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COURSE INFORMATION

The present self learning material “Algebra,Matrices and Vector Analysis” has been
designed for B.Sc. (Second Semester) learners of Uttarkhand Open University, Haldwani.
This self-study material was created to increase learners access to excellent learning
materials. There are 14 units in this course. Relations Between the Roots and The
Coefficient of an Equation and Solutions Of Cubic and Biquadratic Equations are the
focus of the first unit and second unit respectively. Algebra of Matrices, Determinants,
Application of Matrices and Eigen Values and Eigen Vectors is covered in Unit 3,4,5 and
Unit 6. Unit 7 explained Exponential and Trigonometrical variables. Units 8 and 9 each
provided an explanation of Hyperbolic function and Inverse Hyperbolic and
Trigonometric function and logarithm of complex number. Summation of Series is the
topic of unit 10. The concepts of Infinite product and Gregory’s series is presented in
Units 11. Discussion of Vectors Multiple products and Differentiation of vectors,
Gradient, Divergence and Curl and Green’s, Gauss’s and Stoke’s theorems in the last
three units. This subject matter is also employed in competitive exams. Simple, succinct,
and clear explanations of the fundamental ideas and theories have been provided. The
right amount of relevant examples and exercises have also been added to help learners to
understand the material.
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BLOCK-1: THEORY OF EQUATIONS
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UNIT 1: RELATION BETWEEN THE
ROOTS AND ITS COEFFICIENTS OF AN
EQUATION

CONTENTS:

1.1  Introduction

1.2  Objectives

1.3 Introduction to Algebric equation
1.4 Synthetic equation

1.5 Fundamental theorem of Algebra
1.6 Remainder and Factor theorem
1.7  Relation between the roots and its coefficients of an equation
1.8  Particular Cases

1.9  Cube root of unity

1.10 Root with sign changed

1.11 Roots multiplied by a constant m
1.12 Reciprocal Roots

1.13  Reciprocal equation

1.14 Descrate’s Rule of signs

1.15 Summary

1.16 Glossary

1.17 References

1.18 Suggested Reading

1.19 Terminal questions

1.20 Answers

1.1 INTRODUCTION:-

In this unit we will discuss about the relationship between the roots
(solutions) of a polynomial equation and its coefficients is a fundamental
concept in algebra. Vieta's formulas are named after Frangois Viete, a
16th-century French mathematician who made significant contributions to
algebra. These formulas provide a bridge between the roots of a
polynomial and the coefficients that define it. They are applicable to
polynomial equations of various degrees, including both real and complex
roots.

The core idea behind Vieta's formulas is that the roots of a polynomial
equation hold valuable information about its coefficients, and vice versa.
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By examining the coefficients, you can deduce properties of the roots,
such as their sum and product, and by knowing the roots, you can
determine relationships among the coefficients.

The main components of Vieta's formulas include:

Sum of Roots Formula: This formula relates the sum of the roots of a
polynomial to its coefficients. It expresses how the coefficients of the
polynomial's terms are connected to the negative of the sum of its roots.

Product of Roots Formula: The product of the roots is linked to the
coefficients as well. This formula shows how the constant term and
leading coefficient of the polynomial impact the product of its roots.

Special Cases for Quadratic Equations: Vieta's formulas are especially
useful for quadratic equations, where they simplify to provide
straightforward relationships between the roots and coefficients.

These formulas are not only essential for solving polynomial equations but
also find applications in various mathematical and scientific disciplines,
such as algebra, calculus, engineering, and physics. They serve as a
powerful tool for simplifying polynomial expressions, analyzing
polynomial properties, and understanding the behavior of functions
defined by polynomial equations.

1.2 OBJECTIVES:-

After studying this unit, you will be able to
e To understand the Synthetic division.
e Lernear will be able to solve relation between roots and the
coefficients of an equation.
e To understanding the Fundamental Theorem of Algebra.
e To Solve the Reciprocal roots.

1.3 INTRODUCTION TO ALGEBRAIC
EQUATIONS:-

An algebraic equation is a mathematical statement that uses one or
more variables and mathematical operations to express that two
expressions are equal. An algebraic equation is also known as a
polynomial equation because both sides of the equal sign contain
polynomials. An algebraic equation is built up of variables, coefficients,
constants as well as algebraic operations such as addition, subtraction,
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multiplication, division, exponentiation, etc. These equations are
fundamental in algebra and are used to represent relationships between
quantities or unknowns. Algebraic equations typically take the form:
Expression =Expression
In this equation, you have two sides, each containing algebraic
expressions, and an equal sign between them, indicating that the two
expressions are equal. The goal in solving algebraic equations is usually to
find the values of the variables that satisfy the equation, making it true.
If there is a number or a set of numbers that satisfy the algebraic equation
then they are known as the roots or the solutions of that equation. In
this unit, we will discuss about algebraic equations, their types, examples,
and how to solve algebraic equations.

coefficient

Fig.1 Algebraic Equations

The general form of the algebraic equation is
apx™ + a;x™ 1+ a, x4 e + ap_1x +a, =0,(a, #0)
where n is a positive integer.
The term a,, which does not contain x, is called the constant term or
absolute term.
An equation is knows as complete when all powers of x™ to x° are
present in it, and incomplete when some of these powers are missing. An
incomplete equation can be made complete by supplying the missing
terms with zero coefficients. Thus the incomplete equation
=>9x°>+7x>+5=0
=9x°+0.x*+0.x3+7x2+0.x+5=0
This form is complete equation.
An equation is said to be numerical if all roots coefficients are numbers
while it is called algebraically if its coefficients are algebraic symbols.
Hence 3x2 + 2x + 7 = 0 is numerical equation while ax? + bx + ¢ =0
is an algebraic equation.
Degree of equation: The degree of an algebraic equation refers to the
exponent of the highest power of x occurring in the equation. Thus
apx® + a;x? + a,x + az = 0.
where a, # 0 is of third degree. Here's how the degree is determined for
different types of equations:
e Linear Equation: The degree of a linear equation is 1 because the
highest power of the variable is 1. For example
2x+3=7
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N

In this equation, the degree is 1 because the variable "x" is raised

to the power of 1.

Quadratic Equation: The degree of a quadratic equation is 2

because the highest power of the variable is 2. For example

x2—4x+4=0

In this equation, the degree is 2 because the variable "x" is raised

to the power of 2.

Cubic Equation: The degree of a cubic equation is 3 because the

highest power of the variable is 3. For example
2x3—5x2+3x—1=0

In this equation, the degree is 3 because the variable "x" is raised

to the power of 3.

Higher-Degree Equations: Equations with degrees greater than 3

are called higher-degree equations. For example:

A quartic or biquadratic equation has a degree of 4.

A quintic equation has a degree of 5.

A polynomial equation of degree "n" has the highest power of

"x"aS "xn",

Important Notes on Algebraic Equations:

1.

2.
3.

4.

An algebraic equation is an equation where two algebraic
expressions are joined together using an equal sign.

Polynomial equations are algebra equations.

Algebraic equations can be one-step, two-step, or multi-step
equations.

Algebra equations are classified as linear, quadratic, cubic, and
higher-order equations based on the degree.

1.4 SYNTHETIC DIVISION:-

To find the quotient and the reminder when a polynomial is divided by a

binomial.
This method was given by Horner.
Suppose  f(x) = apx™ + a x4+ ax™? e +a,_1x+a, be a

polynomial of degree n and let it be divided by the binomialx — h. If
Q = box™ 1+ b x™ % 4 e e + b,_, be the quotient and R reminder,
then the coefficient Q and R can be exhibited in the following manner.

h a, a; a, as e An_1 a,
hb, hb, hb, e hb,_, hb,_;
b, b, b, by e by, R

Department of Mathematics
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Synthetic division is a method used to perform polynomial long division
for dividing a polynomial by a linear factor of the form (x — ¢), where "c"
is a constant. This method simplifies the division process and is often used
when dividing polynomials quickly.

Rule for Synthetic division:

1.

2.

Write the polynomial in standard form, with all terms present,
including any missing terms with coefficients of 0.

Identify the divisor, which should be in the form (x — c¢), where
"c" is a constant. For example, if you have (x — 3) as the divisor,
then "c" is 3.

Set up the synthetic division tableau. This is a compact form of
writing the coefficients of the polynomial and simplifying the
division process. Draw a long horizontal line and write the
divisor's constant, "c" , to the left of the line. Above the line, write
the coefficients of the polynomial in descending order of their
degrees, leaving no gaps for missing terms. If there are missing
terms, use 0 as the coefficient.
Start the synthetic division process:
a. Bring down the first coefficient (the coefficient of the
highest-degree term) below the line.
b. Multiply this value by "c" (the divisor's constant), and write
the result below the next coefficient.
c. Add the result to the next coefficient above the line and write
it below.
d. Repeat this process for all coefficients, moving from left to
right.

The numbers below the line after completing the synthetic division
represent the coefficients of the quotient polynomial. The last
number is the remainder.

Write the quotient polynomial, omitting any leading zero
coefficients.

The result of the synthetic division provides both the quotient
polynomial and the remainder of the division. If the remainder is
zero, it means that (x — ¢) is a factor of the original polynomial.
Otherwise, the remainder represents the remainder of the division.

SOLVED EXAMPLE

EXAMPLEL: Find the quotient and Reminder when

x° — 4x* + 7x3 — 11x — 13 is divided by x — 5.

SOLUTION: The given polynomial is not complete. First we make it
complete by supplying the missing terms with zero coefficients i.e. we obtain

it as

Now

x° —4x* + 7x3 — 11x — 13

Department of Mathematics
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5 1 —4 7 0 —-11 13
5 5 60 300 1445

~ The quotient  Q = byx* + by;x3 + byx? + bsx + b,
=x* 4+ x3 +12x% + 60x + 289 and Reminder R = 1432.

EXAMPLE2: Find the quotient and Reminder when
2x* — 3x3 + 4x* — 5x + 6 is divided by x — 2.
SOLUTION: The given polynomial is not complete. First we make it
complete by supplying the missing terms with zero coefficients i.e. we get
2x* —3x3+4x*—5x+6
Now
2 2 -3 4 -5 6

b0=2 b1:1 b2:6 b3:7 20:R

~ The quotient  Q = byx3 + b;x? + b,x + by
=2x3 4+ x%2 + 6x + 7 and Reminder R = 1432.

EXAMPLES3: Find the quotient and Reminder when

2x3 + 5x% + 9 is divided by x + 3.
SOLUTION: The given polynomial is not complete. First we make it
complete by supplying the missing terms with zero coefficients i.e. we write

2x3+5x%249
Now
-3 2 5 0 9
-6 3 -9

b0=2 b1=_1 b2=3 0=R

~ The quotient  Q = byx3 + byx? + b,x + by
= 2x? — x + 3 and Reminder R = 0.
EXAMPLE4: Find the quotient and Reminder when
4x3 — 8x? — x + 5 is divided by 2x — 1.
SOLUTION: The given polynomial is not complete. First we make it
complete by supplying the missing terms with zero coefficients i.e. we write
4x3 —8x2 —x+5
Now

Department of Mathematics
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b0=4‘ b1=_6 b2=_4 3=R

~ The quotient  Q = byx> + b;x? + b,
= 4x? — 6x — 4 and Reminder R = 3.

1.5 FUNDAMENTAL THEOREM OF ALGEBRA:-

The fundamental theorem of algebra states that every non-constant single
variable polynomial with complex coefficients has at least one complex
root. This is true for polynomials with real coefficients, since every real
number is a complex number with imaginary part equal to zero.

THEOREMZ1: Theorem n number of roots: Every equation of a degree
n has n roots and no more.
Proof: Suppose
f(x) = agx™ + a;x™ 1+ a,x™ 4 e + ap_1x + ay
=0,(ag #0) (1)
be an equation of degree n.
Let a; be the root of equation, then from (1), we have

fe) = (x—a)(agx™ +-)or f(x) = aplx — a)fu-1(x) - (2)
where f,,_1(x) is a function of x of degree n — 1, such that f,,_; (a;) # 0.
Further let a, be a root of the equation f,,_; (x) = 0.Then we can write

fa—1(x) = (x — ag) f—2(x)
Where f,,_,(x) is a function of x of degree n — 2.
fx) = ag(x —ay)(x — az) f—2(x) - (3)

Continuing this process, we obtain

f(x) =ap(x —a))(x — ay) ... ... (x —ay)

Thus f(x) = 0 hasn roots a;, ay ... ..... .

If take x takes any different value from a4, a5 ... ..... a,, then f(x) # 0.
Hence f(x) = 0 has n roots a;, @ ... ..... .

REMARKS:

a. Allthe n roots of f(x) = 0 are not necessarily real, some

roots may be complex.

b. All the n roots of f(x) = 0 are not necessarily distinct, some

roots may be repeated.

c. If more than n roots of f(x) = 0, then f(x) =0
THEOREM2: Theorem on complex roots: In an equation with real
coefficients complex roots occur in conjugate pairs.

Or
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If a + ib is a root of the equation f(x) = 0, then a — ib is also a root of
the equation.
SOLUTION: Suppose

f(x) = apx™ + a;x™ 1+ ax™ i 4 e +ap_1x+a,=0 --(1)
Where a, a, ... a, are real, be an equation of degree n.

