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Abstract
Tridax procumbens is a flowering plant of the Asteraceae family with a wide range of medicinal uses like anti-inflammatory, 
anti-diabetic, anti-microbial, immunomodulatory, etc. This study aimed to investigate the anti-cancerous activity of human 
lung cancer for targeting luteolin, a phytochemical of Tridax procumbens. The computational study has been done for studying 
the structural properties of luteolin. The drug-likeness of the molecule has been predicted by virtual screening of ADMET 
properties. The molecular docking technique of the in-silico method is performed to check the complex formation between 
protein and ligand. The reactivity and stability of the molecule are investigated with the help of molecular dynamics (MD) 
simulations. In the present work, we have tried to establish a strong candidature of any of the phytochemical of Tridax Procum-
bens as an inhibitor against human lung cancer.
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Introduction

Cancer is one of the deadly diseases present in our world that 
majorly imparts in the global death ratio, yet it is incurable. 
It can be defined as the process of abnormal and uncontrolled 
cell division that occurs inside the human body and invade 
other parts, destroying body tissues [1]. It can affect any 
organ like the lung, kidney, intestine, uterus, brain, and even 
blood [2]. World Health Organization (WHO) has reported 
9.6 million deaths, or one in six deaths, in 2018 and stated 
that cancer is the second leading cause of death worldwide 
[3]. The Globocan report 2020 issued by WHO reported 
that lung cancer is the second disease imparting 11.4% of 
the total cancer cases after breast cancer (11.7%) [4]. Lung 
cancer has the highest mortality rate of 2.21 million cases of 

the total deaths recorded from cancer in 2020 [4]. The dys-
regulation of deoxyribose nucleic acid (DNA) is the major 
reason for cancer initiation and progression in the human 
body [5]. Minichromosome maintenance (MCM) complex 
is the fifth most common type of cancer that leads to the 
evolution of the pre-replication process for DNA [6]. The 
regulation of MCM protein in the human body leads to the 
proliferation of various types of cancers [7]. MCM7 plays a 
vital role in cancer development and progression and acts as 
an initiator in eukaryotic DNA and G1/S cell cycle propaga-
tion [8]. It is one among the family of MCM DNA helicase 
comprising six conserved proteins called MCM2-7 [9]. It 
was first isolated from Saccharomyces cerevisiae (budding 
yeast) [10]. This process is called DNA replication licensing 
in which the MCM complex unwinds the bounded strands of 
the DNA [11]. This unwinding leads to genome duplication 
in proliferating cells and chromosomal defects. Such chro-
mosomal defects result in tumorigenesis [12]. MCM proteins 
are found to be highly involved in human cancer evolution 
and malignant transformations. Thus, the MCM proteins are 
considered promising targets for cancer drug development.

On the other hand, in the last few decades, medicinal 
herbs have been shifted from fringe to mainstream use, and 
a more number of people seek remedies in herbal extracts 
[13, 14]. Plants have always been an important source 
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of anti-cancerous supplements. Natural extracts share a 
large part in anticancer drugs available in the markets. 
Many studies have been reported for anti-cancer ailments 
from herbal extracts like gedunin for ovarian cancer [15], 
ginsenoside for breast cancer [16], cinnamon [17], and 
many more. These findings have motivated us to work 
specifically on herbal extracts. For the present work, we 
have considered a tropical plant Tridax procumbens. This 
plant has historical shreds of evidence for being used as a 
medicinal plant [18]. The plant is native to Asia, America, 
Africa and, Australia. In many countries, Tridax procum-
bens is widely used for the healing of open wounds [18]. 
This herb is also known for its wide range of pharmacolog-
ical activities like anti-fungal [19], anti-inflammatory [20], 
anti-tubercular [21], hepatoprotective [22], anti-diabetic 
[23] etc. It is also known for curing asthma [24] and is 
a fulfilled herb with secondary metabolites like steroids, 
terpenoids, tannins, flavonoids, saponins, glycosides, and 
amino acids [25].

