changing its
top of the stock thatis ¥¥ €

5([¢.%].a¥)=([r.2] 7] if 5(a.0,X)=(p.2) isin M.

3. M pushes a symbol onto its store whenever the stock size of M' increases, that
ig Ywel
is

e X]aw)=([2.].20) 8 (0.0.X) = (7.72)

f isin M'
It can be shown by induction s that L(M)=L(M")
L =[WEE' |w=wR])
Theorem: The language is not a DCFL.

Proof: Assume for contradiction that there is some DPDA P=(QZI.8.4.2,F) accepting
L. Without loss of generality, we can assume that P is in standard form, i.e., every move
of P is either of the form

8(p.a.4)=(g.€)

or one of the forms

E[p,a,}f) = [q,}’X)

Where % = ZUle}, x.rel and £:% = e .Note that, for P to reject an input string ¥ it may

not read the whole string (it may enter a configuration at which no transition is defined or it
may execute a never-ending sequence of =-moves). On the other hand if P accepts a
string ¥ , then it must eventually read the whole string.

&
We know that if *= L, Thus #* isalsoin L.

. E . . .
Since P accepts both x and #% | the sequence of moves it makes while processing the first

part x of the string ¥ must be exactly similar to that it makes on input x irrespective of
whether x is followed by any other string or not. This is because of the fact that P is
deterministic in nature.

After processing x at the stock content of P be ¥ with =% for some % > 0 Now, if P starts
reading subsequent symbols from some string y (i.e. P may be assumed to start with the string

xy) and finishes reading it, then let the stock content be . We are sure that |2 >U,

since P must still be able to process some longer string with xy as the prefix. So, we have

*

(0. 0. 20) (2.5, 2] teQ and ee [with | >0

for some
In the above,

Consider the string y' such that the length of the resulting stack content is minimum i.e.

*

(. ZE')'?["D’E"S) for some pEQ"ﬁer‘,then 181<1]

(p.€ 8]

symbol from the stock (since length # cannot be reduced further) in the subsequent moves.
Because a move of a DPDA in standard from that involves removing a single symbol from
the stack reduces the height of the stack.

So, once P reaches the configuration after processing xy', it cannot remove any

Let B=xf for some £ €T and # €T Since we may consider any string * €Z in xy'
there are infinite number of strings of the form xy . But the set of states and stack

O and T

symbols, , respectively of P are infinite. Hence there must exist two different strings

u=xy' and v=xy' in Z' . Such that

-

I:Q'D,H,Zu:l (P,E,ﬁ) = I:P,E, Xﬁa)

[N
i

[
P

[ﬁ?u’vvzu) (P,E,ﬁ) = [P,EXﬁj

and

We also know that the symbol X cannot be removed from the stack once P has entered this
configuration.

Therefore, for some £ £ | if we consider the strings uZ and vZ, then we must have

L)

(a0.42. 2,) (.. XF') and

L)

[gu,vZ,ZD)I?[p,E,Xﬁ“)

So, either both uZ and vZ are accepted or both are rejected by P. But since u and v are
distinct, for some z one may be in L while other is not. This leads to a contradiction. (Since P
should have accepted only one of these two, which is in L and the other should have been
rejected.)

Hence our assumption that P accepts L must be false.

6.6 ACCEPTANCE BY FINAL STATE AND EMPTY STACK

We have already proved in case of NPDA that the two methods of acceptance (by empty
stack and final state) are equivalent. That is, a language L has an NPDA that accepts by final
state if and only if some NPDA accepts it by empty stack. But this is not true for DPDAs.
The language recognizing capability of DPDA s that accept by empty stack is much less than
that of the other. This is proved in the following lemma.

Lemmal: If a language L is accepted by a DPDA by empty stack, then L has the “prefix
properly”.

Before giving the proof of the above lemma we first define the “prefix properly” of a
language.

Definition: A language L is said to have the prefix properly if whenever € £ no proper
prefix of x isin L

Example: The language wew® has the prefix properly; since if xex’ € L then no proper
prefix of xex® can be in L. This is because the symbol c identifies the mid-point of the

string x'fxg. In many proper prefixes of xex® , the symbol ¢ will not be the mid-point of that
prefix.

-

Again, consider the language {a} It is quite obvious that there are infinitely many pairs of

stings in {a} one of which is a prefix of the other e.g., *“ md aaad both are in {a} and #¢
is a proper prefix of <@ This is a regular language and still not accepted by any DPDA by
empty stack.

It is to be noted that prefix property is not a severe restriction. Because we can always
introduce a special end marker, say 3 , not in = at the end of every string of a language L to

_ _ _ L$={w$|we£.}. .
convert it to a language with prefix property. That is is a language with
prefix property.

Assume for contradiction that the language L accepted by

the DPDA © ~(@ZT.8.00.2,.4)

there must exist two strings x and xy (with ¥ ™% such that P accepts both. Then we have

by empty stack does not have the prefix property. Hence,

-

I:gﬂ’x’ ZU)'?\I:p’E’E) , Since xe L)

So, while processing the string xy, the DPDA must arrive at the configuration given below
because of its deterministic property.

*

(@0, 27.20)12 (2. 7.€)

From the point onward the DPDAP cannot move since it has already emptied its stock
and ¥ ™= Hence, xy is not accepted by P as assumed.

The lemma 2 given below shows that every language accepted by a DPDA by
some DPDA that accepts by final state.

Lemma 2: IfLis accepted by some DPDA P that accepts by empty stock, then there is
some DPDA P'that accepts by final state such that L=L(p').

DPDA P=(Q,%.T.8,4,, %, 8)

Proof: If accepts L by empty stack.

L e [Q I8 ’gD’ZU’F) from P which simulate the behaviour of P as follows.

QE:QU{Q&"P;} such that g';’pa&Q.
I'=TU{Z}
Femlpl)

5" Contains all the moves of P and also the following.

1 5’[gé,e,Z,§)=[gu,E,ZDZ,;:l
) Slan7) ()

By using rule 1, P' simply enters the initial configurations of P pushing Z0above the bottom
of stock marker Z0'. ThenP' simulates the behaviour of Pon any input string.
When P accepts

a string, it empties its stock and at that point PO' would expose the bottom of stock marker Z0'
and enters the final state P' by using rule 2. So, it is obvious that, an input string X is accepted
by P iff it is accepted by P'.

The converse of lemma 2 is not necessarily true. But it can be shown that every language that
has the prefix property and is accepted by a DPDA with final state is also accepted by
some DPDA that accepts by empty stock, as given in the lemma 3.

Lemma 3: If a language L has the prefix property and is accepted by a DPDAP by final state,
then there is some DPDA P' that accepts by empty stock such that L=L(P").

Proof: Let L L[P) for DPDA

P=(@E.d.4,5.F) that accepts by final state. We construct P' from P as follows.

I =T1{Z;}
P' contains all the moves of P besides the following.

1. The first move of P'is to go to the initial configuration of P by pushing the start
symbol Zy' of P'on top of the stock. From this point onward P’ simulates the behavior
of P (using P's moves) on any input string. Even if P empties its stack without
accepting the input, P’ will not empty its stock because of the new start symbol that
was pushed on to the top of the stock initially.

2. If P enters an accepting state, P’ simply enters the state P".

3. On state P', the DPDA P'erases all the stock symbols without bothering the input
eventually emptying its stock. So, P'accepts a string X where P accepts it and vice
versa.

Now lemma 1,2,3 together gives us the following theorem.

Theorem: A language L is accepted by a DPDA by empty stock if and only if it has the prefix
property and is accepted by some DPDA by final state.

CHECK YOUR PROGRESS

True/False type questions

1) Every DCFL is a CFL since every DPDA is a special case of a PDA.
2) In deterministic PDA, there is never a choice of move in any situation

3) A parser is an algorithm to determine whether a given string is in the language generated
by a given CFG

4) Pushdown automata that we have already defined and discussed are deterministic by
default

5) DPDA does involve backtracing

Answers-
1) True
2) True
3) True
4) False
5) False

6.7 UNAMBIGUOUS CFGs and DPDAs

It is interesting to note the language accepted by a DPDA must have an unambiguous
grammar. We first prove it for a DPDA that accepts by empty stock and then extend it to
a DPDA that accepts by final state.

Theorem: If L is accepted by some DPDAM that accepts by empty stock, then L must have
an unambiguous CFG.

Proof: In the construction of an equivalent CFG G for any given DPDAM (that has been
discussed in the context of equivalence of PDAs and CFGs) if assume that M is deterministic
(that accepts by empty stock), then the resulting grammar G generated can be shown to have
unique leftmost derivation for every string (thus, proving that G is unambiguous).

If M accepts a string w by empty stock, then because of deterministic nature of M there must
be a unique sequence of moves and M cannot move once it empties its stock. If this sequence
of moves is known, we can determine the exact choice of production rules in a leftmost
derivation of w under G. Even though there may be many different rules in G for the

move. 8(g.a, &)= (p. 55 1,) of M, only one of those will be consistent with the
execution of M that actually drive w.

We can now show that if L is accepted by some DPAM that accepts by final state, then L has
an unambiguous grammar.

Consider the language for some symbol % which is not a terminal symbol of M. Since L' has
the prefix property. It is accepted by a DPDAM' that accepts by empty stock and, thus, there
exists an unambiguous CFG G' with L=L(G”) (by the above theorem). We construct a CFG
G from G' such that L=L(G) as follows.

G and G'are exactly same except that we introduce a new nonterminal $ and a new

i whe L(G)

production }—=<inG. Now, , then G derives the string ¥ €< following

exactly the same sequence of steps except at the last step, when G uses the production §—e
to get rid of the symbol $. Since G' is unambiguous, G must also be unambiguous.

6.8 PARSING and DPDAs

The context-free languages are of great practical importance, especially, in defining
programming languages. For example, we can use CFGs to model the syntax of arithmetic
expressions, block structures in programming languages, etc. A compiler for such a
programming language must then embody a parser to carry out the process of analysing a
given input string in order to determine its grammatical structure with respect to the given
grammar. That is, a parser is an algorithm to determine whether a given string is in the
language generated by a given CFG and, if so, to construct a purse tree for the string (for
further use at a later stage).

We have already seen a cubic-time pursing algorithm (based on dynamic programming
technique) that works for any given context-free language. For almost all practical purposes it
is considered to be two slow. The most successful parser which have been developed in the
recent past are based on the idea of a PDA. Since PDAs and CFGs are found to be equivalent
one can develop a parser for CFLs that behave like PDAs. But because of the
nondeterministic nature of PDAs, they are still not of immediate practical use in parsing. The
parsing process may involve back tracking because of the nondeterministic steps and hence
would lead to inefficiency.

On the other hand, a parser rooted in the idea of a DPDA does not involve backtrack----ing
and hence expected to work efficiently. Even though the capability of DPDAs are limited in
the sense that they accept DCFLs which is a proper subset of CFLs, it turns out that the
syntax of most programming languages can be modelled by means of DCFLs. One of the
main motivations for studying DCFLs lies in the fact that- they can describe the syntax of
programming languages and they can be parsed efficiently using DPDAs. To produce a
compiler for a given programming language the syntax is required to be described by
some CFG in restricted form that generate only DCFLs. There are different kinds of
such CFGs in restricted forms. The LL- and LR-grammars are two important classes in this
category.

6.9 CONCLUSION

After reading this module you will know the Deterministic Pushdown Automata (DPDA) and
Deterministic Context-free Languages (DCFLs) along with the concepts of DPDAs and FAs:
DCFLs and Regular languages. It discusses CFLs and DCFLs, Standard forms of DPDAs,
Acceptance by final state and empty stack. It presents the deep insights of Unambiguous
CFGs and DPDAs. Parsing and DPDAss are also elaborated in the chapter.

6.10 CHECK YOUR PROGRESS

Fill in the blanks:

1) The full form of DPDA is

2) Every DCFL is a since every DPDA is a special case ofa

3) A parser is an to determine whether a given string is in the language
generated by a given CFG.

4) The parsing process may involve because of the nondeterministic steps

and hence would lead to inefficiency.

5) NPDA accepts it by

6.11 ANSWER CHECK YOUR PROGRESS
1) Deterministic push down automata.

2) CFL and PDA.

3) Algorithm.

4) Back tracking.

5) Empty stack.

6.12 MODEL QUESTION

Qs-1) What is DPDA and DCFL? Explain their difference with suitable example.
Qs-2) What is UNAMBIGUOUS CFGs? Explain.

Qs-3) What do you understand by determinism? What are two necessary condition for
determinism?

Qs-4) What is CFL and DCFL?
Qs-5) For regular language, then there is some DPDA explain?

6.13 REFERENCES
https://nptel.ac.in/courses/106/103/106103070/

6.14 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI
3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

UNIT-VII SIMPLIFICATION OF CFG

7.1 Learning Objectives

7.2 Chomsky Normal Form (CNF)
7.3 Greibach Normal Form (GNF)
7.4 Conclusion

7.5 Check your progress

7.6 Answer Check your progress
7.7 Model Question

7.8 References

7.9 Suggested readings

7.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Simplification of CFG. It explains Chomsky
Normal Form (CNF) and Greibach Normal Form (GNF) through various theorems, lemmas
and step-wise elaborated solved examples.

7.2 CHOMSKY NORMAL FORM (CNF)

A CFG G By is in Chomsky Normal Form (CNF) if all production are of the
form
A—7BCorA—a

Where A, B, C €N and a€ Z.

Note that since =-production is not allowed, a CFG in CNF cannot generate the empty
string =.

G =(N,Z P, &)

Theorem : For any CFG G=(N.Z.7.8) there is a CFG

normal form such that L(G') = L(G)-{= }.

in Chomsky

Proof : Without loss of generality we can assume that G doesnot contain any *=-production,
unit production and useless symbols. (Even if it contains, we can use the procedures already
described to remove all those).

We use the following procedure to construct ¥ from G.

o Mand Fare suspects of N and P respectively.
e For each terminal ‘IEE, introduce a new non terminal 4% in ¥ and
production 44 —* & in F and replace all occurrences of a on the right-hand sides of
old productions (except productions of the form £ —*@ ie. where rhs is only one
terminal symbol, a with 44 .
o After this step, all productions in will be of the form 4—=«
A— BB By K22 AB B, Bye N
or , where

unit productions are already eliminated)
e Clearly, the language generated by this new grammar is not changed; it just takes one
more steps than before to generate a terminal symbol.

