

**School of Computer Science & IT** 

LABORATORY MANUAL

# PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

| S.No. | Experiment                                                                                                      | <b>Isuue Date</b> | Page No. |
|-------|-----------------------------------------------------------------------------------------------------------------|-------------------|----------|
| 1     | Write the queries for Data definition and data manipulation language.                                           |                   |          |
| 2     | Write SQL queries using Logical operators.                                                                      |                   |          |
| 3     | Write SQL queries using SQL operators (Between AND, IN(List), Like, ISNULL and also with negative expressions). |                   |          |
| 4     | Write SQL queries using character, number, date and group functions.                                            |                   |          |
| 5     | Write SQL queries for Relational Algebra(UNION, INTERSECT, MINUS, etc.)                                         |                   |          |
| 6     | Write SQL queries for extracting data from more than one table (Equi join, Non-equi-join, Outer join).          |                   |          |
| 7     | Write SQL queries for sub queries and nested queries.                                                           |                   |          |
| 8     | Write program by using PL/SQL.                                                                                  |                   |          |
| 9     | Concepts of ROLL BACK, COMMIT and CHECK POINTS.                                                                 |                   |          |
| 10    | Create Views, Cursors and triggers and write assertions.                                                        |                   |          |
| 11    | Create FORMS and REPORTS                                                                                        |                   |          |

# **LAB EXPERIMENT NO:1**

| PREAPEARED BY: Balam Singh Dafouti |
|------------------------------------|
|                                    |



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System

(BCA-09)

SEMESTER: III

**OBJECTIVE:** Write the queries for Data definition and Data Manipulation Language.

#### **SQL DML and DDL**

SQL can be divided into two parts: The Data Manipulation Language (DML) and the Data Definition Language (DDL).

The query and update commands form the DML part of SQL:

- **SELECT** extracts data from a database
- **UPDATE** updates data in a database
- **DELETE** deletes data from a database
- **INSERT INTO** inserts new data into a database

The DDL part of SQL permits database tables to be created or deleted. It also define indexes (keys), specify links between tables, and impose constraints between tables. The most important DDL statements in SQL are:

- **CREATE DATABASE** creates a new database
- ALTER DATABASE modifies a database
- **CREATE TABLE** creates a new table
- ALTER TABLE modifies a table
- **DROP TABLE** deletes a table
- **CREATE INDEX** creates an index (search key)
- **DROP INDEX** deletes an index

#### **CREATE DATABASE**

Create database database name

Eg: create database rahul

#### **The CREATE TABLE Statement**



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

The CREATE TABLE statement is used to create a table in a database.

#### **SQL CREATE TABLE Syntax**

```
CREATE TABLE table_name (
column_name1 data_type,
column_name2 data_type,
column_name3 data_type,
....
)

CREATE TABLE Example
CREATE TABLE Persons
(
P_Id int,
LastName varchar(255),
FirstName varchar(255),
Address varchar(255),
City varchar(255)
```

#### **The INSERT INTO Statement**

The INSERT INTO statement is used to insert a new row in a table.

#### **SQL INSERT INTO Syntax**

It is possible to write the INSERT INTO statement in two forms.

```
INSERT INTO table_name
VALUES (value1, value2, value3,...)
OR
INSERT INTO table_name (column1, column2, column3,...)
VALUES (value1, value2, value3,...)
```

#### **SQL INSERT INTO Example**

**INSERT INTO Persons** 



**School of Computer Science & IT** 

**LABORATORY** MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

Science & IT

VALUES (4, 'Nilsen', 'Johan', 'Bakken 2', 'Stavanger')

#### The SQL SELECT Statement

The SELECT statement is used to select data from a database. The result is stored in a result table, called the result-set.

#### **SQL SELECT Syntax**

SELECT column name(s) FROM table\_name

and

SELECT \* FROM table\_name

#### An SOL SELECT Example

SELECT LastName, FirstName FROM Persons

SELECT \* Example

SELECT \* FROM Persons

#### **The UPDATE Statement**

The UPDATE statement is used to update existing records in a table.

#### **SQL UPDATE Syntax**

UPDATE table\_name SET column1=value, column2=value2,... WHERE some\_column=some\_value

#### **SQL UPDATE Example**

**UPDATE Persons** SET Address='Nissestien 67', City='Sandnes' WHERE LastName='Tjessem' AND FirstName='Jakob'



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

#### **The SQL SELECT Statement**

The SELECT statement is used to select data from a database. The result is stored in a result table, called the result-set.

#### **SQL SELECT Syntax**

SELECT column\_name(s) FROM table\_name

And

SELECT \* FROM table\_name

#### An SQL SELECT Example

SELECT LastName, FirstName FROM Persons

**SELECT \* Example** 

SELECT \* FROM Persons

#### **The DELETE Statement**

The DELETE statement is used to delete rows in a table.

#### **SQL DELETE Syntax**

DELETE FROM table\_name WHERE some\_column=some\_value

#### **SQL DELETE Example**

DELETE FROM Persons

WHERE LastName='Tjessem' AND FirstName='Jakob'



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System

(BCA-09)

SEMESTER: III

#### **The ALTER TABLE Statement**

The ALTER TABLE statement is used to add, delete, or modify columns in an existing table.

