
Programming in C Sharp Using Net Framework

Index

Preface

Block 1
Unit 1: Introduction of C#

Introduction
C# Basics

Microsoft.Net
Some common Difference between C# & others OOPs languages

Scope of Variables

Unit 2: Operators & Expressions in C#

Introduction
Operator and Operands

Types of Operator
Arithmetic Operator

Logical Operator
Relational Operator

Increment & Decrement Operator
Assignment Operator

Special Operator
Conditional Operator

Bitwise Operator
Precedence of Operator

Type Conversion

Unit 3: Control Statement in C#

Introduction
Statements

Types of Control Statements
Branching Control Statements

Jumping Statement
Looping/Iteration Control Statement

Summary
Exercise

Unit 4: Structures and Array
Introduction

Structures

Nested Structures
Difference between Classes & Structures

Enumerations
Enum Type Conversion

Arrays
Creating an Array

Types of Array
1-D Array

2-D Array
Dynamic Array

Block 2

Unit 6: Inheritance and Polymorphism

Introduction
Inheritance in C#

Types of Inheritance
Single Inheritance

Multilevel Inheritance
Multiple Inheritances (Interface)

Polymorphism in C#
Abstract Base Classes & Methods

Unit 7: Overloading and Overriding

Introduction

Operator Overloading

Unary Operator Overloading
Binary Operator Overloading

Method Overloading
Method Overriding

Unit 8: Event & Delegates

Introduction

Delegates
Declaration of Delegates

Instating a Delegates
Delegates

Events

Unit 9: Properties & Indexer

Introduction

Properties
Types of Properties

Indexers

Block 3

Unit 10: Assemblies & Attributes

Introduction

Assemblies
Creating Assemblies

Types of Assemblies

Assemblies and the Internal Access Modifiers
Customizing an Attributes

In-built Attributes
Using Win32 API

Creating Custom Attributes
Versioning

Reflection

Unit 11: Directive and Debugging
Introduction

Error
Types of Errors

Finding Errors
Preprocessor Directive

Using Debuggers

Unit 12: Exception Handling

Introduction

Exceptions
Types of Exceptions

Raising Exceptions using Throw
The try statement

The try-catch statement
The finally statement

Unit 13: Threading in C#

Introduction

Definition of Threading

Thread Creation
Synchronizing of Thread

Multithreading

Block 4

Unit 14: Namespace

Introduction
Namespaces

Qualified Naming
Using Namespace Directives

Using Alias Directives

The .NET Base Class Library

Unit 15: Graphics

Introduction
Graphics Object

Brushes
Pens

Images
Text and Drawing

Unit 16: Window Based Application in C#

Introduction

Component of a Form

Labels
Buttons

Text Boxes
List Boxes

Check Boxes and Radio Buttons
C# Control

Method
Properties

Event

Unit 17: Web Based Application in C#

Introduction
ASP.NET Web Application

Creating a Web Based Project with C#

Building Web Service

Block 5

Unit 18: Files and Database Programming

Introduction
Files and Directories

Creating a File
Deleting a File

Database
MS-Access

Inserting Data in MS-Access

Deleting Data in MS-Access
Updating Data in MS-Access

Retrieving Data in MS-Access
SQL

Inserting Data in SQL
Deleting Data in SQL

Updating Data in SQL
Retrieving Data in SQL

XML
Inserting Data in XML

Deleting Data in XML
Updating Data in XML

Retrieving Data in XML
Converting SQL Data in XML format

Unit 19: COM form C# Application

Introduction
Using COM Component from C#

Unit 20: C# and .NET Security

Introduction

Security Role
Code Security

Code Security Policy
Code Security Permissions

User Security

Project:

Console Based Project
Railways Reservation System

Window Based Project

Library Management System

Chapter wise Lecture Notes

Bibliography
Index

1
Introduction of C#

1.1 INTRODUCTION

As we knows that computer and software are the backbone of technology. A computer
cannot understand person’s spoken language like English. So that, we must familiar with
any language that computer can easily understand. This is when programming comes in the
picture. Programming is the act or process of planning or writing a program. When a
programmer writes a code actually he is using any programming language. Hundreds of
languages came but only some languages were popular due to their performance.
 Since the invention of the computer many programming languages approaches have
been tried. These include techniques like top down, bottom up, modular, structured &
OOPs.
 In continuation of change in technology software industry or program developers
need some recent languages .Today Client site application & Server site application, Mobile
application development is demand of software industry .So a language was needed for
development , then a language came in existence which have many features of C, C++, Java
, VB etc. This language helps programmer to create secure, robust, portable, distributed
object oriented applications for the real world and global internet.
 Can you guess it? Yes, it is C# language which supports maximum features of Object
Oriented Programming & also helps us for easy doing programming in Console and
window application. Learning a programming language is much like learning any other
skill. It also requires lots of practices. In this book we teach you language C# learning is
same as learning of Hindi & English. Here, we use basically two important terms of
application development - The.Net and C#.
 C# language also focuses on the Windows based application programs, visual
programming concepts, interactive graphics fundamentals, and database connectivity
concepts.
 This book includes topics such as Windows Forms, Windows Controls, Windows
programming data access with ADO .NET, and handling data access and data manipulation
in codes and also all console based program.

The book provides deep insights into the .NET programming concepts and is
designed to enhance the programming skills of the users of C#. This book is a practical
introduction to programming in C# utilizing the services provided by .NET to build Web-
based services and others. Here we introduces C#'s advanced object-oriented capabilities

U n i t

early — helping you make the most of them to create software with unprecedented
efficiency and power and also covers data types, formatting and conversions, exceptions,
interfaces, collections, the callback mechanism, and attributes of languages .
 Finally, this book will cover all aspect of C# programming language. So enjoy
programming very easily. Here our team will guide you beginning to end of C#
programming and we hope you are comfortable after reading this book.
The main objective of this book is-

➢ To understand the basic concept of C#.
➢ To understand the concept of .net framework
➢ To understand data types
➢ To understand data base connectivity
➢ To develop complete application using C# and .net
➢ To obtain a basic idea of development of future generation of application and learn

many more with executed codes.

1.2 C# BASICS

A programming language is a language for expressing instructions to a computer.
C# (pronounced C Sharp) is a very new powerful type-safe standard object oriented
programming language developed by Microsoft corporation which facilitate programmer to
create different type of secure and robust application that can easily run on Microsoft.Net
framework a new technology provided by Microsoft.
As per definition given by Microsoft “C# is a simple, modern, object oriented and type safe
programming language derived from C & C++ languages and easy to work. C# also
combines the high productivity of C, C++, Visual Basic and Java. C# may well become the
dominant language for building applications on Microsoft platforms.

C# used for creating traditional Windows client applications, XML Web services,
distributed components, client-server applications, database applications, and more.
Additionally Visual C# 2010 provides an advanced code editor, convenient user interface
designers, integrated debugger, and many other tools to make it easier to develop
applications based on version 4.0 of the C# language and version 4.0 of the .NET
Framework.

 C# is an international standard programming language used to create instructions
that direct the computer about what to do, when to do it, and how to do something. It
models real world well.

Programmers can develop different types of applications with C# language like-
1. Window based client applications
2. XML web services
3. Server side application
4. Dynamic web pages
5. Web services
6. Industrial application
7. Mobile applications
8. Distributed components
9. Database applications and many more.

Here we can say that C# =most features of C+, C++, VB & Java

1.2.1 Versions of C#

1. C # 1.0
2. C # 1.2
3. C # 2.0
4. C # 3.0
5. C # 4.0 is the new version of the C# Programming language.
6. C # 5.0* (*->awaited)

1.2.2 Characteristic of C#

As other programming languages, C# has several characteristics as follows -
1. Class & object
2. Polymorphism
3. Inheritance
4. Dynamic binding
5. Overloading
6. Struct & enum
7. Boxing & Unboxing
8. Exception handling
9. Rapid action development(RAD)
10. Window application
11. Garbage collections
12. Multithreading
13. Null able types

In addition of these, C# makes easy to develop software with the help of following-

1. Delegates
2. Properties
3. Attributes
4. Inline XML documents
5. Language integrated query link (LINQ)

1.2.3 Special Characteristics of C#

1. Application component written in C# can be combined with components written in
other language.

2. Compiled into MSIL and runs on CLR and is compiled just –in-time as each method
is used the first time in program.

3. The CLR adds another layer between the operating system and application.
4. C # also provides Indexes (like arrays)

1.3 MICROSOFT .NET

The Microsoft .NET is an advance method of programming technology that greatly
simplifies application development, both for traditional, proprietary applications and for the

emerging paradigm of Web-based services. .NET is a complete restructuring of Microsoft’s
whole system infrastructure and represents a major learning challenge for programmers
developing applications on Microsoft platforms.
 C# is a major compiler of .net framework. But learning the new programming
language is only part of the challenge. The much greater challenge is learning the .NET
Framework and all its capabilities.
 The.net framework is a new technology for building the future generation of
Application development designed by Microsoft Corporation for developing Window based
Software’s. This framework provides a complete and integral environment designing &
executing console applications, window application, web applications, web services, class
libraries and many more.The.net have a big library that can be utilized by the programmers
for other languages. The .net frameworks execute in a Common Language Runtime (CLR) a
software environment.

.net framework:

The .NET Framework has two main components:

1. The common language runtime(CLR)

2. The .NET Framework class Library

The common language runtime is the foundation of the .NET Framework or you can say it’s
a heart of .NET Framework. The class library, the other main component of the .NET
Framework, is a comprehensive, object-oriented collection of reusable types that you can use
to develop applications.The.NET Framework provides an object-oriented programming
model for multiple languages like Visual Basic, Visual C#, Visual C++ etc.
 The following sections describe the main components and features of the .NET
Framework in greater detail.

1.3.1 MS Visual Studio is a large IDE for .Net Framework.

The .NET Framework enable us to accomplish a range of common programming tasks,
including tasks as string management, data collection, database connectivity, and file access.
In addition to these common tasks, the class library includes types that support a variety of
specialized development features.

We can use the .NET Framework to develop the following types of applications and services:

1. Console applications.
2. Windows GUI applications (Windows Forms).

The .net = Class Library +CLR

Program Interface Base class library CLR

3. Windows Presentation Foundation (WPF) applications.
4. ASP.NET applications.
5. Web services.
6. Windows services.
7. Service-oriented applications using Windows Communication Foundation (WCF).
8. Workflow-enabled applications using Windows Workflow Foundation (WWF).

The following sections describe the main components and features of the .NET
Framework in greater detail.

1.3.2 Versions of .net framework are-

1. the .net framework 1.0
2. The.net framework 1.1
3. the.net framework 2.0
4. the.net framework 3.5,
5. the.net framework 4.0
6. the .net framework 4.5 *(awaited)

1.3.3 Language in .Net framework:
1. ADO.Net
2. ASP.Net
3. VB.Net
4. C#.Net

1.3.4 Software or tools for compilation & execution of C# & .Net applications:
 Select any one in following as per need -

1. Visual Studio .Net 2002
2. Visual Studio .Net 2003
3. Visual Studio 2005
4. Visual Studio 2008(for MS- Window 7)
5. Visual Studio 2010
6. Visual studio 2010
7. Visual studio 11 (suitable for MS-Window 8 & win server 8 versions)
8. Visual C# 2010 Express
9. Sharp developer
10. The.net framework SDK.

1.3.5 Execution process in .net framework-

 Source Code
 (C#)

Compiler Linker

EXE or DLL

 JIT compiler
Class Library

IL

(Fig 1.1)

The Overview Architecture of .Net framework

 Code of
language

 Executed in CLR

 APPLICATION SERVER
 C#.NET WEB APPLICATION

Web
browser

Rich Client

Mobile
Device

Other
Applications

Business
Logic

Presen
tation
Layer
(Web
Form…

Generate
d C#.Net
Code

Persiste
nt
Library

.N
ET
Da
ta
Pr
ovi
de
r Data

base

(Fig 1.2) General structure of C # data flow

1.3.6 Common Language Infrastructure (CLI)

Common Language Infrastructure or CLI is the most important component of the .NET
Framework. The purpose of the CLI is to provide a language-agnostic platform for
application development and execution, including, but not limited to, components for
exception handling, garbage collection, security, and interoperability. Microsoft's
implementation of the CLI is called the Common Language Runtime or CLR.

 The CLR is of four parts:

1. Common Type System (CTS)
2. Common Language Specification (CLS)
3. Just-in-Time Compiler (JIT)
4. Virtual Execution System (VES)

.NET FRAMEWORK

C# source code

CLS

CTS

Web services, windows form, .net remoting, Asp.net,
ADO.Net, XML services & others

CLR

the.net framework class
library

(Fig 1.3)

1.3.7 Component of .Net Framework
There mainly two components of .net –
1. CLR- The main components of CLs are-
 1. MSIL

2. JIT
3. GC
4. Assemblies
5. CAS
6. Once click

2. Class Library

This table illustrates the components of the .NET framework in details-

Windows Forms, Web Forms, Web Services,
etc.

(Developed in .NET compliant languages)

.NET Framework Base Classes
(ADO.NET, XML, Threading, I/O, Network)

Common Language Runtime (Memory
Management, Common Type System, Lifecycle

Monitoring)

1.3.8 The Common Language Runtime (CLR)

Operating System (window 7)

Common language infrastructure

The Common Language Runtime (CLR) is the virtual machine environment that all .NET

languages run in. It is a managed execution environment to provide several services for

running programs.

The common language runtime manages memory, thread execution, code execution, code

safety verification, compilation, and other system services. The runtime enforces code access

security. The runtime also enforces code robustness by implementing a strict type-and-code-

verification infrastructure called the common type system (CTS). The CTS ensures that all

managed code is self-describing. The CLR also handle the automatically memory

management. Common language runtime provides many standard runtime services,

managed code is never interpreted. A feature called just-in-time (JIT) compiling enables all

managed code to run in the native machine language of the system on which it is executing.

The CLR execution process is summarizes as:

Follow following steps-

Create source code in C#

Compile to intermediate language (IL)

Compile to Native code

Execute the program

(fig 1.4)

a) Create source code in C#-
The CLR first create a source code for source program which is to be executed. C# code is
compiled with the csc compiler.

b) Compile to intermediate language-
Source code written in C# language is compiled into an assembly language like code called
intermediate language (IL) that conforms to the CLI specification. The IL code and resources,
such as bitmaps and strings, are stored on disk in an executable file called an assembly with
an extension of .exe or .dll. It also called Microsoft Intermediate Language (MSIL).

c) Compile to native code-
In this stage, IL code must be complied with the native machine code for the computer on
which it’s running.

d) Execution of program-

After compilation is performed by JIT, it can execute in the CLR’s managed environment.
During the execution process, the common language runtime manages memory, thread
execution, code execution, code safety verification, compilation, and other system services.

Let us now take a look at other important features of .NET

1.3.9 Common Type System (CTS)

The common type system (CTS) defines how types are declared, used and managed in the
runtime. CTS are an important part of the runtime's support for cross-language integration.

The common type system performs the following functions:

1. It provides a framework that helps enable cross-language integration, type safety,
and high performance code execution.

2. It provides an object-oriented model that supports the complete implementation of
many programming languages.

3. It defines a set of rules that languages must follow, which helps ensure that objects
written in different languages can interact with each other.

The common type system supports two general categories of types:

1. Values Type: Value types directly contain their data, and instances of value types

are either allocated on the stack or allocated inline in a structure.

2. Reference Type: Reference types store a reference to the value's memory address,

and are allocated on the heap. Reference types can be self-describing types, pointer

types, or interface types.

The common type system in the .NET Framework supports the following five
categories of types:

1. Class
2. Structure
3. Enum
4. Interfaces
5. Delegates

The Common Language Specification (CLS) is a set of basic language features needed by

many applications has been defined.

1. CLS is a subset of CTS.
2. The CLS provides a feature which helps ensure that objects written in different

languages (out side of .NET Framework languages) can interact with each other.

 1.3.10 The Base Class Library

The Base Class Library (BCL) is a standard library available to all languages using the .NET
framework. The .NET Framework includes classes, interfaces, and value types that expedite
and optimize the development process and provide access to system functionality.

The .NET Framework includes types that perform the following functions:

1. Represent base data types and exceptions.
2. Encapsulate data structures.
3. Perform I/O.
4. Access information about loaded types.
5. Invoke .NET Framework security checks.
6. Provide data access, rich client-side GUI, and server-controlled, client-side GUI.

The .NET Framework provides a rich set of interfaces, as well as abstract and concrete (non-
abstract) classes. You can use the concrete classes as is or, in many cases, derive your own
classes from them. To use the functionality of an interface, you can either create a class that
implements the interface or derive a class from one of the .NET Framework classes that
implements the interface.

The BCL is sometime referred to s the Framework Class Library (FCL), which is a
superset including the Microsoft namespaces.

Followings are the same namespaces provides by the .NET Framework.

1.3.11 Standardized namespaces

1.3.11.1 System

This namespace include the core needs for programming. It includes base types like String,
Date Time, Boolean, and so forth, support for environments such as the console, math
functions, and base classes for attributes, exceptions, and arrays.

1.3.11.2 System.Collections

Defines many common containers or collections used in programming, such as lists,ques,

hastable , stack etc.

1.3.11.3 System.Diagnostics

Gives you the ability to diagnose your application. It includes event logging, performance

counters, tracing, and interaction with system processes.

1.3.11.4 System.Globalization

Provides help for writing internationalized applications. "Culture-related information,

including the language, the country/region, the calendars in use, [and] the format patterns

for dates, currency, and numbers" can be defined

1.3.11.5 System.IO

Allows you to read from and write to different streams such as files or other data streams.

Also provides a connection to the file system etc.

1.3.11.6 Non standardized namespaces

System.Configuration

Provides the infrastructure for handling configuration data.

System.Data

This namespace represents the ADO.NET architecture, which is a set of computer software

components that can be used by programmers to access data and data services.

System.Drawing

Provides access to GDI+ graphics functionality, including support for 2D and vector

graphics, imaging, printing, and text services.

System.Linq

Defines the IQueryable<T> interface and related methods, that lets LINQ providers to be

plugged in.

1.3.11.7 System.Web

Provides various web related functionality. It enables browser-server communication and

the creating XML Web Services. Most or all of these libraries are referred to as the ASP.NET

architecture.

1.3.12 Language Interoperability (LI)

An important feature of the .NET Framework is language interoperability. It means program
code written in one class can be execute in code written in another language.IL code
produced by the C# compiler conforms to the Common Type Specification (CTS), IL code
generated from C# can interact with code that was generated from the .NET versions of
Visual Basic, Visual C++, or any of more than 32 other CTS-compliant languages. A single
assembly may contain multiple modules written in different .NET languages, and the types
can reference each other just as if they were written in the same language.

In addition to the run time services, the .NET Framework also includes an extensive library
of over 4000 classes organized into namespaces that provide a wide variety of useful
functionality for everything from file input and output to string manipulation to XML
parsing, to Windows Forms controls. Some important features of Li are as under-

A class code written in one language can be used by another language. A class can be written
in more than one language (they are supported by .net framework).By supporting more than
one language means programmers need not to start from beginning of language to execute
using .net application and .net remove the restrictions of language dependency and allow
programmers to choose their language for development.
IL also makes a strong distinction between value types & reference types and also specifies
the manner in which the data is stored in both manners.

1.3.13 Common Language Specification
Common language Specification (CLS) work with Common Type System (CTS) for ensuring
language interoperability .CLS specifies a set of minimum standards that all language
compiler targeting .net must support. It is designed to be a large enough and to include the
language constructs which is needed by programmer .C# language by itself is ClS compliant
to a large extent.

1.3.14 Microsoft Intermediate Language (MSIL)
The compliers first create a source code for source program which is to be executed. After
compilation, the complier produces an assembly language-like code called intermediate
language (IL code). It also called Microsoft Intermediate Language (MSIL).
 MSIL includes instructions such as instructions for loading, storing, calling method
and control flow of program etc.
A compiler produces metadata, which describe the information of the code, with the MSIL.
After that, MSIL code must be complied with the native machine code for the computer on
which it’s running. This task is performed with a just-in-time (JIT) complier.
After compilation is performed by JIT, it can execute in the CLR’s managed environment.

1.3.15 JUST –IN – TIME Compilation
After generating a MSIL code, it must be complied with the native machine code for the
computer on which it’s running. This task is performed with a just-in-time (JIT) complier.
The CLR calls the JIT compiler to compile and delivery any methods that are not in memory
during execution. This process continues as needed until the program is finished.

There are 3 types of JIT compliers:

1. Econo-JIT: The Econo JIT is used for fast compilation times and portability.

2. Pre-JIT: A Pre –JIT complies the code completely sometimes before the first

execution.

3. Standard-JIT: Standard-JIT is used for normal execution mode for managed code.

The following diagram illustrates the compile-time and run-time relationships of C# source

code files, the .NET Framework class libraries, assemblies, and the CLR.

1.3.16 Assemblies

An assembly is a unit containing IL code of a program. It is similar to a DLL file, but
difference is that unlike DLL, an assembly is self-describing. Assemblies contain assembly

metadata that gives details of the assembly, type metadata describing the types, methods,
etc, defined in the assembly and resources.

The intermediate MSIL code is housed in .NET assemblies, for the Windows implementation
means a Portable Executable (PE) file (EXE or DLL). Assemblies are the .NET unit of
deployment, version and security. The assembly consists of one or more files, but one of
these must contain the metadata for the assembly. The complete name of an assembly
contains its simple text name, version and public key token; it must contain the name, but
the others are optional. The public key token is generated when the assembly is created, and
is a value that uniquely represents the name and contents of all the assembly files.

1.3.17 Garbage collection

It is a program which is invoked by the CLR to free the memory that is not being used by the
applications. Because of this technique the programmers no more need to take care of
memory leakages, dangling pointers and cleanup of memory.

1.3.18 Benefits of .Net framework:

The .NET Framework has a number of advantages to developers.

1. Consistent Programming Model

With .NET accessing data with a VB .NET and a C# .NET looks very simple. Both the
programs need to import the System. Data namespace, both the programs establish a
connection with the database and both the programs run a query and display the data.

2. The .NET example explains that there's a unified means of accomplishing the same task by
using the .NET Class Library. The functionality that the .NET Class Library provides is
available to all .NET languages resulting in a consistent object model regardless of the
programming language the developer for further uses.

3. Direct Support for Security

When an application accesses data on a remote machine or has to perform a privileged task
on behalf of a no privileged user, security issue becomes important as the application is
accessing data from a remote machine. With .NET, the Framework enables the developer
and the system administrator to specify method level security.

4. It uses industry-standard protocols such as TCP/IP, XML, SOAP and HTTP to facilitate
distributed application communications. This makes distributed computing more secure
because .NET developers cooperate with network security devices instead of working
around their security limitations.

5. Simplified Development Efforts

In Web applications, a developer with classic ASP needs to present data from a database in a
Web page. He has to write the application logic (code) and presentation logic (design) in the

same file. ASP.NET and the .NET Framework simplify development by separating the
application logic and presentation logic making it easier to maintain the code.

6. The design code (logic) and the actual code (application logic) is written separately
eliminating the need to mix HTML code with ASP code. ASP.NET can also handle the details
of maintaining the state of the controls, such as contents in a textbox, between calls to the
same ASP.NET page. Another advantage of creating applications is debugging.

7. The .NET Framework simplifies debugging with support for Runtime. It helps us to track
down bugs and also helps to determine how well an application performs. The .NET
Framework provides three types of Runtime: Event Logging, Performance Counters and
Tracing.

Easy Application Deployment and Maintenance

The .NET Framework makes it easy to develop applications. In the most common form, to
install an application, all you need to do is copy the application along with the components it
requires into a directory on the target computer. The .NET Framework handles the details of
locating and loading the components an application needs, even if several versions of the
same application exist on the target computer.

1.3.19 Security in .net framework

The.NET has its own security mechanism with two general features:

1. Code access security

2. Validation and verification

Code Access Security is based on evidence that is associated with a specific assembly. Code

Access Security uses evidence to determine the permissions granted to the code. Other code

can demand that calling code is granted a specified permission.

 The demand causes the CLR to perform a call stack; every assembly of each method

in the call stack is checked for the required permission; if any assembly is not granted the

permission a security exception is thrown.

 The.net languages are CLI programming language .Microsoft provides various such

languages C#, F#, VB.Net and C++.CLI languages are programming language that are used

to produce libraries and programs that conform to Common language infrastructure CLI .

Generally .net call two main categories –

1. Type safe language (C#)

2. Dynamic language (Python).

Type safe languages are built on the .net common language runtime and dynamic languages

are built on top of the .net dynamic language runtime.

Fig 1.6– Process of compilation & execution of C# program

1.4 Evolution of C# language

Language C# was introduced in 2000 by the Danish born Anders Hejlsberg a famous client
server application developer. C# came in existence from C, C++, VB, Delphi, and Java.

Around 1997, Microsoft started a project that was internally known as Project 42. The name
"Project 42" was most likely because DevDiv (the Microsoft Developer Division) is in the
Building 42.There were several names was proposed, one of which was the COM Object
Runtime (COR), which is where the name for the mscorlib.dll assembly came from.

This is the assembly which contains all of the CLR's main types and is really the only one
that must be loaded by every .NET application.

The codename of C# was project cool and was supposedly a "clean-room" implementation of
Java. It was later changed to C# based on a musical scale. Just as C++ added the "++" to "C"
since it was considered to be "adding to" or "one greater than" C, the sharp (#) on a musical
scale means one semi-tone above the note.

And another Important in the history of C# was Microsoft’s 1996 acquisition of Colusa
Software. Colusa had released a product in 1995 called OmniVM. OmniVM was a virtual
machine environment that offered two distinct advantages over early versions of Java.

Source Code
C#

Compiler

MSIL
(it can be .exe or .dll)

Operating
System

.Net class library CLR

First, by avoiding interpretation and using a virtual RISC architecture it provided near-
native code execution performance. Second, it implemented robust 'application' isolation via
a virtual memory manager.

This made it a very safe environment for running 'legacy' and 'mobile' code. OmniVM would
form the basis for Microsoft’s CLR- Common Language Runtime.

1.4.1 How to start Program Flow?

Let us start to do C# programming. First we start console applications.
For writing complete C #programs follow following steps (to create and run a console
application):

1. Start Visual Studio.(any version)

2. On the File menu, click New, and then click Project.

3. In the Templates Categories pane, expand Visual C#, and then click Windows.

4. In the Templates pane, click Console Application.

5. Type a name for your project in the Name field.

6. Click OK.

The new project appears in Solution Explorer.

1. If Program.cs is not open in the Code Editor, right-click Program.cs in Solution

Explorer and then click View Code.

2. Replace the contents of Program.cs with the code.

3. Press F5 to run the project. A Command Prompt window appears that contains the

line Hello World!

 A snapshot to start Program in Visual Studio 2010

To debug:

To run a program:

First look of C#

// To Print Welcome in C#.
Using System;

Namespace HelloWorld
{

Class Hello

{
public static void Main()

{
System.Console.WrtiteLine(“Welcome in C# world “);

Output will be:-

Welcome in C# world

5

1.4.2 Basic structure of C# program

Let’s enjoy your first code Of C# which displays “HelloWorld” to the console screen and
analysis line by line to the program.
C# programs can consist of one or more files. Each file can contain zero or more namespaces.
A namespace can contain types such as classes, structs, interfaces, enumerations, and
delegates, in addition to other namespaces .C# helps the compiler to find bugs in your code
during compilation time.

This code contains many things such as-

1. The class is a keyword(reserved word)

2. The curly brackets, {and} are the start and end parentheses, (and) is a starting
brackets for Main (function).

3. String is a Class [] is an array that holds value and is a variable that means
arguments.

4. The use of the static keyword.

5. The meaning of the void is blank means its return types is nothing.

6. Main is a function without Main () no any one program will be run. Execution begin
from Main().

7. The word System is a namespace.

8. The period “." is an accesser.

9. Console is a class and WriteLine is a method of Console class.

10. The double-quotes “” will be formally known as separating message.

1.4.3 Comments in C#

The first line contains a comment. The characters // convert the rest of the line to a comment
which can not affect the program only for programmer use & understanding.
Comments are two types-
Single line comments:
 This type of comments used for single line statements only.
Exa- // programming is very easy in C#
 // written by Mr Kumar in year 2012

Multiline comments:
This type of comment is used for multiline statements.
Like..
/*
 Statements
……………………..
……………………..
……………………..
…………………….. */

The .net framework provides o method for display the output on screen.
System.Console .WrtiteLine(“Welcome in C#“);

1.4.4 Compile and execution of a program from a command prompt in C#

1. Open a Visual Studio Command Prompt window. A shortcut is available from the
Start menu, under Visual Studio Tools.

2. Paste the code shown in the preceding procedure into any text editor and save the
file as a text file. Name the file Program.cs. C# source code files use the extension .cs.

3. In the Command Prompt window, navigate to the folder that contains program.cs.
4. Enter the following command to compile Program.cs. If your program has no

compilation errors, an executable file that is named Hello.exe is created.

csc Program.cs

5. To run the program, enter the following command:

Program

➢ The program contains four primary elements-

• Namespace declaration

• Class

• Main method

• and program statements.

It can be compiled with the following command line statements-
csc.exe Welcome.cs

javascript:void(0)

This produces a file named Welcome.exe, which can then be executed. Other programs can be
compiled similarly by substituting their file name instead of Welcome.cs. The file name and
the class name can be totally different.

1. C# is a case sensitive language.
2. C# class & methods are start with Capital letter.
3. Keywords are in small letter
4. C # is type safe language

1.4.5 Fundamental Types of C#

There are two basic fundamental types of C # -

1. The Simple Types

The simple types consist of Boolean and numeric types. The numeric types are further
subdivided into integral and floating-Point types.

2. The Boolean Type

There's only a single Boolean type named bool. A bool can have a value of either true or
false. The values true and false are also the only literal values that you can use for a bool.

Here's an example of a bool declaration:

bool isProfitable = true;
Some other types are -

1. Integral Types
2. Floating-Point Types

Visual C# 2010 provides an advanced code editor, easy for user interface
designers, integrated debugger and so many tools to make is easy to develop
applications based on C# version 4.0 and .net version 4.0 framework.

Remember that

3. Struct Types
4. Reference Types
5. Enumeration Types
6. String Type

Type

Value Types Reference Types

Class

Interface

Object

String

Built-in Value Types

User Defined Value

Types

Enumerations

5. Data types in C#

Data type helps us identify the type and the range of value that can be stored in a variable.
C# language has a common Type System CTS also called unified type system (collection of
data types). C# is strongly types language hence it is required to inform the compiler that
which data types we want to use. It is required to declare every time. Here we take a look at
some of the most used data types and how they work. We know that every variable or object
you create in a C# program must have a specific type. C# has a common type system it tells
that all types are sub class of System. Object class. The type indicates the characteristics of
the object and what it can do.

A data type can be of two types –

1. Built in (intrinsic) data type- int , char , flaot

2. User defined data types – class , interface

CTS categories data types into two types –

Value Types Reference type

Which store actual values?

Exam-int, Float, char, Byte, long,
Sbyte, Short, Double, Decimal,
Bool

Which store references of actual
data or value stored in the
memory?

Exam- struct , enum, String, object,
class, delegate

* Also refer table in detailed.

Boxing Unboxing

Converting a value of a value type
into a value of a corresponding
reference type is known as boxing.
In C# boxing is done implicit.
Example- int a=10;
Object b =a;(a is boxed to b)

Converting a value of a reference
type (previously boxed) into a
value of a value type is known as
unboxing.
In C# it requires an explicit type
cast.
Example- Example- int a=10;
Object b =a;(a is boxed to b)
Int c =(int) b;(unboxed to value
type)

Table 1.1. The intrinsic types built into C#

C# data
type

Size
(bytes)

.NET type Description

Byte 1 Byte Unsigned (values between 0 and 255).

Char 2 Char Unicode characters (a modern way of storing most
characters, including international language
characters).

Bool 1 Boolean Can store True or false values .

Sbyte 1 SByte Signed (values between -128 and 127).

Short 2 Int16 Signed (short) (values between -32,768 and 32,767).

Ushort 2 UInt16 Unsigned (short) (values between 0 and 65,535).

Int 4 Int32 Signed integer values between -2,147,483,648 and
2,147,483,647.

Uint 4 UInt32 Unsigned integer values between 0 and 4,294,967,295.

Float 4 Single Floating-point number. Holds the values from
approximately +/-1.5 x 10-45 to approximately +/-

3.4 x 1038 with seven significant figures.

Double 8 Double Double-precision floating-point. Holds the values
from approximately +/-5.0 x 10-324 to approximately
+/-1.8 x 10308 with 15 to 16 significant figures.

decimal 12 Decimal Fixed-precision up to 28 digits and the position of the
decimal point. This type is typically used in financial
calculations. Requires the suffix "m" or "M" when you
declare a constant.

Long 8 Int64 Signed integers ranging from -
9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

Ulong 8 UInt64 Unsigned integers ranging from 0 to approximately
1.85 x 1019.

6. Some common Difference between C# & others OOPs languages

C++ VB Java C#

OOPs
Inheritance
Polymorphism
Data hiding
Encapsulation
Overloading
reusability

RAD
IDE
GUI Interface
Modularization
Event driven
programming
Data base
support

OOP
Portability
Platform
independence
Interpreter
No pointer
No preprocessor
Automatic
memory
management
Security
Dynamic
binding
Threading
Data base
support
Built in
networking

Class & object
Polymorphism
Inheritance
Dynamic
binding
Overloading
Struct & enum
Boxing &
Unboxing
Exception
handling
Rapid action
development
Window
application
Garbage
collections
Multithreading
Null able types
GUI Interface

*Here in the development of application two terms are very important.

IDE- Integrated development Environment

An IDE is a programming environment that has been packaged as an application program,
consisting of code editor, a compiler, a debugger and a graphical user interface builder. A

programming environment, where all the tools required for programming are available
under one roof is called IDE.

RAD- Rapid Application Development
A programming style which aims at building programs fast, quick application
developments through the use of tools and wizards is called RAD. It was developed by Jmes
martin in 1980 but introduced in around 1990.

7. Scope of Variables

Variable is a named storage location in computer memory whose contents can change
during a program run. Variable is a named storage location in computer memory whose
contents can change during a program run.
The scope of variable means the visibility of the variable rest of program’s we know that
variable will declare within the method and the variable will remain in the entire method
and it is unavailable for another method. It can be used only in the method where it is
declared.
Variable scope can be defined in other method-

• Class level –
The variable can be used by any method with in the class

• Method level Scope –
the variable of the method can be used within only in the method.

• Loop level scope-
the variable are only visible with in the said loop.

• Nested level scope-
The variable declared with in the nested scope is not available to those who are outside of
the code block.

8. Test Your Knowledge

While especially valuable for the new programmer, these exercises can also be helpful for
more experienced programmers, who can go directly to their areas where they would like a
little reinforcement of their understanding. The exercises can be an active aid in reviewing
C# language with .NET Framework.

1. Define the following terms –data, information, statements, program, and software.
2. What is Object Oriented programing in C#?
3. Write the important features of C# language? Write the use of this language.

4. Why C# called type-safe language?

5. State five differences between C# and Java?

6. Name some language supported by .net framework.

7. Why the need of VOS (Virtual Object System) in C#?

8. Explain the following program.

class Example

 {

Static void Main()

{

System.Console.WriteLine(“ welcome in C#”);

System.Console.WriteLine(“ enjoy programming”);

}

}

9. Find out the error of this following program.

class First

{

static void Main()

{

System.Console.WriteLine(Keep Smiling);

System.Console.WriteLine(Hello !!! How are you?);

 }

}

10. What is the difference between WriteLine() and Write()?

11. What is used of placeholder when printing a value with WriteLine() or Write()?

12. When C # came in existence and how?

13. What is .net framework?

14. When .net was announced? What is its use in application development?

15. Write the stem to execute c# program.

16. Name the tools which you will use to develop the C # program & .net.

17. What is the CLI? Is it the same as the CLR?

18. What is IL? Give one example.

19. What is garbage collection?

20. What do you mean by variable scope?

21. Differentiate between RAD & IDE.

22. Explain Microsoft Intermediate Language.

23. What is the Common Language Runtime (CLR)?

24. Name the same namespaces provides by the .NET Framework.

25. Write the CLR execution process.

26. Define boxing & unboxing in C# with examples.

27. C# is case sensitive what does it means?

28. Difference between value type & reference type in C#.

29. Explain the architecture of .net.

30. Create a program using c# and execute on command prompt.

2
Operators & Expressions in C#

2.1 INTRODUCTION

As we knows that computer and software are the backbone of technology. A computer
cannot understand person’s spoken language like English. So that, we must familiar with
any language that computer can easily understand. This is when programming comes in the
picture. Programming is the act or process of planning or writing a program. When a
programmer writes a code actually he is using any programming language. Hundreds of
languages came but only some languages were popular due to their performance.
 Since the invention of the computer many programming languages approaches have
been tried. These include techniques like top down, bottom up, modular, structured &
OOPs.
 In continuation of change in technology software industry or program developers
need some recent languages .Today Client site application & Server site application, Mobile
application development is demand of software industry .So a language was needed for
development , then a language came in existence which have many features of C, C++, Java
, VB etc. This language helps programmer to create secure, robust, portable, distributed
object oriented applications for the real world and global internet.
 Can you guess it? Yes, it is C# language which supports maximum features of Object
Oriented Programming & also helps us for easy doing programming in Console and
window application. Learning a programming language is much like learning any other
skill. It also requires lots of practices. In this book we teach you language C# learning is
same as learning of Hindi & English. Here, we use basically two important terms of
application development - The.Net and C#.
 C# language also focuses on the Windows based application programs, visual
programming concepts, interactive graphics fundamentals, and database connectivity
concepts.
 This book includes topics such as Windows Forms, Windows Controls, Windows
programming data access with ADO .NET, and handling data access and data manipulation
in codes and also all console based program.

The book provides deep insights into the .NET programming concepts and is
designed to enhance the programming skills of the users of C#. This book is a practical
introduction to programming in C# utilizing the services provided by .NET to build Web-
based services and others. Here we introduces C#'s advanced object-oriented capabilities

U n i t

early — helping you make the most of them to create software with unprecedented
efficiency and power and also covers data types, formatting and conversions, exceptions,
interfaces, collections, the callback mechanism, and attributes of languages .
 Finally, this book will cover all aspect of C# programming language. So enjoy
programming very easily. Here our team will guide you beginning to end of C#
programming and we hope you are comfortable after reading this book.
The main objective of this book is-

➢ To understand the basic concept of C#.
➢ To understand the concept of .net framework
➢ To understand data types
➢ To understand data base connectivity
➢ To develop complete application using C# and .net
➢ To obtain a basic idea of development of future generation of application and learn

many more with executed codes.

2.2 OPERATOR AND OPERANDS

2.3 TYPES OF OPERATOR

2.3.1 ARITHMETIC OPERATOR
2.3.2 LOGICAL OPERATOR
2.3.3 RELATIONAL OPERATOR
2.3.4 INCREMENT & DECREMENT OPERATOR
2.3.5 ASSIGNMENT OPERATOR
2.3.6 SPECIAL OPERATOR
2.3.7 CONDITIONAL OPERATOR
2.3.8 BITWISE OPERATOR
2.4 PRECEDENCE OF OPERATOR
2.5 TYPE CONVERSION

8. Test Your Knowledge

While especially valuable for the new programmer, these exercises can also be helpful for
more experienced programmers, who can go directly to their areas where they would like a
little reinforcement of their understanding. The exercises can be an active aid in reviewing
C# language with .NET Framework.

31. Define the following terms –data, information, statements, program, and software.
32. What is Object Oriented programing in C#?
33. Write the important features of C# language? Write the use of this language.

34. Why C# called type-safe language?

35. State five differences between C# and Java?

36. Name some language supported by .net framework.

37. Why the need of VOS (Virtual Object System) in C#?

38. Explain the following program.

class Example

 {

Static void Main()

{

System.Console.WriteLine(“ welcome in C#”);

System.Console.WriteLine(“ enjoy programming”);

}

}

39. Find out the error of this following program.

class First

{

static void Main()

{

System.Console.WriteLine(Keep Smiling);

System.Console.WriteLine(Hello !!! How are you?);

 }

}

40. What is the difference between WriteLine() and Write()?

41. What is used of placeholder when printing a value with WriteLine() or Write()?

42. When C # came in existence and how?

43. What is .net framework?

44. When .net was announced? What is its use in application development?

45. Write the stem to execute c# program.

46. Name the tools which you will use to develop the C # program & .net.

47. What is the CLI? Is it the same as the CLR?

48. What is IL? Give one example.

49. What is garbage collection?

50. What do you mean by variable scope?

51. Differentiate between RAD & IDE.

52. Explain Microsoft Intermediate Language.

53. What is the Common Language Runtime (CLR)?

54. Name the same namespaces provides by the .NET Framework.

55. Write the CLR execution process.

56. Define boxing & unboxing in C# with examples.

57. C# is case sensitive what does it means?

58. Difference between value type & reference type in C#.

59. Explain the architecture of .net.

60. Create a program using c# and execute on command prompt.

3
Control Statement in C#

3.1 INTRODUCTION

In programming, the control statement tells the flow of control of data in any program and
helps to take the decision depending upon the input and conditions. The program written in
C# language is the flow of sequence of statements. A control statement helps to control the
order of execution of program.

There are three categories of control statements in any language- sequential, selection,
iterations.

3.2 STATEMENTS

Statements are the instructions given to the computer to perform any kind of task or action.
It can be any data, value, decision, condition or any repeating statements.

Statements are terminated with a semicolon (;) in a programming language.

Examples of statement:
 to start computer and do your program.

a=a+2;
C# is programming language.
We are Indians.

Statements are three types:

1. Sequential statement
2. Selection statement
3. Iteration statement

3.2.1 Sequential Statement

The sequence construct means the statement are being executed sequentially one by one or
step by step. This represents the default flow of statements in a program.

U n i t

True

False

3.2.2 Selection Statement

The selection construct means the execution of statement depending upon certain condition
test(true or false).

3.2.3 Iteration (Looping) Statement

The iteration constructs means repetition of a set of statements depending upon certain
condition test.

3.3 TYPES OF CONTROL STATEMENTS

The three categories of program control statement in C# are:

3.3.1 Branching/Decision Making Control Statement
(selection statements)

i. If, if-else
ii. switch-case

3.3.2 Jumping Control Statement(Transfer statements)

i. break
ii. return

Statement 1

Statement 2

Statement 3

Condition Statements

 Statements

 Statements

Condition Statements

iii. continue
iv. throw
v. goto

3.3.3 Looping/Iteration Control Statement

i. for
ii. while
iii. do-while
iv. foreach

3.4 BRANCHING CONTROL STATEMENT

3.4.1 The if Statement

If statements helps to execute a block of statements based on the result of a certain given
condition. If Statements allow for decision making depending on conditions. They are used
with relational statements/operators.

If the condition set evaluates to true the block of statement of if will executed otherwise
another block is executed. If another block is not present program execution will terminated.
We can use if statement, if –else statement, multiple else if statements etc.

