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Abstract
The enhancement of Nonlinear optical (NLO) activity of the 2-nitrotoulene (2NT) after 
the substitution of the halogens (F, Cl, Br, and I) at the para position of the benzene ring 
was reported in the paper. All the computational details were mentioned using density 
functional theory with B3LYP/6-311++G(d,p) basis set. The engagement of the electro-
philic and nucleophilic regions in molecules was established using contour plots. Mulliken 
charge analysis and frontier molecular orbital parameters laid the high chemical reactivity 
of 2NT molecule after the substitution of F, Cl, Br, and I. Using time-dependent density 
functional theory, electronic properties were analyzed by computing absorption and emis-
sion spectra. The higher Raman intensity modes and higher absorbance intensity curve for 
iodine-substituted 2NT (2NT-I) highlighted the highest reactivity. The lowest band gap was 
reported for 2NT-I (4.02  eV) which better correlates with the charge and spectral find-
ings. The polarizability parameters set a fair comparison between the NLO activities of 
the molecules. 2NT-I has the highest values of polarizability parameters among the other 
molecules.

Keywords Density functional theory · Nonlinear optics · 2-Nitrotoulene · Halogens · 
Hyperpolarizability

1 Introduction

Nitrotoulene (NT) is an aromatic compound having numerous applications in pigments, 
antioxidants, agricultural chemicals, and photographic chemicals (Lin et al. 2007; Felscia 
and Rajkumar 2018; Wen et  al. 2012; Yanzhu et  al. 2022). It mainly comprises a nitro 
group that is highly electronegative in nature and a methyl group that acts as a strong elec-
tron donor moiety (Majee et al. 2019). The inductive effect leads to the liberation of the 
electrons from the methyl group towards the nitro group and the charge gets transferred to 
the benzene ring. The free electrons thus, result in hyperconjugation, and the benzene ring 
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behaves as a resonating moiety. This can be considered the main reason for the high chemi-
cal reactivity of nitrotoluene. The use of NT and its derivatives are active research trends 
among researchers. The application of NT as a catalytic reducer was examined (Song et al. 
2022). It has potential applications in paints, dyes, rubber, and the leather industry as well. 
The high electron availability in the benzene ring of NT also leads to its development as 
a charge transport material (Sangeetha et  al. 2018; Pandith and Islam 2014). Thus, the 
high utilization of NT in industrial applications reflect its potent uses in material science 
research.

Meanwhile, the requirement for highly efficient nonlinear optical (NLO) materials has 
given an enormous height to the research field of nonlinear optics. The introduction of new 
organic NLO materials has revolutionized photonics and optoelectronics. Nonlinear optics 
is the science that accounts for the collaboration of electromagnetic (EM) light upon the 
sample (Yadav et al. 1246). The variation of different properties in the sample after intro-
ducing it with the EM light leads to their applicability in optical switching, optical power 
limiting, picture control, telecommunications frequency mixing and generating, photovol-
taics and fluorescence, picture preparation, high sensing materials, etc. (Rana et al. 2016; 
Lakhera et al. 2022a). Modifications in the technology have laid the fact of the high effi-
ciency of the organic NLO materials over the inorganic ones. This has elevated the interest 
of researchers in developing organic NLO materials. Pyrenes (Felscia et al. 2019), pyrro-
lidine (Revathi and Rajendran 2018), pyrazine (Jibin et al. 2018), succinimide (Eşme and 
Sagdinc 2019), anthracenes (Yanxin et al. 2021), quinones (Ejuh et al. 2018), curcumins 
(Badran et al. 2018), creatininium (Sindhusha et al. 2021), azines (Jessen et al. 2021), pyr-
role (Rana et al. 2017), etc., are a few categories of the organic compounds that had been 
widely worked upon in the past few years. Apart from this, NLO activities of plant-derived 
compounds like curcumin (Badran et al. 2018), clitorin (Lakhera et al. 2022b), carotenoid 
(Jeyaram 2022), coriandrum (Sathyavathi et al. 2010), cyclea peltata (Nayak et al. 2021), 
were also established using the density functional theory (DFT) approach. Moreover, the 
substitution of halogen had been seen to enormously enhance chemical reactivity. This is 
probably due to the high chemical reactivity of the halogen atoms. Very high electronega-
tivity of the halogens is also reported which can also be considered as the reason for risen 
reactivity of the compounds. The availability of the seven valence electrons in the outer-
most shell of the halogen atoms makes it highly desirable to rapidly complete the octet 
and attain the stable configuration (Liu et  al. 2022). Thus, the halogen-substituted com-
pounds have gained the attention of researchers to a great extent. Literature had reported 
many studies that accounted for the enhanced NLO activity of molecules right after the 
substitution of halogens. The research work had been reported for the investigation of NLO 
activity of the p-iodoaniline and p-bromoaniline (John et al. 1222), Schiff’s base material: 
4-chloro-4′bromobenzylidene aniline (Sakunthaladevi and Jothi 1233), N-methyl-4-piperi-
odones curcumin (Sukma et al. 1233), chalcones (Zaini et al. 2019), after the substitution 
of the halogens. An immense rise in the NLO activity of the molecules was seen in the 
mentioned studies which motivated us to proceed with the present study.