#### **SQL ALTER TABLE Syntax**

ALTER TABLE table\_name ADD column\_name datatype

#### **SQL ALTER TABLE Example**

ALTER TABLE Persons ADD DateOfBirth date

#### **The DROP TABLE Statement**

The DROP TABLE statement is used to delete a table. DROP TABLE table\_name

#### **SQL CREATE INDEX Syntax**

Creates an index on a table. Duplicate values are allowed:

CREATE INDEX index\_name

ON table\_name (column\_name)

#### **CREATE INDEX Example**

CREATE INDEX PIndex ON Persons (LastName)

#### **The DROP INDEX Statement**

# THE DEATH OF THE PARTY OF THE P

# Uttarakhand Open University, Haldwani

**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System

Constraints

(BCA-09)

SEMESTER: III

The DROP INDEX statement is used to delete an index in a table.

DROP INDEX table\_name.index\_name

# **Assignment Problems:**

1. Create a table named 'employees' which has following fields:

Field-name Type

(i) id INTEGER PRIMARY KEY

(ii) first\_name CHAR(50) NULL

(iii) last\_name CHAR(75) NOT NULL

(iv) dateofbirth DATE NULL

2. Insert following values into the 'employee' table:

| id | first_ name | last_ name | dateofbirth  |
|----|-------------|------------|--------------|
| 1  | Trilok      | Sharma     | 11 dec, 1974 |
| 2  | Krishna     | Mishra     | 23 june,1978 |
| 3  | Gopal       | Shah       | 12 jan, 1977 |
| 4  | Kulmohan    | Tiwari     | 16 Mar, 1980 |
| 5  | Shiv        | Goyal      | 26 Apr, 1979 |

- 3. Show all the fields of the above table.
- 4. Show only those employee whose last name is 'Mishra'.
- **5.** Update the record of employee named 'Gopal" with dateofbirth 17 Mar, 1978.
- **6**. Delete the record of Employee names 'Shiv'.
- 7. Add the new column named 'dateofjoining' in the above table.



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

**8.** Create an index on the above table.

- **9.** Delete the index which is created on the above section.
- **10.** Delete the entire table.

# **LAB EXPERIMENT NO :2**

**OBJECTIVE**: Write SQL queries using Logical operators.

#### **The AND & OR Operators**

The AND operator displays a record if both the first condition and the second condition is true.

The OR operator displays a record if either the first condition or the second condition is true.

#### **AND Operator Example**

SELECT \* FROM Persons WHERE FirstName='Tove' AND LastName='Svendson'

# **OR Operator Example**

SELECT \* FROM Persons WHERE FirstName='Tove' OR FirstName='Ola'

#### **Combining AND & OR**



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System

(BCA-09)

SEMESTER: III

SELECT \* FROM Persons WHERE LastName='Svendson' AND (FirstName='Tove' OR FirstName='Ola')

#### "NOT" Logical Operator:

If you want to find rows that do not satisfy a condition, you can use the logical operator, NOT. NOT results in the reverse of a condition. That is, if a condition is satisfied, then the row is not returned.

**For example:** If you want to find out the names of the students who do not play football, the query would be like:

SELECT first\_name, last\_name, address FROM person WHERE NOT address = 'dehradun'



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System

(BCA-09)

SEMESTER: III

# **Assignment Problems:**

Consider the following table:

The "Persons" table:

| P_Id | LastName  | FirstName | Address   | City       |
|------|-----------|-----------|-----------|------------|
| 1    | Harry     | Porter    | II street | London     |
| 2    | perry     | Tom       | Borum 20  | Sydney     |
| 3    | Pettersen | Tarry     | Stare 20  | Los Angles |

- **1.** Select only the persons with the first name equal to "Tom" AND the last name equal to "Perry".
- **2**. Select only the persons with the first name equal to "Tom" OR the first name equal to "Tarry".
- **3.** Select only the persons with the last name equal to "Harry" AND the first name equal to "Porter" OR to "Tom".
- **4**. Show only those persons who are not lived in 'London'.

# **LAB EXPERIMENT NO:3**



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System

(BCA-09)

SEMESTER: III

**OBJECTIVE:** Write SQL queries using SQL operators (Between.... AND, IN(List), Like, ISNULL and also with negative expressions).

#### **The BETWEEN Operator:**

The BETWEEN operator selects a range of data between two values. The values can be numbers, text, or dates.

#### **SQL BETWEEN Syntax**

SELECT column\_name(s)
FROM table\_name
WHERE column\_name
BETWEEN value1 AND value2

#### **BETWEEN Operator Example**

SELECT \* FROM Persons WHERE LastName BETWEEN 'Hansen' AND 'Pettersen'

# The IN Operator

The IN operator allows you to specify multiple values in a WHERE clause.

#### SQL IN Syntax

SELECT column\_name(s)
FROM table\_name
WHERE column\_name IN (value1,value2,...)

#### **IN Operator Example**

SELECT \* FROM Persons WHERE LastName IN ('Hansen', 'Pettersen')

#### **The LIKE Operator**



**School of Computer Science & IT** 

**LABORATORY** MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System

(BCA-09)

SEMESTER: III

The LIKE operator is used to search for a specified pattern in a column.

