K-893

Total Page No. : 4]

[Roll No.

MAMT-10

M.A./M.Sc. Mathematics IInd Year Examination Dec., 2023

MATHEMATICAL PROGRAMMING

Time : 2 Hours]

[Max. Marks: 70

Note :- This paper is of Seventy (70) marks divided into two (02) Sections 'A' and 'B'. Attempt the questions contained in these Sections according to the detailed instructions given there in. *Candidates should limit* their answers to the questions on the given answer sheet. No additional (B) answer sheet will be issued.

Section-A

(Long Answer Type Questions) 2×19=38

Note :- Section 'A' contains Five (05) Long-answer type questions of Nineteen (19) marks each. Learners are required to answer any *two* (02) questions only.

1. Prove that :

$$f(x) = \frac{1}{x}$$

is strictly for x > 0 and strictly concave for x < 0.

2. Solve the following LPP by revised simplex method :

Max.
$$Z = 2x_1 + x_2$$

st.
$$3x_1 + 4x_2 \le 6$$

$$6x_1 + x_2 \le 3$$

$$x_1, x_2 \ge 0$$

3. Solve the following IPP :

Max.
$$Z = 2x_1 + 3x_2$$

st. $-3x_1 + 7x_2 \le 14$
 $7x_1 - 3x_2 \le 14$

and $x_1, x_2 \ge 0$ and all integers.

- 4. State and prove Lagrange's multipler method.
- 5. Find the dimension of the rectangular parallopiped with largest volume whose sides are to the coordinate planets, to be inscribed in the ellipsoid :

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

K-893

Section-B

(Short Answer Type Questions) 4×8=32

- *Note* :- Section 'B' contains Eight (08) Short-answer type questions of Eight (08) marks each. Learners are required to answer any *four* (04) questions only.
- 1. Define a general non-linear programming problem.
- 2. Solve by Wolf's method :

Max.
$$f(x_1, x_2) = 2x_1 + x_2 - x_1^2$$

st. $2x_1 + 3x_2 \le 6$
 $62 + x_2 \le 4$
 $x_1, x_2 \ge 0$

- Prove that the set of all optimum solutions (global maximum) of general convex programming problem is a convex set.
- 4. Explain Bellman's principal of optimality.
- 5. Prove that a linear function Z = CX f(x) say $X \in \mathbb{R}^n$.
- 6. Show that $f(x) = x^2$ is a convex function.
- **K–893** (3) P.T.O.

7. Solve by dynamic programming :

Max.
$$Z = x_1 + 9x_2$$

st.
$$2x_1 + x_2 \le 25$$

$$x_2 \le 11$$

$$x_1, x_2 \ge 0$$

- 8. Define the following :
 - (a) Line and line segment
 - (b) Artificial objective function
 - (c) Fractional cut
 - (d) Pure and mixed integer programming

(4)