

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

INDEX

S.NO EXPERIMENT EXPERIMENT

NUMBER

REV. ISSUE

 DATE

PAGE NO

1 Program for Stack EXP-01 01 02-Sep-2009 2-9

2 Program Queue,

Circular Queue

EXP-02 01 02-Sep-2009 10-13

3 Program demonstrating

Stack operation

EXP-03 01 02-Sep-2009 14-19

4 Program for Stack

Using Linked List

EXP-04 01 02-Sep-2009 20-21

5 Program for Queue

Using Linked List

EXP-05 01 02-Sep-2009 22-30

6 Traversing of Tree

Using Linked List

EXP-06 01 02-Sep-2009 31-33

7 Queue Using Array EXP-07 01 02-Sep-2009 34-37

8 Program for Tree

Structure, Binary Tree,

Binary Search Tree

EXP-08 01 02-Sep-2009 38-41

9 Program for Heap Sort EXP-09 01 02-Sep-2009 42-43

10 Program for Quick Sort EXP-10 01 02-Sep-2009 44-48

11 Graph Implementation

BFS,DFS

EXP-11 01 02-Sep-2009 49-55

12 Deletion in BST EXP-12 01 02-Sep-2009 56-57

13 Insertion in BST

EXP-13 01 02-Sep-2009 58-60

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

Experiment No-1

IMPLEMENTATION OF STACK USING ARRAYS

After performing this experiment students are able to do-

Concept of array-

An array is a collection of elements of same data types. Ordinary variables are capable of

holding only one value at a time however there are some situation where we would want

to store more then one value at a time in a single variable e.g. we want to arrange the

percentage marks of 100 student In ascending order in such case we have two option,

construct 100 variables to store percentage or construct one variable capable of holding

all 100 variable, such a variable is called array.

Concept of switch statement- C programming language provides a multiple-branch

selection statement known as switch. Switch statement is a substitute for a series of if

….. Else or else ….. if statement. The basic format for using switch case is sown below-

A switch statement is used when one out of many course of action has to be selected.

 Switch (expression or variable)

 {

 case variable equals this :

 do this ;

 break;

 case variable equals this :

 do this ;

 break ;

 case variable equals this :

 do this ;

 break;

 .

 dfault :

 do this

 }

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

BACKGROUND-

STACK- A stack is a limited version of an array. New elements, or nodes as they are often

called, can be added to a stack and removed from a stack only from one end. For this

reason, a stack is referred to as a LIFO structure (Last-In First-Out).

Stacks have many applications. For example, as processor executes a program, when a

function call is made, the called function must know how to return back to the program,

so the current address of program execution is pushed onto a stack. Once the function is

finished, the address that was saved is removed from the stack, and execution of the

program resumes. If a series of function calls occur, the successive return values are

pushed onto the stack in LIFO order so that each function can return back to calling

program. Stacks support recursive function calls in the same manner as conventional

nonrecursive calls.

Stacks are also used by compilers in the process of evaluating expressions and

generating machine language code. They are also used to store return addresses in a

chain of method calls during execution of a program.

Stack - Array Implementation

1. Implementing a stack with an array:

Let's think about how to implement this stack in the C programming language.

First, if we want to store letters, we can use type char. Next, since a stack usually

holds a bunch of items with the same type (e.g., char), we can use an array to hold

the contents of the stack.

Now, consider how we'll use this array of characters, call it contents, to hold the

contents of the stack. At some point we'll have to decide how big this array is;

keep in mind that a normal array has a fixed size.

Let's choose the array to be of size 4 for now. So, an array getting A, then B, will

look like:

| A | B | | |

 0 1 2 3

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

contents

Is this array sufficient, or will we need to store more information concerning the

stack?

Answer: We need to keep track of the top of the stack since not all of the array

holds stack elements.

What type of thing will we use to keep track of the top of the stack?

Answer: One choice is to use an integer, top, which will hold the array index of

the element at the top of the stack.

Example:

Again suppose the stack has (A,B) in it already...

stack (made up of 'contents' and 'top')

----------------- -----

| A | B | | | | 1 |

----------------- -----

 0 1 2 3 top

contents

Since B is at the top of the stack, the value top stores the index of B in the array

(i.e., 1).

Now, suppose we push something on the stack, Push(stack, 'C'), giving:

stack (made up of 'contents' and 'top')

----------------- -----

| A | B | C | | | 2 |

----------------- -----

 0 1 2 3 top

contents

(Note that both the contents and top part have to change.)

So, a sequence of pops produce the following effects:

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

1. letter = Pop(stack)
2. stack (made up of 'contents' and 'top')

3. ----------------- ----- -----

4. | A | B | | | | 1 | | C |

5. ----------------- ----- -----

6. 0 1 2 3 top letter

7. contents

8. letter = Pop(stack)
9. stack (made up of 'contents' and 'top')

10. ----------------- ----- -----

11. | A | | | | | 0 | | B |

12. ----------------- ----- -----

13. 0 1 2 3 top letter

14. contents

15. letter = Pop(stack)
16. stack (made up of 'contents' and 'top')

17. ----------------- ----- -----

18. | | | | | | -1| | A |

19. ----------------- ----- -----

20. 0 1 2 3 top letter

21. contents

so that you can see what value top should have when it is empty, i.e., -1.

Let's use this implementation of the stack with contents and top fields.

What happens if we apply the following set of operations?

22. Push(stack, 'D')
23. Push(stack, 'E')
24. Push(stack, 'F')
25. Push(stack, 'G')

giving:

stack (made up of 'contents' and 'top')

----------------- -----

| D | E | F | G | | 3 |

----------------- -----

 0 1 2 3 top

contents

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

and then try to add H with Push(stack, 'H')?

ALGORITHM:-

Step 1: Start the process.

Step 2: Declare and initialize the variables.