The Syntax of if statement is shown here:

if (Condition)

Statement;
Example:

If(age>= 18)
{

 Console.WriteLine("you are eligible for voting");
}

 No Yes

3.4.2 The if-else Statement

Start

Condition

 Process
 Statement

Stop

If–else statement is another part of if it also helps to execute a block of statement based on
the result of a condition. If have two parts if and else. If the condition is false the statements
of else block will be executed. Multiple if-else statements can be used in a program.

The complete syntax of if statement is shown here:

if (Condition)
Statement;

[else
 Statement;]

‘else’ part of ‘if statement’ is optional, if the user doesn’t provide an else part and the
condition evaluates to false, then nothing would happen.

Example:

 If(x < y)
 {
 Console.WriteLine("x is less than y");
 }
 else
{
Console.WriteLine("x is greater than y");
}

Flow chart of if-else statement

 False (else) True

Next Statement

 (If any)

 Condition

Statement 1

Statement 2

 Start

 Stop

The another form of if statements is if-else-if ladder.
Syntax:
if (condition)
{
 Statement;
}
else if(condition)
{
 Statement;
}
else if(condition)
{
 Statement;
}
.
.
.

else
{
 statement(s);
}

If the block of statements contains multiple statements then enclose { } brackets. If condition
is true then if part statement is execute and if condition is false then else part statement are
execute and the statement is bypassed to next statement.

Program Example of if statement

using System;

class CampareExample
{
 public static void Main()
 {
 int x, y, z;
 x = 2;
 y = 3;

 if(x < y)
 Console.WriteLine("x is less than y");

 if(x == y)

Condition is a Boolean expression that is either true or false.

 Console.WriteLine("you won't see this");

 Console.WriteLine();

 z = x - y;

 Console.WriteLine("z is",z);
 if(z >= 0)
 Console.WriteLine("z is non-negative");
 if(z < 0)
 Console.WriteLine("z is negative");

 Console.WriteLine();

 z = y - x;
 Console.WriteLine("z is",z);
 if(z >= 0)
 Console.WriteLine("z is non-negative");
 if(z < 0)
 Console.WriteLine("z is negative");
 }
}

Output will be

x is less than y
z is -1
z is negative
z is 1
z is non-negative

Program to check Boolean values in if statement.

using System;

class BooleanExample
{
public static void Main()
 {
 bool b;
 b = false;
 Console.WriteLine("b= " + b);
 b = true;
 Console.WriteLine("b= " + b);

 // a boolean value can control the if statement

 if(b)
 Console.WriteLine("b is true.");

 b = false;
 if(b)
 Console.WriteLine("b is false.");
 }
}

Output will be
b = false
b = true
b is true

Program to check a given values is even or odd using loop.

Using System;

class EvenOddExample
{
 public static void Main()
 {
 int i;

 for(i=1; i <= 20; i++) {
 Console.Write("Testing " + i + ": ");

 if((i%2) == 0)
 Console.WriteLine("even");
 else
 Console.WriteLine("odd");
 }
 }

Output will be
Testing 1 : odd
Testing 2 : even
Testing 3 : odd
Testing 4 : even
Testing 5 : odd
Testing 6 : even
Testing 7 : odd
Testing 8 : even
Testing 9 : odd

if statement with || and && operators.

using System;

class AndOrExample
{
 static void Main(string[] args)
 {
 int x = 5, y = 5, z = 10;

 if (x == y)
 Console.WriteLine(x);

 if ((x > z) || (x == y))
 Console.WriteLine(y);

 if ((x >= z) && (y <= z))
 Console.WriteLine(z);
 }
}

Output will be:-

5

5

1.4.3 Nested if statement

 A statement with in statement is known as nesting of statement. When a conditional
statement or a looping statement can be included inside of another this situation is called
nesting of loop or condition. This technique is used to create a condition, where any
condition directly depends on another condition.
 Any statement can be nested inside of another any times.

class NestedExample
{
 public static void Main()
 {
 int x,y,z;
 x=9;y=33;z=22;

 if (x>y)
 if(x>z)
 System.Console.WriteLine("x is the greatest no");
 else
 System.Console.WriteLine("z is the greatest no");
 else if(y>z)
 System.Console.WriteLine("y is the greatest no");
 else
 System.Console.WriteLine("z is the greatest no");
 }

 }

Output will be:-

Y is the greatest no

Various forms of if are-
If(age>18)
If(age)
If(age==20)
If(age<=21)
If(age>21)&& If(Sex=’M’)
If(a%10==2)

1.4.4 The switch Statement

The switch statement (switch case statements)is the another form of selection statement,
which executes a statement from a group of statements based on the result of an expressions.
It provides multiple choices. It begins with a keyword Switch and further contains various
case labels. When the switch statements is executed it compare the value of the controlling
condition or expression to the value of each case labels. The types of the values in a switch
statement can be char, constant or a value operates on Booleans, enumerations, integral
types or strings.

Syntax

switch (Expression)

{

 case value 1:
 statement(s);
 break;
 case value 2:
 statement(s);
 break;
case value 3:
 statement(s);
 break;

 [default:
 statement(s);]
}

Note:

The default statement is executed when none of the above mention case matches with the

result of the switch expression. Default is optional. Break is also optional and used to end the

series of statements.

 True

 True

 True

False

Is

Sw
it

ch

Ex
p

re
ss

i

o
n

=
ca

se

co
n

st
an

t

1
?

Is Switch
expression=

case
constant n?

Statement 1

Statement n

Default Case

Evaluate
Expression

Is Switch
expression=

case constant
2?

Statement 2

For Example

switch (day)
 {
 case 1:
 Console.WriteLine("Monday”);
 break;
 case 2:
 Console.WriteLine("Tuesday”);

 break;
 case 3:
 Console.WriteLine("Wednesday”);
 break;
 case 4:
 Console.WriteLine("Thursday”);
 break;
 case 5:
 Console.WriteLine("Friday”);
 break;
 case 6:
 Console.WriteLine("Saturday”);
 break;
 case 7:
 Console.WriteLine("Sunday”);
 break;
 default:
 Console.WriteLine("Wrong day entered”);
 break;
 }

The switch block follows the switch expression, where one or more choices are evaluated for
a possible match with the switch expression. Each choice is labeled with the case keyword,
followed by an example that is of the same type as the switch expression and followed by a
colon (:).

 Exit

In the example we have case 1:, case 2:, case 3: … case 7:. When the result evaluated in the
switch expression matches one of these choices, the statements immediately following the
matching choice are executed, up to and including a branching statement, which could be
either a break, continue, goto , return, or throw statement. If the switch statement do not
matches with any choice then the default case will be executed.

Program of switch case

using System;
 class switchexp
 {

 public static void Main(string[] args)
 {
 Console.WriteLine("please enter a day number of the week");

 string choice=Console.ReadLine();

 switch(choice)
 {
 case "1":

 Console.WriteLine("corresponding day is sunday");
 break;
 case "2":
 Console.WriteLine("corresponding day is monday");
 break;
 case "3":
 Console.WriteLine("corresponding day is tuesday");
 break;
 case "4":
 Console.WriteLine("corresponding day is wednesday");
 break;
 case "5":
 Console.WriteLine("corresponding day is thursday");
 break;
 case "6":
 Console.WriteLine("corresponding day is friday"); break;
 case "7":
 Console.WriteLine("corresponding day is saturday");
 break;
 default:
 Console.WriteLine("please enter number between 1 to 7");
 break;

 }

 }

}

Output

We may also include a default choice following all other choices. If none of the other choices
match, then the default choice is taken and its statements are executed. Use of the default label
is optional.
 Each case label must end with a branching statement, which is normally the break
statement. The break statement will cause the program to leaves the switch statement and
begin execution with the next statement after the switch block.
 We can also combine case statement this is called adjacent case statements with no
code in between or using a goto statement. Following example that shows how to combine
case statements:
 switch (month)
 {
 case 1:
 case 2:
 case 3:Console.WriteLine(“ 1st Quarter of Year “);
 break;
 case 4:
 case 5:
 case 6:Console.WriteLine(“ 2nd Quarter of Year “);
 break;
 case 7:
 case 8:
 case 9:Console.WriteLine(“ 3rd Quarter of Year “);
 break;
 case 10:
 case 11:
 case 12:Console.WriteLine(“ 4th Quarter of Year “);
 break;
 default:
 Console.WriteLine("Wrong year entered”);
 break;
 }

By placing case statements together, with no code in-between, we create a single case for
multiple values. A case without any code will automatically fall through to the next case.

The example above shows how the three cases for month equal to 1, 2, or 3, where case 1 and
case 2 will fall through and execute code for case 3.

1.5 JUMPING STATEMENTS

A jump statement can be used to transfer program control using keywords such as break,
continue, return, and throw.

C# Branching Statements summary is below-

Branching
statements

Description

break
 It terminates a statement sequence .It also used to exit the switch block or
loop.

continue
exit the switch block, skips remaining logic in enclosing loop, and goes back
to loop condition to determine if loop should be executed again from the
beginning.

goto
exit the switch block and jumps directly to a label of the form
"<labelname>:"

return It helps to come out of the loop and exit the current method.

throw Throws an exception

Syntax of jump statement is as follows
switch (expression)
 {
 case expression:
 //here your code statement
 jump-statement
 default:
 //your code here
 jump-statement

 }

1.5.1 Break Statements

A break statement is used to exit from a case of a switch statement and it is also used to exit
from for, foreach, while, do.....while loops which will switch the control to the statement
immediately after the end of the loop.

For Example

using System;

class BreakExample
{
 static void Main(string[] args)

 {
 for(int i = 1; i <= 15; i++)
 {
 if (i >= 6)
 break; //if condition is met exit the loop

 Console.WriteLine(i);
 }
 Console.Read();
 }
}

Output
1
2
3
4
5

When the if condition is evaluated to true the break statement is executed. The for loop will
exited immediately and it does not execute any other code in the loop. The break statement
also works for while, do/while, and switch statements.

1.5.2 Continue

The continue keyword is used to transfer program control just before the end of a loop. The
condition for the loop is then checked, and if it is met, the loop performs iteration. It skips
the proceeding code in the loop and continues to the next iteration in the loop. It does not
exit the loop like the break will. Just like the break to work properly. The continue statement
needs an if condition to tell the program that if a certain condition is true the continue
statement must be executed.

For Example
using System;

class ContinueExample
{
 static void Main(string[] args)
 {
 for(int i = 1; i <= 10; i++)
 {
 if (i == 5)
 continue; //condition is met skip the code below

 Console.WriteLine(i);
 }
 Console.Read();
 }
}

Output will be
1
2
3
4
6
7
8
9
10
The output skipped the number 5. When the condition is true the continue statement is
executed and the remaining code is skipped.

1.5.3 Return

The return keyword identifies the return value for the function or method (if any), and
transfers control to the end of the function.

1.5.4 Throw

The throw keyword throws an exception or runtime error. If it is located within a try block, it
will transfer control to a catch block that matches the exception - otherwise, it will check if
any calling functions are contained within the matching catch block and transfer execution
there. If no any functions contain a catch block, the program may terminate because of an
unhanded type of exception occurred.

In C#, it is possible to throw an exception also. The ‘throw’ keyword is used for this purpose.

Syntax of throw statement is as follows

throw exception_object;

Example

using System;

public class ThrowExample
{
 public static void display(Int32 balance)
 {
 if (balance < 500)
 {
 // throw an argument out of range exception if the balance is less than 500.
 throw new ArgumentOutOfRangeException("Balance can’t be less then 500 ");
 }
 }

 public static void Main()

 {
 try
 {
 display(200);
 }

 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 Console.ReadLine();
 }
 }
}

In this example we have a function called display, which takes balance as an argument. In
this function we check if the balance is less then 500, and if so, throw Argument Out Of
Range Exception.

1.5.5 Use of goto statements in switch statement

Another way to control the flow of logic in a switch statement is by using the goto statement.
You can either jump to another case statement, or jump out of the switch statement.

switch with string type

 begin:

 switch (choice)
 {
 case "continue":
 goto begin;
 case "quit":
 Console.WriteLine("Good Bye.");
 break;
 default:
 Console.WriteLine("Your input {0} is incorrect.", choice);
 goto decide;
 }

In the current example, "continue", is a case of the switch statement - not the keyword.

The goto statement causes program execution to jump to the label following the goto
keyword. During execution, if the user types in "continue", the switch statement matches this
input (a string type) with the case "continue": label and executes the "goto begin:" instruction.

Summary

(i) goto : A goto statement can transfer the program control anywhere in the program.
(ii) Break: A break statement enables a program to terminate of the loop/block, skipping any

code in between.
(iii) Continue: A break statement enables a program to force the next iteration to take place,

skipping any code in between.
(iv) Return: A return statement is used to return from a function.

1.6 LOOPING/ITERATION CONTROL STATEMENTS

When we want to repeat certain things many times the we need loop in aporogram.it is base
of program & software .A looping statement creates a loop of code to execute a variable and
statements number of times.
 “Repetition of statements again & again till the condition is false is called looping “.
there are basically three types of lopping

1. for
2. while
3. do-while

but in C# Programming one another types of loop i.e. foreach
There are three necessary conditions for looping-
Initialization i=1;
Condition I>2;
Increment or decrement i++;

1.6.1 for loop

For loop can be used for repeatedly executing a sequence of code when the condition is
known.The for loop has the same syntax as in other languages derived from Core
C++.writing of for loop is very short and easy. It is most popular used loop in programming.
It is written in the following form:

Working of for loop:

Re-initialize the value of control variable

for (initialization; condition; increment/decrement) {
Body of the loop ;}

 False Next Statement

 (if any)

 True

For example:-

Using System;

class ForExample
{
 public static void Main()
 {
 int i;
 for(i = 0; i <= 4; i++)
 Console.WriteLine("This is count: " + i);

 Console.WriteLine("Done!");
 }
}

Output will be

This is count: 0
This is count: 1
This is count: 2
This is count: 3

Is logical
expression?

Body of loop

Control Variable = initial value

 False

 Next statement

(If any)

This is count: 4
Done!

Program of for loop

using System;
 class forexp
 {
 static void Main(string[] args)
 {
 for(int i=0;i<10;i++)
 {
 Console.WriteLine("this is for loop executing 10 times");
 }
 }
}

Output

1.6.2 While Loop

A while statement will check a condition and then continues to execute a block of code as
long as the condition evaluates to a Boolean value of true. It is an entry condition loop, if the
test condition is false to begin with the program never executes the body of the loop.

Syntax:

Its syntax is as follows

 while (test expression)
 {

 Statements;
 }

The statements can be any valid C# statements. The condition is evaluated before any code
in the following block has executed. When the condition evaluates to true, the statements
will be executed. Once the statements have been executed then the control returns to the
beginning of the while loop to check the boolean expression again.
When the condition evaluates to false, the while loop statements are jumped and execution
begins after the closing braces of that block of code. Before entering the loop, we must be
check that variables evaluated in the loop condition are set to an initial state.
(a) while (i<= 10)
 {
 fact= fact * i;
 i++;
 }

(b) while (i<= n)
 {
 Console.Write("{0} ", i*i);

 i++;

 }

While loop

 False Next statement
 (If any)

Is logical expression?

Body of loop

For Example

using System;

class WhileExample
{
 public static void Main()
 {
 int x = 0;

 while (x < 10)
 {
 Console.Write("{0} ", x);
 x++;
 }
 Console.WriteLine();
 }
}

Program of while loop

using System;

 class Class1
 {
 static void Main(string[] args)
 {
 int i=0;

 while(i<10)

 {
 Console.WriteLine("this is while loop running 10 times");
 i++;
 }
 }
 }

Output

Is logical expression?

1.6.3 do.....while loop

The do-while loop will always execute at least once. It is an exit condition loop; the body of
the loop is always executed first then the test condition hence it execute at least once.
 The general form of the do-while loop is-

do
{
 statement(s);
} while(condition);

The do...while loop always runs its body once. After its first run, it evaluates its condition to
determine whether to run its body again. If the condition is true, the body executes. If the
condition evaluates to true again after the body has ran, the body executes again.

When the condition evaluates to false, the do...while loop end.

Do-While

Body of loop

do
{

Statements;
}
while (test expression);

 False

 True

using System;
class DoWhileExample
{
 public static void Main()
 {
 int x = 0;
 do
 {
 Console.WriteLine("Number is {0}", x);
 x++;
 } while (x < 10);
 }
}

Output will be

Number is 0
Number is 1
Number is 2
Number is 3
Number is 4
Number is 5
Number is 6
Number is 7
Number is 8
Number is 9

Program of do while loop

using System;
 class Class1

Exit

 {
 static void Main(string[] args)
 {
 int i=0;
 do
 {

Console.WriteLine("this is do while loop executing 10 times");
 i++;
 }while(i<10);
 }
 }

Output

1.6.4 foreach loop

The foreach statement is similar to the for statement as both allow code to iterate over the
items of collections, but the foreach statement lacks an iteration index, so it works even with
collections that lack indices altogether. It is written in the following form:

foreach("variable-declaration" in "enumerable-expression")

{

body/ statement-or-statement-block;

 }

The enumerable-expression is an expression of a type that implements Enumerable, so it can
be an array or a collection. The variable-declaration declares a variable that will be set to the
successive elements of the enumerable-expression for each pass through the body.

 The foreach loop exits when there are no more elements of the enumerable-
expression to assign to the variable of the variable-declaration.

Example-1

public class ForEachExample1

http://en.wikibooks.org/wiki/C_Sharp_Programming/Keywords/public
http://en.wikibooks.org/wiki/C_Sharp_Programming/Keywords/class

 { public void ForEachDay()

 {

 foreach (string day in "Monday", "Tuesday", "Wednessday", ”Thursday”, “Friday”,
“Saturday”, “Sunday”)

 System.Console.WriteLine(day);

 }

 }

In the above code, the foreach statement iterates over the elements to write "Monday",
"Tuesday", "Wednessday", ”Thursday”, “Friday”, “Saturday”, “Sunday” to the console.

Example-2

public class ForEachSample2
{
 public void ForEachItem()
 {
 string[] n = {"One", "Two", "Three"};
 foreach (string item in n)
 System.Console.WriteLine(item);
 }

}

In the above code, the foreach statement iterates over the elements of the string array to
write "One", "Two", and "Three" to the console.

Program of foreach loop

using System;

public classClass1

 {
 public static void Main(string[] args)

 {
 foreach(string str in args)

 {
 Console.WriteLine(str);

http://en.wikibooks.org/wiki/C_Sharp_Programming/Keywords/public
http://en.wikibooks.org/wiki/C_Sharp_Programming/Keywords/void
http://en.wikibooks.org/wiki/C_Sharp_Programming/Keywords/foreach
http://en.wikibooks.org/wiki/C_Sharp_Programming/Keywords/string
http://en.wikibooks.org/wiki/C_Sharp_Programming/Keywords/in
http://en.wikibooks.org/wiki/C_Sharp_Programming/Keywords/public
http://en.wikibooks.org/wiki/C_Sharp_Programming/Keywords/class
http://en.wikibooks.org/wiki/C_Sharp_Programming/Keywords/public
http://en.wikibooks.org/wiki/C_Sharp_Programming/Keywords/void
http://en.wikibooks.org/wiki/C_Sharp_Programming/Keywords/string
http://en.wikibooks.org/wiki/C_Sharp_Programming/Keywords/foreach
http://en.wikibooks.org/wiki/C_Sharp_Programming/Keywords/string
http://en.wikibooks.org/wiki/C_Sharp_Programming/Keywords/in

 }
 }
}

Output

1.7 Summary

In this session we learn about statements, looping like for, while, do-while other jumping
control statements break, continue, throw ,goto etc. For controlling the flow of a program,
the C# programming language has four loop constructs, a flexible if-else statement,
a switch statement and branching statements. In C# the program introduces the Main entry
point method, where control flow begins. In all cases, the string "Control flow reaches
finally" is printed to the console window.
 The finally block in the C# language provides a way to ensure a piece of logic is
executed before the method is exited completely. A switch can be implemented as a series of
if –else statements. A loop directs a program to perform a set of operations again and again
until a condition is to be met.

In C# language there are several words are used to alter the flow of the program. When the
program is run, the statements are executed from the top of the source file to the bottom of
the file. The flow can be altered by specific keywords. Statements can be executed multiple
times. Some statements are called conditional statements. They are executed only if a specific
condition is found.an additional loop is added in C# foreach.

1.8 Exercise:

Part A:

1. What is statement? Explain about if statement. What is nesting of if-else?

2. What are three types of iterations? Explain each with examples. What is primary reason to

use iterations?

3. What is difference between while & do –while loop.

4. What are three necessary conditions for looping?

5. What is the significance of test condition in a loop?

6. What is selection statement?

7. Name the jump statement provided by C#.

8. Compare if & which statements.

9. How does loop execution occurs?

10. What is foreach in C#? What are its uses?

Part B:

1. What command is used to jump to the next iteration of a loop?

2. WAP in C# to calculate the factorial upto n numbers.

3. What statement is used to the end a case expression in a select statement?

4. Write a program to find out the number between 1 to 100 who’s divisible by 5 and 7?

5. Write a while loop program that counts number from 100 to 1?

6. Explain the need of type casting with suitable example?

7. What is turnery operator?

8. Write a program to hold the center of a circle and its radius?

9. Write a program to swap 2 numbers without using third variable?

10. Write a program if a three digit number is input through the keyboard, the number is

reversed? (If number is 123 then output is 321).

11. Write a program to print all prime numbers from 1 to 100.

12. Write a menu driven program to perform the following action:

Even or Odd Number

Greater number between 3 numbers

Factorial of a number

Find out the year is leap or not

Exit When a menu item is selected then the appropriate action should be perform.

13.WAP to convert Fahrenheit into Celsius and vice versa using switch case.

14. What is the output of the following program

static void Main()

{

int i;

for(i=0;i<=50;i++);

System.Console.WriteLine(i)

}

15. Write a program to take any five digit number and print the multiplication of all even

digits and sum of all odd digits.

16. Write a program to find the greatest among the three numbers.

17. Write a program to find the table of a given number.

18. Write a program to print the pyramid and also print reverse of it.

 * 1

 ** 11

 *** 111

 **** 1111

 ***** 11111

19. Write a program to print the pyramid and also print reverse of it.

 1

 2 3

 4 5 6

 7 8 9 10

20. Write a program to perform area of circle, area of parameters, and area of square using

switch case.

21. Write a program to find the sum & difference of two numbers using switch case.

22. convert the following into do –while loop

int a;

for (a=1;a<=20;a++)

23. Give the output of following program-

 for(int i=1,j=i;i<4;i++, j=i*3)

 {

System.Console.WriteLine(“{0} {1}”,i,j);

}

24. The following is a segment of a program-

int x=1, y=1;

If (n>0)

{

X=x+1;

Y=y+1;

}

What will be the value of x & y, if n assumes a value i)1ii)0.

25. WAP in C# to display the name of the day depending upon the number entered from the

keyboard.

26. Write a program in C# to display alphabet from a-z using while loop.

27. WAP to find Armstrong no till n numbers. (eg- 153 – the sum of cube of these three is

equal to the number.)

28. Write a Program in C# to find the GCD of two numbers.

29. WAP in C# to print first five odd numbers in a given numbers.

30. WAP in C# to Print following pyramids.

 *

 **

1234*

123**

12***

1****

4
Structure and Array

4.1. INTRODUCTION

In any programming language, the data type is important. Structures are called mixed
data types or collection of primary data types. An array is a collection of consecutive
memory locations of same data type.

4.2. STRUCTURES

Structure is value type or custom data type. Also called user defined data types.
Structures are declared using a keyword ‘struct’ with a valid name of structure. As-

struct pop
{
 public int value1;
 public int value2;
 public int value3;
}
How memory is allocated by the user defined data type ‘pop’? It allocates the memory at
the time of declaring it’s object (the variable of type pop). As-
public pop obj; // OBJECT IS DECLARED OF TYPE POP

4.3. NESTED STRUCTURES

In C#, Structures can also be nested. Nested Structure means a Structure inside the other
Structure body. The nested structure is called the member structure of the parent
structure. The accessibility of the nested structure depends upon the access modifier
used to declare it inside the structure body.
There are two ways of nesting a C# structure. The first way is nesting the whole
declaration of a structure inside the other structure and the second way is to use the
structure as a member variable of another structure. As- First way of nesting is.
struct book
{
 public string book_name;
 public string book_author;

 public struct book_edition

U n i t

Value1 Value2 Value3

 obj

 {
 public string book_edition_name;
 }
}
Second way of nesting is.
struct book
{
 public string book_name;
 public string book_author;
}
public struct book_edition
{
 public string book_edition_name;
 public book objb1; // OBJECT IS DECLARED OF TYPE BOOK

}

4.4. DIFFERENCE BETWEEN CLASSES & STRUCTURES

Difference Between Structures and Classes

S. No. Structure Classes

1. Structures are non inheritable. Classes support Inheritance.

2. Structures are Values types. Classes are Reference types

3.
Structures member variable initialization
is not possible.

At the time of class declaration member
variable initialization is possible.

4 All members are Public by default.
Class variables and constants are
Private by default.

4.5. ENUMERATIONS

An enumeration is a special kind of value type. Enumerations, like classes and
structures, also allow us to define new types. Enumeration types contain a list of named
constants. The following code shows an example of such above definition:

public enum DAYS { Mon, Tues, Wed, Thu, Fri, Sat, Sun};

In the above example we declared an enumerator named ‘DAYS’ which is having the
members (like- Mon, Tues, Wed, Thu, etc.) with their constant values. By default the
values starts from 0 (zero) and if no values are assigned the next member value is more
than one by its previous. Thus, in the above example ‘Mon’ is a fixed value 0, ‘Tues’ is 1,
‘Wed’ is 2, and so on.

4.6. ENUM TYPE CONVERSION

4.7. ARRAYS

A Simple variable of any data type can store only one value at a time where as an array
of any data type can store more than one values in different – different consecutive
locations of same data type. These different values are called elements of an array. In
other words an array is a collection of similar type of data in various subscripts those are
in sequence. Array is called reference types. By default array first index OR subscript
starts by 0 (zero).

4.8. CREATING AN ARRAY

At the time of creating array we should specify its length. For Example-1

public class ArrPrac

{

 static void Main()

 {

int[] arr = new int[6]; // DECLARATION OF AN ARRAY WITH

TOTAL // SIZE (0 TO 5)6

 }

}

4.9. TYPES OF ARRAY

4.9.1. 1-D ARRAY

In the above examples we worked with one OR single dimensional arrays. The
number of indexes needs to specify an element of an array is called dimensional.

Initialization of Array – There are several ways to initialize an array.
(i) For Example- 1
public class ArrPrac

{

 static void Main()

 {

 int[] arr = new int[6];

 arr[0]=23; // INITILIZATION OF ARRAY NAMED arr

arr[1]=10;

arr[2]=34;

arr[3]=12;

arr[4]=16;

arr[5]=62;

 for (int i = 0; i < arr.Length; i++)

{

 Console.WriteLine(arr[i]);

}

 }

}

(ii) For Example- 2
public class ArrPrac

{

 static void Main()

 {

 int[] arr = new int[] {20, 14, 15, 26, 73, 3, 21 };

arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[0] arr[1] arr[2] arr[3] arr[4] arr[5]

23 10 34

12 16 62

arr[0] arr[1] arr[2] arr[3] arr[4] arr[5]

 // ARRAY DECLARATION AND INITILIZATION AT SAME TIME

 for (int i = 0; i < arr.Length; i++)

{

 Console.WriteLine(arr[i]);

}

 }

}

In the above initialization at the time of array declaration values are initialized are
initialized to the array named ‘arr’.

4.9.2. 2-D ARRAY

Two dimensional arrays sometimes called multi-dimensional arrays, also known as a
rectangular array is an array with more than one dimension. It is can be of fixed
sized or dynamic sized. As-
Creating Two D Arrays. Example- 3
int [,] arr_twoD;
Initializing Two Dimensional Arrays- Example- 4

int[,] arr_twoD = new int[3, 2] { { 10, 21 }, { 34, 41 }, { 15, 60 } };

Example- 5

int[,] values = new int[3, 2];
values[0, 0]=10;
values[0, 1]=13;
values[1, 0]=11;
values[1, 1]=40;
values[2, 0]=17;
values[2, 1]=70;
Accessing 2D Arrays. As-
Console.WriteLine(numbers[0,0]);

4.10. DYNAMIC ARRAY

A dynamic array means we can change its size at the time of program execution. It does
not have a predefined size. ‘ArrayList’ is a collection from a standard ‘System.Collections’
namespace. It is a dynamic array. An ArrayList automatically expands as data is added.
An ArrayList can hold data of mixed or multiple types. Elements in the ArrayList are
accessed via an integer index. As- Example- 3

using System;
using System.Collections;
public class DynArray
{
 static void Main()
 {
 ArrayList dyn_arr_list = new ArrayList();
 dyn_arr_list.Add("C Sharp Book");
 dyn_arr_list.Add(987);

Row [0]

Row [1]

Row [2]

Row [0]

Row [1]

Row [2]

10

34

15 60

21

41

Column
[0] [1]

Row [0]

Row [1]

Row [2]

 dyn_arr_list.Add(123);
 dyn_arr_list.Add(“abcd”);
 dyn_arr_list.Remove123);

 foreach(object obj_store in dyn_arr_list)
 {
 Console.WriteLine(obj_store);
 }
 }

}

In the above example, we created an ArrayList collection. We added few elements to
‘dyn_arr_list’. It is of various data type, string, int and a class object.

dyn_arr_list.Add(987);

It adds a dynamic value at run time using Add() method. Similarly when we used a
method Remove() it removes a specified value.

INTRODUCTION OF STRUCTURE AND ARRAY:

➢ STRUCTURE:

 Structure are similar to classes in C#. Although classes will be used to implements most

objects, it is desirable to use structs where simple composite data types are required.

Because they are value types stored on the stack, they have the following advantages

compare to class objects stored on the heap:

They are created much more quickly than heap-allocated types.

They are automatically deallocated once they go out of scops.

It is eassy to copy value type variables on the stack.

Example:

using System;

struct way

{

public string direction;

public double distance;

}

 class Class1

{

 static void Main(string[] args)

 {

 way w;

 w.direction="north";

 w.distance=2.5;

 Console.WriteLine("the directon is="+w.direction);

 Console.WriteLine("the distance is="+ w.distance+"km");

 }

 }

➢ DEFINING A STRUCT:

A struct in C# provides a unique way of packing together data of different types.

Structs are declared using the structs keyword. The simple form of struct definition is as

follows:

Struct struct-name

{

Data member1:

Data member2:

…..

…..

}

Example:

Struct student

{

public string name:

public int RollNumber;

public double TotalMarkes;

}

Here keyword struct and Student as a new data type that can hold the three variable of

different data types.

STRUCTURES WITHIN STRUCTURES

Structure with in a structure means nesting of structures. Let us consider the following

structure defined to store information about the salary of employees.

Str uct salary {

char name[20];

char department[10];

int basic_pay;

int dearness_allowance;

int city_allowance;

}

employee;

This structure defines name, department, basic pay and 3 kinds of allowance. we can

group all the items related to allowance together and declare them under a substructure

are shown below:

struct salary

{

char name [20];

char department[10];

str uct

{

int dearness;

int hous_rent;

int city;

}

allowance;

}

employee;

The salary structure contains a member named allowance which itself is a structure with

3 members. The members contained in the inner, structure namely dearness, hous_rent,

and city can be referred to as :

employee allowance. dearness

employee. allowance. hous_rent

employee. allowance. city

An inner-most member in a nested structure can be accessed by chaining all the

concerned. Structure variables (from outer-most to inner-most) with the member using

dot operator. The following being invalid.

Structures are passed to functions by way of their pointers. Thus, the changes made to the

str ucture members inside the function will be reflected even outside the function.

INTRODUCTION OF ARRAY:

In Computer memory every bite is an array element. Abstraction translates these bytes

into object and gives them meaning. Arrays are a foundational data type. They are the

basis of more usable collections.

 “An Array is a fixed collection of same – type data that are stored contiguously and that

are accessible by an index.”

“An array are the simplest and most common type of structured data.”

Example:-

Declaring an Array:

using System;

class test

{ public static void Main()

{

 int[] a ={ 7, 9, 6, 4, 5 };

 Console.WriteLine("contents of array before sorting");

 dispme(a);

 Array.Sort(a);

 Console.WriteLine();

 dispme(a);

 Console.WriteLine("enter number between 1 and 7");

 int c = Convert.ToInt16(Console.ReadLine());

 int d = Array.IndexOf(a, c);

 Console.WriteLine(c + " " + d);

 }

 public static void dispme(Array b)

 {

 foreach (int t in b)

 {

 Console.WriteLine(t);

 }

 }

}

Example:

Using System;

namespace console1

{

Class arvind1

{

public static void Main()

{

int[] values = new int[3];

values[0] = 5;

values[1] = values[0] * 2;

values[2] = values[1] * 2;

foreach (int value in values)

{

Console.WriteLine(value);

}

}

}

Output:

For Loop Array:

Program that uses for-loop on int array: C#

using System;

class arvind

{

 static void Main ()

 {

 Int[] array = { 100,300,500 };

 For(int I =0; i< array.Length; i++)

 {

 Console.WriteLine(array[i]);

 }

 }

}

Output: -

String Array:

Program that create string array: C#

using System;

namespace consoleApplication4

{

class arvind1

{

 public static void Main()

{

string[] array = new string[4];

array[0] = “DOT”;

array[1] = “NET”;

array[2] = “ANU”;

{

Console.WriteLine(“DOT”);

Console.WriteLine(“NET”);

Console.WriteLine(“ANU”);

}

}

}

}

Output:

Return Array:

Program that returns array refrences: C#

using System;

class arvind2

{

 public static void Main()

{

Console.WriteLine(string.Join(“ ”, Method()));

}

static string[] Method()

{

string[] array = new string[2];

array[0] = “THANK”;

array[1] = “YOU”;

return array;

}

}

Output:

NESTED STRUCTURE:

In C#, Structs can also be nested inside the other struct body. The nested struct is called

the member struct of the parent struct. The accessibilty of the nested struct depends upon

the access modifier used to declare it inside the struct body. There are two ways of

nesting the C# structs inside the other one. The first way is nesting the whole declaration

of a struct inside the other struct and the second way is to use the struct as a member

variable of another struct. In this tutorial we will learn the syntax to declare the nested

structs, member structs and their implementation in the other code.

Simple Example:

struct A

{

public struct B

{

}

}

Example of nested structure:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace DecisionMaking

{

 class arvind

 {

 static void Main(string[] args)

 {

 int a = 100;

 int b = 200;

 if (a == 100)

 {

 if (b == 200)

 {

 Console.WriteLine("Value of a is 100 and b is 200");

 }

 }

 Console.WriteLine("Exact value of a is : {0}", a);

 Console.WriteLine("Exact value of b is : {0}", b);

 Console.ReadLine();

 }

 }

}

Difference between Classes & Structures:
Visual Basic .NET unifies the syntax for structures and classes, with the result that both

entities support most of the same features. However, there are also important differences

between structures and classes.

Similarities

Structures and classes are similar in the following respects:

Both are container types, meaning that they contain other types as members.

Both have members, which can include constructors, methods, properties, fields,

constants, enumerations, events, and event handlers.

Members of both can have individualized accessibilities. For example, one member can

be declared Public and another Private.

Both can implement interfaces.

Both can have shared constructors, with or without parameters.

Both can expose a default property, provided that property takes at least one argument.

Both can declare and raise events, and both can declare delegates.

Differences

Structures and classes differ in the following particulars:

Structures are value types; classes are reference types.

Structures use stack allocation; classes use heap allocation.

All structure members are Public by default; class variables and constants are Private by

default, while other class members are Public by default. This behavior for class

members provides compatibility with the Visual Basic 6.0 system of defaults.

A structure must have at least one nonshared variable or event member; a class can be

completely empty.

Structure members cannot be declared as Protected; class members can.

A structure procedure can handle events only if it is a Shared Sub procedure, and only

by means of the AddHandler statement; any class procedure can handle events, using

either the Handles keyword or the AddHandler statement.

Structure variable declarations cannot specify initializers, the New keyword, or initial

sizes for arrays; class variable declarations can.

Structures implicitly inherit from the ValueType class and cannot inherit from any other

type; classes can inherit from any class or classes other thanValueType.

Structures are not inheritable; classes are.

Structures are never terminated, so the common language runtime (CLR) never calls

the Finalize method on any structure; classes are terminated by the garbage collector,

which calls Finalize on a class when it detects there are no active references remaining.

A structure does not require a constructor; a class does.

Enumerations:

Enums store special values. They make programs simpler. If you place constants directly

where used, your C# program becomes complex. It becomes hard to change. Enums

instead keep these magic constants in a distinct typeEnum Type Conversion.

In this first example, we see an enum type that indicates the importance of something. An

enum type internally contains an enumerator list. You will use enum when you want

readable code that uses constants.

An enum type is a distinct value type that declares a set of named constants.

Program that uses enum:C#
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace DecisionMaking
{
 class Program
 {
 enum Importance
 {
 None,
 Trivial,
 Regular,
 Important,
 Critical
 };
 static void Main()
 {
 Importance value = Importance.Critical;
 if (value == Importance.Trivial)
 {
 Console.WriteLine("Not true");

 }
 else if (value == Importance.Critical)
 {
 Console.WriteLine("True");
 }
 }
 }
}

Output:

1 D Array:

The one dimensional array or single dimensional array in C# is the simplest

type of array that contains only one row for storing data. It has single set of

square bracket (“[]”). To declare single dimensional array in C#, you can

write the following code.

int[] age = new in[6];

The array age is a one dimensional array that contains only 6 elements in a

single row.

Example:

using System;

namespace One_Dimensional_Array

{

 class Program

 {

 static void Main(string[]args)

 {

 string[]Books= new string[5];

 Books[0]= "C#";

 Books[1]= "Java";

 Books[2]= "VB.NET";

 Books[3]= "C++";

 Books[4]= "C";

 Console.WriteLine("All the element of Books array is:\n\n");

 int i=0;

 Console.Write("\t1\t2\t3\t4\t5\n\n\t");

 for (i=0;i<5;i++)

 {

 Console.Write("{0}\t",Books[i]);

 }

Console.ReadLine();

 }

}

Output:

All The Element of Books array is:

2 D Array:

Data is sometimes two-dimensional. The C# language offers 2D arrays which are useful

here. Two-dimensional arrays are indexed with two numbers. They use a special syntax

form. They store any element type, reference or value.

The rank of an array is the number of dimensions. The type of an array (other than a

vector) shall be determined by the type of its elements and the number of dimensions.

The arrays we used so far were made of a uniform series, where all members consisted of

a simple list, like a column of names on a piece of paper. Also, all items fit in one list. In

some cases, you may want to divide the list in delimited sections. For example, if you

create a list of names, you may want part of the list to include family members and

another part of the list to include friends. Instead of creating a second list, you can add a

second dimension to the list. In other words, you would like to create a list of a list, or

one list inside of another list, although the list is still made of items with common

characteristics.

A multi-dimensional array is a series of lists so that each list contains its own list. For

example, if you create two lists of names, you would have an array of two lists. Each

array or list would have its own list or array.

Example:

using System;

namespace DepartmentStore4

{

 class birla

 {

 static int Main(string[] args)

 {

 long ItemID = 0;

 string Description = "Unknown";

 decimal Price = 0.00M;

 Console.WriteLine("Receipt");

 Console.WriteLine("Item Number: {0}", ItemID);

 Console.WriteLine("Description: {0}", Description);

 Console.WriteLine("Unit Price: {0:C}\n", Price);

 return 0;

 }

 }

}

Dynamic Array:-

When we talk about arrays which means that successive memory locations. Arrays are

used to minimize using different variable and arrays allowed to access each element

easily rather than by writing bulk of code for different variables. Static arrays can be

defined easily in any language, but static arrays has a great disadvantage, which is that if

you have not used full array it will always take same size as that was defined during its

declaration. So in practice we use dynamic array. Dynamic Array means that you define

the size of array at runtime, or making room for new elements in array. In c/c++ this has

to be done with pointers or linked lists. But C# does i very easily i.e you do not have to

play with pointers or any references. C# does it for you very easily. This can be achieved

by using LIST class in C#. List in C# can be used for many purposes but major use of it

is using it as dynamic array. List can be of any datatype or can also be the user defined

datatype i.e objects.

Example of Dynamic Array:-

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication8

{

class xyz

{

static void Main(string[] args)

{

Console.WriteLine("Welcome to arvind");

List<int> list=new List<int>();

list.Add(12);

list.Add(13);

list.Add(11);

list.Add(10);

int size = list.Count; //size of list// accessing the items in list

for(int i=0;i<list.Count;i++)

Console.WriteLine(list[i]);// printing every element on console //sorting the list

list.Sort();

Console.WriteLine("SORTED LIST");

for (int i = 0; i < list.Count; i++)

Console.WriteLine(list[i]);// printing every element on console// search operation

int item=list.BinarySearch(12);

Console.WriteLine("your item is at index="+item);

}

}

}

Output:-

4.11. SUMMARY

In this chapter we explained structures and arrays with their suitable examples.
Structures are value types. We discussed nested structures also. The audience also learns
basics of arrays (single & two dimensional), dynamic arrays also.

4.12. EXERCISE

(i) What is the use of enumerated data type?

(ii) What is dynamic array? How can we use it?

(iii) How nested structures are declared?

(iv) What are the difference between Structure and Class?

(v) What is the difference between Array and Arraylist?

(vi) What are value types and reference types?

(vii) Declare a structure with three member variables one of them is array type of any
primary data type, and using the object of structure access these members.

BLOCK- 2

6
Inheritance and Polymorphism

Interface:
Interfaces describe a group of related functionalities that can belong to any class or struct.
Interfaces can consist of methods, properties, events, indexers, or any combination of those four

member types. An Interface is a reference type and it contains only abstract members, so

sometime it also called pure abstract class. An interface contains only declaration for its
members. Any implementation must be placed in class that inherited them. An interface can't
contain constants, data fields, constructors, destructors and static members. All the member
declarations inside interface are implicitly public.
To implement an interface member, the corresponding member on the class must be public, non-
static, and have the same name and signature as the interface member. Properties and indexers
on a class can define extra accessors for a property or indexer defined on an interface.
Classes and structs can inherit from more than one interface. An interface can itself inherit from
multiple interfaces.
Defining an interface:

interface IDemoInterface

{

 void MethodDemo();

}
We define an interface by using keyword interface. Above an interface name is IDemoInterface. A
common naming convention is to prefix all interface names with a capital "I".

Example:

using System;

using System.Collections.Generic;

using System.Text;

namespace DemoInterface

{

interface IDemoInterface // defining an interface

{

 void MethodDemo();

}

 class MyClass : IDemoInterface // implementing an interface in the

class

U n i t

 {

 static void Main(string[] args)

 {

 MyClass mco = new MyClass ();

 mco.MethodDemo();

 }

 public void MethodDemo()

 {

 Console.WriteLine("An example of Interface.");

 Console.ReadLine();

 }

 }

}

OUTPUT:
An example of Interface.
Explanation:
In above example we define an interface named IDemoInterface which contains a method named
MethodDemo().
Now, a class named MyClass inherits the interface IDemoInterface using : symbol.
 class MyClass : IDemoInterface

The class MyClass implement the method MethodDemo() which is defined by the interface
IDemoInterface. Then we create an object of class MyClass named mco and called the method
MehtodDemo().
So, the above description defines the actual story of an interface.