#### **SQL LIKE Syntax**

SELECT column\_name(s) FROM table name WHERE column\_name LIKE pattern

#### **LIKE Operator Example**

**SELECT** \* FROM Persons WHERE City LIKE 's%'

# **SQL ISNULL() Function**:

SELECT LastName,FirstName,Address FROM Persons WHERE Address IS NULL

# **Assignment Problem**

Consider the following Table:

| Employee    | Date     | Hours |
|-------------|----------|-------|
| John Smith  | 5/6/2004 | 8     |
| Allan Babel | 5/6/2004 | 8     |
| Tina Crown  | 5/6/2004 | 8     |
| John Smith  | 5/7/2004 | 9     |
| Allan Babel | 5/7/2004 | 8     |
| Tina Crown  | 5/7/2004 | 10    |
| John Smith  | 5/8/2004 | 8     |

# STATISTICS OF STATES OF ST

# Uttarakhand Open University, Haldwani

**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

| Allan Babel | 5/8/2004 | 8 |
|-------------|----------|---|
| Tina Crown  | 5/8/2004 | 9 |

- (1) Select only the entries where the column Date has value of '5/6/2004' or '5/7/2004'.
- (2) select all Employee having Name starting with 'J'.
- (3) select all Customers having 'Hours' column between '9' and '10'.
- (4)Select those employee whose hours is null.

# **LAB EXPERIMENT NO. :4**

**OBJECTIVE:** Write SQL queries using character, number, date and group functions.

#### **SQL Dates**

The most difficult part when working with dates is to be sure that the format of the date you are trying to insert, matches the format of the date column in the database.

The following table lists the most important built-in date functions in MySQL:

| Function | Description                     |
|----------|---------------------------------|
|          |                                 |
|          | DDE ADEADED DV. D.L Ci., I. D.F |

# TOTAL UTTARAKIANDO ORE LINUWERSTTY

# Uttarakhand Open University, Haldwani

**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

| DEPTT.:Computer<br>Science & IT | LABORATORY: Database Management System (BCA-09) | SEMESTER: III |
|---------------------------------|-------------------------------------------------|---------------|
|---------------------------------|-------------------------------------------------|---------------|

| NOW()         | Returns the current date and time                        |
|---------------|----------------------------------------------------------|
| CURDATE()     | Returns the current date                                 |
| CURTIME()     | Returns the current time                                 |
| DATE()        | Extracts the date part of a date or date/time expression |
| EXTRACT()     | Returns a single part of a date/time                     |
| DATE_ADD()    | Adds a specified time interval to a date                 |
| DATE_SUB()    | Subtracts a specified time interval from a date          |
| DATEDIFF()    | Returns the number of days between two dates             |
| DATE_FORMAT() | Displays date/time data in different formats             |

#### **SQL Date Data Types**

**SQL** comes with the following data types for storing a date or a date/time value in the database:

- DATE format YYYY-MM-DD
- DATETIME format: YYYY-MM-DD HH:MM:SS
- TIMESTAMP format: YYYY-MM-DD HH:MM:SS
- YEAR format YYYY or YY

# **SQL Group Functions**

- AVG() Returns the average value
- COUNT() Returns the number of rows
- FIRST() Returns the first value
- LAST() Returns the last value
- MAX() Returns the largest value
- MIN() Returns the smallest value
- SUM() Returns the sum



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

- UCASE() Converts a field to upper case
- LCASE() Converts a field to lower case
- MID() Extract characters from a text field
- LEN() Returns the length of a text field
- ROUND() Rounds a numeric field to the number of decimals specified
- NOW() Returns the current system date and time
- FORMAT() Formats how a field is to be displayed

#### **SQL AVG() Example**

We have the following "Orders" table:

| O_Id | OrderDate  | OrderPrice | Customer |
|------|------------|------------|----------|
| 1    | 2008/11/12 | 1000       | Hansen   |
| 2    | 2008/10/23 | 1600       | Nilsen   |
| 3    | 2008/09/02 | 700        | Hansen   |
| 4    | 2008/09/03 | 300        | Hansen   |
| 5    | 2008/08/30 | 2000       | Jensen   |
| 6    | 2008/10/04 | 100        | Nilsen   |

Now we want to find the average value of the "OrderPrice" fields.

We use the following SQL statement:

SELECT AVG(OrderPrice) AS OrderAverage FROM Orders

SQL COUNT(column\_name) Syntax

SELECT COUNT(\*) FROM table\_name

**SQL FIRST() Syntax** 



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

SELECT FIRST(OrderPrice) AS FirstOrderPrice FROM Orders

SQL LAST() Syntax

SELECT LAST(column\_name) FROM table\_name

**SQL MAX() Syntax** 

SELECT MAX(column\_name) FROM table\_name

**SQL MIN() Syntax** 

SELECT MIN(column\_name) FROM table\_name

SQL SUM() Syntax

SELECT SUM(column name) FROM table name

**SQL UCASE() Syntax** 

SELECT UCASE(column\_name) FROM table\_name

SQL LCASE() Syntax

SELECT LCASE(column\_name) FROM table\_name

SQL MID() Syntax

SELECT MID(column\_name,start[,length]) FROM table\_name

**SQL ROUND() Syntax** 

SELECT ROUND(column\_name,decimals) FROM table\_name

# **Assignment Problems:**

Consider the following table named 'Employee':

| Employee   | Date     | Hours |
|------------|----------|-------|
| John Smith | 5/6/2004 | 8     |



