
 BCA(N)-201 Database Management System

School of Computer Science & IT

Uttarakhand Open University,

Haldwani

Printed at : Saharanpur Electric Press, Bomanji Road, Saharanpur (U.P.)

Print Year : 2023 Printed Copies : 25

Introduction to DBMS Page 6

Block-1

Unit-1
1.1 Learning Objectives

1.2 Introduction

1.3 Database system and application

1.4 Purpose of database system

1.5 Characteristics and Benefits of a Database

1.6 Components of DBMS

1.7 Merits and Demerits of DBMS

1.8 Database Architecture

1.9 Traditional file systems

1.10 View of data

1.11 Database language languages

1.12 Data Dictionary

1.13 Types of DBMS

1.13.1 Centralized DBMS

1.13.2 Parallel DBMS

1.13.3 Distributed DBMS

1.13.4 Client-Server DBMS

1.14 Relational databases

1.15 Database Design

1.16 Database Administrator

1.17 Check Your Progress

1.18 Answer to Check Your Progress

1.19 Model Questions

Introduction to DBMS Page 7

1.1 Learning Objectives

After going through this unit, the learner will able to learn:

 The Database system and application

 The Purpose of the database system

 About Characteristics and Benefits of a Database

 About Database Architecture

 About Database language languages

 About the Data Dictionary

 Types of DBMS

 The Relational databases

 About Database Design

 The role of the database administrator

1.2 Introduction

A database management system (DBMS) is a collection of programs

that enables users to create and maintain databases and control all access to

them. The primary goal of a DBMS is to provide an environment that is both

convenient and efficient for users to retrieve and store information.

With the database approach, we can have the traditional banking system as

shown in the below figure. In this bank example, a DBMS is used by the

Personnel Department, the Account Department and the Loan Department to

access the shared corporate database.

Introduction to DBMS Page 8

1.3 Database system and Application

A database application is a computer program whose primary

purpose is entering and retrieving information from a computerized database.

Early examples of database applications were accounting systems and airline

reservations systems, such as SABRE, developed starting in 1957.

A characteristic of modern database applications is that they facilitate

simultaneous updates and queries from multiple users. Systems in the 1970s

might have accomplished this by having each user in front of a 3270 terminal

to a mainframe computer. By the mid-1980s it was becoming more common

to give each user a personal computer and have a program running on that PC

that connected to a database server. Information would be pulled from the

database, transmitted over a network, and then arranged, graphed, or otherwise

formatted by the program running on the PC. Starting in the mid-1990s it

became more common to build database applications with a Web interface.

Rather than develop custom software to run on a user's PC, the user would use

the same Web browser program for every application. A database application

with a Web interface had the advantage that it could be used on devices of

different sizes, with different hardware, and with different operating systems.

Examples of early database applications with Web interfaces include

amazon.com, which used the Oracle relational database management system,

the photo.net online community, whose implementation on top of Oracle was

described in the book Database-Backed Web Sites (Ziff-Davis Press; May

1997), and eBay, also running Oracle.
[

Introduction to DBMS Page 9

Electronic medical records are referred to on emrexperts.com, in December

2010, as "a software database application". A 2005 O'Reilly book uses the

term in its title: Database Applications and the Web.

Some of the most complex database applications remain accounting systems,

such as SAP, which may contain thousands of tables in only a single module.

Many of today's most widely used computer systems are database

applications, for example, Facebook, which was built on top of MySQL.

The etymology of the phrase "database application" comes from the practice

of dividing computer software into systems programs, such as the operating

system, compilers, the file system, and tools such as the database management

system, and application programs, such as a payroll check processor. On a

standard PC running Microsoft Windows, for example, the Windows

operating system contains all of the systems programs while games, word

processors, spreadsheet programs, photo editing programs, etc. would be

application programs. As "application" is short for "application program",

"database application" is short for "database application program".

Not every program that uses a database would typically be considered a

"database application". For example, many physics experiments, e.g., the

Large Hadron Collider,

generate massive data sets that programs subsequently

analyze. The data sets constitute a "database", though they are not typically

managed with a standard relational database management system. The

computer programs that analyze the data are primarily developed to answer

hypotheses, not to put information back into the database and therefore the

overall program would not be called a "database application".

1.4 Purpose of Database System

A database is collection of interrelated data organized in such a way so

that it is easy to access, retrieve, manage and understand data. Say, for

example, a list of students - you will have a list of the names, along with their

roll nos. You may also have a table somewhere about the marks of each

student on your list. There will be separate files for mark lists for different

subjects, and courses. These mark lists may be queried to find the aggregate

Introduction to DBMS Page 10

marks, and overall percentages, which may be stored in some result files. All

this collective information, derived from raw data, is called a database.

One way to keep information on a computer is to store it in permanent files. A

company system has a number of application programs; each of them is

designed to manipulate data files. These application programs have been

written at the request of the users in the organization. New applications are

added to the system as the need arises. The system just

described is called the file-based system.

Consider a traditional banking system that uses the file-based system to

manage the organization‘s the data in the following figure As we can see,

there are different departments in the bank. Each has its own applications that

manage and manipulate different data files. For banking systems, the programs

may be used to debit or credit an account, find the balance

of an account, add a new mortgage loan and generate monthly statements.

1.5 Characteristics and Benefits of a Database

There are a number of characteristics that distinguish the database

approach from the file-based system or approach. This unit describes the

benefits (and features) of the database system.

Self-describing nature of a database system

A database system is referred to as self-describing because it not only contains

the database itself, but also metadata which defines and describes the data and

relationships between tables in the database. This information is used by the

DBMS software or database users if needed. This separation of data and

information about the data makes a database system totally different from the

traditional file-based system in which the data definition is part of the

application programs.

Introduction to DBMS Page 11

Insulation between program and data

In the file-based system, the structure of the data files is defined in the

application programs so if a user wants to change the structure of a file, all the

programs that access that file might need to be changed as well.

On the other hand, in the database approach, the data structure is stored in the

system catalogue and not in the programs. Therefore, one change is all that is

needed to change the structure of a file. This insulation between the programs

and data is also called program-data independence.

Support for multiple views of data

A database supports multiple views of data. A view is a subset of the database,

which is defined and dedicated for particular users of the system. Multiple

users in the system might have different views of the system. Each view might

contain only the data of interest to a user or group of users.

Sharing of data and multiuser system

Current database systems are designed for multiple users. That is, they allow

many users to access the same database at the same time. This access is

achieved through features called concurrency control strategies. These

strategies ensure that the data accessed are always correct and that data

integrity is maintained.

The design of modern multiuser database systems is a great improvement from

those in the past which restricted usage to one person at a time.

Control of data redundancy

In the database approach, ideally, each data item is stored in only one place in

the database. In some cases, data redundancy still exists to improve system

performance, but such redundancy is controlled by application programming

and kept to minimum by introducing as little redundancy as possible when

designing the database.

Data sharing

The integration of all the data, for an organization, within a database system

has many advantages. First, it allows for data sharing among employees and

others who have access to the system. Second, it gives users the ability to

generate more information from a given amount of data than would be

possible without the integration.

Enforcement of integrity constraints

Introduction to DBMS Page 12

Database management systems must provide the ability to define and enforce

certain constraints to ensure that users enter valid information and maintain

data integrity. A database constraint is a restriction or rule that dictates what

can be entered or edited in a table such as a postal code using a certain format

or adding a valid city in the City field.

There are many types of database constraints. Data type, for example,

determines the sort of data permitted in a field, for example numbers only.

Data uniqueness such as the primary key ensures that no duplicates are

entered. Constraints can be simple (field based) or complex (programming).

Restriction of unauthorized access

Not all users of a database system will have the same accessing privileges. For

example, one user might have read-only access (i.e., the ability to read a file

but not make changes), while another might have read and write privileges,

which is the ability to both read and modify a file. For this reason, a database

management system should provide a security subsystem

to create and control different types of user accounts and restrict unauthorized

access.

Data independence

Another advantage of a database management system is how it allows for data

independence. In other words, the system data descriptions or data describing

data (metadata) are separated from the application programs. This is possible

because changes to the data structure are handled by the database management

system and are not embedded in the program itself.

Transaction processing

A database management system must include concurrency control subsystems.

This feature ensures that data remains consistent and valid during transaction

processing even if several users update the same information.

Provision for multiple views of data

By its very nature, a DBMS permits many users to have access to its database

either individually or simultaneously. It is not important for users to be aware

of how and where the data they access is stored.

Backup and recovery facilities

Backup and recovery are methods that allow you to protect your data from

loss. The database system provides a separate process, from that of a network

Introduction to DBMS Page 13

backup, for backing up and recovering data. If a hard drive fails and the

database stored on the hard drive is not accessible, the only way to recover the

database is from a backup.

If a computer system fails in the middle of a complex update process, the

recovery subsystem is responsible for making sure that the database is restored

to its original state. These are two more benefits of a database management

system.

1.6 Components of DBMS

A database management system (DBMS) consists of several components.

Each component plays very important role in the database management system

environment. The major components of database management system are:

 Software

 Hardware

 Data

 Procedures

 Users

 HARDWARE: The hardware is the actual computer system used for

keeping and accessing the database. It consists of a set of physical

electronic devices such as computers (together with associated I/O devices

like disk drives), storage devices, I/O channels, electromechanical devices

that make interface between computers and the real world systems etc, and

so on. It is impossible to implement the DBMS without the hardware

devices, In a network, a powerful computer with high data processing

speed and a storage device with large storage capacity is required as

database server.

 SOFTWARE: The main component of a DBMS is the software. It is the

set of programs used to handle the database and to control and manage the

overall computerized database. DBMS software itself, is the most

important software component in the overall system.

 DATA: Data is the most important component of the DBMS. The main

purpose of DBMS is to process the data. In DBMS, databases are defined,

Introduction to DBMS Page 14

constructed and then data is stored, updated and retrieved to and from the

databases. The database contains both the actual data and the metadata.

 PROCEDURES: Procedures refer to the instructions and rules that help to

design the database and to use the DBMS. The users that operate and

manage the DBMS require documented procedures on hot use or run the

database management system.

 USERS: The users are the people who manage the databases and perform

different operations on the databases in the database system. There are

three kinds of people who play different roles in database system

 Application Programmers: These users implement specific application

programs to access the stored data. They must be familiar with the DBMSs

to accomplish their task.

 Database Administrators: This may be one person or a group of people

in an organization responsible for authorizing access to the database,

monitoring its use and managing all of the resources to support the use of

the entire database system.

 End-Users: End users are the people whose jobs require access to a

database for querying, updating and generating reports.

1.7 Merits and Demerits of DBMS

Merits of DBMS

1. Improved data sharing.

The DBMS helps create an environment in which end users have better

access to more and better-managed data.

2. Improved data security.

The more the users access the data, the greater the risks of data security

breaches. This is the reason DBMS provides a framework for better

enforcement of data privacy and security policies.

3. Better data integration.

It is much easier to see how actions in one segment of the company affect

other segments.

4. Minimized data inconsistency.

Introduction to DBMS Page 15

Data inconsistency exists when different versions of the same data appear

in different places. The probability of data inconsistency is greatly

reduced in a properly designed database.

5. Improved data access.

The DBMS makes it possible to produce quick answers to ad hoc queries.

From a database perspective, a query is a specific request issued to the

DBMS for data manipulation.

6. Improved decision making.

Better-managed data and improved data access make it possible to

generate better-quality information, on which better decisions are based.

Data quality is a comprehensive approach to promoting the accuracy,

validity, and timeliness of the data. While the DBMS does not guarantee

data quality, it provides a framework to facilitate data quality initiatives.

7. Increased end-user productivity.

The availability of data, combined with the tools that transform data into

usable information, empowers end users to make quick, informed

decisions that can make the difference between success and failure in the

global economy.

Demerits of DBMS

1. Complexity:

The provision of the functionality that is expected of a good DBMS

makes the DBMS an extremely complex piece of software. Failure to

understand the system can lead to bad design decisions, which can have

serious consequences for an organization.

2. Size:

The complexity and breadth of functionality makes the DBMS an

extremely large piece of software, occupying many megabytes of disk

space and requiring substantial amounts of memory to run efficiently.

3. Performance:

The DBMS file based system is written to be more general, to cater for

many applications rather than just one. The effect is that some

applications may not run as fast as they used to.

Introduction to DBMS Page 16

4. Higher impact of a failure:

The centralization of resources increases the vulnerability of the system.

Since all users and applications rely on the ~vailabi1ity of the DBMS, the

failure of any component can bring operations to a halt.

5. Cost of DBMS:

The cost of DBMS varies significantly, depending on the environment

and functionality provided. There is also the recurrent annual maintenance

cost.

6. Additional Hardware costs:

 To achieve the required performance it may be necessary to purchase a

larger machine, perhaps even a machine dedicated to running the DBMS.

The procurement of additional hardware results in further expenditure.

7. Cost of Conversion:

 In some situations, the cost of DBMS and extra hardware may be

insignificant compared with the cost of converting existing applications to

run on the new DBMS and hardware. This cost is one of the main reasons

why some organizations feel tied to their current systems and cannot

switch to modern database technology.

1.8 Database Architecture

An early proposal for a standard terminology and general architecture

database a system was produced in 1971 by the DBTG (Data Base Task

Group) appointed by the Conference on data Systems and Languages. The

DBTG recognized the need for a two level approach with a system view called

the schema and user view called subschema. The American National Standard

Institute terminology and architecture in 1975.ANSI-SPARC recognized the

need for a three level approach with a system catalog.

There are following three levels or layers of DBMS architecture:

1. External Level

2. Conceptual Level

3. Internal Level

1. External Level: - External Level is described by a schema i.e. it consists of

definition of logical records and relationship in the external view. It also

Introduction to DBMS Page 17

contains the method of deriving the objects in the external view from the

objects in the conceptual view.

2. Conceptual Level: - Conceptual Level represents the entire database.

Conceptual schema describes the records and relationship included in the

Conceptual view. It also contains the method of deriving the objects in the

conceptual view from the objects in the internal view.

3. Internal Level: - Internal level indicates hoe the data will be stored and

described the data structures and access method to be used by the database. It

contains the definition of stored record and method of representing the data

fields and access aid used.

A mapping between external and conceptual views gives the correspondence

among the records and relationship of the conceptual and external view. The

external view is the abstraction of conceptual view which in turns is the

abstraction of internal view. It describes the contents of the database as

perceived by the user or application program of that view. A mapping between

conceptual records from the physical database.

Three levels or layers of DBMS architecture

Introduction to DBMS Page 18

1.9 Traditional file systems

Before the advent of modern general purpose database systems,

traditional file systems were used to store, manipulate, retrieve and delete data.

These file systems comprised of two major components: the data stored as a

collection of files, and several application programs that accessed and

manipulated the files. These systems were very complicated because of a

variety of reasons. Data was not centralized, meaning there could be two or

more copies of same data, resulting in redundancy. Redundancy would lead to

difficulty in maintaining consistency throughout the system. Often, application

programs were targeted to achieve some of the major queries, such as adding

new tuples, removing some data, manipulating existing data, etc. However, for

each new query, either a new application had to be written, or some entirely

different programs were to be clubbed together in a complex manner to

achieve the desired result.

As technology improved, more and more advances were made in the existing

database systems. Progress was made towards more efficient systems, more

application programs were added to generalize individual systems, among

other changes. This resulted in different types of database systems, as follows:

1. Single file or flat file database system: This is the traditional file based

data storage system, consisting of collection of files and related

application programs.

2. Hierarchical system: Data is stored in a hierarchical format, with parent

entities at the top, linked to its child entities. As the name suggests,

hierarchical system enforces a tree like structure, with the only links

possible between parent and its children. There is no link between

siblings, which may or may not be a disadvantage, based on the user

requirements. The implementation is pretty straightforward, and hence it

is highly recommended for storing and managing structured data. An

example approach is using XML (eXtensible Markup Language).

3. Networked system: A network system allows for more interconnections

between data, that is when many-to-many relationships exist between

Introduction to DBMS Page 19

records, network systems should be used. It is more efficient and useful

for large scale projects, such as maintaining company records, where

records may not necessarily be stored in a hierarchy. Network based

DBMS are useful for managing structured data. High level languages such

as Pascal, Cobol, C++ are used to implement network – based database

systems.

4. Relational database system: This type of system is one of the most

popular systems in use today. It emphasizes the importance of relations

between records and entities. This paves way for more flexibility and

more extensibility. Data is stored in tabular form, and relationships are

clearly defined between each entity or table. Such DBMS are also called

as RDBMS. Several popular RDBMS are Oracle, MS Access, SQL.

5. Object-oriented approach: This is also one of the very popular systems,

and the most modern one. Classes and objects are used to describe real

world entities. It has a high significance in today‘s world, where

unstructured and semi – structured data have become mainstream. Object-

oriented DBMS are comprised of objects and their behavior. Objects are

implemented with the help of a variety of data structures, and this ability

to store information of all types and in all formats is what makes this

approach attractive. Behavior of objects is implemented with the help of

sub – programs called methods, or subroutines, functions etc. One major

disadvantage is the cost, as these systems can be expensive and are

suitable for large scale projects. These can be implemented using high

level languages such as Java, C++.

Some examples of general purpose database systems are MySQL, MS

Access, SQL. It is possible for programmers to build their own database

system for specific requirements.

1.10 Data View

Database is collection of data or interrelated data contains information

about one or more related enterprise or Database is a collection of data,

typically describing the activities of one or more related organization. A major

purpose of database system is to provide users with an abstract view of the

Introduction to DBMS Page 20

data. That means the system hides certain details of how the data are stored

and maintained.

Data Abstraction

To hide certain details of how the data are stored and maintained according to

users. There are three types of Data abstraction

i. Physical level

ii. Physical level

iii. View (External) level

Physical Level: The lowest level of abstraction describes how the data are

actually stored. It describes complex low-level data structures in detail.

Logical Level: The next higher level of abstraction describes what data are

stored in the database, and what relationship exists among those data. At this

level the database is described logically in terms of simple data-structure.

View (External) level: It shows only a part of the database relevant to the

users.

Instances and Schemas

Instances: The collection of information stored in the database at a particular

moment is called an Instances.

Examples: An organization with an employee‘s database might have three

different instances: production (used to contain live data), pre-production

(used to test new functionality prior to release into production) and

development (used by database developers to create new functionality).

Schema: The overall design of the database is called the database schema.

Schemas are changed infrequently.

Example: Students(sid: string, name: string, login: string, age: integer, gpa:

real)

There are three types of Schema

 • Conceptual schema

 • Physical schema

 • External schema

Conceptual Schema (or logical schema): describes the stored data in terms

of the data model of the DBMS. In relational DBMS the conceptual schema

describes all relations that are stored in the database.

Introduction to DBMS Page 21

Example– Students(sid: string, name: string, login: string, age: integer, gpa:

real)

• Physical schema (or internal schema): Specifies additional storage details

such as the file organizations used and the auxiliary data structures used for

fast retrieval.

• External Schema: This level is closest to the user and is concerned with the

way in which the data are viewed by individual users.