In the current study, one such aromatic compound has been selected and NLO 
activity was investigated after substituting the para-position hydrogen with halogen. 
The study done by D. A. Boateng and team justified the 2NT as a highly reactive 
molecule and laid the basis of the present study. They used the DFT calculations to 
explain the radical cation formation from the singlet and triplet 2NT (Boateng et  al. 
2019). The high reactivity of 4-chloro-2-nitrotoluene was established by V. Krishna-
kumar and the team using DFT (Krishnakumar et al. 2012). Apart from this, 2NT had 
been employed for photoluminescence, photothermal activity, dioxygenase enzyme, 
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dielectric relaxation, and thermodynamically stable agents (Mohan and Malathi 2018; 
Riega et al. 2013; Parales et al. 2005). The computational investigations on the NLO 
activities of halogen-substituted 2NT were performed. Theoretical investigations on 
the structural parameters, spectral properties, and NLO activity were established using 
DFT.

2  Computational methods

All the computational calculations were performed using Gaussian 09 software pack-
ages (https:// gauss ian. com/) (Frisch 2010). The 3-dimensional geometry of 2NT 
(PubChem ID: 6944) was downloaded from the database PubChem (https:// pubch 
em. ncbi. nlm. nih. gov/) and the halogens were substituted on the para position of tol-
uene using the builder function over the Gauss View program (https:// gauss ian. com/ 
gauss view6/) (Dennington et  al. 2007). The 2NT has a monoclinic crystal structure 
(a ≠ b ≠ c, α = γ = 90°; β > 90°) with edge length a = 8.4, b = 10.9, and c = 15.16 Å and 
α = γ = 90°, β = 105.91° (Yakovenko et al. 2009). Halogens are known for their excep-
tionality of being para-directors despite being highly electronegative atoms. Thus, 
the para position was better for halogen substitution (Maharramov et  al. 2018). The 
geometry optimization of probe 2NT and 2NT after the substitution of halogens (Cl, 
F, Br, and I) was performed using DFT with a B3LYP/6-311G++(d,p) set of functions 
(Becke 1993; Becke and Density-functional thermochemistry. V.  1997). The chemical 
reactivity and the active participation of the halogen within the 2NT were established 
using contour plots and chemical reactivity parameters. Different reactivity parameters 
like bandgap (ΔE), ionization potential (IP), electron affinity (EA), chemical potential 
(CP), electronegativity (χ), softness (S), and hardness (η) are calculated with the help 
of Koopman’s equations used in previously done studies (Koopmans 1933; Lakhera 
et  al. 2022c, 2022d, 2022e). The molecular orbital map (HOMO–LUMO) and band 
gap were illustrated using the software Spartan (https:// store. wavef un. com/ Spart an_ 
Softw are_s/ 12. htm). The vibrational activities of the probe and substituted molecules 
were also examined by computing Raman spectra. The Raman intensity was calculated 
for high-frequency modes using the expression:

where Ii is the Raman intensity of the   ith vibrational mode, f is a constant with a value 
of  10–12, and νo has a value of 9398.5   cm−1. νi and  Si are the vibrational wavenumber 
and Raman activity of the selected mode respectively. h is Planck constant with value 
4.1357 ×  10–15  eV  s, c is the speed of light having value 3 ×  108  m/s, K is Boltzmann 
constant with value 8.6173 ×  10–5  eV   K−1, and T is temperature 293.5 K. Time-depend-
ent DFT (TD-DFT) was used for computing the absorption and emission spectra of the 
probe and substituted molecule with the same set of functions as used for optimization. 
The values for polarizability parameters like total isotropic polarizability (αtotal), anisotropy 
of polarizability (Δα), and first-order hyperpolarizability (βtotal) were evaluated for the set 
of title molecules for the detection of the rise in the NLO activity of the probe 2NT and 
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halogen-substituted 2NT. These parameters were computed using the equations mentioned 
in the references (Lakhera et al. 2022f; Ramalingam et al. 2022).

