K-893

Total Page No. : 4]
[Roll No.

MAMT-10

M.A./M.Sc. Mathematics IInd Year
 Examination Dec., 2023
 MATHEMATICAL PROGRAMMING

Time: 2 Hours]
[Max. Marks : 70
Note :- This paper is of Seventy (70) marks divided into two (02) Sections ' A ' and ' B '. Attempt the questions contained in these Sections according to the detailed instructions given there in. Candidates should limit their answers to the questions on the given answer sheet. No additional (B) answer sheet will be issued.

Section-A
(Long Answer Type Questions) $\quad 2 \times 19=38$

Note :- Section 'A' contains Five (05) Long-answer type questions of Nineteen (19) marks each. Learners are required to answer any two (02) questions only.

1. Prove that:

$$
f(x)=\frac{1}{x}
$$

is strictly for $x>0$ and strictly concave for $x<0$.
2. Solve the following LPP by revised simplex method :

$$
\begin{aligned}
\text { Max. } \quad \mathrm{Z} & =2 x_{1}+x_{2} \\
\text { st. } 3 x_{1}+4 x_{2} & \leq 6 \\
6 x_{1}+x_{2} & \leq 3 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

3. Solve the following IPP :

$$
\begin{aligned}
\text { Max. } \quad \mathrm{Z} & =2 x_{1}+3 x_{2} \\
\text { st. }-3 x_{1}+7 x_{2} & \leq 14 \\
& 7 x_{1}-3 x_{2}
\end{aligned} \leq 14
$$

and $x_{1}, x_{2} \geq 0$ and all integers.
4. State and prove Lagrange's multipler method.
5. Find the dimension of the rectangular parallopiped with largest volume whose sides are to the coordinate planets, to be inscribed in the ellipsoid :

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Section-B

(Short Answer Type Questions) $\quad 4 \times 8=32$
Note :- Section ‘B’ contains Eight (08) Short-answer type questions of Eight (08) marks each. Learners are required to answer any four (04) questions only.

1. Define a general non-linear programming problem.
2. Solve by Wolf's method :

$$
\begin{array}{cc}
\text { Max. } & f\left(x_{1}, x_{2}\right)=2 x_{1}+x_{2}-x_{1}^{2} \\
\text { st. } \quad 2 x_{1}+3 x_{2} & \leq 6 \\
62+x_{2} & \leq 4 \\
x_{1}, x_{2} & \geq 0
\end{array}
$$

3. Prove that the set of all optimum solutions (global maximum) of general convex programming problem is a convex set.
4. Explain Bellman's principal of optimality.
5. Prove that a linear function $\mathrm{Z}=\mathrm{CX}-f(x)$ say $\mathrm{X} \in \mathrm{R}^{n}$.
6. Show that $f(x)=x^{2}$ is a convex function.
7. Solve by dynamic programming :

$$
\begin{aligned}
\text { Max. } \mathrm{Z} & =x_{1}+9 x_{2} \\
\text { st. } \quad 2 x_{1}+x_{2} & \leq 25 \\
x_{2} & \leq 11 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

8. Define the following :
(a) Line and line segment
(b) Artificial objective function
(c) Fractional cut
(d) Pure and mixed integer programming