Example- Info(name: String, login: string)

Data Independence

The ability to modify a schema definition in one level without affecting a

scheme definition in the next higher level is called Data Independence. There

are two levels of data independence.

 Physical Data Independence: The ability to modify the scheme followed at

the physical level without affecting the scheme at the conceptual level.

 Logical Data Independence: The ability to modify the conceptual scheme

without causing any changes in the scheme followed at the view levels. i.e.

The application program remain same even after changes in conceptual level.

Data Models

High-level Conceptual Data Models

High-level conceptual data models provide concepts for presenting data in

ways that are close to the way people perceive data. A typical example is the

entity relationship model, which uses main concepts like entities, attributes

and relationships. An entity represents a real-world object such as an

employee or a project. The entity has attributes that represent properties such

Introduction to DBMS Page 22

as an employee‘s name, address and birthdate. A relationship represents an

association among entities; for example, an employee works on many projects.

A relationship exists between the employee and each project.

Record-based Logical Data Models

Record-based logical data models provide concepts users can understand but

are not too far from the way data is stored in the computer. Three well-known

data models of this type are relational data models, network data models and

hierarchical data models.

 The relational model represents data as relations, or tables. For example, in

the membership system at Science World, each membership has many

members. The membership identifier, expiry date and address information

are fields in the membership. The members are individuals such as

Mickey, Minnie, Mighty, Door, Tom, King, Man and Moose. Each record

is said to be an instance of the membership table.

 The network model represents data as record types. This model also

represents a limited type of one to many relationship called a set type, as

shown in the below Figure

Network model diagram

 The hierarchical model represents data as a hierarchical tree structure.

Each branch of the hierarchy represents a number of related records. The

below Figure shows this schema in hierarchical model notation.

Introduction to DBMS Page 23

Hierarchical model diagram.

1.11 Database language languages

A database system provides data- definition language to specify the

database schema and A DDL is a language used to define data structures

within a database. Data-manipulation language to express database queries and

updates. DML is responsible for retrieval, insertion, deletion, modification of

information in the database.

Data- Manipulation Language

A data manipulation language (DML) is a family of syntax elements similar to

a computer programming language used for selecting, inserting, deleting and

updating data in a database. Performing read-only queries of data is sometimes

also considered a component of DML. A data manipulation language is a

language that enables the database user to access and manipulate the data as

organized by the appropriate data model. Data Manipulation Language (DML)

statements which are used for managing data within schema objects.

 INSERT - insert data into a table

 UPDATE - updates existing data within a table

 DELETE - deletes all records from a table, the space for the records

remain

Data-Definition Language

A DDL is a language used to define data structures within a database. Basic

idea is Hide implementation details of the database schemes from the users.

DDL statements are compiled, resulting in a set of tables stored in a special

file called a data dictionary or data directory. The data directory contains

metadata (data about data). It is typically considered to be a subset of SQL, but

Introduction to DBMS Page 24

can also refer to languages that define other types of data. The DDL concept

and name was first introduced in relation to the Codasyl database model,

where the schema of the database was written in a language syntax describing

the records, fields, and sets of the user data model.

Here are some examples of Data Definition Language (DDL) statements

which are used to define the database structure or schema.

 CREATE - to create objects in the database

 ALTER - alters the structure of the database

 DROP - delete objects from the database

1.12 Data Dictionary

A data dictionary is a centralized repository of information about data

such as meaning, relationships to other data, origin, usage, and format. A data

dictionary is used in the development of a relational database system.

A data dictionary stores metadata that defines and describes data so that it can

be easily understood by anyone who would like to use it or analyze it at a later

date. Librarians can assist in building data dictionaries for researchers by

working closely with them at the onset of a new research project. The data

dictionary – if started at the beginning of a research lifecycle – can assist in

the management of research data from the beginning of data capture to the

completion of a research study. For example, a data dictionary would be used

to define each descriptive heading used when gathering quantitative data as

part of a research study.

1.13 Types of DBMS

There are four types of DBMS

i. Centralized DBMS

ii. Parallel DBMS

iii. Distributed DBMS

iv. Client-Server DBMS

Introduction to DBMS Page 25

i. Centralized DBMS: A centralized database (sometimes abbreviated

CDB) is a database that is located, stored, and maintained in a single

location. This location is most often a central computer or database

system, for example a desktop or server CPU, or a mainframe

computer. In most cases, a centralized database would be used by an

organization (e.g. a business company) or an institution (e.g. a

university.) Users access a centralized database through a computer

network which is able to give them access to the central CPU, which in

turn maintains to the database itself.

ii. Parallel DBMS: A parallel database system seeks to improve performance

through parallelization of various operations, such as loading data, building

indexes and evaluating queries. Although data may be stored in a distributed

fashion, the distribution is governed solely by performance considerations.

Parallel databases improve processing and input/output speeds by using

multiple CPUs and disks in parallel. Centralized and client–server database

systems are not powerful enough to handle such applications. In parallel

processing, many operations are performed simultaneously, as opposed to

serial processing, in which the computational steps are performed sequentially.

iii. Distributed DBMS: A distributed database (DDB) is a collection of multiple,

logically interrelated databases distributed over a computer network. This

resource distribution improves performance, reliability, availability and

modularity that are inherent in distributed systems. As with traditional

centralized databases, distributed database systems (DDBS) must provide an

efficient user interface that hides all of the underlying data distribution details

of the DDB from the users. The use of a relational query allows the user to

specify a description of the data that is required without having to know where

the data is physically located.

iv. Client-Server DBMS: A Client-Server Database System consists of three

primary software components (aside from the network software and operating

systems of the computers in question): the client application (also called the

front end), the data access layer (also called middleware), and the database

server (also called a database engine, DBMS, data source, or back end).

Introduction to DBMS Page 26

The client application is responsible for accepting input from the user,

submitting a query to the database server based on that input, receiving results

from the server, formatting them, and presenting them to the user.

The data access layer is relatively transparent to the user, but may be very

apparent to the developer of the client app. It provides for the app an API used

to submit queries to a data source without much concern for the network

between them.

The database server accepts queries from clients, processes them concurrently,

and returns results. There are a number of different query languages around,

by far the most prevalent of which is SQL. (By the way, contrary to

conventional wisdom, ―SQL‖ doesn‘t stand for anything in particular. The ‗S‘

isn‘t for ―standard‖ or ―structured,‖ although the ‗QL‘ is thought to stand for

―query language.‖)

1.14 Relational databases

A relational database is a system for storing and accessing data

organized into relations. A relation is a bag of tuples. Each tuple is an ordered

sequence of attributes. Each attribute is a data value belonging to some data

type. All of the tuples in a relation have the same number of attributes. In

addition, the relation has a schema that is imposed on each tuple in the

relation, specifying what the data type each attribute in each tuple will have.

For example, the relation‘s schema might specify that the first attribute in each

tuple is an integer.

The relation‘s schema also gives a name to each attribute. The attribute names

give us a convenient way of referring to tuple attributes without having to say

―the first attribute‖, ―the fourth attribute‖, etc.

Typical relational databases support numeric and text data types as tuple

attributes. Many relational databases also support ―BLOBs‖ (Binary Large

OBjects) as attributes. A BLOB is a large, uninterpreted chunk of data.

BLOBs are useful for storing files, images, and other large chunks of data in a

relational database.

Tables

Introduction to DBMS Page 27

A table is a collection of rows having one or more columns. A row is an

instance of a row type. Every row of the same table has the same row type.

The value of the n-th field of every row in a table is the value of the n-th

column of that row in the table. The row is the smallest unit of data that can be

inserted into a table and deleted from a table.

The number of rows in a table is its cardinality. A table whose cardinality is 0

(zero) is said to be empty.

In the following pictorial presentation of a table and different components of it

:

A column name can be used in more than one tables and to maintain the

integrity of data and reduce redundancy. This is called a relation.

Elements of a table

The information of a table stored in some heads, those are fields or columns.

Columns show vertically in a table.

Each field or column has an individual name. A table cannot contain the same

name of two different columns

All the columns in a table make a row. Each row contains all the information

of individual topics.

Introduction to DBMS Page 28

The value of each field makes a row is the column value.

Each table should contain a field which can create a link with another one or

more table is the key field of a table.

In this relation, there are four attributes called author_lastname,

author_firstname, title, and ISBN. Each attribute is a text string.

Databases will typically have many relations. One motivation for allowing

multiple relations in a database is to avoid storing redundant information. For

example, in the relation above, there are two tuples representing books by the

same author, Callus Tacticus. Because the author name is represented twice,

there is the possibility that this information might not be recorded consistently

if the relation were modified.

We can avoid this redundancy by splitting the database into two relations,

books and authors:

 The books relation:

author_id title ISBN

1 A History of Hats 0-651-65165-4

2 Guide to Impossible Buildings 82-234-5475-0

3 First Flights in Witchcraft 5-9672-6521-X

4 Habits of the Wolves 91-33-65168-X

5 Sieges and Survival 0-651-65165-4

5 VENI VIDI VICI: A Soldier‘s Life 84-15978-99-5

The authors relation:

author_id author_lastname author_firstname

1 Smallfinger F.G.

2 Whittlbey W.H.J.

3 Earwig Lettice

4 Lightly W.E.

5 Tacticus Callus

Introduction to DBMS Page 29

The books relation has been changed so that the author of each book is

represented by a unique integer identifier, the author_id attribute. This

attribute also exists in the authors relation. So, the author of each book tuple

in the books relation is represented indirectly, by reference to a matching

author tuple in the authors relation.

1.15 Database Design

Database design is the process of producing a detailed data model of

database. This data model contains all the needed logical and physical design

choices and physical storage parameters needed to generate a design in a data

definition language, which can then be used to create a database. A fully

attributed data model contains detailed attributes for each entity.

The term database design can be used to describe many different parts of the

design of an overall database system. Principally, and most correctly, it can be

thought of as the logical design of the base data structures used to store the

data. In the relational model these are the tables and views. In an object

database the entities and relationships map directly to object classes and

named relationships. However, the term database design could also be used to

apply to the overall process of designing, not just the base data structures, but

also the forms and queries used as part of the overall database application

within the database management system (DBMS).

The process of doing database design generally consists of a number of steps

which will be carried out by the database designer. Usually, the designer must:

 Determine the data to be stored in the database.

 Determine the relationships between the different data elements.

 Superimpose a logical structure upon the data on the basis of these

relationships.

Within the relational model the final step above can generally be broken down

into two further steps, that of determining the grouping of information within

the system, generally determining what are the basic objects about which

information is being stored, and then determining the relationships between

these groups of information, or objects. This step is not necessary with an

Object database.

Introduction to DBMS Page 30

1.16 Database Administrator

Database administration is the function of managing and maintaining

database management systems (DBMS) software. Mainstream DBMS

software such as Oracle, IBM DB2 and Microsoft SQL Server need ongoing

management. As such, corporations that use DBMS software often hire

specialized IT (Information Technology) personnel called Database

Administrators or DBAs.

DBA Responsibilities

 Installation, configuration and upgrading of Database server software and

related products.

 Evaluate Database features and Database related products.

 Establish and maintain sound backup and recovery policies and

procedures.

 Take care of the Database design and implementation.

 Implement and maintain database security (create and maintain users and

roles, assign privileges).

 Database tuning and performance monitoring.

 Application tuning and performance monitoring.

 Setup and maintain documentation and standards.

 Plan growth and changes (capacity planning).

 Work as part of a team and provide 24x7 support when required.

 Do general technical troubleshooting and give cons.

 Database recovery.

1.17 Check Your Progress

1. Select the correct answer:

(a) Which is not a DBMS packages?

(i) Unify

(ii) Ingress

(iii) IDMS

(iv) All are DBMS packages

(b) Find the wrong statement

Introduction to DBMS Page 31

Database software

(i) Provides facilities to create, use and maintain database.

(ii) Supports report generation, statistical output, graphical output.

(iii) Provides routine for backup and recovery.

(iv) All are correct.

(c) Which one of the following is not a valid relational database?

(i) SYBASE

(ii) IMS

(iii) ORACLE

(iv) UNIFY

(d) Centralized control is

(i) advantage of a DBMS

(ii) disadvantage of a DBMS

(iii) Both (i) and (ii)

(iv) None of the above

(e) Data are

(i) Raw facts and figures

(ii) Information

(iii) Electronic representation of facts

(iv) None of these

2. Select TRUE or FALSE in the following statements:

(i) The conceptual view is a view of the total database content.

(ii) User‘s view is also called external view.

(iii) The database schema and an instance of the database are the same thing.

(iv) A view of a database that appears to an application program is known as

schema.

(v) Logical data independence indicates that the conceptual schema can be

changed without affecting the existing external schemes.

(vi) A database is a computer-based record keeping system whose over all

purpose is to record and maintain information.

3. Multiple Choice

(a) A view of database that appear to an application program is known

as-------------------

(i) schema

Introduction to DBMS Page 32

(ii) subschema

(iii) virtual table

(iv) none of these

(b) User’s view is also called

(i) external view

(ii)conceptual view

(iii) internal view

(iv) none of these

(c) Which of the following schemas defines the stored data structures in

terms of the database model used -

(i) external

(ii) conceptual

(iii) internal

(iv) none of these

(d) Data is processed by using

(i) DDL

(ii) DML

(iii) DCL

(iv) DPL

(e) Immunity of the conceptual (or external)schemas to changes the

internal schemas is referred to as

(i) physical data independance

(ii) logical data independence

(iii) both (i) and (ii)

(iv) none of these

1.18 Answer to Check Your Progress

1. a. (iv), b. (iv), c. (ii), d. (i), e. (i)

2. (i) F, (ii) T, (iii) F, (iv) F, (v) T, (vi) T

3. a. (ii), b. (i), c. (ii), d. (ii), e. (i)

1.19 Model Questions

1. Discuss each of the following terms:

Introduction to DBMS Page 33

1.1 data

1.2 field

1.3 record

1.4 file

2. What is data redundancy?

3. Discuss the disadvantages of file-based systems.

4. Explain the difference between data and information.

5. What is a database management system (DBMS)?

6. What are the properties of a DBMS?

Introduction to DBMS Page 34

Unit-2

1.1 Learning Objectives

1.2 Introduction

1.3 What is Data Model

1.4 Need for Data Model

1.5 Types of Data Model

1.6 ER Model

1.7 Check Your Progress

1.8 Answer to Check Your Progress

1.9 Model Questions

1.1 Learning Objectives

After going through this unit, you will be able to:

 identify the need for DBMS architecture

 describe the features of DBMS structure

 describe application development approach

 convert E-R diagram to a relational databases and vice versa

1.2 Introduction

A database model is a type of data model that determines the logical

structure of a database and fundamentally determines in which manner data

can be stored, organized and manipulated. The most popular example of a

database model is the relational model, which uses a table-based format.

1.3 What is data Model?

In the database design phases, data are represented using a certain data

model. The data model is a collection of concepts or notations for describing

data, data relationships, data semantics and data constraints. Most data models

also include a set of basic operations for manipulating data in the database.

Introduction to DBMS Page 35

1.4 Need for Data Model?

The purpose of a data model is to represent data and to make the data

understandable. There have been many data models proposed in the literature.

They fall into three broad categories:

 Object Based Data Models

 Physical Data Models

 Record Based Data Models

The object based and record based data models are used to describe data at the

conceptual and external levels, the physical data model is used to describe data

at the internal level.

Object Based Data Models

Object based data models use concepts such as entities, attributes, and

relationships. An entity is a distinct object (a person, place, concept, and

event) in the organization that is to be represented in the database. An attribute

is a property that describes some aspect of the object that we wish to record,

and a relationship is an association between entities.

Some of the more common types of object based data model are:

• Entity-Relationship

• Object Oriented

• Semantic

• Functional

The Entity-Relationship model has emerged as one of the main techniques for

modeling database design and forms the basis for the database design

methodology. The object oriented data model extends the definition of an

entity to include, not only the attributes that describe the state of the object but

also the actions that are associated with the object, that is, its behavior. The

object is said to encapsulate both state and behavior. Entities in semantic

systems represent the equivalent of a record in a relational system or an object

in an OO system but they do not include behaviour (methods). They are

abstractions 'used to represent real world (e.g. customer) or conceptual (e.g.

bank account) objects. The functional data model is now almost twenty years

old. The original idea was to' view the database as a collection of

Introduction to DBMS Page 36

extensionally defined functions and to use a functional language for querying

the database.

Physical Data Models

Physical data models describe how data is stored in the computer, representing

information such as record structures, record ordering, and access paths. There

are not as many physical data models as logical data models, the most

common one being the Unifying Model.

Record Based Logical Models

Record based logical models are used in describing data at the logical and

view levels. In contrast to object based data models, they are used to specify

the overall logical structure of the database and to provide a higher-level

description of the implementation. Record based models are so named because

the database is structured in fixed format records of several types. Each record

type defines a fixed number of fields, or attributes, and each field is usually of

a fixed length.

The three most widely accepted record based data models are:

 Hierarchical Model

 Network Model

 Relational Model

The relational model has gained favor over the other two in recent years. The

network and hierarchical models are still used in a large number of older

databases.

1.5 Types of Data Model

Database systems can be based on different data models or database

models respectively. A data model is a collection of concepts and rules for the

description of the structure of the database. Structure of the database means

the data types, the constraints and the relationships for the description or

storage of data respectively.

The most often used data models are

Network Model and Hierarchical Model

Introduction to DBMS Page 37

The network model and the hierarchical model are the predecessors of the

relational model. They build upon individual data sets and are able to express

hierarchical or network like structures of the real world.

 The network model represents data as record types. This model also represents

a limited type of one to many relationship called a set type, as shown in

Figure.

Network model diagram.

 The hierarchical model represents data as a hierarchical tree structure.

Each branch of the hierarchy represents a number of related records. The

Following Figure shows this schema in hierarchical model notation.

Hierarchical model diagram.

The relational model

 The relational model represents data as relations, or tables. For example, in

the membership system at Science World, each membership has many

members as shows in the following diagram. The membership identifier,

Introduction to DBMS Page 38

expiry date and address information are fields in the membership. The

members are individuals such as Mickey, Minnie, Mighty, Door, Tom, King,

Man and Moose. Each record is said to be an instance of the membership

table.

Object-oriented Model

Object-oriented models define a database as a collection of objects with

features and methods. A detailed discussion of object-oriented databases

follows in an advanced module.

 Schematic Representation of a Object-oriented Database Model

Object-relational Model

Object-oriented models are very powerful but also quite complex. With the

relatively new object-relational database model is the wide spread and simple

relational database model extended by some basic object-oriented concepts.

These allow us to work with the widely know relational database model but

also have some advantages of the object-oriented model without its

complexity.

Introduction to DBMS Page 39

Schematic Representation of the object-relational Database Model

1.6 The Entity Relationship Data Model

The entity relationship (ER) data model has existed for over 35 years.

It is well suited to data modeling for use with databases because it is fairly

abstract and is easy to discuss and explain. ER models are readily translated to

relations. ER models, also called an ER schema, are represented by ER

diagrams.