3  Results and discussion

3.1  Structural analysis

The structure optimization was done to the ground state for 2NT and 2NT after the sub-
stitution of the halogen atom and the optimized cartesian coordinate has been listed in 
Table S1, S2, S3, S4, and S5. All the structural parameters like bond lengths and angles 
were analyzed and listed in Table S6 and S7 respectively. The probe geometry of 2NT was 
optimized and the computed dipole moment of the molecule was 4.68 Debye. The geom-
etry of 2NT is planar and the methyl group (15H–8C–13H) attached to 4C is a non-planar 
part. The 16H–9C bond has a bond length of 1.08 Å. The 16H atom attached to the para 

Fig. 1  Optimized geometries of a 2NT, b 2NT-F, c 2NT-Cl, d 2NT-Br, and e 2NT-I using B3LYP/6-
311G++(d,p)
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position (9C) of the benzene ring was substituted by the halogen atoms (F, Cl, Br, and I), 
and the geometries of 2NT-F, 2NT-Cl, 2NT-Br, and 2NT-I are shown on Fig. 1. Halogens 
are the most electronegative elements of the periodic table. Due to their one valency, they 
are capable to gain a single electron more easily, increasing the chemical reactivity of the 
molecule. Thus, the introduction of the halogen into the 2NT molecule results in the incre-
ment of the overall chemical reactivity of the complex. Like the probe 2NT, the geometries 
of 2NT-F, 2NT-Cl, 2NT-Br, and 2NT-I are also planar except for the 15H–8C–13H methyl 
group that leads to the non-planarity in the complex. The dipole moment of the 2NT seems 
to rise as the atomic number of the halogen atoms rises. The dipole moments of 2NT-F, 
2NT-Cl, 2NT-Br, and 2NT-I were 3.07, 3.5, 3.19, and 3.97 Debye respectively. The bond 
lengths of 17F–9C, 17Cl–9C, 17Br–9C, and 17I–9C were observed as 1.39, 1.82, 1.94, 
and 2.13 Å respectively. There seems a rise in the bond length after the introduction of 
the halogen atom. However, 2NT-I had the largest bond length. The large bond lengths are 
promising in inducing more chemical reactivity as the large the bond is, easily it will dis-
sociate to give free electrons (Rana and Devlal 2022). So, the increasing bond length from 
F to I reveals that the 2NT-I can generate a charge cloud more easily. The structural param-
eters show the enhanced possibility of halogen atoms inducing the intramolecular charge 
transfer (ICT) within the compounds (Table 1).

3.2  Molecular electrostatic potential surface (MEP)

The MEP surface of the molecules was computed for evidencing the reactiveness. MEP 
surface identifies the strong nucleophilic sites (negative electrostatic potential) of the mol-
ecule that are indicated by the red color and the strong electrophilic (positive electrostatic 
potential) regions that are indicated by the dark blue color. The yellow and light blue color 
indicates the partial electrophilic and nucleophilic moieties of the molecule. The MEP sur-
face of the 2NT indicates the nucleophilic behavior of the nitro group and the electrophilic 
nature of the hydrogen atoms attached to the carbon atoms of the benzene ring. After the 
substitution of the halogen atoms, the MEP surface indicates the participation of the halo-
gen atoms in charge delocalization (Fig. 2).