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

| DEPTT.:Computer<br>Science & IT | LABORATORY: Database Management System (BCA-09) | SEMESTER: III |
|---------------------------------|-------------------------------------------------|---------------|
|                                 |                                                 |               |

| Allan Babel | 5/6/2004 | 8  |
|-------------|----------|----|
| Tina Crown  | 5/6/2004 | 8  |
| John Smith  | 5/7/2004 | 9  |
| Allan Babel | 5/7/2004 | 8  |
| Tina Crown  | 5/7/2004 | 10 |
| John Smith  | 5/8/2004 | 8  |
| Allan Babel | 5/8/2004 | 8  |

- (1) Count the number of employees in our above table.
- (2) Find the name of the employee who has maximum hours.
- (3) Find the name of the employees who has minimum hours.
- (4) Select the average value for 'Hours'.
- (5) Select the total for 'Hours'.
- (6) Display Date in the format 'DD-Month-YY'.
- (7) Show the name of employees in the upper case.



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

# LAB EXPERIMENT NO:5

<u>Objective</u>: Write SQL queries for Relational Algebra (UNION, INTERSECT, MINUS, etc.)

#### **The SQL UNION Operator**

The UNION operator is used to combine the result-set of two or more SELECT statements.

#### **SQL UNION Syntax**

SELECT column\_name(s) FROM table\_name1 UNION SELECT column\_name(s) FROM table\_name2

#### **SQL UNION ALL Syntax**

SELECT column\_name(s) FROM table\_name1 UNION ALL SELECT column\_name(s) FROM table\_name2 SQL INTERSECT Syntax

SELECT Date FROM Store\_Information INTERSECT SELECT Date FROM Internet\_Sales

# THE TOTAL STATE OF THE STATE OF

# Uttarakhand Open University, Haldwani

**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

#### **SQL Minus**

SELECT Date FROM Store\_Information MINUS
SELECT Date FROM Internet\_Sales

#### **SQL LIMIT**

SELECT store\_name, Sales, Date FROM Store\_Information ORDER BY Sales DESC LIMIT 2;

#### The TOP Clause

SELECT TOP number|percent column\_name(s) FROM table\_name

# **Assignment Problem:**

Consider the following two table:

#### (a) "Employees\_Norway":

| E_ID | E_Name            |
|------|-------------------|
| 01   | Hansen, Ola       |
| 02   | Svendson, Tove    |
| 03   | Svendson, Stephen |
| 04   | Pettersen, Kari   |

# (b) "Employees\_USA":

| E_Name |  |
|--------|--|
|--------|--|



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

| DEPTT.:Computer<br>Science & IT | LABORATORY: Database Management System (BCA-09) | SEMESTER: III |  |
|---------------------------------|-------------------------------------------------|---------------|--|
| Science & 11                    | (BCA-09)                                        |               |  |

| 01 | Turner, Sally     |
|----|-------------------|
| 02 | Kent, Clark       |
| 03 | Svendson, Stephen |
| 04 | Scott, Stephen    |

- (1) list all the different employees in Norway and USA.
- (2) list only employees of Norway.
- (3) list only employees of USA
- (4) List employees who are in both 'Norway' & 'USA'.
- (5) List the first two employees who are come first in the alphabetical order.

# **LAB EXPERIMENT NO:6**

**OBJECTIVE:** Write SQL queries for extracting data from more than one table.



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System

(BCA-09)

SEMESTER: III

#### **SQL JOIN**

The JOIN keyword is used in an SQL statement to query data from two or more tables, based on a relationship between certain columns in these tables. Tables in a database are often related to each other with keys.

A primary key is a column (or a combination of columns) with a unique value for each row. Each primary key value must be unique within the table. The purpose is to bind data together, across tables, without repeating all of the data in every table.

SQL Joins can be classified into Equi join and Non Equi join.

#### 1) SQL Equi joins

It is a simple sql join condition which uses the equal sign as the comparison operator. Two types of equi joins are SQL Outer join and SQL Inner join.

**For example:** You can get the information about a customer who purchased a product and the quantity of product.

#### 2) SQL Non equi joins

It is a sql join condition which makes use of some comparison operator other than the equal sign like >, <, >=, <=

#### SQL INNER JOIN Syntax

SELECT column\_name(s)
FROM table\_name1
INNER JOIN table\_name2
ON table\_name1.column\_name=table\_name2.column\_name

#### **SQL RIGHT JOIN Syntax**



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System

(BCA-09)

SEMESTER: III

SELECT column\_name(s)
FROM table\_name1
RIGHT JOIN table\_name2
ON table\_name1.column\_name=table\_name2.column\_name

#### **SQL LEFT JOIN Syntax**

SELECT column\_name(s)
FROM table\_name1
LEFT JOIN table\_name2
ON table name1.column name=table name2.column name

#### **SQL FULL JOIN Syntax**

SELECT column\_name(s)
FROM table\_name1
FULL JOIN table\_name2
ON table\_name1.column\_name=table\_name2.column\_name

# **Assignment Problem:**

#### **Customers:**

| CustomerID | FirstName | LastName | Email                 | DOB       | Phone        |
|------------|-----------|----------|-----------------------|-----------|--------------|
| 1          | John      | Smith    | John.Smith@yahoo.com  | 2/4/1968  | 626 222-2222 |
| 2          | Steven    | Goldfish | goldfish@fishhere.net | 4/4/1974  | 323 455-4545 |
| 3          | Paula     | Brown    | pb@herowndomain.org   | 5/24/1978 | 416 323-3232 |