Suppose a + ib be complex root of f(x) = 0. Now

(x—a—ib)(x —a+ib) = (x —a)?® + b?
Let gq(x) be the quotient and Rx + R’ be the remainder when f(x) be
divided by (x — a)? + b%. The reminder Rx + R’ must be first degree as
divisor is of the second degree.
fx) ={(x—a)*+b?*}q(x) + Rx+ R ..(2)
Substituting x = a + ib in (2)
R(a+ib)+R =f(a+ib) =0

Since a + ib is the roots of f(x) = 0.Now equating real and imaginary

parts
= Ra+R =0and bR =0
= R=0andR =0

f(x) = {(x —a)® + b*}q(x) = {x — (a + ib){{x — (a — ib)}q(x)

Hence a — ib is also root of f(x) = 0.

1.6 REMAINDER AND FACTOR THEOREM:-

REMAINDER THEOREM: If a polynomial f(x) be divided by x — ¢
until a reminder independent of x is obtained, this remainder is equal to
f(c), which is the value of f(x) when x = c.
The remainder is denoted by r and quotient by q(x).
Hence

fG)=x—-c)qx) +r
Takingx = ¢, we obtain f(c) = r. If r = 0 the division is exact.
FACTOR THEOREM: If f(c) is zero, the polynomial f(x) has the
factor x — c. In other words, if c is the root of f(x) = 0,x — c is a factor
of f(x).

Example: 2 is the root of x3 — 8 = 0, So x — 2 is a factor of x3 — 8.

SELF CHECK QUESTIONS-1
a. Find the quotient and remainder when (x? — 125) divided by
x — 5.
b. Find the quotient and remainder when5x* + 2x? — 15x + 10
divided by x + 2.

1.7 RELATION BETWEEN THE ROOTS AND ITS
COEFFICIENTS OF AN EQUATION:-

Department of Mathematics
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Let us consider f(x) = agx™ + a;x™ 1 + ax™ % + - oo +ap,_1x+a,
be a polynomial of degree n. Suppose a;, a,, @5 .... a, be the n roots. then
the we have

apx™ + ay x4 apx™ T 4 +ap_1x+a,
=aqx—a)x—a)(x —az) ... (x — ay)
=ap[x" —x"Na; +a, + -+ a,) + x" (g, + ajas + aga, )
- Xn_3(6¥1a26¥3 + a2a3a4 + "') + o

+ (_1)rxn_r(a1, Ay, Ay + ) + .-
+ (—D"ay, ay, ag ... ay]

=aq, [x" —x"1 z a; +x"? z a,a, —x"3 z a a0z + -

+ (_1)Txn_rz Uy, Ay, Ay + -

+(—D"ay a; az ... an] (1)
Now from (1), we get
al = _aO Z al

a, = Qay Z a1,
as = _aoz a1a,03

_ a, =(D"a, a; a, as ....a,
Thus, we obtain
a; _ _ Coefficient of xn-1

Y. a; = Sum of all roots = —— = —
ao Coefficient of x™

Y. a,a, = Sum of the products of the roots taken two at a time
a Coefficient of x™ 2
= (1?22 o (gl fidentof
a Coefficient of x™
Y. a;a,a3 = Sum of the products of the roots taken three at a time
a Coefficient of x™3
= (12 2 o (oqyp L2l fidentof
a Coefficient of x™

Y ay, ay, -+ a, = Sum of the products of the roots taken r at a time
a Coefficient of x™ 1
= 1y & o (qyr el fictentof
a Coefficient of x™
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aQ, @y as ..., = Product of all the roots
—(_1\n% _ 1) constant term
- ( 1) ag ( 1) coef ficient of x™

Note:
a. If the equation is incomplete, we should first make it complete
by supplying the missing terms with zero coefficients.
b. The above relations between the roots and its coefficients of an
equation do not enable us to solve the equation unless some
other relations between the roots are given.

1.8 PARTICULAR CASES:-

. Relation between the roots and coefficients of a quadratic, cubic and
biquadratic equation.

“Vieta's formula relates the coefficients of polynomials to the sums
and products of their roots, as well as the products of the roots taken
in groups”

e Quadratic Equation: Let a, 8 be the roots of quadratic

ax2+bx+c=0,thena+ﬁ=—£ ap = =.

a, a
If p the sum and g be the product of roots of quadratic equation

then the equation will be ax? — px + q = 0.
e Cubic Equation: Let a, 8, be the roots of cubic ax3 +
bx? 4+ cx +d = 0, then

b
Za=a+ﬁ+y=—a

d

Yap=aB+py+ya=aB+y)+py==andafy ==

e Bi-quadratic Equation: Let a, 8, y, 6 be the roots of cubic
ax* 4+ bx3 + cx? + dx + e = 0, then

b
Za=a+,8+y+5=—a
Zaﬁ=aﬁ+ay+a6+ﬁy+ﬁ5+y5
= (@=PG+8) +af +y5 =

ZQﬁy =afy +aBd+ayd+Bys =af(y+38)+yd(a+p)
d

a

5_e
afy =
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1.9 CUBE ROOTS OF UNITY

Suppose x = (1)/3
Now cubing both side, we obtain x3 = 1 or x3 — 1 = 0, then
x3-1=(x-1Dx*+x+1)=0

Therefore the remaining two cube roots of unity are the roots of quadratic
x2+x+1=0.

These are —

1+V1-4 _ —1+iV3
2 2

If one root denoted by w, thus 1, w, w? are the cubic roots of unity and
therefore the roots of equation x> — 1 =01.e,

3+0.x24+0.x—1=0
We obtain
1+ w,+w? =0and w3 = 1.

SOLVED EXAMPLE

EXAMPLEL: If a, B,y be the roots of the cubic x3 + px? + gx +r =
0.Find the value of (8 + y)(y + a)(a + B).

SOLUTION: If a, B,y are the roots of the cubic x3 + px? + gx +r =
0,then

Za=a+ﬁ+y=—p

Yap=ap + By +ya=a(B+y)+py=q andafy = —r.
B+ +a)a+pf)=Fa-a)Za-BHEa—y)
=(p-a)(=p-Bpr-v)
=—@+a)@+PP+y)=I[p’+p*La+plaf +apyl
=[p*+p*(-p) +pq —rl =7 —pq.

EXAMPLE?2: Solve the equation 2x3 — x? — 22x — 24 = 0, two of the
roots being the ratio3: 4.
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Uttarakhand Open University Page 12



Algebra, Matrices and Vector Analysis MT(N) 121

SOLUTION: The root of the given ratio is 3a, 45 and .
Za=3a+4a+/3=7a+[3=% -+ (1)
Yapf =12a% + 3Ba + 4fa = 22—2 = 12a? + 7af = —11 - (2)
24 2
aﬁy=3a.4a=7 or a*f=1 -+ (3)

Now from (1), we obtain

f=5-7a

Putting the value of £ in (2), we obtain

1
12a% 4+ 7« (E - 7a> =—-11
Ta
12a? + - 49q?% = —11

Ta
37a2—7—11=0

74a? —7a—22=0
74a% — 44a +37a —22 =0

(2a +1)(37a—22) =0

1 22
a=—- 0o a==
2 37
1 1 7
When a=--,=-+-=4
2 2 2

22 , 1 154 _ 271
a==,f=c——=——.
37 2 37 74

Hence the required roots are
—2x3,4x-2,4ie,(-3,24).
2 2 2

EXAMPLES3: Solve the equation 6x* — 3x3 + 8x% — x + 2 = 0, being
given that it has a pair of roots whose sum is zero.

SOLUTION: Let a, B,y be the root of the given equation.
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Za=a+ﬁ+y+6=§=1 (1)
6 2
8
Z“ﬁ:(a+ﬁ)()/+5)+a,8+y6:g:

1
> aby =By +8) +yda+ ) =z~ (3)

6—2—1 4
afyd == =3 (4)
And also let a+p=0 -+ (5)
Now from (1) and (5), we have
1
)/ + 6 — E s (6)
From (3) and (6), we obtain
1 1
aﬁz +0= g
=1 v (7
ap =3 (7)
From (4) and (7), we get
Sy§=: or y6=1 -(8)

Now a and S are the roots of the quadratic

t2—(@+pt+af=0 o t2—0+-=0

i
5
Again y and ¢ are the roots of the quadratic

t2—(y+8)t+y5=0 or tz—%t+1=0 or 2t2—t+2=0

_1+vV1-422 1+iv15

‘ 2.2 4

i 1+£iv15

Hence the required roots are + N
EXAMPLE4: Find the condition that the equation

x*+pxd+qxt+rx+s=0
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Should have two roots connected by the relation a + f = 0
SOLUTION: Let a, B,v, § be the root of the given equation.
Ya=a+pf+y+6=—p (1)
Yap=(@+By+8)+ap+ys=q - (2)
> apy =By + &) +ys@+f) =7 = (3)

2

a/?y(?:g:s - (4)

And also let a+p=0 -+ (5)
From (1) and (5), we have
y+é=-p

From (3), (5) and (6), we obtain

af(—p)+0=—-r or af = ;
Again from (4), we get
r - 3P
;.yc? =5 or yé = .
Now from (4), we get
r S
0+—-+ = q
P r

r2+sp?—pqr=20
Which is required condition.

SELF CHECK QUESTIONS-2
a. Find the condition which must be satisfied by coefficients of
the equation

x3—px?+qx—7r=0
When two of its roots «, B are connected by the relation « + =
0. ans
b. Solve the equation 3x3 — 26x? + 52x — 24 = 0, the root
being in geometrical progression.

1.10 ROOTS WITH SIGN CHANGED:-
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To transform an equation into another whose roots are roots of the given
equation with their sign changed.

Let us considera,, a,, a5 .... a, be roots of given equation

f(x) = apx™ + a;x™ 4+ ax™E 4 e +a,_1x+a, ...(
Then

aox™ + ay x" Tt + ax™ T 4 +an_1x+ay,

=qx—a)x—ay)(x —azg) w.(x —ay) ...(2)
Now Let y be a root of the required transformed equation. Then y = —x.

X ==y
Replacing x by (—y ) in (2)

ao(=y) "+ ar(=y) T a(Cy )T A e an g (7Y + an
=a(-y—a)(—y— @)=y —az) ... (=¥ — ap)

DM ae) " —a ) a ()R =+ (D o (v) +
(Dtap] = (D" +a)@y ta)(y +az) ..y + ay)]

= a()" @)+ a@) T -+ (CD - () +
D" =@ +a)y+a)y +az)..(y + an) - (3)

From (3), is clear that —a,, —a, ... ... ... —a,, are the roots of the equation.

)" —a ) a () (CD - (V) + (D ay
=0.

Which is required condition.
EXAMPLE: Change the sign of the roots of the equation
x5 —4x3+3x2 +8x—-9=0
SOLUTION: The given equation is
x°—4x3+3x2+8x—-9=0 ..(1)
Changed the sign of every alternate term of (1), we have
x> —0x*—4x3—-3x2+8x+9=0

x° —4x% —3x>+8x+9=0.
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1.11 ROOTS MULTIPLIED BY A CONSTANT m:-

To transform an equation into another whose roots are roots of the given
equation multiplied by the constant m.

Let us consider a4, @5, a5 .... a, be roots of given equation
f(x) = apx™ + a;x™ 4+ ax™ T 4 e +a,_1x+a, ...(
Then
apx™ + a; x™ 1+ ax™ % 4 e + a,_1x + a,
=aqx—a)x—a)(x—ag) .. (x —ap) ...(2)
Now Let y be a root of the required transformed equation.
Then y=mx, x=y/m

Replacing x by (y/m) in (2), we obtain
ap(y/m) "+a(y/m)" T+ ay(y/m)nTE e + an-1(y/m)
+a,

= ao(y/m —a)(y/m—a)(y/m —az) ... (y/m — an)
Multiplying both sides by m™, we obtain

ap(y) " +ma,(y) "+ miay(y)t T = A M a4 (y)
+mta, = (y —may)(y —ma,) ... (y —may,)
where ma;, ma,, ... .....ma,, are the roots of the equation
ap(y) " +ma(y) M+ miPap(y)t T — e M a4 (y)

+ m"a, = 0.
Which is required condition.

EXAMPLE: Transform the equation 72x3 — 54x2 + 45x — 7 = 0 into
another with integral coefficients and unity for the coefficient of the first
term.

SOLUTION: The given equation is 72x3 — 54x% + 45x —7 = 0

= B=3x242x L0 ..(D
4 8 72
The equation (1) multiplied by m.Then
33 2.0 7 3
X _Z_me +2—3m x—ﬁm =0

Since the least value of m to remove the fractional coefficients is
m=2%2x3=12
So substituting m = 22.3 in above equation

3 5
3 2 2 2 2142
X —2—2(2 .3)x +2—3(2 .3) x—23.32
x3 —9x%4+90x —168=0

(22.3)2=0

1.12 RECIPROCAL ROOTS:-
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To transform an equation into another whose roots are the reciprocals of
the roots of the given equation.