The virtual screening of pharmacological properties is 
done for Luteolin to study its drug-like resemblances. The 
energy optimization of the structure of Luteolin is done to 
investigate its stability. The binding of ligand to protein is 
accounted by performing molecular docking, and the stabil-
ity of the complex formed by docking of protein and ligand 
is verified by performing the molecular dynamics simula-
tions. In the present paper, an in silico study done with luteo-
lin as an inhibitor will help in establishing the strong candi-
dature of luteolin as a potential drug against human cancer.

Material and methods

Potential target protein structure for cancer MCM7 
protease

Human cancer encodes a large number of protein structures. 
The structure we have considered for this study is protease 
MCM7 (PDB ID: 6XTX, resolution: 3.29 Å). MCM7 can 
metastasize and destroy the living tissues in the body. The 
malignancies in which MCM7 is involved are hepatocellular 
carcinoma, head, and neck, esophagus, etc. [26]. Thus, it is 
suitable to design a study that will identify the compound 
with inhibitor activity for preventing replication of DNA of 
cancerous cells. The 3D structure of protein MCM7 is down-
loaded from “Protein Data Bank.” Removal of heteroatoms, 
water molecules, and addition of polar hydrogen is done with 
the help of the software “BIOVIA Discovery Studio Visual-
izer” (https:// disco ver. 3ds. com/ disco very- studio- visua lizer- 
downl oad). The structure of receptor protease MCM7 with 
DNA backbone and basic pairs located at the center of the 
structure is shown in Fig. 1.

Potential inhibitor: Tridax procumbens

Tridax procumbens is a phytochemical-rich plant consti-
tuting baicalin, tetrandrine, luteolin, apigenin, stigmas-
terol, catechin, epicatechin, quercetin, myricetin, gallo-
catechin, sitosterol, akuammidine, kaempferol, and many 
more [27]. Among all the phytochemicals, luteolin is a 
flavonoid having anti-cancerous properties [28]. Numer-
ous works have been done so far reporting the anticancer 
properties of Luteolin [29]. Anticancer activity of luteolin 
is investigated against gastric cancers [30], breast cancer 
[31], prostate cancer [32], brain tumors [33], cervical can-
cer [34], skin cancer [35], etc. Thus, it makes sure that 
our vision to use it as an anti-cancer agent will not disap-
point us. Luteolin is a flavonoid belonging to the vitamin 
B family. It is mainly present in many food supplements 
like parsley, broccoli, onion leaves, carrots, peppers, cab-
bages, apple skins, etc. [36]. It is highly added as a food 
supplement due to its anti-oxidative property. Various pre-
clinical reports have proven that luteolin possesses a wide 
range of pharmacological activities like anti-hepatotoxic 
[37], hypotensive [38], anti-urolithiasis [39], hemostatic 
[40], antimicrobial or antibacterial activity [41], and many 
others. It is seen that the luteolin has preventive activ-
ity against several parasitic agents like Leishmania dono-
vani [42] and plasmodium falciparum [43]. Many studies 
have been already done considering luteolin as a potential 
inhibitor against the  Mpro protease of COVID-19 [44]. 
The structure of Luteolin is downloaded from the online 
database “PubChem” (https:// pubch em. ncbi. nlm. nih. gov/) 
ID:5280445) (Fig. 1).

Computational method for structural analysis

The ground state energy optimization is done with the help 
of the software “Gaussian 09” [45] and method B3LYP with 
a standard 6-311G basis set [46, 47]. To visualize the Gauss-
ian results, Gauss View 5 molecular visualization program 
has been used [48]. Optimized geometry is used to derive 
the Mulliken charge distribution and molecular electrostatic 
potential (MEP) surface map that helps in explaining the 
chemical stability of the molecule. The frontier molecular 
orbitals (FMO) (highest occupied molecular orbital and low-
est unoccupied molecular orbital) energies are also derived 
with the help of optimized geometry. These HOMO–LUMO 
energies are used for computing ionization potential (IP), 
energy gap (ΔE), electron affinity (EA), chemical poten-
tial (CP), electronegativity (χ), softness (S), and hardness 
(η) [49]. These parameters are considered global reactivity 
parameters and help in determining the chemical reactivity 
of the molecule.

https://discover.3ds.com/discovery-studio-visualizer-download
https://discover.3ds.com/discovery-studio-visualizer-download
https://pubchem.ncbi.nlm.nih.gov/
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Drug‑likeness and ADMET properties