ER modeling is based on two concepts:

• Entities, defined as tables that hold specific information (data)

• Relationships, defined as the associations or interactions between entities

We will use a sample database called the COMPANY database to illustrate the

concepts of the ER model. This database contains information about

employees, departments and projects. Important points to note include:

 There are several departments in the company. Each department has a

unique identification, a name, location of the office and a particular

employee who manages the department.

 A department controls a number of projects, each of which has a unique

name, a unique number and a budget.

 Each employee has a name, identification number, address, salary and

birthdate. An employee is assigned to one department but can join in

several projects. We need to record the start date of the employee in each

project. We also need to know the direct supervisor of each employee.

 We want to keep track of the dependents for each employee. Each

dependent has a name, birthdate and relationship with the employee.

Entity, Entity Set and Entity Type

An entity is an object in the real world with an independent existence that can

be differentiated from other objects. An entity might be

Introduction to DBMS Page 40

• An object with physical existence (e.g., a lecturer, a student, a car)

• An object with conceptual existence (e.g., a course, a job, a position)

Entities can be classified based on their strength. An entity is considered

weak if its tables are existence dependent.

• That is, it cannot exist without a relationship with another entity

• Its primary key is derived from the primary key of the parent entity

The Spouse table, in the COMPANY database, is a weak entity because its

primary key is dependent on the Employee table. Without a corresponding

employee record, the spouse record would not exist.

An entity is considered strong if it can exist apart from all of its related

entities.

• Kernels are strong entities.

• A table without a foreign key or a table that contains a foreign key that can

contain nulls is a strong entity

Another term to know is entity type which defines a collection of similar

entities.

An entity set is a collection of entities of an entity type at a particular point

of time. In an entity relationship diagram (ERD), an entity type is

represented by a name in a box. For example, in the following Figure the

entity type is EMPLOYEE.

ERD with entity type EMPLOYEE.

Existence dependency

An entity‘s existence is dependent on the existence of the related entity. It is

existence-dependent if it has a mandatory foreign key (i.e., a foreign key

attribute that cannot be null). For example, in the COMPANY database, a

Spouse entity is existence -dependent on the Employee entity.

Kinds of Entities

Introduction to DBMS Page 41

You should also be familiar with different kinds of entities including

independent entities, dependent entities and characteristic entities. These are

described below.

Independent entities

Independent entities, also referred to as kernels, are the backbone of the

database. They are what other tables are based on. Kernels have the following

characteristics:

• They are the building blocks of a database.

• The primary key may be simple or composite.

• The primary key is not a foreign key.

• They do not depend on another entity for their existence.

If we refer back to our COMPANY database, examples of an independent

entity include the Customer table, Employee table or Product table.

Dependent entities

Dependent entities, also referred to as derived entities, depend on other tables

for their meaning. These entities have the following characteristics:

• Dependent entities are used to connect two kernels together.

• They are said to be existence dependent on two or more tables.

• Many to many relationships become associative tables with at least two

foreign keys.

• They may contain other attributes.

• The foreign key identifies each associated table.

• There are three options for the primary key:

1. Use a composite of foreign keys of associated tables if unique

2. Use a composite of foreign keys and a qualifying column

3. Create a new simple primary key

Characteristic entities

Characteristic entities provide more information about another table. These

entities have the following characteristics:

• They represent multivalued attributes.

• They describe other entities.

• They typically have a one to many relationship.

• The foreign key is used to further identify the characterized table.

• Options for primary key are as follows:

Introduction to DBMS Page 42

1. Use a composite of foreign key plus a qualifying column

2. Create a new simple primary key. In the COMPANY database, these

might include:

• Employee (EID, Name, Address, Age, Salary) – EID is the simple primary

key.

• EmployeePhone (EID, Phone) – EID is part of a composite primary key. Here,

EID is also a foreign key.

Each entity is described by a set of attributes (e.g., Employee = (Name,

Address, Birthdate (Age), Salary).

Each attribute has a name, and is associated with an entity and a domain of

legal values. However, the information about attribute domain is not presented

on the ERD.

In the entity relationship diagram, shown in the following Figure, each

attribute is represented by an oval with a name inside.

How attributes are represented in an ERD.

Types of Attributes

There are a few types of attributes you need to be familiar with. Some of these

are to be left as is, but some need to be adjusted to facilitate representation in

the relational model. This first section will discuss the types of attributes.

Later on we will discuss fixing the attributes to fit correctly into the relational

model.

Simple attributes

Simple attributes are those drawn from the atomic value domains; they are

also called single-valued attributes. In the COMPANY database, an example

of this would be: Name = {John} ; Age = {23}

Composite attributes

Introduction to DBMS Page 43

Composite attributes are those that consist of a hierarchy of attributes. Using

our database example, and shown in the following Figure, Address may

consist of Number, Street and Suburb. So this would be written as → Address

= {59 + ‗Meek Street‘ + ‗Kingsford‘}

An example of composite attributes.

Multivalued attributes

Multivalued attributes are attributes that have a set of values for each entity.

An example of a multivalued attribute from the COMPANY database, as seen

in the following Figure are the degrees of an employee: BSc, MIT, PhD.

Example of a multivalued attribute.

Derived attributes

Derived attributes are attributes that contain values calculated from other

attributes. An example of this can be seen in the following Figure. Age can be

derived from the attribute Birthdate. In this situation, Birthdate is called a

stored attribute, which is physically saved to the database.

Introduction to DBMS Page 44

Example of a derived attribute.

Relationships

Relationships are the glue that holds the tables together. They are used to

connect related information between tables.

Relationship strength is based on how the primary key of a related entity is

defined. A weak, or non-identifying, relationship exists if the primary key of

the related entity does not contain a primary key component of the parent

entity.

Company database examples include:

• Customer(CustID, CustName)

• Order(OrderID, CustID, Date)

A strong, or identifying, relationship exists when the primary key of the

related entity contains the primary key component of the parent entity.

Examples include:

• Course(CrsCode, DeptCode, Description)

• Class(CrsCode, Section, ClassTime…)

Types of Relationships

Below are descriptions of the various types of relationships.

One to many (1:M) relationship

A one to many (1:M) relationship should be the norm in any relational

database design and is found in all relational database environments. For

example, one department has many employees. In the following Figure shows

the relationship of one of these employees to the department.

Introduction to DBMS Page 45

 Example of a one to many relationship.

One to one (1:1) relationship

A one to one (1:1) relationship is the relationship of one entity to only one

other entity, and vice versa. It should be rare in any relational database design.

In fact, it could indicate that two entities actually belong in the same table.

An example from the COMPANY database is one employee is associated with

one spouse, and one spouse is associated with one employee.

Many to many (M:N) relationships

For a many to many relationship, consider the following points:

• It cannot be implemented as such in the relational model.

• It can be changed into two 1:M relationships.

• It can be implemented by breaking up to produce a set of 1:M

relationships.

• It involves the implementation of a composite entity.

• Creates two or more 1:M relationships.

• The composite entity table must contain at least the primary keys of the

original tables.

• The linking table contains multiple occurrences of the foreign key values.

• Additional attributes may be assigned as needed.

• It can avoid problems inherent in an M:N relationship by creating a

composite entity or bridge entity. For example, an employee can work on

many projects OR a project can have many employees working on it,

depending on the business rules. Or, a student can have many classes and a

class can hold many students.

Introduction to DBMS Page 46

The following Figure shows another another aspect of the M:N relationship

where an employee has different start dates for different projects. Therefore,

we need a JOIN table that contains the EID, Code and StartDate.

 Example where employee has different start dates for different

 projects.

Example of mapping an M:N binary relationship type

• For each M:N binary relationship, identify two relations.

• A and B represent two entity types participating in R.

• Create a new relation S to represent R.

• S needs to contain the PKs of A and B. These together can be the PK

in the S table OR these together with another simple attribute in the

new table R can be the PK.

• The combination of the primary keys (A and B) will make the

primary key of S.

Unary relationship (recursive)

A unary relationship, also called recursive, is one in which a relationship

exists between occurrences of the same entity set.

In this relationship, the primary and foreign keys are the same, but they

represent two entities with different roles. See the following Figure for an

example.

For some entities in a unary relationship, a separate column can be created that

refers to the primary key of the same entity set.

Introduction to DBMS Page 47

 Example of a unary relationship.

Ternary Relationships

A ternary relationship is a relationship type that involves many to many

relationships between three tables.

Refer to the following Figure for an example of mapping a ternary relationship

type.

 Note n-ary means multiple tables in a relationship. (Remember, N = many.)

• For each n-ary (> 2) relationship, create a new relation to represent the

relationship.

• The primary key of the new relation is a combination of the primary keys

of the participating entities that hold the N (many) side.

• In most cases of an n-ary relationship, all the participating entities hold a

many side.

Example of a ternary relationship.

Introduction to DBMS Page 48

1.7 Check Your Progress

1. State whether the following are true or false (T/F)

i. Data model gives logical as well as physical data structure

ii. Entity relationship model is the example of conceptual data model

iii. Conceptual data model is also called object-based model.

iv. High level data model use records as the key data representation

component.

v. Low level data model describes the details of how to store data in

computer.

vi. Logical data model provide concept which is complicated for end users.

vii. Implementation data model is also a record-based data model.

viii. Access path can search database record much faster.

ix. Network model represents data as hierarchical tree structure.

x. Hierarchical model is the current commercial DBMS.

2. State whether the following are true or false (T/F)

a) An entity is an object used to represent things.

b) Entities having key attributes are called weak entity.

c) Strong entity is also called regular entity.

d) Domain may be the range of values used against attribute.

e) Composite attribute cannot be divided into smaller parts.

3. Fill in the blanks out of the following: attributes, many-to-many,

diamond, association, ER.

a) An __________ of several entities in an Entity-Relation model is called

relationship.

b) The various kinds of data that describes an entity are known as its

____________.

c) A weak entity set is represented by a doubly outlined rectangle in the

__________ diagram.

 d) In an ER diagram a ___________ represents a relationship.

e) A __________ relationship describes entities that may have many

relationships in both the directions.

Introduction to DBMS Page 49

1.8 Answer to Check Your Progress

1.

 i) F ii) T ii) T iv) F v) T

 vi) F vii) T viii) T ix) F x) T

2.

 (a) T (b) F (c) T d. T e. F

3.

(a) association (b) attributes (c) E-R

(d) diamond (e) many-to-many

1.9 Model Questions

1. What is a data model?

2. What is a high-level conceptual data model?

3. What is an entity? An attribute? A relationship?

4. List and briefly describe the common record-based logical data models.

Introduction to DBMS Page 50

Unit-3

1.1 Learning Objectives

1.2 Introduction

1.3 What is Relational data model

1.4 Relation, Tuple, Attribute, Cardinality, Degree, Domain

1.5 Check Your Progress

1.6 Answer to Check Your Progress

1.7 Model Questions

1.1 Learning Objectives

After going through this unit, the learner will able to learn:

 About the relational data model

 About Relation, Tuple, Attribute, Cardinality, Degree and Domain

1.2 Introduction

A relational database is a system for storing and accessing data

organized into relations. A relation is a bag of tuples. Each tuple is an ordered

sequence of attributes. Each attribute is a data value belonging to some data

type. All of the tuples in a relation have the same number of attributes. In

addition, the relation has a schema that is imposed on each tuple in the

relation, specifying what the data type each attribute in each tuple will have.

For example, the relation‘s schema might specify that the first attribute in each

tuple is an integer.

1.3 What is Relational data model

The relational data model was introduced by C. F. Codd in 1970. Currently, it

is the most widely used data model.

The relational model has provided the basis for:

 Research on the theory of data/relationship/constraint

 Numerous database design methodologies

Introduction to DBMS Page 51

 The standard database access language called structured query language

(SQL)

 Almost all modern commercial database management systems

The relational data model describes the world as ―a collection of inter-related

relations (or tables).‖

Fundamental Concepts in the Relational Data Model

Relation

A relation, also known as a table or file, is a subset of the Cartesian product of

a list of domains characterized by a name. And within a table, each row

represents a group of related data values. A row, or record, is also known as a

tuple.

The columns in a table is a field and is also referred to as an attribute. You can

also think of it this way: an attribute is used to define the record and a record

contains a set of attributes.

The steps below outline the logic between a relation and its domains.

1. Given n domains are denoted by D1, D2, … Dn

2. And r is a relation defined on these domains

3. Then r ? D1×D2×…×Dn

Table

A database is composed of multiple tables and each table holds the data.

Figure 7.1 shows a database that contains three tables.

Column

A database stores pieces of information or facts in an organized way.

Understanding how to use and get the most out of databases requires us to

understand that method of organization.

The principal storage units are called columns or fields or attributes. These

house the basic components of data into which your content can be broken

down. When deciding which fields to create, you need to think generically

about your information, for example, drawing out the common components of

the information that you will store in the database and avoiding the specifics

that distinguish one item from another.

Introduction to DBMS Page 52

Look at the example of an ID card in the following Figure to see the

relationship between fields and their data.

Domain

A domain is the original sets of atomic values used to model data. By atomic

value, we mean that each value in the domain is indivisible as far as the

relational model is concerned. For example:

 The domain of Marital Status has a set of possibilities: Married, Single,

Divorced.

 The domain of Shift has the set of all possible days: {Mon, Tue, Wed…}.

 The domain of Salary is the set of all floating-point numbers greater than

0 and less than 200,000.

 The domain of First Name is the set of character strings that represents

names of people.

In summary, a domain is a set of acceptable values that a column is

allowed to contain. This is based on various properties and the data type

for the column.

Records

Introduction to DBMS Page 53

Just as the content of any one document or item needs to be broken down into

its constituent bits of data for storage in the fields, the link between them also

needs to be available so that they can be reconstituted into their whole form.

Records allow us to do this. Records contain fields that are related, such as a

customer or an employee. As noted earlier, a tuple is another term used for

record.

Records and fields form the basis of all databases. A simple table gives us the

clearest picture of how records and fields work together in a database storage

project.

The simple table example in above Figure shows us how fields can hold a

range of different sorts of data. This one has:

 A Record ID field: this is an ordinal number; its data type is an integer.

 A PubDate field: this is displayed as day/month/year; its data type is date.

 An Author field: this is displayed as Initial. Surname; its data type is text.

 A Title field text: free text can be entered here.

You can command the database to sift through its data and organize it in a

particular way. For example, you can request that a selection of records be

limited by date: 1. all before a given date, 2. all after a given date or 3. all

between two given dates. Similarly, you can choose to have records sorted

by date. Because the field, or record, containing the data is set up as a

Date field, the database reads the information in the Date field not just as

numbers separated by slashes, but rather, as dates that must be ordered

according to a calendar system.

Degree

Introduction to DBMS Page 54

The degree is the number of attributes in a table. In our example in above

Figure , the degree is 4.

Properties of a Table

 A table has a name that is distinct from all other tables in the database.

 There are no duplicate rows; each row is distinct.

 Entries in columns are atomic. The table does not contain repeating

groups or multivalued attributes.

 Entries from columns are from the same domain based on their data type

including:

 number (numeric, integer, float, smallint,…)

 character (string)

 date

 logical (true or false)

 Operations combining different data types are disallowed.

 Each attribute has a distinct name.

 The sequence of columns is insignificant.

 The sequence of rows is insignificant.

1.4 Relation, Tuple, Attribute, Cardinality, Degree, Domain

Relation: A subset of the Cartesian product of a list of domains

characterized by a name; the technical term for table or file.

A relation is a bag of tuples. Each tuple is an ordered sequence of attributes.

Each attribute is a data value belonging to some data type. All of the tuples in

a relation have the same number of attributes. In addition, the relation has a

schema that is imposed on each tuple in the relation, specifying what the data

type each attribute in each tuple will have. For example, the relation‘s schema

might specify that the first attribute in each tuple is an integer. The relation‘s

schema also gives a name to each attribute. The attribute names give us a

convenient way of referring to tuple attributes without having to say ―the first

attribute‖, ―the fourth attribute‖, etc

Typical relational databases support numeric and text data types as tuple

attributes. Many relational databases also support ―BLOBs‖ (Binary Large

Introduction to DBMS Page 55

OBjects) as attributes. A BLOB is a large, uninterpreted chunk of data.

BLOBs are useful for storing files, images, and other large chunks of data in a

relational database.

Example of relation

Let‘s say we are going to use a relational database to store information about

books. We might define a relation called books to store information about

each book:

author_lastname author_firstname title ISBN

Smallfinger F.G. A History of Hats
0-651-

65165-4

Whittlbey W.H.J.
Guide to Impossible

Buildings

82-234-

5475-0

Earwig Lettice First Flights in Witchcraft
5-9672-

6521-X

Lightly W.E. Habits of the Wolves
91-33-

65168-X

Tacticus Callus Sieges and Survival
0-651-

65165-4

Tacticus Callus
VENI VIDI VICI: A

Soldier‘s Life

84-15978-

99-5

In this relation, there are four attributes called author_lastname,

author_firstname, title, and ISBN. Each attribute is a text string.

Databases with multiple relations

Databases will typically have many relations. One motivation for allowing

multiple relations in a database is to avoid storing redundant information. For

example, in the relation above, there are two tuples representing books by the

same author, Callus Tacticus. Because the author name is represented twice,

there is the possibility that this information might not be recorded consistently

if the relation were modified.

Introduction to DBMS Page 56

We can avoid this redundancy by splitting the database into two relations,

books and authors:

The books relation:

author_id title ISBN

1 A History of Hats 0-651-65165-4

2 Guide to Impossible Buildings 82-234-5475-0

3 First Flights in Witchcraft 5-9672-6521-X

4 Habits of the Wolves 91-33-65168-X

5 Sieges and Survival 0-651-65165-4

5 VENI VIDI VICI: A Soldier‘s Life 84-15978-99-5

The authors relation:

author_id author_lastname author_firstname

1 Smallfinger F.G.

2 Whittlbey W.H.J.

3 Earwig Lettice

4 Lightly W.E.

5 Tacticus Callus

The books relation has been changed so that the author of each book is

represented by a unique integer identifier, the author_id attribute. This

attribute also exists in the authors relation. So, the author of each book tuple

in the books relation is represented indirectly, by reference to a matching

author tuple in the authors relation.

Queries, SQL

A query is a request to retrieve information from a database.

SQL, the Structured Query Language, is a standard language for describing

queries in relational databases. SQL is an interesting language because it is

declarative: it describes what information is desired, but does not specify how

Introduction to DBMS Page 57

that information is to be retrieved. It is the job of the database to figure out

how to find the information requested by a query.

Example: let‘s say we want to find the titles of all books written by F.G.

Smallfinger. In our original database, in which only the books relation exists,

we could express that query as

follows:

select title

 from books

 where author_lastname = 'Smallfinger' and author_firstname

= 'F.G.'

A SQL select statement specifies a query, and has three parts:

 Which attribute values to retrieve. In the example above, only the title

attribute is requested.

 Which relations are involved in the query. In the example above, only the

books relation is queried.

 A condition describing which tuples contain the desired information. In the

example above, the condition requires that tuples were author_lastname

= ‘Smallfinger’ and author_firstname = ‘F.G.’ are desired.