Let us consider a4, @5, a5 .... a, be roots of given equation
fx) = apx™ + a;x™ 4+ ax™ i 4 e +ap1x+a, ..(1)
Then
apx™ + a; x™ 1+ ayx™ % 4 e +ap,_1x+ay
=aqx—a)x—a)(x—ag) .. (x —ap) ...(2)
Now Let y be a root of the required transformed equation.
Then y=1/x, x=1/y

Replacing x by (1/y) in (2), we obtain
ao(1/y) "+a(1/y) "+ a(1/y) Pt an (1Y) +a,
=ag(1/y —a)A/y —az) ....(1/y — ay)
Multiplying both sides by y™, we obtain
ap + a,y + a,y* + - +a,_1y" !+ y"a,
=ag(1—ya)(1 —yaz)..(1 —yay)

Or
ap + a,y + a,y* + - - +a,_ 1y +y"a,
=ao(-D"ay az ....an(y = 1/a))(y — 1/az) ... (¥
- 1/an)
Which shows that 1/a4,1/a5, ......., 1/a,, are the roots of the equation

yra, + an_y* 1+ 4ay+a, =0
Which is required the solution.

EXAMPLE: Find the equation whose roots are the reciprocals of the
roots of the equation
x*—5x3+7x>+3x—-7=0.
SOLUTION: The given equation is
x*—5x3+7x2+3x—-7=0.
Replacing x by 1/x, the required equation is

1\* 1,3 1\2 1
ERIORCREC R
X X X X
Or
1-5x+7x2+3x3—-7x*=0

7x* —3x3 —7x>+5x—1=0
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1.13 RECIPROCAL EQUATION:-

. . . . . 1.
“An equation which remains unaltered by changing x into ~ls called a

reciprocal equation.”
Or

Let f(x) = 0 be an equation of roots a,, a,, as .... ay,. if 212 are

a1 a2 On
also roots of the same equation, then such equation are known as
reciprocal equations.

Suppose the given equation be
f(xX) = apgx™ + a;x™ 4 apx™ T2 4 e +a,_1x+a, ..(1)

Then

X"y + o x™ 1+ tax+ag =0 .. (2)
Is equation whose roots are the reciprocal of equation (1)
Comparing (1) and (2)

Hence a2 =a% or a, = *a,

Casel: If a,, = ay, then, we get
a1 o an_1, a2 o an_z, .........

Which is known as reciprocal equations of the first type.

Case2: If a,, = a,, then, we obtain

Which is known as reciprocal equations of the second type.

A reciprocal equation of first type and even degree is called a standard
reciprocal equation.

Note:
a. If f(x)=0is a reciprocal equation of first type and odd
degree, the x = —1 is always a root. If we remove the factor
x + 1 corresponding to this root, we obtain a standard
reciprocal equation.
b. If f(x) =0 is a reciprocal equation of second type and odd
degree, then x = 1 is always a roots. If we remove the factor
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x —1 corresponding to this root, we obtain a standard
reciprocal equation.

c. If f(x) =0 is a reciprocal equation of second type and even
degree, then x =1 and x = —1 are roots. If we remove the
factor x2 — 1 corresponding to these roots, we obtain a
standard reciprocal equation.

SOLVED EXAMPLE

EXAMPLEL: Solve the equation 60x* —736x3 + 1433x2 — 736x +
60 = 0.
SOLUTION: The given equation is

60x* — 736x3 + 1433x% — 736x + 60 = 0
Dividing by x2, we have

, 736 60
60x? — 736x + 1433 ——+— =0
X X

1 1
60(x2 +—2) — 736 (x+—) + 1433 =0
X X
Substituting y = x + i in above equation and simplifying, we get

60y? — 736y + 1433 =0
. 101 13
Onsolving y = 0 O

Wheny =2 = x+2=22 5 1022 - 101x+ 10 =0, i.e,
10 x 10 1
(10x—-1D)(x—-10)=0= x = 10'E
Similarly
13 +1 13 6x>* —101x+6 =0
= — = —_—= — = — =
Y= x+—=— X 2x3 )
—2)(2x—3) = =Z,=
(3x )2x—3)=0=> «x 3’3

Hence the root of given equation are

1 2
10r1_0;§;

N | W

EXAMPLEZ2: Solve the equation x° — 5x* + 9x3 — 9x? + 5x — 1 = 0.
SOLUTION: The given equation is
x° —5x*+9x3 —9x2 +5x — 1 = 0.
(x>=1)=5x(x>*—1)+9x%(x—1)=0
c—DE*+x3+x2+x+1) —5x(x—D(x?+x+1) +9x?(x — 1)
=0
(c—Dx*+x3+x2+x+1-5x(x>+x+1)+9x%] =0
(x—1D[x*—3x3+5x2—4x+1] =0
e, (x—1)=0=>x=1
x*—=3x3+5x2—4x+1=0 (1)
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From (1) can be written as
(*+1)—4(x3+x)+5x>*=0
Dividing by x? we obtain

, 1 1
AT
X X

((e+2) -2} -(x+3)+5=0

Substituting x + % = y,we get
y2—2—-4y+5=0

y*—4y+3=0
-Dly-3)=0=>y=13
When y:1:>x+§=1:>x2—x+1=0
1+v1i-4 1
Againwheny:3:>x+§:3:>x2—3x+1=0
3tv9—-4 1
x=_T=E(3i-\/§)

Hence the roots of the given equation are

13,5 (14 3),5 (3 £ V).

1.14 DESCARTE’S RULE OF SIGNS:-

To determine the nature of some of the roots of a polynomial equation it is
not always necessary to solve it; for instance, the truth of the following
statements will be readily admitted.

1. If the coefficients of a polynomial equation are all positive, the
equation has no positive root; for example, the equation

x*+3x2+3=0
cannot have a positive root.

2. If the coefficients of the even powers of x are all of one sign, and
the coefficients of the odd powers are all of the opposite sign, the
equation has no negative root; thus for example, the equation

—x8 +x7+ x> —2x*+x3-3x2+7x-3=0
cannot have a negative root.

s. If the equation contains only even powers of x and the
coefficients are all of the same sign, the equation has no real
root; thus for example, the equation

—x8—2x*-3x2-3=0.

4. If the equation contains only odd powers of x and the
coefficients are all of the same sign, the equation has no real
root except x = 0, thus the equation 7
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x”+x>+3x3+8x =0
has no real root except x = 0.

Suppose that the signs of the terms in a polynomial are + + — — + —
—— + — + — ; here the number of changes of sign is 7. We shall
show that if this polynomial is multiplied by a binomial
(corresponding to a positive root) whose signs are + —, there will be
at least one more change of sign in the product than in the original
polynomial.
Writing down only the signs of the terms in the multiplication, we
have the following;:

4+ ———+ =+ -

+ —

4+ ———+ -+
——+ ++ -+ -

+t-tt+— + -

Here in the last line the ambiguous sign + is placed wherever there
are two different signs to be added.
Here we see that in the product
1. an ambiguity replaces each continuation of sign in the original
polynomial;
2. the signs before and after an ambiguity or set of ambiguities
are unlike;
3. achange of sign is introduced at the end.

Let us take the most unfavourable case (i.e., the case where the
number of changes of sign is less) and suppose that all the ambiguities
are replaced by continuations; then the sign of the terms become

++ ——+———+—-—+ -+
and the number of changes of sign is 8.
We conclude that if a polynomial is multiplied by a binomial
(corresponding to a positive root) whose signs are + — there will be at
least one more change of sign in the product than in the original
polynomial.
If then we suppose the factors corresponding to the negative and
imaginary roots to be already multiplied together, each factor x —a
corresponding to a positive root introduces at least one change of sign;
therefore no equation can have more positive roots than it has changes of
sign.
Again, the roots of the equation f(—x) = 0 are equal to those of
f(x) = 0 but opposite to them in sign; therefore the negative roots of
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f(x) = 0 are the positive roots of f(—x) = 0; but the number of these
positive roots cannot exceed the number of changes of sign in f(—x);
that is, the number of negative roots of f(x) = 0 cannot exceed the
number of changes in sign in of f(—x).

All the above observations are included in the following result, called
Descarte’s Rule of Signs.

In any polynomial equation f(x) = 0, the number of real positive roots
cannot exceed the number of changes in the signs of the coefficients of the
terms in f(x), and the number of real negative roots cannot exceed the
number of changes in the signs of the coefficients of f(—x).

SOLVED EXAMPLE

EXAMPLE1L: Show that the equation 2x” — x* + 4x3 — 5 = 0 ha at least
four imaginary roots.
SOLUTION: Suppose 2x” —x* +4x3—-5=0
We see that there are only three changes of sign in f(x). then f(x) =0
cannot have more than three positive roots.
Again
f(=x)= —2x" —x*—4x3 -5

2x7 +x*+4x3+5=0
We see that f(—x) has no change of signs. Therefore the equation f(x) = 0
cannot have any negative root. Thus the maximum number of real roots of
the equation f(x) = 0 is 3. But this equation is of degree 7.Hence at least
7 — 3i.e., 4 complex roots.

EXAMPLEZ2: Locate the situation of the roots of the equation x3 + x? —
2x —1=0.
SOLUTION: The equation is
x3+x2-2x—-1=0.
The equation f(—x) = 0is

—x34x?2+2x—1=0i.e.,x3—x>=-2x+1=0
\The f(x) has only one change of sign and so the equation f(x) = 0
Cannot have more than one positive root.
We have f(0) = —1, f(1) =-1, f(2)=7
Since f(1) and f(2) are of opposite signs, therefore the positive root lies
between 1 and 2.
Again f(—x) has two changes of signs and so the equation f(x) = 0 can
not have more than two negative

Again we have f(0) = —1, f(=1) =1, f(=2)=-1
roots.
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Since f(—1) and £(0) are positive signs, therefore one negative root lies
between -1 and 0. Again f(—2) and f(—1) are also of opposite signs and
S0 one negative root lies between —2 and —1.

Hence all the three roots of given equation are real and lie in the open
intervals (—2,—1),(—1,0) and (1,2).

SELF CHECK QUESTIONS-3

1. If «, B, y be the roots of the equation x* — 9x3 + 7x — 8 = 0, then
the value of expression (@ + B)(y + 6) + aBf +yd is
a. -9 b0 c7 d -8

2. If «, B, y be the roots of the equation x* — 9x3 + 23x — 15 =0
are in A.P then the mean root g is equal to
a. 3 b.-3 ¢5 d. -5

3. Let a,B,y, & be the roots of the equation x* + x3 — 16x — 4x +
48 = 0. If af = 8, then the value of y§ is
a. -8 b.-6 c¢.6 d. 4

4. If two root of the equation x3 — 9x2 + 14x + 24 = 0 are in the ratio
3:2, then all the roots shall be

a. -245 Dhb.642 c64-1 d146

5. If two root of the equation 4x3 + 20x? — 23x + 6 = 0 are equal, then

all the roots shall be
1 1 1 1 1 1

a. -,—=,6 b —=-2,-6 c=--6 d—=,—-,6
2 2 2°2 2 2
6. If a, B are the roots of the equation x? — x + 1 = 0, then the equation
whose roots are a? and B2 is
a x*—x+1=0 b x*+x*4+41=0 c x>+x+1=0
d x2+4x—-1=0

7. The number of the positive roots of the equation x> + 4x* + 9x3 +
8x2+7x—3=0is
a. 0 b1 c. 2 d 3

8. The number of real roots of the equation x* + x> — 1 =0 is
a. 2 b O c. 1 d 4

9. Let a,f,7,6 bethe roots of the equation x* + bx3 + cx + dx + e =
b

0,thenYa = -+ (__)

a
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10. Let a, 8,7, & be the roots of the equation ax3 + bx? + cx + d = 0,

then a(B +¥) + By =+ ()
11. The number of changes of signs in 2x” — x* + 4x3 —5 =0 is
...... (3)

12. The equation x* + 15x% + 7x — 11 = 0 can at most ... .... positive
roots. (one)

13. The equation 4x® + 17x* + 8x?2 —9x — 11 =0 has ...... complex
roots.(four)

14. The equation 3x7 — 2x* + 4x3 — 9 = 0 cannot have more than ... ....
positive roots. (three)

15. The equation 3x7 —x* + 5x3 —8 = 0 cannot have any negative
root.T

16. The equation x® + x* — 3 = Ocannot have any negative roots. F

17. The equation x* + x? + 1 = 0 have no real roots. T

18. The equation x° — x> +x* +x? +1 =0 has at least six complex
roots. T

19. The equation x** — x7 + x® 4+ x? + 1 = 0 has two negative roots. F

20. The equation x3 + x2 — 2x — 5 = 0 has no positive roots. F

1.15 SUMMARY: :-

In this unit we studied the relation between the roots and
coefficients of a polynomial equation is described by sum of roots
formula, product of roots formula, Introduction to algebra equation,
reciprocal roots , reciprocal equation, remainder and factor theorem,
Roots with sign changed and Descrate's rule of signs . These formulas
provide a fundamental connection between the roots (solutions) of a
polynomial equation and its coefficients.

1.16GLOSSARY:-

Descrate's rule of signs
Algebra equation

Remainder and factor theorem
Roots with sign changed

1.17 REFERENCES:-

e Spiegel, R. Murray "Vector Analysis, Schaum’s Outline Series,
1959.

e Shanti Narayan(2003) A Textbook of Vector Calculus. S. Chand
Publishing.