We have done the virtual screening of drug-likeness rules, 
and ADMET properties of Luteolin. Lipinski’s rule, MDDR-
like rule, Veber’s rule, Ghose filter, Egan rule, Muegge rule,  
lipophilicity, water-solubility, etc., are examples of drug- 
likeness rules [50]. Some of the drug-likeness rules are molec-
ular weight < 500 g/mol, hydrogen bond donors < 5, hydro-
gen bond acceptor < 10, MLOGP (n-octanol–water partition  
coefficient) < 4.15, molar refractivity should be between 40 
and 130, log P ranging between − 0.4 and + 5.6, solubility 
(log S) >  − 5.7 [51]. Additionally, absorption, distribution, 
metabolism, excretion, and toxicity (ADMET) properties are  
also important in drug designing as they signify whether 
the compound undergoes proper metabolic processes in the 
human body or is toxic [52]. In the present work, all the  
drug-likeness and ADMET features are listed with the help 
of the online database SwissADME.

Prediction of activity spectra for substances (PASS)

Cytotoxicity prediction is done with the help of the 
freely accessible online platform CLC-Pred (Cell Line 

Cytotoxicity Predictor) [53]. CLC-Pred is a cytotoxicity  
predictor used in in-silico studies that can predict the 
cytotoxic effect of chemical compounds by the virtue of 
PASS technology. Near about 4000 kinds of biological 
activities like toxic and adverse effects, mechanisms of 
action, interaction with metabolic enzymes and transport-
ers, pharmacological effects influence on gene expres-
sion, etc. can be predicted by PASS [54]. The structure 
of luteolin is submitted in smiles format. Prediction of 
the activity spectrum of a compound is estimated in 
terms of probable activity (Pa) and probable inactiv-
ity (Pi). Pa and Pi values vary between 0.000 and 1.000 
[55]. The activities following condition Pa > Pi are con-
sidered as possible for a particular compound. Experi-
mental pharmacological action is considered high if the 
Pa > 0.7 and low if 0.5 < Pa < 0.7 [56]. Data can also 
be extracted in structured data file format. Analysis of 
data extracted from CLC-Pred is interpreted based on 
their IG50 (half-maximal inhibitory growth), IC50 (half 
maximal inhibitory concentration), and % inhibition (of 
activity) values [57]. Compounds having IG50 and IC50 
values 10,000 nM and inhibition of more than 50% are  
considered as active [58].

Fig. 1  (a) Structure of receptor protease MCM7 (PDB ID: 6XTX) with DNA backbone and basic pairs are located at the center of the structure 
(backbone: blue, basic pairs: magenta), (b) structure of luteolin
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Prediction of cardiac toxicity

Prediction of cardiac toxicity detects the cardio-related 
harms by the consumption of the drug. Pred-hERG 4.2 is 
a freely accessible validated web server that is used for the 
identification of cardiotoxic blockers of the compound [59]. 
The human ether-a-go-go-related gene (hERG) is a cardiac 
repolarizer that mainly encodes a protein and also activates 
the rectifier potassium channel (IKr) [60]. Heartbeat delay 
is the main caution of dysfunctioning of hERG which may 
often cause sudden death [61]. The structure of luteolin is 
submitted to Pred-hERG in smileys format. Potency, con-
fidence, applicability domain, and probability map are 
recorded as the results [62]. To be non-cardio toxic, the con-
fidence value should not exceed 0.26 for any compound [63]. 
The fragments representing hERG blockage are indicated in 
the probability map.

