A-0636

Total Pages : 4

Roll No.

MT-601

M.A./M.Sc. MATHEMATICS (MAMT/MSCMT) (Analysis and Advanced Calculus-I)

3rd Semester Examination, Session December 2024

Time : 2:00 Hrs.

Max. Marks : 70

Note :- This paper is of Seventy (70) marks divided into Two (02) Sections 'A' and 'B'. Attempt the questions contained in these Sections according to the detailed instructions given therein. *Candidates* should limit their answers to the questions on the given answer sheet. No additional (B) answer sheet will be issued.

Section-A

Long Answer Type Questions 2×19=38

Note :- Section 'A' contains Five (05) Long-answer type questions of Nineteen (19) marks each. Learners are required to answer any two (02) questions only.

A–636/MT–601 (1) P.T.O.

- 1. State and prove Minkowski inequality.
- Prove that in a finite dimensional'space, the notions of weak and strong convergence are equivalent.
- 3. If N be a non-zero normed space and let :

$$S = \{x \in N : ||x|| \le 1\}$$

be a linear subspace of N. Then prove that N is a Banach space iff S is complete.

- 4. State and prove Hahn-Banach Theorem.
- 5. If H be a Hilbert space and (e_i) be an orthonormal set in
 H. Then show that following are equivalent :
 - (i) $\{e_i\}$ is complete
 - (ii) $x \perp \{e_i\} \Rightarrow x = 0.$
 - (iii) If *x* is an arbitrary vector in H, then :

$$x = \sum \langle x, e_i \rangle e_i \, .$$

(iv) If *x* is an arbitrary vector in H, then :

$$\|x\|^2 = \sum |\langle x, e_i \rangle|^2$$

A–636/MT–601 (2)

Section-B

- Note :- Section 'B' contains Eight (08) Short-answer type questions of Eight (08) marks each. Learners are required to answer any *four* (04) questions only.
- Show that the linear spaces Rⁿ(Euclidean) of *n*-tuples
 x = (x₁, x₂, ..., x_n) of real numbers are Banach Space
 under the norm :

$$||x|| = \left\{\sum_{i=1}^{n} |x_i|^2\right\}^{1/2}$$

- Show that every complete subspace of a normed linear space in closed.
- If T be a linear transformation of normed space N into normed space N', then inverse of T i.e., T⁻¹ exists and is continuous on its domain of definition *iff* ∃ *a* constant K ≥ 0, s.t. || Tx || ≥ K || x ||, ∀ x ∈ N.
- 4. State and prove open mapping theorem.
- Prove that every Hilbert space is an inner product space but converse not necessarily true.
- **A–636/MT–601** (3)

- 6. Define conjugate of an operator in a normed space and show that the adjoint of a continuous linear map T is linear.
- 7. A If *x* and *y* are any two vectors in a Hilbert space H then show that :
 - (i) $||x + y||^2 ||x y|/^2 = 4 \operatorname{Re}(x, y)$
 - (ii) $(x, y) = \operatorname{Re}(x, y) + i\operatorname{Re}\langle x, iy \rangle$
- 8. Prove that Hilbert space (l_2, d) is complete.