Step 3: Enter the choice to perform PUSH or POP.

Step 4: If choice is PUSH enter the elements to push.

Step 5: If (top > max-2) print stack overflow else VAL[++TOP] = X.

Step 6: Print the stack elements after push.

Step 7: If choice is pop and if (TOP < 0) then print stack underflow.

Step 8: Else X=VAL[TOP] and TOP = TOP -1.

Step 9: Return elements that is popped.

Step 10: Print stack elements after the pop process.

Step 11: Stop the process.

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

Program-Array Implementation of a Stack

#include <stdio.h>

#include<ctype.h>

define MAXSIZE 200

int stack[MAXSIZE];

int top; //index pointing to the top of stack

void main()

{

void push(int);

int pop();

int will=1,i,num;

clrscr();

while(will ==1)

{

printf("

 MAIN MENU:

 1. Add element to stack

 2. Delete element from the stack

");

scanf("%d",&will);

switch(will)

{

case 1:

 printf("

Enter the data... ");

 scanf("%d",&num);

 push(num);

 break;

case 2: i=pop();

 printf("

Value returned from pop function is %d ",i);

 break;

default: printf("Invalid Choice . ");

}

printf(" Do you want to do more operations on Stack (1 for yes, any other key to

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

exit) ");

scanf("%d" , &will);

} //end of outer while

} //end of main

void push(int y)

{

if(top>MAXSIZE)

 {

 printf("STACK FULL");

 return;

 }

else

 {

 top++;

 stack[top]=y;

 }

}

int pop()

{

int a;

if(top<=0)

 {

 printf("STACK EMPTY");

 return 0;

 }

else

 {

 a=stack[top];

 top--;

 }

return(a);

}

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

Lab Assignment:

1.Write a program to push 5 elements into stack and then display them using array.

2.Write a program to push 5 integers into the stack and then pop them one by one.

3.Write a program to print the elements of stack in reverse order.

4.Write a program to copy a number of elements from one stack to another stack.

5.Write a program to merge the elements of two stacks into third stack.

Experiment No-2

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

Array implementation of a Circular Queue

BACKGROUND-

Queue -Whether it is a railway reservation counter, a movie theatre or print jobs

submitted to a network printer there is only one way to bring order to chose─form a

queue. If you await your turn patiently there is a more likelihood that you would get a

better service.

Queue is a linear data structure that permits insertion of new element at one end and

deletion of an element at the other end. The end at which the deletion of an element take

place is called front, and the end at which insertion of a new element can take place is

called rear. The deletion or insertion of elements can take place only at the front or rear

end of the respectively.

A circular queue- A circular queue is one in which the insertion of a new element is

done at the very first location of the queue if the last location of the queue is full. In other

words if we have queue Q of say n elements, then after inserting an element last location

of the array the next element will be inserted at the very first location of the array. It is

possible to insert new elements, if and only if those locations are empty. We can say that

a circular queue is one in which the first element comes just after the last element. It can

be viewed as a mess or loop of wire, in which the two ends of the wire are connected

together. .

ALGORITHM:-

Step 1: Start the process.

Step 2: Declare and initialize the variables.

Step 3: Enter the choice to perform Insertion or Deletion.

Step 4: If choice is Insertion enter the elements to insert.

Step 5: If (Front = = (Rear + 1) % MAXSIZE)

 Write Queue Overflow and Exit.

 Else : Take the value

 If (Front = = -1)

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

 Set Front = Rear = 0

 Rear = ((Rear + 1) % MAXSIZE)

 [Assign Value] Queue[Rear] = elements.

 [End if]

Step 6: Print the queue elements after insertion and exit.

Step 7: If choice is Deletion and if (Front = = -1)

 Write Queue underflow and Exit.

 Else : element = Queue (Front)

 If (Front = = Rear)

 Set Front = -1

 Rear = -1

Else : Front = (Front + 1) % MAXSIZE

[End if Structure]

Step 8: Print queue elements after the deletion process and exit.

Step 9: Stop the process.

Program-Array Implementation of a Circular Queue
#include <stdio.h>

#include<ctype.h>

define MAXSIZE 200

int cq[MAXSIZE];

int front,rear;

void main()

{

void add(int,int [],int,int,int);

int del(int [],int ,int ,int);

int will=1,i,num;

front = 1;

rear = 1;

clrscr();

printf("Program for Circular Queue demonstration through array");

while(will ==1)

{

printf("

 MAIN MENU:

 1.Add element to Circular Queue

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

 2.Delete element from the Circular Queue

");

scanf("%d",&will);

switch(will)

{

case 1:

 printf("Enter the data... ");

 scanf("%d",&num);

 add(num,cq,MAXSIZE,front,rear);

 break;

case 2: i=del(cq,MAXSIZE,front,rear);

 printf("Value returned from delete function is %d ",i);

 break;

default: printf("Invalid Choice . ");

}

printf(" Do you want to do more operations on Circular Queue (1 for yes, any other key

to exit) ");

scanf("%d" , &will);

} //end of outer while

} //end of main

void add(int item,int q[],int MAX,int front,int rear)

{

rear++;

rear= (rear%MAX);

if(front ==rear)

 {

 printf("CIRCULAR QUEUE FULL");

 return;

 }

else

 {

 cq[rear]=item;

 printf("Rear = %d Front = %d ",rear,front);

 }

}

int del(int q[],int MAX,int front,int rear)

{

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

int a;

if(front == rear)

 {

 printf("CIRCULAR QUEUE EMPTY");

 return (0);

 }

else

 {

 front++;

 front = front%MAX;

 a=cq[front];

 return(a);

 printf("

Rear = %d Front = %d ",rear,front);

 }

}

Lab Assignment:

1.Write a program to insert 5 elements into circular queue and then display them.

2.Write a program to insert 5 integers into the circular queue and then delete them.