This query will match a single tuple in the books relation, and return a single

title value, A

History of Hats.

Joins

A join is a query which retrieves information from multiple relations. Joins are

a powerful way to exploint associations between tuples in different relations.

The idea is that a query retrieving information from multiple relations will

specify a join condition which links attribute values in tuples of two relations.

Let‘s consider how to find the titles of all books by F.G. Smallfinger in the

second version of the database, where we have two relations, books and

authors. We will need to do a join of both relations in order to connect the

author name and book title, which are now stored in different relations:

select books.title

 from books, authors

 where books.author_id = authors.author_id

Introduction to DBMS Page 58

 and authors.author_lastname = 'Smallfinger' and

authors.author_firstname = 'F.G.'

Note several interesting details of this query:

 We are selecting books.title as the attribute to retrieve, explicitly noting

that this attribute exists in the books relation

 The from clause now specifies two relations, books and authors

 The first part of the where clause, books.author_id = authors.author_id,

is the join condition. It states that when considering pairs of tuples in the

books and authors relations as candidates for retrieval, each tuple must

contain the same value for the respective author_id attributes.

 In the where clause, each attribute is qualified by the name of the relation

it is a part of. This is especially important when two relations have

identically-named attributes, as is the case with the author_id attributes of

the books and authors relations.

Indices

Obviously, a database system must be able to answer all queries by returning

the requested information.

An important additional characteristic that database systems should have is

that queries are answered efficiently, even if the database contains a large

amount of data.

An index is an auxiliary data structure associated with a relation to increase

the efficiency of queries on that relation. Specifically, an index is an auxiliary

data structure which, given an attribute value or range of attribute values,

quickly locates the tuple or tuples which match that value or range. An index

may be applied to a single attribute, or to multiple attributes.

The idea is that an index helps the database focus the search for data matching

a query by narrowing the number of tuples that must be checked.

Sequential scans

Consider queries involving a single relation. Any such query can be answered

by performing a sequential scan over the tuples in the relation: checking each

tuple to see if it matches the condition(s) specified in the where clause, and if

so, returning the values of the selected attributes.

Introduction to DBMS Page 59

For very large relations, a sequential scan may do much more work than

necessary. In particular, the where clause may have sub-conditions that are

met by only a very small number of tuples: we say that a condition matched by

only a small number of tuples has high selectivity.

To answer queries as efficiently as possible, the database should limit its scan

to as small a subset of tuples as possible. This can be done using an index.

For example: let‘s say that in the book database, we will frequently need to

search for authors by last name. To make those queries more efficient, we can

build an index on the author_lastname attribute. Queries such as

select author_id from authors where author_lastname = 'Smith';

can be answered efficiently because the index on author_lastname will allow

the database to ignore tuples in which the value of that attribute is not ‗Smith‘.

Tuple

Tuple is a technical term for row or record. A relation is defined as a set of

tuples that have the same attributes. A tuple usually represents an object and

information about that object. Objects are typically physical objects or

concepts. A relation is usually described as a table, which is organized into

rows and columns. All the data referenced by an attribute are in the same

domain and conform to the same constraints.

A relation is defined as a set of tuples that have the same attributes. A tuple

usually represents an object and information about that object. Objects are

typically physical objects or concepts. A relation is usually described as a

table, which is organized into rows and columns. All the data referenced by an

attribute are in the same domain and conform to the same constraints.

The relational model specifies that the tuples of a relation have no specific

order and that the tuples, in turn, impose no order on the attributes.

Applications access data by specifying queries, which use operations such as

select to identify tuples, project to identify attributes, and join to combine

relations. Relations can be modified using the insert, delete, and update

operators. New tuples can supply explicit values or be derived from a query.

Similarly, queries identify tuples for updating or deleting.

Tuples by definition are unique. If the tuple contains a candidate or primary

key then obviously it is unique; however, a primary key need not be defined

for a row or record to be a tuple. The definition of a tuple requires that it be

Introduction to DBMS Page 60

unique, but does not require a primary key to be defined. Because a tuple is

unique, its attributes by definition constitute a superkey.

Attribute

An attribute is a piece of information about the entity. For example, the title,

author, and ISBN are all attributes of a book entity.

Each entity is described by a set of attributes. E.g. Employee = (Name,

Address, Age, Salary).

Each attribute has a name, associated with an entity and is associated with a

domain of legal values. However the information about attribute domain is not

presented on the ER diagram. In the diagram, each attribute is represented by

an oval with a name inside.

Cardinality

Cardinality describes the relationship between two data tables by expressing

the minimum and maximum number of entity occurrences associated with one

occurrence of a related entity. In the following Figure, you can see that

cardinality is represented by the innermost markings on the relationship

symbol. In this figure, the cardinality is 0 (zero) on the right and 1 (one) on the

left.

The outermost symbol of the relationship symbol, on the other hand,

represents the connectivity between the two tables. Connectivity is the

relationship between two tables, e.g., one to one or one to many. The only

time it is zero is when the FK can be null. When it comes to participation,

there are three options to the relationship between these entities:

either 0 (zero), 1 (one) or many. In the following Figure, for example, the

connectivity is 1 (one) on the outer, left-hand side of this line and many on the

outer, right-hand side.

Introduction to DBMS Page 61

Figure: Position of connectivity and cardinality on a relationship

symbol, by A. Watt.

The following Figure shows the symbol that represents a one to many

relationship.

In the following Figure, both inner (representing cardinality) and outer

(representing connectivity) markers are shown. The left side of this symbol is

read as minimum 1 and maximum 1. On the right side, it is read as: minimum

1 and maximum many.

Degree

Degrees are defined prior to people being awarded them. The degree of

relationship is the number of occurrences in one entity which are associated to

the number of occurrences in another. There are three degrees of relationship,

known as:

1. one-to-one

2. one-to-many

3. many-to-many

Domain

Introduction to DBMS Page 62

In data management and database analysis, a data domain refers to all the

values which a data element may contain. The rule for determining the domain

boundary may be as simple as a data type with an enumerated list of values.

For example, a database table that has information about people, with one

record per person, might have a "gender" column. This gender column might

be declared as a string data type, and allowed to have one of two known code

values: "M" for male, "F" for female—and NULL for records where gender is

unknown or not applicable (or arguably "U" for unknown as a sentinel value).

The data domain for the gender column is: "M", "F".

1.5 Check Your Progress

1. fill in the blanks

a. A ………….is a system for storing and accessing data organized into

relations.

b. An ……………….is a piece of information about the entity

c. A………….. is a query which retrieves information from multiple

relations.

d. A ……………..is a request to retrieve information from a database.

e. A database is composed of multiple …………..and each table holds the

data

1.6 Answer to Check Your Progress

a. relational database

b. attribute

c. join

d. query

e. tables

1.7 Model Questions

1. Using correct terminology, identify and describe all the components in

Table 7.2.

Introduction to DBMS Page 63

2. What is the possible domain for field EmpJobCode?

3. How many records are shown?

4. How many attributes are shown?

5. List the properties of a table.

Introduction to DBMS Page 64

Block-2

Unit-1
1.1 Learning Objectives

1.2 Introduction

1.3 Characteristic of SQL

1.4 Basic Structure of SQL Queries

1.5 Basic Data Types

1.6 SQL Commands

1.7 Useful Relational Operator

1.8 Aggregate Functions

1.9 SUM function

1.10 AVG Function

1.11 Check Your Progress

1.12 Answer to Check Your Progress

1.13 Model Questions

Introduction to DBMS Page 65

1.1 Learning Objectives

After going through this unit, the learner will able to learn:

 To define the SQL data definition

 Basic Structure of SQL Queries

 Set Operation

 Aggregate Functions

 SQL COMMANDS

1.2 Introduction

In June 1970 Dr. E. F. Codd published the paper, "A Relational Model of

Data for Large Shared Data Banks" in the Association of Computer Machinery

(ACM) journal. Codd's model is now accepted as the definitive model for

relational database management ystems (RDBMS).

Using Codd's model the language, Structured English Query Language

(SEQUEL) was developed by IBM Corporation in San Jose Research Center.

The language was first called SEQUEL but Official pronunciation of SQL is

ESS QUE ELL.

In 1979 Oracle introduced the first commercially available implementation of

SQL. Later other players join in the race. Today, SQL is accepted as the

standard RDBMS language.

We human beings communicate with each other with the help of language.

Similiarly, SQL stands for Structured Query Language is the language that a

database understands, and we will communicate to the database using SQL.

SQL is a 4TH generation database gateway language standardized by ANSI

(American National Standards Institute) for managing data held in a RDBMS

(Relational Database Management Systems).

What is SQL?

SQL works with database programs like DB2, MySQL, PostgreSQL, Oracle,

SQLite, SQL Server, Sybase, MS Access and much more. There are many

different versions of the SQL language, but to be in compliance with the ANSI

standard, they support the major keyword such as SELECT, UPDATE,

DELETE, INSERT, WHERE, and others. The following picture shows the

communicating with an RDBMS using SQL.

http://www.w3resource.com/mysql/mysql-tutorials.php
http://w3resource.com/PostgreSQL/tutorial.php
http://www.w3resource.com/oracle/index.php
http://www.w3resource.com/sqlite/

Introduction to DBMS Page 66

1.3 Characteristics of SQL

The following are the important features of SQL:

I. SQL can be used by a range of users, including those with little or no

programming experience.

II. It is non procedural language.

III. It reduces the amount of time required for creating and maintaining

systems.

IV. It is an English-like language.

1.4 Basic Structure of SQL Queries

The database in a relational database management system consists of a

collection of database tables. The basic structure of an SQL query contains of

three clause, select, from, and where.

Introduction to DBMS Page 67

1.5 Basic Data Types

Each column in an RDBMS table specifies/declares the types of data that

the columns stores. This enables RDBMS to use storage space more efficiently

by internally storing different types of data in different ways. ANSI SQL

includes the following basic data types.

1. CHARACTER

- CHARACTER(n) or CHAR(n): Fixed width n-character string, padded

with spaces as needed.

- CHARACTER VARYING(n) or VARCHAR(n): Variable width string

with a maximum size of n characters.

- NATIONAL CHARACTER(n) or NCHAR(n): Fixed width n-character

string supporting an international character set(Unicode Character).

- NATIONAL CHARACTER VARYING(n) or NVARCHAR(n):

Variable width string with a maximum size of n characters supporting an

international character set.

2. NUMERIC

- SMALLINT, INTEGER OR INT

- FLOAT, REAL and DOUBLE PRECISION

- NUMERIC(precision, scale) or DECIMAL(precision, scale) (e.g.

1234.56)

Introduction to DBMS Page 68

The number 1234.56 has a precision of 6 and a scale of 2. A scale of 0

indicates that the number is an integer.

3. DATE

- DATE: Date values (e.g. 1999-12-31).

- TIME: Time values (e.g. 23:30:10). The granularity of the time value is

usually a tick (100 nanoseconds).

- TIMESTAMP: Date and a Time put together (e.g. 1999-12-31 23:30:10).

4. BIT

- BIT: bit values (e.g. 0 or 1)

Additional NON-ANSI LARGE OBJECT data types - CLOB, BLOB,

LONG, RAW, LONG RAW (Oracle specific); VARBINARY(n) (MSSQL

Server specific)

1.6 SQL Commands

The scope of SQL includes schema creation and modification, data access

control, data insert, query, update and delete. SQL Commands are broadly

classified into the following categories:

Data Definition Language (DDL): DDL stands for Data Definition

Language. These statements are used to define the database structure (also

known as database schema). Given below are the DDL statements:

 CREATE – CREATE is used for creating database objects, such as tables,

views, indexes, etc.

 DROP – DROP is used for deleting database objects.

 ALTER – ALTER is used for modifying the structure of database objects.

 RENAME – RENAME is used for renaming database objects.

 TRUNCATE – TRUNCATE is used for deleting all records from a table.

 COMMENT – COMMENT is used for adding comments to a data

dictionary.

Data Manipulation Language (DML): These statements are used to

manage data within database objects. Given below are the DML

commands:

 SELECT – SELECT is used to retrieve data from a database.

Introduction to DBMS Page 69

 INSERT – INSERT is used to insert data into a table.

 UPDATE – UPDATE is used to update existing data within a table.

 DELETE – DELETE is used to delete all records from a table, the space

for the records remain.

 MERGE – MERGE is used to UPSERT operation (conditional

INSERT/UPDATE).

 CALL – CALL is used to call a PL/SQL or Java subprogram.

 EXPLAIN PLAN – EXPLAIN PLAN is used to explain access path to

data.

 LOCK TABLE – LOCK TABLE is used to control concurrency.

Data Query Language (DQL): Data Query Language (DQL) mainly deals

with SQL SELECT statement for retrieving data from a database

 SELECT – SELECT command is used to select statement for retrieving

data from a database

Transaction Control Language (TCL): The TCL statements are used to

manage the changes made by DML statements. It allows statements to be

grouped together into logical transactions.

 COMMIT – COMMIT saves the work done.

 SAVEPOINT – SAVEPOINT identifies a point in a transaction to which

you can later roll back.

 ROLLBACK – ROLLBACK restores database to original state since the

last COMMIT.

 SET TRANSACTION – SET TRANSACTION changes transaction

options like isolation level and what rollback segment to use.

Data Control Language (DCL): DCL stands for Data Control Language.

Given below are the DCL statements:

 GRANT – GRANT command gives user's access privileges to database.

 REVOKE – REVOKE command withdraws access privileges given with

the GRANT command.

Introduction to DBMS Page 70

1.7 USEFUL RELATIONAL OPERATORS

 In a Relational Database environment, operators are needed to derive

information from the data stored in the database tables. As the tables are set of

rows and columns, the relational operators should operate on sets. That is why

some of the classical set theory operators like UNION, INTERSECTION,

EXCEPT and JOIN operators also show up as relational operators.

UNION operator : The UNION relational operator allows to join information

from two or more tables that have the same structure. Tables with same

structure means :

The tables must have the same number of columns.

The corresponding columns must have identical data types and lengths.

 The syntax for the SQL UNION is as :

 SELECT column_name(s) FROM table_name1

 UNION

 SELECT column_name(s) FROM table_name2

 The union of two tables returns all the rows that appear in either table.

The duplicate rows are eliminated. To allow the duplicate values the UNION

ALL operator is used. The syntax of which is as :

 SELECT column_name(s) FROM table_name1

 UNION ALL

 SELECT column_name(s) FROM table_name2

 Suppose there are two tables called EMP and CUST having three

columns each and also suppose the data types of each of the corresponding

columns in the tables are the same. Suppose the table have the following data

in them.

SELECT * FROM EMP;

First

Name

Last Name Age

Manab Nath 32

Rahul Sarma 40

Binod Moshahary 35

 SELECT * FROM CUST;

First Name Last Name Age

Introduction to DBMS Page 71

Hemant Rajkonwar 36

Manab Nath 32

Manash Kalita 25

 Now, the Union of the above two tables displays a virtual result table

containing all rows of the first table as well as all the rows of the second table.

 SELECT * FROM EMP

 UNION

 SELECT * FROM CUST;

The result table will be as follows:

First Name Last Name Age

Binod Moshahary 35

Hemant Rajkonwar 36

Manab Nath 32

Manash Kalita 25

Rahul Sarma 40

INTERSECTION operator : The SQL INTERSECT operator also operates on

two tables but unlike the UNION operator, it returns only those rows that

appear in both the tables. It removes duplicate rows from the final result table.

The INTERSECT ALL operator does not remove duplicate rows from the

result table. The syntax for the INTERSECT operator is as :

 [SQL statement1]

 INTERSECT

 [SQL statement2]

 For example,

 SELECT * FROM EMP

 INTERSECT

 SELECT * FROM CUST;

 The result table would look as follows:

First Name Last Name Age

Manab Nath 32

Introduction to DBMS Page 72

 EXCEPT operator : The SQL EXCEPT operator returns all rows from

a database table that appears in the first table but that do not appear in the

second table.

 Example :

 SELECT * FROM EMP

 EXCEPT

 SELECT * FROM CUST;

 The output table would be as follows:

First Name Last Name Age

Binod Moshahary 35

Rahul Sarma 40

JOIN operator: The JOIN operator is a powerful relational operator which can

combine data from multiple tables. Tables are joined on the columns that have

the same data type and width. SQL supports different types of JOIN

operations — INNER, OUTER and CROSS.

The INNER JOIN is also known as Equi Join. This is because the SELECT

WHERE statement generally compares two columns of two different tables

with the equivalence operator ‗=‘. The syntax for this type of Join is as

follows:

 SELECT column_name(s)

 FROM table_name1

 INNER JOIN table_name2

 ON table_name1.column_name=table_name2.column_name

Suppose the PRODUCT table has the following data:

Prod_id prod_name prod_qty

P1 Shirt 100

P2 Trouser 100

P3 T-shirt 80

SALES table:

cust_id Prod_id quantity

Introduction to DBMS Page 73

C1 P1 35

C5 P3 55

 Now, to list the quantity of the products sold, the SQL statement would

be as :

 SELECT Product.prod_name, Sales.quantity

 FROM Product

 INNER JOIN Sales

 ON Product.Prod_id=Sales.Prod_id

 The result table would be as

Prod_name quantity

Shirt 35

T-shirt 55

OUTER JOIN is similar to INNER JOIN but is more flexible in selecting the

data from the tables. This type of Join is used to select data or rows from the

table on the left or right or both regardless of whether the other table has

common values.

 The syntax for LEFT Join is :

 SELECT column_name(s)

 FROM table_name1

 LEFT JOIN table_name2

 ON table_name1.column_name=table_name2.column_name

Suppose to list all the products along with the number of quantities sold, the

SQL statement would be as :

 SELECT Product. Prod_name, Product.prod_qty,

 Sales.quantity

 FROM Product

 LEFT JOIN Sales

 ON Product.Prod_id=Sales.Prod_id

 The result table would be as :

prod_name prod_qty quantity

Shirt 100 35

Introduction to DBMS Page 74

Trouser 100

T-shirt 80 55

The LEFT Join returns all the rows from the left table even if there are no

matches in the right table.

The RIGHT Join returns all the rows from the right table even if there are no

matches in the left table. The syntax is as follows:

 SELECT column_name(s)

 FROM table_name1

 RIGHT JOIN table_name2

 ON table_name1.column_name=table_name2.column_name

CROSS JOIN returns a Cartesian product. Cartesian product means it returns

the number of rows that is equal to the product of all rows in both the tables

being joined. That is, it combines every row from the left table with every row

from the right table. For example, if the first table has 20 rows and the second

table has 10 rows, the result will be 20 * 10, or 200 rows. This type of query

takes a long time to execute. The pictorial representation of cross join syntax

is as:

1.8 AGGREGATE FUNCTIONS

 The database tables created with SQL commands stores large amount

of data. There are some aggregate functions in SQL to assist in the

summarization of the large volumes of data. These aggregate functions in SQL

returns a single value, calculated from the values in the column.