3.3  Mulliken charge and contour plots analysis

The charge distribution was also examined for the 2NT-F, 2NT-Cl, 2NT-Br, and 2NT-I 
and the Mulliken charge distribution of these molecules are listed in Table S8. The Mul-
liken charge distribution of the molecules shows the negative charge contribution of the 
oxygen and nitrogen atoms. The hydrogen atoms, however, contribute positively. The 9C 
atom attached to the para hydrogen 16H has a negative charge of − 0.111e. This charge 
seems to decrease as the atomic number of the halogens increases. This can be due to 
the decreasing order of electronegativity of the halogen atoms i.e., F > Cl > Br > I. The 
17H atom has a positive charge of 0.167e. The 17F has a negative charge (− 0.323 e) 
but the rest of the halogen atoms impart positively (17Cl (0.012e), 17Br (0.216 e), 17I 
(0.165 e)) in the total charge of the molecules. There seems a huge charge variation in 
the Mulliken charge among the halogenated hydrogen and the nitro group. This varia-
tion identifies the intramolecular interaction within the molecules (Lakhera et al. 2021). 
The chemical reactivity was also verified by contour maps of the molecules (Fig.  3). 
The contour maps generally symbolize the behavior of the field lines when the material 
is placed in the electrostatic field (Khan et al. 2022). The gathering of field lines near 
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the nitro group in 2NT shows that this area is highly under influence of the electrostatic 
field. The bonds settled near such areas experience regular stretching and shrinking of 
the bonds resulting in the weakening of the bonds (Weeraratna et al. 2021). Such bonds 
have more probability of undergoing dissociation resulting in the evolution of a charge 
cloud. The red contour lines indicate the electron-donating part. Thus, a free-charge 
cloud is seen to generate from the nitro group. The substitution of halogens enhanced 

Fig. 2  Molecular electrostatic potential surface of a 2NT, b 2NT-F, c 2NT-Cl, d 2NT-Br, and e 2NT-I using 
B3LYP/6-311G++(d,p)
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the ability of ICT. The contour plots of the halogen-substituted molecules (Fig. 3b, c, 
d, and e) exhibits the highly accumulated yellow lines surrounding the halogen atoms 
showing the electron-withdrawing behavior of the halogen atoms. It reveals the active 
participation of the halogens in accepting the charge cloud. Thus, the contour plots 

Fig. 3  Contour lines of a 2NT, b 2NT-F, c 2NT-Cl, d 2NT-Br, and e 2NT-I using B3LYP/6-311G++(d,p). 
Red color lines indicate the electropositive and yellow color indicates the electronegative part of the mol-
ecules



 S. Lakhera et al.

1 3

  292  Page 8 of 18

indicated the dislocation of the charge cloud from the nitro group towards the halogen 
atoms. Therefore, the Mulliken charge distribution and the contour plots convey that the 
introduction of the halogen atoms enhances the ability of the molecules to induce ICT 
within the molecules.

3.4  Molecular orbital analysis

Molecular orbital parameters are computed in the study to investigate the chemical reac-
tivity and the values are listed in Table 2. The energies corresponding to HOMO–LUMO 
were used to compute the global reactivity parameters. The ΔE of the halogen-substituted 
molecules decreases with the increase in the atomic number of the halogens. The low 
ΔE value for 2NT-I shows the easy drifting of the electrons from lower energy orbitals 
to higher energy orbitals. IP is the minimum energy that is required to eject the outer-
most valence electrons. Among halogen-substituted atoms, 2NT-I has the minimum value 
of 7.39 eV for IP which reveals the tendency of 2NT-I to ionize valence electrons more 
easily than the other halogen compounds. The high value of EA reveals the capability of 
the molecule to attract the free electron pairs. The values of EA increases as 2NT-F < 2NT-
Br < 2NT-I < 2NT-Cl. The CP value is also higher for 2NT-I (−  5.34  eV), showing its 
active participation in the chemical reactions than the other halogen-substituted molecules. 
The high values of χ reveals the high chemical reactivity of the molecules. The halogens 
are known to be highly reactive and thus have high values of χ. Br < I < F < Cl is the order 
of χ. The chemical hardness (η) defines the rigidness of the molecules. 2NT-F has the high-
est chemical hardness among the other halogen-substituted molecules. In contrast, the low 

Table 1  Variation in the bond 
lengths of halogen substituted 
location in (a) 2NT, (b) 2NT-F, 
(c) 2NT-Cl, (d) 2NT-Br, and 
(e) 2NT-I using B3LYP/6-
311G++(d,p) (bond length is 
in Å)

Compound Bond Bond length

2NT 9C–16H 1.08
2NT-F 17F–16H 1.39
2NT-Cl 17F–16H 1.82
2NT-Br 17F–16H 1.94
2NT-I 17I–16H 2.13

Table 2  FMO parameters for the (a) 2NT, (b) 2NT-F, (c) 2NT-Cl, (d) 2NT-Br, and (e) 2NT-I molecule (all 
values in eV and value of S is in  eV−1)