3.Write a program to check whether a circular queue is full of empty.

4.Write a program to insert a new item at the place of some deleted item.

5.Write a program to display all the items of a circular queue, if REAR < FRONT .

 Experiment No-3

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

OPERATION IMPLEMANTATION OF STACK

BACKGROUND-

Operations
An abstract data type (ADT) consists of a data structure and a set of primitive

operations. The main primitives of a stack are known as:

Software Development 2 Bell College

12. The STACK Data Structure page 2

Push adds a new node

Pop removes a node

Additional primitives can be defined:

IsEmpty reports whether the stack is empty

IsFull reports whether the stack is full

Initialise creates/initialises the stack

Destroy deletes the contents of the stack (may be implemented by re-initialising

the stack)

Initialise
Creates the structure – i.e. ensures that the structure exists but contains no elements

e.g. Initialise(S) creates a new empty stack named S

Push
e.g. Push(X,S) adds the value X to the TOP of stack S

Pop

e.g. Pop(S) removes the TOP node and returns its value

S

X

S

S
Software Development 2 Bell College

12. The STACK Data Structure page 3

Examples-

C

B B B

A A A A

s.push(‘A’); s.push(‘B’); s.push(‘C’);

s.pop();

returns C

F

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

B B

A A A

s.push(‘F’); s.pop();

returns F

s.pop();

returns B

s.pop();

returns A

We could try the same example with actual values for A, B and C.

A = 1 B = 2 C = 3

1. StackPush():

Now, pushing onto the stack requires the stack itself as well as something to push.

So, its prototype will look like:

void StackPush(stackT *stackP, stackElementT element);

The function should place an element at the correct position in the contents array

and update the top. However, before the element is placed in the array, we should

make sure the array is not already full...Here is the body of the function:

void StackPush(stackT *stackP, stackElementT element)

{

 if (StackIsFull(stackP)) {

 fprintf(stderr, "Can't push element on stack: stack is full.\n");

 exit(1); /* Exit, returning error code. */

 }

 /* Put information in array; update top. */

 stackP->contents[++stackP->top] = element;

}

Note how we used the prefix ++ operator. It increments the top index before it is

used as an index in the array (i.e., where to place the new element).

Also note how we just reuse the StackIsFull() function to test for fullness.

2. StackPop():

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

Finally, popping from a stack only requires a stack parameter, but the value

popped is typically returned. So, its prototype will look like:

stackElementT StackPop(stackT *stackP);

The function should return the element at the top and update the top. Again,

before an element is removed, we should make sure the array is not empty....Here

is the body of the function:

stackElementT StackPop(stackT *stackP)

{

 if (StackIsEmpty(stackP)) {

 fprintf(stderr, "Can't pop element from stack: stack is empty.\n");

 exit(1); /* Exit, returning error code. */

 }

 return stackP->contents[stackP->top--];

}

Note how we had the sticky problem that we had to update the top before the

function returns, but we need the current value of top to return the correct array

element. This is accomplished easily using the postfix -- operator, which allows us

to use the current value of top before it is decremented.

 ALGORITHM:-

Step 1: Start the process.

Step 2: Declare and initialize the variables.

Step 3: Enter the choice to perform PUSH or POP.

Step 4: If choice is PUSH enter the elements to push.

Step 5: If (top > max-2) print stack overflow else VAL[++TOP] = X.

Step 6: Print the stack elements after push.

Step 7: If choice is POP and if (TOP < 0) then print stack underflow.

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

Step 8: Else X=VAL[TOP] and TOP = TOP -1.

Step 9: Return elements that is popped.

Step 10: Print stack elements after the pop process.

Step 11: Stop the process.

PROGRAM OF STACK IMPLIMENTATION-

#include<stdio.h>

#include<conio.h>

#define size 2

int stack[size],top=-1,b,res;

void push();

void pop();

void display();

void main()

{

int c;

clrscr();

printf("1.push\n");

printf("2.pop\n");

printf("3.display\n");

do

{

printf("\n enter your choice");

scanf("%d",&c);

switch(c)

{

case 1:

push();

break;

case 2:

pop();

break;

case 3:

printf("\n contents of stack\n");

display();

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

break;

default:

printf("invalid choice");

exit(0);

}

}

while(c<4);

getch();

}

void push()

{

if(top>=size)

{

printf("stack is overflow");

return;

}

else

{

printf("enters the number to be pushed\n");

scanf("%d",&b);

top++;

stack[top]=b;

printf("number pushed:%d",stack[top]);

return;

}

}

void pop()

{

if (top==-1)

{

printf("stack is overflow");

return;

}

else

{

res=stack[top];

top--;

printf("deleted one is %d",res);

return;

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

}

}

void display()

{

int i;

if(top==-1)

{

printf("stack is overflow");

return;

}

for(i=top;i>=0;i--)

{

printf("%d\n",stack[i]);

}

}\

Lab Assignment:

1. Explain the concept of PUSH & POP for the stack.

2. How will you copy the items of one stack into another stack.

 3.Write a program to arrange the items of a stack into ascending order.

Experiment No-4

IMPLEMENTATION OF STACK USING LINKED LIST

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

BACKGROUND-

Stack as linked list- When implemented as an array it suffers from the basic limitation

of an array – that its size can not be increased or decreased once it is declared. As a result

, one ends up reserving either too much space or too less space for an array and in turn for

a stack. This problem can be overcome if we implement a stack using a linked list. In

case of linked stack we shall push and pop nodes from one end of a linked list.

The stack as linked list is represented as a singly connected list. Each node in the linked

list contains the data and a pointer that gives location of the next node in the list. The

node in the list is a structure as shown below:

Struct node

{

 <data type> data;

 node *link;

}

 Representation of stack as a linked list

ALGORITHM:-

Step 1: Start the process.

Step 2: Initialize and declare the variables.