A= BBy By with & 23

. (Kis greater than 2 because

e For all those productions , introduce a new non-
terminal C in &% and replace this productions with two new productions in £ .
A= Ba and A= B BB .

e Once again, it is easy to see that this transformed grammar generates the same
langauge; it just takes one step more than before to generate a terminal string.

« we repeat the above step until the right-hand sides of every production in £ are of
length at most 2.

G =(N.Z P, 5

e The resulting grammar is now in CNF and

L(@) = L(0)-(e)

clearly

. . = Z
Example : Consider the CFG : S—>alk|e generating the language L={ad|n20) .we

= 2
will construct a CNF to generate the language L-{e} ie. Ly | 2 21) .

(ady| 721

Solutions : We first eliminate =-productions (generating the language) using

the procedure already described to get S—racklae .

Step 1 : Introduce nonterminals 4, B and replace these productions
with S ASE| AB A= a, B—b

Step 2 : Introduce nonterminal C and replace the only production 5= ASE (which is not
allowable form in CNF) with = —* AC" ang ¢ — 55

The final grammar in CNF is now

S—*AC| AB
C—*SB
A*a
B—#b

CHECK YOUR PROGRESS
True/False type questions

1) A CFG in CNF cannot generate the empty string = .

aacre G- % F5)

form

is in Chomsky Normal Form (CNF) if all production are of the

A—7BCorA—*a

3) The full form of CFG is Context full grammer.

4) The full form of GNF is GREIBACH NORMAL FORM.

5) For every CFG G = [N= Vi S) with e L IIG:)

F=(N,.Z P, 5

, there is no equivalent

CFG in CNF.

Answers-
1) True
2) True
3) False
4) False

5) True

7.3 GREIBACH NORMAL FORM (GNF)

ace O=(M.Z, P, 8)

A—>aB.B, - By

is in Greibach normal form if all productions in P are of the form

for some £ 20 where A BBy ByelN and 45 Z

We will now show that every CFG can be transformed to an equivalent CFG in GNF. We first produce
two lemmas which help proving this fact.

Given any CFG G containing some left-recursive productions , we can construct an
equivalent CFG removing those left-recursive productions by right-recursive productions.
The following lemma proves this fact.

G=(MZ. P 8) pe oFG. Let A7 41 4% | | 4% pe he set of all left-

recursive A-productions and A= AR [AG || 48 pe e remaining A-producitons in G.

There is a CFG = [M’E’P’S), where = NU{B}’ agN and £ contains all

productions in P except the left-recursive A-productions and also contains the following
additional productions

Lemma 1: Let

A— BB| 88| | B8
S—=a|ag|-|a
B—ab|ad| - |ab

such that L[G:] - L(GF)

Proof : We first show that L(G) =L(G").

A= Aay | ey |- [A% e e only productions wheih are in G but not in . Consider a

leftmost derivation in G that uses a sequence of productions from this set. In such a case, the
leftm 4— gaterminal A must 1< j <»ly be disposed off by using a production of the

type , later on, for some . That is, we have a derivation as shown below
. 1 1 . 1

S?’ 3'”“15;; 3'”“1‘1515:; 3'”—"1‘:%2‘:%15:; YA,y - &y d :.; 20 PR s Y]

The same derivation can be achieved in & as follows:

* 1 1 1
Sz@; ;vAﬁ:G} y@ﬂﬁﬁ yﬁj%ﬂﬁzﬁ; ¥y, B8

* 1
= V80 Gy G BO= 18,00, o 8T 8

Hence any derivation in G is also a derivation in G' and so L(G)=L(G").

To show that L(G") < L(G), we need to follow just the reverse process of the above.

This shows that L(G)=L(G").

Lemma 2 : Let G=(N.Z 2 3) be a CFG. LetA—> BB EL 5nq B2 B[|8 e

F=(N, % P, 5

the set of all B-productions in P. There is a CFG where

P=Puld-afe|aba| - |aba) (A= aba)

such that -7 [Ga) i {G)

Proof : We first show that LGlelG) . It is clear that A= @ Ba, is the only production

inGnot inG'. If a derivation in G uses this production, then the nonterminal B must
eventually be disposed off, later on, by using a production of the form 2 3 141 ,:;‘
That is, we have the derivation
* 1 * 1
S:G> yﬁlﬁ—ﬁ ycrlﬂ.::zzﬁ:; ?;:BE'—?\ ni.e
We can simulate this derivation in & as follows
* 1 *
S:G;> yﬂﬁ:g‘: v Bad=n 8.8
which takes one step less than the previous one.

P, PN LG
Hence any derivation in G is also, a derivation in & and so (S)

Conversely, if Arob is used (which is not in G) in a derivation in G then the
derivation will be of the form

* 1 *
S:G; ;wEl.:‘i:G‘; ;n:rl,é}.::zzﬁi ?;ﬁ?ﬁ

The production R , B sk are the only producitons which are in & but not in G.
We can now simulate the above derivation in G as follows.

* 1 1 *
S= YAI= ya B 0= yay B 0= 168

Hence any derivation in @' is a derivation in G. and so LiG)~ &G .
Hence the proof.

Theorem : For every CFG G=(¥,Z, P, 3] with €% L(G)

N, I P8

,there is an equivalent

cre &1 in CNF.
Proof : Without loss of generality, assume that G is in Chomsky normal form. Let the number of

nonterminal in N be M. The following steps construct the equivalent CFG & from G.

e The first step is to rename the nonterminals in N so that each one has a subscript,

starting with 1upto m. So, the set of the nonterminals is now N =i4 4, 4 . This
step, certainly doesnot change the resulting language.

e The second step is to process the productions in P so that they satisfy the "Increasing
Nonterminals Property" (INP) defined as follows:

e INP is said to be satisfied to be satisfied, if all productions are in form & —>ad

or 4 _}ﬂf&,where J 7% and ‘EEN’.

e To enforce this property (INP) we start with ﬁl-productions. Since G'is in CNF, all Al-

| A <3 T8
productions are of the form 4—=a or 47 A‘AJ’ Ies gk

e The first one satisfies the property. The second one also satisfies it, unless i =1.
When i =1, the production is of the form - e A“'AJ" which is a left-recursive one and we

can apply lemma 1 to eliminate left-recursion by introducing a new variable , say A‘l. So,
we have the productions before application of Lemma 1

A= Ag|Aa |- | Ag
. A—=Al8]-]5

« Since Gis in CNF, each % is some 4 and each & must begin with AJ',j >] or 452

¢ We apply lemma 1 introducing the new nonterminal 4, and the production obtained
from above after application of lemma 1 are

. A AIE| & 184 84| B4,
v oag ATl g lad el | gl

All the above Al-productions are of the form 4 —aa or A Aj& , Where QeEN', aeZ

and J 21

; i 2
And the rhs of all ﬁ-l- productions start with some AJ' where ¥ = 1.

So, the resulting grammar, with the new set of productions, say & satisfies the INP.

e Consider the processing of Al-productions to be the basis case
e Assume that we have processed A"%A’ﬂ-‘f- through H**-l-productions , this way ,
introducing new nonterminals 4, through A’H. That, all

ﬁ-(ﬁ;-l}:"'sﬂ-ls 441"'1&-1

¢ We now process ‘q*-productions as the inductive step. Since G'is in CNF , all A

these productions satisfy INP is the inductive hypothesis.

productions are of the form A —a or T A’Af the first one satisfies the INP. The

4 = A4,

with F <& By induction hypothesis , all . -production satisfy INP, thus of
ﬂi —S A or .(q! — ﬂpd}'

second one doesnot satisfy the property whenever 1 2% Consider

form with €€ Z and # >i.Now, applying lemma 2 to
replace 4, with the right hand side of Ai-productions to produce A*_}amqf (this

satisfies INP)

e and A — A ad,
If # <k , We again replace A?“ by the rhs of A?“ -production.

o After atmost k-iterations, all 4y -productions will be of the form
A —aa
4 — A

A:t_}ﬂj'ﬂ: with J >’:5’ e f‘lf'
e The first and the third productions satisfy the INP. The second one doesnot satisfy it,
because it is self recursive .

e Apply lemma 1 again, introducing a new nonterminal, A-F’«, to enforce the INP, exactly in
a similar way as we did earlier . So, the resulting productions will satisfy the INP.

e Hence, if we continue to process upto Am-productions, the resulting grammar will satisfy
the INP (as proved by induction, above).

e There may be atmost 2m nonterminals in N now,

{‘q—m"’q—tm—lr"'=ﬂ-1=1‘91="'=1‘1,4}

namely .

e The third step is to process all these productions, starting with A’“-produtcions down
to A -production, to get the equivalent CNF % mis the highest subscript of any
nonterminal A-"'. So, by INP, all Am-productions are of the form 4 _}a&, i
and @E N Thus this production, is in GNF already.

e Consider the Jq"‘-l-productions.

e ByINP all A’“-l-productions must be of the form

o B> a8 (already in GNF)
e and A = A5 where £ w

e we now apply lemma 2 to replace Am(in the rhs) with the right-hand side of Am-

A g—al

production given above. This gives us A’“-l-productions of the form

At AGE where £€ v’

Both type of production now satisfy GNF property.

we inductively process down to the lowest subscripted nonterminal applying lemma 2
wherever necessary.

All productions now satisfy the GNF property i.e. of the form
A—aa, aek’ & ageX

since we applied either lemma 1 or lemma 2 for any intermediate transformation the resulting

grammar, say & , must be equivalent to G i.e. L(@)-1(g) .

Example: A=*BB B *AC|a C—*AB|BA|a.We will construct an equivalent CFG
in GNF.

Step 1: Renaming the nonterminal, we get
4= 44

4 — A4 |a

&= A4 |44 |a

Step 2: ﬂl-productions already satisfy INP.
A, A, .
Process “ - and " -productions to enforce the INP.

. . A .
First consider ~* -productions:

Apply lemma 2 to 4 Al obtaining 4= Ahds|a . Now apply lemma 1 to eliminate

left-recursion

We get

A —ald,

Ay = 44| 444,

which satisfy the INP property.

The resulting grammar is

A — A242
4 >alad,

A, 44| 444,
A A4 44 a

Next consider 4 -productions. Applying lemma 2 to 4= 44 we get

A= 44444 |

Applying lemma 2 again on the first two 4 -productions above we get

& ad 4 |ad A4 ad |ad 4 e
Now, all productions satisfy the INP.
The resulting grammar is:

4> A4

A4 —alad,

Ay = 44| 444,

& —ad 4 |ad A |ad |ad 4 |a

Step 3: All 4 -productions and i -productions are already in GNF. Apply lemma 2 to .
productions, to get A —ak|ad,4 .

Similarly, applying lemma 2 to 4, -production we get
A, —>ak |ad,h | ahA, lad, A4,
All the productions are in GNF now. So, the resulting equivalent grammar in GNF is

4 —ad, |ad, 4
ﬁ—ﬂ o CIJ% | ﬂ‘q—ﬂﬂE | ':1“13“1—2 | aﬁ—ﬂ J%A—ﬂ
A —alad,

A= ady 4 |ad A4 ad [ad 4 |a

7.4 CONCLUSION

This module explains about the basic understanding of Simplification of CFG. It discusses
Chomsky Normal Form (CNF) and Greibach Normal Form (GNF) with various theorems,
lemmas and elaborated solved examples.

7.5 CHECK YOUR PROGRESS
Fill in the blanks:

1) The Full form of CFG is

2) The full form of GNF is

3) The Greibach normal form if all productions in P are of the form

4) The Full form of CNF is

5) A CFG is in Chomsky Normal Form (CNF) if all production are of
the form

7.6 ANSWER CHECK YOUR PROGRESS
1) Context free Grammer

2) Greibach normal form

3) A—>aBB, By

4) Chomsky Normal Form

5 G=(¥. % P, 5)

7.7 MODEL QUESTION

Qs-1) What is CNF and what are steps for CNF to be in CFG?
Qs-2) What is GNF and what are steps for CNF to be in GNF?
Qs-3) Construct an equivalent CFG in GNF?

Qs-4) What is INP and wHen it is said to be satisfied?

Qs-5) For any CFG =5 [N’ 2 8, S)there is a CFG
normal form such that L(G') = L(G){= }explain?

£ =[M’ Z. &5 S)in Chomsky

7.8 REFERENCES
https://nptel.ac.in/courses/106/103/106103070/

7.9 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH
2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI
3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

UNIT-VIII CONTEXT FREE LANGUAGES

8.1 Learning Objectives
8.2 Pumping Lemma for Context Free Languages (CFLs)
8.3 Closure Property of Context Free Languages (CFLs)
8.4 Some Decision Algorithms for CFLs

8.4.1 Testing Emptiness

8.4.2 Testing Membership

8.4.3 CYK Algorithm to decide membership in CFL
8.5 Testing Finiteness of a CFL

8.5.1 Decision algorithm for testing finiteness of a CFL
8.6 Conclusion
8.7 Check your progress
8.8 Answer Check your progress
8.9 Model Question
8.10 References
8.11 Suggested readings

8.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Context Free Languages (CFLs). It explains
Closure Property of Context Free Languages (CFLs), Some Decision Algorithms for CFLs
and Testing Finiteness of a CFL through various theorems, lemmas and step-wise elaborated
solved examples.

8.2 PUMPING LEMMA FOR CONTEXT FREE LANGUAGES (CFLs)

There is a pumping lemma for CFLs similar to the one for regular language. It can be used in
the same way to show that certain languages are not context-free.

Informally, the pumping lemma for CFLs states that for every CFL L, every sufficiently long
string can be subdivided into five substrings such that the middle three substrings are not too
long, the second and fourth are not both empty, and if these two substrings such that the
middle and fourth are not both empty, and if these two substrings are pumped simultaneously
zero or more times, then the resulting string will always belong to L.