Department of Mathematics
Uttarakhand Open University Page 25



Algebra, Matrices and Vector Analysis MT(N) 121

e Erwin. Kreyszig(2009) Advanced engineering mathematics, 10th
edition.

e Sri Sreehari T and Mr. Jafar T.K(2019) Theory of equations and
Abstract Algebra.

1.18 SUGGESTED READING:-

e A.R.Vasishtha(2016-17) Elementary Algebra &Trigonometry.

e Kenneth Hoffman & Ray Kunze(2015)Linear Algebra (2™
edition). Prentice-Hall.

e Shanti Narayan and P. K. Mittal. A textbook of matrices. S. Chand
Publishing, 2010.

e https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SMTA52
04

1.19 TERMINAL QUESTIONS:-

(TQ-1) Show that the equation x> + x3 — 8x — 5 = 0 cannot have more
than three real roots and prove that it must have three real roots.

(TQ-2) Change the signs of the roots of the equation

2x5 +4x3 —13x2+7x +6 = 0.

(TQ-3) Find the equation whose roots are the reciprocals of the roots of
the equation x* — 5x3 + 7x2 + 3x — 7 = 0.

(TQ-4) Change the sign of the root of equation

x” +5x>—x3+x2+7x+3=0.

(TQ-5) Form the equation whose roots are the reciprocals of the roots of
the equation x* —3x3 + 7x% + 2x — 2 = 0.

(TQ-6) Find the equation whose roots are twice the reciprocals of the
roots of x* + 3x3 — 6x% + 2x — 4 = 0.

(TQ-7) Solve the reciprocal roots

1. x*—10x3+26x?—10x+1 = 0.

2. 6x%—25x>+31x*—-31x2+25x—6=0

(TQ-8) Solve the equation x3 — 12x% + 39x — 28 = 0, whose roots are
in the arithmetical progression.

(TQ-9) Solve the equation x3 — px? + gx — r = 0, should have its roots
in harmonic progression.

(TQ-10) The roots of the equation 2x? — 7x + 5 = are o and B. Without

solving for the roots, find
1 1 a p a+2 | f+2
Log+g bog+o ¢ ot
(TQ-11) Find the quotient and Remainder of the following when

1. 2x2% + 3x — 4 = 0 is divided by (x + 2).
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2. x* + 5x3 — 6x + 3 = 0 is divided by (x — 2).

3. 2x3 + 4x? — 3x — 6 = 0 is divided by (x + 3).

4, 2x3 — 11x2 + 13x — 44 = 0 is divided by (x — 5).
5. x% + 5x + 1 = 0 is divided by (x — 3).

6. 2x3 — 11x2 + 9x — 20 = 0 is divided by (x — 5).
1.20 ANSWERS:-

SELF CHECK ANSWERS-1
1. Q =x*+5x+25
2. Q = 5x3—10x% + 22x — 59,R = 128

SELF CHECK ANSWERS-2

1. pq=r

SELF CHECK ANSWERS-3

1. b 2. a 3.¢c 4.c 5.¢
6.c 7.b 8.a 9.-2 10. <
a a
11. 3 12. One  13. Four 14. Three 15. T
16. F 17. T 18.T 19.F 20.F

TERMINAL ANSWERS
(TQ-2)2x> +4x*+ 13x2+7x—6=0
(TQ-3)7x* —3x3 —7x2+5x—1=0
(TQ-4) x7 +5x°—x3—x2+7x—3=0
(TQ-5) 2x* —5x3—7x>+3x—1=0
(TQ-6) x* —x3+6x2—6x—4=0
(TQ-7)a. 3+2v2, 2+V3 b (11,23),—51”6m
(TQ-8)1,4,7
(TQ-9) 27r2 — 9pqr + 2q3 =0
(TQ-10) a.- b.= =
(TQ-11)
a Q=2x+7R=10
b. Q =x3+2x?2—-—6x+12=0,R =33
c. Q=2x>-2x+3,R=15
d Q=2x>—x+8R=4
e. Q=x+2,R=5
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f. Q=2x>—-x+4
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UNIT 2: SOLUTIONS OF CUBIC AND
BIQUADRATIC EQUATIONS

CONTENTS
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2.3 Cardan’s method of solving the cubic equation
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2.6 Ferrari’s method of solving biquadratic equation

2.6  Summary

2.7  Glossary

2.8  References

2.9  Suggested Readings

2.10 Terminal Questions

2.11 Answers

2.1 INTRODUCTION

In the previous unit learners have learned about the root of the
equation of two or more than two degree, synthetic divisions, solution of
quadratic equations by different methods.

In this unit we will learned about the solution of cubic equation
(polynomial of degree 3) and bi-quadratic equation (polynomial of degree
4). Solutions of cubic equation will be solved by using cardon’s method
and solutions of biquadratic equations are solved by using, Euler’s
method, Descarte’s method and Ferrari’s method.

2.2 OBJECTIVES

After reading this unit learners will be able to,

> Solve the cubic equation by using Cardan’s method.

> Solve the biquadratic equation by using Euler’s method
> Solve the biquadratic equation by Descarte’s method

> Solve the biquadratic equation by Ferrari’s method.
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2.3 CARDAN’S METHOD OF SOLVING THE
CUBIC EQUATION

Let the cubic equation be ax3+3bx?+3cx+d=0
e

Removing the second term and multiplying the roots by a, the equation (1)
can be reduced to the form z3+3Hz+G =0,

.2
Where z = a (x + Z) = ax + b, G and H have their usual meanings i.e.,

G = a*d — 3abc + 2b3
And H = ac — b>.

Let us assuming thatz = u'/3 + v'/s.

. 0)

Cubing both sides of (3), we have z* = u + v + 3u'3v'/s (u1/3 + v1/3)

ie., z3 —3u1/3v1/3z—(u+v) =0

ey

Comparing the coefficient in (2) and (4), we get
usv's=—Horuv = —-H3andu +v = —G

Hence u and v are the root of the quadratic t?+ Gt — H3 = 0.

. (5
| = ~6H/@aY) -G A

V=
2 2

Solving (5), we get
... (6)

Now by taking cube root we shall get three values of the cube root of u,
namely, u1/3, wu'’3 and w?u'/s. Similarly, we shall get three values of
the cube root of v, namely v'/3, wv /3 and w?v /3. If we take all possible

combinations, we shall get nine values of the expression u's + v
which is a root of the equation (2). But a cubic should have only three

roots. Therefore, while combining the values of /3 and v'/3 we should
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not forget that they are also connected by the relation u'sv'/s = —H.

From this relation we get vz =— 53. Putting the value of v'/3in (3), we
u
get z = u'ls — %3 the other two values of z being obtained by replacing
u

1 1 1 .
w3, wu'/3 and w?u /3 respectively.

Thus if z,,z,,z, are the roots of the cubic (2), we have

H
7, = Ut 1/3:u1/3+V1/3’
u
H H
Z,=0u"-—— = ou’- 0’ — = U+ &’ v"°,
wu u
2 13 H 2 13 2 U3 U3
23:60 u —2—1/3260 u —CL)W:G) u"+oVvV -,
u u

Where, o = %(—1+ «/ﬁ) and @* = %(—1—\/5)

Having found the values of z, we can find the values of x by the relation z=
ax+b.

2.3.1 APPLICATION OF CARDAN’S METHOD TO
NUMERICAL EQUATIONS

When G®+4H®>0 or = 0 i.e., when the cubic has two imaginary or two
equal roots, then the values of u and v as found from the quadratic in t are
real. Now by some suitable arithmetical process we can extract the cube

roots of real quantities and thus we shall get the values of u”®andv*®. But

if G*+4H®<0i.e,, if all the roots of the cubic are real and different, the
values of u and v are not real. Now there is no general arithmetical
process for extracting the cube root of complex number and consequently
Cardan’s method fails to give the solution of a cubic all of whose roots are
real and different. This was called by older mathematician irreducible
case of Cardon’s solution. However in this case we can make use of
DeMoiver’s theorem of Trigonometry to find the values of the cube roots
of complex numbers.

Let G=AG?+4H*=-B2 sothatu="+ B andv=""_1'B
2" 2 2 2
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Now puté =rcosfand %: rsin@, so that

, A+B* G°-G*-4H®
4 4

[

- G

—H?®

And tan@ =

>| @

. 2=(rcos@+irsing)"” +(rcos@—irsing)"”

Vs 2nc+60) . . (2nTt+6 2nt+0) . . (2n7+6
=r Ccos 3 +1SINn 3 + COS 3 —1SIn 3

j,wheren =0,12.

Hence the root of the equation in z are

2r3 cos%,Zr“3 cos(2ﬁ3+ejand 2r3 005(4”;9];

ie., 2r’ cos§,2r“3 cos(zngejand 2rY3 cos(ZHB_ej;

+
ie., 2(-H)" COS%Z(—H)UZ 008(27[_0}

Working rule to solve the cubic equation by Cardon’s method

To solve the cubic equationa,x® +a,x* +a,x+a, = 0 by Cardon’s method,
we generally follow the following steps.

Step 1:First, we did the coefficient of x2 is equal to zero by diminishing

its root by h = —%, where n = degree of equation.

0
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Then we get the cubic equation of the form z°+3Hz+G =0

(1)
Sometimes the given cubic is of the type a,x* +a,x*+0x+a, =0 i.e., the
coefficient of x is equal to zero. In this case, we replace x = 1 and

z

construct the cubic equation of the type equation (1).

Step 2: In this step, we assume z=u"®*+v”® be the solution of cubic
equation (1). After cubing both side we get the equation

28 —3u”®"*z —(u+Vv) =0. Then, we compare this equation by (1) and find
the value of uvandu+v.

Step 3: Since we know that, if u and v are the roots of the quadratic
equation then that equation can be written ast*—(u+Vv)t+uv=0. Then,

put the value of uv, u+v and solve the quadratic equation to find the
value of u and v.

Step 4: The following will be the roots of the given cubic equation
2 +3Hz+G =0,

u® v, wu”® + V"3, @ u?® + ov?? where
w= __+i£ 1(02— _l_|£
2 2 2

So, the roots of the cubic equation a,x*+ax*+a,x+a, =0will be find

out by the changes in the roots of z*+3Hz+G =0 as we have the relation
between x and z.

SOLVED EXAMPLES
Example 1: Solve the cubic x* —18x—35= 0 by Cardan’s method.

Solution: The given equation is x> —18x—-35=0

(D
Since, the given cubic equationis also in the form of z°+3Hz+G=0.

Let z = u"® +v"*be the solution of the cubic (1).

Now, cubing both side we get
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2° =u+v+3u"VE U +vP)

22 -3u” "z —(u+v)=0

.. (2)
Comparing equation (1) and (2) we get
—3u”*v"* =-18 and —(u+v)=-35

U3,,13
Vv

=u =6and u+v=35

=uv=6°=216and u+v=35

Let u and v are the roots of the quadratic equation then,
t?—(u+vV)t+uv=0 i.e, t*-35t+216=0

On solving the given quadratic, we get t = 8,27

Let, u=28,then u**=2

Similarly, v =27, then v** =3

So, the root of the cubic (1) are

u® +v*¥=3+2=5

2
(18
2 2

And a)zu“"'+a)v”‘°’:2(—1—i§J+3(—1 |§J —g+i§

Example 2: Solve the cubic equation 9x° +6x° —1=0by Cardan’s
method.
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Solution: The given cubic equation is 9x*+6x*-1=0

()

Since in the given cubic equation the coefficient of x is zero. So, to
transform the cubic equation of the form z°+3Hz+G =0, we replace

X=—.
z

The transformed cubic equation is,

g(lf +6(Ej2 120

Z z

ie, 2°-6z-9=0

)

Let z=u"+v"® be the solution of the cubic (2).
Now, cubing both side we get

2 =u+v+3uVP U v

22 -3uPz—(u+v)=0 ...(3)

Comparing equation (2) and (3) we get

—3u’*"* =—6and —(u+v)=-9

=u”v"* =2and u+v=9

=uv=2"=8and u+v=9

Let u and v are the roots of the quadratic equation then,
t?—(u+V)t+uv=0ie, t>*-8t+9=0

On solving the given quadratic, we get t =1,8
Let, u=1then u”® =1

Similarly, v=8, then v** =2

The root of the cubic (2) are
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uB+v2=2+1=3

And a)zu”3+a)V”3=1£—%—i§J+2(—% i£]=_g V3

So, the root of the cubic (1) are
2 2

1
3" 2313 —3-1/3i

_(3+81) _(3-+3)
6 6

.1
e, -,
3

Example 3: Solve the cubic equation x* —15x* —33x +847 = 0 by Cardan’s
method.

Solution: The given cubic equation is x* —15x*—33x+847 =0

()

Since, the given cubic equation is not in the form of z°+3Hz+G =0. So,
first we remove the second term of the equation (1) by diminishing its root

by

hel o~ 5
na, 3.1

The synthetic division procedure is given below:

5 1 -15 -33 847

- 5 -50 -415

-10 -83 432

=

Depa
Uttar - 5 -25

1 -5 -108
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Now, the transformed equation is z® -108z+432=0, where z=X-5

L (Q2)

The transformed equation is of the type z° +3Hz+G =0. So, let
z =u"® +v** be the solution of the cubic (2).