Useful aggregate functions are as follows:

AVG() ——-- Returns the average value

COUNT() -- Returns the number of rows

FIRST() -—- Returns the first value

LAST() -—— Returns the last value

Introduction to DBMS Page 75

MAX() -——-Returns the largest value

MIN() -——- Returns the smallest value

SUM() -—— Returns the sum

1.9 SUM Function

The SUM() function returns the total sum of the numeric values of a column.

The syntax is as follows:

 SELECT SUM <column_name> FROM <tablename>;

 To understand this function better, let us take an example. Suppose we

have the following data in the Products table.

PROD_ID PROD_NAME PROD_QTY

P1 T-Shirts 200

P2 Jeans 150

P3 Trousers 100

P4 Pull Overs 80

P5 Shirts 200

 SELECT SUM (prod_qty) ―Total Quantity‖ FROM Product;

 The result will be the total number of product quantities in the Product

table. So, the output of the above statement will be

 Total Quantity

 730

1.10 AVG Function

 The AVG() function calculates the average of the values in a specified

column. The syntax is as follows:

 SELECT AVG <column_name> FROM <tablename>;

 Let us take an example. Suppose the Employee table contains the

following data.

Emp_id Emp_name Phone Sex Salary

E1 Rani Patil 9856723451 F 34000

E2 Nirmali Das 9546751289 F 20000

E3 Binod Das 8856359341 M 45000

E4 Manav 9506781256 M 27000

Introduction to DBMS Page 76

SELECT AVG (salary) ―Average‖ FROM Employee;

 The output of the above statement will be as follows:

 Average

 31500

1.11 Answer to Check Your Progress

1. Fill in the blanks

a. The ……….function returns the total sum of the numeric values of a

column.

b. The database tables created with SQL commands stores large amount

of…………..

c. OUTER JOIN is similar to …………….but is more flexible in selecting

the data from the tables.

d. The ………..operator is a powerful relational operator which can combine

data from multiple tables.

e. …………..are set of rows and columns

f. The database in a ……………database management system consists of a

collection of database tables.

1.12 Answer to Check Your Progress

a. SUM()

b. Data

c. INNER JOIN

d. JOIN

e. Tables

f. Relational

1.13 Model Questions

1. What is SQL?

2. What are the characteristics of SQL?/

3. What are the advantage and disadvantage of SQL?

Introduction to DBMS Page 77

4. What are the data types and literals in SQL?

5. What is Boolean data type?

6. What is timestamp data type?

Introduction to DBMS Page 78

Unit -2

1.1 Learning Objectives

1.2 Introduction

1.3 Compound Conditions and Logical Operators

1.4 AND Operator

1.5 OR Operator

1.6 Combining AND and OR Operators

1.7 IN Operator

1.8 BETWEEN Operator

1.9 NOT Operator

1.10 Order of Precedence for Logical Operators

1.11 LIKE Operator

1.12 Concatenation Operator

1.13 Alias Column Names

1.14 ORDER BY Clause

1.15 Handling NULL Values

1.16 Check Your Progress

1.17 Answer to Check Your Progress

1.18 Model Questions

1.1 Learning Objectives

After going through this unit, you will be able to:

 learn how to manipulate the data in the database tables

 describe different types of operators used to handle the data

 illustrate the meaning of NULL values and also about how to handle them

1.2 Introduction

 We have already learnt in the previous unit about the basics of

Structured Query Language (SQL). We have already learnt the creation,

insertion and deletion of tables and data of the tables. SQL can also execute

queries against a database and can retrieve data from the databases. Updating

of data in tables can also be performed in the tables.

Introduction to DBMS Page 79

In this unit we will discuss the operators that are used to operate the data in the

database tables. Operators are used in almost every SQL statement. They are

used to compare, evaluate or calculate values. They tell SQL how to evaluate

an SQL expression or a conditional statement. We will find here that operators

are mostly used in the WHERE clause of the SQL statement.

1.3 Compound Conditions and Logical Operators

 Compound conditions are simple conditions that are joined by

logical operators. An operator is a symbol specifying an action that is

performed on one or more expressions. Logical operators test for the truth of

some condition. Most operators will appear inside conditional statements in

the WHERE clause of SQL Commands. The logical operators in SQL are as

follows:

 AND, OR and NOT.

 The syntax for a compound condition is as follows:

 SELECT <column_name >

 FROM <table_name >

 WHERE <simple condition >

 {[AND|OR] simple condition};

1.4 AND Operator

 SQL AND joins together two or more conditions and returns result

only when all of the conditions are true. AND helps to query for very specific

records. There is no limit to the number of AND conditions that can be applied

to a query by utilizing the WHERE clause.

 For example, the following query will find out only the rows where the

customer identity is ‗c10‘ and the product identity is ‗p5‘. It will not find a

row for customer identity ‘c12‘ and product identity p5.

 SELECT *

 FROM Sales

 WHERE cust_id=‘c10‘

 AND prod_id=‘p5‘;

 The output of the above query will be as follows:

Introduction to DBMS Page 80

Cust_id Prod_id Quantity

c10 p5 25

This example illustrates how SQL AND combines multiple conditional

statements into a single condition.

1.5 OR Operator

Logical OR compares two Booleans as expression and returns TRUE when

either of the conditions is TRUE and returns FALSE when both are FALSE.

otherwise, returns UNKNOWN (an operator that has one or two NULL

expressions returns UNKNOWN).

Example :

To get data of 'cust_code', 'cust_name', 'cust_city', 'cust_country' and 'grade'

from the 'customer' with following conditions -

1. either 'cust_country' is ‘USA‘,

2. or 'grade' of the 'customer' is 3,

the following SQL statement can be used :

SELECT cust_code,cust_name, cust_city,cust_country,grade

FROM customer

WHERE cust_country = 'USA' OR grade = 3;

Output :

CUST_CODE CUST_NAME CUST_CITY CUST_COUNTRY GRADE

C00001

Micheal

New York

USA

2

C00020

Albert

New York

USA

3

C00002

Bolt

New York

USA

3

C00010

Charles

Hampshair

UK

3

C00012

Steven

San Jose

USA

1

C00009

Ramesh

Mumbai

India

3

C00011

Sundariya

Chennai

India

3

Introduction to DBMS Page 81

1.6 Combining AND and OR Operators

The statements in SQL can be combined using the logical operators AND and

OR. SQL engine will display the results when all the conditions specified with

the AND operator are satisfied and when any of the conditions specified with

the OR operator are specified. Let us take an example to understand how to

combine these operators together into a single statement.

 Suppose the ‗Employee‘ table contains the following data in it:

emp_id emp_name position phone sex salary

e1 John Manager 9876412345 M 55000

e2 Rahul Asst. Manager 8812534675 M 34000

e3 Jutika Manager 9853510293 F 55000

e4 Kamal AGM 8812356473 M 80000

e4 Sona Executive 6723812345 F 20000

Fig : Table 1

Now, combining the AND and OR operators into a single statement,

 SELECT emp_id, emp_name

 FROM Employee

 WHERE Position = ‗Manager‘ AND sex=‘M‘

 OR Salary < 80000

 This statement would return all those records where the employee‘s

position is manager and is a male employee. It will also return those records

where the salary of the employee is less than 80000.

1.7 IN Operator

The IN operator is a comparison operator. It is used to compare a value to a

list of values that has been specified. It returns TRUE if the compared value

matches at least one of the values in the list. The syntax of the IN operator in

SQL is as follows:

 SELECT <column_name(s)>

 FROM< table_name>

 WHERE <column_name> IN (value1,value2,...);

 Suppose we have the following data in the PRODUCTS table.

Introduction to DBMS Page 82

PROD_ID PROD_NAME PROD_QTY

P1 T-Shirts 200

P2 Jeans 150

P3 Trousers 100

P4 Pull Overs 80

P5 Shirts 200

Suppose from the above table, we need the records of the product Id‘s P2, P4,

P5. The SQL statement for this query is as follows:

 SELECT *

 FROM Products

 WHERE prod_id IN (‗P2,‘P4',‘P5‘);

 The result-set will look like as follows:

PROD_ID PROD_NAME PROD_QTY

P2 Jeans 150

P4 Pull Overs 80

P5 Shirts 200

1.8 BETWEEN Operator

 The BETWEEN operator is used with a WHERE clause to test whether

a value lies in a specified range of values. x is BETWEEN a and b means that

x >= a and x <= b. This is also a comparison operator. The syntax of

BETWEEN operator is as follows:

 SELECT <column_name(s)>

 FROM <table_name>

 WHERE <column_name>

 BETWEEN value1 AND value2

 Suppose the ‗EMPLOYEE‘ table contains the following data in it:

Emp_id emp_name Phone Sex Salary

E1 Kabita 9876412345 F 20000

E2 Babita 8812534675 F 15000

Introduction to DBMS Page 83

E3 Neel 9853510293 M 25000

E4 Konika 8812356473 F 16000

E5 Manoj 6723812345 M 17000

The following example shows all the Employee details that gets salary

between Rs 16000 and Rs 25000.

SELECT * FROM Employee

 WHERE Salary BETWEEN 16000 and 20000;

 The result of the above query will be as given below:

Emp_id emp_name Phone Sex Salary

E1 Kabita 9876412345 F 20000

E3 Neel 9853510293 M 25000

E4 Konika 8812356473 F 16000

E5 Manoj 6723812345 M 17000

1.9 NOT Operator

 The NOT operator is used to display only those records which do not

satisfy the given conditions. Suppose from the EMPLOYEE table we want to

list the details of the employees who are not male. The SQL statement for this

query will be as follows:

 SELECT *

 FROM EMPLOYEE

 WHERE NOT sex=‘M‘

 The result of the above statement will be a follows:

Emp_id emp_name Phone Sex Salary

E1 Kabita 9876412345 F 20000

E2 Babita 8812534675 F 15000

E4 Konika 8812356473 F 16000

 The NOT operator can also be used with a comparison operator to

negate the result of the comparison.

Introduction to DBMS Page 84

 NOT BETWEEN

 NOT IN (value1, value2, value3,...)
 NOT LIKE

1.10 Order of Precedence for Logical Operators

 Operator precedence determines the sequence in which the operations

are performed in an SQL expression with multiple operators. While evaluating

the SQL statements with multiple operators, the operators with higher

precedence are evaluated first before evaluating those with lower precedence.

 When more than one logical operators are present in an SQL

expression, NOT is evaluated first, then AND and finally OR.

 Order of Precedence for logical operators is shown in the table below.

Arithmetic operators and comparison operators take higher precedence than

logical operators.

 Order Evaluated Operator

 1 Arithmetic operators

 2 Comparison operators

 3 NOT

 4 AND
 5 OR

1.11 LIKE Operator

 The LIKE operator is used with a WHERE clause to compare a

character string to a specified pattern. It also is a comparison operator. It

searches for the specified pattern in a column of a database table. This is

achieved by using wildcard characters. The two wildcard characters are —

 %– allows to match strings of any length, that is zero or more

characters.

 _ – allows to match a single character.

 The syntax for this operator is as follows:

 SELECT <column names>

 FROM <tablename>

 WHERE <column_name> LIKE <pattern>;

 Example 1 : List the employees whose names start with the letter ‗K‘.

Introduction to DBMS Page 85

 The SQL statement would be as follows:

 SELECT emp_id,emp_name FROM Employee

 WHERE emp_name LIKE ‗K%‘;

1.12 Alias Column Names

When data from a database is selected, the heading of the column is same in

the output as the column name in the database. The column heading can be

changed in the output, that is, a different column heading can be given to a

column in a table with the help of the alias column name of SQL. The alias

column name can be assigned in the column list of the Select statement using

the AS operator.

 The syntax for alias column names is as given below:

 SELECT column_name AS alias_name

 FROM table_name

For Example: To display the names of the employees from the Employee table

using alias column name, the following SQL statement is written.

 SELECT emp_name AS Name

 FROM Employee;

 The output of the above statement would be as follows:

 Name

 Kabita

 Babita

 Neel

 Konika

 Manoj

1.13 ORDER BY Clause

 The ORDER BY clause is used to display the output table of a query in

either ascending or descending alphabetical order. It sorts the individual rows

of a table. The syntax for the ORDER BY clause is:

 SELECT <column_names>

 FROM <Tablename>

 WHERE <predicates>

 ORDER BY <column_name>;

Introduction to DBMS Page 86

 The default sort order for ORDER BY clause is an ascending list, [a-z]

for characters and [0-9] for numbers. SQL can also sort the records in

descending order, [z-a]. The syntax is :

 SELECT <column_names>

 FROM <Tablename>

 WHERE <predicates>

 ORDER BY <column_name> DESC;

 Example 1:

 SELECT emp_name, salary

 FROM Employee

 ORDER BY salary ASC;

 This would return the records sorted by the salary field in ascending

order as given below:.

 emp_name salary

 Babita 15000

 Konika 16000

 Manoj 17000

 Kabita 20000

 Neel 25000

 Example 2:

 SELECT emp_name, salary

 FROM Employee

 ORDER BY salary DESC;

 This would return all the records sorted by the salary field in

descending order as given below:

 emp_name salary

 Neel 25000

 Kabita 20000

 Manoj 17000

 Konika 16000

 Babita 15000

Introduction to DBMS Page 87

1.14 Handling NULL Values

NULL value means unknown or missing data value. SQL treats any zero-

length string like a NULL value. Sometimes there may be records in a table

containing no value. This may be because during the data entry time the data

was not available or for some rows in a table that particular field is not

applicable. A table column, by default, can have NULL values. The NULL

value is different from other values like a blank or a zero as zero is a numeric

value and a blank space is a character value.

NULL values in a column of a database table can be tested by using the

operators IS NULL and IS NOT NULL. Suppose to display the records with

NULL values in the Phone column of the Employee table, the following

expression can be written in SQL.

 SELECT emp_name, phone FROM Employee

 WHERE phone IS NULL;

 Constraints can be applied to table columns to prevent the addition of

invalid data or deletion of data that is required to maintain the overall

consistency of the database. The constraints are used to control the data being

entered into a database table.

 In SQL, NOT NULL constraint can be defined at the column level in

addition with the primary and foreign key. This constraint when defined on a

column means that the column cannot be left empty. It becomes a mandatory

column and a value must be entered into it.

 The syntax for it is as:

 <column_name> <datatype>(<size>) NOT NULL

 For example, to create a student table, the SQL statement is –

 CREATE TABLE Student(

 Roll_no varchar2(10),

 Name varchar2(20),

 D_o_b date NOT NULL,

 Address varchar2(30));

 When inserting values in the columns of the Student table, the date of

birth (d_o_b) field if not entered will display a error message. This field value

has to be entered or each row in the table data.

 The NOT NULL constraint can be applied only at the column level of

a table.

Introduction to DBMS Page 88

1.15 DISTINCT Clause

 The SQL DISTINCT clause is used to eliminate the retrieving of the

duplicate rows from a database table. It works with the SQL SELECT clause

and it selects only the distinct or unique data from the database tables. For

example, from the EMPLOYEE table of figure Table1, if we want to list the

positions given to the employees, the SQL statement would be as :

 SELECT DISTINCT position

 FROM Employee;

 The result of this query would be given as :

 Position

 Manager

 Asst. Manager

 AGM

 Executive

 The SQL DISTINCT expression returns a list of the position found in

the ‗position‘ column of the Employee table but it will remove the duplicates

and will give only a single entry for each position.

1.16 Check Your Progress

Q.1. Fill up the blanks:

 a) An __________ is a symbol specifying an action that is performed on

one or more expressions.

 b) Logical operators join the simple conditions in SQL to form

__________.

 c) AND operator returns result only when all of the conditions given in

the SQL statement are __________.

 d) The OR operator in SQL returns result only when __________ of the

condition in the expression is true.

 e) To compare a value to a list of values specified in an SQL expression,

the __________ operator is used.

 f) The IN operator returns __________ if the compared value

matches at least one of

 the values in the list.

Introduction to DBMS Page 89

Q.2. State TRUE or FALSE:

a) To display records which do not satisfy the conditions specified in the SQL

expression, the NOT operator is used.

b) The NOT operator cannot be used in conjunction with any other operator in

SQL.

c) While evaluating the SQL statements with multiple operators, the operators

with higher precedence are evaluated first before evaluating

those with lower precedence.

d) Logical operators has higher precedence than the arithmetic operators.

e) The LIKE, BETWEEN and IN operators are comparison operators.

f) The LIKE operator can include two ―wildcard‖ characters underscore (

 _) and percent sign (%).

Q.3. Fill in the blanks:

 a) The NOT operator can also be used with a comparison operator

to __________ the result of the comparison.

 b) __________ determines the sequence in which the operations are

performed in an SQL expression with multiple operators.

 c) OR operator has __________ precedence than NOT.

 d) LIKE searches for a specified __________ in a column of a

database table.

 e) The wildcard character underscore (_) allows to match a

__________ character.

f) The operators with higher precedence are evaluated __________

before evaluating those with lower precedence.

1.17 Answer to Check Your Progress

Ans. to Q. No. 1 : a) Operator, b) Compound conditions, c) True,

 d) any, e) IN, f) TRUE

Ans. to Q. No. 2 : a) True, b) False, c) True, d) False, e) True, f) True

Ans. to Q. No. 3 : a) negate, b) Operator precedence, c) lower

 d) pattern, e) single, f) first

Introduction to DBMS Page 90

1.18 Model Questions

1. Explain the SQL logical operators with examples.

2. What is the difference between LIKE operator and BETWEEN operator?

3. How can you sort the records of a table in the output table?

4. What do you mean by NULL value? How can be a NULL value in any

column be tested? How can you prevent NULL values in a column of a table?

Introduction to DBMS Page 91

Unit-3

Normalization
1.1 Learning Objectives

1.2 Introduction

1.3 Normalization and Its Objectives

1.4 Normal Forms

1.4.1 First Normal Form (1NF)

1.4.2 Second Normal Form (2NF)

1.4.3 Third Normal Form (3NF)

1.4.4 Boyce-Codd Normal Form (BCNF)

1.4.5 Fourth Normal Form (4NF)

1.4.6 Fifth Normal Form (5NF)

1.5 Check Your Progress

1.6 Answers To Check Your Progress

1.7 Model Questions

Introduction to DBMS Page 92

1.1 Learning Objectives

After going through this unit, the learner will be able to:

 understand what is normalization

 list out the objectives of normalizations

 describe 1st, 2nd and 3rd normal forms

 illustrate fourth and fifth normal forms

1.2 Introduction

In the previous unit, we have learn about the two important concepts in

database design i.e. functional dependency and decomposition which helps in

minimizing the redundancy in database design. In this unit , we will

concentrates on the discussion of normalization. Normalization is the process

of efficiently organizing data in a database. Normalization is the name given

to the process of simplifying the relationship among data elements in a record.

We will introduce you the different types of normalizations and brief

discussion on it.

1.3 Normalization and Its Objectives

Normalization is a process of decomposing a set of relations(table)

with anomalies to produce smaller and well-structured relations that contain

minimum or no redundancy. The basic objectives of normalization are to

reduce redundancy, which means that information is to be stored only once.

Storing information several times leads to wastage of storage space and

increase in the total size of the data stored. Normalization provides the

designer with a systematic and scientific process of grouping of attributes in a

relation.