S No Molecular property 2NT 2NT-F 2NT-Cl 2NT-Br 2NT-I

1 EHOMO − 7.61 − 7.87 − 7.80 − 7.60 − 7.39
2 ELUMO − 2.78 − 2.89 − 3.31 − 2.99 − 3.30
3 Energy gap (ΔE) 4.83 4.98 4.49 4.61 4.09
4 Ionization potential (IP) 7.61 7.87 7.80 7.60 7.39
5 Electron affinity (EA) 2.78 2.89 3.31 2.99 3.30
6 Chemical potential (CP) − 5.19 − 5.38 − 5.55 − 5.29 − 5.34
7 Electronegativity (χ) 5.19 5.38 5.55 5.29 5.34
8 Chemical hardness (η) 2.41 2.49 2.24 2.3 2.04
9 Softness (S) 0.41 0.4 0.44 0.43 0.49
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Fig. 4  Molecular orbitals for the a 2NT, b 2NT-F, c 2NT-Cl, d 2NT-Br, and e 2NT-I. The lower structure shows 
HOMO and upper structure shows LUMO of the respective molecules and the band gap is represented by ΔE 
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value of S reveals the chemical stability of the molecule, which is lowest for 2NT-F and 
2NT-I. The uniformly distributed HOMO–LUMO map of the molecules is shown in Fig. 4. 
The blue color indicates the donating (i.e., positive) moieties and the red color indicates the 
electron-withdrawing (i.e., negative) moieties of the molecules (Morosanu et al. 2017). The 
unavailability of the HOMO–LUMO surface over the 16H atom at the para position of the 
2NT  indicates that it does not participate in the charge transfer, but as the 16H was substi-
tuted by the halogen atoms, the shifting of HOMO–LUMO surfaces over the halogen atoms 
was observed. This indicates the active participation of the halogen atoms in ICT. The red 
color surface over the halogens shown in Figs.  4b, c, d, and e, reveals that the halogen 
atoms readily behave as the strong electron-withdrawing moieties in the molecules. This 
is obviously due to the high electronegative nature of the halogens. There seems a shifting 
of charge cloud in halogen-substituted 2NT that shows the enhanced chemical reactivity of 
these molecules. Thus, the frontier molecular orbital (FMO) and HOMO–LUMO analysis 
highlight the rise in the active chemical reactivity of the 2NT molecule after the substitu-
tion of the halogen atoms. Although, the 2NT-I has comparatively higher chemical reactiv-
ity than the other halogen-substituted 2NT molecules. This is also in better agreement with 
the high possibility of ICT in 2NT-I stated by structural and charge analysis.

3.5  Absorption and emission analysis

The simulated absorption spectra for halogen-substituted 2NT were computed using TD-
DFT and illustrated in Fig. 5 and the transition details are mentioned in Table S9. It is 
clearly observable that the absorbance intensity of the 2NT molecule increases after the 
substitution of the halogens. Along this, a rise in absorption peak was also observed for 
halogen-substituted 2NT. The high electronegativity of the halogens leads to the rise in 
the wavelengths of electronic transitions within the 2NT-F, 2NT-Cl, 2NT-Br, and 2NT-I 
molecules. The  S0 =  >  S1 transition for 2NT was observed at wavelength 386 nm. This 
value changes to 385, 387, 388, and 390  nm for 2NT-F, 2NT-Cl, 2NT-Br, and 2NT-I 
molecules respectively. The excitation from HOMO-2 to LUMO in 2NT is responsible 

Fig. 5  Absorption spectra of the a 2NT, b 2NT-F, c 2NT-Cl, d 2NT-Br e 2NT-I computed using B3LYP/6-
311G++(d,p) basis set
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for the  S0 =  >  S1 transition. After the substitution of the F atom, the  S0 =  >  S1 transi-
tion occurred due to the excitation from HOMO-4 to LUMO. In the case of 2NT-Cl and 
2NT-Br, the  S0 =  >  S1 transition was observed due to the excitation between HOMO-2 
to LUMO. The  S0 =  >  S1 transition in 2NT-I was observed due to the excitation between 
HOMO-3 to LUMO. Among 2NT, 2NT-F, 2NT-Cl, 2NT-Br, and 2NT-I, 2NT-I had the 
maximum wavelength of the absorption spectra. The wavelength of  S0 =  >  S1 transition 
in 2NT-I was reported at 390  nm showing the existence of typical π → π* transitions 
(Rana et  al. 2021). Thus, the absorbance spectra analysis reported that 2NT-I has an 
absorption band with the highest wavelength which leads to high chemical reactivity 
and thus, high polarizability of the 2NT-I.