Molecular docking study

For molecular docking studies, Chain 4 and Chain 7 are cho-
sen based on the AGS cocrystal found naturally in the Cry-
oEM structure of human MCM7 structure (PDB ID: 6XTX) 
[64]. Missing residues in Chain 4 and 7 structures are com-
pleted using SWISS-MODEL (https:// swiss model. expasy. 
org/). Based on the cocrystal AGS in the 6LXT structure, 
the active site coordinates are determined as x: 211.170, y: 
201.937, and z: 140.544, and the grid box volume is chosen 
as 20*20*20 Å3. Molecular docking is performed with both 
Autodock Vina and Glide to validate the results [65, 66]. The 
optimized luteolin structure for molecular docking studies is 
obtained from the DFT study. The protein and ligand input 
pdbqt files required for Autodock Vina docking are created 
with AutoDockTools-1.5.6. For Glide docking, the protein 
structure is prepared with the “Protein Preparation Wizard” 
in Schrödinger Maestro 12.8 and the ligand structure is pre-
pared with the “LigPrep” module using OPLS4 force field. 
Protein–ligand interactions are visualized using BIOVIA 
Discovery Studio Visualizer v21 and UCSF Chimera v1.15 
software. The docked structure by Glide of Luteolin with 
chain 7 and chain 4 of 6XTX is further used for performing 
MD simulations.

Molecular dynamics simulations

The software “Gromacs 2019.2 version” is used for per-
forming the molecular dynamics simulation [67, 68]. 

The protein preparation topology is created with Gromos 
43A1 force field and SCP water model. The ligand topol-
ogy file is obtained from the GlycoBioChem PRODRG2 
server (http:// davap c1. bioch. dundee. ac. uk/ cgi- bin/ prodrg) 
[69]. The protein–ligand complex is simulated for 300 ps 
in canonical (amount of substance (N), pressure (P) and 
temperature (T) — NPT) and 300 ps isothermal-isobaric 
(amount of substance (N), volume (V), and equilibrium 
steps temperature (T) — NVT) ensembles. The molecu-
lar dynamics simulations run for 100 ns. The root mean 
square deviation (RMSD) and root mean square fluctuation 
(RMSF) is calculated to study the stability of the complex 
during the simulation. RMSD and RMSF help in the pre-
diction of the atomic positions and the complex stability 
of the molecule undergoing simulation.

Results and discussions

Analysis of structural properties

Optimized structure and charge analysis

The optimized geometry of luteolin seems to be planar with 
the total electrostatic potential energy of − 1028.92 au, and 
dipole moment 4.85 Debye. The high dipole moment of the 
probe molecule suggests the bioactivity of the structure that 
strengthens the formation of the bond between the drug and 
targeted protein [70]. Bond length (Å) and bond angle (°) 
between different atoms of optimized geometry are men-
tioned in SD.1 and SD.2.

The graphical representation of Mulliken charges shows 
the positive impact of hydrogen atoms and the nega-
tive impact of carbon and oxygen atoms (Fig. 2b). Atom 
5O bonded to benzene ring shows the maximum negative 
charge of 0.664e. 6O and 4O also show near about maxi-
mum negative charges of 0.609e and 0.614e respectively 
(SD.3). On the other hand, 22H, 28H, 29H, and 31H are 
the hydrogen atoms showing the highest positive charges of 
0.396e, 0.381e 0.396e, and 0.400e, respectively (SD.3). A 
high variation of charge within the molecule is observed for 
C atoms. High positive and negative effect in atoms shows 
the possibility of intramolecular charge transfer property 
within the Luteolin.

Frontier Molecular Orbital (FMO) analysis

The chemical reactivity, stability, and optical properties of 
a molecule are derived by HOMO  and LUMO energies. 
Koopman’s theorem is used for calculating different FMO 
related parameters (Table 1) [71].

Fig. 2  (a) Optimized structure of Luteolin. Red atoms are oxygen, 
dark green is hydrogen, light green is carbon, and brown are the car-
bons bonded to hydrogen. (b) Plot showing Mulliken charge distri-
bution of Luteolin. The plot shows the positive behavior of hydrogen 
and the negative behavior of oxygen

◂

https://swissmodel.expasy.org/
https://swissmodel.expasy.org/
http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg
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(1)IP = −E
HOMO

(2)EA = −E
LUMO

(3)CP =
E
HOMO

+ E
LUMO

2

(4)� =
(IP + EA)

2

The energy gap between the HOMO and LUMO energies  
is found to be 3.97 eV (Fig. 3). This confirms the delocalization 
of electrons within the molecule. The value of IP (6.32 eV)  
shows the tendency of the molecule to easily loose the free 
electrons. The value of EA (2.35 eV) is reported for the 
molecule that shows the atoms attract the electrons more 
easily. The value of χ is calculated to be 4.33 eV. All the 
FMO parameters confirm the high chemical reactivity of the 
Luteolin molecule. The high value of η (1.986 eV) and low 
value of S (0.503 eV) shows the stability of the molecule.  
These parameters show the chemical reactivity of the 
system.