10

9

-6

23

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

Step 3: Enter the choice PUSH or POP.

Step 4: If choice is PUSH then

a) Check the condition (TOP = MAX) and display stack is full if true.

 b) Else get a new node and enter the item in the data field and adjust the link

field so that top points to the new node.

Step 5: If choice = POP then

a) Check the condition (TOP = 0) and display stack is empty if true.

b) Else set ITEM = DATA(TOP) , delete the node pointed to by TOP

 and adjust the link fields so that TOP points to the top of the stack.

Step 6: Print the stack elements after PUSH/POP process.

Step 7: Stop the process.

Lab Assignment:

1.Write a program to push 10 elements into stack and then display them using linked list.

2.Write a program to push 5 integers into the stack and then pop them using linked list.

3.Write a program to print the elements of stack in reverse order using linked list.

4.Write a program to copy a number of elements from one stack to another stack using

linked list.

5.Write a program to merge the elements of two stacks into third stack using linked list.

ExperimentNo-5

LINKEDLIST IMPLEMENTATION OF QUEUE

After performing this experiment students are able to do-

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

Concept of structure-

structure definition:

general format:

struct tag_name

{

data type member1;

data type member2;

…

…

}

Example:

struct lib_books

{

char title[20];

char author[15];

int pages;

float price;

};

the keyword struct declares a structure to holds the details of four fields namely title,

author pages and price. These are members of the structures. Each member may belong to

different or same data type. The tag name can be used to define objects that have the tag

names structure. The structure we just declared is not a variable by itself but a template

for the structure.

We can declare structure variables using the tag name any where in the program. For

example the statement-

struct lib_books book1,book2,book3;

declares book1,book2,book3 as variables of type struct lib_books each declaration has

four elements of the structure lib_books. The complete structure declaration might look

like this

struct lib_books

{

char title[20];

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

char author[15];

int pages;

float price;

};

struct lib_books, book1, book2, book3;

structures do not occupy any memory until it is associated with the structure variable

such as book1. the template is terminated with a semicolon. While the entire declaration

is considered as a statement, each member is declared independently for its name and

type in a separate statement inside the template. The tag name such as lib_books can be

used to declare structure variables of its data type later in the program.

We can also combine both template declaration and variables declaration in one

statement, the declaration

struct lib_books

{

char title[20];

char author[15];

int pages;

float price;

} book1,book2,book3;

is valid. The use of tag name is optional for example

struct

{

…

…

…

}

book1, book2, book3 declares book1,book2,book3 as structure variables representing 3

books but does not include a tag name for use in the declaration.

A structure is usually defines before main along with macro definitions. In such cases the

structure assumes global status and all the functions can access the structure.

BACKGROUND- As a dynamic list will implement the Queue, we won't check the

'queue overflow' condition here. Here, we have two pointers -- front and rear, pointing to

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

beginning and end of the Queue. When 'front' and 'rear' both point to NULL, Queue is

empty. Every time we add an element to the queue, the 'rear' pointer shifts forward to

point to that newly added element.

ALGORITHM:-

Step 1: Start the process.

Step 2: Initialize and declare the variables.

Step 3: Enter the choice INSERTION or DELETION.

Step 4: If choice is INSERTION then

b) Check the condition (Rear = MAX) and display queue is full if true.

 b) Else get a new node and enter the item in the data field and adjust the link field

so that rear points to the new node.

Step 5: If choice = DELETION then

c) Check the condition (Front = -1) and display queue is empty if true.

d) Else if (Front = Rear), delete the node pointed to by Front and Front’s link is

NULL.

e) Else Front = Front→link

Step 6: Print the queue elements after INSERTION or DELETION process.

Step 7: Stop the process.

PROGRAM :

#include<stdio.h>

#include<conio.h>

void ins();

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

void del();

void dis();

struct node

{

int data;

struct node *next;

}*f=NULL,*r=NULL;

void main()

{int ch;

clrscr();

printf("\n1.insertion");

printf("\n2.deletion");

printf("\n3.display");

do

{

printf("\n enter the choice");

scanf("%d",&ch);

switch(ch)

{

case 1:ins();break;

case 2:del();break;

case 3:dis();break;

default:

printf("\n invalid choice");

break;

}}

while(ch<4);

}

void ins()

{

int x;

struct node *newnode;

newnode=malloc(sizeof(struct node));

printf("\n enter the number");

scanf("%d",&x);

newnode->data=x;

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

newnode->next=NULL;

if(r==NULL)

{

f=newnode;

r=newnode;

}

else

{

r->next=newnode;

r=newnode;

}

printf("\nthe element %d is inserted",x);

getch();

}

void del()

{struct node *t;

if(f==NULL)

{

printf("\n queue is empty");

return;

}

t=f;

if(f==r)

f=r=NULL;

else

f=f->next;

printf("\n the element %d is deleted",t->data);

free(t);

getch();

}

void dis()

{

struct node *t;

if(f==NULL)

{

printf("\nQueue is empty");

return;

}

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

t=f;

printf("\ncontents of the queue");

while(t!=NULL)

{

printf("%d",t->data);

t=t->next;

}

getch();

}

#include<stdio.h>

#include<conio.h>

void ins();

void del();

void dis();

struct node

{

int data;

struct node *next;

}*f=NULL,*r=NULL;

void main()

{int ch;

clrscr();

printf("\n1.insertion");

printf("\n2.deletion");

printf("\n3.display");

do

{

printf("\n enter the choice");

scanf("%d",&ch);

switch(ch)

{

case 1:ins();break;

case 2:del();break;

case 3:dis();break;

default:

printf("\n invalid choice");

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

break;

}}

while(ch<4);

}

void ins()

{

int x;

struct node *newnode;

newnode=malloc(sizeof(struct node));

printf("\n enter the number");

scanf("%d",&x);

newnode->data=x;

newnode->next=NULL;

if(r==NULL)

{

f=newnode;

r=newnode;

}

else

{

r->next=newnode;

r=newnode;

}

printf("\nthe element %d is inserted",x);

getch();

}

void del()

{struct node *t;

if(f==NULL)

{

printf("\n queue is empty");

return;

}

t=f;

if(f==r)

f=r=NULL;

else

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

f=f->next;

printf("\n the element %d is deleted",t->data);

free(t);

getch();

}

void dis()

{

struct node *t;

if(f==NULL)

{

printf("\nQueue is empty");

return;

}

t=f;

printf("\ncontents of the queue");

while(t!=NULL)

{

printf("%d",t->data);

t=t->next;

}

getch();

}

Lab Assignment:

1.Write a program to insert 5 elements into linear queue and then display them using

linked list.