Multiple Inheritance using C# interfaces:
Multiple inheritance is not allowed in C#. So, this problem can solve by using interface. This can
be done using child class that inherits from any number of c# interfaces.
using System;

using System.Collections.Generic;

using System.Text;

namespace DemoInterface

{

 interface IParentInterafce

 {

 void MethodParentDemo();

 }

 interface IDemoInterface

 {

 void MethodDemo();

 }

 class MyClass : IParentInterafce, IDemoInterface

 {

 public static void Main(string[] args)

 {

 MyClass mco = new MyClass ();

 mco.MethodDemo();

 mco.MethodParentDemo();

 }

 public void MethodDemo()

 {

 Console.WriteLine("Implementing IDemoInterface");

 }

 public void MethodParentDemo()

 {

 Console.WriteLine("Implementing IParentInterafce");

 Console.ReadLine();

 }

 }

}

OUTPUT:

Implementing IDemoInterface

Implementing IParentInterafce

Explanation:
In above example we have defined two interfaces named IParentInterafce and IDemoInterface.
Then we have inherited both interfaces in class named MyClass.

So, by doing this we can resolve the problem of multiple inheritance.

An interface can inherit other interface as below:
interface IParentInterafce

 {

 void MethodParentDemo();

 }

 interface IDemoInterface :IParentInterafce

 {

 void MethodDemo();

 }

Implementation of both interface will same as in above exaple.

//example of inheritance

using System;

class baseio

{

 public string filename;

 public int delete()

 {

 Console.WriteLine("this is the delete method of the baseio

class");

 return(0);

 }

}

class imageio:baseio

{

 public string imgformat;

 public int alphablend()

 {

 Console.WriteLine("this is the alpha blending method of the

imageio class");

 return(0);

 }

}

 class test

 {

 static void Main(string[] args)

 {

 imageio obj=new imageio();

 obj.filename=("shaggy.jpg");

 obj.delete();

 }

 }

7
Overloading and Overriding

Method Overloading

Method overloading occurs when a class contains two or more methods with
the same name, but different signatures.

Method overloading use in such situations in which you want to expose a
single method name where the behavior of the method is slightly different
depending on the value types passed.

In method overloading, the arguments passed in methods should be different

in types, number and in sequence.

//syntax of method overloading using different number of parameters

Public void addmission(int t,string s)

{

//code

//admission1 implementation

}

Public void admission(int t,string s,int a)

{

//code

//admission2 implementation

}

Public admission()

{

//code

//admission3 implementation

}

//syntax of method overloading using different type of parameter

Public void admission(short t,string s)

{

//admission1 implementation

U n i t

}

Public void admission(int t,string s)

{

//admission2 implementation

}

Public admission(bool b,int t)

{

//admission3 implementation

}

For example:

using System;

using System.Collections.Generic;

using System.Text;

 class MyDemo

 {

 public int Add(int a, int b)

 {

 return (a + b);

 }

 public int Add(int a, int b, int c)

 {

 return (a + b + c);

 }

 public string Add(string a, string b)

 {

 return (a + b);

 }

 }

 class MainClass

 {

 public static void Main(string[] args)

 {

 MyDemo md = new MyDemo();

 Console.WriteLine(md.Add(4,6));

 Console.WriteLine(md.Add("C# Programing", "Language"));

 Console.WriteLine(md.Add(4, 6, 8));

 Console.ReadLine();

 }

 }

Output :

10

C# Proraming Language

18

Explanation:

In above example we have defined three methods with the same name
ADD but with different arguments within a class MyDemo.

In first method we are passing two arguments int a and int b.
In second method we are passing three arguments int a, int b and int c.

So in this method we have change the number of arguments to perform
overloadind.
In third method we are passing two different arguments in type string a

and string b.So in this method we have type of arguments.

The compiler automatically select the most appropriate method to call
based on the arguments supplied.

Program 1:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication2{

 class myFirst{

 public void hello(){

 Console.WriteLine("Hello C#");

 }

 static void Main(string[] args){

 myFirst m = new myFirst();

 m.hello();

 Console.Read();

 }

 }

}

Program 2: Internal Class

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication2{

 internal class myFirst{

 public void hello(){

 Console.WriteLine("Hello C#");

 }

 }

 class Mainclass{

 static void Main(string[] args){

 myFirst m = new myFirst();

 m.hello();

 }

 }

}

Program 3:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication2{

 abstract class abshello{

 protected string s = "";

 public abstract void callhello();

 }

 class absDerived : abshello{

 public override void callhello(){

 s = "Hello C#";

 Console.WriteLine(s);

 }

 }

 class mainclass{

 static void Main(string[] args){

 absDerived ad = new absDerived();

 ad.callhello();

 Console.Read();

 }

 }

}

Program 4:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication2{

 abstract class abshello{

 protected string s = "";

 public abstract void callhello();

 public abstract void sayhello(); //Not

implemented in the Derived class.

 }

 class absDerived : abshello{

 public override void callhello(){

 s = "Hello C#";

 Console.WriteLine("{0}",s);

 }

 }

 class mainclass{

 static void Main(string[] args){

 absDerived ad = new absDerived();

 ad.callhello();

 }

 }

}

Error 'ConsoleApplication2.absDerived' does not implement inherited

abstract member 'ConsoleApplication2.abshello.sayhello()'

Program 5

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication2{

 class abshello{

 protected string s = "";

 public void callhello(){

 s = "No Hello C#";

 }

 }

 class absDerived : abshello{

 public override void callhello(){

 s = "Hello C#";

 Console.WriteLine(s);

 }

 }

 class Program{

 static void Main(string[] args)

 {

 absDerived ad = new absDerived();

 ad.callhello();

 }

 }

}

Error 'ConsoleApplication2.absDerived.callhello()': cannot override

inherited member 'ConsoleApplication2.abshello.callhello()' because it is not

marked virtual, abstract, or override
Program 6

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication2{

 class abshello{

 protected string s = "";

 public virtual void callhello(){

 s = "No Hello C#";

 }

 }

 class absDerived : abshello{

 public override void callhello(){

 s = "Hello C#";

 Console.WriteLine(s);

 }

 }

 class Program{

 static void Main(string[] args)

 {

 absDerived ad = new absDerived();

 ad.callhello();

 }

 }

}

Program 7

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication2

{

 class abshello

 {

 string s = "Hello C#";

 public static void callhello()

 {

 Console.WriteLine("{0}",s);

 }

 public void normal()

 {

 Console.WriteLine("{0}",s);

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 abshello.callhello();

 abshello ad = new abshello();

 ad.normal();

 }

 }

}

Error An object reference is required for the non-

static field, method, or property

'ConsoleApplication2.abshello.s

Program 7

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication2

{

 class shibi

 {

 public void hand()

 {

 Console.WriteLine("shibi's Hand");

 }

 public virtual void eye()

 {

 Console.WriteLine("Shibi's Hand");

 }

 }

 class myson : shibi

 {

 public void hand()

 {

 Console.WriteLine("myson's Hand");

 }

 public override void eye()

 {

 Console.WriteLine("myson's eye");

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 shibi s = new shibi();

 myson m = s;

 s.hand();

 m.hand();

 s.eye();

 m.eye();

 }

 }

}

//program of virtual function

using System;

class draw1

{

 public virtual void draw()

 {

 System.Console.WriteLine("this is the virtual draw

method");

 }

}

 class rectangle : draw1

{

 public override void draw()

 {

 System.Console.WriteLine("this is the draw method of

rectangle");

 }

}

 class triangle:draw1

{

 public override void draw()

 {

 System.Console.WriteLine("this is the draw method of

triangle");

 }

}

class polygon:draw1

{

 public override void draw()

 {

 System.Console.WriteLine("this is the draw method of

polygon");

 }

}

 public class Class1

 {

 public static void Main(string[] args)

 {

 draw1[] d=new draw1[4];

 d[0]=new draw1();

 d[1]=new rectangle();

 d[2]=new triangle();

 d[3]=new polygon();

 foreach(draw1 t in d)

 {

 t.draw();

 }

 }

 }

using System;

namespace Sealed

{

 public sealed class First

 {

 public void TestName()

 {

 Console.WriteLine("c sharp is purely object-oriented");

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 First f = new First();

 f.TestName();

 Console.WriteLine("Press the key ENTER to end the

program");

 Console.ReadLine();

 }

 }

}

8
Event & Delegates

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication10

{

 public delegate void MulticastDelegate(int x, int y);

 public class MyClass

 {

 public static void Add(int x, int y)

 {

 Console.WriteLine(" Add() Method");

 Console.WriteLine("{0} + {1} = {2}\n", x, y, x + y);

 }

 public static void Multiply(int x, int y)

 {

 Console.WriteLine(" Multiply() Method");

 Console.WriteLine("{0} X {1} = {2}", x, y, x * y);

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 MulticastDelegate del = new MulticastDelegate(MyClass.Add);

 del += new MulticastDelegate(MyClass.Multiply);

 Console.WriteLine("****calling Add() and Multibly()

Methods.****\n\n");

 del(5, 7);

 del -= new MulticastDelegate(MyClass.Add);

 Console.WriteLine("\n\n****Add() Method

removed.****\n\n");

U n i t

 del(5, 4);

 }

 }

}

Output :

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication3

{

 public delegate int BinaryMath(int x, int y);

 public class SimpleMath

 {

 public int Add(int x, int y)

 { return x + y; }

 public int Subtract(int x, int y)

 { return x - y; }

 public static int SquareNumber(int a)

 { return a * a; }

 }

 class SimpleDelegate

 {

 public static void Main(string[] args)

 {

 Console.WriteLine("***** A Simple Delegate Use *****\n");

 SimpleMath m = new SimpleMath();

 BinaryMath b = new BinaryMath(m.Add);

 DisplayDelegateInfo(b);

 Console.WriteLine("\n15 + 30 is {0}", b(15, 30));

 Console.ReadLine();

 }

 static void DisplayDelegateInfo(Delegate delObj)

 {

 foreach (Delegate d in delObj.GetInvocationList())

 {

 Console.WriteLine("Method Name: {0}", d.Method);

 Console.WriteLine("Target Name: {0}", d.Target);

 }

 }

 }

 }

Output :

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication4

{

 using System;

 public delegate int Comparer(object obj1, object obj2);

 public class Name

 {

 public string FirstName = null;

 public string LastName = null;

 public Name(string first, string last)

 {

 FirstName = first;

 LastName = last;

 }

 // this is the delegate method handler

 public static int CompareFirstNames(object name1, object name2)

 {

 string n1 = ((Name)name1).FirstName;

 string n2 = ((Name)name2).FirstName;

 if (String.Compare(n1, n2) > 0)

 {

 return 1;

 }

 else if (String.Compare(n1, n2) < 0)

 {

 return -1;

 }

 else

 {

 return 0;

 }

 }

 public override string ToString()

 {

 return FirstName + " " + LastName;

 }

 }

 class SimpleDelegate

 {

 Name[] names = new Name[5];

 public SimpleDelegate()

 {

 names[0] = new Name("RAM ", "SHARMA");

 names[1] = new Name("BASANT ", "PANDEY");

 names[2] = new Name("TINU", "JOSHI");

 names[3] = new Name("RAKESH", "BISHT");

 names[4] = new Name("ANUBHAV", "KHANDURI");

 }

 public static void Main(string[] args)

 {

 SimpleDelegate sd = new SimpleDelegate();

 // this is the delegate instantiation

 Comparer cmp = new Comparer(Name.CompareFirstNames);

 Console.WriteLine("\nBefore Sort: \n");

 sd.PrintNames();

 // observe the delegate argument

 sd.Sort(cmp);

 Console.WriteLine("\nAfter Sort: \n");

 sd.PrintNames();

 }

 // observe the delegate parameter

 public void Sort(Comparer compare)

 {

 object temp;

 for (int i = 0; i < names.Length; i++)

 {

 for (int j = i; j < names.Length; j++)

 {

 // using delegate "compare" just like

 // a normal method

 if (compare(names[i], names[j]) > 0)

 {

 temp = names[i];

 names[i] = names[j];

 names[j] = (Name)temp;

 }

 }

 }

 }

 public void PrintNames()

 {

 Console.WriteLine("Names: \n");

 foreach (Name name in names)

 {

 Console.WriteLine(name.ToString());

 }

 }

 }}

Output :

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication8

{

 delegate bool CompareOp(object lhs, object rhs);

 class BubbleSorter

 {

 static public void Sort(object [] sortArray,CompareOp gtMethod)

 {

 for(int i=0;i<sortArray.Length ;i++)

 {

 for(int j=i+1;j<sortArray.Length ;j++)

 {

 if(gtMethod (sortArray[j],sortArray[i]))

 {

 object temp=sortArray [i];

 sortArray [i]=sortArray [j];

 sortArray [j]=temp;

 }

 }

 }

 }

 }

 class Employee

 {

 private string name;

 private decimal salary;

 public Employee (string name,decimal salary)

 {

 this.name = name;

 this.salary = salary;

 }

 public override string ToString()

 {

 return string.Format (name +",{0:C}",salary);

 }

 public static bool RhsIsGreater(object lhs,object rhs)

 {

 Employee empLhs = (Employee) lhs;

 Employee empRhs = (Employee) rhs;

 return (empRhs.salary > empLhs.salary) ? true : false;

 }

 }

 class Program

 {

 public static void Main(string[] args)

 {

 Employee [] employees =

 {

 new Employee("AKASH SHARMA", 500000),

 new Employee("FAHEEM KHAN", 10000),

 new Employee("GANESH SHANKAR", 25000),

 new Employee("PANKAJ SINGH", (decimal)100000.35),

 new Employee("RAJKUMAR", 5000),

 new Employee("RAJ SHARMA", 100000),

 };

 CompareOp employeeCompareOp = new CompareOp

(Employee.RhsIsGreater);

 BubbleSorter.Sort(employees,employeeCompareOp);

 for (int i=0;i<employees.Length ; i++)

 Console.WriteLine(employees[i].ToString());

 }

 }

 }

Output :

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication14

{

 public class Person

 {

 public string Name { get; set; }

 public int Age { get; set; }

 }

 class Program

 {

 public delegate bool FilterDelegate(Person p);

 static void Main(string[] args)

 {

 Person p1 = new Person() { Name = "RAM", Age = 40 };

 Person p2 = new Person() { Name = "JAIDUTT", Age = 69 };

 Person p3 = new Person() { Name = "SANSKRITI", Age = 12 };

 Person p4 = new Person() { Name = "BASANT", Age = 25 };

 List<Person> people = new List<Person>() { p1, p2, p3, p4

};

 DisplayPeople("Children:", people, IsChild);

 DisplayPeople("Adults:", people, IsAdult);

 DisplayPeople("Seniors:", people, IsSenior);

 Console.Read();

 }

static void DisplayPeople(string title, List<Person> people,

FilterDelegate filter) {

Console.WriteLine(title);

foreach (Person p in people) {

if (filter(p)) {

Console.WriteLine("{0}, {1} years old", p.Name, p.Age);

}

}

Console.Write("\n\n");

}

//==========FILTERS===================

static bool IsChild(Person p) {

return p.Age <= 18;

}

static bool IsAdult(Person p) {

return p.Age >= 18;

}

static bool IsSenior(Person p) {

return p.Age >= 65;

}

}

}

Output ;

9
Properties & Indexer

Overview of Properties

Properties provide the opportunity to protect a field in a class by reading and writing to it

through the property. In other languages, this is often accomplished by programs

implementing specialized getter and setter methods. C# properties enable this type of

protection while also letting you access the property just like it was a field.

Another benefit of properties over fields is that you can change their internal

implementation over time. With a public field, the underlying data type must always be

the same because calling code depends on the field being the same. However, with a

property, you can change the implementation. For example, if a customer has an ID that

is originally stored as an int, you might have a requirements change that made you

perform a validation to ensure that calling code could never set the ID to a negative

value. If it was a field, you would never be able to do this, but a property allows you to

make such a change without breaking code. Now, lets see how to use properties.

Traditional Encapsulation Without Properties

Languages that don't have properties will use methods (functions or procedures) for

encapsulation. The idea is to manage the values inside of the object, state, avoiding

corruption and misuse by calling code. Listing 10-1 demonstrates how this traditional

method works, encapsulating Customer information via accessor methods.

Listing 10-1. An Example of Traditional Class Field Access

using System;

public class Customer

{

 private int m_id = -1;

 public int GetID()

 {

 return m_id;

 }

U n i t

 public void SetID(int id)

 {

 m_id = id;

 }

 private string m_name = string.Empty;

 public string GetName()

 {

 return m_name;

 }

 public void SetName(string name)

 {

 m_name = name;

 }

}

public class CustomerManagerWithAccessorMethods

{

 public static void Main()

 {

 Customer cust = new Customer();

 cust.SetID(1);

 cust.SetName("Amelio Rosales");

 Console.WriteLine(

 "ID: {0}, Name: {1}",

 cust.GetID(),

 cust.GetName());

 Console.ReadKey();

 }

}

Listing 10-1 shows the traditional method of accessing class fields. The Customer class

has four methods, two for each private field that the class encapsulates: m_id and

m_name. As you can see, SetID and SetName assign a new values and GetID and

GetName return values.

Observe how Main calls the SetXxx methods, which sets m_id to 1 and m_name to

"Amelio Rosales" in the Customer instance, cust. The call to Console.WriteLine

demonstrates how to read m_id and m_name from cust, via GetID and GetName method

calls, respectively.

This is such a common pattern, that C# has embraced it in the form of a language feature

called properties, which you'll see in the next section.

Encapsulating Type State with Properties

The practice of accessing field data via methods was good because it supported the

object-oriented concept of encapsulation. For example, if the type of m_id or m_name

changed from an int type to byte, calling code would still work. Now the same thing can

be accomplished in a much smoother fashion with properties, as shown in Listing 10-2.

Listing 10-2. Accessing Class Fields With Properties

using System;

public class Customer

{

 private int m_id = -1;

 public int ID

 {

 get

 {

 return m_id;

 }

 set

 {

 m_id = value;

 }

 }

 private string m_name = string.Empty;

 public string Name

 {

 get

 {

 return m_name;

 }

 set

 {

 m_name = value;

 }

 }

}

public class CustomerManagerWithProperties

{

 public static void Main()

 {

 Customer cust = new Customer();

 cust.ID = 1;

 cust.Name = "Amelio Rosales";

 Console.WriteLine(

 "ID: {0}, Name: {1}",

 cust.ID,

 cust.Name);

 Console.ReadKey();

 }

}

Listing 10-2 shows how to create and use a property. The Customer class has the ID and

Name property implementations. There are also private fields named m_id and m_name;

which ID and Name, respectively, encapsulate. Each property has two accessors, get and

set. The get accessor returns the value of a field. The set accessor sets the value of a field

with the contents of value, which is the value being assigned by calling code. The value

shown in the accessor is a C# reserved word.

When setting a property, just assign a value to the property as if it were a field. The

CustomerManagerWithProperties class uses the ID and Name properties in the Customer

class. The first line of Main instantiates a Customer object named cust. Next the value of

the m_id and m_name fields of cust are set by using the ID and Name properties.

To read from a property, use the property as if it were a field. Console.WriteLine prints

the value of the m_id and m_name fields of cust. It does this by calling the ID and Name

properties of cust.

This was a read/write property, but you can also create read-only properties, which you'll

learn about next.

Creating Read-Only Properties

Properties can be made read-only. This is accomplished by having only a get accessor in

the property implementation. Listing 10-3 demonstrates how you can create a read-only

property.

Listing 10-3. Read-Only Properties

using System;

public class Customer

{

 private int m_id = -1;

 private string m_name = string.Empty;

 public Customer(int id, string name)

 {

 m_id = id;

 m_name = name;

 }

 public int ID

 {

 get

 {

 return m_id;

 }

 }

 public string Name

 {

 get

 {

 return m_name;

 }

 }

}

public class ReadOnlyCustomerManager

{

 public static void Main()

 {

 Customer cust = new Customer(1, "Amelio Rosales");

 Console.WriteLine(

 "ID: {0}, Name: {1}",

 cust.ID,

 cust.Name);

 Console.ReadKey();

 }

}

The Customer class in Listing 10-3 has two read-only properties, ID and Name. You can

tell that each property is read-only because they only have get accessors. At some time,

values for the m_id and m_name must be assigned, which is the role of the constructor in

this example.

The Main method of the ReadOnlyCustomerManager class instantiates a new Customer

object named cust. The instantiation of cust uses the constructor of Customer class, which

takes int and string type parameters. In this case, the values are 1 and "Amelio Rosales".

This initializes the m_id and m_name fields of cust.

Since the ID and Name properties of the Customer class are read-only, there is no other

way to set the value of the m_id and m_name fields. If you inserted cust.ID = 7 into the

listing, the program would not compile, because ID is read-only; the same goes for Name.

When the ID and Name properties are used in Console.WriteLine, they work fine. This is

because these are read operations which only invoke the get accessor of the ID and Name

properties.

One question you might have now is "If a property can be read-only, can it also be write-

only?" The answer is yes, and explained in the next section.

Creating a Write-Only Property

You can assign values to, but not read from, a write-only property. A write-only property

only has a set accessor. Listing 10-4 shows you how to create and use write-only

properties.

Listing 10-4. Write-Only Properties

using System;

public class Customer

{

 private int m_id = -1;

 public int ID

 {

 set

 {

 m_id = value;

 }

 }

 private string m_name = string.Empty;

 public string Name

 {

 set

 {

 m_name = value;

 }

 }

 public void DisplayCustomerData()

 {

 Console.WriteLine("ID: {0}, Name:

 {1}", m_id, m_name);

 }

}

public class WriteOnlyCustomerManager

{

 public static void Main()

 {

 Customer cust = new Customer();

 cust.ID = 1;

 cust.Name = "Amelio Rosales";

 cust.DisplayCustomerData();

 Console.ReadKey();

 }

}

This time, the get accessor is removed from the ID and Name properties of the Customer

class, shown in Listing 10-1. The set accessors have been added, assigning value to the

backing store fields, m_id and m_name.

The Main method of the WriteOnlyCustomerManager class instantiates the Customer

class with a default constructor. Then it uses the ID and Name properties of cust to set the

m_id and m_name fields of cust to 1 and "Amelio Rosales", respectively. This invokes the

set accessor of ID and Name properties from the cust instance.

When you have a lot of properties in a class or struct, there can also be a lot of code

associated with those properties. In the next section, you'll see how to write properties

with less code.

Creating Auto-Implemented Properties

The patterns you see here, where a property encapsulates a property with get and set

accessors, without any other logic is common. It is more code than we should have to

write for such a common scenario. That's why C# 3.0 introduced a new syntax for a

property, called an auto-implemented property, which allows you to create properties

without get and set accessor implementations. Listing 10-5 shows how to add auto-

implemented properties to a class.

Listing 10-5. Auto-Implemented Properties

using System;

public class Customer

{

 public int ID { get; set; }

 public string Name { get; set; }

}

public class AutoImplementedCustomerManager

{

 static void Main()

 {

 Customer cust = new Customer();

 cust.ID = 1;

 cust.Name = "Amelio Rosales";

 Console.WriteLine(

 "ID: {0}, Name: {1}",

 cust.ID,

 cust.Name);

 Console.ReadKey();

 }

}

Notice how the get and set accessors in Listing 10-5 do not have implementations. In an

auto-implemented property, the C# compiler creates the backing store field behind the

scenes, giving the same logic that exists with traditional properties, but saving you from

having to use all of the syntax of the traditional property. As you can see in the Main

method, the usage of an auto-implemented property is exactly the same as traditional

properties, which you learned about in previous sections.

Summary

You now know what properties are for and how they're used. Traditional techniques of

encapsulation have relied on separate methods. Properties allow you to access objects

state with field-like syntax. Properties can be made read-only or write-only. You also

learned how to write properties with less code by using auto-implemented properties.

In C#, properties are nothing but natural extension of data fields. They are usually

known as 'smart fields' in C# community. We know that data encapsulation and

hiding are the two fundamental characteristics of any object oriented programming

language.In C#, data encapsulation is possible through either classes or structures.

By using various access modifiers like private, public, protected, internal etc it is

possible to control the accessibility of the class members.

Usually inside a class, we declare a data field as private and will provide a set of

public SET and GET methods to access the data fields. This is a good programming

practice, since the data fields are not directly accessible out side the class. We must

use the set/get methods to access the data fields.

An example, which uses a set of set/get methods, is shown below.

//SET/GET methods

//Author: rajeshvs@msn.com

using System;

class MyClass

{

private int x;

public void SetX(int i)

{

x = i;

}

public int GetX()

{

return x;

}

}

class MyClient

{

public static void Main()

{

MyClass mc = new MyClass();

mc.SetX(10);

int xVal = mc.GetX();

Console.WriteLine(xVal);//Displays 10

}

}

But C# provides a built in mechanism called properties to do the above. In C#,

properties are defined using the property declaration syntax. The general form of

declaring a property is as follows.

<acces_modifier> <return_type> <property_name>

{

get

{

}

set

{

}

}

Where <access_modifier> can be private, public, protected or internal. The

<return_type> can be any valid C# type. Note that the first part of the syntax looks

quite similar to a field declaration and second part consists of a get accessor and a

set accessor.

For example the above program can be modifies with a property X as follows.

class MyClass

{

private int x;

public int X

{

get

{

return x;

}

set

{

x = value;

}

}

}

The object of the class MyClass can access the property X as follows.

MyClass mc = new MyClass();

mc.X = 10; // calls set accessor of the property X, and pass 10 as value of the

standard field 'value'.

This is used for setting value for the data member x.

Console.WriteLine(mc.X);// displays 10. Calls the get accessor of the property X.

The complete program is shown below.

//C#: Property

//Author: rajeshvs@msn.com

using System;

class MyClass

{

private int x;

public int X

{

get

{

return x;

}

set

{

x = value;

}

}

}

class MyClient

{

public static void Main()

{

MyClass mc = new MyClass();

mc.X = 10;

int xVal = mc.X;

Console.WriteLine(xVal);//Displays 10

}

}

Remember that a property should have at least one accessor, either set or get. The

set accessor has a free variable available in it called value, which gets created

automatically by the compiler. We can't declare any variable with the name value

inside the set accessor.

We can do very complicated calculations inside the set or get accessor. Even they

can throw exceptions.

Since normal data fields and properties are stored in the same memory space, in C#,

it is not possible to declare a field and property with the same name.

Static Properties

C# also supports static properties, which belongs to the class rather than to the

objects of the class. All the rules applicable to a static member are applicable to

static properties also.

The following program shows a class with a static property.

//C# : static Property

//Author: rajeshvs@msn.com

using System;

class MyClass

{

private static int x;

public static int X

{

get

{

return x;

}

set

{

x = value;

}

}

}

class MyClient

{

public static void Main()

{

MyClass.X = 10;

int xVal = MyClass.X;

Console.WriteLine(xVal);//Displays 10

}

}

Remember that set/get accessor of static property can access only other static

members of the class. Also static properties are invoking by using the class name.

Properties & Inheritance

The properties of a Base class can be inherited to a Derived class.

//C# : Property : Inheritance

//Author: rajeshvs@msn.com

using System;

class Base

{

public int X

{

get

{

Console.Write("Base GET");

return 10;

}

set

{

Console.Write("Base SET");

}

}

}

class Derived : Base

{

}

class MyClient

{

public static void Main()

{

Derived d1 = new Derived();

d1.X = 10;

Console.WriteLine(d1.X);//Displays 'Base SET Base GET 10'

}

}

The above program is very straightforward. The inheritance of properties is just like

inheritance any other member.

Properties & Polymorphism

A Base class property can be polymorphicaly overridden in a Derived class. But

remember that the modifiers like virtual, override etc are using at property level, not

at accessor level.

//C# : Property : Polymorphism

//Author: rajeshvs@msn.com

using System;

class Base

{

public virtual int X

{

get

{

Console.Write("Base GET");

return 10;

}

set

{

Console.Write("Base SET");

}

}

}

class Derived : Base

{

public override int X

{

get

{

Console.Write("Derived GET");

return 10;

}

set

{

Console.Write("Derived SET");

}

}

}

class MyClient

{

public static void Main()

{

Base b1 = new Derived();

b1.X = 10;

Console.WriteLine(b1.X);//Displays 'Derived SET Derived GET 10'

}

}

Abstract Properties

A property inside a class can be declared as abstract by using the keyword abstract.

Remember that an abstract property in a class carries no code at all. The get/set

accessors are simply represented with a semicolon. In the derived class we must

implement both set and get assessors.

If the abstract class contains only set accessor, we can implement only set in the

derived class.

The following program shows an abstract property in action.

//C# : Property : Abstract

//Author: rajeshvs@msn.com

using System;

abstract class Abstract

{

public abstract int X

{

get;

set;

}

}

class Concrete : Abstract

{

public override int X

{

get

{

Console.Write(" GET");

return 10;

}

set

{

Console.Write(" SET");

}

}

}

class MyClient

{

public static void Main()

{

Concrete c1 = new Concrete();

c1.X = 10;

Console.WriteLine(c1.X);//Displays 'SET GET 10'

}

}

The properties are an important features added in language level inside C#. They are

very useful in GUI programming. Remember that the compiler actually generates the

appropriate getter and setter methods when it parses the C# property syntax.

Indexers allow your class to be used just like an array. On the inside of a class, you

manage a collection of values any way you want. These objects could be a finite set of

class members, another array, or some complex data structure. Regardless of the internal

implementation of the class, its data can be obtained consistently through the use of

indexers. Here's an example.

Listing 11-1. An Example of An Indexer: IntIndexer.cs

using System;

/// <summary>

/// A simple indexer example.

/// </summary>

class IntIndexer

{

 private string[] myData;

 public IntIndexer(int size)

 {

 myData = new string[size];

 for (int i=0; i < size; i++)

 {

 myData[i] = "empty";

 }

 }

 public string this[int pos]

 {

 get
 {

 return myData[pos];

 }

 set
 {

 myData[pos] = value;

 }

 }

 static void Main(string[] args)

 {

 int size = 10;

 IntIndexer myInd = new IntIndexer(size);

 myInd[9] = "Some Value";

 myInd[3] = "Another Value";

 myInd[5] = "Any Value";

 Console.WriteLine("\nIndexer Output\n");

 for (int i=0; i < size; i++)

 {

 Console.WriteLine("myInd[{0}]: {1}", i, myInd[i]);

 }

 }

}

Listing 11-1 shows how to implement an Indexer. The IntIndexer class has a string array

named myData. This is a private array that external users can't see. This array is

initialized in the constructor, which accepts an int size parameter, instantiates the myData

array, and then fills each element with the word "empty".

The next class member is the Indexer, which is identified by the this keyword and square

brackets, this[int pos]. It accepts a single position parameter, pos. As you may have

already guessed, the implementation of an Indexer is the same as a Property. It has get

and set accessors that are used exactly like those in a Property. This indexer returns a

string, as indicated by the string return value in the Indexer declaration.

The Main() method simply instantiates a new IntIndexer object, adds some values, and

prints the results. Here's the output:

Indexer Output

myInd[0]: empty

myInd[1]: empty

myInd[2]: empty

myInd[3]: Another Value

myInd[4]: empty

myInd[5]: Any Value

myInd[6]: empty

myInd[7]: empty

myInd[8]: empty

myInd[9]: Some Value

Using an integer is a common means of accessing arrays in many languages, but the C#

Indexer goes beyond this. Indexers can be declared with multiple parameters and each

parameter may be a different type. Additional parameters are separated by commas, the

same as a method parameter list. Valid parameter types for Indexers include integers,

enums, and strings. Additionally, Indexers can be overloaded. In listing 11-2, we modify

the previous program to accept overloaded Indexers that accept different types.

Listing 11-2. Overloaded Indexers: OvrIndexer.cs

using System;

/// <summary>

/// Implements overloaded indexers.

/// </summary>

class OvrIndexer

{

 private string[] myData;

 private int arrSize;

 public OvrIndexer(int size)

 {

 arrSize = size;

 myData = new string[size];

 for (int i=0; i < size; i++)

 {

 myData[i] = "empty";

 }

 }

 public string this[int pos]

 {

 get
 {

 return myData[pos];

 }

 set
 {

 myData[pos] = value;

 }

 }

 public string this[string data]

 {

 get
 {

 int count = 0;

 for (int i=0; i < arrSize; i++)

 {

 if (myData[i] == data)

 {

 count++;

 }

 }

 return count.ToString();

 }

 set
 {

 for (int i=0; i < arrSize; i++)

 {

 if (myData[i] == data)

 {

 myData[i] = value;

 }

 }

 }

 }

 static void Main(string[] args)

 {

 int size = 10;

 OvrIndexer myInd = new OvrIndexer(size);

 myInd[9] = "Some Value";

 myInd[3] = "Another Value";

 myInd[5] = "Any Value";

 myInd["empty"] = "no value";

 Console.WriteLine("\nIndexer Output\n");

 for (int i=0; i < size; i++)

 {

 Console.WriteLine("myInd[{0}]: {1}", i, myInd[i]);

 }

 Console.WriteLine("\nNumber of \"no value\" entries: {0}", myInd["no value"]);

 }

}

Listing 11-2 shows how to overload Indexers. The first Indexer, with the int parameter,

pos, is the same as in Listing 11-1, but there is a new Indexer that takes a string

parameter. The get accessor of the new indexer returns a string representation of the

number of items that match the parameter value, data. The set accessor changes each

entry in the array that matches the data parameter to the value that is assigned to the

Indexer.

The behavior of the overloaded Indexer that takes a string parameter is demonstrated in

the Main() method of Listing 11-2. It invokes the set accessor, which assigns the value of

"no value" to every member of the myInd class that has the value of "empty". It uses the

following command: myInd["empty"] = "no value";. After each entry of the myInd class

is printed, a final entry is printed to the console, indicating the number of entries with the

"no value" string. This happens by invoking the get accessor with the following code:

myInd["no value"]. Here's the output:

Indexer Output

myInd[0]: no value

myInd[1]: no value

myInd[2]: no value

myInd[3]: Another Value

myInd[4]: no value

myInd[5]: Any Value

myInd[6]: no value

myInd[7]: no value

myInd[8]: no value

myInd[9]: Some Value

Number of "no value" entries: 7

The reason both Indexers in Listing 11-2 can coexist in the same class is because they

have different signatures. An Indexer signature is specified by the number and type of

parameters in an Indexers parameter list. The class will be smart enough to figure out

which Indexer to invoke, based on the number and type of arguments in the Indexer call.

An indexer with multiple parameters would be implemented something like this:

 public object this[int param1, ..., int paramN]

 {

 get
 {

 // process and return some class data

 }

 set
 {

 // process and assign some class data

 }

 }

Summary

You now know what Indexers are for and how they're used. You can create an Indexer to

access class members similar to arrays. Overloaded and multi-parameter Indexers were

also covered.

INDEXER IN C#:

In c# introduce new concept is Indexer. This is very useful for some situation. Let as

discuss something about Indexer.

• Indexer Concept is object act as an array.

• Indexer an object to be indexed in the same way as an array.

• Indexer modifier can be private, public, protected or internal.

• The return type can be any valid C# types.

• Indexers in C# must have at least one parameter. Else the compiler will

generate a compilation error.

this [Parameter]
{
 get
 {
 // Get codes goes here
 }
 set
 {
 // Set codes goes here
 }
}

For Example:

using System;

using System.Collections.Generic;
using System.Text;

namespace Indexers
{
 class ParentClass
 {
 private string[] range = new string[5];
 public string this[int indexrange]
 {
 get
 {
 return range[indexrange];
 }
 set
 {
 range[indexrange] = value;
 }
 }
 }

 /* The Above Class just act as array declaration using this pointer */

 class childclass
 {
 public static void Main()
 {
 ParentClass obj = new ParentClass();

 /* The Above Class ParentClass create one object name is obj */

 obj[0] = "ONE";
 obj[1] = "TWO";
 obj[2] = "THREE";
 obj[3] = "FOUR ";
 obj[4] = "FIVE";
 Console.WriteLine("WELCOME TO C# CORNER HOME PAGE\n");
 Console.WriteLine("\n");

 Console.WriteLine("{0}\n,{1}\n,{2}\n,{3}\n,{4}\n", obj[0], obj[1], obj[2],

obj[3], obj[4]);
 Console.WriteLine("\n");
 Console.WriteLine("ALS.Senthur Ganesh Ram Kumar\n");
 Console.WriteLine("\n");
 Console.ReadLine();
 }
 }
}

BLOCK- 3

10
Assembly & Attributes

1. INTRODUCTION
Advance Concepts of C# programming is consists of Assemblies and
Attributes. This unit will provide information about assembly creation,

internal access modifier, types of assemblies and also discuss how to
create user define attributes, use of WIN32 API, Reflection and
versioning.

2. ASSEMBLIES
Assemblies can be stated as “building block of .NET API (Application

Programming Interfaces).” They are the collection of DLL (Dynamic
Link Library) files, grouped as a single unit. Assemblies provide a
means for reusing and sharing of any code in different APIs.

Each Assembly has a unique structure consists of four parts:-
a) Manifest
b) Type Metadata

c) MSIL &
d) Resources

 Structure of an Assembly

Assembly manifest provides information about the assembly itself
such as its version, culture etc. This is also called Assembly

Metadata. The second part is type Metadata which describes the type
of an assembly and the data (about methods, fields, properties and

Manifest

MSIL

Type

Metadata

Resouces

U n i t

events) contained in it. The third part MSIL is Microsoft Intermediate
Language and contains the program code of assembly. The fourth part

is the outside resources used in Assembly. These resources can be
any outside file such as images, sound file or XML file etc.

2.1. CREATING ASSEMBLIES
a) Creating assembly DLL file from source files

We can create an assembly from a single .cs or multiple .cs files.
C# Syntax for creating assembly from multiple file is-
D:\>csc /out:DLLfile_name /target:library <csfile1 csfile2 csfile3…>

For example to create assembly.dll from assembly1.cs and
assembly2.cs files, we use-
D:\>csc /out : assembly.dll /target:library assembly1.cs assembly2.cs

b) Creating .exe file and referencing an assembly
The following command will create an executable file combining two
or more C# files:-
D:\>csc /out:EXEfile_name /target:exe <csfile1 csfile2 csfile3…>

For example to create assembly.exe from assembly1.cs and
assembly2.cs files, we use-
D:\>csc /out : assembly.exe /target:exe assembly1.cs assembly2.cs

Command to reference an assembly-
D:\>csc /out:EXEfile_name /target:exe /reference:<assembly1;assembly2;…;>

<csfile1 csfile2 csfile3…>

For example to set reference of assembly1.dll in assembly2.cs file

the following command is used:-
D:\>csc /out:assembly2.exe /target:exe /reference:assembly1.dll assembly2.cs

2.2. TYPES OF ASSEMBLIES

An assembly can be private or shared.
a) Private Assemblies:- When an assembly is created it is by

default a private assembly. This assembly must be present at
the same folder where its calling application existed. Private
assemblies can have any user define name.

b) Shared Assemblies:- This is also called a global assembly.
As the name suggests the shared assembly can be used by

multiple applications at the same time. Shared assemblies
must be installed in GAC(Global Assembly Cache) and have
unique name. The following two steps are required to create

a shared assembly:-
a. First we have to create a Strong name

b. Install assembly in GAC using GACUtil tool.
Strong Name works as a unique identifier for a shared

assembly. To create a strong name .NET framework provides
sn.exe tool. The following command is used to create a

strong name:-
sn –k MyStrongName.snk
This will create a file named MyStrongName.snk & the

strong name will be stored inside it.
Now to assign this strong name to an assembly, we should
use AssemblyKeyFile attribute as

[assembly: AssemblyKeyFile(“MyStrongName.snk”)]
in our assembly program. This statement should be placed

outside the namespace in the program. The following
example elaborate the process:-

University.dll
using System;
using System.Reflection;
[assembly: AssemblyKeyFile("MyStrongName.snk")]

namespace University
{
public class College
{
public void Course()
{
Console.WriteLine("This college provides various

Courses");
}
public void Faculty()
{
Console.WriteLine("Faculty Information");
}
}
}

 Now to install an assembly in a Global Assembly Cache, we
have to use GACUtil tool. This tool provides four options:-

a) /l : Gives the total list of assemblies from GAC.
b) /I : used to install an assembly in GAC.
c) /u : uninstall a particular assembly from GAC.

d) /upre : uninstall a particular assembly from Native
 Image Cache.

The following command is used to install an assembly:-
GACUtil /i University.dll

After installing an assembly in GAC, we can use it in any of
the C# program without coping it in the same folder. We have to

pass a reference to the shared assembly as
D:\>csc /r:University.dll Using_shared_assembly.cs

The following program uses methods created in a shared assembly

University.dll
 Using_Shared_Assembly.cs
 using System;

using University;
class A
{
public static void main()
{
College cobj=new College(); // creating object of a class

inside University
cobj.Faculty(); // using methods
cobj.Course();
}
}

2.3. ASSEMBLIES AND THE INTERNAL ACCESS
MODIFIER

As we know that an access modifier is a keyword which is
used to change the accessibility level of any member of a class

such as variable, methods, properties etc. C# provides a new
access modifier named “internal”. This modifier makes the

member accessible upto assembly level i.e any member declared
as internal will de available for any classes inside the same
assembly only. In other words we can say that an internal

modifies makes the member unavailable outside the assembly.
The following program display the use of internal modifier:-

 Assembly1.cs
 using System;

using System.Reflection;

namespace namespace1
{
public class Using_Internal
{
 public String name;
}
public class Assembly1
{

 public static void Main()
{

 Using_Internal obj = new Using_Internal();

 obj.name = "Internal"; // available in same file
 Console.WriteLine("Internal varible name = " + obj.name);
 }

}
}

 Compiling and executing this file:-

 When assembly1.cs file is converted into .dll file and we use

the variable name in other program as:-
Assembly2.cs

using System;
using System.Reflection;
using namespace1;
public class Assembly2
{
 public static void Main()
{
 Using_Internal obj = new Using_Internal();
 obj.name = "Internal";
 Console.WriteLine("Internal varible name = " + obj.name);
}
}

On compiling and executing:

3. CUSTOMIZING AN ATTRIBUTES

The term attribute means the properties or characteristics. Attributes
are the techniques to provide additional information about runtime

behaviour of a method, class, structures or any other element of C#
program. Or we can say that attributes are used to add Metadata to

classes or assemblies.
The following example shows the use of Obsolete attribute:-
 using System;

class attr
{

[Obsolete()]
public void method1()
{

Console.WriteLine("This is an obsolete method");
}
public void method2()

{
Console.WriteLine("Second method of a class");

}
public static void Main()
{

attr a1=new attr();
a1.method1();
a1.method2();

}
}

 This program consists of a class with two methods in which
method1() is marked with obsolete attribute. This program shows a
warning message when compiled that “method1 is obsolete”.