Now, cubing both side we get

JJ3V1/3(UJJ3

2 =u+v+3u +v3)

22 -3u”®z—(u+v)=0

. 0)

Comparing equation (2) and (3) we get
—3u™*v"® =108 and —(u+v) =432
= u"v"®* =36 and u+v=-432

—uv=236%nd u+v=-432

Let u and v are the roots of the quadratic equation then,

t? —(U+V)t+uv=0 ie., t?+432t+36°=0

432+ )(432)° ~4(36)°

By Sridharacharya method, t = 5

ie., t=-216

s.U=-216,v=-216then u”®* =—6and v* =6
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So, the root of the cubic (1) are

uP v =—6-6=-12

ou”® + V" = 60— 60" = —6(w+w’) =6

[ 1+ o+’ = 0]

And o’u”® + ov"® = —600° — 6w =—6(w° + ) =6
Hence roots of the given cubic (1) are

-12+5,6+5,6+51i.e.,-7,11, 11.

Example 4: Solve the cubic equation 27x° +54x* +198x — 73 =0 by
Cardan’s method.

Solution: The given cubic equation is 27x> +54x* +198x—73=0

()

Since, the given cubic equation is not in the form of z°+3Hz+G =0. So,
first we remove the second term of the equation (1) by diminishing its root

by

ho- & 54 _ 2
na, 327 3

The synthetic division procedure is given below:

-2/3 | 27 54 198 -73

- -18 -27 -116

27 36 174 -189

27 18 162

a7 n

Department of Mathematics
Uttarakhand Open University Page 38



Algebra, Matrices and Vector Analysis MT(N) 121

Now, the transformed equation is 27z° +162z-189=0o0r z°+6z-7=0

L (Q2)

Where, z = x+E
3
The transformed equation is of the type z° +3Hz+G =0. So, let
z =u"® +v"*® be the solution of the cubic (2).
Now, cubing both side we get
2° =u+v+3uPVEU v

22 -3u”"®z—(u+v)=0

. 3)
Comparing equation (2) and (3) we get

—3u”v* =6and —(u+v)=-7

=u""=-2and u+v=7

=uv=-8and u+v=7

Let u and v are the roots of the quadratic equation then,
t*—(u+V)t+uv=0ie, t°~7t-8=0

By simplifying we get, t =8,-1

Let, u=8 andv=-1

So, the root of the cubic (1) are

u+vP=2-1=1

ou™® + v = 2(—%+i£}—1{—£—i£}——l+ﬁi

2 2

2 2
, [ 1 .43
w——§—|7 _
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And 0’u?®+ov'® = 2(—%4@]—1[—3”@} - _l_ﬂi

2 2 2 2

Hence the root of the given cubic equation (1) are,

2 1 3/3. 2 1 3/3. 2

1-Z, 422 - N9y 2
3' 2 2 3' 2 2 3

17,33, 7 383

3’6 2 6 2

Example 5: Solve the cubic equation x*—3x+1=0by Cardan’s method.

Solution: The given cubic equation is x°* —3x+1=0

.. (D)
Since, the given cubic equation is also in the form of z° +3Hz+G =0.
Let z=u"®+Vv"® be the solution of the cubic (1).
Now, cubing both side we get
2° =u+v+3u"VE U v

22 -3u”"®z—(u+v)=0

)
Comparing equation (1) and (2) we get
—3u”” =-3and —(u+v) =1

= u"v"? =1land u+v=-1
=uv=L=1and u+v=-1

Let u and v are the roots of the quadratic equation then,

t?—(u+V)t+uv=0ie, t>+t+1=0

_ ~1+,J(1)° 411
By Sridharacharya method, t =
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ie, t= -1%iv3
2
1
— 1 _ - 3
Let, U= 1+|J§,then u”® = 1+iv3
2 2
1
_l_' 3 I 3
Similarly, v:[ ZI\/_Jthen Vllsz[ 1 2'\@]

So, the root of the cubic (1) are

1 1
1 3 (_1_: 3
x=u1’3+v1’3=( 1+|\/§J _I_( 1 |\/§]

2 2

&

Let rcosé?:—% and rsiné =

Then, r?=1orr=1and tand =—+/3 or 0:2?”

¥ = Vo [(cose+isin 49)1/3 +(cos@—isin 0)1/3}

X= (1)”3[{003(2n7z+49) +isin(2n7z+¢9)}ﬂ3 +{cos(2n 7 +0) —isin(2n7z+¢9)}1/3}

By DeMoiver’s theorem, (cos@+isin@)" = cos(n ) +isin(n o)

x:Hcos(zmHe) +isin (2””+€)}+{Cosw_ismw}}
3 3 3 3

X = 2cosw

Putting value of 6 = 2?” andn=0,1,2
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Hence required roots are Zcos%ﬁ,%os%ﬂand 200314?”

2.4 EULER’S SOLUTION OF THE
BIQUADRATIC EQUATIONS

Let the general form of the biquadratic equation is
X' +ax’+a,x’ +ax+a, =0 ... (1)

be transformed in the form of z*+6Hz® + 4Gz + (a,’l -3H?) =0
o)

where z=a,x+a,

we assume z =,/p +4/q++/r

squaring both sides, we get
[2°—(p+a+n)1=2(pa +avr +r/p)
.3

again,squaring both sides we get

2'-22%(p+q+r)+(p+q+r) =4[DQ+qr+rp+2\/5\/a\/F(\/5+\/a+\/Fﬂ

= 2'~(23p)z*-8zpfavr +(2p) —4[ X pa]=0
.. (4)
Now, comparing the coefficient of z of equation (2) and (4), we get

4

zp:_gH’\/E\/a\/_=—%0r pqr:%

2

and (3 p) —43 pg=a,"l ~3H? or qu:st_a.Tl

The cubic equation whose three roots are p, q, r be written as

t° —(p+0+nNt* +(pg+ar+rp)t—par =0
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On putting the values of coefficient, equation will become

2 2
t2 4+ 3Ht% + 3H2—aLI t—G—zo
4 4

(5

This equation is known as Euler’s cubic.
As we know that G* +4H® = a,(HI —a,J)
Dividing both side by 4 and simplifying the equation

4 4 4
.. (6)
From (5) and (6)
2|

2 3
430 1| 3H? 2! e AL & g
4 44

2 3
t+HY =2 i Hy+ 2
4 4
Puttingt + H = a,°6, we have
6,3 304| aos\] 63
a, o —TG+T:O or 4a,’0°—1a,0+J =0 ... (7)
Equation (6) is called reducing cubic of the biquadratic equation.

Remark: In the Euler’s cubic equation, G occurs in even powers, so if
biquadratic equation occurs of the type

z* +6Hz° - 4Gz +(a,’1 -3H?*) =0

Then its Euler’s cubic would have been the same as that of the given
quadratic and therefore the two will have the same reducing cubic.

2.5 DESCARTE’S METHOD OF SOLVING A
BIQUADRATIC EQUATION
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Let the general form of the biquadratic equation is
X +ax’+a,x’ +ax+a, =0 ... (1)

Removing the second term from (1) and multiplying the roots by a,. Then
thereduced equation can be written in the form

f(z)=2"+6Hz’ +4Gz +a,’l -3H? =0 where z=a,x+4,
o)

Let z,,2,,2,,2,are the roots of the equation (2). Since coefficient of z°is

zero in (2), so sum of the roots i.e., z, +2,+2,+2,=0
Or z,+2,=—(z,+2,) = p(say)
Also we assumed that z,z, =qand z,z, =q

= f(2) = (- pz+9)(Z°+ pz+q)
. 3)

Comparing the coefficient of equation (2) and (3)

q+0 —p?=6H,
. (4
p(a-q)=4G
.5

and qq =a,’1 —3H?
.. (6)

Since we have, (9—q)*=(q+q)*-4qq.

16G®

2

=(p2+6H) —4(a;l ~3H?)

Or p?(p* +12Hp? +36H2)—4p?(a,2l —3H2)-16G% =0

Or p®+12Hp*+4p°(12H?*-a,’1)-16G* =0
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This being cubic equation in p® can be solved generally by trial

method and having found p?we can find the values of gandq . Thus, the
quadratic factors of f (z)are known. Hence, we can find the roots of
f (z) =0and consequently f(x)=0.

The above cubic equation in p° can be put as

(p® +12Hp* + 48p?H?2 + 48H%) —4a,21 (p? + 4H) —16G2 —64H> +16a,’H =0

Or (p°®+4H)®-4a,°1(p*+4H)-16(-a,’J) =0

[.G?+4H®=a,’HI —a,’J]

Putting p®+4H =4a,’0, we get 4a,°6° —1a,0+J =0.

This equation is called reducing cubic which is same as found earlier.

Note: We find the value of p®by trial i.e., we try to put those numbers
which are whole squares like 1, 4, 9, 16 etc.

Working rule to solve the biquadratic equation by Descarte’s method

To solve the biquadratic equation ayx*+ax’+a,x*+a,x+a, =0by
Descarte’smethod, we generally follow the following steps.

Step 1:First, we did the coefficient of x3 is equal to zero by diminishing

its root by h = —%, where n = degree of equation.

0

we get the biquadratic equation of the form
f(z) =b,z* +bz° +b,z+b,=(2*+ pz+q)(z° - pz+q), where z=x—-h
(1)

Step 2: In this step, we equate the both side coefficient of equation (1) i.e.,

q+q-p°=I
=q+q =p>-I
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p(@-ag)=m

: m
=0 -g=—
And qq =n

Using the equation (q —q)* =(q+9q)*—4qq

We get a cubic equation in the variable p®. For simplification we assume

that p® =t (say) and we get a cubic equation in t.

Step 3:Using trial method, we put whole squares number like 1, 4, 9, 16
etc. to solve the cubic equation in t.

Step 4:Finding the value of p,q,q , we find the root of equation (1) by
using the equation

2’ +pz+q=0and z°—pz+q =0.

After finding the roots in z , we find the roots in x by the relationz=x—h
and get the required roots of the biquadratic equation

ax!+ax’+a,x’ +ax+a, =0.
Solved Examples
Example 6: Using Descarte’s method solve the biquadratic equation
x* —8x® —12x* +60x+63=0.
Solution: The given biquadratic equation is x* —8x>—12x* +60x+63=0
(1)

In the given equation (1), first we remove the second term of the
equationby diminishing its root by

a8,

na, 41

The synthetic division procedure is given below:

2 1 8 12 60 63
' ] 2 12 48 24
1 6 24 12 87
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Now, the transformed equation in which coefficient of x*is zero,

f(z)=2"-362*-522+87 =0, where z=x-2
. (Q2)

Equation (2) can also be written as
7* —362°-522+87=(2*+ pz+q)(z°-pz+q) ... (3)

Equating both side coefficient we get,

q+q —p*=-36
=q+q =p’-36

p(q —q) =-52
. 52
=0 -0=——
p

qq =87

Since it can be written that, (0 —q)* =(q+9)*—4qq

2
:%:(p2—36)2—348

Let t = p*then, t®—72t> +948t —2704=0

Since t=4(i.e., p=2) satisfies the above cubic equationt.

Department of Mathematics
Uttarakhand Open University Page 47



Algebra, Matrices and Vector Analysis MT(N) 121

q+q =4-36=-32

q-q=-26

S0 we get,

Solving these we get, g =-3and q =-29
Now, from equation (2)

(2 +22-3)(z°-22-29)=0
=7°+2z-3=00r 2°-2z2-29=0
=7=-311+30

Hence, x=2-2=-1, 3, 31\/%

Example 7: Using Descarte’s method solve the biquadratic equation
x*—3x*-42x-40=0.

Solution: The given biquadratic equation is x* —3x*—42x—40=0

. (D)
In the given equation (1), the coefficient of x*is already zero.
Now, f(x)=x"—-3x*—-42x—40=(x*+ px+q)(x* - px+q) .. (2)

Equating both side coefficient of equation (2) we get,

q+q—p°=-3
=q+q=p°-3
p(q —q) =42
L a2
=0q-q=—
p
qq =—40

Since it can be written that, (q —qg)° =(q+9)*—4qq

2
:%=(p2 —3)?+160
p
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Let t = p*then, t* —6t* +169t —1764 =0

Since t=9(i.e., p =3) satisfies the above cubic equationt.

S0 we get, ql+q =6

q-q=-14

Solving these we get, g=10and q =4
Now, from equation (2)

f(x) = (x*+3x+10)(x*~3x—4) =0

= x*+3x+10=0or x*-3x-4=0

= x=-1

—2+i
4,%@, which are the required roots.

Example 8: Using Descarte’s method solve the biquadratic equation
x*—6x°-9x* +66x—22=0.

Solution: The given biquadratic equation is x* —8x>—12x* +60x+63=0
()

Here in (1), first we should remove the second term of the equation by
diminishing its root by

a -6 3

h=-a-_2_°

na, 41 2

But in the synthetic division it will very difficult to diminish the root by
3/2. To remove this complication, we first multiply the root by 2.

