A-0626

Total Pages : 4

Roll No.

MT-501

M.A./M.Sc. MATHEMATICS (MAMT/MSCMT) (Advanced Algebra–I)

1st Semester Examination, Session December 2024

Time : 2:00 Hrs.

Max. Marks : 70

Note :- This paper is of Seventy (70) marks divided into Two (02) Sections 'A' and 'B'. Attempt the questions contained in these Sections according to the detailed instructions given therein. *Candidates* should limit their answers to the questions on the given answer sheet. No additional (B) answer sheet will be issued.

Section-A

Long Answer Type Questions 2×19=38

Note :- Section 'A' contains Five (05) Long-answer type questions of Nineteen (19) marks each. Learners are required to answer any two (02) questions only.

A–626/MT–501 (1) P.T.O.

- Every homomorphic image of a group G is isomorphic to some quotient group of G. ?
- A vector space V to be the direct sum of two of its subspaces w₁ and w₂ if and only if :

(i)
$$V = w_1 + w_2$$

(ii)
$$w_1 \cap w_2 = \{0\}$$

- 3. Define Kernel of homomorphism. Prove that Kernel of Homomorphism of module is a submodule.
- 4. Find the dual basis of the basis set :

$$B = \{ (1, -1, 3), (0, 1, -1), (0, 3, -2) \}$$

for $V_3(R)$.

5. If $\varepsilon \beta$, αK are algebraic over F then $\beta \alpha$, $\beta \pm \alpha$ and $\frac{\alpha}{\beta} (\beta \neq 0)$ are all algebraic over F.

Section-B

Short Answer Type Questions 4×8=32

Note :- Section 'B' contains Eight (08) Short-answer type questions of Eight (08) marks each. Learners are required to answer any *four* (04) questions only.
A-626/MT-501 (2)

 Prove that two non zero elements of an integral domain are associates if :

$$\frac{a}{b}$$
 and $\frac{b}{a}$

2. For what value of *m*, the vectors (*m*, 3, 1) a linear combination of :

$$e_1 = (3, 2, 1) \text{ and } e_2 = (2, 1, 0)$$

- 3. Any product of Solvable group is solvable ?
- 4. If R be a ring such that $a^2 = a \forall a \in \mathbb{R}$, Prove that :

(i)
$$a + a = 0 \forall a \in \mathbb{R}$$

(ii)
$$a + b = 0 \Rightarrow a = b$$

- 5. If $G = \{a\}$ be a cyclic group of order 8. Find the quotient groups corresponding to the subgroups generated by a^2 and a^4 .
- 6. Define the following :
 - (i) Linear sum of submodules
 - (ii) Quotient modules
- **A–626/MT–501** (3)

- 7. Define the following :
 - (i) Subnormal series
 - (ii) Normal series
- 8. Prove that any nilpotent group is solvable.