The details of the transitions of emission spectra of all the molecules had been men-
tioned in Table S10. The peaks of the emission spectra were at higher wavelengths than 
the absorption spectra.  S0 <  =  S1 transition of 2NT and 2NT after the substitution of 
halogens occurred for the HOMO to LUMO excitation. The  S0 <  =  S1 emissive transi-
tion for 2NT was observed at 718  nm. This value increases after the substitution of 
halogen atoms. The wavelength of  S0 <  =  S1 transition for 2NT-F, 2NT-Cl, 2NT-Br, and 
2NT-I were recorded as 712, 722, 723, and 748 nm respectively. 2NT-I has the highest 
wavelength recorded for emission as compared to the 2NT, 2NT-F, 2NT-Cl, and 2NT-
Br. The radiative lifetime (τ) for observing the emissive nature of the transitions can be 
obtained by the below-given formula (Rana and Chowdhury 2015):

where c is the speed of light, f and E are the oscillator strength and the excitation energy. 
The value of τ reveals whether the molecules emit radiation during the transitions or 
whether the transitions are non-radiative. However, the 0.000 value of oscillator strength 
was observed for the  S0 <  =  S1 transition for all the title molecules, i.e., these transitions 
are dark transitions. To the contrary, the denominator of (2) equates to zero which gives an 
infinite value for τ. Thus, the emission analysis indicates the zero-quantum yield for 2NT 
in the probe state and after the  substitution of halogen atoms.

3.6  Vibrational analysis

Vibrational modes were analyzed for major modes of the title molecules. Figure  6 
illustrates a fair comparison between the simulated vibrational spectra. The unavail-
ability of any imaginary frequencies in the vibrational modes confirms the optimized 
geometry corresponds to a minimum (Lakhera et  al. 2023). The detailed modes were 
mentioned in Table  S11. The linear symmetric stretching (ν) of para C–H bond was 
observed around 1230.33  cm−1. After the substitution of the halogen, there seems a rise 
in the Raman intensity of the bond. The ν mode of C–F, C–Cl, C–Br, and C–I was 
observed at 1256.76, 1271.48, 1271.16, and 1284.74  cm−1 respectively. The symmetric 
bending of C–C bonds of the benzene ring was observed between 1300 and 1600  cm−1 
for all the molecules. The intensity, however, seems to rise with the rise in the atomic 
number of halogens (say F < Cl < Br < I). The asymmetric stretching (α) of C–H bonds 
were observed above 3000  cm−1 and gradually increase from F to I. The other important 
modes are defined in Fig. 6. As the high Raman intensity leads to the high polarizabil-
ity of the molecules (Lakhera et al. 2022g; Ojo et al. 2020; Moroz and Edwards 2021). 

(2)� =
c3

2fE2
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The gradual rise in the Raman intensity of the vibrational modes related to the nitro 
group and halogen atom indicates the high polarizability of the halogen-substituted NT 
molecule.

3.7  NLO analysis

The computed polarizability parameters were to develop the molecule’s NLO activities. 
These polarizability parameters are actually the coefficients of the Taylor series expan-
sion of the energy of a material placed in the electromagnetic field and their higher magni-
tudes are responsible for the NLO activity of the materials ( Bhatt et al. 2020). The tensor 

