## K-320

Total Page No. : 5]
[Roll No.

## BCA-05

## Bachelor of Computer Application B.C.A. IInd Semester Examination Dec., 2023 DISCRETE MATHEMATICS

Time : 2 Hours]

[Max. Marks : 70
Note :- This paper is of Seventy (70) marks divided into two (02) Sections 'A' and 'B'. Attempt the questions contained in these Sections according to the detailed instructions given there in. Candidates should limit their answers to the questions on the given answer sheet. No additional (B) answer sheet will be issued.

## Section-A

Long Answer Type Questions
$2 \times 19=38$
Note :- Section 'A' contains Five (05) Long-answer type questions of Nineteen (19) marks each. Learners are required to answer any two (02) questions only.

1. (a) Define the following sets with the help of suitable examples :
(i) Empty set
(ii) Finite set
(iii) Infinte set
(iv) Powerset
(v) Complement of a set
(b) Let $\mathrm{A}=\{, 2,3\}$ and Let $\mathrm{B}=\{3,4$,$\} . Find the$ following :
(i) $\mathrm{A} \times \mathrm{B}$
(ii) $\mathrm{B} \times \mathrm{A}$
(iii) $\mathrm{A} \times \mathrm{A}$
(iv) $\mathrm{B} \times \mathrm{B}$
2. (a) Let $\int: \mathrm{R} \rightarrow \mathrm{R}$ and $g: \mathrm{R} \rightarrow \mathrm{R}$ are two functions. Then, define the composition $f o g$ and $g o f$. If $f(x)=3 x-5$ and $g(x)=x^{2}$, then find $f o g(x)$ and $g o f(x)$.
(b) Write the truth tables for the following propositions :
(i) $\quad(\mathrm{P} \vee \mathrm{Q}) \rightarrow \sim \mathrm{R}$
(ii) $\mathrm{P} \rightarrow \sim(\mathrm{Q} \wedge \mathrm{R})$
3. (a) Prove that the set of integers is a group with respect to addition.
(b) Define the following :
(i) Venn diagram
(ii) Truth tables
(iii) The pige on hole principle
4. (a) Solve the following linear system of equations using Cramer's rule :

$$
\begin{array}{r}
x+y+z=9 \\
2 x-3 y+2 z=3 \\
2 x-y+z=6 \tag{9}
\end{array}
$$

(b) Find the rank of the following matrix :

$$
\left[\begin{array}{ccc}
3 & 2 & 5 \\
2 & 4 & 3 \\
1 & -2 & 3
\end{array}\right]
$$

5. (a) $(\mathrm{A} \rightarrow \mathrm{B}) \leftrightarrow$ Convert the stalement into basic connectors.
(b) In how many ways a comittee of 3 students can be formed from a group of 3 boys and 2 girls if :
(i) The committee contains 2 boys and 1 girls.
(ii) The committee always includes a particular students.
(iii) The committee always excludes a particular students.

## Section-B

## Short Answer Type Questions <br> $4 \times 8=32$

Note :- Section 'B' contains Eight (08) Short-answer type questions of Eight (08) marks each. Learners are required to answer any four (04) questions only.

1. Let X and Y be two sets, then prove that :

$$
\overline{\mathrm{X} \cap \mathrm{Y}}=\overline{\mathrm{X}} \cup \overline{\mathrm{Y}}
$$

2. Let $\mathrm{X}=\{2,3,6,12,18,24,36\}$ and $\mathrm{R}=\{(x, y): x \mid y$, $\forall x, y, \in \mathrm{X}\}$ be a partial order relation on X . Draw the Hasse diagram of the relation R.
3. Define a constradiction. Check whether the proposition $\sim(((\mathrm{P} \rightarrow \mathrm{Q}) \wedge \mathrm{P}) \rightarrow \mathrm{Q})$ is a contradiction ?
4. Let R be a relation defined on a set of positive integers such that for all $x, y \in Z, x \mathrm{R} y$ if and only if $x-y$ is divisible by 5 . Prove that R is an equivalence relation.
5. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a function defined as $f=4 x-6$. Show that $f$ is one-one onto function.
6. Show that the set of al positive rational numbers forms an abelian group under the composition :

$$
a * b=\frac{a b}{2}
$$

7. Define a ring with the help of suitable examples.
8. Let $P$ : | play chess, $\mathrm{Q}: \mid$ walk and $\mathrm{R}: \mid$ study. Write sentences for the following propositions :
(a) $\mathrm{P} \rightarrow \mathrm{Q}$
(b) $\quad \sim \mathrm{P} \rightarrow \mathrm{Q}$
(c) $(P \wedge Q) \rightarrow R$
(d) $\mathrm{P} \rightarrow(\mathrm{Q} \wedge \mathrm{R})$