The transformed equation is,

y* —12y® —36y* +528y —352 = Owhere y = 2x
Q)

Now diminishing the roots by 3 using synthetic division.
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3 1 12 36 528  -352
- 3 27 -189 1017
1 -9 63 339 665
- 3 18 -243
1 -6 81 96
- 3 -9
1 -3 -90
- 0

Now, the transformed equation in which coefficient of x®is zero,
f(z)=2"-90z° +962+665=0, where z=y-3 ..(3)

Equation (3) can also be written as
z* —902* +962+665= (2> + pz+q)(z° - pz+q)

Equating both side coefficient we get,

q+q —p*=-90
=q+q =p>-90

p(q —q) =96

%
=0q-q=="
p

qq =665
Since it can be written that, (q —qg)° =(q+q)*-4qq

2
:i:(pz—go)z—zafso
p

Let t = p’then, t® —180t* + 5440t —96° =0
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Since t =36 (i.e., p=6) satisfies the above cubic equation t.

q+q =36-90=-54

q-q=-16

S0 we get,

Solving these we get, q=-35and q =-19
Now, from equation (3)

(z° +62-35)(z22-62-19) =0
=2°+6z-35=00r z2°-62-19=0

= 7=3+27,-3+211

= y=6+27,+2411

Hence, roots of required equation (1) are x =3++/7,++/11

2.6 FERRARI’'S METHOD OF SOLVING
BIQUADRATIC EQUATION

Let f(x)=ax"+4bx®>+6cx*+4dx+e =0, be a biquadratic equation.

Let we consider
f(x)= l{(ax2 +2bx+C+ 2a0)2 —(2Mx+N )2}
a

Now compare both side coefficient of like power of x, we get
M?=b?-ac+a’d ... (1)
MN =bc—ad +2abé ... (2)

N? = (c+2a0)> —ae... (3)

- (b* —ac+a’d){(c+2a0)’ —ae} = (bc—ad +2abd)* [ - M*N* = (MN)’ |
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Or 4a°@® —(ae—4bd +3c*)ad + ace + 2bcd —ad” —eb”* —c* =0
Or 4a%0° —1a0+J =0 (&)

Here, equation (4) represents the equation of reducing cubic from which
we can evaluate the value of @. Then we find the value of M and N. Thus
the given biquadratic can be written to the quadratic equation as,

ax’+2(b—-M)x+c+2ad—-N =0 .. (5
And ax’+2(b+M)x+c+2ad+N=0 ... (6)

Let 4,,6,,0, be the three values of &which satisfies the equation (4) and
corresponding values of M be M,,M,, M, and those of N be N,,N,,N,.

Let @, be roots of (6) and /£, y be the roots of (5) when M, N, & have the
values M,, N, respectively. Then

ﬂ+7/:_g(b_|\/|l) and ﬁyzw
a a
. (A)
a+5=-2(+M) and oo =220+ N
a a
,B+7/—a—5:ﬂMl
a
_— 4
similarly, 7+a—,8—5=5M2
4
a+f-y-o0=—M,
a |
(N
ﬂy+a5:%+491
2C
and 7a+/35:;+46?2 ... (ID
aﬂ+y§=%:+403
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From (1) we get,

—g(Mz+M3—M1)=(2a—25—,8—7/+a+5)
=Ba-p-y-0)=(@4a-Xa)

:(4a+4—b]:£(aa+b)
a a

From (A) and From (I), we have

aa+b=-M;+M,+M,
ag+b=M,-M,+M,
ay+b=M,+M,-M,
ad+b=-M,-M,-M,

pr-as="2%
a

and ya — 56 = —2N,
a

af-5 =2

Solved Example

MT(N) 121

... (1)

.. (IV)

Example 9: Using Ferrari’s method solve the biquadratic equation

x*+2x} —7x*-8x+12=0.
Answer: The given biquadratic equation is

X' +2x3—7x*—8x+12=0 .. (D)

Adding x’both side to (1) to make the perfect square, we get

X*+2x3 +x2 = Tx? +8x—12+ X?
(x* +x)* =8x* +8x—12

(X>+ X+ A)> =8x>+8x—-12+ A% + 2A(X* + X)

Department of Mathematics
Uttarakhand Open University

Page 53



Algebra, Matrices and Vector Analysis MT(N) 121

(X2 +X+A)°=(8+21)x* +(8+24)x+ 1> -12 (2)

Since, R.H.S is a perfect squarei.e., B> ~4AC =0, from which we get
cubicin A by which A can be found.Although it is not easy to solve the
cubic in A4, so we use the other method. If the R.H.S. is to be a perfect

square, then coefficient of x*and constant term are also be perfect square.

To solve this cubic by trial method we put the coefficient of x° perfect

squares numbers like 1, 4, 9, 16, %%% etc. and also see the value of A

obtained thus also makes the constant term a perfect square number.
. 7
Let 8+241=1ie., A= 5

Since, this value makes the constant term also in perfect square i.e.,

/12—12:2.
4

Now, put the value of A in equation (2).

(., _Z 2_ 12=
f(x):[x + X 2) (x+2j 0

ie, (X*+2x=3)(x*-4)=0
= x=%2,-3/1.

Example 10: Using Ferrari’s method solve the biquadratic equation
x* —8x°—12x* +60x+63=0.

Answer: The given biquadratic equation is x* —8x® —12x* +60x +63=0
()

Adding 16x* both side to (1) to make the perfect square, we get

x* —8x%+16x* = 28x* —60x + 63

(x* —4x)* =28x* —60x + 63
(X* —4x+ A)* =28x* —60X + 63+ 21(X* —4X) + A

(X% —4x + 1)2=(28+ 22) X2 — (60 +84)x + A2 — 63
Q)
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Now we put 28+24=1,4,9 i.e., a perfect square number and see that for
which value of A, constant term of the equation becomes a perfect square.

e 2y 10
4 2

Here it can be easily seen that for 4 =-12, we have the constant term
A% —63=144-63 =81, which is perfect square number.

Now, put the value of A in (2). Then the reducible equation is,
(X* —4x—12)* =4x* + 36X +81 = (2x+9)?

(x> —4x-12)*—(2x+9)*=0
(x*—4x-12-2x-9)(X* - 4x-12+2x+9) =0
(x2—6x—21)(x2—2x—3):0

On solving we get, x=3+ J30,3,-1

Example 11: Using Ferrari’s method solve the biquadratic equation
x* —10x° + 44x* —104x+96 =0.

Answer: The given biquadratic equation is
x* —10x* +44x* —104x+96 =0 .. (1)

Adding 25x*both side to (1) to make the perfect square, we get

x* —10x® + 25x* = —44x* +104x — 96 + 25%°
(x* —5x)* =—19x* +104x — 96
(X* =5x+A)* =—19%* +104X — 96 + 2A(X* =5X) + A°

(X2 =5X+ 1)’ =(=19+ 22)x2 + (104 —104)x + A2 — 96
Q)

Now we put 24-19=1,4,9 i.e., a perfect square number and see that for
which value of A, constant term of the equation becomes a perfect square.

.'./”t=10,§,14
2
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Here it can be easily seen that for 4 =10, we have the constant term
A% —96=100-96 = 4, which is perfect square number.

Now, put the value of A in (2). Then the reducible equation is,
(X2 =5x+10)° =x* +4x+4 = (x+2)*

(x* =5x+10)°—(x+2)* =0
(x2—5x+10—x—2)(x2—5x+10+x+2):0
(x2—6x+8)(x2—4x+12):0

On solving we get, x=2+ i242,4,2
Self Cheque Questions

1. If solution of the cubic equation z*+6z—7 =0is z=u"® +u"then if
u=8and v=.....

2. In the solution of the biquadratic equation x* +bx®+cx®+dx+e=0
by Descarte’s method, we first remove the second term by
diminishing its roots by h, thenh=........

3. In the solution of the biquadratic equation x* +8x°*+9x*—-8x—-10=0
by Descarte’s method, we first remove the second term by
diminishing its roots by h, thenh=........

4. Roots of the equation f (x) =0 if

f(x)=x*"-3x*-6x-2= (x2 +2X+ 2)(x2 —2x—1) are ......

5. If 1+i/2 and 1—+/2 are the roots of the biquadratic equation

x*—2x*+8x—3=0, then other two roots are .........

6. If x*—8x*—24x+7=(x*+ px+Qq)(x* — px+q),then
q+q —p°=-8,p(4 —0) =eererrrrne.. and qq =7

2.1 SUMMARY

After completion of this unit learners are able to solve the,

> Cubic equation by using the Cardan’s method.
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Biquadratic equation by using the Euler’s method.
Biquadratic equation by using the Descarte’s method.
Biquadratic equation by using the Ferrari’s method.

8 GLOSSARY

N| V Vv

Cardan’s method
Euler’s solution
Descarte’s method
Ferrari’s method

YV VYV
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2.10 SUGGESTED READING

> 500 years of NOT teaching THE CUBIC FORMULA. What is it
they think you can't handle? — YouTube video
by Mathologer about the history of cubic equations and Cardano's
solution, as well as Ferrari's solution to quartic equations

2.11 TERMINAL QUESTION

Objective Question

1. If the solution of the cubic equation x*-12x—-65=0 is x=u"?+u"?,
then which of the following will be the quadratic equation whose
roots are u and v.
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a) t* —64t+65=0 b) t* 65t +64 =0
c) t* +65t—64 =0 d) t*—65t—64=0

2. If we diminish the rootof the cubic equation

64x° —144x* +108x —27 =0 by h, then what will be the value of h to
remove the second term of the equation.

3. Find the values of gqand q if

x4—8x2—24x+7z(x2+ px+q)(x2—px+q')and p=4

a) q=1q=7 b) g=70q=1
) q=-lLg9=-7 d gq=-79=-1

Fill the correct option to make the following statement complete and
correct.

1. If the solution of the cubic equation z®+3Hz+G =0is z=u"® +u"®
and if u+v=-Gthen uv= ...

2. If the solution of the cubic equation z°—21z-344=0is z =u"* +u"®
then u and v are the roots of the quadratic equation z° —344z+....=0

3. If the roots of cubic equation z°—6z—9=0are 3, %(—3+ J§i) and

%(—3—\/§i) . Then the roots of the equation 9x*+6x*—1=0are ......

4. Roots of the cubic z°+3Hz+G =0are all real if G?+4H3<......
Write T for true statement and F for False statement
1. A cubic equation with real coefficient has at least one real root.

2. All roots of cubic equation may be imaginary.
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3. The cubic equation z*+3Hz + G = 0 has two equal roots if
G2+4H%%0.

4. The cubic equation z*+3Hz + G = 0 has two imaginary roots if
G?+4H3*>0.

5. To solve the cubic equation x°+ px*+qx+r =0 by using Cardon’s
method, we first reduce it to the form z°®+bz*+c=0
Solve the following questions

Solve the following cubic equation by cardon’s method.

1. x¥-21x-344=0 2.
28x3—9x*+1=0

3. x®-15x*>-357x+5491=0 4.
x3—12x*> -6x-10=0

5 x*-18x-35=0 6.
x3+3x%2—27x+104=0

7. 2x3+3x*+3x+1=0 8.
64x° —144x*+108x—27 =0

Solve the following cubic equation by Descarte’s method.

1. x*-5x*-6x-5=0 2.
X' —8x?—24x+7=0

3. x*-12x+3=0 4.
x*+12x-5=0
5 x*—6x*+3x>+22x-6=0 6.

x*—10x*—20x-16=0

7. x*—2x*+8x-3=0 8.
x*+8x°+9x*—8x-10=0

9. x*-12x-5=0 10.
x*—3x*-6x—-2=0
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Solve the following cubic equation by Ferrari’s method.