To provide our own message as a warning on compiling, we can
customize this obsolete attribute as shown in following example:-

using System;
class attr

{
[Obsolete("Using user define message")]

public void method1()
{
Console.WriteLine("This is an obsolete method");

}
public void method2()
{

Console.WriteLine("Second method of a class");
}

public static void Main()
{
attr a1=new attr();

a1.method1();
a1.method2();

}
}

Now the class contain obsolete attribute with a string passed as an
argument. This string works as a user define message in compile time.

4. IN-BUILT ATTRIBUTES
There are two attributes in C# .NET which are marked as in-built.
a) Conditional Attribute
b) DllImport Attribute

Here conditional attribute is used to prevent execution of any method
of a class according to a certain condition and DllImport attribute is
used to interact with some outside DLL files.

• Conditional Attribute
Conditional attribute prevents the execution of any method

according to the definition of a preprocessor password or a code. It
does not affect the code of any method but does affect the call of

method. System.Diagnostics namespce provides the definition of
conditional attribute. The method written with conditional

attribute is called only when the symbol used in conditional
attribute as a string args is defined. This can be done in following

two ways:-
➢ Using #define

The statement #define will be the first statement in a program
and will define the password or symbol used in conditional
attribute. The following example shows the process:-

#define code
using System;

using System.Diagnostics;
class conditional

{
[Conditional("code")]
public void sqr(int x)

{
Console.WriteLine("Square of {0} is = {1}",x,(x*x));

}
public static void Main()
{

conditional c=new conditional();
c.sqr(10);
}

}
Here a class is created with a single method marked with

conditional attribute. This will give the following output:-

Square of 10 is = 100

➢ Using /define

In this method the element is marked as conditional and the

symbol is defined at runtime using following command:-

 D:\> csc /define: symbol csfile.cs

The following program shows the process:-

using System;
using System.Diagnostics;

class conditional
{
[Conditional("code")]

public void sqr(int x)
{
Console.WriteLine("Square of {0} is = {1}",x,(x*x));

}

public static void Main()
{

conditional c=new conditional();
c.sqr(10);

}
}

 Here a class is created with a single method marked with

conditional attribute.

• DllImport Attribute
This attribute provides the interoperability with windows DLLs.
Window gives all its DLL files to .NET to import the predefine
codes. DllImport attribute is used to call a method outside its

managed application. The extern keyword is used before the
function declareation. This outside code can be of C++, visual basic
etc. System.Runtime.InteropServices namespace is used to work

with this attribute and outside code.
The following program elaborate the process:-

using System;
using System.Runtime.InteropServices;

class inbuilt1
{

 [DllImport("User32.dll")]
 public static extern int MessageBox(int x, string
message, string caption, int type);

 public static void Main()
 {

 int msg=MessageBox(0,"Using DllImport attribute",
"Message", 1);

 }
}

 Output of the programe is

 This program display a message box with a custom message.

5. USING WIN32 API
6. CREATING CUSTOM ATTRIBUTES

User define attributes are subclasses of System.Attribute class. This
subclass contains the implementation code for the attribute.

AttributeUsage attribute is used to create custom attributes. This
attribute has three properties:-

• AllowMultiple
• Inherited
• AttributeTargets

Syntax for AttributeUsage is:-

[AttributeUsage (AttributeTargets.Method | AttributeTargets.class |

AttributeTargets.Module | ….. ,AllowMultiple=true/
false,Inherited=true /false)]
public class classname : Attribute

{
/*class members*/

}

AllowMultiple property indicates that the attribute can be applied to
multiple members at the same time. Second property inherited

indicates that the attribute will be applied to inherited classes or not.
And the third AttributeTargets uses the following members to
describe that the attribute can be applied to which element:-

 Members Working

 All Attribute can be applied to any application
 element.

 Assembly Attribute can be applied to an assembly.

 Class Attribute can be applied to a class.
 Constructor Attribute can be applied to a constructor.
 Delegate Attribute can be applied to a delegate.

 Enum Attribute can be applied to an
enumeration.

Program demonstrate the process of creating User define Attribute:-

using System;
[AttributeUsage(AttributeTargets.Method|AttributeTargets.Class,Allow

Multiple=false,Inherited=false)]

public class MyAttribute : Attribute
{
private String msg;

public MyAttribute(String custom_msg)
{
msg=custom_msg;

Console.WriteLine("Main");
}

}

class A

{
[MyAttribute("Custom Attribute")]

public void display()
{
Console.WriteLine("MyAttribute Applied");

}

}

[MyAttribute("Custom Attribute")]

class B
{

public void B_display();
{

Console.WriteLine("MyAttribute Applied to class");
}
public static void Main()

{
A a=new A();
a.display();

B b=new B();
b.B_display();

}
}

In this program an attribute is created names MyAttribute, which
can only assigns to a class or a method. There are also two classes

one of them is marked with MyAttribute and other class contains a
method where MyAttribute is applied.
This attribute does not affect the output but you can check the

metadata about the applied attribute by using ildasm tool as:-
D:> ILDasm Attributefile.exe
This command will display a window showing all the members of

classes in attributefile.exe.

7. VERSIONING
As we know that we can create private as well as shared assemblies.

In case of private assembly, it is identified by a unique name as this
assembly should be available in the same location where it is used.
When a shared assembly is created it is installed in GAC and two or

more assemblies can have same name. to overcome this version
number is provided. This works as a unique identifier or each of the
assembly. Version number consists of four parts:-

a) Major
b) Minor

c) Revision
d) Build

Each parts are separated by dot(.) and represented by an integer

greater than zero. Assembly version can be represented as,

We can assign a version number to an assembly by using
AssemblyVersion attribute by adding the following line in an

assembly,

Major Minor Revision Build

[assembly: AssemblyVersion(“major.minor.revision.buld”)]
The following program shows the process:-

 University.dll
using System;
using System.Reflection;
[assembly: AssemblyKeyFile("MyStrongName.snk")]
[assembly: AssemblyVersion("1.2.555.6”)]

namespace University
{
public class College
{
public void Course()
{
Console.WriteLine("This college provides various Courses");
}
public void Faculty()
{
Console.WriteLine("Faculty Information");
}
}
}

8. REFLECTION
Reflection is a mechanism which provides information about an

object, class , methods , variables at runtime only. In other words we
can say that reflection provides metadata about objects, classes or
any member of a class. Type class of Reflection package is used to

retrieve this information. It provides various methods and properties.
Some of them are as follows:-

Method /Property Provides

ConstructorInfo[
]GetConstructors()

gives a list of the constructors for the
specified type.

EventInfo[] GetEvents()

gives a list of events for the specified type.

FieldInfo[] GetFields()

gives a list of the fields for the specified type.

MemberInfo[] GetMembers()

gives a list of the members for the
specified type.

MethodInfo[] GetMethods() gives a list of methods for the specified type.

PropertyInfo[] GetProperties() gives a list of properties for the specified type
bool IsAbstract returns true if the specified type is abstract.

bool IsArray returns true if the specified type is an array.

bool IsClass

returns true if the specified type is a class.

bool IsEnum returns true if the specified type is an
enumeration.

To retrieve information about a class or object using reflection,

typeof() and GetType() methods are used. The following program
elaborates the use:-
using System;
using System.Reflection;
namespace N
{
public class reflection_methods
{
public void display()
{
String name;
name=Console.ReadLine();
Console.WriteLine("Welcome! {0}",name);
}
public static void Main()
{
reflection_methods rm=new reflection_methods();
Type t1,t2;
t1=typeof(reflection_methods);
t2=rm.GetType();
rm.display();
Console.WriteLine(t1);
Console.WriteLine(t2);
}
}
}

Output of the above program is as :-

The following program depicts the use of some other methods od

Type class:-
using System;
using System.Reflection;
namespace N
{
public class reflection_methods
{
String name;
private int x;
public int x_value
{
get
{
return x;
}
set
{
x=value;
}
}
public reflection_methods()
{
Console.WriteLine("Constructor of class");
}
public reflection_methods(String s)
{
Console.WriteLine("Constructor of class");
}
public void display()
{
name=Console.ReadLine();
Console.WriteLine("Welcome! {0}",name);

}
public static void Main()
{
reflection_methods rm=new reflection_methods();
rm.x_value=100;
Type t1;
t1=typeof(reflection_methods);
Console.WriteLine("");
Console.WriteLine("****Members of class****");

MemberInfo [] m1=t1.GetMembers();
ConstructorInfo [] c1=t1.GetConstructors();
PropertyInfo [] p1=t1.GetProperties();
foreach(MemberInfo m in m1)
{
Console.WriteLine(m);
}
Console.WriteLine("");
Console.WriteLine("****Constructors of class****");
foreach(ConstructorInfo c in c1)
{
Console.WriteLine(c);
}
Console.WriteLine("");
Console.WriteLine("****Properties of class****");
foreach(PropertyInfo p in p1)
{
Console.WriteLine(p);
}
}
}
}

Output of the program:-

9. SUMMARY
10. EXERCISE

a) Explain Assemblies in C#. Create a shared assembly named
Arithmetic.dll. This should contain appropriate methods for

arithmetical operations.
b) Fill in the blanks:-

a. GAC stands for _____________.

b. Version number consists of ________, __________, ______ &
_____.

c. ______ namespace is used to create conditional attribute.
d. Three properties of AttributeUsage are ____, ____ & ____.

c) Create an assembly and assign it version 1.3.025.5.

d) Define Attributes and write a programe to display user define
message as a warning in compile time.

e) Create a program with conditional attribute and use both methods

of calling function marked with conditional.
f) Create a user define attribute named Student, which can only be

applied to classes and its subclasses.

11
Directive and Debugging

Session 11: Directive and Debugging
Introduction

Error
Types of Errors

Finding Errors
Preprocessor Directive

Using Debuggers

Error

A wandering; a roving or irregular course.

A wandering or deviation from the right course or standard; irregularity; mistake;

inaccuracy; something made wrong or left wrong; as, an error in writing or in printing; a

clerical error.

A departing or deviation from the truth; falsity; false notion; wrong opinion; mistake;

misapprehension.

A moral offense; violation of duty; a sin or transgression; iniquity; fault.

The difference between the approximate result and the true result; -- used particularly in

the rule of double position.

The difference between an observed value and the true value of a quantity.

The difference between the observed value of a quantity and that which is taken or

computed to be the true value; -- sometimes called residual error.

A mistake in the proceedings of a court of record in matters of law or of fact.

A fault of a player of the side in the field which results in failure to put out a player on

the other side, or gives him an unearned base.

U n i t

This section discusses the C# language's preprocessor directives:

#if

#else

#elif

#endif

#define

#undef

#warning

#error

#line

#region

#endregion

#pragma

#pragma warning

#pragma checksum

While the compiler does not have a separate preprocessor, the directives described in this

section are processed as if there was one; these directives are used to aid in conditional

compilation. Unlike C and C++ directives, you cannot use these directives to create

macros.

A preprocessor directive must be the only instruction on a line.

Debugging refers to the process of trying to track down errors in your programmes. It can

also refer to handling potential errors that may occur. There are three types of errors that

we'll take a look at:

• Design-time errors

• Run-Time errors

• Logical errors

http://msdn.microsoft.com/en-us/library/4y6tbswk%28v=vs.80%29
http://msdn.microsoft.com/en-us/library/87a56b46%28v=vs.80%29
http://msdn.microsoft.com/en-us/library/88td0y52%28v=vs.80%29
http://msdn.microsoft.com/en-us/library/hyx43has%28v=vs.80%29
http://msdn.microsoft.com/en-us/library/yt3yck0x%28v=vs.80%29
http://msdn.microsoft.com/en-us/library/wkxst87d%28v=vs.80%29
http://msdn.microsoft.com/en-us/library/963th5x3%28v=vs.80%29
http://msdn.microsoft.com/en-us/library/x5hedts0%28v=vs.80%29
http://msdn.microsoft.com/en-us/library/34dk387t%28v=vs.80%29
http://msdn.microsoft.com/en-us/library/9a1ybwek%28v=vs.80%29
http://msdn.microsoft.com/en-us/library/67w7t67f%28v=vs.80%29
http://msdn.microsoft.com/en-us/library/x74w198a%28v=vs.80%29
http://msdn.microsoft.com/en-us/library/441722ys%28v=vs.80%29
http://msdn.microsoft.com/en-us/library/ms173226%28v=vs.80%29

The longer your code gets, the harder it is to track down why things are not working. By

the end of this section, you should have a good idea of where to start looking for

problems. But bear in mind that debugging can be an art in itself, and it gets easier with

practice.

Errors at Design-Time

Design-Time errors are ones that you make before the programme even runs. In fact, for

Design-Time errors, the programme won't run at all, most of the time. You'll get a popup

message telling you that there were build errors, and asking would you like to continue.

Design-Time errors are easy enough to spot because the C# software will underline them

with a wavy coloured line. You'll see three different coloured lines: blue, red and green.

The blue wavy lines are known as Edit and Continue issues, meaning that you can make

change to your code without having to stop the programme altogether. Red wavy lines

are Syntax errors, such as a missing semicolon at the end of a line, or a missing curly

bracket in an IF Statement. Green wavy lines are Compiler Warnings. You get these

when C# spots something that could potentially cause a problem, such as declaring a

variable that's never used.

is article describes how to use the Debug and the Trace classes. These classes are

available in the Microsoft .NET Framework. You can use these classes to provide

information about the performance of an application either during application

development, or after deployment to production. These classes are only one part of the

instrumentation features that are available in the .NET Framework.

Requirements

The following list outlines the recommended hardware, software, network infrastructure,

and service packs that you need:

• Microsoft Windows 2000 or Microsoft Windows XP or Microsoft Windows

Server 2003

• Microsoft Visual C#

This article also assumes that you are familiar with program debugging.

Description Of Technique

The steps in the Create a Sample with the Debug Class section demonstrate how to create

a console application that uses the Debug class to provide information about the program

http://support.microsoft.com/kb/815788#5

execution.

When the program is run, you can use methods of the Debug class to produce messages

that help you to monitor the program execution sequence, to detect malfunctions, or to

provide performance measurement information. By default, the messages that the Debug

class produces appear in the Output window of the Visual Studio Integrated Development

Environment (IDE).

The sample code uses the WriteLine method to produce a message that is followed by a

line terminator. When you use this method to produce a message, each message appears

on a separate line in the Output window.

When you use the Assert method of the Debug class, the Output window displays a

message only if a specified condition evaluates to false. The message also appears in a

modal dialog box to the user. The dialog box includes the message, the project name, and

the Debug.Assert statement number. The dialog box also includes the following three

command buttons:

• Abort: The application stops running.

• Retry: The application enters debug mode.

• Ignore: The application proceeds.

The user must click one of these buttons before the application can continue.

You can also direct output from the Debug class to destinations other than the Output

window. The Debug class has a collection named Listeners that includes Listener

objects.

Each Listener object monitors Debug output and directs the output to a specified target.

Each Listener in the Listener collection receives any output that the Debug class

generates. Use the TextWriterTraceListener class to define Listener objects. You can

specify the target for a TextWriterTraceListener class through its constructor.

Some possible output targets include the following:

• The Console window by using the System.Console.Out property.

• A text (.txt) file by using the System.IO.File.CreateText("FileName.txt")

statement.

After you create a TextWriterTraceListener object, you must add the object to the

Debug.Listeners collection to receive Debug output.

Create a Sample with the Debug Class

1. Start Visual Studio or Visual C# Express Edition.

2. Create a new Visual C# Console Application project named conInfo. Class1 is

created in Visual Studio .NET. Program.cs is created in Visual Studio 2005.

3. Add the following namespace at top in Class1 or Program.cs.

using System.Diagnostics;

4. To initialize variables to contain information about a product, add the following

declaration statements to Main method:
5. string sProdName = "Widget";

6. int iUnitQty = 100;

double dUnitCost = 1.03;

7. Specify the message that the class produces as the first input parameter of the

WriteLine method. Press the CTRL+ALT+O key combination to make sure that

the Output window is visible.

Debug.WriteLine("Debug Information-Product Starting ");

8. For readability, use the Indent method to indent subsequent messages in the

Output window:

Debug.Indent();

9. To display the content of selected variables, use the WriteLine method as

follows:
10. Debug.WriteLine("The product name is " + sProdName);

11. Debug.WriteLine("The available units on hand are" +

iUnitQty.ToString());

Debug.WriteLine("The per unit cost is " + dUnitCost.ToString());

12. You can also use the WriteLine method to display the namespace and the class

name for an existent object. For example, the following code displays the

System.Xml.XmlDocument namespace in the Output window:
13. System.Xml.XmlDocument oxml = new System.Xml.XmlDocument();

Debug.WriteLine(oxml);

14. To organize the output, you can include a category as an optional, second input

parameter of the WriteLine method. If you specify a category, the format of the

Output window message is "category: message." For example, the first line of the

following code displays "Field: The product name is Widget" in the Output

window:
15. Debug.WriteLine("The product name is " + sProdName,"Field");

16. Debug.WriteLine("The units on hand are" + iUnitQty,"Field");

17. Debug.WriteLine("The per unit cost is" +

dUnitCost.ToString(),"Field");

Debug.WriteLine("Total Cost is " + (iUnitQty *

dUnitCost),"Calc");

18. The Output window can display messages only if a designated condition evaluates

to true by using the WriteLineIf method of the Debug class. The condition to be

evaluated is the first input parameter of the WriteLineIf method. The second

parameter of WriteLineIf is the message that appears only if the condition in the

first parameter evaluates to true.
19. Debug.WriteLineIf(iUnitQty > 50, "This message WILL appear");

20. Debug.WriteLineIf(iUnitQty < 50, "This message will NOT

appear");

21. Use the Assert method of the Debug class so that the Output window displays the

message only if a specified condition evaluates to false:
22. Debug.Assert(dUnitCost > 1, "Message will NOT appear");

23. Debug.Assert(dUnitCost < 1, "Message will appear since dUnitcost

< 1 is false");

24. Create the TextWriterTraceListener objects for the Console window (tr1) and

for a text file named Output.txt (tr2), and then add each object to the Debug

Listeners collection:
25. TextWriterTraceListener tr1 = new

TextWriterTraceListener(System.Console.Out);

26. Debug.Listeners.Add(tr1);

27.

28. TextWriterTraceListener tr2 = new

TextWriterTraceListener(System.IO.File.CreateText("Output.txt"));

Debug.Listeners.Add(tr2);

29. For readability, use the Unindent method to remove the indentation for

subsequent messages that the Debug class generates. When you use the Indent

and the Unindent methods together, the reader can distinguish the output as

group.
30. Debug.Unindent();

Debug.WriteLine("Debug Information-Product Ending");

31. To make sure that each Listener object receives all its output, call the Flush

method for the Debug class buffers:

Debug.Flush();

Using the Trace Class

You can also use the Trace class to produce messages that monitor the execution of an

application. The Trace and Debug classes share most of the same methods to produce

output, including the following:

• WriteLine

• WriteLineIf

• Indent

• Unindent

• Assert

• Flush

You can use the Trace and the Debug classes separately or together in the same

application. In a Debug Solution Configuration project, both Trace and Debug output are

active. The project generates output from both of these classes to all Listener objects.

However, a Release Solution Configuration project only generates output from a Trace

class. The Release Solution Configuration project ignores any Debug class method

invocations.
Trace.WriteLine("Trace Information-Product Starting ");

Trace.Indent();

Trace.WriteLine("The product name is "+sProdName);

Trace.WriteLine("The product name is"+sProdName,"Field");

Trace.WriteLineIf(iUnitQty > 50, "This message WILL appear");

Trace.Assert(dUnitCost > 1, "Message will NOT appear");

Trace.Unindent();

Trace.WriteLine("Trace Information-Product Ending");

Trace.Flush();

Console.ReadLine();

Verify That It Works

1. Make sure that Debug is the current solution configuration.

2. If the Solution Explorer window is not visible, press the CTRL+ALT+L key

combination to display this window.

3. Right-click conInfo, and then click Properties.

4. In the left pane of the conInfo property page, under the Configuration folder,

make sure that the arrow points to Debugging.

Note In Visual C# 2005 and in Visual C# 2005 Express Edition, click Debug in

the conInfo page.

5. Above the Configuration folder, in the Configuration drop-down list box, click

Active (Debug) or Debug, and then click OK. In Visual C# 2005 and in Visual

C# 2005 Express Edition, click Active (Debug) or Debug in the Configuration

drop-down list box in the Debug page, and then click Save on the File menu.

6. Press CTRL+ALT+O to display the Output window.

7. Press the F5 key to run the code. When the Assertion Failed dialog box appears,

click Ignore.

8. In the Console window, press ENTER. The program should finish, and the Output

window should display the output that resembles the following
9. Debug Information-Product Starting

10. The product name is Widget

11. The available units on hand are100

12. The per unit cost is 1.03

13. System.Xml.XmlDocument

14. Field: The product name is Widget

15. Field: The units on hand are100

16. Field: The per unit cost is1.03

17. Calc: Total Cost is 103

18. This message WILL appear

19. ---- DEBUG ASSERTION FAILED ----

20. ---- Assert Short Message ----

21. Message will appear since dUnitcost < 1 is false

22. ---- Assert Long Message ----

23.

24.

25. at Class1.Main(String[] args) <%Path%>\class1.cs(34)

26.

27. The product name is Widget

28. The available units on hand are100

29. The per unit cost is 1.03

30. Debug Information-Product Ending

31. Trace Information-Product Starting

32. The product name is Widget

33. Field: The product name isWidget

34. This message WILL appear

35. Trace Information-Product Ending

36.

37. The Console window and the Output.txt file should display the following output:
38. The product name is Widget

39. The available units on hand are 100

40. The per unit cost is 1.03

41. Debug Information-Product Ending

42. Trace Information-Product Starting

43. The product name is Widget

44. Field: The product name is Widget

45. This message WILL appear

46. Trace Information-Product Ending

Note The Output.txt file is located in the same directory as the conInfo executable

(conInfo.exe). Typically, this is the \bin folder where the project source is stored. By

default, this is C:\Documents and Settings\User login\My Documents\Visual Studio

Projects\conInfo\bin. In Visual C# 2005 and in Visual C# 2005 Express Edition, the

Output.txt file is located in the following folder:

C:\Documents and Settings\User login\My Documents\Visual Studio

2005\Projects\conInfo\conInfo\bin\Debug

Complete Code Listing
 using System;

 using System.Diagnostics;

 class Class1

 {

 [STAThread]

 static void Main(string[] args)

 {

 string sProdName = "Widget";

 int iUnitQty = 100;

 double dUnitCost = 1.03;

 Debug.WriteLine("Debug Information-Product Starting ");

 Debug.Indent();

 Debug.WriteLine("The product name is "+sProdName);

 Debug.WriteLine("The available units on hand

are"+iUnitQty.ToString());

 Debug.WriteLine("The per unit cost is "+

dUnitCost.ToString());

 System.Xml.XmlDocument oxml = new System.Xml.XmlDocument();

 Debug.WriteLine(oxml);

 Debug.WriteLine("The product name is "+sProdName,"Field");

 Debug.WriteLine("The units on hand are"+iUnitQty,"Field");

 Debug.WriteLine("The per unit cost

is"+dUnitCost.ToString(),"Field");

 Debug.WriteLine("Total Cost is "+(iUnitQty *

dUnitCost),"Calc");

 Debug.WriteLineIf(iUnitQty > 50, "This message WILL appear");

 Debug.WriteLineIf(iUnitQty < 50, "This message will NOT

appear");

 Debug.Assert(dUnitCost > 1, "Message will NOT appear");

 Debug.Assert(dUnitCost < 1, "Message will appear since

dUnitcost < 1 is false");

 TextWriterTraceListener tr1 = new

TextWriterTraceListener(System.Console.Out);

 Debug.Listeners.Add(tr1);

 TextWriterTraceListener tr2 = new

TextWriterTraceListener(System.IO.File.CreateText("Output.txt"));

 Debug.Listeners.Add(tr2);

 Debug.WriteLine("The product name is "+sProdName);

 Debug.WriteLine("The available units on hand are"+iUnitQty);

 Debug.WriteLine("The per unit cost is "+dUnitCost);

 Debug.Unindent();

 Debug.WriteLine("Debug Information-Product Ending");

 Debug.Flush();

 Trace.WriteLine("Trace Information-Product Starting ");

 Trace.Indent();

 Trace.WriteLine("The product name is "+sProdName);

 Trace.WriteLine("The product name is"+sProdName,"Field");

 Trace.WriteLineIf(iUnitQty > 50, "This message WILL appear");

 Trace.Assert(dUnitCost > 1, "Message will NOT appear");

 Trace.Unindent();

 Trace.WriteLine("Trace Information-Product Ending");

 Trace.Flush();

 Console.ReadLine();

 }

 }

Run Time Errors in C# .NET

Run-Time errors are ones that crash your programme. The programme itself generally

starts up OK. It's when you try to do something that the error surfaces. A common Run-

Time error is trying to divide by zero. In the code below, we're trying to do just that:

The programme itself reports no problems when it is started up, and there's no coloured

wavy lines. When we click the button, however, we get the following error message:

Had we left this in a real programme, it would just crash altogether ("bug out"). But if

you see any error message like this one, it's usually a Run-Time error. Here's another one.

In the code below, we're trying to open a file that doesn't exist:

As the message explains, it can't find the file called "C:/test10.txt". Because we didn't tell

C# what to do if there was no such file, it just crashes.

Look out for these type of error messages. It does take a bit of experience to work out

what they mean; but some, like the one above, are quite straightforward.

You'll see how to handle errors like this, soon. But there's one final error type you have to

know about - Logic Errors.

Logic Errors in C# .NET

Logic errors are ones where you don't get the result you were expecting. You won't see

any coloured wavy lines, and the programme generally won't "bug out" on you. In other

words, you've made an error in your programming logic. As an example, take a look at

the following code, which is attempting to add up the numbers one to ten:

When the code is run, however, it gives an answer of zero. The programme runs OK, and

didn't produce any error message or wavy lines. It's just not the correct answer!

The problem is that we've made an error in our logic. The startLoop variable should be 1

and the endLoop variable 11. We've got it the other way round, in the code. So the loop

never executes.

Logic errors can be very difficult to track down. To help you find where the problem is,

C# has some very useful tools you can use. To demonstrate these tools, here's a new

programming problem. We're trying to write a programme that counts how many times

the letter "g" appears in the word "debugging".

Start a new C# Windows Application. Add a button and a textbox to your form. Double

click the button, and then add the following code:

The answer should, of course, be 3. Our programme insists, however, that the answer is

zero. It's telling us that there aren't and g's in Debugging. So we have made a logic error,

but where?

C# .NET has some tools to help you track down errors like this. The first one we'll look

at is called the BreakPoint.

C# features "preprocessor directives" (though it does not have an actual preprocessor)

based on the C preprocessor that allow programmers to define symbols but not macros.

Conditionals such as #if, #endif, and #else are also provided. Directives such as #region

give hints to editors for code folding.

public class Foo

{

 #region Procedures

 public void IntBar(int firstParam) {}

 public void StrBar(string firstParam) {}

 public void BoolBar(bool firstParam) {}

 #endregion

 #region Constructors

 public Foo() {}

 public Foo(int firstParam) {}

 #endregion

}

12
Exception Handling

C# Preprocessor Directives Explained

By using pre-processor directives you can exclude parts of your code from being seen by

the compiler. Excluded from the assembly they are never seen at run-time. This is

different from a regular if (x) {} block where code is actually compiled in, evaluated at

runtime and added to the assembly.

To understand why you would want to do this, a little history: One of the good things

about C is that it works on every imaginable platform, the bad thing was of course that it

works on every imaginable platform. There was always a little tweaking required to get

your code to compile. Your program might have needed to compile on Amiga, DOS ,

OS/2, Windows or Linux. The invention of the preprocessor made this much easier. As a

separate step prior to compilation it combs through the source code and modifies it

according to the pre-processing instructions found in the source code. The C compiler

never gets to see the things that don’t apply to it.

In C# there is no separate preprocessor step instead the compiler itself skims through the

code as it reads it. Fortunately it is also nowhere near as complex as the C pre-processor.

Contents

• The #define and #undef directives

• Unlike C and C++ there are no macros in C#

• Conditional Compilation with #if / #else / #endif

• Avoid the clutter – use conditional attributes instead

• Using #error and #warning during compilation

• Generated code builds and error reporting with #line

• Region Directives

The #define and #undef directives

U n i t

http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#A
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#B
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#C
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#D
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#E
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#F
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#G

The basis of the C# preprocessor directives are #define and #undef. They allow you to

create and destroy symbols used by the preprocessing step.

#define TESTVERSION

#undef DEBUG

A common use is for a programmer to turn on and off the inclusion of debugging code.

When you are coding and debugging this allow you to test your code but this code

shouldn’t be present in the production version of your software.

It is possible to set symbols using /define on the compilers command line allowing you to

build scripts that produce different versions of your code. For example a “full version”

and a limited “demo” version.

C# does not have any pre-defined symbols, except for maybe DEBUG

If you are used to your C/C++ compiler setting large numbers of symbols so that you

could identify the compiler and version you will puzzled to discover the C# doesn’t have

any. So you cannot check for the .NET version from a pre-defined symbol and branch

your code based on that. (The closest that you can do is to check for the execution

environment at runtime, for example if you want to know if you a running under mono.)

If you are compiling your code in the Visual C# / MonoDevelop environment there will

be one symbol defined you can use: DEBUG. This is set in the project options and if you

are building your code you can select if you want to build the Debug or Release version.

Unlike C and C++ there are no macros in C#

The following is not going to fly on C#. Macro’s are commonly used to expand

expressions while compiling C code. A common problem is that C doesn’t have a

boolean type. So the first thing most programmers do when starting a new project is to

define their own as shown in the next little C code snippet:

view sourceprint?
01.#include <stdio.h>

02.
03.#define BOOL int
04.#define TRUE 1
05.#define FALSE 0
06.#define IS_TRUE(x) (x == TRUE)

07.
08.void main()
09.{
10.if (IS_TRUE(TRUE))
11.{
12.printf("It is TRUE!");
13.}
14.}

http://gcc.gnu.org/onlinedocs/cpp/Common-Predefined-Macros.html
http://www.mono-project.com/FAQ:_Technical#How_can_I_detect_if_am_running_in_Mono.3F
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#viewSource
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#printSource
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#about

When the C preprocessor comes across this it would replace “BOOL” with int, FALSE

with 0 and TRUE with 1. The compiler never saw the BOOL, or the TRUE or FALSE.

But lets not hang around here — as said, this is not supported by C#

Conditional Compilation with #if / #else / #endif

Of course, if you can define symbols you need to be able to test for them as well. The #if

/ #else / #endif directives do just that. If you are building the debug version of your code,

you can check for the DEBUG symbol:

#if DEBUG

Console.WriteLine(“Things are not going so well!”);

#endif

If you are not building the Debug version of your code — the above line is never seen by

the compiler, and thus is not included in the assembly. All #if statements need to be

closed by an #endif, and of course you can also use an #else statement:

#if DEBUG

Console.WriteLine(“Things are not going so well, some more debugging is needed!”);

#else

Console.WriteLine(“Fatal Error: Please call free support (0800) 123 123″);

#endif

The #eif directive is a short form for “#else #if #endif”, it works the same but you can

save some space as you do not need to end with another #endif. If your project has a

more complicated release schedule with alpha, beta and production releases you could try

this:

#if (!RELEASE)

Console.WriteLine(“This is not a release version”);

#if (BETA)

Console.WriteLine(“Beta, for limited release only”);

#eif (ALPHA)

Console.WriteLine(“Alpha, for internal testing only”);

#endif

#else

Console.WriteLine(“Welcome to Widgets 1.0″);

#endif

As can be seen you can apply several operators to the symbols: ! (not),== (equality), !=

(inequality), && (and) and || (or).

Avoid the clutter – use conditional attributes instead

Even a small program has many potential spots where you might like to introduce a

debug statement or a log function. If you have to put each of them into a seperate #if

DEBUG / #endif block they will start to take up a lot of space in your code. C# has its

own slightly more elegant solution to this problem: conditional attributes. They are

included in the System.Diagnostics namespace.

In the following program the “LogLine” function will only ever run if the “DEBUG”

symbol has been set.

view sourceprint?
01.using System;
02.using System.Diagnostics;

03.
04.namespace MyNameSpace
05.{
06.class MainClass
07.{
08.[Conditional("DEBUG")]
09.public static void LogLine(string msg,string detail)
10.{
11.Console.WriteLine("Log: {0} = {1}",msg,detail);
12.}

13.
14.public static void Main(string[] args)
15.{
16.int Total = 0;
17.for(int Lp = 1; Lp < 10; Lp++)
18.{
19.LogLine("Total",Total.ToString());
20.Total = Total + Lp;
21.}
22.}
23.}
24.}

You can also define combinations chained together with OR to decide if the code is

enabled:

[Conditional("ALPHA"),Conditional("BETA")]

public static void LogLine(string msg,string detail)

Conditionals work differently from the #if/#endif directives that in the above example the

“LogLine” code will still be included in the assembly. It will never get called however.

The compiler will ensure that the LogLine method isn’t called. In fact if you use a

dissasembler (like monodis) the code for Main will look like this:

view sourceprint?
1.public static void Main(string[] args)
2.{
3.int Total = 0;
4.for(int Lp = 1; Lp < 10; Lp++)

http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#viewSource
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#printSource
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#about
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#viewSource
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#printSource
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#about

5.Total = Total + Lp;
6.}

Using #error and #warning during compilation

C# provides the #error and #warning directives to output messages during compilation.

As you can expect, if the compiler encounters an #error it will report the problem and

stop compiling. The #warning directive just causes a log entry to be displayed in the build

output.

#if !DEBUG

#warning This code is NOT production ready

#endif

Generated code builds and error reporting with #line

In regular coding there are not many uses for #line. This directive is mostly useful when

you build a code generator that turns one source file into another. Microsoft uses this for

example for ASP.NET. Normally if something breaks during such an intermediate step,

the compiler would report the error as being in the intermediate file.

The #line directive can force the compiler to report the error as coming from a different

line numer, or even a completely different source file.

view sourceprint?
1.public static void Main(string[] args)
2.{

3.
4.#line 250
5.#if DEBUG
6.#error This code is NOT production ready
7.#endif

Even though in my original test code the warning was given at line 19 in the source file,

the #line directive forces the compiler to report 250 instead.

Region Directives

The Visual Studio suite, and the newer MonoDevelop versions allow for outlining of

code blocks. You click the little (+) next to the code and it expands the class or method.

The #region and #endregion directives allow you to define your own outlined blocks.

view sourceprint?
01.#region myregion
02.public static void Main(string[] args)
03.{
04.int Total = 0;
05.for(int Lp = 1; Lp < 10; Lp++)
06.{

http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#viewSource
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#printSource
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#about
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#viewSource
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#printSource
http://www.dijksterhuis.org/csharp-preprocessor-directives-explained/#about

07.LogLine("Total",Total.ToString());
08.Total = Total + Lp;
09.}
10.}
11.#endregion

C# preprocessor is fundamentally very similar to C preprocessor and the whole

concept in C# has been taken from C language specification.

"The C preprocessor is a macro processor that is used automatically by the C

compiler to transform your program before actual compilation. It is called a macro

processor because it allows you to define macros, which are brief abbreviations for

longer constructs."

But in C# only concept has been taken from C. But the C# compiler does not have a

separate preprocessor, the directives described in this C# are processed as if there

was one. Unlike C and C++ directives, you cannot use these directives to create

macros.

A preprocessor directive must be the only instruction on a line. Preprocessing

directives are lines in your program that start with '#'. Whitespace is allowed before

and after the '#'. The '#' is followed by an identifier that is the directive name. For

example, '#define' is the directive

The C# language's preprocessor directives are as follows

• #if

• #else

• #elif

• #endif

• #define

• #undef

• #warning

• #error

• #line

• #region

• #endregion

Main use of directives are

1. Conditional compilation. Using special preprocessing directives, you can

include or exclude parts of the program according to various conditions.

2. Line control. If you use a program to combine or rearrange source files into

an intermediate file, which is then compiled, you can use line control to

inform the compiler of where each source line originally came from.

3. Error and Warning reporting: The directive '#error' causes the

preprocessor to report a fatal error and the directive '#warning' is like the

directive '#error', but causes the preprocessor to issue a warning and

continue preprocessing.

Region and Unregion is new directives. It was not in C and C++ list of directives. I

don't know the intention of C# developers to excludes number of directive from C

and C++ list but they picked what people use atmost from list of C and C++

directive. Before telling meaning of each preprocessor directive I want to explain how

to define preprocessor directive.There are two method to define directive.

1.Define in your C# program.

2.Define them at command line on compile time.

Here is example for first way

Example

#define TEST

using System;

public class MyClass

{

public static void Main()

{

#if (TEST)

Console.WriteLine("TEST is defined");

#else

Console.WriteLine("TEST is not defined");

#endif

}

}

Output

TEST is defined

In other way you can define it at command line. So program will be like this.

Example

using System;

public class MyClass

{

public static void Main()

{

#if (TEST)

Console.WriteLine("TEST is defined");

#else

Console.WriteLine("TEST is not defined");

#endif

}

}

At compile time user can define as below

csc /define:TEST MyClass.java

Output

TEST is defined

And if the command line will be like

csc MyClass.java

Output

TEST is not defined

Now its time to explain about various preprocessor define.

#if directive

The '#if' directive in its simplest form consists of

#if expression

controlled text

#endif /* expression */

The comment following the '#endif' is not required, but it is a good practice because

it helps people match the '#endif ' to the corresponding '#if'. Such comments should

always be used, except in short conditionals that are not nested.

Above two example have shown how to use '#if' directive.

#else directive

The '#else' directive can be added to a conditional to provide alternative text to be

used if the condition is false. This is what it looks like:

#if expression

text-if-true

#else /* Not expression */

text-if-false

#endif /* Not expression */

If expression is nonzero, and thus the text-if-true is active, then '#else' acts like a

failing conditional and the text-if-false is ignored.

#elif directive

'#elif' stands for "else if". Like '#else', it goes in the middle of a '#if' - '#endif' pair

and subdivides it; it does not require a matching '#endif' of its own. Like '#if', the

'#elif' directive includes an expression to be tested.

The text following the '#elif' is processed only if the original '#if ' condition failed and

the '#elif' condition succeeds. More than one '#elif' can go in the same '#if'-'#endif'

group. Then the text after each '#elif' is processed only if the '#elif' condition

succeeds after the original '#if' and any previous '#elif' directives within it have

failed. '#else' is equivalent to '#elif 1', and '#else' is allowed after any number of

'#elif' directives, but '#elif' may not follow '#else'.

Example

#define DEBUG

#define VC_V6

using System;

public class MyClass

{

public static void Main()

{

#if (DEBUG && !VC_V6)

Console.WriteLine("DEBUG is defined");

#elif (!DEBUG && VC_V6)

Console.WriteLine("VC_V6 is defined");

#elif (DEBUG && VC_V6)

Console.WriteLine("DEBUG and VC_V6 are defined");

#else

Console.WriteLine("DEBUG and VC_V6 are not defined");

#endif

}

}

Output

DEBUG and VC_V6 are defined

#endif directive

#endif specifies the end of a conditional directive, which began with the #if

directive.

#define directive

#define lets you define a symbol, such that, by using the symbol as the expression

passed to the #if directive, the expression will evaluate to true

#undef directive

#undef lets you undefine a symbol, such that, by using the symbol as the

expression in a #if directive, the expression will evaluate to false.

Example

// compile with /D:DEBUG

#undef DEBUG

using System;

public class MyClass

{

public static void Main()

{

#if DEBUG

Console.WriteLine("DEBUG is defined");

#else

Console.WriteLine("DEBUG is not defined");

#endif

}

}

Output

DEBUG is not defined

The '#error' and '#warning' Directives

The directive '#error' causes the preprocessor to report a fatal error. The tokens

forming the rest of the line following '#error' are used as the error message.

The directive '#warning' is like the directive '#error', but causes the preprocessor to

issue a warning and continue preprocessing. The tokens following '#warning' are

used as the warning message.

Example 1

#define DEBUG

public class MyClass

{

public static void Main()

{

#if DEBUG

#error DEBUG is defined

#endif

}

}

Example 2

#define DEBUG

public class MyClass

{

public static void Main()

{

#if DEBUG

#warning DEBUG is defined

#endif

}

}

#line

#line is a directive that specifies the original line number and source file name for

subsequent input in the current preprocessor input file.

Example

using System;

public class MyClass

{

public static void Main()

{

#line 100 "abc.sc" // change file name in the compiler output

intt i; // error will be reported on line 101

}

}

#region

#region lets you specify a block of code that you can expand or collapse when using

the outlining feature of the Visual Studio Code Editor.

Example

#region MyClass definition

public class MyClass

{

public static void Main()

{

}

}

#endregion

#endregion

#endregion marks the end of a #region block.

Error Handling

The error handling construct in Visual Studio .NET is known as structured exception

handling. The constructs used may be new to Visual Basic users, but should be familiar

to users of C++ or Java.

Structured exception handling is straightforward to implement, and the same concepts are

applicable to either VB.NET or C#. Throughout this section, example code will be shown

in both languages.

VB .NET allows backward compatibility by also providing unstructured exception

handling, via the familiar On Error GoTo statement and Err object, although this model is

not discussed in this section.

Exceptions

Exceptions are used to handle error conditions in Visual Studio .NET. They provide

information about the error condition.

An exception is an instance of a class which inherits from the System.Exception base

class. Many different types of exception class are provided by the .NET Framework, and

it is also possible to create your own exception classes. Each type extends the basic

functionality of the System.Exception class by allowing further access to information

about the specific type of error that has occurred.

An instance of an Exception class is created and thrown when the .NET Framework

encounters an error condition. You can deal with exceptions by using the Try, Catch

Finally construct.

Try, Catch, Finally

This construct allows you to catch errors that are thrown within your code. An example

of this construct is shown below. An attempt is made to rotate an envelope, which throws

an error.

C#

try

{

 IEnvelope env = new EnvelopeClass();

 env.PutCoords(0D, 0D, 10D, 10D);

 ITransform2D trans = (ITransform2D) env;

 trans.Rotate(env.LowerLeft, 1D);

}

catch (System.Exception ex)

{

 MessageBox.Show("Error: " + ex.Message);

}

finally

{

 // Perform any tidy up code.

}

VB.NET

Try

 Dim env As IEnvelope = New EnvelopeClass()

 env.PutCoords(0D, 0D, 10D, 10D)

 Dim trans As ITransform2D = env

 trans.Rotate(env.LowerLeft, 1D)

Catch ex As System.Exception

 MessageBox.Show("Error: " + ex.Message)

Finally

 ' Perform any tidy up code.

End Try

The Try block is placed around the code which may fail. If an error is thrown within the

Try block, the point of execution will switch to the first Catch block.

The Catch block handles a thrown error. A Catch block is executed when the Type of a

thrown error matches the Type of error specified by the Catch block. You can have more

than one Catch block to handle different kinds of errors. The code shown below checks

first if the exception thrown is a DivideByZeroException.

