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Note :– This paper is of Seventy (70) marks divided into

Two (02) Sections ‘A’ and ‘B’. Attempt the

questions contained in these Sections according to

the detailed instructions given therein. Candidate s

s h ould lim it th e ir answ ers to th e qu e stions on th e

given answ er s h e et. No additional (B) answ er

s h e et w ill be is su ed.

Section–A

Long Answ er Type Questions 2×19=38

Note :– Section ‘A’ contains Five (05) Long-answer

type questions of Nineteen (19) marks each.

Learners are required to answer any tw o (02)

questions only.
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1. State and proof Lebesgue Dominated Convergence

Theorem.

2. Let f be a nonnegative measurable function on E. Then

∫E f  = 0   if and only if f = 0 almost everywhere.

Proof that.

3. Let v be a signed measure on (X, M} and E ∈ M

where 0 < v(E) < ∞. Then there exists a positive set

set A ⊂  E with positive measure. Proof that.

4. Define the following term :

(a) Boolean ring

(b) σ-ring

(c) Boolean algebra

(d) σ-algebra of sets

(e) Outer Measure

(f) Measurable sets

(g) Lebesgue Measure

(h) Lebesgue Outer Measure

(i) The Cantor set

5. State and proof that The Stone Weierstrass

Approximation Theorem.
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Section–B

Sh ort Answ er Type Questions 4×8=32

Note :– Section ‘B’ contains Eight (08) Short-answer type

questions of Eight (08) marks each. Learners are

required to answer any four (04) questions only.

1. Show that the set Q of rational numbers is countably

infinite.

2. Let X be an infinite set and B be the collection of all

subsets A of X such that either A or Ac is finite. Show

that B is an algebra but is not a σ-algebra.

3. Proof that A countable set has Lebesgue outer measure

zero.

4. Proof that Every interval is measurable.

5. Show that the algebra generated by the set (1, x2} is

dense in C[0, 1] but fails to be dense in

C[–1, 1].

6.   State the following :

(a) Almost everywhere (a.e.)

(b) The Fatou’s Lemma

(c) Dini’s theorem

(d) Measurable function
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7. Proof that the union of a countable collection of sets

of measure zero is a set of measure zero.

8. Let E be a set of measure zero. Show that if f is

bounded function on E and ∫E f = 0.
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