Fig. 6  Vibrational spectra for the a 2NT, b 2NT-F, c 2NT-Cl, d 2NT-Br e 2NT-I molecule computed using 
B3LYP/6-311G++(d,p) basis set (Symmetric stretching-ν, asymmetric stretching-α, symmetric bending in 
the plane (scissoring)-δ
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components of the polarizability and hyperpolarizability are listed in Table S12 and S13 
respectively. The values of αtotal, Δα, and βtotal for 2NT were computed as 12.95 ×  10–24, 
31.64 ×  10–24, and 2.81 ×  10–30 esu respectively. There seems a rise in the values of the 
polarizability parameters after the substitution of the halogen atom. Moreover, the respec-
tive values rise as the atomic number of the halogen atoms rises, i.e., the values of polariz-
ability parameters increase as the atomic number rises. The values of polarizability param-
eters are listed in Table 3. The values of αtotal for 2NT-F, 2NT-Cl, 2NT-Br, and 2NT-I are 
in increasing order of 13.06 ×  10–24, 14.94 ×  10–24, 15.87 ×  10–24 and 16.64 ×  10–24 esu 
respectively (Fig.  6). Similarly, the values of Δα are also in increasing order of 2NT-F 
(31.64 ×  10–24 esu) < 2NT-Cl (32.62 ×  10−24esu) < 2NT-Br (41.93 ×  10–24 esu) < 2NT-I 
(45.73 ×  10−24esu). βtotal is the parameter that mainly constitutes the NLO activity of the 
molecule. 2NT-I (18.72 ×  10–30 esu) has the highest value of βtotal compared to 2NT-F 
(5.42 ×  10–30 esu), 2NT-Cl (9.54 ×  10–30 esu), and 2NT-Br (12.37 ×  10–30 esu). The intro-
duction of halogens into 2NT shows an immense rise in the βtotal that reveals their high 
ability to act as NLO material (Fig. 7). This might be due to the high chemical reactivity 
of the halogens. Although, the Iodine-substituted 2NT molecule has the best potentiality 
of an NLO active molecule other than the F, Cl, and Br compounds. For better validation 
of the results, the βtotal was compared with the most generally used reference material Urea 

Table 3  Computed values of 
the αtotal, Δα, and βtotal for the 
(a) 2NT, (b) 2NT-F, (c) 2NT-Cl, 
(d) 2NT-Br, and (e) 2NT-I (All 
values are in esu)

Molecule αtotal Δα βtotal

2NT 12.95 ×  10–24 31.64 ×  10–24 2.81 ×  10–30

2NT-F 13.06 ×  10–24 32.62 ×  10–24 5.42 ×  10–30

2NT-Cl 14.94 ×  10–24 41.93 ×  10–24 9.54 ×  10–30

2NT-Br 15.87 ×  10–24 45.73 ×  10–24 12.37 ×  10–30

2NT-I 16.64 ×  10–24 51.55 ×  10–24 18.72 ×  10–30

Fig. 7  Comparative plot illustrating the rise in the hyperpolarizability of 2NT after substituting halogen 
atoms
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(0.781 ×  10–30 esu) (Singla et  al. 2015). The βtotal of 2NT-I seems to be 24 times higher 
than Urea and two and a half times higher than KDP which shows the high NLO activ-
ity of the 2NT-I molecule. The computed results are compared with halogen-substituted 
N-methyl-4-piperidone curcumin derivatives mentioned in the reference study (Sukma 
et al. 1233). The values of the βtotal for 10 different halogen-substituted compounds ranged 
from 6.62 ×  10–30 esu to 13.005 ×  10–30 esu (Cassidy et al. 1979). These values are com-
paratively less than the βtotal of 2NT-I. Thus, the present study conveys the NLO activity of 
the halogen-substituted molecules.

4  Conclusion

The substitution of halogens in the 2NT molecule has enormously scaled the quantum 
mechanical properties of the 2NT. This was due to the high electronegativity of the halo-
gens. The rise in the structural parameters and FMO parameters was observed due to the 
electronegativity of the halogens. Large variation in the charges of the atoms and the accu-
mulation of the field lines near the halogen atoms justifies the active participation of the 
halogens in inducing the intramolecular interactions and shifting of charge cloud from the 
nitro group towards the halogen atom. The absorbance intensity also undergoes a rise after 
the substitution of the halogens and increases with the increasing atomic number of the 
halogens i.e., F < Cl < Br < I. Thus, the highest absorbance intensity was observed for the 
2NT-I molecule. The computed values of the radiative lifetime for crucial transitions reveal 
the radiative nature of transitions. A similar kind of rise was observed in the Raman inten-
sity after the substitution of the halogens. The 2NT-I has the vibrational modes with the 
highest Raman intensity. The values of the βtotal of the 2NT-F, 2NT-Cl, 2NT-Br, and 2NT-I 
are computed to be three times, seven times, twelve times, and twenty-four times higher 
than Urea. Thus, from the present study, it can be concluded that the halogen-substituted 
2NT molecules possess promising NLO activity. In comparison, the 2NT-I has the highest 
value of βtotal revealing its best NLO activity among the other halogen-substituted 2NT. 
We believe that the halogen-substituted 2NT has proven to be an excellent candidate for 
promoting the upgrading and updating of NLO devices with greatly improved performance 
and novel functionalities. Moreover, the experimental demonstration of the present study 
will surely be rewarding.
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