**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System

(BCA-09)

SEMESTER: III

| 4 | James | Smith | jim@supergig.co.uk | 20/10/1980 | 416 323-8888 |
|---|-------|-------|--------------------|------------|--------------|
|---|-------|-------|--------------------|------------|--------------|

#### Sales:

| CustomerID | Date      | SaleAmount |  |
|------------|-----------|------------|--|
| 2          | 5/6/2004  | \$100.22   |  |
| 1          | 5/7/2004  | \$99.95    |  |
| 3          | 5/7/2004  | \$122.95   |  |
| 3          | 5/13/2004 | \$100.00   |  |
| 4          | 5/22/2004 | \$555.55   |  |

- (1) Select all distinct customers (their first and last names) and the total respective amount of dollars they have spent.
- (2) display all the customers and their sales, no matter if they have ordered something or not.
- (3) List the customers in the Customers table, which still hasn't made any orders.

# LAB EXPERIMENT NO :7

**OBJECTIVE**: Write SQL queries for sub queries and nested queries.

#### **SQL Subquery**

Subqueries are query statements tucked inside of query statements. Like the order of operations from your high school Algebra class, order of operations also come into play when you start to embed SQL commands inside of other SQL commands (subqueries). Let's take a look at a real world example involving the orders table and figure out how to select only the most recent order(s) in our orders table.

USE mydatabase;



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

SELECT MAX(day\_of\_order)

FROM orders

#### **Results:**

| day_of_order            |
|-------------------------|
| 2008-08-16 00:00:00.000 |

Now we can throw this query into the *WHERE* clause of another *SELECT* query and obtain the results to our little dilemma.

USE mydatabase;

SELECT \*

FROM orders

WHERE day\_of\_order = (SELECT MAX(day\_of\_order) FROM orders)

| id | customer      | day_of_order            | product       | quantity |
|----|---------------|-------------------------|---------------|----------|
| 3  | A+Maintenance | 2008-08-16 00:00:00.000 | Hanging Files | 14       |

# **SQL NESTED QUERIES**

A SQL Nested query is a SELECT query that is nested inside a SELECT, UPDATE, INSERT or DELETE SQL query.

**SELECT model FROM product** 

WHERE munuf\_id IN( SELECT mauf\_id

FROM manufacturer WHERE manufacturer='DELL')



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System

(BCA-09)

SEMESTER: III

# **Assignment Problems**

1. Retrieve all the orders placed by a client named 'Rahul Desai' from the sales\_order table.

Table-name: client\_master

| Client_No | Name          | Bal_Due |
|-----------|---------------|---------|
| C00001    | Ashok Mehra   | 500     |
| C00002    | Vishal Parikh | 1000    |
| C00003    | Ajay Mehta    | 0       |
| C00004    | Rohit Roy     | 0       |
| C00005    | Nalini Deewan | 0       |
| C00006    | Prem Iyer     | 0       |
| C00007    | Rahul Desai   | 0       |

Table-name: sales\_order

| Order_No | Client_No | Order_Date |
|----------|-----------|------------|
| 019001   | C00006    | 12-Apr-97  |
| 019002   | C00002    | 25-Dec-97  |
| 019003   | C00007    | 03-Oct-97  |
| 019004   | C00005    | 18-Jun-97  |
| 019005   | C00002    | 20-Aug-97  |
| 019006   | C00007    | 12-Jan-97  |

2. Retrieve the name of all personnel who work in Mr. Pradeep's department and have worked on an inventory control system as well, from the tables emp and inv\_sys which are given below:

Table name: emp

| Emp_No | Ename | Dept_No |
|--------|-------|---------|
| 1      | Rahul | D01     |
| 2      | Joshi | D02     |



**School of Computer Science & IT** 

LABORATORY MANUAL

# PRACTICAL INSTRUCTION SHEET

| DEPTT.:Computer | LABORATORY: Database Management System | SEMESTER: III |
|-----------------|----------------------------------------|---------------|
| Science & IT    | (BCA-09)                               |               |
|                 |                                        |               |

| 3  | Lenna     | D01 |
|----|-----------|-----|
| 4  | Ashwariya | D01 |
| 5  | Pradeep   | D01 |
| 6  | Arjun     | D01 |
| 7  | Pritam    | D01 |
| 8  | Sangeeta  | D02 |
| 9  | Prashant  | D02 |
| 10 | Melba     | D02 |

Table name: inv\_sys

| Ename    | Performance |
|----------|-------------|
| Rahul    | Good        |
| Joshi    | Average     |
| Lenna    | Excellent   |
| Pradeep  | Excellent   |
| Pritam   | Ok          |
| Sangeeta | Excellent   |
| Melba    | Good        |



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

\*\*\*\*\*\*\*\*\*\*\*

# **LAB EXPERIMENT NO:8**

**OBJECTIVE:** Write program by using PL/SQL.

**PL/SQL** (**Procedural Language/Structured Query Language**) is Oracle Corporation's proprietary procedural extension to the SQL database language, used in the Oracle database. Some other SQL database management systems offer similar extensions to the SQL language.