Theorem (pumping lemma for CFLs):

Let L be any CFL. Then there is a constant n > 0, depending only on L, such that every
string £ = Lof length at least n can be as z = uvwxy such that

i)fvx| > 0

i) |vwx|£ #

V20, wiwryel

Proof : Let G be a CFG in Chomsky Normal Form generating L _{E}. Let the number of

. . . . —nk .
nonterminals in G is K and let the constant of pumping lemma # = 2" We will now show that
all strings in L with length n or greater can be decomposed to satisfy the conditions of the

*

1522 |§]2 2" S=
or

pumping lemma. Let FE LG be such a string i.e. ,and % . Since

3
[12 2 , then height (depth) of the parse tree for < is at least k + 1. Hence, there is a path of
length at least k + 1. in the parse tree for < . Let p be a path of maximal length from root S to
a leaf of the parse tree. Then P must contain at least k + 2 nodes, all of which are labelled by
non-terminals except the leaf node which is labelled by a terminal symbol. Hence, there is at
least k + 1 non-terminals in that path and since then and only k non-terminals in G, some
variable must occur more than once on the path. We select R to be a nonterminal that repeat
among the lowest k + 1 non-terminal on this path. To find the lowermost occurrence of R we
follow the path up from the leaf keeping track of the labels encountered. Of the first k + 2
nodes only the leaf has a terminal label. The remaining k + 1 node cannot have distinct
nonterminal labels and hence we simply pick the first repetition of any non-terminal on that
path and call it R.

Figure 1

We divide ~ into uvwxy according to the figure given above. The derivation of < can be
given as follows

S?uﬂy:l; uszy:; VWY

Clearly, we have two subderivations

* *

R=vRx RE=w
G and 5

The first one corresponds to the subtree rooted at the upper occurence of R and the second
one corresponds to the subtree rooted at the lower occurence of R. Both these subtree are
generated by the same nonterminal R, so we may substitute one for the ohter and still obtain a
valid parse tree. Replacing the larger by the smaller generates the string uwy and

A=w
hence ¥WEL I this case, the upper occurence of R generates w directly using 7

* *

)] o R=vREri=rvws o))
instead of generating vwx using % Z . This is shown in the middle

figure.Similarly, replacing ths smaller subtree by the larger one repeatedly, as shown in the

wwxy

last figure, gives of parse trees for the strings at eachi>1. That establishes

that whwrye LIGH, ¥i20

We now show that condition (i) and (ii) in the pumping lemma are satisfied by this

R=rvEx
decomposition. The subderivation 7 must begin with a rule of the form R = AB. The

second occurence of Ris derived from either A or B. If it is derived from A, then the
derivation can be written

R :G>’ AEB :G> vRSC:}G> wRst =vRx

The string t is non-empty since it is obtained by a derivation from a non terminal in a CNF
form grammar. Hence * = must be non-empty. If the second occurrence of R is derived
from B, a similar argument shows that v is non-empty. Hence, |vx| >0, giving condition (i).
The stable rooted at the upper occurrence of R generates vwx. But this R is the first repetition
of a variable in the longest path p in the parse tree starting from a leaf. i.e. both occurrence
of R fall within the bottom k +1 variables on the path. Hence the subtree rooted at the upper
occurrence of R has depth (or height) at most k +1. A tree of the height can generate a string

” Lok L
of length at most # = 2* or less. Therefore ez £ 2 , giving condition (ii).
This completes the proof.
L={dbc|i20]
Example: The language is not context-free.

Proof: We apply the pumping lemma to prove it. Assume, for contradiction , that L is a CFL.

Let nbe the constant of the lemma. consider the string §=a"yc" Evidently, & = &
and |ls|=3%>n

Therefore, according to the Lemma, there exists substrings u, v, w, x, y such
that s = uvwxy and the following hold.

|vx| >0

|vwx|i M

1

2
3 W20, wlwryel

vxy cannot start with some a, span all n b's, and finish with some ¢ - condition (ii) above
prohibits this.

We now consider all other possibilities of occurence of vxy in S.

Case 1 : vxy occur completely within the leading an symbols. Then pumping up once yields

L. 2 — LMaiw . .
the string §'=wlwr'y =a"b' , where 7 # (since number of a's gets increased) .

Thus, 5'& L contradicting the lemma.

Case 2 : If vxy occur completely within the middle b or trailing C symbols, then we can
apply exactly similar arguments as in case 1 to arrive at contradictions.

Case 3 : If vxy occur partly in the an and partly in the b , then pumping up once will yield a
string that either contains more a's than ¢'s and more b's than c¢'s or contains some a's
after bb's. In both cases, the resulting string is not in L and is a contradiction.

Case 4: If vxy occur partly in the b and partly in the “* then we can apply exactly similar
arguments as in case 3 to arrive at a contradiction.

These are the only possible cases to divide the string into substrings as per the lemma and in
every case there is contradiction. Hence, L is not a CFL.

L={a"|k20}

Example: is not context-free.

Proof: Assume contradiction that L is a CFL. There is a constant #>0 such that any string
in L of length at least n can be pumped according to the pumping lemma.

] fpes 2
Consider the string S=a" inL. |S| HrR . So, we can write

S = uvwxy such that

1. x>0
2. |vwx|%nand
3. WwxyeL g9

By (i) and (ii), |vx|i?z. Thus if we leti= 1 in (iii) (i.e. if we pump once), we get a
' 3 2 : 2
string & © @ where * “J S22 Now if we arrange the elements of L in ascending order
2 2
of length, thus the next element after S=a" must be of length 4 ire. of

length (Hg PR 1) .

At 2n E L . . .
Since , we conclude that & (which is of length ;) is not in L, which
contradicts the pumping lemma.

Hence L is not a CFL.

8.3 CLOSURE PROPERTY OF CONTEXT FREE LANGUAGES (CFLs)

We consider some important closure properties of CFLs.

Theorem : If L and Ly are CFLs then so is LUL,

G =(M.Z.4.5) G = (M. 2, B.5;)

Proof : Let ! and be CFGs generating. Without loss
of generality, we can assume that Ny [1y = ;é. Let 5 is a nonterminal not in % or A . We

G = (2.5, 5.5) G

1andG

construct the grammar from 2, where

I =N1U%U{Sz}

b

Z, =%z,

i =EUEU{33_}’31|32}

L{(G) = LG)UL(Gy) = LUL

We now show that

Thus proving the theorem.

we L S =w L . i
Let 1, Then % . All productions applied in their derivation are also in ~%.
1 -
S A=W
Hence % & je " (&)

Similarly, it ¥ 22, then W€ £(G5)

Thus LUL o L(%).

S =W

Conversely, let WEL{G3). Then e and the first step in this derivation must be

1 1 1

S=S S=8 S= S =w
either =% or =% . Considering the former case, we have ~ % &
NN L -4 . B
Since “*! and “*# are disjoint, the derivation ~ % must use the productions of “! only (
=

which are also in 5) Since 5 &M is the start symbol of Gl. Hence, ta
giving e L(GJ.
Using similar reasoning, in the latter case, we get we L(G,) . Thus LG)ch UL?.

So, L{G)=LUL

, as claimed.

Theorem: If 4 and L are CFLs, then so is 4 L‘".

5 =[N1=E1=Ef=31)

Proof: Let ™! & =[M=zz=ﬂ,3ﬂ

and be the CFGs generating b and L

respectively. Again, we assume that s and 5 are disjoint, and 5 is a nonterminal not

& =[}"'r323i5333) G

in Nl or A . we construct the CFG 7% from ! and Gf‘, where

M, = NIUMU{Sz}
Ee=E| 1

A=RURUE — 55}

We claim that * (&)= L(G) L(Gy) = Ly

. 1 ¥ :
o prove it, we first assume that * = L and 742 Then '8 and | & . We can derive

the string xy in % as shown below.
R s Ry ; oy :

= = Xa, =

imds b di Y

Bge BCP L, c L(G)

since and . Hence

we L(G)

For the converse, let . Then the derivation of w in G will be of the form

1
5= 552w S BR,

& % ie. the first step in the derivation must see the rule . Again,

Slefﬁfland Sy e M,

since , and jI"rf‘are disjoint and , some stringx will be generated

from i using productions in A (which are also in P3) and such that %~ ¥,

Thus S aS, S, Sy ew

Hence % and

This means thatwcan be divided into two partsx,ysuch that xEL and V' LE.

Thus = bl .This completes the proof.
Theorem : If L is a CFL, then so is & .

Proof :Let G- [N,E, P’S)
CFG i =[N,E,P,S)

be the CFG generatingl. Let us construct the

from G where £ PU{S_} SS|E} .

We now prove that L&) = (L [G)) e , which prove the theorem.

G can generate £ in one step by using the production & —*€ since FcF , & can generate

W= W, W W€ L

. . " .
any string inL. Let W& L” for any n>1 we can write * where

for 1 £ % 4y can be generated by G’ using following steps.

L] -

n-1 *
S?SS---S?wlss---.s?wluass---S:G}wlwg W, =W

First (n-1)-steps uses the production S =SS producing the sentential form of » numbers

of §''s. The nonterminal S in the i-th position then generates v using production in P (which
are also in)

It is also easy to see that G can generate the empty string, any string in L and any

string W& L for n >1 and none other.

-
*

Hence L{E) =[L[G)) =i
Theorem : CFLs are not closed under intersection

Proof :We prove it by giving a counter example. Consider the

={a'tc? |i,j 20
language 4 {a: e I } .The following CFG generates L1 and hence a CFL

NS
X—akb|e
C—eC|e

A" n20

]
The nonterminal X generates strings of the form ¢ and C generates strings of the

form Cm, M0 These are the only types of strings generated by Xand C.

Hence, S generates Ll.

=laipiad 15 20
Using similar reasoning, it can be shown that the following grammar £ {a e [i.g }

and hence it is also a CFL.

ARy
A—ad|e
X —bic|e

L, =1a%"%" |n2 0
But, ATt {a 2l } and is already shown to be not context-free.

Hence proof.

Theorem : A CFL's are not closed under complementations

Proof : Assume, for contradiction, that CFL's are closed under complementation. SInce,

CFL's are also closed under union, the language LU, , where & and I are CFL's must be
CFL. But by DeMorgan's law

EUT =5

This contradicts the already proved fact that CFL's are not closed under intersection.
But it can be shown that the CFL's are closed under intersection with a regular set.
Theorem : If L is a CFL and R is a regular language, then LR isa CFL.

P={Q,.5T,8,4,.2.F

Proof : Let F) be a PDA for L and let e [Qﬂ’z’ 5D’gD’FD) be a

DFA for R.

We construct a PDA M from P and D as follows

M =(0Q, %05 E.T. 8 (2,40)20 5, % F)

where Fhe is defined as
5"""[{?’(})’&"{) contains [[r,s),&) iff

dpla.a)=s g G lPea) hains (7€)

The idea is that M simulates the moves of P and D parallely on input w, and accepts w iff
both P and D accepts. That means, we want to show that

L(M)=L(P)L(D)=L[R

We apply induction on 7, the number of moves, to show that

[[qp,qg),w,zu)%([p,q),e, Y

(2 w.20)2(2.5.7) and d{apw)=q

Basic Case is n=0. Hence ¥ %7 ,9790: ¥ 750 and W=€_ For this case it is trivially true

Inductive hypothesis : Assume that the statement is true for -1.

Inductive Step : Let w =xa and

»-1

Let [(gf’gﬂ)’xﬂ’zﬂ)'ﬁ’([Piﬁf:‘ﬂﬂ)'ﬂiﬁ’([nq)fﬁ)

»-1

(1525 (r'5.0)

i’

Sﬂ [‘i'ﬂ’ x) =g

By inductive hypothesis, and

From the definition of e and considering the n-th move of the PDA M above, we have

5}1 [erasaI):[p’E’y) 55'[(?}’(1) =q

and

u-1

1
Hence (gp,xa,zu)l?[p ,a,ﬁr)lﬁ[p,e,;v:] and Gplgp.w) =g

Inductive hypothesis: Assume that the statement is true for n -1.

Inductive Step: Let w = xa and

»-1

Let [(gf’gﬂ)’xﬂ’zﬂ)'ﬁ’([Piﬁf:‘ﬂﬂ)'ﬂiﬁ’([nq)fﬁ)

n-1

(15505 (r'e.0)

i’

‘SD [‘i'ﬂ=x:' -

By inductive hypothesis, and

From the definition of 2¥ and considering the n-th move of the PDA M above, we have
& (pla.a)=(pey) 4 9sl'a) =g

u-1

1
Hence (gp,xa,zu)l?[p ,a,ﬁrjlﬁ[p,e,;v) and Gplgp.w) =g

prEFF and QEFD, then P.q€ B x
both P and D accepts it.

and we got that if Macceptsw, then

We can show that converse, in a similar way. Hence LR isa CFL ('since it is accepted by
aPDA M)

This property is useful in showing that certain languages are not context-free.

Example: Consider the language

L =[WE{£I,E:',C}‘ | w contains equal number af @'s, 8's and c's]

Intersecting L with the regular set & = £¢ we get

LmR=Lra'b's
={a""" | n 20}

Which is already known to be not context-free. Hence L is not context-free.

Theorem : CFL's are closed under reversal. That is if L is a CFL, then so is LF

G=(¥,%Z 2.5 G =(N,% P,5)

Proof : Let the CFG generates L. We construct a CFG

where

P=ld—a|A—>ateP V=
{ &} RS } . We now show that L(@)=L , thus proving the theorem.

We need to prove that

A=a A o
F iff @

The proof is by induction on n, the number of steps taken by the derivation. We assume, for
simplicity (and of course without loss of generality), that G and hence G" are in CNF.

The basis is n=1 in which case it is trivial. Because & must be either €2 or BC

with ZC €N

]

A=
Assume that it is true for (n-1)-steps. Let ¥ . Then the first step must apply a rule of the
form 4= 5T and it gives

B= g% =yt
& an

1 -1
A?BC?ﬁy=& -

where

By constructing of G', 4 — CE & 7'

Hence
1 n-1 B oaR 2
A=CE=y 8t =a
7 7
The converse case is exactly similar.

Substitution :

Waeh et Ly ie a language (over,g[a) =7, habet). Z‘é‘z defines a function S, called

substitution, on which is denoted as - for all

This definition of substitution can be extended further to apply strings and langauge as well.