C#

...

catch (DivideByZeroException divEx)

{

 // Perform divide by zero error handling.

}

catch (System.Exception ex)

{

 // Perform general error handling.

}

...

VB.NET

...

Catch divEx As DivideByZeroException

 // Perform divide by zero error handling.

Catch ex As System.Exception

 // Perform general error handling.

...

If you do have more than one Catch block, note that the more specific exception Types

should precede the general System.Exception, which will always succeed the type check.

The Finally block is always executed, either after the Try block completes, or after a

Catch block, if an error was thrown. The Finally block should therefore contain code

which must always be executed, for example to clean up resources like file handles or

database connections.

If you do not have any cleanup code, you do not need to include a Finally block.

Code without exception handling

If a line of code not contained in a Try block throws an error, the .NET runtime searches

for a Catch block in the calling function, continuing up the call stack until a Catch block

is found.

If no Catch block is specified in the call stack at all, the exact outcome may depend on

the location of the executed code and the configuration of the .NET runtime. It is

therefore advisable to at least include a Try, Catch, Finally construct for all entry points

to a program.

Error from COM components

The structured exception handling model differs from the HRESULT model used by

COM. C++ developers could easily ignore a error condition in an HRESULT is they

wished. In Visual Basic 6 however, an error condition in an HRESULT would populate

the Err object and raise an error.

The .NET runtime’s handling of errors from COM components is somewhat similar to

the way COM errors were handled at VB 6. If a .NET program calls a function in a COM

component (through the COM interop services) and an error condition is returned as the

HRESULT, the HRESULT is used to populate an instance of the COMException class.

This is then thrown by the .NET runtime, where you can handle it in the usual way, by

using a Try, Catch Finally block.

It is advisable therefore to enclose all code that may raise an error in a COM component

within a Try block with a corresponding Catch block to catch a COMException. Below is

the first example rewritten to check for an error from a COM component.

C#

try

{

 IEnvelope env = new EnvelopeClass();

 env.PutCoords(0D, 0D, 10D, 10D);

 ITransform2D trans = (ITransform2D) env;

 trans.Rotate(env.LowerLeft, 1D);

}

catch (COMException COMex)

{

 if (COMex.ErrorCode == -2147220984)

 MessageBox.Show("You cannot rotate an Envelope");

 else

 MessageBox.Show

 ("Error " + COMex.ErrorCode.ToString() + ": " +

COMex.Message);

}

catch (System.Exception ex)

{

 MessageBox.Show("Error: " + ex.Message);

}

...

VB.NET

Try

 Dim env As IEnvelope = New EnvelopeClass()

 env.PutCoords(0D, 0D, 10D, 10D)

 Dim trans As ITransform2D = env

 trans.Rotate(env.LowerLeft, 1D)

Catch COMex As COMException

 If (COMex.ErrorCode = -2147220984) Then

 MessageBox.Show("You cannot rotate an Envelope")

 Else

 MessageBox.Show _

 ("Error " + COMex.ErrorCode.ToString() + ": " + COMex.Message)

 End If

Catch ex As System.Exception

 MessageBox.Show("Error: " + ex.Message)

...

The COMException class belongs to the System.Runtime.InteropServices namespace. It

provides access to the value of the original HRESULT via the ErrorCode property, which

you can test, to find out which error condition occurred.

Throwing errors and the exception hierarchy

If you are coding a user interface, you may wish to attempt to correct the error condition

in code and try the call again. Alternatively you may wish to report the error to the user to

let them decide which course of action to take; here you can make use of the Message

property of the Exception class to identify the problem.

However, if you are writing a function that is only called from other code, you may wish

to deal with an error by creating a specific error condition and propagating this error to

the caller. You can do exactly this by using the Throw keyword.

To simply throw the existing error to the caller function, write your error handler simply

by using the Throw keyword, as shown below.

C#

catch (System.Exception ex)

{

 throw;

}

...

VB.NET

Catch ex As System.Exception

 Throw

...

If you wish to propagate a different or more specific error back to the caller, you should

create a new instance of an Exception class, populate it appropriately, and throw this

exception back to the caller. The example shown below uses the ApplicationException

constructor to set the Message property.

C#

catch (System.Exception ex)

{

 throw new ApplicationException("You had an error in your

application");

}

...

VB.NET

Catch ex As System.Exception

 Throw New ApplicationException _

 ("You had an error in your application")

...

If you do this however, the original exception is lost. In order to allow complete error

information to be propagated, the Exception class includes the InnerException property.

This property should be set to equal the caught exception, before the new exception is

thrown. This creates an error hierarchy. Again, the example shown below uses the

ApplicationException constructor to set the InnerException and Message properties.

C#

catch (System.Exception ex)

{

 System.ApplicationException appEx =

 new ApplicationException("You had an error in your application",

ex);

 throw appEx;

}

...

VB.NET

Catch ex As System.Exception

 Dim appEx As System.ApplicationException = _

 New ApplicationException("You had an error in your application",

ex)

 Throw appEx

...

In this way, the function that eventually deals with the error condition can access all the

information about the cause of the condition and its context.

If you throw an error, the current function’s Finally clause will be executed before

control is returned to the calling function.

Writing your error handler

The best approach to handling an error will depend on exactly what error is thrown, and

in what context. You may find it useful to review the practices described in the MSDN

topic Best Practices for Handling Exceptions.

Exception handling is an in built mechanism in .NET framework to detect and handle

run time errors. The .NET framework contains lots of standard exceptions. The

exceptions are anomalies that occur during the execution of a program. They can be

because of user, logic or system errors. If a user (programmer) do not provide a

mechanism to handle these anomalies, the .NET run time environment provide a

default mechanism, which terminates the program execution.

C# provides three keywords try, catch and finally to do exception handling. The try

encloses the statements that might throw an exception whereas catch handles an

exception if one exists. The finally can be used for doing any clean up process.

The general form try-catch-finally in C# is shown below

try

{

// Statement which can cause an exception.

}

catch(Type x)

{

// Statements for handling the exception

}

finally

{

//Any cleanup code

}

http://msdn.microsoft.com/library/en-us/cpguide/html/cpconbestpracticesforhandlingexceptions.asp?frame=true

If any exception occurs inside the try block, the control transfers to the appropriate

catch block and later to the finally block.

But in C#, both catch and finally blocks are optional. The try block can exist either

with one or more catch blocks or a finally block or with both catch and finally blocks.

If there is no exception occurred inside the try block, the control directly transfers to

finally block. We can say that the statements inside the finally block is executed

always. Note that it is an error to transfer control out of a finally block by using

break, continue, return or goto.

In C#, exceptions are nothing but objects of the type Exception. The Exception is the

ultimate base class for any exceptions in C#. The C# itself provides couple of

standard exceptions. Or even the user can create their own exception classes,

provided that this should inherit from either Exception class or one of the standard

derived classes of Exception class like DivideByZeroExcpetion ot ArgumentException

etc.

Uncaught Exceptions

The following program will compile but will show an error during execution. The

division by zero is a runtime anomaly and program terminates with an error

message. Any uncaught exceptions in the current context propagate to a higher

context and looks for an appropriate catch block to handle it. If it can't find any

suitable catch blocks, the default mechanism of the .NET runtime will terminate the

execution of the entire program.

//C#: Exception Handling

//Author: rajeshvs@msn.com

using System;

class MyClient

{

public static void Main()

{

int x = 0;

int div = 100/x;

Console.WriteLine(div);

}

}

The modified form of the above program with exception handling mechanism is as

follows. Here we are using the object of the standard exception class

DivideByZeroException to handle the exception caused by division by zero.

//C#: Exception Handling

using System;

class MyClient

{

public static void Main()

{

int x = 0;

int div = 0;

try

{

div = 100/x;

Console.WriteLine("This line in not executed");

}

catch(DivideByZeroException de)

{

Console.WriteLine("Exception occured");

}

Console.WriteLine("Result is {0}",div);

}

}

In the above case the program do not terminate unexpectedly. Instead the program

control passes from the point where exception occurred inside the try block to the

catch blocks. If it finds any suitable catch block, executes the statements inside that

catch and continues with the normal execution of the program statements.

If a finally block is present, the code inside the finally block will get also be

executed.

//C#: Exception Handling

using System;

class MyClient

{

public static void Main()

{

int x = 0;

int div = 0;

try

{

div = 100/x;

Console.WriteLine("Not executed line");

}

catch(DivideByZeroException de)

{

Console.WriteLine("Exception occured");

}

finally

{

Console.WriteLine("Finally Block");

}

Console.WriteLine("Result is {0}",div);

}

}

Remember that in C#, the catch block is optional. The following program is perfectly

legal in C#.

//C#: Exception Handling

using System;

class MyClient

{

public static void Main()

{

int x = 0;

int div = 0;

try

{

div = 100/x;

Console.WriteLine("Not executed line");

}

finally

{

Console.WriteLine("Finally Block");

}

Console.WriteLine("Result is {0}",div);

}

}

But in this case, since there is no exception handling catch block, the execution will

get terminated. But before the termination of the program statements inside the

finally block will get executed. In C#, a try block must be followed by either a catch

or finally block.

Multiple Catch Blocks

A try block can throw multiple exceptions, which can handle by using multiple catch

blocks. Remember that more specialized catch block should come before a

generalized one. Otherwise the compiler will show a compilation error.

//C#: Exception Handling: Multiple catch

using System;

class MyClient

{

public static void Main()

{

int x = 0;

int div = 0;

try

{

div = 100/x;

Console.WriteLine("Not executed line");

}

catch(DivideByZeroException de)

{

Console.WriteLine("DivideByZeroException");

}

catch(Exception ee)

{

Console.WriteLine("Exception");

}

finally

{

Console.WriteLine("Finally Block");

}

Console.WriteLine("Result is {0}",div);

}

}

Catching all Exceptions

By providing a catch block without a brackets or arguments, we can catch all

exceptions occurred inside a try block. Even we can use a catch block with an

Exception type parameter to catch all exceptions happened inside the try block since

in C#, all exceptions are directly or indirectly inherited from the Exception class.

//C#: Exception Handling: Handling all exceptions

using System;

class MyClient

{

public static void Main()

{

int x = 0;

int div = 0;

try

{

div = 100/x;

Console.WriteLine("Not executed line");

}

catch

{

Console.WriteLine("oException");

}

Console.WriteLine("Result is {0}",div);

}

}

The following program handles all exception with Exception object.

//C#: Exception Handling: Handling all exceptions

using System;

class MyClient

{

public static void Main()

{

int x = 0;

int div = 0;

try

{

div = 100/x;

Console.WriteLine("Not executed line");

}

catch(Exception e)

{

Console.WriteLine("oException");

}

Console.WriteLine("Result is {0}",div);

}

}

Throwing an Exception

In C#, it is possible to throw an exception programmatically. The 'throw' keyword is

used for this purpose. The general form of throwing an exception is as follows.

throw exception_obj;

For example the following statement throw an ArgumentException explicitly.

throw new ArgumentException("Exception");

//C#: Exception Handling:

using System;

class MyClient

{

public static void Main()

{

try

{

throw new DivideByZeroException("Invalid Division");

}

catch(DivideByZeroException e)

{

Console.WriteLine("Exception");

}

Console.WriteLine("LAST STATEMENT");

}

}

Re-throwing an Exception

The exceptions, which we caught inside a catch block, can re-throw to a higher

context by using the keyword throw inside the catch block. The following program

shows how to do this.

//C#: Exception Handling: Handling all exceptions

using System;

class MyClass

{

public void Method()

{

try

{

int x = 0;

int sum = 100/x;

}

catch(DivideByZeroException e)

{

throw;

}

}

}

class MyClient

{

public static void Main()

{

MyClass mc = new MyClass();

try

{

mc.Method();

}

catch(Exception e)

{

Console.WriteLine("Exception caught here");

}

Console.WriteLine("LAST STATEMENT");

}

}

Standard Exceptions

There are two types of exceptions: exceptions generated by an executing program

and exceptions generated by the common language runtime. System.Exception is

the base class for all exceptions in C#. Several exception classes inherit from this

class including ApplicationException and SystemException. These two classes form

the basis for most other runtime exceptions. Other exceptions that derive directly

from System.Exception include IOException, WebException etc.

The common language runtime throws SystemException. The ApplicationException is

thrown by a user program rather than the runtime. The SystemException includes

the ExecutionEngineException, StaclOverFlowException etc. It is not recommended

that we catch SystemExceptions nor is it good programming practice to throw

SystemExceptions in our applications.

• System.OutOfMemoryException

• System.NullReferenceException

• Syste.InvalidCastException

• Syste.ArrayTypeMismatchException

• System.IndexOutOfRangeException

• System.ArithmeticException

• System.DevideByZeroException

• System.OverFlowException

User-defined Exceptions

In C#, it is possible to create our own exception class. But Exception must be the

ultimate base class for all exceptions in C#. So the user-defined exception classes

must inherit from either Exception class or one of its standard derived classes.

//C#: Exception Handling: User defined exceptions

using System;

class MyException : Exception

{

public MyException(string str)

{

Console.WriteLine("User defined exception");

}

}

class MyClient

{

public static void Main()

{

try

{

throw new MyException("RAJESH");

}

catch(Exception e)

{

Console.WriteLine("Exception caught here" + e.ToString());

}

Console.WriteLine("LAST STATEMENT");

}

13
Multithreading

Basic Threading in C#

Threading is a great way to make your application smoother. A single thread in a C#

application, is an independent execution path that can run simultaneously with the main

application thread. Of course, C# supports multithreading. And to use the threading

namespace, you can directly call it from System.Threading, or import it:

1 using System.Threading;

Without this, a basic HTTP request makes your application unavailable in a span of time.

And if you are using a progress bar, you won’t see it updating (since the application is

unresponsive at this state).

Single Thread

The most basic way to implement this, is by using the Thread class. An example:

1

2

Thread tMain = new Thread(new ThreadStart(someMethod));
tMain.Start();

Wherein someMethod is a void function that contains the code you want to execute. With

this, the thread will execute in parallel with the main thread. The only drawback, is you

cannot modify controls created in the main thread like you normally use to. This will

result into a Cross-thread operation not valid: Control accessed from a

thread other than the thread it was created on exception. The solution is

pretty simple:

1

2

3

4

5

// Won't Work
textBox1.Text = "Hello";

// Will Work
this.Invoke(new MethodInvoker(delegate { textBox1.Text = "Hello"; }));

U n i t

This approach functions just the same as a BackgroundWorker instance.

Powertip: You can disable all the controls in your form painlessly without setting the

Enabled property of each control (imagine having 20+ controls in your form).

1

2

3

4

5

6

7

private void controlsEnableToggle(bool val)
{
 foreach (Control c in this.Controls)
 {
 c.Enabled = val;
 }
}

Multiple Threads

Dealing with multiple repetitive tasks with a single line of execution is painful, especially

in large numbers. C# supports multithreading. This means, we can initiate as many

threads as we like, and it will do the job. So how to do that? A simple for-loop.

1

2

3

4

for (int i = 0; i < 10; i++) {
 Thread tMain = new Thread(new ThreadStart(someMethod));
 tMain.Start();
}

The above code works, but what if we need to supply parameters to our method?

01

02

03

04

05

06

07

08

09

10

11

// .NET 2
for (int i = 0; i < 10; i++) {
 Thread tMain = new Thread(new
ParameterizedThreadStart(someMethod));
 tMain.Start(param);
}

// .NET 3.5 & 4
for (int i = 0; i < 10; i++) {
 Thread tMain = new Thread(unused => someMethod(param));
 tMain.Start();
}

Pausing and Stopping Threads

Whenever you close a form, the main thread will stop, but the threads you created are

not. Thus, the process is still alive. To stop this, you can just go to the task manager, and

end the process from there. But that’s not user-friendly.

You cannot actually stop or pause threads immediately. You can never tell what the

thread is doing, and terminating them abnormally may cause side effects. For this,

ManualResetEvent is used.

1

2

ManualResetEvent pauseEvent = new ManualResetEvent(true);
ManualResetEvent stopEvent = new ManualResetEvent(false);

The bool values passed to the constructor indicates whether the initial state of the

instance is signaled or not. This is pretty easy to use.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

ManualResetEvent pauseEvent = new ManualResetEvent(true);
ManualResetEvent stopEvent = new ManualResetEvent(false);

private void someMethod(string param) {
 // Stops the thread
 if (stopEvent.WaitOne(0))
 return;

 // Pauses the thread
 pause Event.WaitOne(Timeout.Infinite);

 // Your code

}

To change the signaled state of these events, we will use Reset and Set methods.

Here’s how to use them in relation to the above code:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

// Stops the threads
private void Form1_FormClosing(object sender, FormClosingEventArgs e)
{
 stopEvent.Set();
}

// Pauses the threads
private void Button1_Click(object sender, EventArgs e)
{
 pauseEvent.Reset();
}

// Resumes the threads
private void Button2_Click(object sender, EventArgs e)
{
 pauseEvent.Set();
}

Create New Thread [C#]

This example shows how to create a new thread in .NET Framework. First, create a

new ThreadStart delegate. The delegate points to a method that will be executed by the

new thread. Pass this delegate as a parameter when creating a new Thread instance.

Finally, call the Thread.Start method to run your method (in this case

WorkThreadFunction) on background.

[C#]
using System.Threading;

Thread thread = new Thread(new ThreadStart(WorkThreadFunction));

thread.Start();

The WorkThreadFunction could be defined as follows.

[C#]
public void WorkThreadFunction()

{

 try

 {

 // do any background work

 }

 catch (Exception ex)

 {

 // log errors

 }

}

Introduction to Threads In C#

Threads: Threads are often called lightweight processes. However they are not process.es

A Thread is a small set of executable instructions, which can be used to isolate a task

from a process. Multiple threads are efficient way to obtain parallelism of hardware and

give interactive user interaction to your applications.

C# Thread:. . Net Framework has thread-associated classes in System.Threading

namespace. The following steps demonstrate how to create a thread in C#.

http://msdn2.microsoft.com/en-us/library/system.threading.threadstart.aspx
http://msdn2.microsoft.com/en-us/library/system.threading.thread.aspx
http://msdn2.microsoft.com/en-us/library/system.threading.thread.start.aspx

Step 1. Create a System.Threading.Thread object.

Creating an object to System.Threading.Thread creates a managed thread in .Net

environment. The Thread class has only one constructor, which takes a ThreadStart

delegate as parameter. The ThreadStart delegate is wrap around the callback method,

which will be called when we start the thread.

Step 2: Create the call back function

This method will be a starting point for our new thread. It may be an instance function of

a class or a static function. Incase of instance function, we should create an object of the

class, before we create the ThreadStart delegate. For static functions we can directly

use the function name to instantiate the delegate. The callback function should have void

as both return type and parameter. Because the ThreadStart delegate function is

declared like this. (For more information on delegate see MSDN for “Delegates”).

Step 3: Starting the Thread.

We can start the newly created thread using the Thread’s Start method. This is an

asynchronous method, which requests the operating system to start the current thread.

For Example:

Collapse | Copy Code

// This is the Call back function for thread.

Public static void MyCallbackFunction()

{

while (true)

 {

 System.Console.WriteLine(“ Hey!, My Thread Function Running”);

………

 }

}

public static void Main(String []args)

{

// Create an object for Thread

Thread MyThread = new Thread(new ThreadStart

(MyCallbackFunction));

MyThread.Start()

http://www.codeproject.com/Articles/6678/Introduction-to-Threads-in-C

……

}

Killing a Thread:

We can kill a thread by calling the Abort method of the thread. Calling the Abort

method causes the current thread to exit by throwing the ThreadAbortException.

Collapse | Copy Code
MyThread.Abort();

Suspend and Resuming Thread:

We can suspend the execution of a thread and once again start its execution from another

thread using the Thread object’s Suspend and Resume methods.

Collapse | Copy Code
 MyThread.Suspend() // causes suspend the Thread Execution.

 MyThread.Resume() // causes the suspended Thread to resume its

execution.

Thread State:

A Thread can be in one the following state.

Thread State Description

Unstarted Thread is Created within the common

language run time but not Started still.

Running After a Thread calls Start method

WaitSleepJoin After a Thread calls its wait or Sleep or

Join method.

Suspended Thread Responds to a Suspend method call.

Stopped The Thread is Stopped, either normally or

Aborted.

We can check the current state of a thread using the Thread’s ThreadState property.

Thread Priorty:

The Thread class’s ThreadPriority property is used to set the priority of the Thread. A

Thread may have one of the following values as its Priority: Lowest, BelowNormal,

Normal, AboveNormal, Highest. The default property of a thread is Normal.

http://www.codeproject.com/Articles/6678/Introduction-to-Threads-in-C
http://www.codeproject.com/Articles/6678/Introduction-to-Threads-in-C

Synchronizing Threads in Multithreaded application in

.Net – C#

The Problem “Concurrency”

When you build multithreaded application, your program needs to ensure that shared data

should be protected from against the possibility of multiple threads engagement with its

value. What’s gonna happen if multiple threads were accessing the data at the same

point? CLR can suspend your any thread for a while who’s going to update the value or is

in the middle of updating the value and same time a thread comes to read that value

which is not completely updated, that thread is reading an uncompleted/unstable data.

To illustrate the problem of concurrency let write some line of code
class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("----Synchronnization of Threads-----");
 Console.WriteLine("Main Thread {0}",
Thread.CurrentThread.ManagedThreadId);
 Printer p = new Printer();

 Thread[] threads = new Thread[5];

 //Queue 5 threads
 for (int i = 0; i < 5; i++)
 {
 threads[i] = new Thread(new ThreadStart(p.PrintNumbersNonSync));
 }
 foreach (Thread t in threads)
 {
 t.Start();
 }

 Console.ReadLine();
 }
 }

 class Printer
 {
 public void PrintNumbersNonSync()
 {
 Console.WriteLine(" ");
 Console.WriteLine("Executing Thread {0}",
Thread.CurrentThread.ManagedThreadId);
 for (int i = 1; i <= 10; i++)
 {
 Console.Write(i + " ");
 }

 }

 }

Run this program multiple times and watch the output:

Output1:

Output2:

your output could be different from these.

As you can see all the output would be different as many time you run the program.

What happening here is that all the threads are sharing the same object of Printer class

and trying to execute the same function at the same time so every time the shared data is

being updated in a random pattern which is an unstable state.

Synchronization of threads Solution to the problem of concurrency

Use the locks whenever there’s a Shared section. C# provides Lock keyword that can be

used to lock the section that is being accessed by multiple threads. This is the very basic

technique to avoid the instability in multithreaded environment while programming with

c#.

The Lock keyword requires you to specify the token (an object reference) that must be

acquired by a thread to enter within the lock scope. In case of private method you can

lock it down by passing the reference of current type using “this” keyword.

For e.g.
 public void PrintNumbersSynchronized()
 {
 //Synchronization thread
 lock (this)
 {
 Console.WriteLine(" ");
 Console.WriteLine("Executing Thread {0}",
Thread.CurrentThread.ManagedThreadId);

http://4.bp.blogspot.com/-mYfTSHtJnSc/Ti21RPBY7gI/AAAAAAAAAJk/8GlRXhvP530/s1600/output1.jpg
http://3.bp.blogspot.com/-UrVlezAyP1U/Ti21SMNPSrI/AAAAAAAAAJo/qpe9TXdbAxs/s1600/output2.jpg

 for (int i = 1; i <= 10; i++)
 {
 Console.Write(i + " ");
 }

 }
 }

However if you are locking down a region of code within a public member, it is safer

(and best practice) to declare a private object member variable to server as the lock token:
 class Printer
 {
 // Synchronization token
 private Object ThreadLock = new object();

 public void PrintNumbersSynchronized()
 {
 //Synchronization thread
 lock (ThreadLock)
 {
 Console.WriteLine(" ");
 Console.WriteLine("Executing Thread {0}",
Thread.CurrentThread.ManagedThreadId);
 for (int i = 1; i <= 10; i++)
 {
 Console.Write(i + " ");
 }

 }
 }
 }
Output:

Other methods to perform the synchronization

Monitor is class in System.Threading namespace that also provides the same

functionality. Actually lock is just a shorthand notation of Monitor class. Once compiler

processed a lock it actually resolves to the following:
 public void PrintNumbersSync()
 {
 Monitor.Enter(ThreadLock);
 try
 {
 Console.WriteLine(" ");

http://2.bp.blogspot.com/-BUlFKnF8i3g/Ti21QR2qKzI/AAAAAAAAAJg/84e_7uyR8cY/s1600/finalOutput.jpg

 Console.WriteLine("Executing Thread {0}",
Thread.CurrentThread.ManagedThreadId);
 for (int i = 1; i <= 10; i++)
 {
 Console.Write(i + " ");
 }
 }
 finally
 {
 Monitor.Exit(ThreadLock);
 }

 }
Here little more code you can see having the try..finally block. Other than Enter() and

Exit() methods, Monitor class also provides the methods like Monitor.Pulse() and

PulseAll() to inform the waiting threads that its completed.

Simple operations using the Interlocked Type

To perform some basic operation it’s not necessary that you write the block using the

lock or Monitor. System.Threading namespace provides an interesting class that can help

you out.

Now you can replace this
 lock (ThreadLock)
 {
 intVal++;
 }

By
int newVal = Interlocked.Increment(ref intVal);

It returns the new values of updated variable as well as update the referenced value at the

same time.

Similarly,

Add()

Exchange() //for swapping

CompareExchange() // Compare a value and then exchange

Equals()

Decrement()

Read()

Are some basic operations you can perform in a multithreaded environment to make your

threadsafe using the Interlocked class.

Synchronization using the [Synchronization] attribute

The Synchronization attribute is a member of System.Runtime.Remoting.Contexts

namespace. In essence, this class-level attribute effectively lock downs all instance

members code of the object for the thread safety. Additionally you have to derive your

class from ContextBoundObject to keep your object with in the contextual boundries.

Here’s the complete code:

 class Program
 {
 static void Main(string[] args)
 {

 Console.WriteLine("----Synchronnization of Threads-----");
 Console.WriteLine("Main Thread {0}",
Thread.CurrentThread.ManagedThreadId);
 Printer p = new Printer();

 Thread[] threads = new Thread[5];

 //Queue 5 threads
 for (int i = 0; i < 5; i++)
 {
 threads[i] = new Thread(new ThreadStart(p.PrintNumbersNonSync));
 }
 foreach (Thread t in threads)
 {
 t.Start();
 }

 Console.ReadLine();
 }
 }

 [Synchronization]
 class Printer : ContextBoundObject
 {
 public void PrintNumbersNonSync()
 {
 Console.WriteLine(" ");
 Console.WriteLine("Executing Thread {0}",
Thread.CurrentThread.ManagedThreadId);
 for (int i = 1; i <= 10; i++)
 {
 Console.Write(i + " ");
 }

 }

 }
Output:

This appraoch is a lazy way to write thread safe code because CLR can lock non-thread

sensitive data and that could be an victim of OverLocking. So please choose this

approach wisely and carefully.

Happy Threading…!!

http://2.bp.blogspot.com/-BUlFKnF8i3g/Ti21QR2qKzI/AAAAAAAAAJg/84e_7uyR8cY/s1600/finalOutput.jpg

Introduction

Overview

Multithreading or free-threading is the ability of an operating system to concurrently run

programs that have been divided into subcomponents, or threads.

Technically, multithreaded programming requires a multitasking/multithreading

operating system, such as GNU/Linux, Windows NT/2000 or OS/2; capable of running

many programs concurrently, and of course, programs have to be written in a special way

in order to take advantage of these multitasking operating systems which appear to

function as multiple processors. In reality, the user's sense of time is much slower than

the processing speed of a computer, and multitasking appears to be simultaneous, even

though only one task at a time can use a computer processing cycle.

Objective

The objective of this document is:

• A brief Introduction to Threading

• Features of Threading

• Threading Advantages

Features and Benefits of Threads

Mutually exclusive tasks, such as gathering user input and background processing can be

managed with the use of threads. Threads can also be used as a convenient way to

structure a program that performs several similar or identical tasks concurrently.

One of the advantages of using the threads is that you can have multiple activities

happening simultaneously. Another advantage is that a developer can make use of threads

to achieve faster computations by doing two different computations in two threads

instead of serially one after the other.

Threading Concepts in C#

In .NET, threads run in AppDomains. An AppDomain is a runtime representation of a

logical process within a physical process. And a thread is the basic unit to which the OS

allocates processor time. To start with, each AppDomain is started with a single thread.

But it is capable of creating other threads from the single thread and from any created

thread as well.

How do they work

A multitasking operation system divides the available processor time among the

processes and threads that need it. A thread is executed in the given time slice, and then it

is suspended and execution starts for next thread/process in the queue. When the OS

switches from one thread to another, it saves thread context for preempted thread and

loads the thread context for the thread to execute.

The length of time slice that is allocated for a thread depends on the OS, the processor, as

also on the priority of the task itself.

Working with threads

In .NET framework, System.Threading namespace provides classes and interfaces that

enable multi-threaded programming. This namespace provides:

• ThreadPool class for managing group of threads,

• Timer class to enable calling of delegates after a certain amount of time,

• A Mutex class for synchronizing mutually exclusive threads, along with classes

for scheduling the threads, sending wait notifications and deadlock resolutions.

Information on this namespace is available in the help documentations in the Framework

SDK.

Defining and Calling threads

To get a feel of how Threading works, run the below code:

Collapse | Copy Code
using System;

using System.Threading;

public class ServerClass

{

 // The method that will be called when the thread is started.

 public void Instance Method()

 {

 Console.WriteLine("You are in InstranceMethod.Running on Thread

A”);

 Console.WriteLine("Thread A Going to Sleep Zzzzzzzz”);

 // Pause for a moment to provide a delay to make threads more

apparent.

 Thread. Sleep(3000);

 Console.WriteLine ("You are Back in InstanceMethod.Running on

Thread A");

 }

 public static void StaticMethod()

 {

http://www.codeproject.com/Articles/8694/Multithreading-Concepts-in-C

 Console.WriteLine("You are in StaticMethod. Running on Thread

B.");

 // Pause for a moment to provide a delay to make threads more

apparent.

 Console.WriteLine("Thread B Going to Sleep Zzzzzzzz");

 Thread.Sleep(5000);

 Console.WriteLine("You are back in static method. Running on

Thread B");

 }

}

public class Simple

{

 public static int Main(String[] args)

 {

 Console.WriteLine ("Thread Simple Sample");

 ServerClass serverObject = new ServerClass();

 // Create the thread object, passing in the

 // serverObject.InstanceMethod method using a ThreadStart

delegate.

 Thread InstanceCaller = new

 Thread(new ThreadStart(serverObject.InstanceMethod));

 // Start the thread.

 InstanceCaller.Start();

 Console.WriteLine("The Main() thread calls this " +

 "after starting the new InstanceCaller thread.");

 // Create the thread object, passing in the

 // serverObject.StaticMethod method using a ThreadStart

delegate.

 Thread StaticCaller = new Thread(new

 ThreadStart(ServerClass.StaticMethod));

 // Start the thread.

 StaticCaller.Start();

 Console.WriteLine("The Main () thread calls this " +

 "after starting the new StaticCaller threads.");

 return 0;

 }

}

If the code in this example is compiled and executed, you would notice how processor

time is allocated between the two method calls. If not for threading, you would have to

wait till the first method slept for 3000 secs for the next method to be called. Try

disabling threading in the above code and notice how they work. Nevertheless, execution

time for both would be the same.

An important property of this class (which is also settable) is Priority.

Scheduling Threads

Every thread has a thread priority assigned to it. Threads created within the common

language runtime are initially assigned the priority of ThreadPriority.Normal. Threads

created outside the runtime retain the priority they had before they entered the managed

environment. You can get or set the priority of any thread with the Thread.Priority

property.

Threads are scheduled for execution based on their priority. Even though threads are

executing within the runtime, all threads are assigned processor time slices by the

operating system. The details of the scheduling algorithm used to determine the order in

which threads are executed varies with each operating system. Under some operating

systems, the thread with the highest priority (of those threads that can be executed) is

always scheduled to run first. If multiple threads with the same priority are available, the

scheduler cycles through the threads at that priority, giving each thread a fixed time slice

in which to execute. As long as a thread with a higher priority is available to run, lower

priority threads do not get to execute. When there are no more run able threads at a given

priority, the scheduler moves to the next lower priority and schedules the threads at that

priority for execution. If a higher priority thread becomes run able, the lower priority

thread is preempted and the higher priority thread is allowed to execute once again. On

top of all that, the operating system can also adjust thread priorities dynamically as an

application's user interface is moved between foreground and background. Other

operating systems might choose to use a different scheduling algorithm.

Pausing and Resuming threads

After you have started a thread, you often want to pause that thread for a fixed period of

time. Calling Thread.Sleep causes the current thread to immediately block for the number

of milliseconds you pass to Sleep, yielding the remainder of its time slice to another

thread. One thread cannot call Sleep on another thread. Calling

Thread.Sleep(Timeout.Infinite) causes a thread to sleep until it is interrupted by

another thread that calls Thread.Interrupt or is aborted by Thread.Abort.

Thread Safety

When we are working in a multi threaded environment, we need to maintain that no

thread leaves the object in an invalid state when it gets suspended. Thread safety

basically means the members of an object always maintain a valid state when used

concurrently by multiple threads.

There are multiple ways of achieving this – The Mutex class or the Monitor classes of the

Framework enable this, and more information on both is available in the Framework

SDK documentation. What we are going to look at here is the use of locks.

You put a lock on a block of code – which means that that block has to be executed at

one go and that at any given time, only one thread could be executing that block.

http://www.codeproject.com/Articles/8694/_target
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemThreadingThreadClassInterruptTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemThreadingThreadClassAbortTopic.asp

The syntax for the lock would be as follows:

Collapse | Copy Code
using System;

using System.Threading;

//define the namespace, class etc.

...

public somemethod(...)

{

 ...

 lock(this)

 {

 Console.WriteLine(“Inside the lock now”);

 ...

 }

}

Synchronization Primitives

1. Simple blocking : Sleep, Join, and Task.Wait are simple blocking methods. These

mechanisms waits until another thread to finish or period of time to elapse.

2. Locking : The standard exclusive locking constructs are

lock (Monitor.Enter/Monitor.Exit),Mutex, and Spinlock . The nonexclusive locking

constructs are semaphore and the reader/writer locks.

3. Signaling : There are two commonly used signaling devices: Event wait handlers and

Monitor’s Wait/Pulse methods.

4. Nonblocking synchronization constructs : C# provide the following nonblocking

constructs: Thread.Memorybarrier,Thread.VolatileWrit and

the InterLocked class.

Locking

Lock :

 lock ensures that one thread does not enter a critical section of code while another

thread is in the critical section. If another thread attempts to enter a locked code, it will

wait, block, until the object is released. Using lock keyword only one thread can access

section of code at a time and once it finishes then only another thread in a queue will be

accessed.

Syntax of lock keyword :

http://www.codeproject.com/Articles/8694/Multithreading-Concepts-in-C
http://csharp-multithreading.blogspot.in/2010/11/synchronization-primitives.html

Object lockObj= new Object();

lock (lockObj)

{

 // code section

}

Lock calls Enter at the beginning of the block and Exit at the end of the block.

DO's and DONT's :

* Avoid locking on public types.

* Avoid locking on instances which is not in your code control.

* Better to lock on private objects

* Lock on private static object variable to protect data common to all instances.

Monitor :

 Monitor class also works same as lock in which it provides a mechanism that

synchronizes access to objects.But it uses The Enter method allows one and only one

thread to proceed into the following statements; all other threads are blocked until the

executing thread calls Exit. It Monitor is unbound, which means it can be called directly

from any context. This class is under System.Threading namespace.

Code snippet shows Monitor class:

Object lockObj= new Object();

Monitor.Enter(lockObj);

try

{

 DoSomething();

}

finally

{

 Monitor.Exit(lockObj);

}

Mutex:

 A mutex is similar to a monitor; it prevents the simultaneous execution of a block of

code by more than one thread at a time.Unlike monitors, however, a mutex can be used to

synchronize threads across processes.It represents by the mutex class.
using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading;

namespace ConsoleApplication11

{

 class SThread

 {

 public void childThread()

 {

 for (int i = 0; i < 6; i++)

 {

 Console.WriteLine("generated thread {0}", i);

 Thread.Sleep(1000);

 }

 Console.WriteLine("exiting the generated thread");

 }

 }

 public class Thread3

 {

 static void Main(string[] args)

 {

 SThread st = new SThread();

 ThreadStart ts = new ThreadStart(st.childThread);

 Thread t = new Thread(ts);

 t.Start();

 for (int i = 0; i < 6; i++)

 {

 Console.WriteLine("Main Thread {0}", i);

 Thread.Sleep(1000);

 }

 Console.WriteLine("exiting the main Thread");

 }

 }

namespace ConsoleApplication11

{

 class SThread

 {

 string name;

 Thread t;

 public SThread(string s){

 name = s;

 t = new Thread(new ThreadStart(this.sThread));

 t.Name = name;

 t.Start();

 }

 public void sThread()

 {

 for (int i = 0; i < 6; i++)

 {

 Console.WriteLine("name of thread is {0} and the value

is {1}", name, i);

 Thread.Sleep(1000);

 }

 Console.WriteLine("Exiting the {0} Thread", name);

 }

 }

 public class Thread3

 {

 static void Main(string[] args)

 {

 new SThread("first");

 new SThread("second");

 Console.WriteLine("Exiting the main Thread");

 Console.ReadLine();

 }

 }

}

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading;

namespace ConsoleApplication11

{

 class SThread

 {

 public void sthread()

 {

 for (int i = 0; i < 6; i++)

 {

 Console.WriteLine("name of thread is {0} and the value

is {1}", Thread.CurrentThread.Name,i);

 Thread.Sleep(1000);

 }

 Console.WriteLine("Exiting the {0}

Thread",Thread.CurrentThread.Name);

 }

 }

 public class Thread3

 {

 static void Main(string[] args)

 {

 SThread st1 = new SThread();

 Thread t = new Thread(new ThreadStart(st1.sthread));

 t.Name = "First";

 t.Start();

 SThread st2 = new SThread();

 Thread t1 = new Thread(new ThreadStart(st1.sthread));

 t1.Name = "Second";

 t1.Start();

 Console.WriteLine("Is the first thread alive {0}",

t.IsAlive);

 Console.WriteLine("Is the second thread alive {0}",

t1.IsAlive);

 Console.WriteLine("Waiting for the threads to complete");

 t.Join();

 t1.Join();

 Console.WriteLine("Is the first thread alive {0}",

t.IsAlive);

 Console.WriteLine("Is the first thread alive {0}",

t1.IsAlive);

 Console.ReadLine();

 }

 }

}

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading;

namespace ConsoleApplication11

{

 class SThread

 {

 public int count=0;

 bool doit=true;

 public void sthread()

 {

 while (doit)

 {

 count++;

 }

 }

 public void stop(){

 doit=false;

 }

 }

 public class Thread3

 {

 static void Main(string[] args)

 {

 SThread st1 = new SThread();

 Thread t = new Thread(new ThreadStart(st1.sthread));

 t.Name = "First";

 t.Priority = ThreadPriority.AboveNormal;

 t.Start();

 SThread st2 = new SThread();

 Thread t1 = new Thread(new ThreadStart(st1.sthread));

 t1.Name = "Second";

 t1.Priority = ThreadPriority.BelowNormal;

 t1.Start();

 Thread.Sleep(1000);

 st1.stop();

 st2.stop();

 Console.WriteLine("Waiting for the threads to complete");

 t.Join();

 t1.Join();

 Console.WriteLine("The AboveNormal Thread {0}", st1.count);

 Console.WriteLine("The BelowNormal Thread {0}", st2.count);

 Console.ReadLine();

 }

 }

}

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading;

namespace ConsoleApplication11

{

 class CallTo

 {

 public string s;

 public void call(string s1)

 {

 s = s1;

 Console.Write("({0}", s);

 Thread.Sleep(1000);

 Console.WriteLine(")");

 }

 }

 class CallFrom

 {

 string str;

 CallTo callto;

 public Thread t;

 public CallFrom(CallTo ct, string s)

 {

 callto = ct;

 str = s;

 t = new Thread(new ThreadStart(this.callit));

 t.Start();

 }

 public void callit()

 {

 callto.call(str);

 }

 }

 public class Thread3

 {

 static void Main(string[] args)

 {

 CallTo ct = new CallTo();

 CallFrom cf1 = new CallFrom(ct, "first");

 CallFrom cf2 = new CallFrom(ct, "second");

 CallFrom cf3 = new CallFrom(ct, "third");

 cf1.t.Join();

 cf2.t.Join();

 cf3.t.Join();

 Console.ReadLine();

 }

 }

}

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading;

namespace ConsoleApplication11

{

 class CallTo

 {

 public string s;

 public void call(string s1)

 {

 Monitor.Enter(this);

 s = s1;

 Console.Write("({0}", s);

 Thread.Sleep(1000);

 Console.WriteLine(")");

 Monitor.Exit(this);

 }

 }

 class CallFrom

 {

 string str;

 CallTo callto;

 public Thread t;

 public CallFrom(CallTo ct, string s)

 {

 callto = ct;

 str = s;

 t = new Thread(new ThreadStart(this.callit));

 t.Start();

 }

 public void callit()

 {

 callto.call(str);

 }

 }

 public class Thread3

 {

 static void Main(string[] args)

 {

 CallTo ct = new CallTo();

 CallFrom cf1 = new CallFrom(ct, "first");

 CallFrom cf2 = new CallFrom(ct, "second");

 CallFrom cf3 = new CallFrom(ct, "third");

 cf1.t.Join();

 cf2.t.Join();

 cf3.t.Join();

 Console.ReadLine();

 }

 }

}

BLOCK- 4

14
Namespace

Interface:
Interfaces describe a group of related functionalities that can belong to any class or struct.
Interfaces can consist of methods, properties, events, indexers, or any combination of those four

member types. An Interface is a reference type and it contains only abstract members, so

sometime it also called pure abstract class. An interface contains only declaration for its
members. Any implementation must be placed in class that inherited them. An interface can't
contain constants, data fields, constructors, destructors and static members. All the member
declarations inside interface are implicitly public.
To implement an interface member, the corresponding member on the class must be public, non-
static, and have the same name and signature as the interface member. Properties and indexers
on a class can define extra accessors for a property or indexer defined on an interface.
Classes and structs can inherit from more than one interface. An interface can itself inherit from
multiple interfaces.
Defining an interface:

interface IDemoInterface

{

 void MethodDemo();

}
We define an interface by using keyword interface. Above an interface name is IDemoInterface. A
common naming convention is to prefix all interface names with a capital "I".

Example:

using System;

using System.Collections.Generic;

using System.Text;

namespace DemoInterface

{

interface IDemoInterface // defining an interface

{

 void MethodDemo();

}

 class MyClass : IDemoInterface // implementing an interface in the

class

 {

U n i t

 static void Main(string[] args)

 {

 MyClass mco = new MyClass ();

 mco.MethodDemo();

 }

 public void MethodDemo()

 {

 Console.WriteLine("An example of Interface.");

 Console.ReadLine();

 }

 }

}

OUTPUT:
An example of Interface.
Explanation:
In above example we define an interface named IDemoInterface which contains a method named
MethodDemo().
Now, a class named MyClass inherits the interface IDemoInterface using : symbol.
 class MyClass : IDemoInterface

The class MyClass implement the method MethodDemo() which is defined by the interface
IDemoInterface. Then we create an object of class MyClass named mco and called the method
MehtodDemo().
So, the above description defines the actual story of an interface.