2.Write a program to insert 10 integers into the linear queue and then delete them using

linked list.

3.Write a program to check whether a linear queue is full of empty using linked list.

4.Write a program to arrange the items of a linear queue in descending order.

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

5.Write a program to display all the items of a linear queue using linked list.

Experiment No-6

IMPLEMENTATION OF TREE TRAVERSALS USING LINKED LISTS

Backgrounds:

Like a linked list, elements will be stored in nodes. Furthermore, a node will have to keep

track of its element's immediate children. Like a linked list, nodes will point to one

another in the tree--each node will point to the left and right child's node.

When there is no left or right child, of course, we'll make the corresponding pointers

NULL.

Now, let's return to our original tree, but view it as if it was made up of these C

treeNodeTs...

 |j |

 |5 |

 |---|

 | | |

 /---\

 v v

 ----- -----

 |f | |k |

 |30 | |13 |

 |---| |---|

 | | | |0| |

 /---\ ----\

 v v v

----- ----- -----

|a | |h | |z |

|100| |50 | |1 |

|---| |---| |---|

|0|0| |0|0| |0|0|

----- ----- -----

http://www.cs.bu.edu/teaching/c/tree/bst/#ex1

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

While these nodes suffice to keep track of all the elements.We need a pointer to

the root of the tree!

ALGORITHM:-

Step 1: Start the process.

Step 2: Initialize and declare variables.

Step 3: Enter the choice. Inorder / Preorder / Postorder.

Step 4: If choice is In-order then

a) Traverse the left subtree in inorder.

b) Process the root node.

c) Traverse the right subtree in inorder.

Step 5: If choice is Pre-order then

a) Process the root node.

b) Traverse the left subtree in preorder.

c) Traverse the right subtree in preorder.

Step 6: If choice is Post-order then

a) Traverse the left subtree in preorder.

b) Traverse the right subtree in preorder.

c) Process the root node.

PROGRAM :

void inorder(struct treenode *sr)

{

if(sr!=NULL)

{

in(sr->lchild);

printf("\t%d",sr->da);

in(sr->rchild);

}

else

return;

}

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

void preorder(struct treenode *sr)

{

if(sr!=NULL)

{

printf("\t%d",sr->da);

pr(sr->lchild);

pr(sr->rchild);

}

else

return;

}

void postorder(struct treenode *sr)

{

if(sr!=NULL)

{

po(sr->lchild);

po(sr->rchild);

printf("\t%d",sr->da);

}

else

return;

}

Lab Assignment:

1.Write a program to print all the items of a binary tree using in-order traversal.

2. Write a program to print all the items of a binary tree using pre-order traversal.

3. Write a program to print all the items of a binary tree using post-order traversal..

4. Write a program to print the items of a binary tree in ascending order.

5.Write a program to print the greatest element of a binary tree.

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

Experiment No-7

QUEUE USING ARRAY
#include<stdio.h>

#include<conio.h>

void ins();

void del();

void dis();

int f,l,count=0;

void main()

{

int queue[10],ele,quit;

char c;

printf("\n\tprogram of queue with array");

f=l=quit=0;

do

{

printf("\n\toptions\t\tchoice\n\tinsert\t\ti\n\tdelete\t\td\n\tview\t\tv\n\texit\t\te\n\tenter the

choice:");

scanf("%c",&c);

switch(c)

{

case'i':

 printf("\n\tenter the element to be inserted:");

 scanf("%d",&ele);

 ins(queue,ele);

 break;

case'd':

 del(queue);

 break;

case'v':

 printf("\n\t*****queue*****\n\t");

 dis(queue);

 break;

case'e':

 quit=1;

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

}

}

while(!quit);

}

void ins(int queue[10],int ele)

{

if(l<10)

{

l++;

queue[l]=ele;

if(!f)

f=1;

count++;

}

else

printf("\n\t**queue overflow....don't insert\n");

return;

}

void dis(int queue[10])

{

int c;

for(c=f;c<l+1;c++)

printf("\t%6d",queue[c]);

printf("\n");

return;

}

void del(int queue[10])

{

int ele;

if(f)

{

ele=queue[f];

count--;

printf("\n\telement deleted=%d\n",ele);

if(f==l)

{

f=0;

l=0;

printf("\t****empty****");

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

}

else

f++;

}

else

{

printf("\n\tqueue underflow...don't delete");

}

return;

}

list.ele[p-1]=x;

list.la=list.la+1;

}

void pr()

{

printf("NULL-->");

for(i=0;i<list.la;i++)

printf("%d-->",list.ele[i]);

printf("NULL");

}

void del(int p)

{

int q;

if(p<0||p>list.la)

printf("\n\tposition out of range\n");

else

{

for(q=p;q<=list.la;q++)

{

list.ele[q-1]=list.ele[q];

}

list.la=list.la-1;

}

}

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

Lab Assignment:

1.Write a program to insert 5 elements into linear queue and then display them using

array.

2.Write a program to insert 10 integers into the linear queue and then delete them using

array.