W= A, AGEE . i B
If 17z ® where i , 18 a string in , then

s(w) =slag; - a) =s(a)s(a)s(a)

Similarly, for any language L,

(2) =(s() | we 1)

The following theorem shows that CFLs are closed under substitution.

Thereom: Let £ < = is a CFL, and s is a substitution on Z such that s[aj =L is a CFL for
all €2 thus s(L) is a CFL

G=(NZ PS5 L(G

Proof: Let L =L(G) for a CFG and for every @< Z , L= ‘1) for

G, =(N,.%,.5.5)

some . Without loss of generality, assume that the sets of non

terminals N and N, 's are disjoint.

Now, we construct a grammar = | generating s(L), from G and % 's as follows :

F-(W.Z P.5)

N=Nu) N,
N FEE
z= P
. a!LEJE a!-

o & consists of

Ll
a!.
ZEE and

o The production of P but with each terminal a in the right hand side of a

production replaced by S everywhere.

We now want to prove that this construction works i.e. we L) iff = s(£) .

If Part: Let 7 © s(£) then according to the definition there is some string * ~ “1%2 " =

and xneES(a) for I=b20mnm 4 o w=xx 5 (=s{e)s(a)s(a,))

Ll

RO
We will show that ¢

*

. ' . .. o :’Sa Sﬂ "'Sax
From the construction of &', we find that, there is a derivation & 't 2

X =gy

corresponding to the string " (since & contains all productions of G but every ai

replaced with S"i in the RHS of any production).

5, . : : G, . ——
Every % is the start symbol of ¥ and all productions of " are also included in & .

Hence

*

52505, Sy,

*
? xlgag B Sa,,
*

=Ry X W

Therefore, WE L[G) .

(Only-if Part) Let weh{G) . Then there must be a derivative as follows :

*

52 84S, 8

. (using the production of G include in & as modified by (step 2) of the
construction of)

SR S T . mEeEl, My
Each "% (¢ L2, %) can only generate a string “ Lﬂ? , since each ~ “'s and N are
disjoin. Therefore, we get

*

8 80,5, e

W= Xk E

* is formed by substituting strings %

The string for each® ® and

hence L S(L).

Theorem : CFL's are closed under homomorphism

Proof : Let & cz’ be a CFL, and #is a homomorphism on Z i.e RN for some
alphabets £:. Consider the following substitution S: Replace each symbol aEx by the

language consisting of the only string h(a), i.c. s[aj - {k[a)} for all #€Z | Then, it is clear
that, #(L) =s(L). Hence, CFL's being closed under substitution must also be closed under
homomorphism.

CHECK YOUR PROGRESS
True/False type questions

1)Pumping Lemma can be used in the same way to show that certain languages are context-
free.

2) A CFL's are not closed under complementation

3) There are algorithms to test emptiness of a CFL.

4) CFLs are closed under intersection

5) CYK Algorithm to decide membership in CFL

Answers-
1) False

2) True

3) True

4) False

5) True

8.4 SOME DECISION ALGORITHMS FOR CFLs

In this section, we examine some questions about CFLs we can answer. A CFL may be
represented using a CFG or PDA. But an algorithm that uses one representation can be made
to work for the others, since we can construct one from the other.

8.4.1 TESTING EMPTINESS:

Theorem: There are algorithms to test emptiness of a CFL.

Proof : Given any CFL L, there is a CFG G to generate it. We can determine, using the
construction described in the context of elimination of useless symbols, whether the start

symbol is useless. If so, then L=¢ ; otherwise not.

8.4.2 TESTING MEMBERSHIP:

Given a CFL L and a string x, the membership, problem is to determine whether € & ?

Given a PDA P for L, simulating the PDA on input string x does not quite work, because the
PDA can grow its stack indefinitely on = input, and the process may never terminate, even if
the PDA is deterministic.

G = (¥ ZPS)

So, we assume that a CFG is given such that L = L(G).

Let us first present a simple but in-efficient algorithm.

G- I:NJ’ EJ’PJ’SJ) in CNF generating £IE _{E}

¥

S=E
7

Convert G to . If the input string *=%,

then we need to determine whether and it can easily be done using the technique

given in the context of elimination of = -production. If , then ™= L(@) iff *= L(g) .

Consider a derivation under a grammar in CNF. At every step, a production in CNF in used,

and hence it adds exactly one terminal symbol to the sentential form. Hence, if the length of
L)

the input string x is n, then it takes exactly # steps to derive x (provided x is in).

Let the maximum number of productions for any non terminal in G is K. So at every step in
derivation, there are atmost k choices. We may try out all these choices, systematically., to

derive the string x in . Since there are atmost K¥ i.e. £* choices. This algorithms is of
exponential time complexity. We now present an efficient (polynomial time) membership
algorithm.

8.4.3 CYK ALGORITHM TO DECIDE MEMBERSHIP IN CFL

We now present a cubic-time algorithm due to cocke, Younger and Kasami. It uses the
dynamic programming technique-solves smaller sub-problems first and then builds up
solution by combining smaller sub-solutions. It determines for each substring y of the given
string x the set of all nonterminals that generate y. This is done inductively on the length of y.

G- (N Z P8

|| =

Let be the given CFG in CNF. Consider the given string x and let

e
Let be the substring of x that begins at position i (i.e. i-th symbol of x) and has length ;.

N . .
Let be the set of all nonterminals 4 such that v

. R x R .
We write 1A He b1 \Where each 7 (1£450) is a terminal symbol.

A=xy iff A=z, € P. Thus we construct the sets Nilfor all 1=t =

Combining substrings of length 2, it is clear that, A€ Ny ie. A=xy iff there is a

A=z

1 and &7 Al

production 4 = £C" in G and

That is Ae My iff A= EBCe P 4nd be N and Ce M

Thus we can construct the sets Mg from the already constructed sets My , by inspecting the
grammar.

*

In general considering substrings % of length j, e ie. L iff there is a

14k <

-

B=xy, n O=x

production 4= 5" in G such that and #EI for some

That is Ae Ny iffBE‘EI"Ti’c and CE M ju for some lek s such that 4—= 50 &P The

idea is to divide, % into smaller substrings, using all possible ways (i.e. for different values
of k), and construct Ny from already constructed sets for smaller substrings (i.e. Ny

and jI"r""J‘°~~i"‘J"*) by inspecting the grammar.

These sets for longer substrings of x are constructed inductively until the set M for the

. L =K.
string "1 is constructed.

It is clear from the construction that B, =X iff e,
Hence, we can determine whether * € £ by inspecting NM.
The CYK algorithm is presented next.

CYK-Algorithm

Input: A CFG G = (N2, 2.8) and a string *< 3
Initialize: Ny={dl|d>mef)

for j : =2 to n do /* Determine Nigo Mg forall i %/

for i := 1 to n-j+1 do /* No sense in considering i, j with S0 s for all i */
Mo=g
v

x..
for k :=1 to j-1 do /* try substrings of ¥ of length & */
Ny=Nyu{d| A= BCeP, Be N, ,Cely, ;]

Similarly since © — 44 is a production and

i+k, J-k
The correctness of the algorithm can be proved by applying induction on that

whenever the outer loop finishes for particular j, the set = ¥ contains all non-terminals

A that can derive xa"(for all 1).

9] 3
It is easy to conclude that the time complexity of this algorithm is (M)

where * ~ i and grammar G is "fixed" in the sense that the size of the grammar is
not considered as input in measuring complexity.

Example : Consider the CFG:

S = AB| AC

A =7 BC|a

B = CB|b

C = A4A41|b

Let us decide the membership for the string x = baaaab using the CYK algorithm.

The table for Ny 's is shown below.
Word:baaaab

word b a & W m b
plielzitaleled I—»

2
ength 1 |B,C| A | & | A A |[BC|
- =

i”if‘ﬁ S

A

Mg f

Cell i, j will contain Nj;

The top row is filled in by the first step of the algorithm e.g. ﬂEN"fl,

because Aval=ay) is a production. We can compute the contents of the second
row by using the contents of the first row (already done) and inspecting the grammar.

For example, to compute My (i.e. the set of non-terminals that derive *12 =ba) we

HENyg i X=ba or if ¥ > BA o X > Ch js 4 production since no

';é .

notice that

. . M=
such production exists, we have =" 12

Ae ANy, Ae A e M,

1 we put

*

e x; =haaisider the first element of the th x; rxx, s (¢ x4%,,0onding to the string

). There are two ways to break up and
o Consider ™3 ~ ¥z SinceBE N”, Cedy and 4— 5 is a production, we
put ANy . (If we consider, the other way i.e. ™3~ *2%1 we find that Np=¢ and

hence no more symbols can be added to NB).
e Continuing this way we fill up the whole table as given below

word b a a a o« b

posifion i—»
l 2 3 4 5 i
lemgth 1 |B,C| A A A A | BC

i 2 & £ & i &

3 A o S ba)
l F g e | 3

5 & |B A

6 |85

Figure

X = x16 = baaaab

Since Se Ny, S= x;(=bacaab)

Hence baaaab is a member of the language generated by the grammar.

8.5 TESTING FINITENESS OF A CFL

We now show that there exist algorithms to decide finiteness of a CFL. Let L be a CFL. Then
there is some pumping lemma constantn for L. The following algorithm derives the
finiteness of L.

8.5.1 DECISION ALGORITHM FOR TESTING FINITENESS OF A CFL:

1. Test all input strings begining with those of length n (in non-decreasing order of length)
for membership. (we already have developed algorithm for testing membership).

ni|x|<2n

o If there is a stringx with length such that *€% thenLis infinite

otherwise L is finite.

>
Proof: If |7 27 and =% | then x can be pumped according to the pumping lemma and the
language is infinite. We need to test strings of length less than 2n only . Because if there were

Z =y e L (by

a string of length 2n or longer, we can always find a shorter string

pumping lemma), but it is atmost n shorter. Thus if there are any strings of length 2n or more
we can repeatedly cut out the substring vx to get, eventually, a string whose length is in the
range n to 2n-1.

8.6 CONCLUSION

This module explains about the basic understanding of Context Free Languages (CFLs). It
discusses Closure Property of Context Free Languages (CFLs), Some Decision Algorithms
for CFLs and Testing Finiteness of a CFL through various theorems, lemmas and step-wise
elaborated solved examples.

8.7 CHECK YOUR PROGRESS

Fill in the blanks:

1) Pumping Lemma can be used in the same way to show that certain languages
are

2) CYK Algorithm membership in CFL

3) If L is a CFL and R is a regular language, then is a CFL.
4) A CFL's are not closed under

5) CFL's are closed under

8.8 ANSWER CHECK YOUR PROGRESS

1) not context-free
2) To decide

3) L intersection R
4) Complementation

5) Reversal.

8.9 MODEL QUESTION

Qs-1) What is Pumping Lemma why it is used?

Qs-2) Context Free Languages (CFLs) are not closed under intersection explain with the help
of example?

Qs-3) How to test Finiteness of Context Free Languages (CFL)?
Qs-4) Explain CYK Algorithm?

Qs-5) What is Context Free Languages (CFL)? How to test Emptiness of Context Free
Languages (CFL)?

8.10 REFERENCES

https://nptel.ac.in/courses/106/103/106103070/

8.11 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI
3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

Block-111
UNIT-IX TURING MACHINES

9.1 Learning Objectives

9.2 Informal Description

9.3 Formal Definition

9.4 Transition Function

9.5 Instantaneous Description (IDs) or Configurations of a TM
9.6 Moves of Turing Machines

9.7 Special Boundary Cases

9.8 More about Configuration and Acceptance
9.9 Conclusion

9.10 Check your progress

9.11 Answer Check your progress

9.12 Model Question

9.13 References

9.14 Suggested readings

9.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Turing Machines (TMs). It explains Informal
Description and Formal Definition of Turing Machines. The chapter discusses Transition
Function, Instantaneous Description (IDs) or Configurations of a TM, Moves of Turing
Machines, Special Boundary Cases and some more concepts about Configuration and
Acceptance through proper elaborations.

9.2 INFORMAL DESCRIPTION

We consider here a basic model of TM which is deterministic and have one-tape. There are
many variations, all are equally powerful.

The basic model of TM has a finite set of states, a semi-infinite tape that has a leftmost cell
but is infinite to the right and a tape head that can move left and right over the tape, reading
and writing symbols.

For any input w with |[w|=n, initially it is written on the n leftmost (contiguous) tape cells.
The infinitely many cells to the right of the input all contain a blank symbol, B which is a
special tape symbol that is not an input symbol. The machine starts in its start state with its
head scanning the leftmost symbol of the input w. Depending upon the symbol scanned by
the tape head and the current state the machine makes a move which consists of the
following:

e writes a new symbol on that tape cell,
e moves its head one cell either to the left or to the right and
o (possibly) enters a new state.

The action it takes in each step is determined by a transition function. The machine continues
computing (i.e., making moves) until

o it decides to "accept" its input by entering a special state called accept or final state or
» halts without accepting i.e., rejecting the input when there is no move defined.

On some inputs the TM many keep on computing forever without ever accepting or rejecting
the input, in which case it is said to "loop" on that input.

9.3 FORMAL DEFINITION

Formally, a Deterministic Turing machine (DTM) is a 7-tuple M=[Q,E,F,5,qD,B,F)‘

Where,

o Q is a finite nonempty set of states.
« I is a finite non-empty set of tape symbols, called the tape alphabet of M.

o 22D jsafinite non-empty set of input symbols, called the input alphabet of M.
gl el X{ L R} is the transition function of M,
. %EL is the initial or start state.

o B eT\Z g the blank symbol
F S s the set of final state.

So, given the current state and tape symbol being read, the transition function describes the
next state, symbol to be written on the tape, and the direction in which to move the tape head
(L and R denote left and right, respectively).

9.4 TRANSITION FUNCTION (¢)

o The heart of the TM is the transition function, ¢ because it tells us how the machine
gets one step to the next.
o when the machine is in a certain state q=Q and the head is currently scanning the tape

symbol Al andif dlg.x) = (p.1. D) , then the machine

replaces the symbol X by Y on the tape

. goes to state p, and

3. the tape head moves one cell (i.e., one tape symbol) to the left (or right)
if D is L (or R).