MEP analysis

The reactivity of any molecule is determined by examin-
ing the molecular electrostatic potentiality of the mol-
ecule. MEP helps in the determination of active sites of 
the molecule. Figure 4 shows the MEP surface indicat-
ing electrophilic regions from blue color and nucleo-
philic regions in yellow color. There is some portion of 
the molecule which is neutral or does not participate in 
the chemical reaction. In the MEP surface, the green-
colored region shows the neutral part of the molecule. 

(5)� =
E
LUMO

− E
HOMO

2
, S =

1

�

Table 1  Chemical parameters of luteolin (all values are in eV and S 
is in (eV)−1)

S No Molecular property Values

1 HOMO  − 6.32
2 LUMO  − 2.35
3 Energy gap (ΔE) 3.97
4 Ionization potential (IP) 6.32
5 Electron affinity (EA) 2.35
6 Chemical potential (CP)  − 4.33
7 Electronegativity (χ) 4.33
8 Hardness (η) 1.98
9 Softness (S) 0.50

Fig. 3  HOMO and LUMO with 
respective energies and energy 
difference
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The electron-rich locations shaded in yellow color indi-
cate that the molecule has plenty of electrons for undergo-
ing chemical reactions, and the maximum negative region 
for electrophile attack shown in blue color validates the 
possibility of the molecule being highly chemically reac-
tive [72].

Analysis of drug likeness and ADMET properties

Luteolin follows Lipinski’s rule of five without any vio-
lation with a molecular mass of 286.24 g/mol, logP  < 5, 
H-donor < 5, and H-acceptor < 10. Along with showing 
high gastrointestinal absorption and moderate solubility, 
Ghose’s filter, Egan’s rule, Veber’s rule, and Mugge’s 
rule. Table 2 lists the properties and their responses for 
luteolin, lipophilicity, or partition coefficient which is 
an important virtue of virtual screening which accounts 
for the affinity of the drug in the lipid environment. For 
a compound to be used as a drug, the lipophilicity value 
should be positive to be stable in lipid medium, and logP  
should be less than 5 to be a potential drug. For luteolin, 
all log P parameters are less than 5. Also, luteolin has 
shown positive behavior for being water-soluble. Luteolin 
also shows high gastronomical intestinal absorption which 
shows it can be a better drug for human consumption.

PASS analysis

The considered molecule luteolin is widely preferred for the 
treatment of hypertension, inflammatory disorders, and can-
cer. Data given in SD.4 displays one of the breast carcinomas 
for Pa > 0.3 which matches with one of its known therapeutic 
applications. Cytotoxicity against many cell lines is also pre-
dicted including oligodendroglioma, colon adenocarcinoma, 
hepatoblastoma, and many more (SD.4). For Pa > 0.5, cancer 
line Hs 683 (oligodendroglioma) is predicted.

Predicted activity (Pa) with value 0.523 and probable 
inactivity (Pi) with value 0.049 is obtained for luteolin. 
Results verify that the probable activity (Pa) score is very 
close to 1 and the probable inactivity (Pi) score is very close 
to 0. Half maximal inhibitory concentration (IC50) which 
shows the extent of inhibiting of any compound against a 
specific biological function shows more than 50% probabil-
ity in luteolin which is considered as an active compound. 
Figure 5 shows the percent share of possible biological 
activities possessed by luteolin. Cancer cell growth anti-
proliferation is explained as GI50 activity.

Cardiac toxicity analysis

The value of the applicability domain for luteolin is 
observed to be 0.19 which lies in the acceptable range 

Fig. 4  MEP surface showing the electrophilic region in blue color and nucleophilic region in yellow portions
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(less than 0.26). The probability map shown in Fig. 6 
indicates the presence of both positive and negative con-
tributions of atoms or fragments to the hERG blockage. 
From Fig. 6, it is noticeable that the pink-colored region 
near the OH groups in the probability map indicates the 

decreased hERG blockage region. The set of atoms con-
stituting oxygen promotes the hERG cardiac potential-
ity of the molecule. The low value of the applicability 
domain predicted luteolin as non-cardiotoxic with a 50% 
confidence value.