3.Write a program to check whether a linear queue is full of empty using array.

4.Write a program to arrange the items of a linear queue in descending order using array.

5.Write a program to display all the items of a linear queue using array.

Experiment No-8

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

 TRAVERSAL OF TREES

Backgrounds:when we want to visit each and every element of a tree, there are three different

ways to do the traversal -- preorder, inorder and postorder. Remember, these traversal methods

are limited to Binary trees only and not for any other tree.

Algorithm:-

Step-1: For the current node check whether it has a left child. If it has then go to step-2 or

 else step-3

Step-2: Repeat step-1 for this left child

Step-3: Visit (i.e printing in our case) the current node

Step-4: For the current node check whether it has a right child. If it has then go to step-5

Step-5: Repeat step-1 for this right child

PROGRAM FOR TRAVERSAL OF TREES

#include<stdio.h>

#include<alloc.h>

struct treenode

{

struct treenode *lchild;

int da;

struct treenode *rchild;

};

void ins(struct treenode **,int);

void in(struct treenode *);

void pr(struct treenode *);

void po(struct treenode *);

void main()

{

struct treenode *d;

int r,i=1,n,quit=0;

char c;

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

d=NULL;

printf("\n\n\tspecify the numbers of items to be inserted:");

scanf("%d",&r);

do

{

printf("\n\toptions\t\t\tchoice\n\tinsert\t\t\ti\n\tinorder\t\t\tn\n\tpreorder\t\tr\n\tpostorder\t\t

o\n\texit\t\t\te");

printf("\n\n\tenter your chioce:");

scanf("%c",&c);

switch(c)

{

case'i':

 while(i++<=r)

 {

 printf("\n\n\tenter the data:");

 scanf("%d",&n);

 ins(&d,n);

 }

 break;

case'n':

 printf("\n\tinorder traversal:\n");

 in(d);

 break;

case'r':

 printf("\n\n\tpreorder traversal:\n");

 pr(d);

 break;

case'o':

 printf("\n\n\tpostorder traversal:\n");

 po(d);

 break;

case'e':

 quit=1;

}

}

while(!quit);

}

void ins(struct treenode **sr,int n)

{

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

if(*sr==NULL)

{

*sr=malloc(sizeof(struct treenode));

(*sr)->lchild=NULL;

(*sr)->da=n;

(*sr)->rchild=NULL;

return;

}

else

{

if(n<(*sr)->da)

ins(&((*sr)->lchild),n);

else

ins(&((*sr)->rchild),n);

}

return;

}

void in(struct treenode *sr)

{

if(sr!=NULL)

{

in(sr->lchild);

printf("\t%d",sr->da);

in(sr->rchild);

}

else

return;

}

void pr(struct treenode *sr)

{

if(sr!=NULL)

{

printf("\t%d",sr->da);

pr(sr->lchild);

pr(sr->rchild);

}

else

return;

}

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

void po(struct treenode *sr)

{

if(sr!=NULL)

{

po(sr->lchild);

po(sr->rchild);

printf("\t%d",sr->da);

}

else

return;

}

Lab Assignment:

1.Write a program to print all the items of a binary tree using in-order traversal.

2. Write a program to print all the items of a binary tree using pre-order traversal.

3. Write a program to print all the items of a binary tree using post-order traversal..

4. Write a program to print the items of a binary tree in ascending order.

5.Write a program to print the greatest element of a binary tree.

Experiment No-9

IMPLEMENTATION OF HEAP SORT

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

Backgrounds: In this method, we will interpret thee array to be sorted as a binary tree, in

a sequential representation of the binary tree, we shall have

1. The father node at location (i-2)/2 if i is not equal to zero.

2. 2. The left child at location2i+1.

3. 3. The right child at location2i2.

As the subscripts in C start from 0 to (MAXSIZE-1).

PROGRAM :

#include<stdio.h>

#include<conio.h>

void heap(int a[],int n);

void create_heap(int a[],int n);

void main()

{

int a[25],i,n;

clrscr();

printf("\n enter how many number:");

scanf("%d",&n);

printf("\n enter the numbers:");

for(i=0;i<n;i++)

scanf("%d",&a[i]);

heap(a,n);

printf("the sorted list is");

for(i=0;i<n;i++)

printf("\t%d",a[i]);

getch();

}

void create_heap(int a[],int n)

{

int i,j,q,key;

for(q=1;q<n;q++)

{

i=q;

key=a[q];

j=(int)(i/2);

while((i>0)&&(key>a[j]))

{

a[i]=a[j];

i=j;

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

j=(int)(i/2);

if(j<0)

j=0;

}

a[i]=key;

}}

void heap(int a[],int n)

{

int i,j,q,key,temp;

create_heap(a,n);

for(q=n-1;q>=1;q--)

{

temp=a[0];

a[0]=a[q];

a[q]=temp;

i=0;

key=a[0];

j=1;

if((j+1)<q)

if(a[j+1]>a[j])

j=j+1;

while((j<=(q-1))&&(a[j]>key))

{

a[i]=a[j];

i=j;

j=2*i;

if((j+1)<q)

if(a[j+1]>a[j])

j=j+1;

else if(j>n-1)

j=n-1;

a[i]=key; }} }

Lab Assignment:

1.Write a program to build a MAX HEAP, and then traverse it in pre-order.

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

2. Write a program sort the items in ascending order using heap sort method.

3. Write a program sort the items in descending order using heap sort method.

4. Write a program to convert a MAX HEAP into MIN HEAP.

5.Write a program to print the greatest and smallest element of a HEAP.

Experiment No-10

IMPLEMENTATION OF QUICK SORT

Backgrounds: The quicksort algorithm works by partitioning the array to be sorted. And

each partition is in turn sorted recursively. In partition, one of the array elements is

chosen as a key value. This key value can be the first elements of an array. That is, if a is

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

an array then key=a[0And rest of the array elements are grouped into two partitions such

that

1.One partition contains elements smaller than the key value.