N —

9.5 INSTANTANEOUS DESCRIPTION (IDs) OR
CONFIGURATIONS OF A TM

The ID (instantaneous description) of a TM capture what is going out at any moment i.e., it
contains all the information to exactly capture the "current state of the computations".

It contains the following:

e The current state, g

o The position of the tape head,

o The constants of the tape up to the rightmost nonblank symbol or the symbol to the
left of the head, whichever is rightmost.

Note that, although there is no limit on how far right the head may move and write nonblank
symbols on the tape, at any finite time, the TM has visited only a finite prefix of the infinite
tape.

An ID (or configuration) of a TM M is denoted by agf where & gel and

o @ js the tape contents to the left of the head.
e g is the current state.

. B is the tape contents at or to the right of the tape head.

That is, the tape head is currently scanning the leftmost tape symbol of 8 . (Note that
if B=€ , then the tape head is scanning a blank symbol)

If 90 is the start state and w is the input to a TM M then the starting or initial configuration

of M is obviously denoted by ot

9.6 MOVES OF TURING MACHINES

To indicate one move we use the symbol . Similarly, zero, one, or more moves will be
represented by . A move of a TM M is defined as follows.

o Let alglk 8 be an ID of M where X,Zel",c:r,ﬁel" andgEQ.

e Let there exists a transition 5[g,X) i [p,lf’,L) of M.

aZaX B 4 gZ¥ 8 aZeX 8 aZq¥ 8

Then we write meaning that ID yields

Alternatively, if 5[g,X) i [p ’Y’R) is a transition of M, then we write aZgX B

azlpf which means that the ID azgk 8 yields azlp 8 _

o In other words, when two IDs are related by the relation ™, we say that the first one
yields the second (or the second is the result of the first) by one move.

o If IDj results from IDi by zero, one or more (finite) moves then we write ™ (If the
TM M is understand, then the subscript M can be dropped from F or F).

9.7 SPECIAL BOUNDARY CASES

o Let 9% be an ID and d(g.x) = EP’Y’L) be a transition of M. Then ' . That is, the
head is not allowed to fall off the left end of the tape.

o Let %™ be an ID and d(g.x) = (p.7. R)
to &}’gﬁ)

then figure (Note that aly is equivalent

e Let 7°% pean ID and 4(¢.x)=(».8.8) then figure
o Let “%% be an ID and 9(¢.7) =(2.8.L) then figure

M=(0.ZT.8.4,8,F)

The language accepted by a TM , denoted as L(M) is

LM) = {w| W& = and figure for some pEF and & BAel)

In other words, the TM M accepts a string W& Z that cause M to enter a final or accepting

state when started in its initial ID (i.e., guw)_ That is a TM M accepts the string W= Zifa

Dy, ID,, -, ID

sequence of IDs, *77k exists such that

. 4 is the initial or starting ID of M
I gy 1D s 158k

e The representation of IDk contains an accepting state.

The set of strings that M accepts is the language of M, denoted L(M), as defined above.

CHECK YOUR PROGRESS

True/False type questions
1) The basic model of TM has a finite set of states

2) Formally, a Deterministic Turing machine (DTM) is a 7-tuple

3) The heart of the TM is the transition function

4) A deterministic TM is an 5-tuple

5) Turing Machine is accepted by Push down automata

Answers-
1) True
2) True
3) True
4) False

5) False

9.8 MORE ABOUT CONFIGURATION AND ACCEPTANCE

e AnID ayg 8 of M is called an accepting (or final) ID if ¢ &F

e AnlID agxf is called a blocking (or halting) ID if 9(g.%) is undefined i.e. the TM
has no move at this point.

. 4 is called reactable from

o 9% is the initial (or starting) ID if W= Z s the input to the TM and %<0 is the
initial (or start) state of M.

On any input string W& &

either

« M halts on w if there exists a blocking (configuration) ID, " such that YW w7

There are two cases to be considered

e M accepts wif/is an accepting ID. The set of all wex accepted by M is denoted
as L(M) as already defined

e Mrejects wif {'is a blocking configuration. Denote by reject (M), the set of
all WEZ rejected by M.

or

e M loops on w if it does not halt on w.

Let loop(M) be the set of all W= =" on which M loops for.

It is quite clear that

L)

L[M) o, rejecs[M) L foop[M) =
That is, we assume that a TM M halts

in

o When it enters an accepting ! or

o When it enters a blocking iy i.e., when there is no next move.

we L(M)

However, on some input string, , it is possible that the TM M loops for ever i.e., it

never halts.

It is observed that in the basic TM model there is no apparent way for the machine to "reject"
the input string. And, instead of a single accepting state there is a set of accepting states.
Considering these two facts, we define a new model which is equivalent (can be shown) to
the basic TM model as follows:

A deterministic TM is an 8-tuple
M=(Q.5T,8,9,.5.9,.9,)

where,

. ¢ is the accepting state
4, €L

is the rejecting state

No transition are possible from 92 and 97 . All other elements of M remain same as defined in
case of basic model.

The language accepted by the M is defined as

L(M)={“""|WEE and 0% %28 g ome @ BET }

The TM M rejects a string WEZ iff

GoW - G for some a. fgel or

e M enters in an infinite loop on input w i.e., M never halts on w.
e M enters in a blocking ID on input w i.e., M never halts on w. or

e M enters in a blocking ID on input w i.e., 20W - 2 APEF and 3(2.%) is undefined.

If M accepts w, we can determine it, because M eventually enters the accepting state 92 But
if M does not accept w, we may not be able to determine this since M may reject w by not
halting.

This leads us to categorize the language accepted by the TMs into two broad classes as
follows (Described in Next Module).

9.9 CONCLUSION

This module explains about the basic understanding of Turing Machines (TMs). It explains
Informal Description and Formal Definition of Turing Machines. The module also discusses
Transition Function, Instantaneous Description (IDs) or Configurations of a TM, Moves of
Turing Machines, Special Boundary Cases and some important concepts about Configuration
and Acceptance with proper elaborations.

9.10 CHECK YOUR PROGRESS

Fill in the Blanks:

1) The basic model of TM has a set of states.

2) TM many keep on computing forever without ever accepting or rejecting the
3) A deterministic TM is an 8-tuple

4) The language accepted by Turing Machine is

5) The heart of the TM is the

9.11 ANSWER CHECK YOUR PROGRESS

Answers:

1) Finite

2) Input

3) 8 Tuple

4) Recursive Language

5) Transition function

9.12 MODEL QUESTION

Qs-1) What is basis model of Turing machine. Explain with the helpnof example?
Qs-2) What is Transition function explain in detail?

Qs-3) What is instantaneous description or configurations of Turing machine?
Qs-4) What are Special boundary cases of Turing Machine?

Qs-5) What are moves of Turing Machine explain your answer?

9.13 REFERENCES
https://nptel.ac.in/courses/106/103/106103070/

9.14 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH
2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI
3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

UNIT-X RECURSIVELY ENUMERABLE LANGUAGE

10.1 Learning Objectives

10.2 Recursive language

10.2.1 Recursively Enumerable (R.E) Language
10.2.2 Recursive (Or Decidable) Languages
10.2.3 Examples

10.3 Closure Properties

10.4 Post Correspondence Problem

10.5 Proof Sketch of Undecidability

10.6 Conclusion

10.7 Check your progress

10.8 Answer Check your progress

10.9 Model Question

10.10 References

10.11 Suggested readings

10.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Recursive language, Recursively Enumerable
(R.E) Language. Recursive (Or Decidable) Languages, Closure Properties, Post
Correspondence Problem and Proof Sketch of Un-decidability through various concepts and
step-wise elaborated solved examples.

10.2 RECURSIVE LANGUAGE

In mathematics, logic and computer science, a formal language (a set of finite sequences
of symbols taken from a fixed alphabet) is called recursive if it is a recursive subset of the set
of all possible finite sequences over the alphabet of the language. Equivalently, a formal
language is recursive if there exists a total Turing machine (a Turing machine that halts for
every given input) that, when given a finite sequence of symbols from the alphabet of the
language as input (any string containing only characters in the language's alphabet) accepts
only those that are part of the language and rejects all other strings. Recursive languages are
also called decidable.

The concept of decidability may be extended to other models of computation. For
example, one may speak of languages decidable on a non-deterministic Turing machine.
Therefore, whenever an ambiguity is possible, the synonym for "recursive language" used
is Turing-decidable language, rather than simply decidable.

The class of all recursive languages is often called R, although this name is also used
for the class RP. This type of language was not defined in the Chomsky hierarchy. All
recursive languages are also recursively enumerable. All regular, context-free and context-
sensitive languages are recursive. There exist three equivalent major definitions for the
concept of a recursively enumerable language.

1. A recursively enumerable language is a recursively enumerable subset in the set of all
possible worlds over the alphabet of the language.

2. A recursively enumerable language is a formal language for which there exists a Turing
machine (or other computable function) which will enumerate all valid strings of the
language. Note that if the language is infinite, the enumerating algorithm provided can be
chosen so that it avoids repetitions, since we can test whether the string produced for
number nis "already" produced for a number which is less than n. If it already is
produced, use the output for input n+1 instead (recursively), but again, test whether it is
"new".

3. A recursively enumerable language is a formal language for which there exists a Turing
machine (or other computable function) that will halt and accept when presented with
any string in the language as input but may either halt and reject or loop forever when
presented with a string not in the language. Contrast this to recursive languages, which
require that the Turing machine halts in all cases.

All regular, context-free, context-sensitive and recursive languages are recursively
enumerable. Post's theorem shows that RE, together with its complement co-RE, correspond
to the first level of the arithmetical hierarchy.

10.2.1 Recursively Enumerable (R.E.) Language:
It is also called as TM-recognizable language or semi-decidable language. Simply speaking, a

language L is recursively enumerable if some Turing Machine accepts it. Formally, the class
of r.e. languages is defined as

(L|LSZ and 3 TM M such that L =L(M) }

e So, on input string ¥ = £ | M enters an accepting ID and halts.

« But, on input strings ¥ & L | M either halts entering a bloueing ID (i.e. without entering
an accepting ID), or it never halts (i.e. it loops for ever).

10.2.2 Recursive (or decidable) Languages

A language L is recursive if there is some TM M that halts on every input ¥= Z' and
L=LM).

Formally, the class of recursive language is defined as

(L|£SZ and 3 TM M such that M halts ¥ WEZ' and L= L(M) }

e So, on any input strings w= L, M enters an accepting ID and halts and
« On an input string w% L, M halts entering in a blocking ID (or entering in a reject state).

10.2.3 Example

The Halting problem is recursively enumerable but not recursive. Indeed, one can run the
Turing Machine and accept if the machine halts, hence it is r.e. On the other hand, the
problem is undecidable.

Some other RE, languages are:

e Post correspondence problem
e Mortality (computability theory)
e Entscheidungs problem

10.3 CLOSURE PROPERTIES

Recursively enumerable languages are closed under the following operations. That is,
if L and P are two recursively enumerable languages, then the following languages are
recursively enumerable as well:

¢ The Kleene star of L

¢ The concatenation of L and P
¢ The union

¢ The intersection

Note that recursively enumerable languages are not closed underset difference or
complementation. The set difference L - P may or may not be recursively enumerable. If L is
recursively enumerable, then the complement of L is recursively enumerable if and only
if L is also recursive.

10.4 POST CORRESPONDENCE PROBLEM

The Post correspondence problem is an undecidable decision problem that was introduced
by Emil Post in 1946. Because it is simpler than the halting problem and the Entscheidungs
problem it is often used in proofs of undecidability.

Definition of the problem:

The input of the problem consists of two finite lists and {\displaystyle \beta {1} \ldots ,\beta
_{N}} of words over some alphabet having at least two symbols. A solution to this problem
is a sequence of indices {\displaystyle (i {k}) {1\leq k\leq K}}with and {\displaystyle 1\leq
i_{k}\leq N} for all, such that the decision problem then is to decide whether such a solution
exists or not.

Example instances of the problem
Example 1

Consider the following two lists:

ap a2 a3

a ab bba

P P2 P3

baa aa bb

A solution to this problem would be the sequence (3, 2, 3, 1), because

Furthermore, since (3, 2, 3, 1) is a solution, so are all of its "repetitions", such as (3, 2, 3, 1, 3,
2, 3, 1), etc.; that is, when a solution exists, there are infinitely many solutions of this
repetitive kind.

However, if the two lists had consisted of only {\displaystyle \alpha {2} \alpha {3}}
and {\displaystyle \beta {2},\beta {3}} from those sets, then there would have been

no solution (the last letter of any such o string is not the same as the letter before it, whereas 3
only constructs pairs of the same letter).

A convenient way to view an instance of a Post correspondence problem is as a collection of
blocks of the form

ol

Bi
there being an unlimited supply of each type of block. Thus the above example is viewed as

a ab bba

baa aa bb

where the solver has an endless supply of each of these three block types. A solution
corresponds to some way of laying blocks next to each other so that the string in the top cells
corresponds to the string in the bottom cells. Then the solution to the above example
corresponds to:

bba ab bba A

bb aa bb Baa

il=3 2=2 i3=3 i4=1
Example 2

Again using blocks to represent an instance of the problem, the following is an example that
has infinitely many solutions in addition to the kind obtained by merely "repeating" a
solution.

bb ab C

b ba bc

1 2 3

In this instance, every sequence of the form (1, 2, 2, . . ., 2, 3) is a solution (in addition to all
their repetitions):

bb ab ab Ab c
b ba ba Ba be
1 2 2 2 3
CHECK YOUR PROGRESS

True/False type questions

1) A formal language is recursive if there exists a total Turing machine

2) Recursively enumerable languages are closed under intersection

3) The Halting problem is recursively enumerable but not recursive

4) The Post correspondence problem is an decidable decision

5) Recursively enumerable languages are not closed under union

Answers-

1) True
2) True
3) True
4) False
5) False

10.5 PROOF SKETCH OF UNDECIDABILITY

The most common proof for the undecidability of PCP describes an instance of PCP that can
simulate the computation of a Turing machine on a particular input. A match will only occur
if the input would be accepted by the Turing machine. Because deciding if a Turing machine
will accept an input is a basic undecidable problem, PCP cannot be decidable either. The
following discussion is based on Michael Sipser's textbook Introduction to the Theory of
Computation.