1. x*—=10x®+44x*-104x+96=0 2.
2x* +6x3=3x*+2=0

3. x*-10x3+35x>-50x+24=0 4.
x* —8x3—12x*+60x+63=0

5 x*—-2x®-5x*+10x-3=0 6.
X +4x3 +12x* —8x+95=0

7. x*+12x-5=0

2.12 ANSWERS

Answer of self cheque questions:

1. -1

2. -bl/4 3. -2

4. _1+i1+42 5 1-iv2 and -1++2
6. —24

Answer of objective questions

1. (b) 2. (c)

3. (b)

4, 0 5. -1

6. —b/4 7. —2

8. —1+i,1+42 9. 1-iv2 and —1++2
10. —24

Answer of fill in the blanks question

1. _H?® 2. 343

3. 1/3,—1/6(3++/3i) and —1/6(3—+/3i)
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4. 0
Answer of true and falls questions

1. T 2. F 3. F 4. T o. F

Solution of equations by Cardon’s method

1 8-4+i3/3 2 _1/41/7(2+i~3p8 -—1917.17
4 4+ul/3 +V1/3 4+a)Ul/3 +C()2Vl/3 4+0)2U1/3 +aNl/3

5 5-5/2+i3/2 6 _81/2(5+i3v3) 7 -1/2,—-1/2+i-/3/2

2 2
2acos A 2acos(2§iAj —(a+b+c),—~(a+bw+co®)—(a+ba’ +cw)

8

Solution of equations by Descarte’s method

1. 1403 14421 2 —2+i/3,2+4/3

2 2

—J6+/-6-46 6++/4/6-6

3. 2 | 2
4. 142,142 5. 1++/7,2+4/3
6. 4,-2,-1+i 7. 1+id2,-1+4/2
8. +1-4+./6 9. —1+2i,1++/2
10. _1+i1+42

Solution of equations by Ferrari’s method
1. 2,42+i2/2 2. —2+./21/2(11)

3. 1,2,3,4
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4. 3-1,3++/30 5. 3+.5 —1+413
2 2
6. —3+i410,1+ 2i 7. —1++/2,1+2i

Department of Mathematics
Uttarakhand Open University Page 62



Algebra, Matrices and Vector Analysis MT(N) 121

BLOCK II:
ALGEBRA OF MATRICES
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UNIT 3: ALGEBRA OF MATRICES

CONTENTS:
3.1 Introduction
3.2  Objective
3.3  Matrix
3.4 Sub matrix of a matrix
3.5  Equality of matrix
3.6  Type of matrix
3.7 Addition of matrix
3.8  Subtraction of two matrices
3.9  Principal diagonal of any matrix
3.10 Properties of matrix addition
3.11 Multiplication of a matrix with scalar
3.12 Properties of multiplication of matrix with a scalar
3.13 Multiplication of two matrices
3.14 Properties of multiplication of two matrices
3.15 Some special type of matrices
3.16 Trace of matrix
3.17 Transpose of matrix
3.18 Conjugate of the matrices
3.19 Transpose conjugate of a matrix
3.20 Symmetric matrix
3.21 Skew symmetric matrix
3.22 Hermitian matrix
3.23 Skew Hermitian matrix
3.24 Orthogonal matrix
3.25 Unitary matrix
3.26 ldempotent matrix
3.27 Involutory matrix
3.28 Nilpotent matrix
3.29 Summary
3.30 Glossary
3.31 Self assessment question

1.31.1 Multiple choice questions
1.31.2 Fill in the blanks
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3.32 References

3.33 Suggested readings

3.34 Terminal questions
1.34.1 Short answer type questions
1.34.2 Long answer type question

3.1 INTRODUCTION

In this unit we investigate the matrix and algebraic operation
define on them, the matrix may be viewed in rectangular form, the linear
system of equation and there solution may be efficiently investigate using
the properties of matrix, consider the system of equation x + 2y =5,
3x + 7y = 9 here X, y are unknowns and there coefficient are taken from
any field then the arrangement of these equations in rectangular form

1 27. .
[3 7] Is example of matrix

3.2 OBJECTIVES

After reading this unit you will be able to:

e Understand matrix and their types.

e Use of operations like addition of matrices, multiplication of
matrices etc.

e Find transpose of a matrix.

e Find conjugate of a matrix.

e Know about symmetric and skew symmetric matrices.

e Know about the Hermition and skew Hermition matrices.

e Understand some special type of matrices.

3.3 MATRIX

Definition: A rectangular representation of a set of mn numbers into m-
rows and n columns is known as matrix representation of order mxn and
represented as follows:

[aij]mxn or (aij)mxn or ”A”mxn
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Usually matrix is denoted by A, B, C... etc. A matrix A can be
represented as:

A= layl,,
i = i"row (i" horizontal line)
j = jcolumn (** vertical line)

The element of matrix can be taken from the any field.

If the element of matrices are be taken from real field then the matrix is
known as real matrix,

A matrix is usually written as

A=

d11 A12 -+ A1n
dm1  94m2 amn]an
Generally there are two types of matrices
(i) Row Matrix:

Definition: A matrix contains only one row and any number of columns is
known as row matrix.

A=[l 2 3 4] isrow matrix of orderLxn.

(i)  Column Matrix:

Definition: A matrix contain only one column and any number of rows is
called column matrix

1
2
n

A= is column matrix of order nx1.

nx1
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3.4 SUB MATRIX OF THE MATRIX

Definition: A matrix obtained by omitting zero or more rows but not all
and simultaneously  omitting zero or more columns but not all is known
as sub matrix of a original matrix.

1 2 3

Example: - if A= (4 5 6

) Then

A;= (12 3) is sub matrix of A (omitting 2™4row)

AZ:CL g)is sub matrix of A (omitting 3"4column)

As= (4) is sub matrix of A (omitting 1% row, 2™ column and 3™column)
(1 2y, _
A= (4 6) is not sub matrix of A

Note: Every matrix is sub matrix of itself.

3.5 EQUALITY OF MATRIX

If A=[a;] _ and B =[b;] _ then two matrix A and B are equal if
Hmxn Hpxq

m =p, n =qand
ai]: bl] Vi,j

_(1 2 3 _(1 2
Example 1 A = (4 c 6)2><3 and B = (4 5)2><2 are not equal because

A and B have different order

_(1 2 _(1 2
A= (4 5) and B = (6 5) are not equal because a,; # by,

A= (; i) and B = (; i) are equal matrix
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3.6 TYPES OF MATRICES

(i)  Null Matrix:

Definition: A matrix is said to be null matrix if it’s all entries are zero.

A= {[aij]mxnl a;; = 0v l,]}
(i)  Square Matrix:

Definition: A matrix is said to be square matrix if matrix have same
number of rows and columns.

A=lay] issquare matrix if m =n

2 3

is square matrix
4 5]2><2 a

For example: A; = [

2 3 7

is not a square matrix
4 5 6]2x3 a

= |

(iii)  ldentity Matrix:

Definition: A matrix is said to be identity matrix if it’s all elements in
principal diagonal is 1 and remaining element are 0.

e A={lay],,..

(iv) Upper Triangular matrix:
Definition: A matrix A = [aif]anis said be upper triangular matrix if,

A= {[aij]mxn | ai]. =0or may not be zeroi < ]

0 az; azs
0 0 as;

Example: A =

ai;1  djgp a13]
3x3

(v) Lower Triangular Matrix:
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Definition: A matrix A = [aii]mis said to be lower triangular matrix if

ifi <j
{(all)l = 0 or may not be zero if i > j

Example A = azq azo a3 ,Where dqp = dq3z = dp3 = 0 and
dz; dzz ds3

ajq,a,,,4a33,a,q,a3q, agpare any number

ru a1z adjg3

a;; O 0
ayy azy 0 |islower triangular matrix
dz; 4dzz das3

ie. A=

(vi) Strict Upper Triangular Matrix:

Definition: A matrix A = [al’f]aniS said to be strict upper triangular
matrix if

A= (el o o
dij = 0 or may not be zero if i <j
(vii) Strict Lower Triangular Matrix:

Definition: A matrix A = [al’f]aniS said to be strict lower triangular

matrix if
ifi <j
(a”) | = 0 or may not be zero ifi > j
0 5 6 0 0 O
Example:A=|0 0 7| and B=17 0 0
0 0 O 7 5 0

A is strict upper triangular and B is strict lower triangular matrix

3.7 ADDITION OF MATRICES

Let A and B be two same order matrices then there sum is defined to be
the matrix of same order obtained by adding the corresponding element of
A and B.
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e ifA= [aij]man = [bii]mxn

Then A+B = [Cij] nWhel’e Cij = Qij + bl]

mX

A1 Aqg e e A1n b1 biz... bin
A=10z1 Q.. aZn] and B =
Am1 Am2 - - Amn bml bmz bmn
ayq + by A124b12
Then A+B = : : : ]
Am1 + b1 Az + b

3.8 SUBTRACTION OF TWO MATRICES

If A and B are any two same order matrix mxnthen their subtraction is
defined to the matrix of same order obtained by subtraction of
corresponding of A and B.

ie if A= [al-j]anB = [bU]

mxn

Then A-B = [Cij]monhere Cij = aij - bU

3.9 PRINCIPAL DIAGONAL OF ANY MATRIX

Definition: A = [aij]mxnbe any matrix then the line along a;; (such
thati = j) is known as principal diagonal of square matrix.

Principal diagonal
Non principal diagonal

Super diagonal

Sub diagonal

3.10 PROPERTIES OF MATRIX ADDITION
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(i)  Matrix Addition Is Commutative:Let A and B are any two
matrix of order mxn

A=la,] and B=[p,]
Then A+B= la;| + |o;|
= lay +b;],.,
= |by+ay ),

= |, men +a, men

=B +A, hence

|A+B =B+ Al

(i)  Matrix Addition Is Associative:If A, B, C be three matrices
of order mxn

A:[aij men’ B :[bij men’ C :[Cij men
Then (A+B)+C= (|.aij men +[bij men) + lcii men
= |.aij +bii mxn + [Cij men

= |(a; +b;)+c;|  (by the definition of sum of two

mxn

matrices)
= |.aij +(b; +CiJ)men
= |.aij men+ (|.bij +Cij mxn)

= [aij men+ ([bij men +[Cij men)
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=A+(B+0C)

((A+B)+C=A+(B+0)|

(iii) Existence Of Additive Identity: A=|a;| is a matrix and
O=|b;| suchthat b;; =0 vi, j

Then A+0O= [a.. men +|_bij men

]

:[aij+bijjmxn = [b..+a

U] ij Jnxn

= |.bij men +|.aij men =0+ I-aij men =0+A

A+ 0 =0+A4]

O is additive identity of matrix A

(iv) Existence Of Additive Inverse:if A=a;] and B=p,]

Where, bl] = —ayj

mxn

Then A+B-= [aij men + [bij men
= |.aij +b; men = |.aii +(_aij)men
= laij —a men

=1[0],., =0

So B = —A is additive inverse of A

3.11 MULTIPLICATION OF A MATRIX WITH A
SCALAR

If k is a scalar and A:[aij men is a matrix then,

kA:[bij men where, b, =ka;
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a, @ ka, k k
Example: A:{ moTe aiﬂ then kA:{ 4, Kap 313}
Ay 8y Ay, ka,, ka,, ka,, 2s

3.12 PROPERTIES OF MULTIPLICATION OF
MATRIXWITH A SCALAR

Q) If K;and K,are two scalar and A is any matrix of order mxnthen,
(K; + K,)A= K,A + K,A

Proof Let Azlaij men then,
(K, + K)A= (K + Ky) [ay |
= |(K, + Koy |,

= |_K1(aij ) +K, (aij)Jan

|.K1aij Imxn + I-Kzaij men

K, [aij men+ Kzlaij men

= K;4 +K,A
(i) If Aand B are two matrices of same order then
a(A + B) =a.A + a. B where a is any scalar

Proof Let A and B are two matrices of order mxn

A= I_aij men ) B= |.bij men then
a(A+B) = a( |_aij men + |.bij men )

:a[aij +Db;]  (by matrix addition)

:[a(aij+bij)men (by distributive scalar

multiplication)
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=|aa; +ab; | _

=laa,| +lab;| by  definition  of

distribution law)

:a[aij men + a[bij men =aA + aB

3.13 MULTIPLICATION OF TWO MATRICES

Two matrices can be multiplied only when the number of columns in first
matrix (called pre factor) is equal to the number of rows in the second
(called post factor) such matrix are said to be comfortable for
multiplication.

A:[aij men, B zlbjkjnxp

Then AB=[c, |

mxp

Where Ci = a0y + 3,0, +....

n
Ci = Zaijbjk
i=1

ai; Q12 0433 bi1 bz b3
Example:A = |21 QA a23] and B:[bm b2, b23]
31 4z dz3 bs; b3y bz
a1 Q12 A13)[b11 b1z by
Then AB=[az; ap; a23] [b21 by, bzs]
Q31 A3z Aszzllbs; bi, b

a11b11 + a13by1 + a13b3;  Aq1b1z + A1abap + ag3bs;  agbi3 + Agba3 + ag3bss
Az1b11 + Azpb31 + Ap3bsy  Gp1b1p + Azpbyy + ax3bs;  az1bi3 + axabys + azzbss
Az1byy + Azabyy + azzbzy  Azibiy + azzbyy + azzbs;  azibiz + azpbas + assbazl, g
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Commutative Matrix With Respect To Multiplication: If A
and B are any two matrices of same order then

If AB = BA Then A and B are said to be commutative matrices.

0 1

- 10]

Example: A:[ 0 1

] and B:[
AB:[g (1)] BA:[g (1)] —AB = BA

Anti-Commute Or Skew Commute Matrices: If A and B are
any two matrices then AB = -BA Then A and B are said to be anti-
commutative.

Example: A = [(1) _01] B= [—01 (1)] AB = [_01 —01]
A=l
AB = -BA

Important Note: Two matrix may or may not be commutative
_1 0]5,_[0 1
It A_[O O]B_[O O]
_J0 1 _[0 0
a8=y olBa=ly
AB+BA
. _[0 11o,_M1 O
And if A‘[o o]B‘ [0 1
_J0 1 _[0 1 —
AB= |, o] BA= o] =AB = BA
Note: The product of two non-zero matrices may be zero (null) matrix.

Example:A = (8 é)m B = ((1) g)m A#0,B#0

AB = (g 8)2><2
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3.14 PROPERTIES OF MULTIPLICATION OF
TWO MATRICES

Multiplication of matrices is distributive with respect to addition i.e. if A,
B and C are any three matrices and confirmable for addition and
multiplication then

A (B +C) = AB +AC

Proof:Let A, B, C are any three matrices of order mxn g nxpandnxp
respectively

A=la;] ,B= [bjk]nxp’ C= [Cjk]nxp

Then B+C = [bjk]nxp+ [Cjk]nxp: [bj + Cjk]nxp

n
Then (i. k)™element of A(B + C) = z aj;j (bjk + cjk)

=1

n
= Z(aubjk + aijcjk) (by distribution law)
j=1

n n
= Z aijbjk + Z aijcjk
j=1 j=1
= (i. k)™element of AB+ (i. k)™element of AC
= (i.k)™element of (AB + AC)

=(i. k)™element of A(B + C) and (i. k)™element of (AB + AC) are same
hence,

|A(B + C) = AB + AC]|

Example: If A and B are any square matrix of order n Then show that

1. (A+ B)? =A*+ AB + BA + B?
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2. (A+B)(A-B)=A’-AB+BA-B’
Solution:A = [a;;] ,B=[by]

ThenA+B=C=c;]
Therefore we have

1. (A+B)*=(A+B)(A+B)=(A+B)A+ (A+B)B
=AA+BA+AB+B.B (bydistribution law)

= A+ BA + AB + B?