Multiple Inheritance using C# interfaces:
Multiple inheritance is not allowed in C#. So, this problem can solve by using interface. This can
be done using child class that inherits from any number of c# interfaces.
using System;

using System.Collections.Generic;

using System.Text;

namespace DemoInterface

{

 interface IParentInterafce

 {

 void MethodParentDemo();

 }

 interface IDemoInterface

 {

 void MethodDemo();

 }

 class MyClass : IParentInterafce, IDemoInterface

 {

 public static void Main(string[] args)

 {

 MyClass mco = new MyClass ();

 mco.MethodDemo();

 mco.MethodParentDemo();

 }

 public void MethodDemo()

 {

 Console.WriteLine("Implementing IDemoInterface");

 }

 public void MethodParentDemo()

 {

 Console.WriteLine("Implementing IParentInterafce");

 Console.ReadLine();

 }

 }

}

OUTPUT:

Implementing IDemoInterface

Implementing IParentInterafce

Explanation:
In above example we have defined two interfaces named IParentInterafce and IDemoInterface.
Then we have inherited both interfaces in class named MyClass.

So, by doing this we can resolve the problem of multiple inheritance.

An interface can inherit other interface as below:
interface IParentInterafce

 {

 void MethodParentDemo();

 }

 interface IDemoInterface :IParentInterafce

 {

 void MethodDemo();

 }

Implementation of both interface will same as in above exaple.

//using namespace

using maths;

using System;

class test

{

public static void Main(string[] args)

{

add a=new add();

a.sum();

}

}

15
Graphics

Persistent Graphics

An important point to note before proceeding with is chapter is that simply creating a

Graphics Object for a component and then drawing on that component does not create

persistent graphics. In fact what will happen is that as soon as the window is minimized

or obscured by another window the graphics will be erased.

For this reason, steps need to be taken to ensure that any graphics are persistent. Two

mechanisms are available for achieving this. One is to repeatedly perform the drawing in

the Paint() event handler of the control (which is triggered whenever the component

needs to be redrawn), or to perform the drawing on a bitmap image in memory and then

transfer that image to the component whenever the Paint() event is triggered. We will

look at redrawing the graphics in the Paint() event in this chapter and Using Bitmaps for

Persistent Graphics in C# in the next chapter.

Creating a Graphics Object

The first step in this tutorial is to create a new Visual Studio project called

CSharpGraphics. With the new project created select the Form in the design area and

click on the lightning bolt at the top of the Properties panel to list the events available for

the Form. Double click the Paint event to display the code editing page.

Graphics Objects are created by calling the CreateGraphics() method of the component

on which the drawing is to performed. For example, a Graphics Object can be created on

our Form called Form1 by calling CreateGraphics() method as follows in the Paint()

method:

 private void Form1_Paint(object sender, PaintEventArgs e)

 {

 System.Drawing.Graphics graphicsObj;

 graphicsObj = this.CreateGraphics();

U n i t

http://www.techotopia.com/index.php/Drawing_Graphics_in_C_Sharp
http://www.techotopia.com/index.php/Using_Bitmaps_for_Persistent_Graphics_in_C_Sharp
http://www.techotopia.com/index.php/Using_Bitmaps_for_Persistent_Graphics_in_C_Sharp
http://www.techotopia.com/index.php/Drawing_Graphics_in_C_Sharp

 }

Now that we have a Graphic Object we need a Pen with which to draw.

Creating a Pen In C#

A Graphics Object is of little use without a Pen object with which to draw (much as a

sheet of paper is no good without a pen or pencil). A Pen object may be quite easily

created as follows:

Pen variable_name = new Pen (color, width);

where variable_name is the name to be assigned to the Pen object, color is the color of

the pen and width is the width of the lines to be drawn by the pen.

For example, we can create red pen that is 5 pixels wide as follows:

 private void Form1_Paint(object sender, PaintEventArgs e)

 {

 System.Drawing.Graphics graphicsObj;

 graphicsObj = this.CreateGraphics();

 Pen myPen = new Pen(System.Drawing.Color.Red, 5);

 }

Once a Pen object has been created other properties may be changed. For example, the

DashStyle property can be modified to change the style of line (i.e Dash, DashDot,

DashDotDot, Dot, Solid or Custom). Properties such as the color and width may similarly

be changed after a Pen has been created:

 myPen.DashStyle =

System.Drawing.Drawing2D.DashStyle.DashDotDot;

 myPen.Color = System.Drawing.Color.RoyalBlue;

 myPen.Width = 3;

Now that we have a Paint() event handler, a Graphics Object and Pen we can now begin

to draw.

Drawing Lines in C#

Lines are drawn in C# using the DrawLine() method of the Graphics Object. This method

takes a pre-instantiated Pen object and two sets of x and y co-ordinates (the start and end

points of the line) as arguments. For example, to draw a line from co-ordinates (20, 20) to

(200, 210) on our sample form:

 private void Form1_Paint(object sender, PaintEventArgs e)

 {

 System.Drawing.Graphics graphicsObj;

 graphicsObj = this.CreateGraphics();

 Pen myPen = new Pen(System.Drawing.Color.Red, 5);

 graphicsObj.DrawLine(myPen, 20, 20, 200, 210);

 }

The above code, when compiled and executed will result in the form appearing as

follows:

Drawing Squares and Rectangles in C#

For the purposes of drawing rectangles and squares in C# the GraphicsObject provides

the DrawRectangle() method. There are two ways to use the DrawRectangle() method.

One is to pass through a Rectangle object and Pen and the other is to create an instance of

a Rectangle object and pass that through along with the Pen. We will begin by looking at

drawing a rectangle without a pre-created Rectangle object. The syntax for this is:

graphicsobj.DrawRectangle(pen, x, y, width, height);

The alternative is to pass through a Rectangle object in place of the co-ordinates and

dimensions. The syntax for creating a Rectangle object in C# is as follows:

Rectangle rectangleObj = new Rectangle (x, y, width, height);

http://www.techotopia.com/index.php/Image:C_sharp_draw_line.jpg

Once a Rectangle object has been instantiated the syntax to call DrawRectangle() is as

follows:

graphicsobj.DrawRectangle(pen, x, y, rectangleobj);

The following example creates a Rectangle which is then used as an argument to

DrawRectangle():

 private void Form1_Paint(object sender, PaintEventArgs e)

 {

 System.Drawing.Graphics graphicsObj;

 graphicsObj = this.CreateGraphics();

 Pen myPen = new Pen(System.Drawing.Color.Red, 5);

 Rectangle myRectangle = new Rectangle(20, 20, 250, 200);

 graphicsObj.DrawRectangle(myPen, myRectangle);

 }

When an application containing the above code is compiled and executed the following

graphics will appear in the form:

If multiple rectangles of different shapes need to be drawn it is not necessary to create a

new Rectangle object for each call to the DrawRectangle(); method. Instead the shape of

an existing Rectangle object may be altered by calling the Inflate() method of the

Rectangle class. This method accepts two arguments, the amount by which the width is to

be changed and the amount by which the height is to be changed. If a dimension is to be

left unchanged 0 should be passed through as the change value.

http://www.techotopia.com/index.php/Image:C_sharp_draw_rectangle.jpg

To reduce a dimension pass through the negative amount by which the dimension is to be

changed:

 Rectangle myRectangle = new Rectangle(20, 20, 250, 200);

 myRectangle.Inflate(10, -20); Increase width by 10. Reduce height

my 20

Drawing Ellipses and Circles in C#

Ellipses and circles are drawn in C# using the DrawEllipse() method of the

GraphicsObject class. The size of the shape to be drawn is defined by specifying a

rectangle into which the shape must fit. As with the DrawRectangle() method, there are

two ways to use the DrawEllipse() method. One is to pass through a Rectangle object and

Pen and the other is to create an instance of a Rectangle object and pass that through

along with the Pen.

To draw an ellipse without first creating a Rectangle object use the following syntax:

graphicsobj.DrawEllipse(pen, x, y, width, height);

The alternative is to pass through a Rectangle object in place of the co-ordinates and

dimensions. The syntax for creating a Rectangle object in C# is as follows:

Rectangle rectangleObj = new Rectangle (x, y, width, height);

Once a Rectangle object has been instantiated the syntax to call DrawRectangle() is as

follows:

graphicsobj.DrawEllipse(pen, x, y, rectangleobj);

The following example creates a Rectangle which is then used as an argument to

DrawEllipse():

 private void Form1_Paint(object sender, PaintEventArgs e)

 {

 System.Drawing.Graphics graphicsObj;

 graphicsObj = this.CreateGraphics();

 Pen myPen = new Pen(System.Drawing.Color.Green, 5);

 Rectangle myRectangle = new Rectangle(20, 20, 250, 200);

 graphicsObj.DrawEllipse(myPen, myRectangle);

 }

When compiled and executed the above code creates the following graphics output on the

form:

http://www.techotopia.com/index.php/Drawing_Graphics_in_C_Sharp

Drawing Text with C#

Text is drawn onto a Graphics Object using the DrawText() method. The syntax for this

method is as follows:

graphicsobj.DrawString(string, font, brush, x, y);

The string argument specifies the text to be drawn. Font defines the font to be used to

display the text and requires the creation of a Font object. The brush object is similar to

the Pen object used to draw shapes with the exception that it specifies a fill pattern.

Finally, the x and y values specify the top left hand corner of the text.

In order to create a Font object a font size, font family and font style may be specified.

For example to create a Helvetica, 40 point Italic font:

 Font myFont = new System.Drawing.Font("Helvetica", 40,

FontStyle.Italic);

A brush object is created by specifying by calling the appropriate constructor for the

brush type and specifying a color:

 Brush myBrush = new SolidBrush(System.Drawing.Color.Red);

Having created the necessary objects we can incorporate these into our example C#

application to draw some text:

 private void Form1_Paint(object sender, PaintEventArgs e)

 {

 System.Drawing.Graphics graphicsObj;

http://www.techotopia.com/index.php/Image:C_sharp_ellipse_drawing.jpg
http://www.techotopia.com/index.php/Drawing_Graphics_in_C_Sharp

 graphicsObj = this.CreateGraphics();

 Font myFont = new System.Drawing.Font("Helvetica", 40,

FontStyle.Italic);

 Brush myBrush = new SolidBrush(System.Drawing.Color.Red);

 graphicsObj.DrawString("Hello C#", myFont, myBrush, 30,

30);

 }

The above code, when compiled and run, will output the following text onto the form:

All drawing in GDI+ takes place upon the Graphics object and there
are several contexts in which you'll find one. During a Paint cycle the

Graphics object will be provided in a PaintEventArgs object that is
handed to your code in the OnPaint and OnPaintBackground

methods of a Windows Forms control. This same event argument is

passed to handlers that service the Paint event raised by the OnPaint
methods. When printing, the PrintPageEventArgs provided in a

PrintPage event will contain a Graphics object for the printer and
you can obtain a Graphics object for certain types of image so that

you can paint directly on an image in memory as if it were the screen.

Obtaining the Graphics object.

http://www.techotopia.com/index.php/Image:C_sharp_drawing_text.jpg

When you're writing programs that place graphics on screen the
graphics object will be handed to you wrapped up in a

PaintEventArgs object. There are two ways in which your code can
get hold of the Graphics object. You can override the protected

OnPaint or OnPaintBackground methods or you can add a handler to
the Paint event. In all these cases the Graphics object is passed in a

PaintEventArgs object. Listing 1 shows the various methods.

Listing 1

 protected override void OnPaint(PaintEventArgs e)
 {
 //get the Graphics object from the PaintEventArgs
 Graphics g=e.Graphics;
 g.DrawLine(....);

 //or use it directly
 e.Graphics.DrawLine(....);

 //Remember to call the base class or the Paint event won't fire
 base.OnPaint (e);
 }

 //This is the Paint event handler
 private void Form1_Paint(object sender,

System.Windows.Forms.PaintEventArgs e)
 {
 //get the Graphics object from the PaintEventArgs
 Graphics g=e.Graphics;
 g.DrawLine(....);

 //or use it directly
 e.Graphics.DrawLine(....);

 }

You can see in Listing 1 that you can get a reference to the Graphics

object and save that for use in the code or use it directly from the
PaintEventArgs. Remember not to save the Graphics object outside

of the scope of the method.

What to do with it when you have it.

When your code has access to a Graphics object there are a number of

things you can do. They fall into five general categories.

• Stroke a shape. Shapes such as rectangles, ellipses and lines

are drawn using a Pen object. The pen can have different

thickness or colour and have many other attributes which you
will see in another article.

• Fill a shape. Shapes can be filled with a Brush object. Brushes
have many complex settings in GDI+ but they all basically fill an

area with colour.
• Draw a string. Text can be placed on the Graphics surface

using the DrawString method.
• Draw an image. Images can be drawn in any scale using one of

the DrawImage methods.
• Modify the Graphics object. There are many methods that

change the way the Graphics object performs. You can change
the quality of graphics and have high-quality graphics at the

expense of speed. You can change the way the graphics are

output to create rotation, zooming or distortion effects.

To demonstrate the use of the Graphics object, the following listing
shows the paint handler from a form that demonstrates stroking and

filling of shapes. Figure 1 shows this simple application at work.

Figure 1. Stroking and filling.

 protected override void OnPaint(PaintEventArgs e)
 {
 //Get the Graphics object
 Graphics g=e.Graphics;

 //Draw a line
 g.DrawLine(Pens.Red,10,5,110,15);

 //Draw an ellipse
 g.DrawEllipse(Pens.Blue,10,20,110,45);

 //Draw a rectangle
 g.DrawRectangle(Pens.Green,10,70,110,45);

 //Fill an ellipse
 g.FillEllipse(Brushes.Blue,130,20,110,45);

 //Fill a rectangle
 g.FillRectangle(Brushes.Green,130,70,110,45);

 base.OnPaint (e);
 }

Before you can draw lines and shapes, render text, or display and manipulate images with

GDI+, you need to create a Graphics object. The Graphics object represents a GDI+

drawing surface, and is the object that is used to create graphical images.

There are two steps in working with graphics:

1. Creating a Graphics object.

2. Using the Graphics object to draw lines and shapes, render text, or display and

manipulate images.

Creating a Graphics Object

A graphics object can be created in a variety of ways.

To create a graphics object

• Receive a reference to a graphics object as part of the PaintEventArgs in the Paint

event of a form or control. This is usually how you obtain a reference to a

graphics object when creating painting code for a control. Similarly, you can also

obtain a graphics object as a property of the PrintPageEventArgs when handling

the PrintPage event for a PrintDocument.

-or-

• Call the CreateGraphics method of a control or form to obtain a reference to a

Graphics object that represents the drawing surface of that control or form. Use

this method if you want to draw on a form or control that already exists.

-or-

• Create a Graphics object from any object that inherits from Image. This approach

is useful when you want to alter an already existing image.

The following sections give details about each of these processes.

PaintEventArgs in the Paint Event Handler

When programming the PaintEventHandler for controls or the PrintPage for a

PrintDocument, a graphics object is provided as one of the properties of PaintEventArgs

or PrintPageEventArgs.

http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
javascript:void(0)
http://msdn.microsoft.com/en-us/library/system.windows.forms.painteventargs.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.control.paint.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.printing.printpageeventargs.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.printing.printdocument.printpage.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.printing.printdocument.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.control.creategraphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.image.aspx
javascript:void(0)
http://msdn.microsoft.com/en-us/library/system.windows.forms.painteventhandler.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.printing.printdocument.printpage.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.printing.printdocument.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.painteventargs.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.printing.printpageeventargs.aspx

To obtain a reference to a Graphics object from the PaintEventArgs in
the Paint event

1. Declare the Graphics object.

2. Assign the variable to refer to the Graphics object passed as part of the

PaintEventArgs.

3. Insert code to paint the form or control.

The following example shows how to reference a Graphics object from the

PaintEventArgs in the Paint event:

C#

C++

VB

private void Form1_Paint(object sender,

 System.Windows.Forms.PaintEventArgs pe)

{

 // Declares the Graphics object and sets it to the Graphics

object

 // supplied in the PaintEventArgs.

 Graphics g = pe.Graphics;

 // Insert code to paint the form here.

}

CreateGraphics Method

You can also use the CreateGraphics method of a control or form to obtain a reference to

a Graphics object that represents the drawing surface of that control or form.

To create a Graphics object with the CreateGraphics method

• Call the CreateGraphics method of the form or control upon which you want to

render graphics.

VB

Dim g as Graphics

' Sets g to a Graphics object representing the drawing surface of

the

' control or form g is a member of.

g = Me.CreateGraphics

http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.painteventargs.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.painteventargs.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.control.paint.aspx
javascript:%20CodeSnippet_SetLanguage('CodeSnippetContainerLang',%20'Programming',%20'Visual%20C++');
javascript:%20CodeSnippet_SetLanguage('CodeSnippetContainerLang',%20'Programming',%20'Visual%20Basic');
javascript:void(0)
http://msdn.microsoft.com/en-us/library/system.windows.forms.control.creategraphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.control.creategraphics.aspx

C#

Graphics g;

// Sets g to a graphics object representing the drawing surface

of the

// control or form g is a member of.

g = this.CreateGraphics();

C++

Graphics ^ g;

// Sets g to a graphics object representing the drawing surface

of the

// control or form g is a member of.

g = this->CreateGraphics();

Create from an Image Object

Additionally, you can create a graphics object from any object that derives from the

Image class.

To create a Graphics object from an Image

• Call the Graphics.FromImage method, supplying the name of the Image variable

from which you want to create a Graphics object.

The following example shows how to use a Bitmap object:

C#

C++

VB

Bitmap myBitmap = new Bitmap(@"C:\Documents and

 Settings\Joe\Pics\myPic.bmp");

Graphics g = Graphics.FromImage(myBitmap);

Note

You can only create Graphics objects from nonindexed .bmp files, such as 16-bit, 24-bit,

and 32-bit .bmp files. Each pixel of nonindexed .bmp files holds a color, in contrast to

pixels of indexed .bmp files, which hold an index to a color table.

•

Drawing and Manipulating Shapes and Images

javascript:void(0)
http://msdn.microsoft.com/en-us/library/system.drawing.image.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.fromimage.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.bitmap.aspx
javascript:%20CodeSnippet_SetLanguage('CodeSnippetContainerLang',%20'Programming',%20'Visual%20C++');
javascript:%20CodeSnippet_SetLanguage('CodeSnippetContainerLang',%20'Programming',%20'Visual%20Basic');
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
javascript:void(0)

After it is created, a Graphics object may be used to draw lines and shapes, render text, or

display and manipulate images. The principal objects that are used with the Graphics

object are:

• The Pen class—Used for drawing lines, outlining shapes, or rendering other

geometric representations.

• The Brush class—Used for filling areas of graphics, such as filled shapes, images,

or text.

• The Font class—Provides a description of what shapes to use when rendering

text.

• The Color structure—Represents the different colors to display.

To use the Graphics object you have created

• Work with the appropriate object listed above to draw what you need.

For more information, see the following topics:

To render See

Lines How to: Draw a Line on a Windows Form

Shapes How to: Draw an Outlined Shape

Text How to: Draw Text on a Windows Form

Images How to: Render Images with GDI+

Like Java, C# provides us with a rich set of classes, methods and events for

developing applications with graphical capabilities. Since there is not much theory

involved, we can straight away jump to an interesting example (Listing - 1), which

prints "Welcome to C#" on a form. Relevant explanations are shown as comments:

Listing - 1

using System;

using System.Windows.Forms;

using System.Drawing;

public class Hello:Form

{

public Hello()

{

this.Paint += new PaintEventHandler(f1_paint);

}

private void f1_paint(object sender,PaintEventArgs e)

{

http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.pen.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.brush.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.font.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.color.aspx
http://msdn.microsoft.com/en-us/library/cyh3c8h8.aspx
http://msdn.microsoft.com/en-us/library/785scy3c.aspx
http://msdn.microsoft.com/en-us/library/9why95hd.aspx
http://msdn.microsoft.com/en-us/library/8802zys9.aspx

Graphics g = e.Graphics;

g.DrawString("Hello C#",new Font("Verdana",20),

new SolidBrush(Color.Tomato),40,40);

g.DrawRectangle(new Pen(Color.Pink,3),20,20,150,100);

}

public static void Main()

{

Application.Run(new Hello());

}

// End of class

}

The method DrawString() takes four arguments as shown in the above example.

Every method in the Graphics class have to be accessed by creating an object of that

class. You can easily update the above program to render other graphical shapes like

Rectangle, Ellipse etc. All you have to do is to apply the relevant methods

appropriately.

Changing the Unit of Measurement

As you may know the default Graphics unit is Pixel. By applying the PageUnit

property, you can change the unit of measurement to Inch, Millimeter etc as shown

below:

Graphics g = e.Graphics;

g.PageUnit = GraphicsUnit.Inch

Working with ColorDialog Box

If you have ever done Visual Basic Programming, you should be aware of predefined

dialog boxes like ColorDialog, FontDialog etc. In C#, you or your user can choose a

color by applying the ColorDialog class appropriately. Firstly you have to create an

object of ColorDialog class as shown below:

ColorDialog cd = new ColorDialog();

Using the above object call ShowDialog() method to display the color dialog box.

Finally invoke the Color property and apply it appropriately as shown in Listing - 2:

Listing - 2

using System;

using System.Drawing;

using System.Windows.Forms;

public class Clr:Form

{

Button b1 = new Button();

TextBox tb = new TextBox();

ColorDialog clg = new ColorDialog();

public Clr()

{

b1.Click += new EventHandler(b1_click);

b1.Text = "OK";

tb.Location = new Point(50,50);

this.Controls.Add(b1);

this.Controls.Add(tb);

}

public void b1_click(object sender, EventArgs e)

{

clg.ShowDialog();

tb.BackColor = clg.Color;

}

public static void Main()

{

Application.Run(new Clr());

}

// End of class

}

Here the background color of the form will change as you select a color from the

dialog box.

Working with FontDialog Box

You can easily create a Font selection dialog box by following the same steps as in

the previous listing and by affecting some minor changes. Listing - 3 shown below

examines the usage of this useful tool:

Listing - 3

using System;

using System.Drawing;

using System.Windows.Forms;

public class Fonts:Form

{

Button b1 = new Button();

TextBox tb = new TextBox();

FontDialog flg = new FontDialog();

public Fonts()

{

b1.Click += new EventHandler(b1_click);

b1.Text = "OK";

tb.Location = new Point(50,50);

this.Controls.Add(b1);

this.Controls.Add(tb);

}

public void b1_click(object sender, EventArgs e)

{

clg.ShowDialog();

tb.FontName = flg.Font;

}

public static void Main()

{

Application.Run(new Fonts());

}

// End of class

}

Using System.Drawing.Drawing2D Namespace

The System.Drawing.Drawing2D namespace provides advanced techniques for

manipulating Pen and Brush objects. For example, you can change the look and feel

of lines by applying the values of DashStyle Enumerator (like Dash, DashDot etc).

Also by making use of various Brush classes like SolidBrush, HatchStyleBrush etc you

can modify the appearance of filled shapes. For instance, a rectangle can be filled

with Vertical and Horizontal lines. As already examined a normal shape (Using

DrawXXX() method) accepts a Pen class argument besides the floating point values

while a filled shape (Using FillXXX() methods) accepts a Brush class argument.

Working with Pen objects

Listing - 4 given below examines the usage of various DrawXXX() methods by

making use of some properties in the System.Drawing.Drawing2D namespace:

Listing - 4

using System;

using System.Windows.Forms;

using System.Drawing;

using System.Drawing.Drawing2D;

public class Drawgra:Form

{

public Drawgra()

{

this.Text = "Illustrating DrawXXX() methods";

this.Size = new Size(450,400);

this.Paint += new PaintEventHandler(Draw_Graphics);

}

public void Draw_Graphics(object sender,PaintEventArgs e)

{

Graphics g = e.Graphics;

Pen penline = new Pen(Color.Red,5);

Pen penellipse = new Pen(Color.Blue,5);

Pen penpie = new Pen(Color.Tomato,3);

Pen penpolygon = new Pen(Color.Maroon,4);

/*DashStyle Enumeration values are Dash,

DashDot,DashDotDot,Dot,Solid etc*/

penline.DashStyle = DashStyle.Dash;

g.DrawLine(penline,50,50,100,200);

//Draws an Ellipse

penellipse.DashStyle = DashStyle.DashDotDot;

g.DrawEllipse(penellipse,15,15,50,50);

//Draws a Pie

penpie.DashStyle = DashStyle.Dot;

g.DrawPie(penpie,90,80,140,40,120,100);

//Draws a Polygon

g.DrawPolygon(penpolygon,new Point[]{

new Point(30,140),

new Point(270,250),

new Point(110,240),

new Point(200,170),

new Point(70,350),

new Point(50,200)});

}

public static void Main()

{

Application.Run(new Drawgra());

}

// End of class

}

Working with Brush objects

Brush class is used to fill the shapes with a given color, pattern or Image. There are

four types of Brushes like SolidBrush (Default Brush), HatchStyleBrush,

GradientBrush and TexturedBrush. The listings given below show the usage of each

of these brushes by applying them in a FillXXX() method:

Using SolidBrush

Listing - 5

using System;

using System.Windows.Forms;

using System.Drawing;

public class Solidbru:Form

{

public Solidbru()

{

this.Text = "Using Solid Brushes";

this.Paint += new PaintEventHandler(Fill_Graph);

}

public void Fill_Graph(object sender,PaintEventArgs e)

{

Graphics g = e.Graphics;

//Creates a SolidBrush and fills the rectangle

SolidBrush sb = new SolidBrush(Color.Pink);

g.FillRectangle(sb,50,50,150,150);

}

public static void Main()

{

Application.Run(new Solidbru());

}

// End of class

}

Using HatchBrush

Listing - 6

using System;

using System.Windows.Forms;

using System.Drawing;

using System.Drawing.Drawing2D;

public class Hatchbru:Form

{

public Hatchbru()

{

this.Text = "Using Solid Brushes";

this.Paint += new PaintEventHandler(Fill_Graph);

}

public void Fill_Graph(object sender,PaintEventArgs e)

{

Graphics g = e.Graphics;

//Creates a Hatch Style,Brush and fills the rectangle

/*Various HatchStyle values are DiagonalCross,ForwardDiagonal,

Horizontal, Vertical, Solid etc. */

HatchStyle hs = HatchStyle.Cross;

HatchBrush sb = new HatchBrush(hs,Color.Blue,Color.Red);

g.FillRectangle(sb,50,50,150,150);

}

public static void Main()

{

Application.Run(new Hatchbru());

}

// End of class

}

Using GradientBrush

Listing - 7

using System;

using System.Windows.Forms;

using System.Drawing;

using System.Drawing.Drawing2D;

public class Texturedbru:Form

{

Brush bgbrush;

public Texturedbru()

{

Image bgimage = new Bitmap("dotnet.gif");

bgbrush = new TextureBrush(bgimage);

this.Paint+=new PaintEventHandler(Text_bru);

}

public void Text_bru(object sender,PaintEventArgs e)

{

Graphics g = e.Graphics;

g.FillEllipse(bgbrush,50,50,500,300);

}

public static void Main()

{

Application.Run(new Texturedbru());

}

// End of class

}

Working with Images

You can easily insert images by following the procedure given below

1) Create an object of Bitmap class as shown below:

Image img = new Bitmap("image1.bmp");

2) Apply the above object in DrawImage() method

g.DrawImage(img,20,20,100,90);

Conclusion

In this article, I've examined two core namespaces System.Drawing and

System.Drawing.Drawing2D by showing the usage of various methods and properties

with the help of numerous listings.

The very important topic of displaying text is left until this late in the chapter because

drawing text to the screen is (in general) more complex than drawing simple graphics.

Although displaying a line or two of text when you’re not that bothered about the

appearance is extremely easy - it takes one single call to the Graphics.DrawString()

method; if you are trying to display a document that has a fair amount of text in it, you

rapidly find that things become a lot more complex. This is for two reasons:

• If you’re concerned about getting the appearance just right, you must understand

fonts. Whereas shape drawing requires brushes and pens as helper objects, the

process of drawing text requires fonts as helper objects. And understanding fonts

is not a trivial task.

• Text needs to be very carefully laid out in the window. Users generally expect

words to follow naturally from one word to another and to be lined up with clear

spaces in between. Doing that is harder than you might think. For starters, you

don’t usually know in advance how much space on the screen a word is going to

take up. That has to be calculated (using the Graphics .MeasureString() method).

Also, the space a word occupies on the screen affects where in the document

every subsequent word is placed. If your application does any line wrapping, it’ll

need to assess word sizes carefully before deciding where to place the line break.

The next time you run Microsoft Word, look carefully at the way Word is

continually repositioning text as you do your work; there’s a lot of complex

processing going on there. Chances are that any GDI+ application you work on

won’t be nearly as complex as Word. However, if you need to display any text,

many of the same considerations apply.

In short, high-quality text processing is tricky to get right. However, putting a line of text

on the screen, assuming that you know the font and where you want it to go, is actually

very simple. Therefore, the next section presents a quick example that shows how to

display some text, followed by a short review of the principles of fonts and font families

and a more realistic (and involved) text-processing example, CapsEditor.

16

Window Based Application
in C#

Window Based Application in C#:

U n i t

17
Web Based Application in C#

ASP.Net Web Application:

U n i t

Creating a web based project using C#:
Select File->New->Project within the Visual Studio. Then name your application and click
ok. This will bring you the New Project dialog box. Click on the “Visual C#” node in the
tree-view on the left hand side of the dialog box and choose the "ASP.NET Web Application"
icon:

Visual Studio will then create and open a new web project within the solution explorer. By
default it will have a single page (Default.aspx), an AssemblyInfo.cs file, as well as a
web.config file. All project file-meta-data is stored within a MSBuild based project file.

Double click on the Default.aspx page in the solution explorer to open and edit the page.
Add a calendar from ToolBox by dragging and dropping on the design view.

Press F5 to build and run the project in debug mode.

You can end the debug session by closing the browser window, or by choosing the Debug-
>Stop Debugging (Shift-F5) menu item.

The steps for creating a web service.

1. Open the Microsoft Visual Studio start page.

2. Go to File menu and select New then click Project.

3. Select Visual C# from Project Types and select Asp.NET Web Service Application.

4. Enter the name for your service.

5. Click Ok.

After clicking ok automatically the coding page will be open.
[WebMethod]

 public string Display(String Name)

 {

 return "Your Name is:"+Name.ToString();

 }

Now simply press F5 to run this sample. It will take few minutes to build and compile.

In this example we have created only one web method, Display.

Click the link Display and you will be taken to the services description page.

Now to test the Display web method,simply click the Invoke button and our method will

be called.

Recalling our method returns the string “Your Name is:Khusi”; the result is returned in an
XML wrapper.

Note that the XML node reflects the datatype of the method’s return value,string. This XML
message is received and converted to the string “You Name is:Khusi”.This means that any
variable (of type string) in our code can be assigned to the result of our Web method.

BLOCK- 5

18
Files and Database programming

18.1 INTRODUCTION

The File and the Directory classes, which we have used in the previous couple of
chapters, are great for direct file and directory manipulation. However, sometimes
we wish to get information on them instead, and once again, the System.IO
namespace comes to our rescue: The FileInfo and DirectoryInfo classes.

18.1 .1 DATA:

A data file is a computer file which stores data to use by a
computer application or system. It generally does not refer to files that contain
instructions or code to be executed (typically called program files), or to files which
define the operation or structure of an application or system (which include
configuration files, directory files, etc.); but specifically to information used as input,
or written as output by some other software program.

18.1 .2 DATABASE:

A database is essentially an electronic means of storing data in an organized manner
that is a collection of coherent and meaning full data. Data can be anything that a
business or individual needs to keep track of and that, prior to computers, could
have only been tracked on one or more paper documents. Once stored, data in the
database can be retrieved, processed, and displayed by programs as information to
the reader. The actual structure that a database uses to store data can take one of
many different forms, each which offers certain advantages when that information is
to be retrieved or updated. In the next section, we will look at how storing the
database in a flat file structure differs from a relational database structure, and the
advantages and disadvantages that each of those presents.

U n i t

http://en.wikipedia.org/wiki/Computer_file
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/System_software

we can access the data using access a database using Structured Query Language
(SQL), which is a standard language supported by most database software including
SQL Server, Access, and Oracle.

18.2: FILES AND DIRECTORIES

18.2 .1 FILES:

Files are the most basic form of database – all of the information is stored in a single
file. A flat fileincludes a field for every item of information that you need to store.
While they are easy to create and can be useful in certain situations, flat files are not
very efficient. They can be quite wasteful of storagespace, containing a lot of
duplicated information, especially in a complex system where multiple fileshold
connected information. This can make information harder to maintain and retrieve.
If you haveworked with spreadsheets before, then you have already worked with
one of the most commonexamples of a flat file database.

18.2 .2 DIRECTORIES:

 A directory is just a file that contains other files (or directories).
A directory or folder is nothing more than a location on a disk used for storing
information about files.

The part of the hard disk where you are authorized to save data is called your home
directory. Normally all the data you want will be saved in files and directories in
your home directory.

18.2 .3 ORGANIZING A FOLDER AND FILES IN TO
A HIERARCHICAL STRUCTURE:

 An organizational unit, or container, used to organize folders and files into
a hierarchical structure. Directories contain bookkeeping information about files that
are, figuratively speaking, beneath them in the hierarchy. You can think of a

http://www.webopedia.com/TERM/H/hierarchical.html
http://www.webopedia.com/TERM/F/folder.html
http://www.webopedia.com/TERM/F/file.html
http://www.webopedia.com/TERM/H/hierarchical.html

directory as a file cabinet that contains folders that contain files. Many graphical user
interfaces use the term folder instead of directory.

Computer manuals often describe directories and file structures in terms of
an inverted tree. The files and directories at any level are contained in the directory
above them. To access a file, you may need to specify the names of all the directories
above it. You do this by specifying a path.

The topmost directory in any file is called the root directory. A directory that is
below another directory is called a subdirectory. A directory above a subdirectory is
called the parent directory. Under DOS and Windows, the root directory is a back
slash (/).

18.3 CREATING A FILE :

The File class in the .NET Framework class library provides static methods for
creating, reading, copying, moving, and deleting files. In this article, we will see how
to create a text file using different options available in .NET.

18.3.1 WE CAN CREATE A FILE IN FOUR DIFFERENT FOLLOWING METHODS :

• File.Create

• File.CreateText

• FileInfo.Create

• FileInfo.CreateText

You could use:

http://www.webopedia.com/TERM/G/Graphical_User_Interface_GUI.html
http://www.webopedia.com/TERM/G/Graphical_User_Interface_GUI.html
http://www.webopedia.com/TERM/F/folder.html
http://www.webopedia.com/TERM/C/computer.html
http://www.webopedia.com/TERM/T/tree_structure.html
http://www.webopedia.com/TERM/A/access.html
http://www.webopedia.com/TERM/N/name.html
http://www.webopedia.com/TERM/P/path.html
http://www.webopedia.com/TERM/F/file_management_system.html
http://www.webopedia.com/TERM/R/root_directory.html
http://www.webopedia.com/TERM/S/subdirectory.html
http://www.webopedia.com/TERM/P/parent_directory.html

using (File.Create(filename)) ;

That looks slightly odd, mind you. You could use braces instead:

using (File.Create(filename)) {}

Or just call Dispose directly:

File.Create(filename).Dispose();

Either way, if you're going to use this in more than one place you should probably
consider wrapping it in a helper method, e.g.

public static void CreateEmptyFile(string filename)

{

 File.Create(filename).Dispose();

}

18.3.2 CREATING A TEXT FILE:
EXP:

public class CreateFileOrFolder

{

 static void Main()

 {

 // Specify a name for your top-level folder.

 string folderName = @"c:\Top-Level Folder";

 // To create a string that specifies the path to a subfolder under

your

 // top-level folder, add a name for the subfolder to folderName.

 string pathString = System.IO.Path.Combine(folderName,

"SubFolder");

 // You can write out the path name directly instead of using the

Combine

 // method. Combine just makes the process easier.

 string pathString2 = @"c:\Top-Level Folder\SubFolder2";

 // You can extend the depth of your path if you want to.

 //pathString = System.IO.Path.Combine(pathString, "SubSubFolder");

 // Create the subfolder. You can verify in File Explorer that you

have this

 // structure in the C: drive.

 // Local Disk (C:)

 // Top-Level Folder

 // SubFolder

 System.IO.Directory.CreateDirectory(pathString);

 // Create a file name for the file you want to create.

 string fileName = System.IO.Path.GetRandomFileName();

 // This example uses a random string for the name, but you also

can specify

 // a particular name.

 //string fileName = "MyNewFile.txt";

 // Use Combine again to add the file name to the path.

 pathString = System.IO.Path.Combine(pathString, fileName);

 // Verify the path that you have constructed.

 Console.WriteLine("Path to my file: {0}\n", pathString);

 // Check that the file doesn't already exist. If it doesn't exist,

create

 // the file and write integers 0 - 99 to it.

 // DANGER: System.IO.File.Create will overwrite the file if it

already exists.

 // This could happen even with random file names, although it is

unlikely.

 if (!System.IO.File.Exists(pathString))

 {

 using (System.IO.FileStream fs =

System.IO.File.Create(pathString))

 {

 for (byte i = 0; i < 100; i++)

 {

 fs.WriteByte(i);

 }

 }

 }

 else

 {

 Console.WriteLine("File \"{0}\" already exists.", fileName);

 return;

 }

 // Read and display the data from your file.

 try

 {

 byte[] readBuffer = System.IO.File.ReadAllBytes(pathString);

 foreach (byte b in readBuffer)

 {

 Console.Write(b + " ");

 }

 Console.WriteLine();

 }

 catch (System.IO.IOException e)

 {

 Console.WriteLine(e.Message);

 }

 // Keep the console window open in debug mode.

 System.Console.WriteLine("Press any key to exit.");

 System.Console.ReadKey();

 }

 // Sample output:

 // Path to my file: c:\Top-Level Folder\SubFolder\ttxvauxe.vv0

 //0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

26 27 28 29

 //30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

53 54 55 56

 // 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

79 80 81 82 8

 //3 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

}

Use Directory.Create to create the directories:

Directory.Create("c:\mytempFolder\driveC\New Folder");

string targetPath = @"C:\mytempFolder\";

string path = @"D:\New Folder\a.txt";

char driveLetter = path[0];

string filePath = path.SubString(3);

string newFilePath = Path.Combine(targetPath,

Path.Combine(String.Format("drive{0}", driveLetter.ToString()),

filePath));

18.4 Deleting a File:
using System.IO;

class Program

{

http://msdn.microsoft.com/en-us/library/system.io.directory.createdirectory%28v=vs.71%29.aspx

 static void Main()

 {

 // 1.

 // Call Delete wrapper method.

 TryToDelete("Word.doc");

 }

 /// <summary>

 /// Wrap the Delete method with an exception handler.

 /// </summary>

 static bool TryToDelete(string f)

 {

 try

 {

 // A.

 // Try to delete the file.

 File.Delete(f);

 return true;

 }

 catch (IOException)

 {

 // B.

 // We could not delete the file.

 return false;

 }

 }

}

Output

 The file is deleted, or nothing happens.

18.5 DATABASE:

A Database is an organized collection of information that is divided into tables. Each
table is further divided into rows and columns; these columns store the actual
information. You access a database using Structured Query Language (SQL), which
is a standard language supported by most database software including SQL Server,
Access, and Oracle.

In C# .Net we may use SQL SERVER database for ADO.NET Database access,
Exp: How to create SQL Server database tables,

Step1: In Sql Server Query Window ;

CREATE DATABASE TEST

Select database in Sql Server :

Step2: Right Click to database and create a new database like the given fig:

Step3:

CREATE TABLE [dbo].[Employee](

 [Id] [int] IDENTITY(1,1) NOT NULL,

 [EmpCode] [varchar](50) NULL,

 [EmpName] [varchar](50) NULL,

 [FathersName] [varchar](50) NULL,

 [Address] [varchar](50) NULL,

 [City] [varchar](50) NULL,

 [State] [varchar](50) NULL,

)

18.5.1 COMPONENTS OF DATABASE:

An Access database consists of several different components. Each component listed
is called an object.
Listed below are the names and descriptions of the different objects you can use in
Access. This tutorial will focus on the first two objects: tables and queries.

Tables: tables are where the actual data is defined and entered. Tables consist of
records (rows) and fields (columns).
Queries: queries are basically questions about the data in a database. A query
consists of specifications indicating which fields, records, and summaries you want
to see from a database. Queries allow you to extract data based on the criteria you
define.

Forms: forms are designed to ease the data entry process. For example, you can
create a data entry form that looks exactly like a paper form . People generally prefer
to enter data into a well-designed form, rather than a table.

Reports: when you want to print records from your database, design a report.
Access even has a wizard to help produce mailing labels.

Pages: a data access page is a special type of Web page designed for viewing and
working with data from the Internet or an intranet. This data is stored in a Microsoft
Access database or a Microsoft SQL Server database.

Macros: a macro is a set of one or more actions that each performs a particular
operation, such as opening a form or printing a report. Macros can help you
automate common tasks. For example, you can run a macro that prints a report
when a user clicks a command button.

Modules: a module is a collection of Visual Basic for Applications declarations and
procedures that are stored together as a unit.

18.5.2 ADO.NET COMPONENTS:

• SqlConnection
• SqlDataAdapter
• DataSet
• DataTable
• DataRow, DataColumn collections
• SqlDataReader
• SqlCommand

18.6 MS –ACCESS:

We can connect C# Database with Microsoft Access database also;
These are very simple steps to create and connect an Access database in C#.

Step1: Create Access Database (eg: student)

In design View we can create the column and column fields described below:

Now open you notepad and click on save As button. Name then Imran.hdl. Change save
type "ALL FILES".

Now double click on imran.udl file. A wizard will start like this:

Click Provider TAB, select Microsoft Jet 4.0 OLE DB (denoted by black arrow) then click
next. Now click "Select or enter a database name" and select the desire database then
click open.

•

• Now click on test connection and click OK
• Now edit this UDL file with note pad and copy link as shown below,

now open notepad:

Now Open Visual Studio editor and create Text boxes and buttons like:

• Double click on the form and add some code

cmd.CommandText = "insert into student values(" + this.textBox1.Text

+ ",'" + this.textBox2.Text +",'" + this.textBox3.Text + ",'" + this.textBox4.Text

+ "');";

int temp = cmd.ExecuteNonQuery();

if (temp > 0)

{

 MessageBox.Show("Record Added");

}

else

{

 MessageBox.Show("Record not Added");

}

mycon.Close();

18.7 Inserting Data in MS-Access :

With the help of C# code we can insert data in Access database as described below;

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.Data.OleDb;

namespace Project2

{

 public partial class Form1 : Form1

 {

 public Form1()

 {

 InitializeComponent();

 }

 private void Button1_Click(object sender, EventArgs e)

 {

 //what should i write here so that it store in details.mdb database.