In more detail, the idea is that the string along the top and bottom will be a computation
history of the Turing machine's computation. This means it will list a string describing the
initial state, followed by a string describing the next state, and so on until it ends with a string
describing an accepting state. The state strings are separated by some separator symbol
(usually written #). According to the definition of a Turing machine, the full state of the
machine consists of three parts:

* The current contents of the tape.

* The current state of the finite state machine which operates the tape head.

+ The current position of the tape head on the tape.

Although the tape has infinitely many cells, only some finite prefix of these will be non-
blank. We write these down as part of our state. To describe the state of the finite control, we
create new symbols, labelled ql through gk, for each of the finite state machine's k states. We
insert the correct symbol into the string describing the tape's contents at the position of the
tape head, thereby indicating both the tape head's position and the current state of the finite
control. For the alphabet {0, 1}, a typical state might look something like:

101101110q700110.
A simple computation history would then look something like this:
q0101#1q401#11q21#1q810.

We start out with this block, where x is the input string and q0 is the start state:

qox#

The top starts out "lagging" the bottom by one state, and keeps this lag until the very end
stage. Next, for each symbol a in the tape alphabet, as well as #, we have a "copy" block,
which copies it unmodified from one state to the next:

a

We also have a block for each position transition the machine can make, showing how the
tape head moves, how the finite state changes, and what happens to the surrounding symbols.
For example, here the tape head is over a 0 in state 4, and then writes a 1 and moves right,
changing to state 7:

q40

1g7

Finally, when the top reaches an accepting state, the bottom needs a chance to finally catch
up to complete the match. To allow this, we extend the computation so that once an accepting
state is reached, each subsequent machine step will cause a symbol near the tape head to
vanish, one at a time, until none remain. If qf is an accepting state, we can represent this with
the following transition blocks, where a is a tape alphabet symbol:

q4a aqy

ar qr

There are a number of details to work out, such as dealing with boundaries between states,
making sure that our initial tile goes first in the match, and so on, but this shows the general
idea of how a static tile puzzle can simulate a Turing machine computation.

The previous example
q0101#1q401#11q21#1g810.

is represented as the following solution to the Post correspondence problem:
G 01 1 e 1 % 1 e # 1 1 0 koGt 0 # 0 ¢ g #

Qi 1g 8 1 % 1 16 1 1 @ ¢ g4 1 0 2 4 0 % g 3 2

“ recursively enumerable ™.

| /" context-sensitive "\ |

|/ context-free . |

| -~ —— |

regular

Source: https://en.formulasearchengine.com/wiki/Chomsky_hierarchy#/media/File:Chomsky-
hierarchy.svg

10.6 CONCLUSION

This module explains about the basic understanding of Recursive languages. It discusses
Recursively Enumerable (R.E) Language. Recursive (Or Decidable) Languages, Closure
Properties, Post Correspondence Problem and Proof Sketch of Undecidability through
various concepts and step-wise elaborated solved examples.

10.7 CHECK YOUR PROGRESS
Fill in the blanks:

1) Recursive languages are also called

2) The Halting problem is recursively enumerable but not

3) All regular, context-free, context-sensitive and recursive languages are

4) A formal language is recursive if there exists a total

5) The Post correspondence problem is an

10.8 ANSWER CHECK YOUR PROGRESS
1) Decidable.

2) Recursive
3) Recursively enumerable.
4) Turing machine

5) Undecidable decision

10.9 MODEL QUESTION

Qs-1) Explain closure property for Recursive enumerable?
Qs-2) What is post correspondence problem?

Qs-3) Explain with the diagram Chomsky hierarchy?
Qs-4) Explain Recursive enumerable language?

Qs-5) What are three parts of full state of Turing machine?

Qs-6) Is the set of all definable subsets of the natural numbers recursively enumerable?

10.10 REFERENCES

o https://nptel.ac.in/courses/106/103/106103070/

e Sipser, M. (1996), Introduction to the Theory of Computation, PWS Publishing Co.
e Kozen, D.C. (1997), Automata and Computability, Springer.

o https://en.formulasearchengine.com/wiki/Recursive language

10.11 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI
3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

UNIT-XI POST'S CORRESPONDENCE PROBLEM

11.1 Learning Objectives

11.2 Post's Correspondence Problem (PCP)
11.3 Post's Correspondence System (PCS)
11.4 Conclusion

11.5 Check your progress

11.6 Answer Check your progress

11.7 Model Question

11.8 References

11.9 Suggested readings

11.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Post's Correspondence Problem (PCP). It
explains Post's Correspondence System (PCS) through various theorems, corollaries, and
lemmas along with step-wise elaborated solved examples.

11.2 POST'S CORRESPONDENCE PROBLEM (PCP)

= g7
Theorem 11.1.1: Given any two CFG's G1 and G2 the question "Is L@)NL(G) =97,

undecidable.

is

Proof: Assume for contradiction that there exists an algorithm A to decide this question. This
would imply that PCP is decidable as shown below.

For any Post Correspondence System, P construct grammars % and % by using the
constructions elaborated already. We can now wuse the algorithm 4to decide

whether L(G")HL(G?) g and L[G")HL(GJ*) =9

contradiction. So, such an algorithm does not exist.

Thus, PCP 1S decidable, a

G,

If 7% and % are CFG's constructed from any arbitrary Post Correspondence System, than it

. : LT L
is not difficult to show that (@) and (e) are also context-free, even though the class of
context-free languages are not closed under complementation.

LG, LG) . .
[") (s) and their complements can be used in various ways to show that many other
questions related to CFL's are undecidable. We prove here some of those.

Theorem 11.1.2: Foe any two arbitrary CFG's Sdas the following questions are
undecidable.
i Is (G)=%"7
i Is (@) =L(G)7
i s (@) L(G)?
Proof:

=7
Hence, it suffice to show that the question “Is L(G) =97, is undecidable.

Since, & [G") and G (GJ’) are CFl's and CFL's are closed under union, Eed{E Il (Gy) is

also context-free. By DeMorgan's theorem, L= L[G*) ML (GJ*)

If there is an algorithm to decide whether 2 [Glj ¢ we can use it to decide
whether 4 L[G")HL(GJ’) ~¢
undecidable.

or not. But this problem has already been proved to be
Hence there is no such algorithm to decide or not. L&)-¢

Let P be any arbitrary Post correspondence system and % and % are CFg's constructed
from the pairs of strings.

=L{G)LIG
Gl (%) must be a CFL and let Glgenerates L1. That is,

L=1(G) = L{G)UL(G) - Z(G)NL(G,)

- weL{GINL(G,)
by De Morgan's theorem, as shown already, any string, ' *# represents a

solution to the PCP. Hence, £ [Glj contains all but those strings representing the solution to
the PCP.

L(G) = (U2

Let for same CFG G2.

It is now obvious that LG} =28 if and only if the PCP has no solutions, which is

L(G)=L(T)

already proved to be undecidable. Hence, the question “Is ?" is undecidable.

-

(ZU{L.2.-x}) and G2be a CFG

Let £ be a CFG generating the language

L(GUL(G

M

: & :
generating) where G and ~* are CFG.s constructed from same arbitrary

instance of PCP.

L[Glj QL(GEJ iff L[GK)UL(G},) =[EU{1’2""H})*

i.e. iff the PCP instance has no solutions as discussed in part (ii).

Hence the proof.

Theorem 11.1.3: It is undecidable whether an arbitrary CFG is ambiguous.

Proof : Consider an arbitrary instance of PCP and construct the CFG's % and % from the
ordered pairs of strings.

&
We construct a new grammar G from c and ~*as follows.

&

[N’ 2, 8% S) where

N

(5:5.5).

Z is same as that of G and GJ’.

P={BUBU[5=5,

5)

This construction gives a reduction of PCP to the -------- of whether a CFG is ambiguous,
thus leading to the undecidability of the given problem. That is, we will now show that the
PCP has a solution if and only if G is ambiguous. (where G is constructed from an arbitrary
instance of PCP).

G,

Proof: Consider an arbitrary instance of PCP and construct the CFG's —% and 5, from the

ordered pairs of strings.

We construct a new grammar G from & and % as follows.

i [N’ P, S) where

N={8.5.5,,

2 is same as that of G, and GJ’.

P={B.UBU{s>5,]s,}

This construction gives a reduction of PCP to the -------- of whether a CFG is ambiguous,
thus leading to the undecidability of the given problem. That is, we will now show that the
PCP has a solution if and only if G is ambiguous. (where G is constructed from an arbitrary
instance of PCP).

Only if Assume that 1-*2>"" "% s a solution sequence to this instance of PCP.

Consider the following two derivation in %2 "%,

1 1 1
S:‘>S =7 331=>leth3231

-

?xs,"% Ky S

1

?Jﬁ. R T 1

1 1 1
oy :I; Sy :G‘> b Syil:; ¥ y&Syigil
?‘J”i,}ﬁq R A gl

1

= Yy YT

But,

XKy Ry S AV U, SINCE R hy gy

G o SR,
is a solution to the PCP. Hence the same string of terminals (b) has two derivations.
Both these derivations are, clearly, leftmost. Hence G is ambiguous.

If It is important to note that any string of terminals cannot have more than one derivation
. . : . : .
in s and 7 Because, every terminal string which are derivable under these grammars ends

with a sequence of integers a1 i Thig sequence uniquely determines which productions
must be used at every step of the derivation.

Hence, if a terminal string, e LI:G:] , has two leftmost derivations, then one of them must
begin with the step.

1

¢ ¥ and thus continues with derivation under Gy , and the other must begin with the
1

=
step ¢ 7 and then continues with derivations under % .

In both derivations the resulting string must end with a sequence el for same P 21
The reverse of this sequence must be a solution to the PCP, because the string that precede in

FAP T x
%27 B0 %, and 2727 40%% i the other case. Since the string derived in both
Lmniiaeg

cases are identical, the sequence o2 Byl

one case is

must be a solution to the PCP.

Hence the proof.

In both derivations the resulting string must end with a sequence el for same P21

The reverse of this sequence must be a solution to the PCP, because the string that precede in

M52 % and 227 0% in the other case. Since the string derived in both

. . 13,05, 500y
cases are identical, the sequence 17737 ¥l

one case 1S

P

must be a solution to the PCP.

Hence the proof.

CHECK YOUR PROGRESS
True/False type questions

= §7
1)Any two CFG's Gland G2the question "Is LIQINL(G) =47, is
undecidable.

2) It is undecidable whether an arbitrary CFG is ambiguous.

3) PCP over one-letter alphabet is undecidable.

4) There is no algorithm that determines whether an arbitrary Post Correspondence System
has a solution

5) Some decidable problem in context-free languages

Answers-
1) True
2) True
3) False
4) True

5) False

11.3 POST'S CORRESPONDENCE SYSTEM (PCS)

A post correspondence system consists of a finite set of ordered pairs (%.25). =12,

% %EX i st

| e
where for some alphabet Z.Any sequence of numbers ‘13- is called a

solution to a Post Correspondence System.

T MM TV M The Post's Correspondence Problem is the problem of
determining whether a Post Correspondence system has a solution.

Example 1: Consider the post correspondence system

{{aa,aab),(bb,ba),[abb,b)]

The list 1,2,1,3 is a solution to it.

Because

N5 0X = NV
giPhagsbbmgstimaat

LT T Ny M M, M M

bbaanbb = gabbaaabb

| b

|
L Jae [EEE |
R [a |
B et E |

(A post correspondence system is also denoted as an instance of the PCP)
Example 2: The following PCP instance has no solution
i b (I |

I laa? |EZ |
E la [E22 |

This can be proved as follows. (%.3,) cannot be chosen at the start, since than the LHS and
RHS would differ in the first symbol (#in LHS and '2in RHS). So, we must start

with (7.7 1). The next pair must be (72.2) so that the 3 rd symbol in the RHS becomes
identical to that of the LHS, which isa . After this step, LHS and RHS are not matching.

If (m.21) is selected next, then would be mismatched in the 7 th symbol (ZinLHS and @ in

RHS). If [xz : yﬂ) is selected, instead, there will not be any choice to match the both side in the
next step.

Example 3: The list 1,3,2,3 is a solution to the following PCP instance.

L i3 b

|
I IE ([T
2 110 o |
E o11 |

The following properties can easily be proved.

Proposition: The Post Correspondence System
[(a"' i)(aaﬁ ah) .,(ain ah)]

d&such that i, = j, or
dkand! suchthati, > i, andi, < j

has solutions if and only if

Corollary: PCP over one-letter alphabet is decidable.

. . 22, .
Proposition : Any PCP instance over an alphabet Z with =22 is equivalent to a PCP

instance over an alphabet [with |1"| A

Proof : Let Z={ay, a0}k > 2,

- = . <i< i .
Consider r={o1 We can now encode every 3,€2,148 4% as 101 any PCP instance

over £ will now have only two symbols, 0 and 1 and, hence, is equivalent to a PCP instance
r
over

Theorem 11.2.1: PCP is undecidable. That is, there is no algorithm that determines whether
an arbitrary Post Correspondence System has a solution.

Proof: The halting problem of turning machine can be reduced to PCP to show the
undecidability of PCP. Since halting problem of TM is undecidable (already proved), This
reduction shows that PCP is also undecidable. The proof is little bit lengthy and left as an
exercise.

Some undecidable problem in context-free languages

We can use the undecidability of PCP to show that many problem concerning the context-free
languages are undecidable. To prove this we reduce the PCP to each of these problem. The
following discussion makes it clear how PCP can be used to serve this purpose.

Let {[xl’yl) (7o02) (e)} be a Post Correspondence System over the alphabet 2 .
We construct two CFG's Gx and Gy from the ordered pairs x,y respectively as follows.

Gﬁ’

(MBS ong

¥

2, =2, =ZU{12, .4},
il O o S S s

nd 5 ={8, 2 »8,i 8, >yl =12, a)

it is clear that the grammar % generates the strings that can appear in the LHS of a sequence
while solving the PCP followed by a sequence of numbers. The sequence of number at the
end records the sequence of strings from the PCP instance (in reverse order) that generates

the string. Similarly, % generates the strings that can be obtained from the RHS of a
sequence and the corresponding sequence of numbers (in reverse order).