The normalization process can be defined as a procedure of analyzing and

successive reduction of the given relational schemas based on their FDs and

primary keys to achieve the desirable properties of -

i. minimizing redundancy,

ii. minimizing insertion, deletion and update anomalies.

Introduction to DBMS Page 93

The process of normalization was first proposed by E.F. Codd. Normalization

is a bottom up design technique for relational database.

The objectives of the normalization process are:

1. To create a formal framework for analyzing relation schemas based on

their keys and on the functional dependencies among their attributes.

2. To free relations from undesirable insertion, update and deletion

anomalies.

3. To reduce the need for restructuring the relations as new data types are

introduced.

4. To carry out series of tests on individual relation schema so that the

relational database can be normalized to some degree. When a test fails,

the relation violating that test must be decomposed into relations that

individually meet the normalization test

1.4 Normal Forms

Whenever the simple rules of functional dependencies are applied to a

relations, it transforms the relations into a state which called normal form. The

normal forms are used to ensure that various types of anomalies and

inconsistencies are not introduced into the database. Various types of normal

forms are used in relational data base, they are :

 First normal form (1 NF)

 Second normal form (2 N

 Third normal form (3 NF)

 Boyce/Codd normal form (BCNF)

 Fourth normal form (4 NF)

 Fifth normal form (5NF)

1.4.1 First normal form (1 NF)

A relation is said to be in first normal form if the values in the domain of each

attribute of the relation are atomic. The first normal form prohibits

multivalued attributes, composite attributes and their combinations. It means

Introduction to DBMS Page 94

that, 1NF disallows having a set of values, a tuple of values, or combination of

both as an attribute value for a single tuple.

Let us consider the relation TRAVEL_INFO as shown in the figure.

Here, in the relation the domain VISITED_CITY is not simple. Hence, the

relation is un-normalized. Now, let us combine the respective rows in

VISITED_CITY with the value of the attribue PERSON and the resultant

relation is shown below –

let us consider another relation PATIENT_DOCTOR, which keeps the records

of appointment details between patient and doctors. This relation is in 1NF.

The relational table can be depicted as -

PATIENT_DOCTOR (P_NAME, DOB, D_NAME, DATE_TIME, PHONE,

DURATION)

Introduction to DBMS Page 95

From the relational table we have observed that a doctor cannot have two

simultaneous appointments so D_NAME and DATE_TIME is a compolsite

key. Similarly, a patient cannot have same time from two different doctors.

Therefore, P_NAME and DATE_TIME attributes are also a candidate key.

Problems in 1 NF :

1. NF contains redundant information. In our example, PATIENT_DOCTOR

relation has the following errors :

a. There exists redundant information in patients date of birth and phone

number.

b. A doctor, who does not currently have an appointment with a patient,

cannot be represented.

c. A patient, who does not currently have an appointment with a doctor,

cannot be represented

Functional dependancy diagram of the relation PATIENT_DOCTOR is

shown. Here, P_NAME, DURATION, DOB are dependent on the key

Introduction to DBMS Page 96

D_NAME & DATE_TIME and doctor‘s contact number i.e. PHONE is only

dependent on the D_NAME.

1.4.2 Second Normal Form (2NF)

A relation or table is said to be in second normal form (2NF) if and only if -

a. It is in 1NF,

b. Each non-primary key attribute is fully functionally dependent on primary

key of that relation.

2NF is an intermediate step towards higher normal forms. 2NF is based on the

concept of full functional dependency. It eliminates the problems of 1NF.

So, we come to know that, no attributes of the relation (or table) should be

functionally dependent on only one part of a concatenated primary key. In our

example, we have seen from the functional dependency diagram that, PHONE

is partially dependent only on D_NAME, for which the relation is not in 2NF.

Therefore, to bring the relation into 2NF, the information about doctor and

their contact numbers have to be separated from information about patient and

their appointments with doctors. Thus, the relation is decomposed into two

tables, namely PATIENT_DOCTOR and DOCTOR as shown below. The

relational table can be depicted as:

Introduction to DBMS Page 97

The functional dependency diagram of the above two relations are shown

below:

Introduction to DBMS Page 98

Problems in 2 NF:

In the relation (or table) PATIENT_DOCTOR, deleting a record from it may

lose patient‘s details.

Any changes made on the PATIENT_DOCTOR table may involve in

changing multiple records because the information in the table is still

redundant.

1.4.3 Third Normal Form (3NF)

A relation or table is said to be in third normal form (3NF) if the relation is in

2NF and the non-prime attributes are -

a. mutually independent,

b. Functionally dependent on the primary key.

It means that, no attributes of the relation should be transitively functionally

dependent on the primary key. Thus, in 3NF, no non-prime attribute is

functionally dependent on another non-prime attribute. This means that a

relation in 3NF consists of the primary key and a set of independent nonprime

attributes. 3NF is based on the problem of transitive dependency. The 3NF

eliminates the problem of 2NF.

In our example, in the Fig 8.5, relation PATIENT_DOCTOR, there is no

dependency between the attributes P_NAME and DURATION. Again,

P_NAME and DOB are mutually dependent. So, the relation is not in 3NF.

To bring the relation into 3NF, it has to be decomposed and remove the

attributes that are not directly dependent on the primary key. Now, using the

transitive dependency, DOB can be linked to the primary key, through its

dependency on the P_NAME. The functional dependency diagram is shown

below. Now, the relations uses are –

Introduction to DBMS Page 99

Here, the dependency Roll_No -> Hostal_Name is transitive through the

following two dependencies :

Roll_No -> Year,

Year -> Hostal_Name

Thus, the STUDENT relation is not in 3NF. To bring the relation into 3NF we

can decompose the relation into two relation STUD1 and STUD2, as shown

below.

Introduction to DBMS Page 100

In the above examples, the conversion into 3NF is not hard, but whenever a

relation has more than one combination of attributes that may be considered as

primary key then the conversion becomes problematic. Let us consider the

following relation UTILIZE, shown below.

The relation stores the machines information used by both projects and project

managers. Each project has one prooject manager and each project manager

manages one project. Now it is obvious from the table that , we can consider

any one of the combination of attributes as primary key, namely, {Project,

Introduction to DBMS Page 101

Machine} or {Proj_Manager, Machine}. The FDD for relation UTILIZE is

shown below.

In the relation, there is only one non-prime attribute called, QTY_Used, which

is fully functionally dependent on each of the two relations. Thus, the relation

UTILIZE is in 2NF. Moreover, there is only one non-prime attribute

Qty_Used, there can be no dependencies between non-prime attributes. Thus

the relation is also in 3NF.

Problems in 3NF:

If we consider the above relation i.e. UTILIZE, which is in 3NF, has the

following undesirable properties:

a. The project manager of each project is stored more than once.

b. A project manager cannot be stored until the project has ordered some

machines

c. A project cannot be entered unless that project‘s manager is known.

d. If a project‘s manager changes, some rows also must be changed.

1.4.4 Boyce-Codd Normal Form (BCNF)

The redundancy and the problems of 3NF can be eliminate by the use of the

Boyce-Codd normal form (BCNF) which was proposed by R.F. Boyce.

A relation (or table) R is said to be in BCNF if for every nontrivial FD : X --

>Y between attributes X and Y holds in R. It means -

Introduction to DBMS Page 102

From the above conditions we have come to know that, a relation must only

have candidate keys as determinants. Any relation in BCNF is also in 3NF and

consequently in 2NF. However, a relation in 3NF is not necessarily in BCNF.

The difference between 3NF and BCNF is that - if the functional dependency

A --> B, satisfy that B is a primary key attribute and A is not a candidate key,

then 3NF will allows this dependency in a relation.

Otherwise, if the functional dependency A -->B, satisfy that A must be a

candidate key, then this dependency will belongs to BCNF.

In our example, in relation (or table) Fig 8.12, does not satisfy the condition of

BCNF, as it contains the following two functional dependencies -

Proj_Manager --> Project

Project --> Proj_Manager

But neither Proj_Manager nor Project is a super key.

Now the relation UTILIZE can be decomposed into the following two BCNF

relations

UTILIZE(Project, Machine, Qty_Used)

PROJECTS(Project, Proj_Manager)

Both of the above relation are in BCNF. The only FD between the UTILIZE

attributes is

Project, Machine --> Qty_Used

and (Project, Machine) is a super key.

The two FDs between the PROJECTS attributes are

Project --> Proj_Manager

Proj_Manager --> Project

Both Project and Proj_Manager are super keys of relation PROJECTS and

PROJECTS is in BCNF.

LET US KNOW

We have already familiar with the term multi-valued dependencies. A multi-

valued dependency (MVD) is a functional dependency where the dependency

may be to a set and not just a single value.

Introduction to DBMS Page 103

It is defined as X--> --> Y in relation R(X, Y, Z), if each X value is associated

with a set of Y values in a way that does not depend on the Z values. Here, X

and Y are both subsets of R. The notation X --> --> Y is used to indicate that a

set of attriibutes of Y shows a multi-valued dependecy on a set of attributes of

X.

Always remember that

1. in a relation(or table), to contain an MVD, it must have three or more

attributes.

2. It is possible to have a table containing two or more attributes which are

inter-dependent multi-valued facts about another attribute. For a relation

to be MVD, the attributes must be independent of each other.

Let us consider the following relation to gain more concept on MVD.

Here, suppose that X is Person and Y is Skill_Type, then Z becomes the

combination { Project, Machine }. Suppose, a particular value of Person

―John‖ is selected. Consider all rows (tuples) that have some value of Z, for

example, Project = P1 and Machine = ―Shovel‖. The value of Y in thhis tuple

is ‗Programmer‘.

Consider also all tuples with same value of X, that is Person, but with some

other value of Z, say Project = ―P2‖ and Machine = ―Welding‖. The value of

Y in these tuple is again ‗Programmer‘.

The same set of values of Y is obtained for Person = ―John‖, irrespective of

the values chosen for Project and Machine. Hence, XY, or PersonSkill_Type.

If we find out the possible MVD‘s the following would be the results :

Introduction to DBMS Page 104

1.4.5 Fourth Normal Form (4NF)

A table is in the fourth normal form (4NF) if it is in BCNF and does not have

any independent multi-valued parts of the primary key.

The fourth normal form is related to the concept of a multi-valued dependency

(MVD). In simple terms, if there are two columns - A and B - and if for a

given A, there can be multiple values of B, then we say that an MVD exists

between A and B.

The fourth normal form is theoretical in nature. In practice, normalization up

to and including the third normal form are generally adequate. In certain

situations, the designers may also have to look at the BCNF. However, rarely

do we see the 4NF being employed for any real life use.

Let us consider the following STUDENT table (or relation):

We can see that there are two independent MVD facts in this relationship :

a) A student can study many subjects (i.e. Student --> --> Subject)

b) A student can learn many languages (i.e. Student -->--> Language)

The primary key for the STUDENT table is currently a composite key made

up of all the three columns in the table - Student, Subject and Language. In

other words, the primary key of the table is Student + Subject + Language.

The process of bringing this table into 4NF is : split the independent multi-

valued components of the primary key into two tables.

Therefore, let us split these two independent multi-valued dependencies into

two separate tables namely Student_Subject and Student_Language. The

resulting tables are shown below:

Introduction to DBMS Page 105

We have seen that, this decomposition reduces redundancy with respect to

both the independent MVD relationships, that is subject and language.

1.4.6 Fifth Normal Form (5NF)

A relation (or table) is said to be in the 5NF if and only if it is in 4NF and

every join dependency in it is implied by the candidate key.

There are some relations, which cannot be decomposed into two or higher

normal form relations by means of projection methods discussed in 1NF, 2NF,

3NF and BCNF. Such relations are decomposed into three or more relations,

which can be reconstructed by means of a three-way or more join operation.

This is called fifth normal form (5NF). The 5NF eliminates the problems of

4NF. 5NF allows for relations with join dependencies. Any relation that is in

5NF, is also in other normal forms namely 2NF, 3NF and 4NF. 5NF is mainly

used from theoretical point of view and not for practical database design.

1.5 Check Your Progress

1. Select the correct answer from the following:

a) Normalization is a process of

i. decomposing of a set of relation.

ii. successive reduction of relation schema.

Introduction to DBMS Page 106

iii. deciding which attributes in a relation to be grouped together.

iv. all of these.

b) A normal form is

i. a state of a relation that results from applying simple rules regarding

FD.

ii. the highest normal form condition that it meets.

iii. an indication of the degree to which it has been normalized.

iv. all of these.

c) In 1NF,

i. all domains are simple.

ii. in a simple domain, all elements are atomic

iii. both (i) & (ii)

iv. none of these

d) 2NF is always in

i. 1NF

ii. BCNF

iii. MVD

iv. none of these

e) A relation R is said to be in 2NF

i. if it is in 1NF.

ii. every non-prime key attributes of R is fully functionally dependent on

each relation key of R.

iii. if it is in BCNF.

iv. both (i) & (ii).

f) A relation R is said to be in 3NF if the

i. relation R is in 2NF

ii. non prime attributes are mutually independent.

iii. functionally dependent on the primary key.

iv. all of these.

g) 4NF is concerned with dependencies between the elements of compound

keys composed of

i. one attributes

ii. two attributes

iii. three or more attributes

iv. none of these

Introduction to DBMS Page 107

2. Fill in the blanks of the following:

a) first developed the process of normalization.

b) A relation is said to be in 1NF if the values in the domain of each

attribute of the relation are

c) 2NF can be violated only when a key is a key or one that

consists of more than one

d) In 3NF, no non-prime attribute is functionally dependent on

e) Relation R is said to be in BCNF if for every non-trivial FD :

between attributes Xand Y holds in R.

f) A relation is in BCNF if and only if every determinant is a

g) Any relation in BCNF is also in and consequently in

............... .

h) 4NF is violated when a relation has undesirable

1.6 Answer to Check Your Progress

1. a. (iv), b. (iv), c. (ii), d. (i), e. (iv), f. (iv), g. (iii)

2. a) E.F.Codd, b) atomic, c) composite, attribute, d) another non-prime

attributes, e) X Y, f) candidate key, g) 3NF, 2NF, h) multi-valued

dependencies.

1.7 Model Questions

1. What is normalization?

2. When is a table in 1NF?

3. When is a table in 2NF?

4. When is a table in 3NF?

Introduction to DBMS Page 108

Block-3

Unit-1
1.1 Learning Objectives

1.2 Introduction

1.3 Keys

1.4 Types of Keys

1.4.1 Super Key

1.4.2 Candidate Key

1.4.3 Primary Key

1.4.4 Alternate Key

1.4.5 Composite Key

1.4.6 Foreign Key

1.5. Check Your Progress

1.6. Answers to Check Your Progress

1.7. Model Questions

1.1 Learning Objectives

After going through this unit, the learner will be able to:

 Learn about the concept of key and its uses

 Learn the different types of keys like super key, candidate key, alternate

key, primary key foreign key etc.

 Define primary and foreign key in a relation

 Use composite key

1.2 Introduction

In our previous unit, we have seen that in case of relational model, the

database is logically represented in the form of tables so that it can be easily

understood and visualized by everyone. The roles of the keys are very

important in case of relational databases. In fact, without keys relational

database will not be useable at all.

Introduction to DBMS Page 109

In this unit, we will discuss the concept of keys in a database. The use of

different types of keys will be covered in this unit.

1.3 Key

In a relational model, a database consists of relations (tables), which consists

of tuples (or records/rows), which further consist of attributes (or

fields/columns). We must have a way to specify how tuples within a relation

are distinguished. Each relation in a relational database must have an attribute

or combination of attributes such that they can uniquely identify the tuple.

This unique identifier is called key. A key is that data item that exclusively

identifies a record or tuple. It may consist of one or more attributes. We can

split related data into different relations or tables and logically linked them

together with the help of keys. Without this unique identifier, there is no way

to retrieve the unique tuple from a relation.

For example, let us consider the following relation (table). In this unit we may

use the terminologies table, row or record and field in place of relation, tuple

and attribute respectively.

STUDENT

Table 5.1

The above table gives us marks and grades of students of a particular class.

There are six records in the table ―STUDENT‖. Each record has the following

four fields: Roll_no, Name, Marks and Grade. As we can see, among the fields

Name, Marks and Grade, no one field can identify a record in the table

uniquely. The Name field, cannot be used as key because several student

might have the same name. Marks field contains more than one same marks.

Similarly, more than one students are with same Grade. So these three fields

cannot be used as key. However, the field Roll_no can easily identify any row

Introduction to DBMS Page 110

in the table uniquely. Roll numbers of students in a particular class are

different. So such fields can be used as key.

1.4 Types of Key

Every key which has the property of uniqueness can be distinguished as

follows:

 Super Key

 Candidate Key

 Primary Key

 Alternative Key

 Composite Key

 Foreign Key

1.4.1 Super Key

A super key is a set of columns that uniquely identifies every row in a table.

For example, if there is a table STUDENT with only two columns Roll_no and

Name, then the super key will be

{ Roll_no, Name}

if we assume that there are no two student in the class with the same Roll_no

as well as Name.

Similarly, let us consider a EMPLOYEE table (table 5.2) consisting of the

columns Emp_ID, Name and Post. We could use the Emp_ID in combination

with any or all other columns of this table to uniquely identify a row in the

table. Examples of superkeys in this table would be {Emp_ID}, {Emp_ID,

Name} and {Emp_ID, Name, Post}.

Introduction to DBMS Page 111

In a real database we do not need values for all of those columns to identify a

row. We only need a minimal set of columns that can be used to identify a

single row. In our example, the set {Emp_ID} is the minimal super key.

1.4.2 Candidate Key

A table can have more than one columns that could be chosen as the key

because they individually have the capability to identify a record uniquely.

These fields are termed as candidate keys. In other words, a candidate key is

any set of one or more columns whose combined values are unique among all

occurrences (i.e., tuples or rows or record). Since a null value is not

guaranteed to be unique, no component of a candidate key is allowed to be

null. Candidate keys are those attributes of a relation, which have the

properties of uniqueness and irreducibility. These two properties are explained

below:

Let K be a set of attributes of relation R. Then K is a candidate key for R if

and only if it possesses both of the following properties:

Uniqueness: No legal value of R ever contains two distinct tuples with the

same value for K.

Irreducibility: No proper subset of K has the uniqueness property.

Let us consider the following relation EMP_INFO containing some personal

information of employees working in an office. Suppose all of them have

passport.

Introduction to DBMS Page 112

The attribute Emp_ID and Passport_no posseses unique data item for each

employee. Therefore, any of these two attribute can be chosen as the key.

These two are examples of candidate keys in the above relation. The attribute

Name cannot be a candidate key as more than one employee might have

identical name. Similary, several employees might have same blood group. So

Blood Group cannot be chosen as key.

1.4.3 PRIMARY KEY

Every database table should have one or more columns designated as the

primary key. The value this key holds should be unique for each record in the

database. In a database, there can be multiple candidate keys. Out of all the

available candidate keys, a database designer can identify a primary key. The

primary key should be chosen such that its attributes are never or very rarely

changed.