 }

 }

}

now write the following code in button_click Event;

Write the following code in Button_Click event :

 string constr=@"Provider=Microsoft.Jet.OLEDB.4.0; Data Source=d:\details.mdb";

 string cmdstr="insert into info(name,age)values(? ,?)";

 OleDbConnection con=new OleDbConnection(constr);

 OleDbCommand com=new OleDbCommand(cmdstr,con);

mailto:constr=@%22Provider=Microsoft.Jet.OLEDB.4.0

 con.Open();

 com.Parameters.AddWithValue("?",textBox1.Text);

 com.Parameters.AddWithValue("?",int.Parse(textBox3.Text));

 com.ExecuteNonQuery();

 con.Close();

And Import the following namespaces :

using System.Data.OleDb;

on the other hand in configuration section the data would be inserted like below
description;

App.config

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<appSettings>

 <add key="dsn" value="Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=..\EMP.mdb" />

</appSettings>

</configuration>

And in click event we may write;
string ConnectionString = System.Configuration.ConfigurationSettings.AppSettings["dsn"];

18.8 Deleting Data in MS-Access :

In click event we may write the following code for deleting a particular data
from MS Access;

 try
 {

 OleDbConnection con = new
OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data Source=
|DataDirectory|/gdsg.mdb");

 OleDbCommand cmd = new OleDbCommand("DELETE FROM Table1
WHERE ID="+TextBox3.Text+"", con);

 con.Open();
 cmd.CommandType = CommandType.Text;
 OleDbDataAdapter da = new OleDbDataAdapter(cmd);

 cmd.ExecuteNonQuery();
 Response.Write("deleted succesfully");
 }
 catch (Exception ex)
 {
 Response.Write(ex.ToString());
 }

18.9 Updating Data in MS-Access:

 try
 {

 OleDbConnection con = new

OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data Source=
|DataDirectory|/gdsg.mdb");

 OleDbCommand cmd = new OleDbCommand("UPDATE Table1
SET designation='" + TextBox5.Text + "' WHERE ID=" +

TextBox4.Text + "", con);

 con.Open();
 cmd.CommandType = CommandType.Text;

 OleDbDataAdapter da = new OleDbDataAdapter(cmd);

 cmd.CommandType = CommandType.Text;
 cmd.ExecuteNonQuery();

 Response.Write("updated successfully");
 }

 catch (Exception ex)

 {
 Response.Write(ex.ToString());

 }

18.10 Retrieving Data in MS-Access :
For retrieving a particular data or whole data from the database of Access we
may write the select query like statement in access;

 try
 {

 OleDbConnection con = new
OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data Source=

|DataDirectory|/gdsg.mdb");

 OleDbCommand cmd = new OleDbCommand("select * from
Table1", con);

 cmd.CommandType = CommandType.Text;
 OleDbDataAdapter da = new OleDbDataAdapter(cmd);

 DataSet ds = new DataSet();
 da.Fill(ds, "Temptbl");

 GridView1.DataSource = ds;
 GridView1.DataBind();

 }
 catch (Exception ex)

 {
 Response.Write(ex.ToString());

 }

18.11 SQL (STRUCTURED QUERY LANGUAGE):

SQL is structured Query Language which is a computer language for storing,
manipulating and retrieving data stored in relational database.
SQL is the standard language for Relation Database System. All relational database
management systems like MySQL, MS Access, Oracle, Sybase, Informix, postgres
and SQL Server uses SQL as standard database language.
Also they are using different dialects, Such as:

• MS SQL Server using T-SQL,

• Oracle using PL/SQL,

• MS Access version of SQL is called JET SQL (native format)etc

We need to write database program in c#:
• Queries
• INSERT statements
• UPDATE statements
• DELETE statements
• T-SQL data types

18.11.1 SQL PROCESS:

When you are executing an SQL command for any RDBMS, the system determines
the best way to carry out your request and SQL engine figures out how to interpret
the task.
There are various components included in the process. These components are Query
Dispatcher, Optimization engines, Classic Query Engine and SQL query engine etc.
Classic query engine handles all non-SQL queries but SQL query engine won't
handle logical files.

Following is a simple digram showing SQL Architecture:

18.11.2 SQL Commands:

The standard SQL commands to interact with relational databases are CREATE,
SELECT, INSERT, UPDATE, DELETE, and DROP. These commands can be
classified into groups based on their nature:

DDL - Data Definition Language

DML - Data Manipulation Language

DCL - Data Control Language

DQL - Data Query Language

18.12 INSERTING DATA IN SQL:

The INSERT statement is much simpler than
a query, particularly because the WHERE and ORDER BY clauses have no meaning
when inserting data and therefore aren’t used.

A basic INSERT statement has these parts:
INSERT INTO <table>
(<column1>, <column2>, ..., <columnN>)
VALUES (<value1>, <value2>, ..., <valueN>)

Now in object Explorer, right click on the table and click open the table The table has
three rows, which are displayed in a tabbed window;

Insert statement with stored procedure:

CREATE PROC [dbo].[usp_Employee_Insert]

@Id [int] ,

@Name [varchar](50),

@City [varchar](50),

@State [varchar](50),

@Address [varchar](50),

@ContactNo [varchar](50),

@CreatedBy [varchar](50),

@CreatedOn [varchar](50),

@UpdatedBy [varchar](50),

@UpdatedOn [varchar](50)

AS

INSERT INTO [Vendor]

(

[Name] ,

 [City] ,

 [State] ,

 [Address] ,

 [ContactNo] ,

 [CreatedBy] ,

 [CreatedOn] ,

 [UpdatedBy] ,

 [UpdatedOn]

)

VALUES

(

@Name,

@City ,

@State ,

@Address ,

@ContactNo ,

@CreatedBy ,

@CreatedOn ,

@UpdatedBy ,

@UpdatedOn

)

This is

This is the Example of Insertion of data in table with Stored Procedure.

Deleting Data From SQL :

18.13 SQL DELETE STATEMENT:

DELETE FROM table_name

WHERE {CONDITION};

18.13.1 DELETION WITHOUT CONDITION:

DELETE FROM table_name ;

18.13.2 Deletion with stored Procedure:

CREATE PROC [dbo].[usp_Employee_Delete]

@Id int

AS DELETE FROM [Employee]

WHERE Id=@Id

18.14 Updating Data in SQL :

UPDATE table_name

SET column1 = value1, column2 =

value2....columnN=valueN

[WHERE CONDITION];

18.14.1 Updating with stored procedure:

CREATE PROC [dbo].[Usp_Employee_Update]

@Id [int] ,

@Name [varchar](50),

@City [varchar](50),

@State [varchar](50),

@Address [varchar](50),

@ContactNo [varchar](50),

@CreatedBy [varchar](50),

@CreatedOn [varchar](50),

@UpdatedBy [varchar](50),

@UpdatedOn [varchar](50)

AS UPDATE [Employee]

SET

[Name]=@Name,

 [City] =@City ,

 [State] =@State ,

 [Address]=@Address ,

 [ContactNo]= @ContactNo ,

 [CreatedBy] =@CreatedBy ,

 [CreatedOn] =@CreatedOn ,

 [UpdatedBy] =@UpdatedBy ,

 [UpdatedOn] =@UpdatedOn

 WHERE Id=@Id

18.15 Retrieving Data in SQL:(Select Statement):-

A select statement is used to retrieve information from one or more tables. When data is

retrieved from more than one table a join is performed, this is covered in the Advanced

SQL section.

Exp: SELECT * FROM Employee;

Exp: SELECT [DISTINCT] {columnlist,*} FROM tablename

[WHERE condition [AND condition]]

[ORDER BY columnlist];

Exp:

SELECT column1, column2....columnN

FROM table_name;

18.16 XML(Extensible Markup Language):-
Stores XML data. You can store xml instances in a column or a variable (SQL Server

2005 only).

XML stands for eXtensible Markup Language.

XML is designed to transport and store data.

XML is important to know, and very easy to learn.

Exp:

<?xml version="1.0"?>

<note>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>

Insert data to XML using LinQ, to XML;

In simple terms "It provides flexibility to insert data into XML with the help of a

LINQ query." .

Step 1: Create a new "ASP.NET Web Application", as in:

Step 2: The complete code of Employee.xml looks like this:
<?xml version="1.0" encoding="utf-8"?>
<Employees>
 <Employee>
 <Id>1</Id>
 <FirstName>Vijay</FirstName>
 <LastName>Prativadi</LastName>
 <Age>26</Age>
 </Employee>
 <Employee>
 <Id>2</Id>
 <FirstName>Sandeep</FirstName>
 <LastName>Reddy</LastName>
 <Age>28</Age>
 </Employee>
</Employees>

Step 3: The complete code of webform1.aspx looks like this:
<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="WebForm1.aspx.cs"Inherits="

LINQtoXMLInsertApp.WebForm1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title></title>

</head>
<body>
 <form id="form1" runat="server">

 <center>

 <div>

 <table>

 <tr>

 <td colspan="2" align="center">

 <asp:Label ID="Label1" runat="server" Text="Insert Data using LINQ-to-

XML" Font-Bold="true"

 Font-Size="Large" Font-Names="Verdana" ForeColor="Maroon"></asp:Label>

 </td>

 </tr>

 <tr>

 <td>

 <asp:Label ID="Label6" runat="server" Text="Please Enter Id" Font-

Size="Large" Font-Names="Verdana"

 Font-Italic="true"></asp:Label>

 </td>

 <td>

 <asp:TextBox ID="TextBox4" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>

 <asp:Label ID="Label2" runat="server" Text="Please Enter FirstName" Font-

Size="Large"

 Font-Names="Verdana" Font-Italic="true"></asp:Label>

 </td>

 <td>

 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>

 <asp:Label ID="Label3" runat="server" Text="Please Enter LastName" Font-

Size="Large"

 Font-Names="Verdana" Font-Italic="true"></asp:Label>

 </td>

 <td>

 <asp:TextBox ID="TextBox2" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>

 <asp:Label ID="Label4" runat="server" Text="Please Enter Age" Font-

Size="Large" Font-Names="Verdana"

 Font-Italic="true"></asp:Label>

 </td>

 <td>

 <asp:TextBox ID="TextBox3" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td colspan="2" align="center">

 <asp:Button ID="Button1" runat="server" Text="Insert Data" Font-

Names="Verdana"Width="213px"

 BackColor="Orange" Font-Bold="True" OnClick="Button1_Click" />

 </td>

 </tr>

 <tr>

 <td colspan="2" align="center">

 <asp:Label ID="Label5" runat="server" Font-Bold="true" Font-

Names="Verdana"></asp:Label>

 </td>

 </tr>

 </table>

 </div>

 </center>

 </form>

</body>
</html>

Step 4: The complete code of webform1.aspx.cs looks like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Xml.Linq;
namespace LINQtoXMLInsertApp
{

 public partial class WebForm1 : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 TextBox4.Focus();

 }

 protected void Button1_Click(object sender, EventArgs e)

 {

 if (string.IsNullOrEmpty(TextBox4.Text) || string.IsNullOrEmpty(TextBox1.Text)

||string.IsNullOrEmpty(TextBox2.Text) || string.IsNullOrEmpty(TextBox3.Text))

 {

 Label5.Text = "Please Enter Some Values";

 Label5.ForeColor = System.Drawing.Color.Red;

 }

 else

 {

 XDocument document = XDocument.Load(Server.MapPath("Employee.xml"));

 document.Element("Employees").Add(new XElement("Employee", new XElement("Id",

TextBox4.Text),new XElement("FirstName", TextBox1.Text), new XElement("LastName",

TextBox2.Text), new XElement("Age", TextBox3.Text)));

 document.Save(Server.MapPath("Employee.xml"));

 Label5.Text = "Data Inserted Successfully";

 Label5.ForeColor = System.Drawing.Color.Green;

 TextBox4.Text = string.Empty;

 TextBox1.Text = string.Empty;

 TextBox2.Text = string.Empty;

 TextBox3.Text = string.Empty;

 }

 }

 }

}

Step 5: The output of the application looks like this:

Step 6: The data inserting to XML output of the application looks like this:

 Step 7: The data inserted to XML looks like this:

<?xml version="1.0" encoding="utf-8"?>
<Employees>

 <Employee>
 <Id>1</Id>
 <FirstName>Vijay</FirstName>
 <LastName>Prativadi</LastName>
 <Age>26</Age>
 </Employee>
 <Employee>
 <Id>2</Id>
 <FirstName>Sandeep</FirstName>
 <LastName>Reddy</LastName>
 <Age>28</Age>
 </Employee>
 <Employee>
 <Id>3</Id>
 <FirstName>Ajit</FirstName>
 <LastName>Kumar</LastName>
 <Age>26</Age>
 </Employee>
</Employees>

Deleting Data in XML:
<?xml version="1.0" encoding="utf-8"?>

<adResponses>

<ad adname="WQC" hitCount="10" />

<ad adname="Google" hitCount="6" />

<ad adname="Facebook" hitCount="4" />

<ad adname="Twitter" hitCount="6" />

</adResponses>

now:

string strXML = "<?xml version=\"1.0\" encoding=\"utf-8\"?>

<adResponses><ad adname=\"WQC\" hitCount=\"10\" />

<ad adname=\"Google\" hitCount=\"6\" />

<ad adname=\"Facebook\" hitCount=\"4\" />

<ad adname=\"Twitter\" hitCount=\"6\" />

</adResponses>";

 XmlDocument xDoc = new XmlDocument();

 xDoc.LoadXml(strXML);

 XmlNodeList xNodeList =

xDoc.SelectNodes(@"//adResponses/ad[@hitCount=10]");

 foreach (XmlNode xNode in xNodeList)

 {

 xDoc.ChildNodes[1].RemoveChild(xNode);

 }

 strXML = xDoc.InnerXml.ToString();

Updating XML data

To update data in an XML column, use the SQL UPDATE statement. Include a WHERE clause
when you want to update specific rows. The entire column value will be replaced. The input to the
XML column must be a well-formed XML document. The application data type can be an XML,
character, or binary type.

When you update an XML column, you might also want to validate the input XML document
against a registered XML schema. You can do that with the XMLVALIDATE function.

You can use XML column values to specify which rows are to be updated. To find values within
XML documents, you need to use XQuery expressions. One way of specifying XQuery
expressions is the XMLEXISTS predicate, which allows you to specify an XQuery expression and
determine if the expression results in an empty sequence. When XMLEXISTS is specified in the
WHERE clause, rows will be updated if the XQuery expression returns a non-empty sequence.

<customerinfo xmlns="http://posample.org" Cid="1004">

 <name>Christine Haas</name>

 <addr country="Canada">

 <street>12 Topgrove</street>

 <city>Toronto</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>N9Y-8G9</pcode-zip>

 </addr>

 <phone type="work">905-555-5238</phone>

 <phone type="home">416-555-2934</phone>

</customerinfo>

Retrieving Data in XML:

SELECT Customers.CustomerID, ContactName, CompanyName,

 Orders.CustomerID, OrderDate

FROM Customers, Orders

WHERE Customers.CustomerID = Orders.CustomerID

AND (Customers.CustomerID = N'ALFKI'

 OR Customers.CustomerID = N'XYZAA')

ORDER BY Customers.CustomerID

FOR XML AUTO

Converting SQL Data in XML format:

SQL to XML Converter

you can download SQL to XML converter from the web link like;

(http://softwaresolution.informer.com/SQL-to-XML-Converter/)

then convert desired format directly:

Step 1:

http://softwaresolution.informer.com/SQL-to-XML-Converter/

Screen Shot for SQL Converter 1.9.

19
COM from C# Application

19.1 INTRODUCTION

Component Object Model (COM) is a binary-interface standard for software componentry
introduced by Microsoft in 1993. It is used to enable interprocess communication and
dynamic object creation in a large range of programming languages. The term COM is often
used in the Microsoft software development industry as an umbrella term that encompasses
the OLE, OLE Automation, ActiveX, COM+ and DCOM technologies

19.2 WHAT IS COM?

Microsoft COM (Component Object Model) technology in the Microsoft Windows-family of
Operating Systems enables software components to communicate. COM is used by
developers to create re-usable software components, link components together to build
applications, and take advantage of Windows services. COM objects can be created with a
variety of programming languages. Object-oriented languages, such as C++, provide
programming mechanisms that simplify the implementation of COM objects. The family of
COM technologies includes COM+, Distributed COM (DCOM) and ActiveX® Controls.

Microsoft provides COM interfaces for many Windows application programming interfaces
such as Direct Show, Media Foundation, Packaging API, Windows Animation Manager,
Windows Portable Devices, and Microsoft Active Directory (AD).

COM is used in applications such as the Microsoft Office Family of products. For example
COM OLE technology allows Word documents to dynamically link to data in Excel
spreadsheets and COM Automation allows users to build scripts in their applications to
perform repetitive tasks or control one application from another.

The best resource for COM developers is the Microsoft Developer Network (MSDN). The
MSDN Library contains information for developers on the Microsoft platform including a
programming guide for COM development and the COM API programming reference. The
Windows API is documented in Win32 and COM Development. You will also find
information on COM+.

19.3 USING COM FROM .NET AND .NET FROM COM

U n i t

http://en.wikipedia.org/wiki/Application_Binary_Interface
http://en.wikipedia.org/wiki/Software_componentry
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Interprocess_communication
http://en.wikipedia.org/wiki/Object_%28computer_science%29
http://en.wikipedia.org/wiki/Programming_languages
http://en.wikipedia.org/wiki/Microsoft_software
http://en.wikipedia.org/wiki/Umbrella_term
http://en.wikipedia.org/wiki/Object_Linking_and_Embedding
http://en.wikipedia.org/wiki/OLE_Automation
http://en.wikipedia.org/wiki/ActiveX
http://en.wikipedia.org/wiki/Distributed_Component_Object_Model
http://msdn.microsoft.com/
http://msdn.microsoft.com/library/ms680573%28VS.85%29.aspx
http://msdn.microsoft.com/library/ms693341%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa139672.aspx
http://msdn.microsoft.com/library/ms685978%28VS.85%29.aspx

The .NET Framework provides bi-directional interoperability with COM, which enables
COM-based applications to use .NET components and .NET applications to use COM
components. For information on how to access .NET components from COM see
http://msdn.microsoft.com/library/ms973802.aspx. To learn how to use COM components
from .NET see http://msdn.microsoft.com/library/ms973800.aspx.

19.4 RELATED TECHNOLOGIES

COM was the major software development platform for Windows and, as such, influenced
development of a number of supporting technologies.

19.5 COM+

In order for Microsoft to provide developers with support for distributed transactions,
resource pooling, disconnected applications, event publication and subscription, better
memory and processor (thread) management, as well as to position Windows as an
alternative to other enterprise-level operating systems, Microsoft introduced a technology
called Microsoft Transaction Server (MTS) on Windows NT 4.

With Windows 2000, that significant extension to COM was incorporated into the operating
system (as opposed to the series of external tools provided by MTS) and renamed COM+. At
the same time, Microsoft de-emphasized DCOM as a separate entity. Components that made
use of COM+ services were handled more directly by the added layer of COM+, in
particular by operating system support for interception. In the first release of MTS,
interception was tacked on - installing an MTS component would modify the Windows
Registry to call the MTS software, and not the component directly.

Windows 2000 also revised the Component Services control panel application used to
configure COM+ components.

An advantage of COM+ was that it could be run in "component farms". Instances of a
component, if coded properly, could be pooled and reused by new calls to its initializing
routine without unloading it from memory. Components could also be distributed (called
from another machine). COM+ and Microsoft Visual Studio provided tools to make it easy to
generate client-side proxies, so although DCOM was used to actually make the remote call, it
was easy to do for developers.

COM+ also introduced a subscriber/publisher event mechanism called COM+ Events, and
provided a new way of leveraging MSMQ (inter-application asynchronous messaging) with
components called Queued Components. COM+ events extend the COM+ programming
model to support late-bound events or method calls between the publisher or subscriber and
the event system.

19.6 WHAT IS COM+?

COM+ is the name of the COM-based services and technologies first released in Windows
2000. COM+ brought together the technology of COM components and the application host
of Microsoft Transaction Server (MTS). COM+ automatically handles programming tasks

http://msdn.microsoft.com/library/ms973802.aspx
http://msdn.microsoft.com/library/ms973800.aspx
http://en.wikipedia.org/wiki/Distributed_transaction
http://en.wikipedia.org/wiki/Microsoft_Transaction_Server
http://en.wikipedia.org/wiki/Microsoft_Transaction_Server
http://en.wikipedia.org/wiki/Distributed_Component_Object_Model
http://en.wikipedia.org/wiki/Windows_Registry
http://en.wikipedia.org/wiki/Windows_Registry
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio
http://en.wikipedia.org/wiki/Microsoft_Message_Queuing

such as resource pooling, disconnected applications, event publication and subscription and
distributed transactions.

.NET

COM development has largely been superseded by Microsoft .NET, and Microsoft now
focuses its marketing efforts on .NET, with .NET providing wrappers to the most commonly
used COM controls. COM is still often used to hook up complex, high performance code to
front end code implemented in Visual Basic or ASP. The .NET framework provides rapid
development tools similar to Visual Basic for both Windows Forms and Web Forms with
just-in-time compilation, back-end code can be implemented in any .NET Language
including C#, Visual Basic and C++/CLI.

Despite this, COM remains a viable technology with an important software base. As of 2009,
Microsoft has no plans for discontinuing either COM or support for COM. It is also ideal for
script control of applications such as Office or Internet Explorer since it provides an interface
for calling COM object methods from a script rather than requiring knowing the API at
compile time. The GUID system used by COM has wide uses any time a unique ID is
needed.

Several of the services that COM+ provides have been largely replaced by recent releases of
.NET. For example, the System.Transactions namespace in .NET provides the
TransactionScope class, which provides transaction management without resorting to
COM+. Similarly, queued components can be replaced by Windows Communication
Foundation with an MSMQ transport.

There is limited support for backward compatibility. A COM object may be used in .NET by
implementing a runtime callable wrapper (RCW).[2] .NET objects that conform to certain
interface restrictions may be used in COM objects by calling a COM callable wrapper
(CCW).[3] From both the COM and .NET sides, objects using the other technology appear as
native objects. See COM Interop.

WCF (Windows Communication Foundation) solves a number of COM's remote execution
shortcomings, allowing objects to be transparently marshalled by value across process or
machine boundaries.

USING COM COMPONENT FROM C#

This step-by-step process describes how to use a COM component from in Microsoft Visual
Studio .NET by using Microsoft Visual C# .NET or in Microsoft Visual Studio 2005 by using

Microsoft Visual C# 2005.

REQUIREMENTS

The following list outlines the recommended hardware, software, network infrastructure,
and service packs that you may require:

http://en.wikipedia.org/wiki/Marketing
http://en.wikipedia.org/wiki/Visual_Basic
http://en.wikipedia.org/wiki/Active_Server_Pages
http://en.wikipedia.org/wiki/Windows_Forms
http://en.wikipedia.org/wiki/ASP.NET
http://en.wikipedia.org/wiki/Just-in-time_compilation
http://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
http://en.wikipedia.org/wiki/Visual_Basic.NET
http://en.wikipedia.org/wiki/C%2B%2B/CLI
http://en.wikipedia.org/wiki/GUID
http://en.wikipedia.org/wiki/Queue_%28data_structure%29
http://en.wikipedia.org/wiki/Windows_Communication_Foundation
http://en.wikipedia.org/wiki/Windows_Communication_Foundation
http://en.wikipedia.org/wiki/MSMQ
http://en.wikipedia.org/wiki/Component_Object_Model#cite_note-1
http://en.wikipedia.org/wiki/Component_Object_Model#cite_note-2
http://en.wikipedia.org/wiki/COM_Interop
http://en.wikipedia.org/wiki/Windows_Communication_Foundation

• Visual C# .NET or Visual C# 2005

USING COM COMPONENTS FROM VISUAL STUDIO .NET

We can use COM components from in Microsoft Visual Studio .NET code by using the
Microsoft .NET Framework Component Object Model (COM) interoperability layer (or COM
Interop). Using Visual Studio .NET or Visual Studio 2005, we can easily access and use COM
components.

1. Start Microsoft Visual Studio .NET or Microsoft Visual Studio 2005. Create a new
Console Application in Visual C# .NET or in Visual C# 2005 and name the project
MyCOMClient.

2. On the Project menu, click Add Reference.
3. In the Add Reference dialog box, click the COM tab. Notice that the ListView

control lists all the COM components that are registered on the local computer in
alphabetical order.

4. Locate and select the MyCOMComponent.dll file, click Open, and then click OK to
close the dialog-box.

Note In Visual Studio 2005, you do not have to click Open.

5. In the Class1 Code window, add the following code to the Main function:
6. int mySum = 0;
7. MyCOMComponent.Class1Class myCOM = new

MyCOMComponent.Class1Class();
8. mySum = myCOM.Add(1,2);
9.
10. Console.Write("1 + 2 = {0}", mySum.ToString());
11. Console.ReadLine();
12. On the Debug menu, click Start to build and run the application.

The following output appears in the Console window:

1 + 2 = 3

COMPLETE VISUAL C# .NET CODE LISTING

using System;
namespace MyCOMClient
{
 class Class1
 {
 static void Main(string[] args)
 {
 int mySum = 0;
 MyCOMComponent.Class1Class myCOM = new
MyCOMComponent.Class1Class();
 mySum = myCOM.Add(1,2);

 Console.Write("1 + 2 = {0}", mySum.ToString());

 Console.ReadLine();
 }

 }
}

CREATING COM COMPONENTS USING VISUAL C#.NET

Developers are sometimes asked to support older software systems that utilize obsolete
technologies. This may be difficult when the development tools used to implement the older
software system are not available and have been replaced by newer tools that do not seem to
support the former tools’ technologies. Faced with the need to replace a COM component
that is used by VBScript in an ASP application, a developer may need to create the
replacement using Visual Studio .NET. This guide is motivated at helping developers create
COM components using Visual Studio.NET and C#.

CREATING THE COM OBJECT

Launch Microsoft Visual Studio .NET and create a new Visual C# Project with the Empty
Project template. In our example we will create the project and name it “COMTest.” Save the
project.
Open a console window and navigate to the project’s folder.
Create a key pair that will be used to sign the .NET assembly with a strong name. ["sn -k
key.snk" at the command prompt]
Under Project->COMTest Properties, set the Output Type to Class Library. Output Type is
found within General, which is found under Common Properties.
Add a class called “COMObject” to the COMTest project, which will create COMObject.cs.
Add an assembly attribute to COMObject.cs.
“[assembly:System.Reflection.AssemblyKeyFileAttribute(@"..\..\key.snk")]“
Generate a globally unique identifier for use with COMObject.
Start guidgen.exe (this should be easily done when opening a console window and entering
“guidgen” at the command prompt).
Select the Registry Format option in the guidgen utility, generate a new guid, and copy the
GUID.
Use System.Runtime.InteropServices.GuidAttribute to generate an attribute for class
COMObject. Pass the GUID as a string to GUIDAttribute, but remove the curly braces that
surround the GUID that was copied onto the clipboard.
Create a public member function for COMObject that is named “COMObjectFunction” with
the following code:

public string COMObjectFunction()
{
 return "Hello, COM!";
}

Build the solution.
Register the Assembly. ["regasm COMTest.dll /tlb:COMTest.tlb /codebase COMTest" at the
command prompt, while in the directory that contains COMTest.dll]
The assembly is now accessible using COM.

HOW TO USE COM COMPONENTS IN VISUAL STUDIO .NET WITH
VISUAL C# .NET OR IN VISUAL STUDIO 2005 WITH VISUAL C# 2005

20
C# and .NET Security

20.1 INTRODUCTION

Introduction

Security Role

Code Security
Code Security Policy

Code Security Permissions
User Security

The Microsoft .NET Framework gives numerous techniques and a vast range of types in the
security namespaces to help you build secure code and create secure Web applications. This
chapter defines the .NET Framework security landscape by briefly introducing the security
benefits of managed code development. This chapter also introduces and contrasts the two
complimentary forms of security that are available to .NET Framework applications: user
security and code security. Finally, the chapter briefly examines the security namespaces that
you use to program .NET Framework security.

This chapter emphasizes how .NET Framework security applies to ASP.NET Web
applications and Web services.

SECURITY ROLE

This chapter describes the security benefits inherent in using the .NET Framework and
explains the complementary features of .NET Framework user (or role-based) security and
.NET Framework code-based (or code access) security. We recommend that you use this
chapter as follows:

• Understand the two-layered defense provided by the .NET Framework. Role-based
security allows you to control user access to application resources and operations,
while code access security can control which code can access resources and perform
privileged operations.

• Create applications that use the security concepts in this chapter. This chapter tells
you when you should use user-based security and when you should use code-based

U n i t

security. After reading this chapter, you will be able to identify how any new
applications you create can be more secure by using role-based or code-based
security.

CODE SECURITY

Developing .NET Framework applications provides you with some immediate security
benefits, although there are still many issues for you to think about. These issues are
discussed in the Building chapters in Part III of this guide.

.NET Framework assemblies are built with managed code. Compilers for languages, such as
the Microsoft Visual C#® development tool and Microsoft Visual Basic® .NET development
system, output Microsoft intermediate language (MSIL) instructions, which are contained in
standard Microsoft Windows portable executable (PE) .dll or .exe files. When the assembly is
loaded and a method is called, the method's MSIL code is compiled by a just-in-time (JIT)
compiler into native machine instructions, which are subsequently executed. Methods that
are never called are not JIT-compiled.

The use of an intermediate language coupled with the run-time environment provided by
the common language runtime offers assembly developers immediate security advantages.

• File format and metadata validation. The common language runtime verifies that
the PE file format is valid and that addresses do not point outside of the PE file. This
helps provide assembly isolation. The common language runtime also validates the
integrity of the metadata that is contained in the assembly.

• Code verification. The MSIL code is verified for type safety at JIT compile time. This
is a major plus from a security perspective because the verification process can
prevent bad pointer manipulation, validate type conversions, check array bounds,
and so on. This virtually eliminates buffer overflow vulnerabilities in managed code,
although you still need to carefully inspect any code that calls unmanaged
application programming interfaces (APIs) for the possibility of buffer overflow.

• Integrity checking. The integrity of strong named assemblies is verified using a
digital signature to ensure that the assembly has not been altered in any way since it
was built and signed. This means that attackers cannot alter your code in any way by
directly manipulating the MSIL instructions.

• Code access security. The virtual execution environment provided by the common
language runtime allows additional security checks to be performed at runtime.
Specifically, code access security can make various run-time security decisions based
on the identity of the calling code.

USER VS. CODE SECURITY

User security and code security are two complementary forms of security that are available
to .NET Framework applications. User security answers the questions, "Who is the user and
what can the user do?" while code security answers the questions "Where is the code from,
who wrote the code, and what can the code do?" Code security involves authorizing the
application's (not the user's) access to system-level resources, including the file system,
registry, network, directory services, and databases. In this case, it does not matter who the

end user is, or which user account runs the code, but it does matter what the code is and is
not allowed to do.

The .NET Framework user security implementation is called role-based security. The code
security implementation is called code access security.

ROLE-BASED SECURITY

.NET Framework role-based security allows a Web application to make security decisions
based on the identity or role membership of the user that interacts with the application. If
your application uses Windows authentication, then a role is a Windows group. If your
application uses other forms of authentication, then a role is application-defined and user
and role details are usually maintained in SQL Server or user stores based on Active
Directory.

The identity of the authenticated user and its associated role membership is made available
to Web applications through Principal objects, which are attached to the current Web
request.

Note When using the Role Manager feature in ASP.NET 2.0, if the roles are application-
defined, the role information is not made available through Principal objects. Instead, the
Role Manager obtains role information directly from the role store. For more information see
How To: Use Role Manager in ASP.NET 2.0.

Figure 6.1 shows a logical view of how user security is typically used in a Web application to
restrict user access to Web pages, business logic, operations, and data access.

Figure 1.1

A logical view of (user) role-based security

CODE ACCESS SECURITY

Code access security authorizes code when it attempts to access secured resources, such as
the file system, registry, network, and so on, or when it attempts to perform other privileged
operations, such as calling unmanaged code or using reflection.

http://msdn.microsoft.com/en-us/library/ms998314.aspx

Code access security is an important additional defense mechanism that you can use to
provide constraints on a piece of code. An administrator can configure code access security
policy to restrict the resource types that code can access and the other privileged operations
it can perform. From a Web application standpoint, this means that in the event of a
compromised process where an attacker takes control of a Web application process or injects
code to run inside the process, the additional constraints that code access security provides
can limit the damage that can be done.

Figure 6.2 shows a logical view of how code access security is used in a Web application to
constrain the application's access to system resources, resources owned by other
applications, and privileged operations, such as calling unmanaged code.

Figure 1.2

Logical view of code-based security

The authentication (identification) of code is based on evidence about the code, for example,
its strong name, publisher, or installation directory. Authorization is based on the code
access permissions granted to code by security policy. For more information about
.NET Framework code access security, see Chapter 8, "Code Access Security in Practice."

.NET FRAMEWORK ROLE-BASED SECURITY

.NET Framework role-based security is a key technology that is used to authorize a user's
actions in an application. Roles are often used to enforce business rules. For example, a
financial application might allow only managers to perform monetary transfers that exceed a
particular threshold.

Role-based security consists of the following elements:

• Principals and identities
• PrincipalPermission objects
• Role-based security checks
• URL authorization

PRINCIPALS AND IDENTITIES

http://msdn.microsoft.com/en-us/library/aa302424.aspx

Role-based security is implemented with Principal and Identity objects. The identity and
role membership of the authenticated caller is exposed through a Principal object, which is
attached to the current Web request. You can retrieve the object by using the
HttpContext.Current.User property. If the caller is not required to authenticate with the
application, for example, because the user is browsing a publicly accessible part of the site,
the Principal object represents the anonymous Internet user.

Note When using the Role Manager feature in ASP.NET 2.0, if the roles are application-
defined, the role information is not made available through Principal objects. Instead, the
Role Manager obtains role information directly from the role store. For more information see
How To: Use Role Manager in ASP.NET 2.0.

There are many types of Principal objects and the precise type depends on the
authentication mechanism used by the application. However, all Principal objects
implement the System.Security.Principal.IPrincipal interface and they all maintain a list of
roles of which the user is a member.

Principal objects also contain Identity objects, which include the user's name, together with
flags that indicate the authentication type and whether or not the user has been
authenticated. This allows you to distinguish between authenticated and anonymous users.
There are different types of Identity objects, depending on the authentication type, although
all implement the System.Security.Principal.IIdentity interface.

The following table shows the range of possible authentication types and the different types
of Principal and Identity objects that ASP.NET Web applications use.

Table 1.1 Principal and Identity Objects Per Authentication Type

Authentication
Type

Principal and
Identity Type

Comments

Windows

WindowsPrincipal
+

WindowsIdentity

Verification of credentials is automatic and uses the
Security Accounts Manager (SAM) or Active
Directory. Windows groups are used for roles.

Forms

GenericPrincipal +

FormsIdentity

You must add code to verify credentials and retrieve
role membership from a user store.
Note If you are using the Role Manager feature in
ASP.NET 2.0, you do not need to write the code for
retrieving user roles. For more information see How
To: Use Role Manager in ASP.NET 2.0.

Passport

GenericPrincipal +

PassportIdentity

Relies on the Microsoft Passport SDK.
PassportIdentity provides access to the passport
authentication ticket.

PRINCIPAL PERMISSION OBJECTS

http://msdn.microsoft.com/en-us/library/ms998314.aspx
http://msdn.microsoft.com/en-us/library/ms998314.aspx
http://msdn.microsoft.com/en-us/library/ms998314.aspx

The PrincipalPermission object represents the identity and role that the current principal
must have to execute code. PrincipalPermission objects can be used declaratively or
imperatively in code.

Declarative Security

You can control precisely which users should be allowed to access a class or a method by
adding a PrincipalPermissionAttribute to the class or method definition. A class-level
attribute automatically applies to all class members unless it is overridden by a member-
level attribute. The PrincipalPermissionAttribute type is defined within the
System.Security.Permissions namespace.

Note You can also use the PrincipalPermissionAttribute to restrict access to structures and
to other member types, such as properties and delegates.

The following example shows how to restrict access to a particular class to members of a
Managers group. Note that this example assumes Windows authentication, where the
format of the role name is in the format MachineName\RoleName or DomainName\RoleName.
For other authentication types, the format of the role name is application specific and
depends on the role-name strings held in the user store.

[PrincipalPermissionAttribute(SecurityAction.Demand,
Role=@"DOMAINNAME\Managers")]
public sealed class OnlyManagersCanCallMe
{
}
Note The trailing Attribute can be omitted from the attribute type names. This makes the
attribute type name appear to be the same as the associated permission type name, which in
this case is PrincipalPermission. They are distinct (but logically related) types.

The next example shows how to restrict access to a particular method on a class. In this
example, access is restricted to members of the local administrators group, which is
identified by the special "BUILTIN\Administrators" identifier.

[PrincipalPermissionAttribute(SecurityAction.Demand,
 Role=@"BUILTIN\Administrators")]
public void SomeMethod()
{
}

Other built-in Windows group names can be used by prefixing the group name with
"BUILTIN\" (for example, "BUILTIN\Users" and "BUILTIN\Power Users").

IMPERATIVE SECURITY

If method-level security is not granular enough for your security requirements, you can
perform imperative security checks in code by using
System.Security.Permissions.PrincipalPermission objects.

The following example shows imperative security syntax using a PrincipalPermission
object.

PrincipalPermission permCheck = new PrincipalPermission(
 null, @"DomainName\WindowsGroup");
permCheck.Demand();

To avoid a local variable, the code above can also be written as:

(new PrincipalPermission(null, @"DomainName\WindowsGroup")).Demand();

The code creates a PrincipalPermission object with a blank user name and a specified role
name, and then calls the Demand method. This causes the common language runtime to
interrogate the current Principal object that is attached to the current thread and check
whether the associated identity is a member of the specified role. Because Windows
authentication is used in this example, the role check uses a Windows group. If the current
identity is not a member of the specified role, a SecurityException is thrown.

The following example shows how to restrict access to an individual user.

(new PrincipalPermission(@"DOMAINNAME\James", null)).Demand();

DECLARATIVE VS. IMPERATIVE SECURITY

You can use role-based security (and code access security) either declaratively using
attributes or imperatively in code. Generally, declarative security offers the most benefits,
although sometimes you must use imperative security (for example, when you need to use
variables that are only available at runtime) to help make a security decision.

Advantages of Declarative Security

The main advantages of declarative security are the following:

• It allows the administrator or assembly consumer to see precisely which security
permissions that particular classes and methods must run. Tools such as
permview.exe provide this information. Knowing this information at deployment
time can help resolve security issues and it helps the administrator configure code
access security policy.

• It offers increased performance. Declarative demands are evaluated only once at load
time. Imperative demands inside methods are evaluated each time the method that
contains the demand is called.

• Security attributes ensure that the permission demand is executed before any other
code in the method has a chance to run. This eliminates potential bugs where
security checks are performed too late.

• Declarative checks at the class level apply to all class members. Imperative checks
apply at the call site.

ADVANTAGES OF IMPERATIVE SECURITY

The main advantages of imperative security and the main reasons that you sometimes must
use it are:

• It allows you to dynamically shape the demand by using values only available at
runtime.

• It allows you to perform more granular authorization by implementing conditional
logic in code.

ROLE-BASED SECURITY CHECKS

For fine-grained authorization decisions, you can also perform explicit role checks by using
the IPrincipal.IsInRole method. The following example assumes Windows authentication,
although the code would be very similar for Forms authentication, except that you would
cast the User object to an object of the GenericPrincipal type.

// Extract the authenticated user from the current HTTP context.
// The User variable is equivalent to HttpContext.Current.User if you are using
// an .aspx or .asmx page
WindowsPrincipal authenticatedUser = User as WindowsPrincipal;
if (null != authenticatedUser)
{
 // Note: If you need to authorize specific users based on their identity
 // and not their role membership, you can retrieve the authenticated user's
 // username with the following line of code (normally though, you should
 // perform role-based authorization).
 // string username = authenticatedUser.Identity.Name;

 // Perform a role check
 if (authenticatedUser.IsInRole(@"DomainName\Manager"))
 {
 // User is authorized to perform manager functionality
 }
}
else
{
 // User is not authorized to perform manager functionality
 // Throw a security exception
}
Note When using the Role Manager feature in ASP.NET 2.0, you can also use the Roles API
such as Roles.IsUserInRole for role checks. For more information, see "How To: Use Role
Manager in ASP.NET 2.0."

URL AUTHORIZATION

Administrators can configure role-based security by using the <authorization> element in
Machine.config or Web.config. This element configures the ASP.NET
UrlAuthorizationModule, which uses the principal object attached to the current Web
request in order to make authorization decisions.

http://msdn.microsoft.com/en-us/library/ms998314.aspx
http://msdn.microsoft.com/en-us/library/ms998314.aspx

The authorization element contains child <allow> and <deny> elements, which are used to
determine which users or groups are allowed or denied access to specific directories or
pages. Unless the <authorization> element is contained within a <location> element, the
<authorization> element in Web.config controls access to the directory in which the
Web.config file resides. This is normally the Web application's virtual root directory.

The following example from Web.config uses Windows authentication and allows Bob and
Mary access but denies everyone else:

<authorization>
 <allow users="DomainName\Bob, DomainName\Mary" />
 <deny users="*" />
</authorization>

The following syntax and semantics apply to the configuration of the <authorization>
element:

• "*" refers to all identities.
• "?" refers to unauthenticated identities (that is, the anonymous identity).
• You do not need to impersonate for URL authorization to work.
• Users and roles for URL authorization are determined by your authentication

settings:

Note When using the Role Manager feature in ASP.NET 2.0, you only need to
enable Role Manager and configure the role provider to point to the role store.
Because the IPrincipal object internally uses the Role Manager, you do not need to
explicitly set the role information in the Principal object. For more information see
How To: Use Role Manager in ASP.NET 2.0.

o When you have <authentication mode="Windows" />, you are authorizing
access to Windows user and group accounts.

User names take the form "DomainName\WindowsUserName".

Role names take the form "DomainName\WindowsGroupName".

Note The local administrators group is referred to as
"BUILTIN\Administrators". The local users group is referred to as
"BUILTIN\Users".

o When you have <authentication mode="Forms" />, you are authorizing
against the user and roles for the IPrincipal object that was stored in the
current HTTP context. For example, if you used Forms to authenticate users
against a database, you will be authorizing against the roles retrieved from
the database.

o When you have <authentication mode="Passport" />, you authorize against
the Passport User ID (PUID) or roles retrieved from a store. For example, you

http://msdn.microsoft.com/en-us/library/ms998314.aspx

can map a PUID to a particular account and set of roles stored in a Microsoft
SQL Server database or Active Directory.

o When you have <authentication mode="None" />, you may not be
performing authorization. "None" specifies that you do not want to perform
any authentication or that you do not want to use any of the ASP.NET
authentication modules, but you do want to use your own custom
mechanism.