2. Another partition contains element larger than the key value.

ALGORITHM:-

Quick_Sort(a,l,h)

Where

a→Represents the list of elements.

l→Represents the position of the first element in the list (only at the starting point, it’s

value change during the execution of the function).

h→Represents the position of the last element in the list (only at starting point the value

of it’s changes during the execution of the function).

Step 1: [Initally]

 Low=l

 High=h

 Key=a[(l+h)/2] [Middle element of the element of the list]

Step 2: Repeat through step 7 while (low<=high)

Step 3: Repeat step 4 while (a([low]<key))

Step 4: low =low+1

Step 5: Repeat step 6 while (a[high]<key)

Step 6: high =high-1

Step 7: if (low<=high)

(2) tenp = a[low]

(3) a[low] = a[high]

(4) a[high]=temp

(5) low=low+1

(6) high=high -1

Step 8: if (l<high) Quick_Sort (a,l,high)

Step 9: if (low<h) Quick_Sort (a,low,h)

Step10: Exit.

PROGRAM :

#include<stdio.h>

#include<alloc.h>

void quicksort(int *,int,int);

int split(int *,int,int);

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

void main()

{

int n,i,arr[10],quit=0;

char c;

printf("\n\tenter the range of the array:");

scanf("%d",&n);

do

{

printf("\n\toption\t\tchoice\n\tinsert\t\ti\n\tquick sort\tq\n\tview\t\tv\n\texit\t\te");

printf("\n\tenter your choice:");

scanf("%c",&c);

switch(c)

{

case'i':

 for(i=0;i<n;i++)

 {

 printf("\n\tenter the element:");

 scanf("%d",&arr[i]);

 }

 break;

case'q':

 quicksort(arr,0,n-1);

 break;

case'v':

 for(i=0;i<n;i++)

 printf("%d\t",arr[i]);

 break;

case'e':

 quit=1;

}

}

while(!quit);

}

void quicksort(int a[],int lower,int upper)

{

int i;

if(upper>lower)

{

i=split(a,lower,upper);

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

quicksort(a,lower,i-1);

quicksort(a,i+1,upper);

}

}

int split(int a[],int lower,int upper)

{

int i,p,q,r;

p=lower+1;

q=upper;

i=a[lower];

while(q>=p)

{

while(a[p]<i)

 p++;

while(a[q]>i)

 q--;

if(q>p)

{

r=a[p];

a[p]=a[q];

a[q]=r;

}}

r=a[lower];

a[lower]=a[q];

a[q]=r;

return q;

}

Lab Assignment:

1.Find out the complexity of quick sort, if there are 10 item to be sorted.

2. Write a program sort the items in ascending order using quick sort method.

3. Write a program sort the items in descending order using quick sort method.

4. Explain the merits and demerits of quick sort method.

5.Explain the process of sorting the elements using quick sort method.

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

Experiment No-11

Graph Implementation

Backgrounds: Depth first traversal follows first a path from the starting Node to an

ending Node, then another path from the start to the end, and so forth until all nodes have

been visited.

Breadth First Search

Search a graph (directed or not) in breadth first; this is done by using a queue where the

vertices found are stored.

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

Here is a brief description of the BFS algorithm:

 bfs (Graph G)

 {

 all vertices of G are first painted white

 the graph root is painted gray and put in a queue

 while the queue is not empty

 {

 a vertex u is removed from the queue

 for all white successors v of u

 {

 v is painted gray

 v is added to the queue

 }

 u is painted black

 }

 }

And now watch it run -- click the applet to start/stop the search.

Depth First Search

The general idea is the same, but we now use a stack instead of a queue. With recursion

of course, so the stack management is all done by Java.

Here is a brief description of the DFS algorithm:

 dfs-visit (Graph G, Vertex u)

 {

 the vertex u is painted gray

 for all white successors v of u

 {

 dfs-visit(G, v)

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

 }

 u is painted black

 }

 dfs (Graph G)

 {

 all vertices of G are first painted white

 dfs-visit(G, root of G)

 }

PROGRAM FOR DFS & BFS :

#include<stdio.h>

int q[20],top=-1,front=-1,rear=-1,a[20][20],vis[20],stack[20];

int delete();

void add(int item);

void bfs(int s,int n);

void dfs(int s,int n);

void push(int item);

int pop();

main()

{

int n,i,s,ch,j;

char c,dummy;

printf("ENTER THE NUMBER VERTICES ");

scanf("%d",&n);

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

printf("ENTER 1 IF %d HAS A NODE WITH %d ELSE 0 ",i,j);

scanf("%d",&a[i][j]);

}

}

printf("THE ADJACENCY MATRIX IS\n");

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

printf(" %d",a[i][j]);

}

printf("\n");

}

do

{

for(i=1;i<=n;i++)

vis[i]=0;

printf("\nMENU");

printf("\n1.B.F.S");

printf("\n2.D.F.S");

printf("\nENTER YOUR CHOICE");

scanf("%d",&ch);

printf("ENTER THE SOURCE VERTEX :");

scanf("%d",&s);

switch(ch)

{

case 1:bfs(s,n);

break;

case 2:

dfs(s,n);

break;

}

printf("DO U WANT TO CONTINUE(Y/N) ? ");

scanf("%c",&dummy);

scanf("%c",&c);

}while((c=='y')||(c=='Y'));

}

void bfs(int s,int n)

{

int p,i;

add(s);

vis[s]=1;

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

p=delete();

if(p!=0)

printf(" %d",p);

while(p!=0)

{

for(i=1;i<=n;i++)

if((a[p][i]!=0)&&(vis[i]==0))

{

add(i);

vis[i]=1;

}

p=delete();

if(p!=0)

printf(" %d ",p);