Now, if the Post Correspondence System has a solution, then there must be a sequence
E R Y.
R T ¢ ' N

According to the construction of 2 and %

-
Sx—?? X%, Xy Gy oo dgh and

5
Sy ?}’il}’g IR T T R |
o

In this case
XXy KBTS Y, T ik = wisay)

weL(G

WELIG) J’) implying

Hence , and

L(GINL(G,) = ¢

Conversely, let BEE(I (Gy)

weEZ

. . [TRt s H
Hence, w must be in the form wlw?2 where and w2 in a sequence "**17 "1 (since,

only that kind of strings can be generated by each of % and %).

Now, the string YT ARA TR T X% T g g solution to the Post Correspondence System.

It is interesting to note that we have here reduced PCP to the language of pairs of CFG,s
whose intersection is nonempty. The following result is a direct conclusion of the above.

11.4 CONCLUSION

This module explains about the basic understanding of Post's Correspondence Problem
(PCP). It discusses Post's Correspondence System (PCS) through various theorems,
corollaries and lemmas along with step-wise elaborated solved examples.

11.5 CHECK YOUR PROGRESS
Fill in the blanks

1) A post correspondence system consists of a set of ordered pairs.

2) PCP over one-letter alphabet is

= ;i
3) Given any two CFG's Gland G2the question "Is 2(CtI1Z(G:)=¢7,

is

4) It is undecidable whether an arbitrary CFG is

5) The full form of PCP is

11.6 ANSWER CHECK YOUR PROGRESS
1) Finite

2) Decidable.

3) Undecidable

4) Ambiguous.

5) Post correspondence problem.

11.7 MODEL QUESTION

Qs-1) Explain Post's Correspondence Problem (PCP) in brief?
Qs-2) It is undecidable whether an arbitrary CFG is ambiguous. explain?
Qs-3) PCP over one-letter alphabet is decidable. Explain?

Qs-4) : For any two arbitrary CFG's Gl and G2, what are three conditions that are
undecidable?

Qs-5) Explain the halting problem of turning machine can be reduced to PCP to show the
undecidability.

11.8 REFERENCES
https://nptel.ac.in/courses/106/103/106103070/

11.9 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI
3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

UNIT-XII CHOMSKY HIERARCHY

12.1 Learning Objectives

12.2 Chomsky Hierarchy

12.3 Equivalence of Unrestricted grammars and TMs
12.4 Context-Sensitive Language and LBAs

12.5 Equivalence of Linear-bounded Automata and Context-sensitive Grammars
12.6 Conclusion

12.7 Check your progress

12.8 Answer Check your progress

12.9 Model Question

12.10 References

12.11 Suggested readings

12.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Chomsky Hierarchy. It explains Equivalence of
Unrestricted grammars, Turing Machines (TMs), Context-Sensitive Language and Linear-
bounded Automata (LBAs). It also discusses the Equivalence of LBAs and Context-sensitive
Grammars through various theorems, lemmas and step-wise elaborated solved examples.

12.2 CHOMSKY HIERARCHY

The famous linguistic Noam Chomsky attempted to formalize the notion of grammar and
languages in the 1950s. This effort, due to Chomsky, resulted in the definition of the
"Chomsky Hierarchy", a hierarchy of language classes defined by gradually increasing the
restrictions on the form of the productions. Chomsky numbered the four families of
grammars (and languages) that make up the hierarchy and are defined as below.

LetG=(N,Z,P, S) be a grammar

1. Gis called a Type-0 or unrestricted, or semi-there or phrase-structure grammar if all
productions are of the form i ’8, where %% [NUE) and HE [Nuz) .

2. G is a Type-l or context-sensitive grammar if each production a— 8

in P satisfies [<]4] such that QE[NUE) and “SE[NUE) . Type-1 grammar , by

special dispensation , is allowed to have the production # =€, provided S does not
appear on the right-hand side of any production.

3. G is a Type-2 or context-free grammar if each production a8 in P satisfies [
i.e. @ is a single nonterminal.
4. Gis a Type-3 or right-linear or regular grammar if each production has one of the

following three forms: 4 —=&C ,A=b, A= = where 4, CE

N (with 4 = C allowed) and €€Z

5. The language generated by a Type-i grammar is called a Type-i language, i = 0,1,2,3. A
Type-i language is also called a context-sensitive language (CSL). We have already
observed that a Type-2 language is also called a Context-Free Language (CFL) and a
Type-3 language is also called a regular language. Each class of language in the Chomsky
hierarchy is characterized as the language generated by a type of automata. These
relationships have been summarised in the following table for convenience.

6.
Grammars Languages Automata

Type-0 , phrase-struct , semi-true, Recursively Turing Machine

unrestricted grammars enumerable
language

Type-0 , phrase-struct , semi-true,| Context-sensitive | Linear-bounded automata
unrestricted grammars language

Type-2, context-free grammars Context-free Pushdown Automata

language

Type-3, regular, right-linear, Regular Language Finite Automata
left-linear grammar

We have already shown
o the equivalence of FAs (regular language) and type-3 or regular grammars, and
o the equivalence of PDAs and CFGS.

We now show the equivalence of
e unrestricted grammars and TMs, and
e context-sensitive grammars and LBAs.[Note that we need to introduce the notion of
LBAs first to do this]

12.3 EQUIVALENCE OF UNRESTRICTED GRAMMARS AND
TMs

We want to show that a language L=L(M) for some TM M iff L =L(G) for some
unrestricted grammar G. The following two theorems completes the proof.

Theorem: Let G= (N, Z, P, S)be an unrestricted grammar. Then the language L(G)
generated by G is recursively enumerable.

Proof : To prove the theorem, we construct a 3-type nondeterministic TM M that

accepts L(G). Tape 1 always holds any given input string w = A production a— 8

of G is represented as a# 8 where # is a special tape symbol of M such that #% [NUE).

All the production of G with this representation are written on tape-2 of M. Two productions
are separated by the string ##. The idea is that M's computation simulates derivations of G.
Tape 3 is used to simulate the derivative of G. On many input string w, the computation
of TM = M consists of the following steps:

1. wis written on tape 1.

2. §is written on the first cell of tape 3.

3. A production a8 is chosen from tape 2 (we assume that all the productions
of G are written on tape 2)

4. M searches for an instance of the string & on tape 3. If found , then it goes to next
step; otherwise the computation halts and M rejects w.

5. The string & on tape 3 is replaced by the string 8 (in the RHS of the

production a— g). [This step minimies one step in the derivation of w in G.]

6. The string of tape 3 is compared with that on tape 1 (i.e. with the input w). If there is a
match , the computation halts in an accepting state (i.e. M accpets w).

7. Repeat step 3 through 7, to apply other productions.

a=p ¥84
Note : In step 5, if tape 3 contains MU and 2 s replaced by 8 , then it says R G .

Since and A may be of different length, the symbols of ¢ may have to be shifted to fit &
between ¥ and 9.

-

S=w
Los L[G:‘. Then ¢ . This derivation will eventually be discovered by one of the

WE L[Gj

Let

nondeterministic computations of M by using the steps given above. Hence,

Conversely, let w= L(G). Then there is an accepting computation of M for the string w. The
actions of M on tape 3 are precisely the strings derivable from S and the only string accepted
by M are terminal string in L(G). Hence w =L(G) giving L(M)=L(G). That is, M accepts
exactly L(G) and hence L(G) is recursively enumerable.

Theorem : Let L be a recursively enumerable language. Then L = L(G) for some unrestricted
grammar G.

M=(Q.Z.T.8,¢, 8 F)

Proof : Since L is r.¢, it is ampled by a deterministic TM we want

G=(NZ.P.8)

to construct an unrestricted grammar whose derivations simulates the

L(M)=L(GF) weZ S=w

computations of M, such that That is, for any string

iff symbol for some @ Bel g4 < d . For this is to happen we need to represent IDs of
TM M by strings of terminals & nonterminals in G and must have productions in such that

= = =
S % q0w ¢ agy F w.
That is,

1. The initial ID gow must be derivable from S.
2. Induction production in G to simulate every move of M.

ag; & to w.

3. If M eventually enters a final state, then transform the string
Since the string w gets modified during simulation (in step 2), the grammar G has to
remember it, so that it can reproduced once M enters a final state. So, G is constructed such

that it generates two copies of a representation of some string w'= Z' and then simulates the
behaviour of the TM M on one copy, preserving the other. If M accepts, by entering a final
state, then G transforms the second copy to a terminal string; otherwise G doesnot transform
the second copy to a terminal string.

Let £ = {al’ Bhpasos a"*} , for some k >=1
Construction of G is given below.

_[(Euigxriu(s.T.8)

e N=
e The production in P are
1. S—#qoT
2. T #lai,ai]Tforalli=1,2, ..,k
3. TR
4. R 7 [5,B]R
5. R—=E
o For every move 9 (g, X) = (P,Y,R) of the ™ M,

gla, X1 [a, Y]pforalla€ Z{E}andall¢gEQand X, Y ET

o For every move 9 (g, X) = (P, Y,L) of the ™ M,
[b,Z1q[a, X1=p[b,Z]q[a Y]foralla, b EZ{E} allX,Y,ZE andg
0

e ForallgEF,allaSZ Y {EYand X ET

1. [a,X]q*qaq
2. gla,X]*qaq.
3. g—=€

*

We now see that a representation of the initial ID 70" of M for a string 77~ %1%27 % < o

can be derived from S using the two rules 1 and 2 i.e.
1
S:; ol
1
='dy [ﬂls ﬂl]T

E

:?’ﬁ?'u[ﬂh ﬂl][az : a—z]"'[ﬂx : a’m]T

Assume that M accpets w and it doesnot use more than i calls (i>=0) to the right of w. Then
using rule 3 once and rule 4 i-times, and finally rule 5 once, G derives the following string

1
iy ?qu[al, al][ag . a‘-;]-"[ﬂx ; ﬂx]T?QD[als ‘31][‘32 =‘32]"'[ax ,ax]R (Using rule 3)

:’G’fi'n[ﬂlﬂl][“z:ﬂz]"'[ﬂmsax][e=g]---[E=B]R
‘ﬁd—"
numbers (Using rule 4 i-times)
1
:G>gu[al,al][ag,ag]---[ax,an][e,ﬂ]...[E,B]
‘ﬁ—}

 naders (using rule 5)

This is the representation of the string
ity i, B B
'\ﬂ_}
1=bmes
For any further derivation from this point, we can use only rules 6 and 7 until we encounter a
final state.

Let | e be the representative of the string & in G. Consider the ID @ in G. Consider the
ID Gaga; 4 of M for %% = E.

If 9 (q, aj)=(P, X, R) is a move of M, then using rule b, we find that

[a]la.a]a[a;.a,][5= [la.a][a;.1] ol B]

Do . ; . @, .
which is a correct representation of the next ID g Xp o and it remembers the symbol ¥ in
the first component of the nonterminal and modifies it to X in the second component.

(q’a.i") =[P’F’L)

)
If on the other hand, is move of M, then similarly, it is easy to see that

using rule 7 we find a correct representation of the next ID apal p of M.
Hence, at every step, using rule 6 and 7, the grammar G correctly simulates the computations
of M.

I ¥ L(M) , then M eventually enters a final state. At this point, the derivation in G can use
rule 8 to reproduce the original string w from the first component of the representation of

every nonterminal in the resulting string. All the q's can be erased by using q = =, as many

-

=
times as required. Therefore S w and so w= L(G).
Conversely, if w=L(G) there is a derivation of w in G. Proceeding in exactly in opposite

. . . =i
direction as discussed above, we discover that for some & ,’8 €@ and 97

we LI M

. Hence (), completing the proof.

12.4 CONTEXT-SENSITIVE LANGUAGE AND LBAs

We first introduce the notion of LBAs and then show the equivalence of CSLs and LBAs.

e TM is the most general and powerful computational model developed so far.

e [t is interesting to observe that though a large number of variations of TMs exists, all are
equivalent to the basic TM model in terms of power or capability i.e. all can accept r.e
language only. This implies that it is not possible to increase the power of a TM by
putting more features in terms of complex and /or additional structures to the basic model.

e But by putting some kind of restrictions on the use of the structures of the TM, it is
possible to limit the power. For example,

o If only a finite amount of tape is allowed to use with read-only tape that can move
only to right one call at a time, we get a FA accepting regular language.

o If the tape is restricted to be used as stack, it will work like a nondeterministic
pushdown automata.

e Similarly, we get another interesting type of automata by restricting the number of tape
cells that can be used.

e This new automata, denoted "linear bounded automata" (or LBA), accepts a smaller class
of languages than the class of r.e. languages. An LBA is exactly similar to a TM except

that on any input w= = with |[w| = n, it can use only (n+2) numbers of cells of the input
tape.The input string is always put between a left-end marker, <, and a right-end marker,
>, which are not puts of the input string. The read-write head cannot move to the left of
the left-end marker or to the right of the right-end marker. The two end markers cannot be
overwritten in any case.

Formally, a LBA is a nondeterministic TM M = (Q,E,r,5 ,q0, B, <, >, F) satisfying the
following conditions:
1. The input alphabet, = must contain two special symbols < and >, the left and right
end markers, respectively which do not appear in any input string.

2. 9 (g, <) can contain only element of the form (p, <, R) and & (¢, >) can contain only
elements of the form (p, >, L) forany ¢, p Q.

[Note: All other elements are identical to the corresponding elements of a TM]

The language accepted by M, denoted by L(M) is

LM) = {w|we[2,{<, >}) and @ bel } for some @fel ang }

The blank symbol, B is not necessary to be considered as a part of M since it cannot move to
the right of right - end marker.

The reason behind using the name "linear bounded automation" is derived from the following
fact:

grEF

If on every input w with [w| =n,a TM is allowed to use only an amount of tape that
is "bounded by some linear function" of n, then the computational power of this TM would
be identical to the TM which is restricted to use the amount of tape containing n+2 cells (as
given in the definition).
L=ia"b'c*|n21
Example : The language {a e } is accepted by some LBA.
To show that L is accepted by an LBA. we need to construct a TM to accept L such that
during computation on any input w, the read-write head moves neither beyond the right of the
rightmost symbol of w nor beyond the left of the leftmost symbol of w. The outline of the
TM M accepting L is given below.