However, if you use custom authentication, you should create an IPrincipal
object with roles and store it in the HttpContext.Current.User property
When you subsequently perform URL authorization, it is performed against
the user and roles (no matter how they were retrieved) maintained in the
IPrincipal object.

CONFIGURING ACCESS TO A SPECIFIC FILE

To configure access to a specific file, place the <authorization> element inside a <location>
element as shown below.

<location path="somepage.aspx" />
 <authorization>
 <allow users="DomainName\Bob, DomainName\Mary" />
 <deny users="*" />
 </authorization>
</location>

You can also point the path attribute at a specific folder to apply access control to all the files
in that particular folder. For more information about the <location> element, see Chapter 19,
"Securing Your ASP.NET Application and Web Services."

.NET FRAMEWORK SECURITY NAMESPACES

To program .NET Framework security, you use the types in the .NET Framework security
namespaces. This section introduces these namespaces and the types that you are likely to
use when you develop secure Web applications. For a full list of types, see the
.NET Framework documentation. The security namespaces are listed below and are shown
in Figure 6.3.

• System.Security
• System.Web.Security
• System.Security.Cryptography
• System.Security.Principal
• System.Security.Policy
• System.Security.Permissions

Note The .NET Framework 2.0 has introduced new security-related namespaces such as
System.Security.AccessControl, System.Security.Cryptography.Pkcs,
System.Security.Cryptography.X509Certificates, System.Security.Cryptography.Xml, and
System.Net.Security. For more information, see .NET Framework Class Library.

http://msdn.microsoft.com/en-us/library/aa302435.aspx
http://msdn.microsoft.com/en-us/library/ms306608%28VS.80%29.aspx

Figure 1.3

.NET Framework security namespaces in .NET 1.1

SYSTEM.SECURITY

This namespace contains the CodeAccessPermission base class from which all other code
access permission types derive. You are unlikely to use the base class directly. You are more
likely to use specific permission types that represent the rights of code to access specific
resource types or perform other privileged operations. For example, FileIOPermission
represents the rights to perform file I/O, EventLogPermission represents the rights for code
to access the event log, and so on. For a full list of code access permission types, see Table 6.2
later in this chapter.

The System.Security namespace also contains classes that encapsulate permission sets.
These include the PermissionSet and NamedPermissionSet classes. The types you are most
likely to use when building secure Web applications are:

• SecurityException. The exception type used to represent security errors.

Note In .NET 2.0, the SecurityException class has been improved to facilitate
debugging security issues and provide detailed information about security
exceptions.

• AllowPartiallyTrustedCallersAttribute. An assembly-level attribute used with
strong named assemblies that must support partial trust callers. Without this
attribute, a strong named assembly can only be called by full trust callers (callers
with unrestricted permissions.)

• SupressUnmanagedSecurityAttribute. Used to optimize performance and eliminate
the demand for the unmanaged code permission issued by the Platform Invocation
Services (P/Invoke) and Component Object Model (COM) interoperability layers.
This attribute must be used with caution because it exposes a potential security risk.
If an attacker gains control of unmanaged code, he is no longer restricted by code

access security. For more information about using this attribute safely, see
"Unmanaged Code" in Chapter 8, "Code Access Security in Practice."

Note In .NET 2.0, the System.Security namespace has new classes such as
SecurityContext and SecureString. For more information, see .NET Framework
Class Library - System.Security Namespace.

SYSTEM.WEB.SECURITY

This namespace contains the classes used to manage Web application authentication and
authorization. This includes Windows, Forms, and Passport authentication and URL and
File authorization, which are controlled by the UrlAuthorizationModule and
FileAuthorizationModule classes, respectively. The types you are most likely to use when
you build secure Web applications are:

• FormsAuthentication. Provides static methods to help with Forms authentication
and authentication ticket manipulation.

• FormsIdentity. Used to encapsulate the user identity that is authenticated by Forms
authentication.

• PassportIdentity. Used to encapsulate the user identity that is authenticated by
Passport authentication.

SYSTEM.SECURITY.CRYPTOGRAPHY

This namespace contains types that are used to perform encryption and decryption, hashing,
and random number generation. This is a large namespace that contains many types. Many
encryption algorithms are implemented in managed code, while others are exposed by types
in this namespace that wrap the underlying cryptographic functionality provided by the
Microsoft Win32®-based CryptoAPI.

SYSTEM.SECURITY.PRINCIPAL

This namespace contains types that are used to support role-based security. They are used to
restrict which users can access classes and class members. The namespace includes the
IPrincipal and IIdentity interfaces. The types you are most likely to use when building
secure Web applications are:

• GenericPrincipal and GenericIdentity. Allow you to define your own roles and user
identities. These are typically used with custom authentication mechanisms.

• WindowsPrincipal and WindowsIdentity. Represents a user who is authenticated
with Windows authentication together with the user's associated Windows group
(role) list.

Note In .NET 2.0, the WindowsIdentity class now supports a new constructor that
accepts a user name represented by the user principal name (UPN). This constructor
uses the Kerberos S4U (Service-for-User) extension to obtain a Windows token for
the user.

http://msdn.microsoft.com/en-us/library/aa302424.aspx
http://msdn.microsoft.com/en-us/library/system.security.aspx
http://msdn.microsoft.com/en-us/library/system.security.aspx

SYSTEM.SECURITY.POLICY

This namespace contains types that are used to implement the code access security policy
system. It includes types to represent code groups, membership conditions, policy levels,
and evidence.

SYSTEM.SECURITY.PERMISSIONS

This namespace contains the majority of permission types that are used to encapsulate the
rights of code to access resources and perform privileged operations. The following table
shows the permission types that are defined in this namespace (in alphabetical order).

Table 1.2 Permission Types Within the System.Security.Permissions Namespace

Permission Description

DirectoryServicesPermission Required to access Active Directory.

DNSPermission
Required to access domain name system (DNS) servers on
the network.

EndpointPermission
Defines an endpoint that is authorized by a
SocketPermission object.

EnvironmentPermission
Controls read and write access to individual environment
variables. It can also be used to restrict all access to
environment variables.

EventLogPermission Required to access the event log.

FileDialogPermission

Allows read-only access to files only if the file name is
specified by the interactive user through a system-
provided file dialog box. It is normally used when
FileIOPermission is not granted.

FileIOPermission
Controls read, write, and append access to files and
directory trees. It can also be used to restrict all access to
the file system.

IsolatedStorageFilePermission

Controls the usage of an application's private virtual file
system (provided by isolated storage). Isolated storage
creates a unique and private storage area for the sole use
by an application or component.

IsolatedStoragePermission Required to access isolated storage.

MessageQueuePermission
Required to access Microsoft Message Queuing message
queues.

OdbcPermission
Required to use the ADO.NET ODBC data provider. (Full
trust is also required.)

OleDbPermission
Required to use the ADO.NET OLE DB data provider.
(Full trust is also required.)

OraclePermission
Required to use the ADO.NET Oracle data provider. (Full
trust is also required.)

PerformanceCounterPermission Required to access system performance counters.

PrincipalPermission
Used to restrict access to classes and methods based on the
identity and role membership of the user.

PrintingPermission Required to access printers.

ReflectionPermission
Controls access to metadata. Code with the appropriate
ReflectionPermission can obtain information about the
public, protected, and private members of a type.

RegistryPermission
Controls read, write, and create access to registry keys
(including subkeys). It can also be used to restrict all access
to the registry.

SecurityPermission
This is a meta-permission that controls the use of the
security infrastructure itself.

ServiceControllerPermission
Can be used to restrict access to the Windows Service
Control Manager and the ability to start, stop, and pause
services.

SocketPermission
Can be used to restrict the ability to make or accept a
connection on a transport address.

SqlClientPermission Can be used to restrict access to SQL Server data sources.

UIPermission

Can be used to restrict access to the clipboard and to
restrict the use of windows to "safe" windows in an
attempt to avoid attacks that mimic system dialog boxes
that prompt for sensitive information such as passwords.

WebPermission Can be used to control access to HTTP Internet resources.

The SecurityPermission class warrants special attention because it represents the rights of
code to perform privileged operations, including asserting code access permissions, calling
unmanaged code, using reflection, and controlling policy and evidence, among others. The
precise right determined by the SecurityPermission class is determined by its Flags
property, which must be set to one of the enumerated values defined by the
SecurityPermissionFlags enumerated type (for example,
SecurityPermissionFlags.UnmanagedCode).

Note The .NET Framework 2.0 has introduced new permissions such as
DataProtectionPermission, GacIdentityPermission, KeyContainerPermission, and
StorePermission. For more information, see .NET Framework Class Library -
System.Security.Permissions Namespace.

SUMMARY

This chapter has introduced you to the .NET Framework security landscape by contrasting
user security and code security and by examining the security namespaces. The
.NET Framework refers to these two types of security as role-based security and code access
security, respectively. Both forms of security are layered on top of Windows security.

Role-based security is concerned with authorizing user access to application-managed
resources (such as Web pages) and operations (such as business and data access logic). Code
access security is concerned with constraining privileged code and controlling precisely
which code can access resources and perform other privileged operations. This is a powerful

http://msdn.microsoft.com/en-us/library/system.security.permissions.aspx
http://msdn.microsoft.com/en-us/library/system.security.permissions.aspx

additional security mechanism for Web applications because it restricts what an attacker is
able to do, even if the attacker manages to compromise the Web application process. It is also
an extremely powerful feature for providing application isolation. This is particularly true
for hosting companies or any organization that hosts multiple Web applications on the same
Web server.

Authentication, Authorization, User and Role Managment and general Security in .NET

15 down
vote
favorite
14

I need to know how to go about implementing general security for a C#
application. What options do I have in this regard? I would prefer to use an
existing framework if it meets my needs - I don't want to re-invent the wheel.

My requirements are as follows:

• the usual username/password authentication
• manageing of users - assign permissions to users
• managing of roles - assign users to roles, assign permissions to roles
• authorization of users based on their username and role

I am looking for a free / open-source framework/library that has been time-tesed
and used by the .Net community.

My application takes a client/server approach, with the server running as a
windows service, connecting to a SQL Server database. Communication between
client and server will be through WCF.

One other thing that is important is that I need to be able to assign specific users
or roles permissions to View/Update/Delete a specific entity, whether it be a
Customer, or Product etc. For e.g. Jack can view a certain 3 of 10 customers, but
only update the details of customers Microsoft, Yahoo and Google, and can only
delete Yahoo.

c# security authorization roles user

share|improve this question edited Aug 3 '09 at 15:32

asked Aug 3 '09 at 15:29

Saajid Ismail
1,48521735

 1

Just want to make sure you know: C# is the language. It doesn't have
security. .NET is the platform. It's where the security is. – John Saunders Aug
3 '09 at 15:32

 Thnx John - I understand the difference. – Saajid Ismail Aug 3 '09 at 17:24

http://stackoverflow.com/questions/1222974/authentication-authorization-user-and-role-managment-and-general-security-in
http://stackoverflow.com/questions/1222974/authentication-authorization-user-and-role-managment-and-general-security-in
http://stackoverflow.com/questions/tagged/c%23
http://stackoverflow.com/questions/tagged/security
http://stackoverflow.com/questions/tagged/authorization
http://stackoverflow.com/questions/tagged/roles
http://stackoverflow.com/questions/tagged/user
http://stackoverflow.com/q/1222974
http://stackoverflow.com/posts/1222974/edit
http://stackoverflow.com/posts/1222974/revisions
http://stackoverflow.com/users/127488/saajid-ismail
http://stackoverflow.com/users/127488/saajid-ismail
http://stackoverflow.com/users/127488/saajid-ismail
http://stackoverflow.com/users/76337/john-saunders
http://stackoverflow.com/questions/1222974/authentication-authorization-user-and-role-managment-and-general-security-in#comment1047987_1222974
http://stackoverflow.com/questions/1222974/authentication-authorization-user-and-role-managment-and-general-security-in#comment1047987_1222974
http://stackoverflow.com/users/127488/saajid-ismail
http://stackoverflow.com/questions/1222974/authentication-authorization-user-and-role-managment-and-general-security-in#comment1048595_1222974

6 Answers

active oldest votes

up vote 17
down vote
accepted
+100

For coarse-grained security, you might find the inbuilt principal code useful;
the user object (and their roles) are controlled in .NET by the "principal", but
usefully the runtime itself can enforce this.

The implementation of a principal can be implementation-defined, and you
can usually inject your own; for example in WCF.

To see the runtime enforcing coarse access (i.e. which functionality can be
accessed, but not limited to which specific data):

static class Roles {
 public const string Administrator = "ADMIN";
}
static class Program {
 static void Main() {
 Thread.CurrentPrincipal = new GenericPrincipal(
 new GenericIdentity("Fred"), new string[] { Roles.Administrator });
 DeleteDatabase(); // fine
 Thread.CurrentPrincipal = new GenericPrincipal(
 new GenericIdentity("Barney"), new string[] { });
 DeleteDatabase(); // boom
 }

 [PrincipalPermission(SecurityAction.Demand, Role = Roles.Administrator)]
 public static void DeleteDatabase()
 {
 Console.WriteLine(
 Thread.CurrentPrincipal.Identity.Name + " has deleted the
database...");
 }
}

However, this doesn't help with the fine-grained access (i.e. "Fred can access
customer A but not customer B").

Additional; Of course, for fine-grained, you can simply check the required
roles at runtime, by checking IsInRole on the principal:

static void EnforceRole(string role)
{
 if (string.IsNullOrEmpty(role)) { return; } // assume anon OK
 IPrincipal principal = Thread.CurrentPrincipal;
 if (principal == null || !principal.IsInRole(role))

http://stackoverflow.com/questions/1222974/authentication-authorization-user-and-role-managment-and-general-security-in?answertab=active#tab-top
http://stackoverflow.com/questions/1222974/authentication-authorization-user-and-role-managment-and-general-security-in?answertab=oldest#tab-top
http://stackoverflow.com/questions/1222974/authentication-authorization-user-and-role-managment-and-general-security-in?answertab=votes#tab-top
http://www.leastprivilege.com/CustomPrincipalsAndWCF.aspx

 {
 throw new SecurityException("Access denied to role: " + role);
 }
}
public static User GetUser(string id)
{
 User user = Repository.GetUser(id);
 EnforceRole(user.AccessRole);
 return user;
}

You can also write your own principal / identity objects that do lazy tests /
caching of the roles, rather than having to know them all up-front:

class CustomPrincipal : IPrincipal, IIdentity
{
 private string cn;
 public CustomPrincipal(string cn)
 {
 if (string.IsNullOrEmpty(cn)) throw new ArgumentNullException("cn");
 this.cn = cn;
 }
 // perhaps not ideal, but serves as an example
 readonly Dictionary<string, bool> roleCache =
 new Dictionary<string, bool>();
 public override string ToString() { return cn; }
 bool IIdentity.IsAuthenticated { get { return true; } }
 string IIdentity.AuthenticationType { get { return "iris scan"; } }
 string IIdentity.Name { get { return cn; } }
 IIdentity IPrincipal.Identity { get { return this; } }

 bool IPrincipal.IsInRole(string role)
 {
 if (string.IsNullOrEmpty(role)) return true; // assume anon OK
 lock (roleCache)
 {
 bool value;
 if (!roleCache.TryGetValue(role, out value)) {
 value = RoleHasAccess(cn, role);
 roleCache.Add(role, value);
 }
 return value;
 }
 }
 private static bool RoleHasAccess(string cn, string role)
 {
 //TODO: talk to your own security store
 }
}

share|improve this answer

Introduction

Over the past years, I've learned many things from CodeProject ... and now I'm giving back
to the CodeProject. Since I didn't find any articles on Code Access Security, here's my one.
Enjoy!

I'm not going to bore you with theory, but before we wet our feet, there are some concepts,
keywords that you should learn. .NET has two kinds of security:

1. Role Based Security (not being discussed in this article)
2. Code Access Security

The Common Language Runtime (CLR) allows code to perform only those operations that
the code has permission to perform. So CAS is the CLR's security system that enforces
security policies by preventing unauthorized access to protected resources and operations.
Using the Code Access Security, you can do the following:

• Restrict what your code can do
• Restrict which code can call your code
• Identify code

We'll be discussing about these things through out this article. Before that, you should get
familiar with the jargon.

Jargon

Code access security consists of the following elements:

• permissions
• permission sets
• code groups
• evidence
• policy

Permissions

Permissions represent access to a protected resource or the ability to perform a protected
operation. The .NET Framework provides several permission classes, like FileIOPermission
(when working with files), UIPermission (permission to use a user interface),
SecurityPermission (this is needed to execute the code and can be even used to bypass
security) etc. I won't list all the permission classes here, they are listed below.

Permission sets

http://stackoverflow.com/a/1250978
http://stackoverflow.com/posts/1250978/edit

A permission set is a collection of permissions. You can put FileIOPermission and
UIPermission into your own permission set and call it "My_PermissionSet". A permission set
can include any number of permissions. FullTrust, LocalIntranet, Internet, Execution and
Nothing are some of the built in permission sets in .NET Framework. FullTrust has all the
permissions in the world, while Nothing has no permissions at all, not even the right to
execute.

Code groups

Code group is a logical grouping of code that has a specified condition for membership.
Code from http://www.somewebsite.com/ can belong to one code group, code containing a
specific strong name can belong to another code group and code from a specific assembly
can belong to another code group. There are built-in code groups like My_Computer_Zone,

LocalIntranet_Zone, Internet_Zone etc. Like permission sets, we can create code groups to
meet our requirements based on the evidence provided by .NET Framework. Site, Strong
Name, Zone, URL are some of the types of evidence.

Policy

Security policy is the configurable set of rules that the CLR follows when determining the
permissions to grant to code. There are four policy levels - Enterprise, Machine, User and
Application Domain, each operating independently from each other. Each level has its own
code groups and permission sets. They have the hierarchy given below.

Figure 1.4

Okay, enough with the theory, it's time to put the theory into practice.

Quick Example

Let's create a new Windows application. Add two buttons to the existing form. We are going
to work with the file system, so add the System.IO namespace.

Collapse | Copy Code
using System.IO;

http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security

Figure 1.5

Write the following code:

Collapse | Copy Code
private void btnWrite_click(object sender, System.EventArgs e)
{
 StreamWriter myFile = new StreamWriter("c:\\Security.txt");
 myFile.WriteLine("Trust No One");
 myFile.Close();
}

private void btnRead_click(object sender, System.EventArgs e)
{
 StreamReader myFile = new StreamReader("c:\\Security.txt");
 MessageBox.Show(myFile.ReadLine())
 myFile.Close()
}

The version number should be intact all the time, for our example to work. Make sure that
you set the version number to a fixed value, otherwise it will get incremented every time you
compile the code. We're going to sign this assembly with a strong name which is used as
evidence to identify our code. That's why you need to set the version number to a fixed
value.

Collapse | Copy Code
[assembly: AssemblyVersion("1.0.0.0")]

That's it ... nothing fancy. This will write to a file named Security.txt in C: drive. Now run the
code, it should create a file and write the line, everything should be fine ... unless of course
you don't have a C: drive. Now what we are going to do is put our assembly into a code
group and set some permissions. Don't delete the Security.txt file yet, we are going to need it
later. Here we go.

http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security
http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security

.NET Configuration Tool

We can do this in two ways, from the .NET Configuration Tool or from the command
prompt using caspol.exe. First we'll do this using the .NET Configuration Tool. Go to
Control Panel --> Administrative Tools --> Microsoft .NET Framework Configuration. You
can also type "mscorcfg.msc" at the .NET command prompt. You can do cool things with
this tool ... but right now we are only interested in setting code access security.

Figure 1.6

Creating a new permission set

Expand the Runtime Security Policy node. You can see the security policy levels -
Enterprise, Machine and User. We are going to change the security settings in Machine
policy. First we are going to create our own custom permission set. Right click the
Permission Sets node and choose New. Since I couldn't think of a catchy name, I'm going to
name it MyPermissionSet.

Figure 1.7

In the next screen, we can add permissions to our permission set. In the left panel, we can see
all the permissions supported by the .NET Framework. Now get the properties of File IO
permission. Set the File Path to C:\ and check Read only, don't check others. So we didn't
give write permission, we only gave read permission. Please note that there is another
option saying "Grant assemblies unrestricted access to the file system." If this is selected,
anything can be done without any restrictions for that particular resource, in this case the file
system.

Figure 1.8

Now we have to add two more permissions - Security and User Interface. Just add them
and remember to set the "Grant assemblies unrestricted access". I'll explain these properties
soon. Without the Security permission, we don't have the right to execute our code, and
without the User Interface permission, we won't be able to show a UI. If you're done adding
these three permissions, you can see there is a new permission set created, named
MyPermissionSet.

Creating a new code group

Now we will create a code group and set some conditions, so our assembly will be a member
of that code group. Notice that in the code groups node, All_Code is the parent node. Right
Click the All_Code node and choose New. You'll be presented with the Create Code Group
wizard. I'm going to name it MyCodeGroup.

Figure 1.9

In the next screen, you have to provide a condition type for the code group. Now these are
the evidence that I mentioned earlier. For this example, we are going to use the Strong
Name condition type. First, sign your assembly with a strong name and build the project.
Now press the Import button and select your assembly. Public Key, Name and Version will
be extracted from the assembly, so we don't have to worry about them. Now move on to the
next screen. We have to specify a permission set for our code group. Since we have already
created one - MyPermissionSet, select it from the list box.

Figure 1.9

Exclusive and LevelFinal

If you haven't messed around with the default .NET configuration security settings, your
assembly already belongs to another built-in code group - My_Computer_Zone. When

permissions are calculated, if a particular assembly falls into more than one code group
within the same policy level, the final permissions for that assembly will be the union of all
the permissions in those code groups. I'll explain how to calculate permissions later, for the
time being we only need to run our assembly only with our permission set and that is
MyPermissionSet associated with the MyCodeGroup. So we have to set another property to
do just that. Right click the newly created MyCodeGroup node and select Properties. Check
the check box saying "This policy level will only have the permissions from the
permission set associated with this code group." This is called the Exclusive attribute. If this
is checked then the run time will never grant more permissions than the permissions
associated with this code group. The other option is called LevelFinal. These two properties
come into action when calculating permissions and they are explained below in detail.

Figure 1.10

I know we have set lots of properties, but it'll all make sense at the end (hopefully).

Okay .. it's time to run the code. What we have done so far is, we have put our code into a
code group and given permissions only to read from C: drive. Run the code and try both
buttons. Read should work fine, but when you press Write, an exception will be thrown
because we didn't set permission to write to C: drive. Below is the error message that you
get.

Figure 1.11

So thanks to Code Access Security, this kind of restriction to a resource is possible. There's a
whole lot more that you can do with Code Access Security, which we're going to discuss in
the rest of this article.

Functions of Code Access Security

According to the documentation, Code Access Security performs the following functions:
(straight from the documentation)

• Defines permissions and permission sets that represent the right to access various
system resources.

• Enables administrators to configure security policy by associating sets of
permissions with groups of code (code groups).

• Enables code to request the permissions it requires in order to run, as well as the
permissions that would be useful to have, and specifies which permissions the
code must never have.

• Grants permissions to each assembly that is loaded, based on the permissions
requested by the code and on the operations permitted by security policy.

• Enables code to demand that its callers have specific permissions. Enables code to
demand that its callers possess a digital signature, thus allowing only callers from a
particular organization or site to call the protected code.

• Enforces restrictions on code at run time by comparing the granted permissions of
every caller on the call stack to the permissions that callers must have.

We have already done the top two, and that is the administrative part. There's a separate
namespace that we haven't looked at yet - System.Security, which is dedicated to
implementing security.

Security Namespace

These are the main classes in System.Security namespace:

Classes Description

CodeAccessPermission Defines the underlying structure of all code

access permissions.

PermissionSet
Represents a collection that can contain many
different types of permissions.

SecurityException
The exception that is thrown when a security
error is detected.

These are the main classes in System.Security.Permissions namespace:

Classes Description

EnvironmentPermission
Controls access to system and user
environment variables.

FileDialogPermission
Controls the ability to access files or
folders through a file dialog.

FileIOPermission
Controls the ability to access files and
folders.

IsolatedStorageFilePermission
Specifies the allowed usage of a
private virtual file system.

IsolatedStoragePermission
Represents access to generic isolated
storage capabilities.

ReflectionPermission
Controls access to metadata through
the System.Reflection APIs.

RegistryPermission
Controls the ability to access registry
variables.

SecurityPermission
Describes a set of security permissions
applied to code.

UIPermission
Controls the permissions related to
user interfaces and the clipboard.

You can find more permission classes in other namespaces. For example, SocketPermission
and WebPermission in System.Net namespace, SqlClientPermission in
System.Data.SqlClient namespace, PerformanceCounterPermission in System.Diagnostics
namespace etc. All these classes represent a protected resource.

Next, we'll see how we can use these classes.

Declarative vs. Imperative

You can use two different kinds of syntax when coding, declarative and imperative.

Declarative syntax

Declarative syntax uses attributes to mark the method, class or the assembly with the
necessary security information. So when compiled, these are placed in the metadata section
of the assembly.

Collapse | Copy Code
[FileIOPermission(SecurityAction.Demand, Unrestricted=true)]
public calss MyClass
{
 public MyClass() {...} // all these methods
 public void MyMethod_A() {...} // demands unrestricted access to
 public void MyMethod_B() {...} // the file system
}

Imperative syntax

Imperative syntax uses runtime method calls to create new instances of security classes.

Collapse | Copy Code
public calss MyClass
{
 public MyClass() { }

 public void Method_A()
 {
 // Do Something

 FileIOPermission myPerm =
 new FileIOPermission(PermissionState.Unrestricted);
 myPerm.Demand();
 // rest of the code won't get executed if this failed

 // Do Something
 }

 // No demands
 public void Method_B()
 {
 // Do Something
 }
}

The main difference between these two is, declarative calls are evaluated at compile time
while imperative calls are evaluated at runtime. Please note that compile time means during
JIT compilation (IL to native).

There are several actions that can be taken against permissions.

http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security
http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security

First, let's see how we can use the declarative syntax. Take the UIPermission class.
Declarative syntax means using attributes. So we are actually using the
UIPermissionAttribute class. When you refer to the MSDN documentation, you can see these
public properties:

• Action - one of the values in SecurityAction enum (common)
• Unrestricted - unrestricted access to the resource (common)
• Clipboard - type of access to the clipboard, one of the values in

UIPermissionClipboard enum (UIPermission specific)
• Window - type of access to the window, one of the values in UIPermissionWindow

enum (UIPermission specific).

Action and Unrestricted properties are common to all permission classes. Clipboard and
Window properties are specific to UIPermission class. You have to provide the action that
you are taking and the other properties that are specific to the permission class you are
using. So in this case, you can write like the following:

Collapse | Copy Code
[UIPermission(SecurityAction.Demand,
 Clipboard=UIPermissionClipboard.AllClipboard)]

or with both Clipboard and Window properties:

Collapse | Copy Code
[UIPermission(SecurityAction.Demand,
 Clipboard=UIPermissionClipboard.AllClipboard,
 Window=UIPermissionWindow.AllWindows)]

If you want to declare a permission with unrestricted access, you can do it as the following:

Collapse | Copy Code
[UIPermission(SecurityAction.Demand, Unrestricted=true)]

http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security
http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security
http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security

When using imperative syntax, you can use the constructor to pass the values and later call
the appropriate action. We'll take the RegistryPermission class.

Collapse | Copy Code
RegistryPermission myRegPerm =
 new RegistryPermission(RegistryPermissionAccess.AllAccess,
 "HKEY_LOCAL_MACHINE\\Software");
myRegPerm.Demand();

If you want unrestricted access to the resource, you can use PermissionState enum in the
following way:

Collapse | Copy Code
RegistryPermission myRegPerm = new
 RegistryPermission(PermissionState.Unrestricted);
myRegPerm.Demand();

This is all you need to know to use any permission class in the .NET Framework. Now, we'll
discuss about the actions in detail.

Security Demands

Demands are used to ensure that every caller who calls your code (directly or indirectly) has
been granted the demanded permission. This is accomplished by performing a stack walk.
What .. a cat walk? No, that's what your girl friend does. I mean a stack walk. When
demanded for a permission, the runtime's security system walks the call stack, comparing
the granted permissions of each caller to the permission being demanded. If any caller in the
call stack is found without the demanded permission then a SecurityException is thrown.
Please look at the following figure which is taken from the MSDN documentation.

Figure 1.11

Different assemblies as well as different methods in the same assembly are checked by the
stack walk.

Now back to demands. These are the three types of demands.

http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security
http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security

• Demand
• Link Demand
• Inheritance Demand

Demand

Try this sample coding. We didn't use security namespaces before, but we are going to use
them now.

Collapse | Copy Code
using System.Security;
using System.Security.Permissions;

Add another button to the existing form.

Collapse | Copy Code
private void btnFileRead_Click(object sender, System.EventArgs e)
{
 try
 {
 InitUI(1);
 }
 catch (SecurityException err)
 {
 MessageBox.Show(err.Message,"Security Error");
 }
 catch (Exception err)
 {
 MessageBox.Show(err.Message,"Error");
 }
}

InitUI just calls the ShowUI function. Note that it has been denied permission to read the C:
drive.

Collapse | Copy Code
// Access is denied for this function to read from C: drive
// Note: Using declrative syntax
[FileIOPermission(SecurityAction.Deny,Read="C:\\")]
private void InitUI(int uino)
{
 // Do some initializations
 ShowUI(uino); // call ShowUI
}

ShowUI function takes uino in and shows the appropriate UI.

Collapse | Copy Code
private void ShowUI(int uino)

http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security
http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security
http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security
http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security

{
 switch (uino)
 {
 case 1: // That's our FileRead UI
 ShowFileReadUI();
 break;
 case 2:
 // Show someother UI
 break;
 }
}

ShowFileReadUI shows the UI related to reading files.

Collapse | Copy Code
private void ShowFileReadUI()
{
 MessageBox.Show("Before calling demand");
 FileIOPermission myPerm = new
 FileIOPermission(FileIOPermissionAccess.Read, "C:\\");
 myPerm.Demand();
 // All callers must have read permission to C: drive
 // Note: Using imperative syntax

 // code to show UI
 MessageBox.Show("Showing FileRead UI");
 // This is excuted if only the Demand is successful.
}

I know that this is a silly example, but it's enough to do the job.

Now run the code. You should get the "Before calling demand" message, and right after that
the custom error message - "Security Error". What went wrong? Look at the following
figure:

http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security

Figure 1.12

We have denied read permission for the InitUI method. So when ShowFileReadUI demands
read permission to C: drive, it causes a stack walk and finds out that not every caller is
granted the demanded permission and throws an exception. Just comment out the Deny
statement in InitUI method, then this should be working fine because all the callers have the
demanded permission.

Note that according to the documentation, most classes in .NET Framework already have
demands associated with them. For example, take the StreamReader class. StreamReader
automatically demands FileIOPermission. So placing another demand just before it causes
an unnecessary stack walk.

Link Demand

A link demand only checks the immediate caller (direct caller) of your code. That means it
doesn't perform a stack walk. Linking occurs when your code is bound to a type reference,
including function pointer references and method calls. A link demand can only be applied
declaratively.

Collapse | Copy Code
[FileIOPermission(SecurityAction.LinkDemand,Read="C:\\")]
private void MyMethod()
{
 // Do Something
}

Inheritance Demand

Inheritance demands can be applied to classes or methods. If it is applied to a class, then all
the classes that derive from this class must have the specified permission.

http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security

Collapse | Copy Code
[SecurityPermission(SecurityAction.InheritanceDemand)]
private class MyClass()
{
 // what ever
}

If it is applied to a method, then all the classes that derive from this class must have the
specified permission to override that method.

Collapse | Copy Code
private class MyClass()
{
 public class MyClass() {}

 [SecurityPermission(SecurityAction.InheritanceDemand)]
 public virtual void MyMethod()
 {
 // Do something
 }
}

Like link demands, inheritance demands are also applied using declarative syntax only.

Requesting Permissions

Imagine a situation like this. You have given a nice form to the user with 20+ fields to enter
and at the end, all the information would be saved to a text file. The user fills all the
necessary fields and when he tries to save, he'll get this nice message saying it doesn't have
the necessary permission to create a text file! Of course you can try to calm him down
explaining all this happened because of a thing called stack walk .. caused by a demand ..
and if you are really lucky you can even get away by blaming Microsoft (believe me ...
sometimes it works!).

Wouldn't it be easier if you can request the permissions prior to loading the assembly? Yes
you can. There are three ways to do that in Code Access Security.

• RequestMinimum
• RequestOptional
• RequestRefuse

Note that these can only be applied using declarative syntax in the assembly level, and not to
methods or classes. The best thing in requesting permissions is that the administrator can
view the requested permissions after the assembly has been deployed, using the permview.exe
(Permission View Tool), so what ever the permissions needed can be granted.

RequestMinimum

http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security
http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security

You can use RequestMinimum to specify the permissions your code must have in order to
run. The code will be only allowed to run if all the required permissions are granted by the
security policy. In the following code fragment, a request has been made for permissions to
write to a key in the registry. If this is not granted by the security policy, the assembly won't
even get loaded. As mentioned above, this kind of request can only be made in the assembly
level, declaratively.

Collapse | Copy Code
using System;
using System.Windows.Forms;
using System.IO;

using System.Security;
using System.Security.Permissions;

// placed in assembly level
// using declarative syntax
[assembly:RegistryPermission(SecurityAction.RequestMinimum,
 Write="HKEY_LOCAL_MACHINE\\Software")]

namespace SecurityApp
{
 // Rest of the implementation
}

RequestOptional

Using RequestOptional, you can specify the permissions your code can use, but not required
in order to run. If somehow your code has not been granted the optional permissions, then
you must handle any exceptions that is thrown while code segments that need these optional
permissions are being executed. There are certain things to keep in mind when working with
RequestOptional.

If you use RequestOptional with RequestMinimum, no other permissions will be granted
except these two, if allowed by the security policy. Even if the security policy allows
additional permissions to your assembly, they won't be granted. Look at this code segment:

Collapse | Copy Code
[assembly:FileIOPermission(SecurityAction.RequestMinimum, Read="C:\\")]
[assembly:FileIOPermission(SecurityAction.RequestOptional, Write="C:\\")]

The only permissions that this assembly will have are read and write permissions to the file
system. What if it needs to show a UI? Then the assembly still gets loaded but an exception
will be thrown when the line that shows the UI is executing, because even though the
security policy allows UIPermission, it is not granted to this assembly.

Note that, like RequestMinimum, RequestOptional doesn't prevent the assembly from being
loaded, but throws an exception at run time if the optional permission has not been granted.

http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security
http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security

RequestRefuse

You can use RequestRefuse to specify the permissions that you want to ensure will never be
granted to your code, even if they are granted by the security policy. If your code only wants
to read files, then refusing write permission would ensure that your code cannot be misused
by a malicious attack or a bug to alter files.

Collapse | Copy Code
[assembly:FileIOPermission(SecurityAction.RequestRefuse, Write="C:\\")]

Overriding Security

Sometimes you need to override certain security checks. You can do this by altering the
behavior of a permission stack walk using these three methods. They are referred to as stack
walk modifiers.

• Assert
• Deny
• PermitOnly

Assert

You can call the Assert method to stop the stack walk from going beyond the current stack
frame. So the callers above the method that has used Assert are not checked. If you can trust
the upstream callers, then using Assert would do no harm. You can use the previous
example to test this. Modify the code in ShowUI method, just add the two new lines shown
below:

Collapse | Copy Code
private void ShowUI(int uino)
{
 // using imperative syntax to create a instance of FileIOPermission
 FileIOPermission myPerm = new
 FileIOPermission(FileIOPermissionAccess.Read, "C:\\");
 myPerm.Assert(); // don't check above stack frames.

 switch (uino)
 {
 case 1: // That's our FileRead UI
 ShowFileReadUI();
 break;
 case 2:
 // Show someother UI
 break;
 }

 CodeAccessPermission.RevertAssert(); // cancel assert
}

http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security
http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security

Make sure that the Deny statement is still there in InitUI method. Now run the code. It
should be working fine without giving any exceptions. Look at the following figure:

Figure 1.13

Even though InitUI doesn't have the demanded permission, it is never checked because the
stack walk stops from ShowUI. Look at the last line. RevertAssert is a static method of
CodeAccessPermission. It is used after an Assert to cancel the Assert statement. So if the
code below RevertAssert is accessing some protected resources, then a normal stack walk
would be performed and all callers would be checked. If there's no Assert for the current
stack frame, then RevertAssert has no effect. It is a good practice to place the RevertAssert in
a finally block, so it will always get called.

Note that to use Assert, the Assertion flag of the SecurityPermission should be set.

Warning from Microsoft!: If asserts are not handled carefully it may lead into luring attacks
where malicious code can call our code through trusted code.

Deny

We have used this method already in the previous example. The following code sample
shows how to deny permission to connect to a restricted website using imperative syntax:

Collapse | Copy Code
WebPermission myWebPermission =
 new WebPermission(NetworkAccess.Connect,
 "http://www.somewebsite.com");
myWebPermission.Deny();

// Do some work

CodeAccessPermission.RevertDeny(); // cancel Deny

http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security

RevertDeny is used to remove a previous Deny statement from the current stack frame.

PermitOnly

You can use PermitOnly in some situations when needed to restrict permissions granted by
security policy. The following code fragment shows how to use it imperatively. When
PermitOnly is used, it means only the resources you specify can be accessed.

Collapse | Copy Code
WebPermission myWebPermission =
 new WebPermission(NetworkAccess.Connect,
 "http://www.somewebsite.com");
myWebPermission.PermitOnly();

// Do some work

CodeAccessPermission.PermitOnly(); // cancel PermitOnly

You can use PermitOnly instead of Deny when it is more convenient to describe resources
that can be accessed instead of resources that cannot be accessed.

Calculating Permissions

In the first example, we configured the machine policy level to set permissions for our code.
Now we'll see how those permissions are calculated and granted by the runtime when your
code belongs to more than one code group in the same policy level or in different policy
levels.

The CLR computes the allowed permission set for an assembly in the following way:

1. Starting from the All_Code code group, all the child groups are searched to
determine which groups the code belongs to, using identity information provided by
the evidence. (If the parent group doesn't match, then that group's child groups are
not checked.)

2. When all matches are identified for a particular policy level, the permissions
associated with those groups are combined in an additive manner (union).

3. This is repeated for each policy level and permissions associated with each policy
level are intersected with each other.

So all the permissions associated with matching code groups in one policy level are added
together (union) and the result for each policy level is intersected with one another. An
intersection is used to ensure that policy lower down in the hierarchy cannot add
permissions that were not granted by a higher level.

Look at the following figure taken from a MSDN article, to get a better understanding:

http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security

Figure 13

Have a quick look at the All_Code code group's associated permission set in Machine policy
level. Hope it makes sense by now.

Figure 1.14

The runtime computes the allowed permission set differently if the Exclusive or LevelFinal
attribute is applied to the code group. If you are not suffering from short term memory loss,

you should remember that we set the Exclusive attribute for our code group -
MyCodeGroup in the earlier example.

Here's what happens if these attributes are set.

• Exclusive - The permissions with the code group marked as Exclusive are taken as
the only permissions for that policy level. So permissions associated with other code
groups are not considered when computing permissions.

• LevelFinal - Policy levels (except the application domain level) below the one
containing this code group are not considered when checking code group
membership and granting permissions.

Now you should have a clear understanding why we set the Exclusive attribute earlier.

Nice Features in .NET Configuration Tool

There are some nice features in .NET Configuration Tool. Just right click the Runtime
Security Policy node and you'll see what I'm talking about.

Figure 1.15

Among other options there are two important ones.

• Evaluate Assembly - This can be used to find out which code group(s) a particular
assembly belongs to, or which permissions it has.

• Create Deployment Package - This wizard will create a policy deployment package.
Just choose the policy level and this wizard will wrap it into a Windows Installer
Package (.msi file), so what ever the code groups and permissions in your
development PC can be quickly transferred to any other machine without any
headache.

http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security#Exclusive%20and%20Level%20Final
http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security#policy

Tools

Permissions View Tool - permview.exe

The Permissions View tool is used to view the minimal, optional, and refused permission
sets requested by an assembly. Optionally, you can use permview.exe to view all declarative
security used by an assembly. Please refer to the MSDN documentation for additional
information.

Examples:

• permview SecurityApp.exe - Displays the permissions requested by the assembly
SecurityApp.exe.

Code Access Security Policy Tool - caspol.exe

The Code Access Security Policy tool enables users and administrators to modify security
policy for the machine policy level, the user policy level and the enterprise policy level.
Please refer to the MSDN documentation for additional information.

Examples:

Here's the output when you run "caspol -listgroups", this will list the code groups that
belong to the default policy level - Machine level.

Figure 1.16

Note that label "1." is for All_Code node because it is the parent node. It's child nodes are
labeled as "1.x", and their child nodes are labeled as "1.x.x", get the picture?

• caspol -listgroups - Displays the code groups
• caspol -machine -addgroup 1. -zone Internet Execution - Adds a child code group to

the root of the machine policy code group hierarchy. The new code group is a
member of the Internet zone and is associated with the Execution permission set.

• caspol -user -chggroup 1.2. Execution - Changes the permission set in the user policy
of the code group labeled 1.2. to the Execution permission set.

• caspol -security on - Turns code access security on.
• caspol -security off - Turns code access security off.

Summary

• Using .NET Code Access Security, you can restrict what your code can do, restrict
which code can call your code and identify code.

• There are four policy levels - Enterprise, Machine, User and Application Domain
which contains code groups with associated permissions.

• Can use declarative syntax or imperative syntax.
• Demands can be used to ensure that every caller has the demanded permission.
• Requests can be used to request (or refuse) permissions in the grant time.
• Granted permissions can be overridden.

That's it. Take a look at the Functions of Code Access Security again. You should have a clear
understanding by now than the first time you saw it. There are things like creating custom
code access permissions, and best practices when using Code Access Security, which I
haven't discussed in this article. If you want more information, you may refer to the
following:

• MSDN Documentation
• Code Access Security in Practice (MSDN article)

I suggest that you go through the whole article one more time, just to make sure you didn't
miss anything. If it's still not clear, don't worry, it's not your fault, it's my fault. :)

Happy Coding !!!

History

• Dec 22, 2003 - Original Version
• Jan 12, 2004 - Corrected a bug in code. (Security Demands section - ShowUI1(1) to

InitUI(1) in btnFileRead_Click event) - pointed out by Mark Focas, Thanks a lot
Mark! Updated screen shots (reduced the file size by 4 times). Added section - "Nice
Features in .NET Configuration Tool". Added Figure 16 (caspol screen shot).

License

http://www.codeproject.com/Articles/5724/Understanding-NET-Code-Access-Security#Functions%20of%20Code%20Access%20Security
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/HTCode_Acc.asp

This article has no explicit license attached to it but may contain usage terms in the article
text or the download files themselves. If in doubt please contact the author via the discussion
board below.