Table 2  Physiochemical, drug-likeness, pharmacokinetics, lipophilicity, and medicinal chemistry of luteolin

Physicochemical properties

Formula C15H10O6

Molecular weight 286.24 g/mol
Num. H-bond acceptors 6
Num. H-bond donors 4
Molar Refractivity 76.01
TPSA 111.13 Å2

Lipophilicity

Log Po/w (iLOGP) 1.86
Log Po/w (XLOGP3) 2.53
Log Po/w (WLOGP) 2.28
Log Po/w (MLOGP)  − 0.03
Log Po/w (SILICOS-IT) 2.03
Consensus Log Po/w 1.73

Water solubility

Log S (ESOL)  − 3.71
Solubility 5.63e-02 mg/ml; 1.97 ×  10−4 mol/l
Class Soluble
Log S (Ali)  − 4.51
Solubility 8.84e-03 mg/ml; 3.09 ×  10−5 mol/l
Class Moderately soluble
Log S (SILICOS-IT)  − 3.82
Solubility 4.29e − 02 mg/ml; 1.50 ×  10−4 mol/l
Class Soluble

Pharmacokinetics

GI absorption High
BBB permeant No
P-gp substrate No
Log Kp (skin permeation)  − 6.25 cm/s

Drug-likeness

Lipinski Yes; 0 violation
Ghose Yes
Veber Yes
Egan Yes
Muegge Yes
Bioavailability Score 0.55

Medicinal chemistry

PAINS 1 alert: catechol_A
Brenk 1 alert: catechol
Lead-likeness Yes
Synthetic accessibility 3.02
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Molecular docking analysis

After performing multiple times, docking of the ligand 
with protein the first binding pose is considered as the 
best binding pose with binding affinity − 8.4 kcal/mol 
and four hydrogen bonds (Fig. 7). All the conventional 
hydrogen bond interaction details are mentioned in 
Table 3 with common active site amino acid residues 
Gln512, Ser509, Thr508, and Lys510. All these results 
show that the first docked pose is the best pose of luteolin 
in the binding site of MCM7. It also validates the poten-
tiality of luteolin to be used as a drug against MCM7 
cancer. The 2D structure of donor–acceptor interactions 
is also verified to locate the hydrogen bonds associated 
with the complex (Fig. 7).

The docking results obtained by Schrodinger software 
are shown in Fig. 8. The Glide XP score of − 10 or less is 
considered as the good binding score. In case the hydro-
phobic interactions are associated with the binding site, 
the Glide XP score of − 8 or − 9 is also considered as 
the good binding score. In our case, the Glide XP score 
obtained by the docking of luteolin with MCM7 has the 
value of − 8.516 which is very close. The amino acid resi-
dues Glu420, Gln512, Tyr652, and Tyr465 are associated 

with conventional bond formation. The pi-sigma interac-
tion is represented by Leu565 residue. Leu564, Leu660, 
Ala560, and Alg561 residues are associated with the pi-
alkyl bond. The pose with glide emodel value -66.445 is 
selected as the best pose. Molecular interaction details 
obtained from Glide XP and Autodock Vina tools are 
given in Table 3.

Molecular dynamics simulations

Root mean square deviation (RMSD)

The RMSD is calculated to determine the protein–ligand 
stability and functionality of the complex. This provides 
an idea about the structural deviation of the protein–ligand 
complex during the time trajectory of 100 ns (Fig. 9). The 
RMSD deviation of luteolin gave a rise up to 0.2 nm in the 
initial 10 s and remained constant for the whole simula-
tion time. Unlike luteolin, the RMSD of the apoprotein rise 
for initial 45 s of the simulation time. This rise in RMSD 
value increases up to 1 nm and fluctuates from 0.6 to 1 nm 
for the next 55 s. RMSD graph of MCM7-luteolin complex 
shows intermediate values of apoprotein graph and luteolin 

Fig. 5  Pie chart showing types 
of possible biological activities 
in Luteolin. Share of IC50 and 
GI50 is also shown with prob-
ability percentage
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graph. The RMSD value of the complex fluctuates from 0.2 
to 0.6 nm consistently. The consistent value of RMSD for 
complex shows that the complex remains stable during the 
whole simulation time.