#### **Functions**

Functions in PL/SQL are a collection of SQL and PL/SQL statements that perform a task and should return a value to the calling environment.

CREATE OR REPLACE FUNCTION <function\_name> IS/AS
{Variable declaration}
{CONSTANT declaration}
RETURN return\_type

**BEGIN** 

Pl/SQL Block;



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

**EXCEPTION** 

**EXCEPTION Block**;

END;

#### **Numeric variables**

variable\_name number(P[,S]) := value;

To define a numeric variable, the programmer appends the variable type **NUMBER** to the name definition. To specify the (optional) precision(P) and the (optional) scale (S), one can further append these in round brackets, separated by a comma. ("Precision" in this context refers to the number of digits which the variable can hold, "scale" refers to the number of digits which can follow the decimal point.)

A selection of other datatypes for numeric variables would include:

binary\_float, binary\_double, dec, decimal, double precision, float, integer, int, numeric, real, smallint, binary integer

#### **Character variables**

variable name varchar2(L) := 'Text';

To define a character variable, the programmer normally appends the variable type VARCHAR2 to the name definition. There follows in brackets the maximum number of characters which the variable can store.

Other datatypes for character variables include:

varchar, char, long, raw, long raw, nchar, nchar2, clob, blob, bfile



**School of Computer Science & IT** 

**LABORATORY** MANUAL

#### PRACTICAL INSTRUCTION SHEET

**DEPTT**.:Computer Science & IT

LABORATORY: Database Management System

(BCA-09)

SEMESTER: III

#### Datatypes for specific columns

#### DECLARE

TYPE t\_address IS RECORD ( name address.name%TYPE, street address.street%TYPE, street\_number address.street\_number%TYPE, postcode address.postcode%TYPE); v\_address t\_address; **BEGIN** 

SELECT name, street\_number, postcode INTO v\_address FROM address WHERE ROWNUM = 1; END;

# **Assignment Problems:**

(1) Write a PL/SQL code block that will accept an account number from the user and debit an amount of Rs. 2000 from the account if the account has a minimum balance of 500 after the amount is debited. The process is to be fired on Accounts table

| Account_Id | Name   | Bal    |
|------------|--------|--------|
| AC001      | Anuj   | 5000   |
| AC002      | Robert | 10000  |
| AC003      | Mita   | 5000   |
| AC004      | Sunita | 150000 |
| AC005      | Melba  | 100000 |

- (2) Write a PL/SQL code block to calculate the area of a circle for a value of radius varying from 3 to 7. Store the radius & the corresponding values of calculated area in a table, Areas.
- (3) Write a PL/SQL block of code for inverting a number 5639 to 9365.



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System

(BCA-09)

SEMESTER: III

#### **LAB EXPERIMENT NO:9**

OBJECTIVES: Concepts of ROLL BACK, COMMIT and CHECK POINTS.

#### Rollback:

In SQL, ROLLBACK is a command that causes all data changes since the last BEGIN WORK, or START TRANSACTION to be discarded by the relational database management system (RDBMS), so that the state of the data is "rolled back" to the way it was before those changes were made.

In most SQL dialects, ROLLBACKs are connection specific. This means that if two connections are made to the same database, a ROLLBACK made in one connection will not affect any other connections. This is vital for proper concurrency.

#### **ROLLBACK Statement**

The ROLLBACK Statement terminates the current transaction and rescinds all changes made under the transaction. It *rolls back* the changes to the database. The ROLLBACK statement has the following general format:

#### ROLLBACK [WORK]

WORK is an optional keyword that does not change the semantics of ROLLBACK

#### **COMMIT Statement**

The COMMIT Statement terminates the current transaction and makes all changes under the transaction persistent. It *commits* the changes to the database. The COMMIT statement has the following general format:

#### **COMMIT [WORK]**

WORK is an optional keyword that does not change the semantics of COMMIT.

| PREAPEARED | BY: | Balam | Singh | <b>Dafouti</b> |
|------------|-----|-------|-------|----------------|
|            |     |       |       |                |



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

#### **CHECKPOINT**

Forces all dirty pages for the current database to be written to disk. Dirty pages are data or log pages that have been modified after they were read into the buffer cache, but the modifications have not yet been written to disk. If the current database is in log truncate mode, CHECKPOINT also truncates the inactive portion of the log. For more information about log truncation, Truncating the Transaction Log

#### **Syntax**

#### **CHECKPOINT**

# **Assignment Problem:**

(1) Write a PL/SQL block of code that first inserts a record in an 'Emp' table. Update the salaries of Blake and Clark by Rs. 2000 and Rs. 1500. Then check to see that the total salary does not exceeded 20000. If the total salary is grater than 20000 then undo the updates made to the salaries of Blake and Clark. Table 'Emp' is given below:

| Emp_No | Emp_Name | Sal  |
|--------|----------|------|
| E001   | Harry    | 5000 |
| E002   | Blake    | 1000 |
| E003   | Jack     | 5000 |
| E004   | Clark    | 1000 |

# **LAB EXPERIMENT NO:10**

**OBJECTIVE**: Create Views, Cursors and triggers and write assertions.

#### **SQL CREATE VIEW Statement**

In SQL, a view is a virtual table based on the result-set of an SQL statement.



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

A view contains rows and columns, just like a real table. The fields in a view are fields from one or more real tables in the database.

