A-0632

Total Pages : 4

Roll No.

MT-507

M.A./M.Sc. MATHEMATICS (MAMT/MSCMT) (Topology)

2nd Semester Examination, Session December 2024

Time : 2:00 Hrs.

Max. Marks: 70

Note :- This paper is of Seventy (70) marks divided into Two (02) Sections 'A' and 'B'. Attempt the questions contained in these Sections according to the detailed instructions given therein. *Candidates* should limit their answers to the questions on the given answer sheet. No additional (B) answer sheet will be issued.

Section-A

Long Answer Type Questions 2×19=38

Note :- Section 'A' contains Five (05) Long-answer type questions of Nineteen (19) marks each. Learners are required to answer any two (02) questions only.

A–632/MT–507 (1) P.T.O.

- 1. Define a topological space. Let X be a set and T_1 and T_2 be two topologies in X. When do we say T_1 is weaker than T_2 ? Let $X = \mathbb{R}$ and define two topologies in X :
 - The **usual topology** T_U on X as the topology obtained by taking as a base the collection of all open intervals (*a*, *b*).
 - The K-topology T_K on X as the topology obtained by taking as a base the collection of all open intervals (*a*, *b*) together with all sets of the form (*a*, *b*)\K, where K = {1/n : n ∈ N}.

Which topology between T_K and T_U is weaker ? justify your answer in full details.

- 2. What are **subspaces** in topology ? Prove that the subspace topology on a subset of a topological space is the finest topology on that subset that makes the inclusion map continuous.
- Explain the separation axioms T₀, T₁, T₂, T₃ and T₄.
 Provide examples of spaces that satisfy each of these axioms.

```
A–632/MT–507 (2)
```

- 4. Discuss compact spaces in topology. Prove that every compact Hausdorff space is T_4 .
- Define continuous mappings between topological spaces. Prove that the preimage of an open set under a continuous map is open.

Section-B

Short Answer Type Questions 4×8=32

- Note :- Section 'B' contains Eight (08) Short-answer type questions of Eight (08) marks each. Learners are required to answer any *four* (04) questions only.
- 1. What is a locally compact space ? Give an example
- 2. Define Tychnoff's one-point compactification. What is the one point compactification of \mathbb{R} ?
- 3. Define product space and give an example. Show that the product of two compact spaces is compact.
- 4. What is a quotient space ? Provide an example and discuss the properties of quotient spaces.
- 5. Define nets in topology. Prove or disprove : every convergent sequence is a net, but not every net is a sequence.

A-632/MT-507 (3)

- 6. Explain the concept of filters in topology. Give an example of a filter and describe its properties.
- 7. What is meant by a connected space ? Prove that the union of two connected spaces is connected if they have a non-empty intersection.
- 8. Show that the continuous image of a connected set is connected.