Root mean square fluctuations (RMSF)

The  RMSF give insights into the protein residue fluctua-
tions for the complex. The RMSF plot for chain 4 and chain 

Fig. 6  Probability map of luteolin showing hERG blockage promoting regions in pink shade

Table 3  Luteolin molecular interaction details at the active site of MCM7 protein obtained from Glide XP and Autodock Vina tools

Protein/docking tools Interacting residues Distance (Å) Category Type

DNA replication licensing  
factor MCM7 (PDB ID: 
6XTX)

Glide XP (− 8.5 kcal/mol)

4:Tyr465 2.23237 Hydrogen bond Conventional hydrogen bond
4:Gln512 2.12171 Conventional hydrogen bond
4:Tyr652 2.0905 Conventional hydrogen bond
7:Glu420 1.70975 Conventional hydrogen bond
4:Leu656 2.93413 Hydrophobic Pi-Sigma
4:Thr508 5.03603 Amide-Pi stacked
4:Ser509 4.2699 Amide-Pi stacked
4:Leu660 5.06686 Pi-Alkyl
7:Ala560 4.91514 Pi-Alkyl
7:Ala560 4.90091 Pi-Alkyl
7:Arg561 5.05345 Pi-Alkyl
7:Leu564 5.16814 Pi-Alkyl

DNA replication licensing  
factor MCM7 (PDB ID: 
6XTX)

Autodock Vina (− 8.4 kcal/
mol)

4:Thr508 2.27927 Hydrogen bond Conventional hydrogen bond
4:Ser509 2.64023 Conventional hydrogen bond
4:Lys510 2.40961 Conventional hydrogen bond
4:Gln512 1.83235 Conventional hydrogen bond
7:Arg561 3.88199 Electrostatic Pi-Cation
7:Glu420 4.24757 Pi-Anion
4:Lys510 5.14426 Hydrophobic Pi-Alkyl
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7 of the 6XTX protein complexed with luteolin is analyzed 
for 100 ns of the simulation time. The RMSF plot of the 
complex is shown by red color, and apoprotein is shown 
by black color (Fig. 10). The plot for both the chains shows 
frequent fluctuations that validate the high flexibility of the 
complex. The plot indicates that the binding of the com-
plex did not get affected throughout the simulation time. 
Thus, the RMSF analysis validates that the process of 
simulation did not alter the complex resulting in the stable  
protein–ligand complex.

Protein–ligand interactions from MD simulations

The position of the ligand was observed on the pro-
tein before and after simulation and is illustrated in 
Fig.  11. The interacting residues associated with the 
protein–ligand complex after docking were His457, 
Tyr465, Gln512, Met326, Tyr465, His659, Tyr652, and 
Ala560. This complex was used for the simulation. Thus, 
the amino acid residues associated to the intramolecular 
hydrogen bonding of the ligand with protein are His457, 
Tyr465, Gln512, Met326, Tyr465, His659, Tyr652, and 

Fig. 7  (a) 3D view of the whole protein and ligand obtained from Autodock Vina. (b) Molecular docking binding pose of chain 4 (blue), chain 7 
(red), and luteolin (green) at MCM7 protein active site. (c) Schematic protein–ligand molecular interactions diagram including H bond lengths
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Ala560. The residues associated in the binding after 
simulation differ from the residues associated to initial 
complex. After the 100 ns of simulation trajectory, the 
amino acid residues associated with the protein–ligand 
complex were obtained as Asp646, Tyr465, Ser509, 
Ser463, Ala560, Ser559, and Leu656. The association 

of the amino acid residues to the protein–ligand com-
plex before and after 100 ns of simulation time is illus-
trated in Fig. 12a, b, respectively. Before simulation, the 
residues His659, Tyr465, His467, and Gln512 impart in 
the formation of conventional hydrogen bond that are 
highly polar in nature due to the presence of hydrogen 