}

for(i=1;i<=n;i++)

if(vis[i]==0)

bfs(i,n);

}

void add(int item)

{

if(rear==19)

printf("QUEUE FULL");

else

{

if(rear==-1)

{

q[++rear]=item;

front++;

}

else

q[++rear]=item;

}

}

int delete()

{

int k;

if((front>rear)||(front==-1))

return(0);

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

else

{

k=q[front++];

return(k);

}

}

void dfs(int s,int n)

{

int i,k;

push(s);

vis[s]=1;

k=pop();

if(k!=0)

printf(" %d ",k);

while(k!=0)

{

for(i=1;i<=n;i++)

if((a[k][i]!=0)&&(vis[i]==0))

{

push(i);

vis[i]=1;

}

k=pop();

if(k!=0)

printf(" %d ",k);

}

for(i=1;i<=n;i++)

if(vis[i]==0)

dfs(i,n);

}

void push(int item)

{

if(top==19)

printf("Stack overflow ");

else

stack[++top]=item;

}

int pop()

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

{

int k;

if(top==-1)

return(0);

else

{

k=stack[top--];

return(k);

}

}

Lab Assignment:

1.Consider a directed graph, and traverse it using DEPTH FIRST SEARCH(DFS).

2. Consider a undirected graph, and traverse it using BREATH FIRST SEARCH(BFS).

3. Consider a directed graph, and find out it’s SPPANING TREE by KRUSKAL’s algo.

4. Consider a weighted & directed graph, and find out SHORTEST PATHs from any

node to any other nodes by DIJKASTRA’s algo.

5.Explain the necessity of minimum cost spanning tree.

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

Experiment No-12

DELETION IN BINARY SEARCH TREE

Lab Objectives:

After performing this lab, the students should be able to create a binary search tree.

Backgrounds:

There are basically four cases to deal with as regards the node (holding the value) to be

deleted:

1. A leaf node

2. A non-leaf node with an empty left subtree

3. A non-leaf node with an empty right subtree

4. A non-leaf node with neither of its subtrees empty

Pre-lab:

1. Study / review how to create a tree in C.

2. How to add the node in the tree.

Experiments in this lab

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

Search tree in C language.

Deletion in binary search tree.

Node Delete(Node root, Key k)

1 if (root == null) // failed search

2 return null;

3 if (k == root.key) // successful search

4 return DeleteThis(root);

5 if (k < root.key) // k in the left branch

6 root.left = Delete(root.left, k);

7 else // k > root.key, i.e., k in the right branch

8 root.right = Delete(root.right, k);

9 return root;

Node DeleteThis(Node root)

1 if root has two children

2 p = Largest(root.left); // replace root with its immediate predecessor p

3 root.key = p.key;

4 root.left = Delete(root.left, p)

5 return root;

6 if root has only left child

7 return root.left

8 if root has only right child

9 return root.right

10 else root has no children

11 return null

Node Largest(Node root)

1 if root has no right child

2 return root

3 return Largest(root.right)

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

Lab Assignment:

1. If elements of a BST are : 10 , 20 , 5 , 8 , 20 , 30 , 60 , 8 , 2 , 3 , 90, Re-build a BST

after deletion of element 10.

2. Write a program to delete a node of a BST that have no child.

3. Write a program to delete a node of a BST that have only left child.

4. Write a program to delete a node of a BST that have only right child.

5. Write a program to delete a node of a BST that have both the child.

Experiment No-13

INSERTION IN BINARY SEARCH TREE

Lab Objectives:

After performing this lab, the students should be able to arrange data in tree form.

Backgrounds:

Pre-lab:

1. Study / review how to create a tree in C.

2. How to add the node in the tree and how to delete it.

Experiments in this lab

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

▪ Binary Search tree in C language.

▪ Insertion in binary search tree.

ALGORITHM:-

1.Struct rec*insert (struct rec * tree, long digit) Repeat steps from 2 to 14

2. if (tree = = MULL) Step from 3 to 6

3. Tree = (struct rec *) malloc (sizeof(struct rec));

4. Tree → left =tree→ right= NULL

5. Tree→ num=digit;

6. Else Step 7

7. if (digit<tree→num) tree→left= insert (tree→left, digit);

8. Else Step 9

9. if (digit< tree→num)tree→right= insert (tree→right, digit);

10. Else Step 11

11. if (digit == tree →num) step 12 to 13

12. Puts(“Duplicate nodes:Program Exited”);

13. Exit(0);

14. Return(tree);

15. End

 PROGRAM FOR INSERTION IN BINARY SEARCH TREE

void BST::InsertNode(int x)

{

 TreeNode *parent = NULL;

 TreeNode *child;

 child = root;

 while(child != NULL)

 {

 parent = child;

 if(x <= child->getItem())

 child = child->getLeftChild();

 else

 child = child->getRightChild();

 }

 if(parent == NULL)

PREAPEARED BY: Balam Singh Dafouti

Uttarakhand Open University,
Haldwani

School of Computer Science & IT

LABORATORY

MANUAL

PRACTICAL INSTRUCTION SHEET

DEPTT.: Computer

Science& IT

LABORATORY: Data Structure Lab (BCA-06) SEMESTER: II

 {

 child = new TreeNode(x);

 root = child;

 }

 else if(x <= child->getItem())

 {

 child = new TreeNode(x);

 parent->setLeftChild(child);

 }

 else

 {

 child = new TreeNode(x);

 parent->setRightChild(child);

 }}

Lab Assignment:

1. Build a BST , if elements are : 10 , 20 , 5 , 8 , 10 , 30 , 60 , 8 , 2 , 3 , 90

2. Write a program to print the elements of a BST in ascending order.

3. Write a program to print the elements of a BST in ascending order.

4. Write a program to insert a new item into BST

5. What is the importance of binary search tree ?