On initial state q0, M replaces the first a by X and change state to q1 and the head moves to
the right looking for the first b, skipping all other symbols.

This b is then replaced by Y and changes state to 2 and the head moves to the right
searching for the first ¢ skipping all other symbols. This c is then replaced by Z and changes
state to q3 and the head moves to the left searching for the first X, skipping all other symbols.
On reading X in state q3 the head moves to the right (one cell) changing state to q0 again to
repeat the same process i.e match eacha,bandcand replace them by X,Y andZ,
respectively, with the same sequence of state changes.

During this process, if it reads Y (instead of the symbol a) in state q0, then it implies that
all a's have been replaced by X's and hence it needs to check that all b's and c's have also been
replaced by Y's and Z's, respectively.

This can be done by entering a state, say q4 and moving the head to right looking for any b's
or c's left until the right end is discovered (by reading a blank symbol). If not found, the input
is accepted; otherwise it is rejected.

It is observed that at no point the read-write head moves past the extreme left and right
symbols, except in the last step when it reads the first blank symbol to the right of w.

This TM can be converted to a LBA by including the two end marks and keeping all the
moves except the last one. In the last step when M reads a blank symbol, the LBA will read

(a4,) =(a4. 2. L)

the right endmarker, > and hence a move of the form can be included,

where , 95 < g to save the same purpose. This LBA also accepts the same language L as that
of M.

CHECK YOUR PROGRESS
True/False type questions

1) Letters, digits, single characters are known as strings

2) LBA is accepted by Regular language

3) Type 3 is regular language

4) Smallest unit of a grammar that appears in production rules, cannot be further broken
down is known as terminal.
5) Turing machine is most powerful language.

Answers-

1) True
2) False
3) True
4) True
5) True

12.5 EQUIVALENCE OF LINEAR-BOUNDED AUTOMATA
AND CONTEXT-SENSITIVE GRAMMARS

we now show that LBA's and CSG's are equivalent in the sense that the LBA's accept exactly
the CSLs except for the fact that an LBA can accept = while a CSG cannot generate =, that
is, L=L (M) for some CSG G. The result is shown by proving the following two theorems.

Theorem : If L is a context-sensitive language, then L is accpeted by one LBA M.

Proof : Since Lis a CSL, L =L(G) for some CSG G =(N, Z, P, S). We now construct an
LBA M with a two-track tape to simulate the derivatives of G. The first track holds the input
string (including the end markers) while the second track holds the sentential form generated
by the simulated derivation. On input <w> on its tape a computation of the LBA M consists
of the following sequence of steps.

1. The LBA writes the (start) symbol S of G on the second track below the leftmost
symbol of w.
2. If w= £ the LBA halts without accepting.

a—> 8 and a position in the

3. The LBA nondeterministically selects a production
sentential form written on the second track.

4. Tt follows next three steps

1. if a substring on track 2 starting at the selected position doesnot match , & the
LBA halts in a rejecting state.

2. If the substring on track 2 starting at the selected position is & but the string

obtained by replacing & by 8 (i.e. applying the rule a— 8) has a length
greater than |w|, then the LBA halts in rejecting state.

3. otherwise, & is replaced by 8 on track 2.

5. If track 2 contains the string w, then the LBA halts in an accepting state, otherwise,
steps 3 through 5 are repeated.

-

S=rw
Thus, the LBA M will accpet a stringwif ¢ . Conversely, a computation of the

LBA M with input <w> that falls in an accepting state consists of a sequence of string
transformations generated by steps 3 and 4. But these transformations define a deviation

. i S;> W
of win G. Thus, the LBA M accepts w iff ©

2.2, 08,842, F)

Theorem : Let L be a language accepeted by an LBA M =[. Then L-{

=1} is a context-sensitive language.

Proof : We need to construct an equivalent CSG G that simulates the computation of the
LBA M. Note that the techniques used to construct an equivalent unrestricted grammar that
simulates the computations of a TM (as given in theorem) cannot be adopted directly. The
reason is that if the CGS simulated the LBA using distinct symbols for the states and the
endmarkers, then it could never erase these symbols later to produce the original input string
since it would violate the noncontracting or monotonicity property of a CSG. Because use of
a production in a derivation to erase a symbol in a sentential form would produce a starter
sentential form. Hence the endmarkers must be incorporated into adjustment tape symbols
and similarly the states must be incorporated into the symbols scanned by the tape head. The

input alphabet of G is obtained from Zx by removing the endmarkers. Nonterminals of G are
ordered pairs-the first component is a terminal symbol and the second component is a string
consisting of a combination of a tape symbol and (possibly) a state and endmarkers. The

[N’EG’P’ Sj is as follows.

construction of the CSG G =
P D {<, >}

N={S, A, [a, X], [a,<X], [a, X>], [a, <X>], [a, ¢X], [a, q<X], [a, <qX], [a, dX>], [a, Xq >],
[a, Xg>], [a, qX>], [a, Xq>], [a, q<X>], [a, <qx>],[a, <Xq>] }

for all a€Zy AET and geL

The production in P are given below.

S—[a, gy <a)d|[a g, <a >]VaeZ,
A= a, alA|[a. a >]VaeZ;

1.
2.

Using these two rules we get

=
g 7

-

[a,q0<a>] or

S?[“=qu Capl[ag.ay][, a5] - [ay.a, 2]

The string that is obtained by concatenating the elements of the first component(s) of the

ordered pairs (composite variable(s)) is %% % and represents the input string to the

LBA M. Concatenating the second component we get the string ACTRS which is the

initial configuration of the LBA M on the input string

gy

Rules 3 and 4 given below are used to simulate the computations of the LBA M.

. For every move e X)=(p.1.R) of the LBA include

[ai,gx][aj,aj] —>[czi,lf’][c;tj,paj] o p
Va,a,€Zu{el X, Yerl and P4€€

Similarly for every move 5[g,}f) i [p ’Y’L) of the LBA include
[ai,ai][aj.,gX] %[ai,pai][af}’]
[a,qu & cx]% [cz,< qua]

in P.
whenever

(40, <) = (2. <. R] is a move of the LBA.
[a.%q >]—=[a.pX 7] whenever

5[‘3" >) N [p, ? L) is a move of the LBA

The two rules 5 and 6 are used to handle the two special extreme cases as indicate in
the definition of the lba.

Hence every move of the LBA can be simulated by G using the above rules. It is clear
that if the LBA ever enters a final state qf , then simulating this step the CSG G will

produce a variable .0z 8] in the sentential form. At this point, the derivation must
generate the original input string.

Using the production

[a,aq,&’] —*a, Vag g and & ﬁEE", (i.e. & and/or 8 could include <, > and onre
tape symbol).

The ordered pair [a’ ag £]

first component.

is transformed into the terminal symbol contained in the

Now the following rules allow deletion of the second component of an ordered pair
(i.e. composite variable) if it is adjacent to a terminal symbol.

3 [a,.::r]b—} al

b[a,&]%ba Ta,beEx

9. & and all possible &= z

Once, all the second component s are deleted using the above two rules, the original input
string is correctly generated. This is the correct derivation the LBA would accept the same
string as it had entered one of the final states (implied by use of rule 7).

It is also clear that the CSG G can generate a terminal string only if the LBA accepts it.
Note that the production used here are all context-sensitive. Also, the second components

do <7

donot produce the string . Thus the computation with the empty string as input is not

simulated by the CSG.

A proof that any string WwEZ g accepted by the LBA Miff it is generated by the
grammar G is exactly similar to one that was produced in Theorems.

. What are the different levels in the Chomsky hierarchy?

grammars (generators) automata (acceptors)

recursively Turing
enumerable machine

* MOre complax
= more powerful
* less realriced

ﬁ

context- linear bounded
sensitive automaton

context- push-down
free automaton

regular finite
grammar automaton

Chomsky Hierarchy Levels. Source: Fitch. 2014.
There are 4 levels — Type-3, Type-2, Type-1, Type-0. With every level, the grammar
becomes less restrictive in rules, but more complicated to automate. Every level is also a
subset of the subsequent level.

o Type-3: Regular Grammar - most restrictive of the set, they generate regular languages.
They must have a single non-terminal on the left-hand-side and a right-hand-side
consisting of a single terminal or single terminal followed by a single non-terminal.

o Type-2: Context-Free Grammar - generate context-free languages, a category of
immense interest to NLP practitioners. Here all rules take the form A — 3, where A is a
single non-terminal symbol and f is a string of symbols.

o Type-1: Context-Sensitive Grammar - the highest programmable level, they generate
context-sensitive languages. They have rules of the form a A B — a vy B with A as a non-
terminal and a, B, y as strings of terminals and non-terminals. Strings a, p may be empty,
but y must be nonempty.

o Type-0: Recursively enumerable grammar - are too generic and unrestricted to describe
the syntax of either programming or natural languages.

Any language is a structured medium of communication whether it is a spoken or written
natural language, sign or coded language, or a formal programming language. Languages are
characterised by two basic elements — syntax (grammatical rules) and semantics (meaning).
In some languages, the meaning might vary depending upon a third factor called context of
usage.

Depending on restrictions and complexity present in the grammar, languages find a place in
the hierarchy of formal languages. Noam Chomsky, celebrated American linguist cum
cognitive scientist, defined this hierarchy in 1956 and hence it's called Chomsky Hierarchy.

Although his concept is quite old, there's renewed interest because of its relevance to Natural
Language Processing. Chomsky hierarchy helps us answer questions like “Can a natural
language like English be described (‘parsed’, ‘compiled’) with the same methods as used for
formal/artificial (programming) languages in computer science?”’

. What are the common terms and definitions used while studying Chomsky Hierarchy?

o Symbol - Letters, digits, single characters. Example - A,b,3

o String - Finite sequence of symbols. Example - Abcd, x12

o Production Rules - Set of rules for every grammar describing how to form strings from
the language that are syntactically valid.

o Terminal - Smallest unit of a grammar that appears in production rules, cannot be further
broken down.

o Non-terminal - Symbols that can be replaced by other non-terminals or terminals by
successive application of production rules.

o Grammar - Rules for forming well-structured sentences and the words that make up those
sentences in a language. A 4-tuple G=(V, T, P, S) such that V = Finite non-empty set
of non-terminal symbols, T = Finite set of terminal symbols, P = Finite non-empty set of
production rules, S = Start symbol

o Language - Set of strings conforming to a grammar. Programming languages have finite
strings; most natural languages are seemingly infinite. Example — Spanish, Python,
Hexadecimal code.

o Automaton - Programmable version of a grammar governed by pre-defined production
rules. It has clearly set computing requirements of memory and processing. Example —
Regular automaton for regex.

L[]

What are the important extensions to Chomsky hierarchy that find relevance in NLP?

¢ I" l’ll
context-free

“nbm(.ndm

Mildly Context Sensitive Languages. Source: Jiger and Rogers. 2012.

There are two extensions to the traditional Chomsky hierarchy that have proved useful in
linguistics and cognitive science:

. Mildly context-sensitive languages - CFGs are not adequate (weakly or strongly) to
characterize some aspects of language structure. To derive extra power beyond CFG, a
grammatical formalism called Tree Adjoining Grammars (TAG) was proposed as an
approximate characterization of Mildly Context-Sensitive Grammars. It is a tree generating
system that factors recursion and the domain of dependencies in a novel way leading to
'localization' of dependencies, their long distance behaviour following from the operation of
composition, called 'adjoining'. Another classification called Minimalist Grammars (MG)
describes an even larger class of formal languages.

. Sub-regular languages - A sub-regular language is a set of strings that can be
described without employing the full power of finite state automata. Many aspects of human
language are manifestly sub-regular, such as some ‘strictly local’ dependencies. Example —
identifying recurring sub-string patterns within words is one such common application.

12.6 CONCLUSION

This module explains about the basic understanding of Chomsky Hierarchy. It explains
Equivalence of Unrestricted grammars, Turing Machines (TMs), Context-Sensitive
Language and Linear-bounded Automata (LBAs). It also discusses the Equivalence of LBAs
and Context-sensitive Grammars through various theorems, lemmas and step-wise elaborated
solved examples.

12.7 CHECK YOUR PROGRESS
1) Type 3 is grammer.

2) Linear bound automata is accepted by

3) Smallest unit of a grammar that appears in production rules,is known as

4) Set of rules for every grammar describing how to form strings from the language that are
syntactically valid is known as

5) Recursive enumerable grammer is accepted by

12.8 ANSWER CHECK YOUR PROGRESS

Fill in the blanks:

1) Regular

2) Context sensitive language
3) Terminal

4) Production rules

5) Turing machine

12.9 MODEL QUESTION

Qs-1) What is grammer explain? What are its benefits? Expalin.
Qs-2) Explain Chomsky Hierarchy with the help of diagram?
Qs-3) What is sub-regular language?

Qs-4) Explain typel Grammer?

Qs-5) What is midly context sensitive language? Explain.

12.10 REFERENCES

1. Devopedia. 2021. "Chomsky Hierarchy." Version 9, June 28. Accessed 2021-06-28.
https://devopedia.org/chomsky-hierarchy.
2. https://nptel.ac.in/courses/106/103/106103070/

12.11 SUGGESTED READINGS

3. Hopcroft, John and Jeffery Ullman. 1987. "Introduction to Automata theory, languages
and computation." Indian Student Edition:Narosa Publishing House.

4. Jager, Gerhard and James Rogers. 2012. "Formal language theory: refining the Chomsky
hierarchy." Philos Trans R Soc Lond B Biol Sci., vol. 367, no. 1598, pp. 19561970, July
19. Accessed 2019-08-2019.

N e W

©

Martin J. C., “Introduction to Languages and Theory of Computations”, TMH
Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI
Cohen D. 1. A., “Introduction to Computer theory”, John Wiley & Sons
Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

Roberts, Eric. 2004. "Basics of Automata Theory." Automata Theory, Stanford University,
September. Accessed 2019-10-16.