A primary key is a field or combination of fields that uniquely identify a

record in a table, so that an individual record can be located without

confusion. Depending on its design, a table or relation may have arbitrarily

many unique keys but at most one primary key. For example, let us assume we

have a table called EMPLOYEE_ADDRESS that contains some information

for every employee in an organization. We should need to select an

appropriate primary key that would uniquely identify each employee. Our first

thought might be to use the employee‘s name i.e, Emp_Name. But this would

not work properly because two or more employees with the same name might

be possible in the organization. The Location field of a person cannot be

chosen as primary key since it is likely to change. A better choice might be to

Introduction to DBMS Page 113

use a unique Emp_ID number that the organization assign to each employee

when they are appointed. Emp_ID can be a primary key as it does not changed

till the person is working in the same organization.

In the table 5.1., student‘s Roll_no would be a good choice for a primary key

in the STUDENTS table. The student‘s name would not be a good choice, as

there is always the chance that more than one student with same name. Some

other examples of primary keys are Social Security Numbers (associated with

a specific person) , ISBN_no (associated with a specific book).

A primary key is a special case of unique keys. Unique key constraint is used

to prevent the duplication of key values within the rows of a table and allow

null values. Primary key allows each row in a table to be uniquely identified

and ensures that no duplicate rows exist and no null values are entered. Thus

primary key constraint can be defined as a rule that says that the primary key

fields cannot be null and cannot contain duplicate data.

Once we decide upon a primary key and set it up in the database, the database

management system (DBMS) will enforce the uniqueness of the key. If we try

to insert a record into a table with a primary key that duplicates an existing

record, the insert will fail. Sometimes, a table just does not have a primary

key. In such cases, we may need to introduce an additional column which

contains unique values. Most databases are also capable of generating their

own primary keys. Microsoft Access, for example, may be configured to use

the AutoNumber data type to assign a unique ID to each record in the table.

While effective, this is a bad design practice because it leaves us with a

meaningless value in each record in the table. It is better to use that space by

storing some useful data.

Properties of Primary Key

Introduction to DBMS Page 114

To qualify as a primary key for an entity, an attribute must have the following

properties:

Stable:

The value of a primary key must not change or should not become NULL

throughout the file of an entity. A stable primary key helps to keep the model

stable. For example, if we consider a patient record, the value for the primary

key (Patient number) must not change with time as would happen with the age

field.

Minimal:

The primary key should be composed of the minimum number of fields that

ensures the occurrences are unique.

Definitive:

A value must exist for every record at creation time. Because an entity

occurrence cannot be substantiated unless the primary key value also exists.

Accessible:

Anyone who wants to create, read or delete a record must be able to see the

Primary key value.

1.4.4 Alternate key

As we have seen, it is possible for a relation to have two or more candidate

keys. If we chose any one of them as primary key, then the remaining keys

will be termed as alternate key. The alternate key (or secondary key) is any

candidate key which is not selected to be the primary key. For the illustration

of alternate key, let us consider the following table ELEMENT which stores

some information like element name, symbol, atomic number of the elements

of periodic table.

Introduction to DBMS Page 115

All the three fields can individually identify each element in the table. So any

of these three fields can be chosen as the primary key . If we choose Symbol

as the primary key; Name and Atomic_no would then be alternate keys.

Similarly, in the EMP_INFO (table 5.3), if we consider Emp_ID as the

primary key then Passport_no will be the alternate key.

1.4.5 Composite key

In some situations, while designing a database, there may not be a particular

column or field that can individually identify a record uniquely in a table. In

such cases, we may require to select two or more fields so that combination of

those can identify each record uniquely. These combination of fields is known

as composite key. It is used when a record cannot be uniquely identified by a

single field.

For the illustration of composite key, let us consider the following table ITEM

with the fields Supplier_ID, Item_ID, Item_Name and Quantity. This table

gives us the information which supplier sells

which item. As we can see, any of these fields indivisually cannot identify a

row in the table uniquely. But if we combine Supplier_ID and Item_ID, then

these together can easily identify any row in the table uniquely. Thus,

Supplier_ID and Item_ID together becomes a composite key.

Introduction to DBMS Page 116

1.4.6 Foreign keys

One important type of key that we will discuss in this unit is the foreign key.

These keys are used to create relationships between tables.

A foreign key is a field in a relational table that matches the primary key

column of another table. It identifies a column or a set of columns in one

(referencing) table that refers to a column or set of columns in another

(referenced) table. The columns in the referencing table must be the primary

key or other candidate key in the referenced table. The values in one row of

the referencing columns must occur in a single row in the referenced table.

Thus, a row in the referencing table cannot contain values that donnot exist in

the referenced table. This way references can be made to link information

together and it is an essential part of database normalization. Multiple rows in

the referencing table may refer to the same row in the referenced table.

For example in an employees database, let us imagine that we wanted to add a

table DEPARTMENT containing departmental information to the database.

We would also want to include information about the employees in the

department, but it would be redundant to have the same information in two

tables (EMPLOYEE and DEPARTMENT). Instead, we can create a

relationship between the two tables.

Introduction to DBMS Page 117

Let us assume that the DEPARTMENT table uses the Department_Name

column as the primary key. To create a relationship between the two tables,

we add a new column to the EMPLOYEE table called Department_Name. We

then fill in the name of the department to which each employee belongs. The

Department_Name column in the EMPLOYEE table is a foreign key (FK) that

references the DEPARTMENT table. The database will then enforce

referential integrity by ensuring that all of the values in the Department

column of the Employees table have corresponding entries in the

DEPARTMENT table.

Again, let us consider a book database. The BOOKS table has a link to the

publishers table. The Pub_ID column is the primary key for the PUBLISHERS

table and ISBN_no is the primary key for the BOOKS table. The BOOKS

table also contains a Pub_ID column which matches the primary key column

of the publishers table. This Pub_ID is the foreign key in the BOOKS table.

The Pub_ID field in the BOOKS table indicates which publisher a book

belongs to.

Introduction to DBMS Page 118

Although the primary purpose of a foreign key constraint is to control the data

that can be stored in the foreign key table, it also controls changes to data in

the primary key table. For example, if the row for a publisher is deleted from

the publishers table, and the publisher‘s ID is used for books in the BOOKS

table, the relational integrity between the two tables is broken; the deleted

publisher‘s books are orphaned in the BOOKS table without a link to the data

in the publishers table. A foreign key constraint prevents this situa-tion. The

constraint enforces referential integrity by ensuring that changes cannot be

made to data in the primary key table if those changes invalidate the link to

data in the foreign key table. If an attempt is made to delete the row in a

primary key table or to change a primary key value, the action will fail if the

deleted or changed primary key value corresponds to a value in the foreign

key constraint of another table. To change or delete a row in a foreign key

constraint successfully, we must first either delete the foreign key data in the

foreign key table or change the foreign key data in the foreign key table,

thereby linking the foreign key to different primary key data. i.e., a primary

key constraint cannot be deleted if referenced by a foreign key constraint in

another table; the foreign key constraint must be deleted first.

1.5 Check Your Progress

1. State whether the following statements are true or false:

(a) A key is that data item that exclusively identifies a record.

(b) A table or relation may have arbitrarily many unique keys but at most one

primary key.

(c) The alternate key is any candidate key which is not selected to be the

Introduction to DBMS Page 119

primary key.

(d) Unique key constraint is used to allow the duplication of key values within

the rows of a table and allow null values.

(e) The primary key fields cannot be null and cannot contain duplicate data.

2. State whether the following statements are True or False:

(a) In a relational database, the foreign key of a relation would be the primary

key of an another relation.

(b) Foreign Key represents relationship between the tables.

(c) There may be more than one foreign key in a table.

1.6 Answer to Check Your Progress

1. (a) True (b)True (c) True (d) False (e) True

2. (a) True , (b) True, (c) False

1.7 Model Questions

1. Explain the following keys with examples:

 (i) Primary Key (ii) Candidate Key (iii) Super Key (iv) Alternate Key (v)

Foreign Key

2. Create a relation student and mark the different types of keys in it.

3. Explain the significance of primary key and foreign key in employee

database.

4. What is Keys? What are the different types of Keys?

5. Difference between candidate key and Super key?

6. Discuss the properties of primary key?

Introduction to DBMS Page 120

Unit-2
1.1 Learning Objectives

1.2 Introduction

1.3 Back up of Database

1.3.1 SQL Server Backup – Scopes and Types

1.3.2 Backup Scopes

1.3.3 Backup Types

1.3.4 Back Up Tools

1.4 Types of Database Failure

1.5 Types of Database Recovery

1.5.1 Developing a Backup and Recovery Strategy

1.5.2 General Types of Recovery

1.5.3 Structure of Recovery

1.5.4 Recoverable Database Backup Operations

1.5.5 Automated Backup Operations

1.6 Database Security

1.7 Check Your Progress

1.8 Answers to Check Your Progress

1.9 Model Questions

1.1 Learning Objectives

After going through this unit, the learner will be able to:

 understand the importance of back up in a database

 know the recovery process

 learn the different types of recovery operations

 difference between backup and recovery process

Introduction to DBMS Page 121

1.2 Introduction

Although most database systems have incorporated backup and recovery tools

into their interfaces and infrastructure with the growing dependency in the

workplace on information and general, and the information in a database

specifically, there has never been a time when safe backups and reliable

recoveries were more important. It is not just the data files that need to be part

of the backup process. You must also backup the transaction logs of the

database as well. Without the transaction logs the data files are useless in a

recovery event. How often you choose to perform these backup routines is

really dependent on the data requirements of a company.

1.3 Back up of Database

Backing up of a database is only the first step in the process. The next step is

to make sure those backups are protected. You also need to test the backups

and to ensure that they can be used to restore your database. Probably the most

common database backup technique involves backing up the database to a disk

on the same server. This is fine, provided the disk is a separate physical RAID

array from the one that your database sits on. Since backups are used to

recover from worst-case scenarios, they need to be protected from such

disasters. After all, what good are backups that will just be lost when the

server fails?

The two most common things to do with these backups are to either back them

up to tape shortly after they are saved to disk or move them to another server

for long-term storage. Either solution is acceptable since you are left with a

secondary backup. This way if the server fails and takes your original backups

with it, you can still restore the database.

Once you have your backups saved to another location — either tape or

another server — you then must ask yourself whether those backup can be

restored. Ensuring that your backups are going to be useful is an important

step in the backup process. Using the Verify Backup Integrity checkbox in the

Introduction to DBMS Page 122

maintenance plan is not enough; because it simply makes sure that the header

of the backup is correct without verifying the validity of the backup.

1.3.1 SQL Server Backup – Scopes and Types

One of the major advantages that enterprise-class databases offer over their

desktop counterparts is a robust backup and recovery feature set. Microsoft

SQL Server provides database administrators with the ability to customize a

database backup and recovery plan to the business and technical requirements

of an organization.

In this unit, we will explore the process of backing up data with Microsoft

SQL Server. When you create a backup plan, you‘ll need to create an

appropriate mix of backups with varying backup scopes and backup types that

meet the recovery objectives of your organization and are suitable for your

technical environment.

1.3.2 Backup Scopes

The scope of a backup defines the portion of the database covered by the

backup. It identifies the database, file(s) and/or file group(s) that SQL Server

will backup. There are three different types of backup scope available in

Microsoft SQL Server:

 Database backups cover the entire database including all structural

schema information, the entire data contents of the database and any

portion of the transaction log necessary to restore the database from

scratch to its state at the time of the backup. Database backups are the

simplest way to restore your data in the event of a disaster, but they

consume a large amount of disk space and time to complete.

 Partial backups are a good alternative to database backups for very large

databases that contain significant quantities of read-only data. If you have

read-only file groups in your database, it probably doesn‘t make sense to

back them up frequently, as they do not change. Therefore, the scope of a

Introduction to DBMS Page 123

partial backup includes all files in the primary file group, all read/write file

groups, and any read-only file groups that you explicitly specify.

 File backups allow you to individually backup files and/or file groups

from your database. They may be used to complement partial backups by

creating one-time-only backups of your read-only file groups. They may

also play a role in complex backup models.

1.3.3 Backup Types

The second decision you need to make when planning a SQL Server database

backup model is the type of each backup included in your plan. The backup

type describes the temporal coverage of the database backup. SQL Server

supports two different backup types:

 Full Backups include all data within the backup scope. For example, a full

database backup will include all data in the database, regardless of when it

was last created or modified. Similarly, a full partial backup will include

the entire contents of every file and file group within the scope of that

partial backup.

 Differential Backups include only that portion of the data that has

changed since the last full backup. For example, if you perform a full

database backup on Monday morning and then perform a differential

database backup on Monday evening, the differential backup will be a

much smaller file (that takes much less time to create) that includes only

the data changed during the day on Monday.

1.3.4 Backup Tools

You should keep in mind that the scope and type of a backup are two

independent decisions made when creating your backup plan. As described

above, each type and scope allows you to customize the amount of data

included in the backup and, therefore, the amount of time required to backup

and restores the database in the event of a disaster.

Introduction to DBMS Page 124

Using the SQL Database Backup and Restore console agent we can automate

the backup of SQL Databases. The input to the agent is in the form of an ini

file making it fully interactive. The agent can write event logs. Using this

agent we can create compressed backup of SQL Databases, restore the SQL

Database using this backup and delete the intermediate file. For best results

this agent should be used with Mobility backup software in the client server

mode

Other Tools of database backup are

 Active@ Partition Recovery

 Memory Card Recovery Software

 Acronis True Image Home Upgrade

 R-Drive Image

 Paragon Drive Backup Personal

 Recover USB Drive Files

 BootMaster Rescue Disk for Windows

 Driver Magician

 Handy Recovery

 WordFIX Data Recovery

 USB External Drive Recovery

1.4 Types of Database Failure

Database failures can be classified as transaction failure, media failure and

system failures. Some of the cause for which transaction of a database to fail

in the middle of execution:

1. System crash or computer failure: A hardware, software or network

failure or error may occurs in the computer system during transaction

execution.

Introduction to DBMS Page 125

2. Media failures: hardware crashes are generally media failures, such as

main memory failure.

3. A transaction or system error: Some operation in the transaction may

cause it to fail, such as integer overflow or division by zero. It may be

occurred due to some logical error.

4. Concurrency control enforcement: The concurrency control method

may decide to abort the transaction, to be restarted later, because it violates

serializability or because several transactions are in a state of deadlock.

5. Disk Failure: Some of the disk may be lose their data because of read or

write malfunction or because of a disk read/write head crash.

6. Physical problems: This referred to an endless list of problems that

include power or air conditioning failure, fire, theft, overwriting disk or

tapes by mistakes, mounting of a wrong tape by the operator.

1.5 Types of Database Recovery

The types of database recovery are

 Developing A Backup and Recovery Strategy

 General Types of Recovery

 Structure of Recovery

 Recoverable Database Backup Operations

 Automated Backup Operations

1.5.1 Developing A Backup and Recovery Strategy

Whether a business is small, medium or large business, it must have a well-

written plan for backing up the servers. Planning a backup strategy up-front

and documenting not only the backup process but also the restore process, will

save you a ton of time in the end. Because of its value to the company and the

sensitive nature of it, the classification of data must be carefully considered in

the planning stage. Based upon these classifications, the backup and restore

plan will need to be tested and adjusted. While planning stage, data should be

ranked according to sensitivity and value to the business.

Introduction to DBMS Page 126

With data that is highly valuable to a company, plans must include an

increased backup frequency due to the nature of the costs incurred while

recapturing data in case of a to disaster. Recoverability plans must also

consider the availability requirements of this data. With highly sensitive data,

plans must include encryption of backups, especially when this data is stored

offsite.

With a SQL Server, DBA‘s should also be concerned with the OS, the

applications that the server runs and finally the databases. In other words, the

entire server needs a backup and recovery plan. User databases are critical to

backup plan, but system databases that contain significant information like

Users, SQL Jobs and other system functionality, must also be taken into

account

A database can become unusable because of hardware or software failure, or

both. You may, at one time or another, encounter storage problems, power

interruptions, or application failures, and each failure scenario requires a

different recovery action. Protect your data against the possibility of loss by

having a well-rehearsed recovery strategy in place. Some of the questions that

you should answer when developing your recovery strategy are:

1. Will the database be recoverable?

2. How much time can be spent recovering the database?

3. How much time will pass between backup operations?

4. How much storage space can be allocated for backup copies and archived

logs?

5. Will table space level backups be sufficient, or will full database backups

be necessary?

A database recovery strategy should ensure that all information is available

when it is required for database recovery. It should include a regular schedule

for taking database backups and, in the case of partitioned database systems,

include backups when the system is scaled (when database partition servers or

nodes are added or dropped). Your overall strategy should also include

procedures for recovering command scripts, applications, user-defined

functions, stored procedure codes.

The concept of a database backup is the same as any other data backup: taking

a copy of the data and then storing it on a different medium in case of failure

Introduction to DBMS Page 127

or damage to the original. The simplest case of a backup involves shutting

down the database to ensure that no further transactions occur, and then

simply backing it up. You can then rebuild the database if it becomes damaged

or corrupted in some way.

The rebuilding of the database is called recovery. Version recovery is the

restoration of a previous version of the database, using an image that was

created during a backup operation. Roll forward recovery is the reapplication

of transactions recorded in the database log files after a database or a table

space backup image has been restored.

1.5.2 General Types of Recovery

Crash recovery is the automatic recovery of the database if a failure occurs

before all of the changes that are part of one or more units of work

(transactions) are completed and committed. This is done by rolling back

incomplete transactions and completing committed transactions that were still

in memory when the crash occurred.

Recovery log files and the recovery history file are created automatically when

a database is created (Figure 1). These log files are important if you need to

recover data that is lost or damaged.

Each database includes recovery logs, which are used to recover from

application or system errors. In combination with the database backups, they

are used to recover the consistency of the database right up to the point in time

when the error occurred.

The recovery history file contains a summary of the backup information that

can be used to determine recovery options, if all or part of the database must

be recovered to a given point in time. It is used to track recovery-related

events such as backup and restore operations, among others. This file is

located in the database directory.

The table space change history file, which is also located in the database

directory, contains information that can be used to determine which log files

are required for the recovery of a particular table space.

Introduction to DBMS Page 128

1.5.3 Structure of Recovery

You cannot directly modify the recovery history file or the table space change

history file; however, you can delete entries from the files using the PRUNE

HISTORY command. You can also use the rec_his_reten in database

configuration parameter to specify the number of days that these history files

will be retained.

Figure 1. Database recovery files

Data that is easily recreated can be stored in a non-recoverable database. This

includes data from an outside source that is used for read-only applications,

and tables that are not often updated, for which the small amount of logging

does not justify the added complexity of managing log files and rolling

forward after a restore operation. Non-recoverable databases have the

logarchmeth1 and logarchmeth2database configuration parameters set to

―OFF‖. This means that the only logs that are kept are those required for crash

recovery. These logs are known as active logs, and they contain current

transaction data. Version recovery using offline backups is the primary means

of recovery for a non-recoverable database. (An offline backup means that no

other application can use the database when the backup operation is in

progress.) Such a database can only be restored offline. It is restored to the

state it was in when the backup image was taken and roll forward recovery is

not supported.