You can add SQL functions, WHERE, and JOIN statements to a view and present the data as if the data were coming from one single table.

#### **SQL CREATE VIEW Syntax**

CREATE VIEW view\_name AS SELECT column\_name(s) FROM table\_name WHERE condition

#### **CREATE CURSOR**

In SQL procedures, a cursor make it possible to define a result set (a set of data rows) and perform complex logic on a row by row basis. By using the same mechanics, an SQL procedure can also define a result set and return it directly to the caller of the SQL procedure or to a client application.

A cursor can be viewed as a pointer to one row in a set of rows. The cursor can only reference one row at a time, but can move to other rows of the result set as needed.

#### CREATE CURSOR alias\_name

(fname1 type [(precision [, scale])] [NULL | NOT NULL]

[CHECK lExpression [ERROR cMessageText]]

[AUTOINC [NEXTVALUE NextValue [STEP StepValue]]]

[DEFAULT eExpression] [UNIQUE [COLLATE cCollateSequence]]

[NOCPTRANS] [, fname2 ...])

| FROM ARRAY ArrayName

#### CREATE TRIGGER



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

Creates a trigger, which is a special kind of stored procedure that executes automatically when a user attempts the specified data-modification statement on the specified table. Microsoft® SQL Server<sup>TM</sup> allows the creation of multiple triggers for any given INSERT, UPDATE, or DELETE statement.

#### **Syntax**

```
CREATE TRIGGER trigger_name

ON { table | view }

[ WITH ENCRYPTION ]

{

    { FOR | AFTER | INSTEAD OF } { [ INSERT ] [ , ] [ UPDATE ] [ , ] [ DELETE ] }

    [ WITH APPEND ]

    [ NOT FOR REPLICATION ]

    AS

    [ { IF UPDATE ( column ) }

        [ AND | OR } UPDATE ( column ) ]

        [ ...n ]

    | IF ( COLUMNS_UPDATED ( ) { bitwise_operator } updated_bitmask )

        { comparison_operator } column_bitmask [ ...n ]

    } ]

    sql_statement [ ...n ]

}
```

# **Assignment Problems:**

# Adalasia UTTARAKIANO ORBANIERSITY AGRICIANO STATEMENT S

# Uttarakhand Open University, Haldwani

**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

(1) Write a PL/SQL code block that determines the top three highest paid employees from the employee table. Use appropriate cursor attributes for the same. Display the name and salary of these employees. Table 'Emp' is given below:

| Emp_No | Emp_Name | Salary |
|--------|----------|--------|
| E001   | Mita     | 10000  |
| E002   | Vaishali | 1000   |
| E003   | Lakshmi  | 3500   |
| E004   | Praveen  | 4000   |
| E005   | Aditya   | 2500   |
| E006   | Sunita   | 2500   |
| E007   | Ajay     | 2000   |
| E008   | Melba    | 2100   |

- (2) Create View on the above table where employee salary is more than 3500.
- (3) Create a transparent audit system for a table Client\_master. The system must keep track of the records that are being deleted or updated. The functionality being when a record is deleted or modified the original record details and the date of operation are stored in the deleted or update is allowed to go through.

| Product | Description | Profit  | Unit_measure | Qty on | Recorder | Sell  | Cost  |
|---------|-------------|---------|--------------|--------|----------|-------|-------|
| no      |             | percent |              | hand   | level    | price | price |
| P00001  | 1.44        | 5       | Piece        | 100    | 20       | 525   | 500   |
|         | Floppies    |         |              |        |          |       |       |
| P03453  | Monitor     | 6       | Piece        | 10     | 3        | 12000 | 11280 |
| P06734  | Mouse       | 5       | Piece        | 20     | 5        | 1050  | 1000  |
| P07865  | 1.22        | 5       | Piece        | 100    | 20       | 525   | 500   |
|         | Floppies    |         |              |        |          |       |       |
| P07868  | Keyboards   | 2       | Piece        | 10     | 3        | 3150  | 3050  |
| P07885  | CD Drive    | 2.5     | Piece        | 10     | 3        | 5250  | 5100  |
| P07965  | 540 HDD     | 4       | Piece        | 10     | 3        | 8400  | 8000  |
| P07975  | 1.44Drive   | 5       | Piece        | 10     | 3        | 1050  | 1000  |
| P08865  | 1.22 Drive  | 5       | Piece        | 2      | 3        | 1050  | 1000  |



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

# **LAB EXPERIMENT NO.:11**

**OBJECTIVE**: Create FORMS and REPORTS

# **Creating a Form**

Sometimes it is useful to collect data from your website users and store this information in a SQL database. We have already seen you can populate a database using PHP, now we will add the practicality of allowing the data to be added through a user friendly web form.

