Roll No.

MT(N)-101

$1^{\text {st }}$ Semester Examination, 2023 (Dec.)
Calculus

Time : 2 Hours]

[Max. Marks : 70
Note : This paper is of Seventy (70) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

नोट : यह प्रश्न पत्र सत्तर (70) अंकों का है जो दो खण्डों, क तथा ख में विभाजित है। प्रत्येक खण्ड में दिए गए विस्तृत निर्देशों के अनुसार ही प्रश्नों को हल करना है।

SECTION-A
खण्ड 'क'
(Long Answer Type Questions)
(दीर्घ उत्तरों वाले प्रश्न)

Note: Section 'A' contains Five (05) long answer type questions of nineteen (19) marks each Learners are required to answer any two (02) questions only.

$$
2 \times 19=38
$$

नोट : खण्ड 'क' में पाँच (05) दीर्घ उत्तरों वाले प्रश्न दिये गये हैं। प्रत्येक प्रश्न के लिए उन्नीस (19) अंक निर्धारित हैं। शिक्षार्थियों को इनमें से केवल दो (02) प्रश्नों के उत्तर देने हैं।

1. Verify Rolle's theorem for the function
$f(x)=x^{3}-6 x^{2}+11 x-6$
रोले प्रमेय को फलन $f(x)=x^{3}-6 x^{2}+11 x-6$ के लिए सत्यापित करें।
2. Find the volume of the ellipsoid:

दीर्घवृत्तज का आयतन ज्ञात कीजिए :

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

3. Show that:

सिद्ध करो कि :
$\Gamma\left(\frac{1}{\mathrm{n}}\right) \Gamma\left(\frac{2}{\mathrm{n}}\right) \Gamma\left(\frac{3}{\mathrm{n}}\right) \cdots \cdots \cdots\left(\frac{\mathrm{n}-1}{\mathrm{n}}\right)=\frac{2^{\left(\frac{\mathrm{n}-1}{2}\right)} \pi^{\left(\frac{\mathrm{n}-1}{2}\right)}}{\mathrm{n}^{\frac{1}{2}}}$
where n is positive integer.
जहाँ n धनात्मक पूर्णांक है।
4. If $x^{x} y^{y} z^{z}=c$, show that at $x=y=z, \frac{\partial^{2} z}{\partial x \partial y}=\left(x \log _{e} x\right)^{-1}$.

यदि $x^{x} y^{y} z^{z}=c$ तो सिद्ध करो कि $x=y=z, \frac{\partial^{2} z}{\partial x \partial y}=\left(x \log _{e} x\right)^{-1}$
5. Prove that: $\int_{0}^{\pi} \frac{x \sin x}{1+\sin x} d x=\pi\left(\frac{\pi}{2}-1\right)$

सिद्ध करो कि : $\int_{0}^{\pi} \frac{x \sin x}{1+\sin x} d x=\pi\left(\frac{\pi}{2}-1\right)$

SECTION-B

खण्ड 'ख’

(Short Answer Type Questions)

(लघु उत्तरों वाले प्रश्न)

Note: Section 'B' contains Eight (08) short answer type questions of Eight (08) marks each. Learners are required to answer any Four (04) questions only.

$$
4 \times 8=32
$$

नोट : खण्ड 'ख' में आठ (08) लघु उत्तरों वाले प्रश्न दिये गये हैं। प्रत्येक प्रश्न के लिए आठ (08) अंक निर्धारित हैं। शिक्षार्थियों को इनमें से केवल चार (04) प्रश्नों के उत्तर देने हैं।

1. Find the value of following :

निम्नलिखित का मान ज्ञात कीजिए :

$$
\lim _{x \rightarrow \infty} \sin \left(\frac{1}{x}\right)
$$

2. Discuss the continuity of the function:

फलन की संतता पर चर्चा करें :
$f(x)=\frac{1}{1-e^{-\frac{1}{x}}}$
3. Prove that the function $f(x)=\left\{\begin{array}{cc}x \tan ^{-\left(\frac{1}{x}\right)}, & x \neq 0 \\ 0, & x=0\end{array}\right\}$ is not differentiable at $\mathrm{x}=0$.

सिद्ध करें कि फलन $f(x)=\left\{\begin{array}{cc}x \tan ^{-\left(\frac{1}{x}\right)}, & x \neq 0 \\ 0, & x=0\end{array}\right\}$ बिंदु $\mathrm{x}=0$ पर अवकलनीय नहीं है।
4. If $f(x)=(x-1)(x-2)(x-3)$ and $a=0, b=4$ then find the value of c using Lagrange's mean value theorem.

यदि $f(x)=(x-1)(x-2)(x-3)$ एवं $a=0, b=4$ तो लग्रांजे माध्य मान प्रमेय का उपयोग करके c का मान ज्ञात कीजिये।
5. If $y=e^{a \sin -1 x}$, prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0$
यदि $y=e^{a \sin -1 x}$, तो सिद्ध करो कि
$\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0$
6. Find the all local maxima and minima of the function $f(x)=2 x^{3}-3 x^{2}-12 x+8$.
फलन $f(x)=2 x^{3}-3 x^{2}-12 x+8$ के सभी स्थानीय अधिकतम और न्यूनतम मान खोजें।
7. Find the evolute of the ellipse :

दीर्घवृत्त का वृत्तांक ज्ञात कीजिए :
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
8. Prove that the limit of the sum $\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{3 n}$ where n is indefinitely increased in log 3.

सिद्ध कीजिए कि योग $\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{3 n}$ की सीमा क्या है जहाँ n अनिश्चित रूप से बढ़ा हुआ है वह $\log 3$ है।