Introduction to DBMS Page 129

Data that cannot be easily recreated should be stored in a recoverable

database. This includes data whose source is destroyed after the data is loaded,

data that is manually entered into tables, and data that is modified by

application programs or users after it is loaded into the database. Recoverable

databases have the logarchmeth1 or logarchmeth2 database configuration

parameters set to a value other than ―OFF‖. Active logs are still available for

crash recovery, but you also have the archived logs, which contain committed

transaction data. Such a database can only be restored offline. It is restored to

the state it was in when the backup image was taken. However, with roll

forward recovery, you can roll the database forward (that is, past the time

when the backup image was taken) by using the active and archived logs to

either a specific point in time, or to the end of the active logs.

1.5.4 Recoverable Database Backup Operations

Recoverable database backup operations can be performed either offline or

online (online meaning that other applications can connect to the database

during the backup operation). Online table space restore and roll forward

operations are supported only if the database is recoverable. If the database is

non-recoverable, database restore and roll forward operations must be

performed offline. During an online backup operation, roll forward recovery

ensures that all table changes are captured and reapplied if that backup is

restored.

If you have a recoverable database, you can back up, restore, and roll

individual table spaces forward, rather than the entire database. When you

back up a table space online, it is still available for use, and simultaneous

updates are recorded in the logs. When you perform an online restore or roll

forward operation on a table space, the table space itself is not available for

use until the operation completes, but users are not prevented from accessing

tables in other table spaces.

1.5.5 Automated Backup Operations

Since it can be time-consuming to determine whether and when to run

maintenance activities, such as backup operations, you can use the Configure

Introduction to DBMS Page 130

Automatic Maintenance wizard to do this for you. With automatic

maintenance, you specify your maintenance objectives, including when

automatic maintenance can run. DB2 then uses these objectives to determine if

the maintenance activities need to be done and then runs only the required

maintenance activities during the next available maintenance window (a user-

defined time period for the running of automatic maintenance activities).

Note: You can still perform manual backup operations when automatic

maintains is configured. DB2 will only perform automatic backup operations

if they are required.

1.6 Database Security

Database security protects the database against the unauthorized persons to

access a certain part of a database or the whole database. Database security is

very broad area that addresses many issues.

Types of Security:

1. In database Management System Some information may be deemed to be

private, such that it cannot be accessed by any unauthorized user.

2. Database security issues some policy for accessing data in various levels

like Governmental, Institutional, and corporate level as to what kind of

information should not be made publicly available.

3. System related security.

4. In case of database security, an organization should maintain security at

various levels and to categorize the data and the users‘ base on these

classifications. As for example – A Super admin level users have the

authority to insert, read and writes operation on the data. In admin level

user have the authority to insert and read the data but these type of user

cannot delete or modify the data in database permanently and in general

user level they can only read the data from database server

Goals of database security:

1. Loss of integrity: integrity is lost if unauthorized changes are made to the

data by intentionally or accidentally acts. If the lost of the system or data

integrity is not corrected, continued use of the corrupted data could result

in inaccuracy, fraud or erroneous decisions.

Introduction to DBMS Page 131

2. Loss of availability,

3. Laws of confidentiality- database confidentiality refers to the protection of

data from unauthorized users. Unauthorized, unanticipated or

unintentional disclosure could result in loss of public confidence,

embarrassment, or legal action against the organization.

1.7 Check Your Progress

Find True/False from the following :

1. Back Up and recovery is same thing.

2. Manual recovery is not possible.

3. SQL Server support back up but not the recovery process.

4. Back up and recovery are inherent process of database software.

5. Recovery gets more importance than Back up.

6. Normalization reduces the back up storage space.

1.8 Answer to Check Your Progress

1. False 2. False 3. False

4. True 5. False 6. True

1.9 Model Questions

1. Try to make difference between database Recovery and Back up process.

2. Describe the various type of back up operations.

3. Describe the various type of recovery process.

4. What is the database administrator responsibility in terms of recovery

operations?

5. What are the steps to restore the database in SQL Server?

6. What is database security?

7. What are the causes of database failure?

Introduction to DBMS Page 132

Unit-3
1.1 Learning Objectives

1.2 Introduction

1.3 Model Concept

1.3.1 Basic Terminology

1.3.2 Relational Schema and Instances

1.4 Integrity Constraints

1.4.1 Entity Integrity Constraints

1.4.2 Referential Integrity Constraints

1.5 Domain Constraints

1.6 The CODD Commandments

1.7 Check Your Progress

1.8 Answers to Check Your Progress

1.9 Model Questions

1.1 Learning Objectives

After going through this unit, the learner will be able to learn:

 Describe relational model and its advantages

 State different integrity constraints.

 Describe how data are organized in the form of tables.

1.2 Introduction

In the previous unit, we have discussed the properties of basic and

commercial data models and details of Entity-Relationship model.

This unit is an attempt to provide you the concept of relational model. Most of

the commercial DBMS products available in the industry are relational at core.

In this unit we will discuss the terminology, operators and operations used in

relational model. There are certain restrictions in formulating the relation

table. Those restrictions will also be discussed in this unit.

Introduction to DBMS Page 133

1.3 Model Concept

A model in database system basically defines the structure or organization of

data and a set of operations on that data. Relational model is a simple model in

which database is represented as a collection of ―Relations‖, where each

relation is represented by a two dimensional table. Thus, because of simplicity,

it is most commonly used in real world. Following table represents a simple

relation:

R_NO S_NAME ADDRESS MARKS

10 Sanjib Kaur Block -4, Noonmati 69

12 Padip Sen Ganeshguri 75

15 Bipul Prasad Bamunimaidan 58

Figure 4.1 A sample STUDENT relation

Properties of a table

A table should contain the following properties:

a. Each entry in a table represent one data item and two column headings

with the same name are not allowed.

b. In each column, the data items are of the same data type.

c. Each column is assigned with a distinct heading.

d. All rows are distinct; duplicate rows are not allowed.

e. Both the rows and the columns can be viewed in any sequence at any time

without affecting the information.

A relational database model uses a collection of tables to represent both data

and the relationships among those data items. Each table has multiple

columns, and each column has a unique name.

Properties of RDBMS

A relational database management system (RDBMS) has the following

properties:

a. Stores data in the form of tables.

b. Does not require the user to understand its physical implementation.

c. Provides information about its contents and structure in the system table.

d. Supports the concept of NULL values.

Introduction to DBMS Page 134

Following are some of the advantages of relational model:

a. Ease to use: Convenient to define and query the database as tables

contains rows and columns is quite natural even for first time users.

b. Flexibility: Data can manipulate easily with the help of relational

operations.

c. Precise: Since use mathematical operations, it can ensure accuracy and

less of ambiguity as compared to other model.

d. Security: security control and authorization can also be implemented more

easily. It has user‘s own authorization controls.

e. Data Independence: Data independence is achieved more easily with

normalization structure used in a relational database.

f. Data Manipulation Language: The possibility of responding to query on

relational algebra and relational calculus is easy in the relational database

approach.

1.3.1 Basic Terminology

The basic terminologies used in relational database model are:

Tuple (record) and attribute:

Each row in a table is called a tuple and a column name is called an attribute.

For example, Figure 4.3.1 represents a STUDENT relation where ROLL NO,

NAME, ADDRESS and MARKS are attributes and each entry against these

attributes is called tuple of relation STUDENT.

Domain:

A domain is a collection of all possible values from which the values for a

given column or attribute is drawn. So, every attribute in a table has a specific

domain. Values to these attributes cannot be assigned outside their domains.

For example, the domain of attribute NAME is the set of all alphabetic string

of finite length and the domain of a MRKS attribute should not be greater than

100 for the relation STUDENT in Figure 4.1.

Relation:

Introduction to DBMS Page 135

The table with all tuples and attributes is called relation. It has three

components: Name that represent by the title of the relation, Degree, the

number of column associated with the table and the Cardinality, the number of

rows in the table. For example, Figure 4.3.1 represents a relation named

STUDENT of degree 4, because it has total four attributes, and the cardinality

for this relation is 3(number of rows).

1.3.2 Relational Schema and Instances

A relation consists of Relational Schema and Relation Instances.

Relational Schema: A schema specifies the relation name, its attributes and

domain of each attribute. If R is the name of a relation and A1, A2, A3........An

are the attributes of R, then R(A1, A2,.......An) is called a relational schema.

Each attribute takes values from a specific domain D. For example, for Figure

5.1, the relational schema is

STUDENT (R_NO, S_NAME, ADDRESS, MARKS)

where, STUDENT is the name of the Relation and R_NO, S_NAME,

ADDRESS, and MARKS are four different attributes that represent the

relational schema.

Relation Instance: A relation instance denoted as r is a collection of tuples for

a given relational schema. The relation state of the relational schema

R(A1,A2,.......An) is denoted as r(R) is a set of n-tuples.

The relation schema is also called ‗intension‘ and relation state is called

‗extension‘.

1.4 Integrity Constraints

The term integrity refers to the accuracy or correctness of data in the database

schema and is expected to hold on every database instance of that schema.

Relational model includes two general integrity constraints. They are:

1.4.1 Entity Integrity Constraints

Entity Integrity Constraints states that no primary key value can be NULL.

This is because we use the primary key value to identify individual tuples in a

Introduction to DBMS Page 136

relation. It ensures that instances of the entities are distinguishable i.e., they

must have a unique identification of some kind. Primary keys perform that

unique identification function in a relational database.

1.4.2 Referential Integrity Constraints

Referential Integrity Constraint is specified between two relations and is used

to maintain the consistency among tuples of the two relations (not necessarily

be distinct). It uses a concept of foreign key which will be explained more

details in the next unit. Informally, it states that a tuple in one relation that

refers to another relation must refer to an existing tuple in that relation.

Considering the following relations,

EMPLOYEE

p.k

ENO ENAME DNO

101 Robert 10

102 Smith 12

103 Robindra 12

104 John 10

DEPARMENT

p.k

DNO DNAME LOCATION

10 Comp. Sc. Jalukbari

12 Electronic Sc. Guwahati

Figure 4.2: relational database table showing referential integrity

In the above figure EMPLOYEE and DEPARTMENT are two relations where

ENO and DNO are primary keys respectively. Here the attribute DNO of

EMPLOYEE table is a foreign key that gives the department number for

which each employee works. Hence its value in each EMPLOYEE tuple must

match the DNO value of some tuple in the DEPARTMENT relation.

1.5 Domain Constraints

It specifies that each attribute in a relation must contain an atomic value only

from the corresponding domains. The data types for commercial RDBMS

domains are:

Introduction to DBMS Page 137

 Standard numeric data types for integer

 Real numbers

 Characters

 Fixed length and variable length strings

Thus, domain constraint specifies the condition that we want to put on each

instance of the relation. So, the values that appear in each column must be

drawn from the domain associated with that column.

1.6 The CODD Commandments

There are twelve (12) rules formulated by E.F. Codd for RDBMS in 1970 to

define the requirements more rigorously within a single product. In reality it is

true to say that they do not all carry the same degree of importance, but can be

obtained a good result if an RDBMS satisfies all these twelve rules. The rules

are:

Rule 1: The information rule

All information is explicitly and logically represented in exactly one way – by

data values in tables. In simple terms this means that if an item of data does

not reside somewhere in a table in the database then it does not exist and this

should be extended to the point where even such information as table, view

and column names to mention just a few, should be contained somewhere in

table form.

Rule 2: The rule of guaranteed access

Every item of data must be logically addressable by resorting to a combination

of table name, primary key value and column name. For a table like storage

structure, this rule says that at the insertion of a column and row it is

necessarily find one value of a data item or null.

Rule 3: Systematic treatment of null values

In DBMS NULL values are supported in the representation of missing and

inapplicable information. This support for null values must be consistent

throughout the DBMS and independent of all data type.

Rule 4: Database description rule

The description of the database is held and maintained using the same logical

structures used to define the data, thus allowing users with appropriate

Introduction to DBMS Page 138

authority to query such information in the same way and using the same

languages as they would any other data in the database. It implies that there

must be a data dictionary within the RDBMS that is constructed of tables

and/or views that can be examined using SQL. Therefore a dictionary is

mandatory for RDBMS.

Rule 5: Comprehensive sub-language rule

There must be at least one language whose statements can be expressed as

character strings conforming to some well-defined syntax. In real terms, the

RDBMS must be completely manageable through its own extension of SQL.

Rule 6: View updating rule

All views that can be defined using combination of base tables, and

theoretically updatable, must also be capable of being updated by the system.

This is quite a difficult rule to interpret and with all sorts of aggregates and

virtual columns, it is obviously not possible to update through some of them.

Rule 7: Insert and update rule

An RDBMS do more than just be able to retrieve relational data sets. It has to

be capable of inserting, updating and deleting data as a relational set.

Rule 8: Physical independence rule

User access to the database, via monitors and application programs, must

remain logically consistent whenever changes to the storage representation, or

access methods to the data, are changed. For example, if an index is built and

destroyed by the DBA on a table, any user should still retrieve the same data

from that table.

Rule 9: Logical data independence

Application programs must be independent of changes made to the base tables.

This allows many types of database design change to be made dynamically,

without users being aware of them.

Rule 10: Integrity rule

The relational model includes two general integrity rules which we have

discussed in already in this unit. These integrity rule implicitly or explicitly

define the set of consistent database states, or changes of state, or both. Other

integrity constraints can be specified during database design.

Introduction to DBMS Page 139

Rule 11: Distribution rule

An RDBMS must have distribution independence. Thus, RDBMS package

must make it possible for the database to be distributed across multiple

computers even though they are having heterogeneous platforms both for

hardware and operating system.

This is one of the most attractive aspects of RDBMSs, database system built

on the relational framework are well suited to today‘s client/server database

design.

Rule 12: No subversion rule

If an RDBMS supports a lower level language that permits for example, row

at-a-time processing, then this language must not be able to bypass any

integrity rules or constraints of the relational language.

1.7 Check Your Progress

1. Fill in the blanks for the following.

1. In a relational database model, the columns of a table are called

_____________.

2. __________ is the rows in a table.

3. __________ is a collection of related files.

4. The number of columns in a table is the ___________ of the relation.

5. _________ is the number of rows in a table.

6. An entity is an object that is distinguishable from other objects by a specific

set of _____________

7. Collection of tuples for a relational schema at a particular time is called

8. A relation state of a relational schema R denotes as _________ if r is the

collection of tuples.

9. A relation state is also called __________

10. Relational schema contains name and ____________of that relation.

2. Fill in the blanks for the following

a. In a relational database, ________ are not allowed to have null values.

Introduction to DBMS Page 140

b. In a relational database, a referential integrity constraint is specified with

the help of __________.

c. The ________ in a record is a unique data item.

d. In a relation, each __________ name must have different meaning.

e. According to integrity rule 1, two _______ should be distinguishable from

each other.

3. Write whether the following statements are true or false or False (T/F):

a) Prime attribute have unique identifier.

b) The key field may be NULL in relational database.

c) Foreign key concept is used to explain Integrity Rule 1.

d) Domain constraint specifies the values related to instances.

e) According to referential integrity constraints, values of foreign key field of

that table are dependent on the values of primary key field of another table.

1.8 Answer to Check Your Progress

1.

1. Attribute 2. Tuple 3. Database 4. Degree

5. Cardinality 6. Attribute 7. Relation instance

8. r(R) 9. Extension 10. attribute

2.

1. (a) primary key (b) foreign key (c) key field

(d) attribute (e) entities

3.

(a) T (b) F (c) F (d) T (e) T

1.9 Model Questions

1. Define Relation and Domain as applicable to RDBMS.

2. Explain the properties adopted by a Relational Database Management

System?

3. What are the advantages of Relational Model?

4. State and explain the basic components of a Relation.

5. What do you mean by Integrity Constrains? Give a brief note on it.

6. What is Domain Constraint?

Introduction to DBMS Page 141

7. Explain any 6 Codd‘s rules for RDBMS.

8. According to Codd, how NULL values of a relation can be treated in an

RDBMS package.

References

1. http://ycpcs.github.io/cs320-spring2015/lectures/lecture09.html

2. http://datafiletech.blogspot.in/2012/09/components-of-dbms.html

3. https://opentextbc.ca/dbdesign01/chapter/chapter-14-database-users/

4. http://www.academia.edu/5776908/Advantages_n_disadvantages_of_DBM

S_and_different_data_types_in_MS_Access

5. http://www.terraligno.com/2014/09/overview-of-dbms-three-level.html

6. http://esciencelibrary.umassmed.edu/professional-educ/escience-

thesaurus/data-dictionary

7. http://www.mactech.com/articles/mactech/Vol.11/11.06/ClientServerData

base/index.html

8. http://ecomputernotes.com/fundamental/what-is-a-database/type-of-data-

models

9. http://ecomputernotes.com/fundamental/what-is-a-database/type-of-data-

models

10. http://www.gitta.info/DBSysConcept/en/html/DataModSchem_learningObj

ect2.html

11. http://ycpcs.github.io/cs320-spring2015/lectures/lecture09.html

12. https://dwbi.org/database/sql/28-introduction-to-ansi-sql

13. Database Management System by Krishna Kanta Handiqui State Open

University(www.kkhsou.in)

14. Advanced Database Management System by Krishna Kanta Handiqui State

Open University(www.kkhsou.in)

http://ycpcs.github.io/cs320-spring2015/lectures/lecture09.html
http://datafiletech.blogspot.in/2012/09/components-of-dbms.html
https://opentextbc.ca/dbdesign01/chapter/chapter-14-database-users/
http://www.academia.edu/5776908/Advantages_n_disadvantages_of_DBMS_and_different_data_types_in_MS_Access
http://www.academia.edu/5776908/Advantages_n_disadvantages_of_DBMS_and_different_data_types_in_MS_Access
http://www.terraligno.com/2014/09/overview-of-dbms-three-level.html
http://esciencelibrary.umassmed.edu/professional-educ/escience-thesaurus/data-dictionary
http://esciencelibrary.umassmed.edu/professional-educ/escience-thesaurus/data-dictionary
http://www.mactech.com/articles/mactech/Vol.11/11.06/ClientServerDatabase/index.html
http://www.mactech.com/articles/mactech/Vol.11/11.06/ClientServerDatabase/index.html
http://ecomputernotes.com/fundamental/what-is-a-database/type-of-data-models
http://ecomputernotes.com/fundamental/what-is-a-database/type-of-data-models
http://ecomputernotes.com/fundamental/what-is-a-database/type-of-data-models
http://ecomputernotes.com/fundamental/what-is-a-database/type-of-data-models
http://www.gitta.info/DBSysConcept/en/html/DataModSchem_learningObject2.html
http://www.gitta.info/DBSysConcept/en/html/DataModSchem_learningObject2.html
http://ycpcs.github.io/cs320-spring2015/lectures/lecture09.html
https://dwbi.org/database/sql/28-introduction-to-ansi-sql
http://www.kkhsou.in/
http://www.kkhsou.in/

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

