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Note : This paper is of Seventy (70) marks divided into

two (02) Sections A and B. Attempt the questions

contained in these sections according to the detailed

instructions given therein.

(70)

SECTION—A

(Long Answer Type Questions)
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Note : Section ‘A’ contains Five (05) long answer type

questions of nineteen (19) marks each Learners are

required to answer any two (02) questions only.

2×19 = 38

(05)

(19)

(02)

1. Verify Rolle‘s theorem for the function

f(x) = x3 – 6x2 + 11x – 6

f(x) = x3 – 6x2 + 11x – 6

2. Find the volume of the ellipsoid :
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3. Show that :
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where n is positive integer.

n
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4. If xxyyzz = c, show that at x = y = z, 
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.

xxyyzz = c x = y = z, 
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5. Prove that :  
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SECTION—B

(Short Answer Type Questions)

Note: Section ‘B’ contains Eight (08) short answer type

questions of Eight (08) marks each. Learners are

required to answer any Four (04) questions only.

 4×8 = 32

(08)

(08)

(04)
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1. Find the value of following :
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2. Discuss the continuity of the function :
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3. Prove that the function 
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0, x 0

 is

not differentiable at x = 0.
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4. If f(x) = (x – 1)(x – 2)(x – 3) and a = 0, b = 4 then

find the value of c using Lagrange’s mean value

theorem.

f(x) = (x – 1)(x – 2)(x – 3) a = 0, b = 4

c
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5. If y = ea sin–1x, prove that

(1 – x2)y
n+2

 – (2n + 1)xy
n+1 

– (n2 + a2)y
n
 = 0

y = ea sin–1x,

(1 – x2)y
n+2

 – (2n + 1)xy
n+1 

– (n2 + a2)y
n
 = 0

6. Find the all local maxima and minima of the function

f(x) = 2x3 – 3x2 – 12x + 8.

f(x) = 2x3 – 3x2 – 12x + 8

7. Find the evolute of the ellipse :
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8. Prove that the limit of the sum    
 

1 1 1 1
...
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where n is indefinitely increased in log 3.
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