Fig. 8  (a) Docking mode of protein and ligand by Schrodinger-
Glide XP docking of protein active site with Chain 7 (red), and 
chain 4 (blue) with MCM7, (b) 3D interaction of donor–acceptor 

interaction obtained by docking of Luteolin with MCM7, (c) 2D 
view of protein–ligand interaction showing conventional, carbon 
and pi-donor H-bonds

Fig. 9  Root mean square deviation (RMSD) of MCM7 apoprotein and its complex with luteolin for time trajectory from 0 to 100 ns



Structural Chemistry 

1 3

bonds. But after the simulation of the system for 100 ns, 
only Tyr465 and Asp465 residues impart in the conven-
tional hydrogen bond formation. The residues Ser463, 
Ile464, Leu564, Ile328, Arg568, Glu420, Gly507, 

Ser509, and Thr508 are attached to the complex before 
simulation forming the Van der Waal forces (Fig. 12c), 
but after 100 ns, the residues Gln512, Ile464, Ser463, 
Ile328,  Leu564, Pro323, Leu660, His659, Glu466, 

Fig. 10  Root mean square fluctuations (RMSF) graph of MCM7 in apoprotein (black) and its complex (red) with luteolin for chain 4 and chain 7 
of the protein for time trajectory of 100 ns

Fig. 11  Diagram showing position of the ligand bonded to protein at 0 ns and 100 ns of molecular dynamics simulations of MCM7-Luteolin 
complex



 Structural Chemistry

1 3

Tyr652, Thr508, Arg546, Gly507, and Arg561 are asso-
ciated to the protein–ligand complex (Fig. 12d). These 
residues represent the Van der Waal  forces that make 
covalent bonds, and these covalent bonds are non-polar 
in nature. Thus, ligand interaction with protein at 100 ns 
varies from the initial complex obtained from docking. 
The interacting residues also change over time leading to 
polar conventional hydrogen bonds and some non-polar 
Van der Waal interactions.

Conclusion

This study has utilized comprehensive in-silico techniques 
for determining the anti-cancerous activity of luteolin. The 
high value of the dipole moment of the luteolin implies the 
bioactivity of the molecule. Therefore, it can better support 
the bond formation between the drug and targeted protein. 
Results of charge analysis show the property of charge trans-
fer of the compound. FMO parameters like ΔE, IP, EA, CP, 

Fig. 12  Binding poses and schematic protein–ligand interactions diagram at 0  ns and 100  ns of molecular dynamics simulations of MCM7-
Luteolin complex
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and χ show values favorable enough to ideally justify its 
chemical stability. The high value of η and the low value  
of S show the stiffness and the stability of the molecule. 
The presence of electrophilic and nucleophilic regions 
justifies the displacement of the electron cloud and hence 
intermolecular charge transfer within the luteolin molecule. 
Throughout the virtual screening of pharmacokinetic proper-
ties like Lipinski rules, Ghose’s filter, Egan’s rule, Veber’s 
rule, and Mugge’s rule, etc., luteolin proved itself a benefi-
cial compound that shows drug-like behavior. Along with 
showing positive results in ADMET properties, it responded 
to PASS and cardio-toxic analysis positively. The value of 
active probability for biological activities is much higher 
than the inactive probability that validates the probability 
of biological activities within the molecule.  0.19 is the 
value for the applicability domain which is much less than  
0.26 which is considered the cut-off value for cardio- 
toxicity. Thus, luteolin does not have any cardio-toxic behav-
ior and can be preferred as a potential drug against MCM7  
cancer. Furthermore, the results of molecular docking 
revealed the binding score of the best binding site is found 
to be − 8.4 kcal/mol which is quite good. The RMSD and 
RMSF values obtained by MD simulations have proved that 
the selection of docking pose seems to be correct. The amino 
acid residues associated to the binding pose of the ligand 
with the protein changes over the simulation time showing 
the point mutation in protein. It also conveys the availabil-
ity of polar and nonpolar interactions. The protein ligand 
complex maintains stability throughout the simulation time. 
Summarizing all the in-silico study results directs toward the 
strong candidature of Luteolin as a potential inhibitor. We 
believe that our present study would provide a lead in drug  
development from luteolin for preventing DNA replication.
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