The first thing we will do is create a page with a form. For our demonstration we will make a very simple one:

<form action="process.php" method="post">
Your Name: <input type="text" name="name"><br>
E-mail: <input type="text" name = "email"><br>
Location: <input type="text" name = "location"><br>
<input type="submit" value="Submit">
</form>

#### **Insert Into - Adding Data from a Form**



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

Next you need to make process.php, the page that our form sends its data to. Here is an example of how to collect this data to post to the SQL database:

```
<?
$name=$_POST['name'];
$email=$_POST['email'];
$location=$_POST['location'];
mysql_connect("your.hostaddress.com", "username", "password") or die(mysql_error());
mysql_select_db("Database_Name") or die(mysql_error());
mysql_query("INSERT INTO `data` VALUES ('$name', '$email', '$location')");
Print "Your information has been successfully added to the database.";
?>
```

#### **Add File Uploads**

Now you know how to store user data in MySQL, so let's take it one step farther and learn how to upload a file for storage. First let's make our sample database:

CREATE TABLE uploads (id INT(4) NOT NULL AUTO\_INCREMENT PRIMARY KEY, description CHAR(50), data LONGBLOB, filename CHAR(50), filesize CHAR(50), filetype CHAR(50));

Next, we will create a form to allow the user to upload her file. This is just a simple form, obviously you could dress it up if you wanted:

```
<form method="post" action="upload.php" enctype="multipart/form-data">
Description:<br>
<input type="text" name="form_description" size="40">
<input type="hidden" name="MAX_FILE_SIZE" value="1000000">
<br/>
<br/>
<br/>file to upload:<br/>
<input type="file" name="form_data" size="40">
<input type="file" name="submit" value="submit">
</form>
```

<u>Adding File Uploads to SQL</u>Next we need to actually create upload.php, which will take our users file and store it in our database. Below is sample coding for upload.php.



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System

(BCA-09)

SEMESTER: III

```
<?php
mysql_connect("your.server.com","username","password");
mysql_select_db("database_name");
$data = addslashes(fread(fopen($form_data, "r"), filesize($form_data)));
$result=MYSQL_QUERY("INSERT INTO uploads (description, data, filename, filesize, filetype) ". "VALUES</pre>
```

#### **Retrieving Files**

```
<?php
mysql_connect("your.server.com","username","password");
mysql_select_db("database_name");
$query = "SELECT data,filetype FROM uploads where id=$id";
$result = MYSQL_QUERY($query);
$data = MYSQL_RESULT($result,0,"data");
$type = MYSQL_RESULT($result,0,"filetype");
Header( "Content-type: $type");
print $data;
?>
```

Now to retrieve our file, we point our browser to: http://www.yoursite.com/download.php?id=2 (replace the 2 with whatever file ID you want to download/display)

# **Removing Files**

```
<?php
mysql_connect

("your.server.com","username","password");
mysql_select_db("database_name");
$query = "DELETE FROM uploads where id=$id";
$delete = MYSQL_QUERY($query);</pre>
```



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

print "File ID \$id has been removed from the database"; ?>

#### **CREATING REPORTS:**

#### **Elements of a Report**

- Queries define the data to be retrieved from the database.
- **Fields** represent column expressions and report calculations from SELECT statements and describe how each is to be displayed.
- **Groups** contain sets of fields. Groups are used to describe each section or subsection in the report and its relationships, as well as to dictate control breaks for subtotalling purposes.
- **Summaries** are similar to fields, except they display subtotals and grandtotals rather than data directly from a query.
- **Texts** contain fields, summaries, and parameter references, combined with literal strings, such as titles, and define the final report format.
- The **Report** object defines the page size, margins, parameter form text, comments, security, and history of the report.
- **Parameters** contain literal values that you supply at runtime to control the behavior of the report. You can vary the data, routing of the output, and select national language settings.

#### **Report Building Process**

There are a few simple steps involved in building a report:

- creating a blank report
- specifying the data and calculations to be used in the report



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System (BCA-09)

SEMESTER: III

• specifying the format of the report

SQL\*ReportWriter separates the process of data access from report formatting, providing you with an additional degree of freedom

#### Screen Layout

The Main Menu appears when SQL\*ReportWriter is invoked, when [Accept] is pressed from any setting screen or menu, or when [Menu] is pressed.

The status line displays the following information:

- the name of the current report when one is open
- whether or not the current field has a List of values obtained by pressing [List].
- the status of insert/replace toggle for editing purposes
- the status of the Query mode toggle and the highlight indicator

# **Action Choice:**

The Action Menu contains a list of options which operate on report definitions, including: New, Open, Copy, Rename, Drop, Execute, Generate and Quit.

**NEW:** Creates a new report definition. The default margins are set on the Report Screen, default Report and Page text objects are created (blank) on the Text Screen, and system parameters for DESTYPE, DESNAME, DESFORMAT, COPIES, CURRENCY, THOUSANDS, and DECIMAL are automatically created on the parameter screen.

**OPEN:** Opens an existing report definition for editing. You must enter the name of the report to open by either typing it in or choosing it from List of values, which displays the nemes of your own reports.

**COPY:** Creates a new report by copying an existing report definition.

**RENAME:** Changes the name of an existing report definition.



**School of Computer Science & IT** 

LABORATORY MANUAL

#### PRACTICAL INSTRUCTION SHEET

DEPTT.:Computer Science & IT

LABORATORY: Database Management System

(BCA-09)

SEMESTER: III

**DROP:** Deletes the specified report definition. **EXECUTE:** Generates and runs an existing report. **GENERATE:** Creates a runfile for an existing report.

**QUIT:** Exits to the operating system.

# **Assignment Problems:**

- (1) Create a form which has following fields:
  - (i) id
  - (ii) name
  - (iii) class
  - (iv) section
- (2) Enter the some values into the form and upload these values into the table 'Student'.
- (3) Retrieve all the values from the table and display.
- (4) Create a report for the above form.