2. (A+B)(A-B)=(A+B)A+(A+B)(-B)
=AA+BA+A(-B) +B (-B)

=A% + BA - AB -B?

Note:

o The sum of two upper triangular (lower triangular) matrix is also
upper triangular (lower triangular)

o The product of two upper (lower triangular) matrix is also upper
(lower triangular) matrix

o If A is upper (lower) triangular matrix and K is any positive integer

than A¥is also upper (lower) triangular matrix.

3.15 SOME SPECIAL TYPE OF MATRICES

(i) Diagonal Matrix: A square matrix is said to be diagonal matrix
if it is both upper and lower triangular matrix.

Or

A square matrix is said to be diagonal matrix if all principal
diagonal are zero or may not be zero but remaining element are zero, i.e.
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a;; = 0 or may not be zero if i =j}

A= {(ai,-)

2 00
Example:A=]0 3 0 is a diagonal matrix
0 0 4l

(i)  Scalar Matrix:A square diagonal matrix is said to be scalar
matrix if it’s all principal diagonal elements are equaland remaining
element are zero.

a;; = K (constant) if i = j}

e A={(ay)

aij=0 lfl -'pt]
2 0 0

Example:A=|0 2 0 isascalar matrix
0 0 23

Example: If A is any scalar matrix then total number of non-trivial entry
of Ais=....

Solution: A = [a;;| be any scalar matrix then only one entry taken
independently so total number of non-trivial entry of any scalar matrix is 1

K 0 O
A=10 K 0 (Here k is taken independently)
0 0 Kl3g

3.16 TRACE OF MATRICES

If A = [al-j]nxnis square matrix then trace of A is sum of all principal
diagonal element

n

i.e. Trace of A = Z a;;
j=1
2 3 4
Example:A=(5 6 7 Then trace A =?
8 9 133

Solution: Trace A=2+6+1=9
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3.17 TRANSPOSE OF A MATRIX

If A = [al-j]mxnbe any matrix then transpose of A is obtained by
interchanging its rows and columns and is denoted by the symbol A’or AT

ie. A= [aij]manhen AT: [bij]nxm where bl] = ajl’

1 4
2 5

3 6

A:LlL g g] Then BT =

Example: If A and B any two matrices and confirmable to addition and
multiplication then show that

()  (A+B)T=AT+BT

(i)  (AB)T=BTAT
(i) (KA)T=KAT

(iv)  (AD"=A
Solution:
Q) If A and B are any two matrix of order mxn then A + B will be a

matrix of order mxnand (4 + B)Twill be a matrix of order nxm

Let a;;is (i, /)™element of (A + B) where A = [aij men, B= [bij men

Then (j, i)Melement of (4 + B)T
=(i,j)™element of (A + B) = a;; + b;;

=(i, j))™element of A + (i, j)®element of B
=(j, i)™element of AT+ (j, i)™element of BT
=(j, i) ™element of (AT+BT7)

Thus the matrices (4 + B)Tand AT+ BT are of the same order and their
(j, i)™element are equal hence (A + B)T = AT+ BT

Department of Mathematics
Uttarakhand Open University Page 79



Algebra, Matrices and Vector Analysis MT(N) 121

(i) LetA= [aij men and K is any scalar then KA is also a matrix of
order mxn consequently (KA)Twill be a matrix of type nxm

=(i, j)™element of KA = K[(i, j)™element of A]

=K[(j, i)™element of A7] = (j, )™ element of K(A")

= (j,i)™element of (KA)T

= Matrix (KA)T and KATare of the same order and their (j, i)™ elements
are equal so (KA)T = KAT

(iii) LetA :[aijJ ~and B = [bij then AT is a matrix of order nxm

mx nx

and BT is a matrix of order k xn
AT= [CJiJnxm where  ¢;;= a;;
BT=|d, | where dy;= by
AB is a matrix of order mxk

(AB)Twill be of order kxm

Now (k, i)™element of (AB)T=(i, k)™ element of AB

=>"d,c;i= (k i)" element of ATB'
-1

= (k, i)™element of BTAT

=The matrices (AB)"and BT ATare of the same order and their (k, i)™
elements are same

Hence (AB)"= BT A"
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(iv) A= [aij menthen (AT)Twill be of order mxkalso (i, /)™ element

of (AT)T= (j, i)™element of AT = (i, j)™element of A

Hence (47)T=A

3.18 CONJUGATE OF THE MATRIX

Let z = x + iy be any complex number then conjugate of Z is the mirror
image of complex number Z about real axis.

Let A= [aij men is any matrix then conjugate of A is the matrix obtained by

replacing its elements by the corresponding conjugate number it is denoted
by A

ie. A= [bij Jnxm where b;;= @, ¥i, |

2 5+6i]then£z[72 5+6l]

Example: IfA:[7_3l. 3 + 4i -3t 3+4

2=2+0i22=2+01=2-0i=2

5+ 61=5-6i
7 —31=T7+3i
3+ 41 = 3-4i
- [ 2 5-6i
S P

Example: If A and B are any two matrices and confirmable to matrix
addition and multiplication and K is any complex number then show that

0 (@=A

(i) (@A+B)=4A+ B
(i) (AB)=AB

(iv), (KA)=KA

Solution:
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M) A=la,] then A=[a;]

mx
A and @ are of same order

Now (i, /)™ element of (4) is a conjugate complex of the (i, ) ™Pelement
of A

= the conjugate element of @;;
=(a,) =a

= (i, )™ element if A

Hence (4) = A

(i) LetA= [aij men and B :[bij men then A and B are the matrix of
order mxn

Now (i, j)®element of (4 + B)
= the conjugate element of (i, j)™element of (A + B)
= the conjugate element of (a;; + b;;)

=(a, +b,) because Z, +Z, = Z, + Z,

= the conjugate of (i, /)™ element of A + the conjugate of (i, /)™ element
of B

= (i,/))™ element of (A + B)
Hence (A+ B)=A + B
(i)  LetA= [aij men and B = [ajkjnxpare two matrices

Then A and B are also matrices of order mxn and nx p respectively

= (AB) and (AB) are of same order
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The conjugate of (i, k)™ element of (AB)

n
= the conjugate of z a;;j bj

j=1

= (Z aijbij =D by =D ayby
i=1 j=1 j=1

= (i, k)™element of AB
Hence (AB) = AB

(iv) LetA= [aijJ nand let K is any complex number then (KA) and

mx

(KB) will be a matrix of order mxn

Now (i, j)®element of (KA)

= The conjugate of (i, j)™element of (KA) = (K_aij)z Ka,

ij
=K (The conjugate of (i, j)™element of A

Hence (KA) = (KA)

3.19 TRANSPOSED CONJUGATE OF A MATRIX

Transpose of the conjugate of a matrix A is called transposed conjugate of
Aie.

If A is any matrix the transposed conjugate matrix of A is obtained by
interchanging rows and columns and taking conjugate of each element

It is denoted by A9 or by A*

A=la;] then A°=|b;| where b, =a;
2+ 3i 4 5

0 6+7i 9i
2 5+9i 7

Example: ifA= Then
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2—3i 0 2
AP = 4 6—7i 5-—09i
5 -9 7

Example: If A and B are any two matrices confirmable to matrix addition
and multiplication Then proof that

1. (499  =A 3. (AB)? =
B9 A

2. (A+B)?=4%+B° 4. (KA =
KA®

Proof:

1 (4%% = (D" = @’
— ﬁ (AT)T =A
=A (A =A

2. A+B)Y = ((A+B)7)

= (AT + BT) v (A+B)T=4T + BT
= AT + BT (A + B) = (A+B)
:AH + B@

(A+B)? =4°+B°

3. (AB)? =(AB)'

=(BT AT)[.-.(AB)T =BA"|
-B7J")
—BYA°

4. kA)P°=(Kaf
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- (K@)
= KA

(K A)? = KA®

3.20 SYMMETRIC MATRIX

Definition: A square matrix A is said to be symmetric matrix if its (i, )™
element is the same as its (j, i) element

ie.ifA= [aijJ mthen a;j = a; Y l,]

mx

Example: A= LZL g

et Yon

3.21 SKEW SYMMETRIC MATRIX

Definition: A skew matrix A :[aijJ is said to be skew symmetric

mxm

matrix if (i, j)™element of A is the negative of (j, i)™ element of A

ie.ifA= [aij] then a;jj = —a;; Y l,]

0 -2 3
Example:A=12 0 —5]
-3 5 0
0 2 =3
AT =[-2 0 5(=-4
3 =5 0

Example: If A and B are two square symmetric matrices of same order
then what can be say about
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1. A+B 2. AB
3. KA 4, A¥ where K > 1
Solution:A and B are two same order square symmetric matrices
SoAT =Aand BT =B
1. (A+B)"T=AT+BT=A+B
(A + B) is also symmetric matrix of same order
2. (AB)T =BTAT
=BA

Case 1: If A and B are commutative then AB=B A
= (AB)T =BA=(AB)
=AB is symmetric
Case 2: If A and B are anti-commutative then

AB = -BA
= (AB)T =BA =- (AB)
=AB is skew symmetric

Case 3: If A and B are neither commutative nor anti-commutative then
(AB) is neither symmetric nor skew symmetric

Case 4: IF one of A or B is null matrix then
AB =0=BA
(AB)"=BA=0=-0=AB =-AB
So (AB) is both symmetric and skew symmetric
3.  (KA)T=KTAT

=K AT = KA
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So KA is symmetric matrix

Il
>

4. (AK)T - (AT)K: (A)K <« AT
Where K> 1
Hence (4)X is symmetric matrix.

Example: If A and B are two symmetric matrices of order n, then show
that AB + BA is symmetric matrix

Solution: A and B are two symmetric matrices then A” = Aand BT =B

Since both are of same order matrix, so multiplication and addition are
confirmable

Now (AB + BA)T=(AB)T + (BA)T

=BTAT + ATBT =BA + AB
(AB + BA)T = (AB + BA) (.. addition of matrices is commutative)
Hence AB + BA is symmetric matrix

Example: If A and B are two skew symmetric matrices of same order then
prove that (KA) and (A + B) are also skew symmetric matrices where K
IS any constant

Solution: A and B are two skew symmetric matrix

Then AT =-Aand BT =-B
Now (K A)T=KTAT =K AT = K(-A) = -KA =
- (KA)

Hence (KA) is skew symmetric matrix
Again (A+B)T=AT+BT =-A+(B) =-(A+B)
Hence (A + B) is also skew symmetric matrix

Example: If A and B are two skew symmetric matrix of same order then
prove that (AB) may or may not be skew symmetric
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Solution: If A and B are two skew symmetric matrix of same order = A7
=-Aand

BT =- B Then AB is called matrix of same order
Now (AB)"=BTAT =(-B) (-A) =BA

Case 1: If A and B are commutative

Then AB=-A

So (AB)"=BA = AB

Hence AB is symmetric matrix

Case 2: If A and B are anti-commutative

Then AB=-BA

So (AB)™= (BA) = - (AB)

Hence (AB) is skew symmetric matrix

Case 3: Ifeither A=00rB=0

Then AB=0=BA

So (AB)T= (BA)=0=- (AB)

In this case AB both symmetric and skew symmetric matrix.

Hence the product of two skew symmetric matrix need not be skew
symmetric.

3.22 HERMITIAN MATRICES

A square matrix A = [aijJ _is said to be Hermitian matrix if its (i, /)™

mx

element is the conjugate of its (j, i)™ element

ie A= |a| _then A is Hermitian of 4° = A

mx
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2 243 3+4i
Example: A=12-3i 3  4+5i
3-4i 4-51 4

2 2-3i 3-4i
Then AT=|2+3i 3  4-5
3+4i 4+5i 4

2 2+31 3+4i
2-3i 3 445 |=A
3-4i 4-5i 4

(A" =

A? = A hence A is Hermitian matrix

Example: Prove that the principal diagonal elements of Hermitian
matrices are real.

Solution: Let A be any square matrix, A = [aijJ

mxm
Let a;; = x; + iy; are principal diagonal element of A
A is Hermitian matrix so A = (AT)
a;;1s principal diagonal element of A
asis principal element of A9
But 4% = A
@i = aj
X; -y = x; iy
2iy; =0
yi =0 wi
Hence the principal diagonal elements of Hermitian matrix are real.

Example: If A is any Hermitian matrix then what can be say about (KA)
where K is any complex constant.
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Solution: A is any Hermitian matrix

=49 = A

Now (KA)? = (KA)T = KAT = KA = KA
Case 1: K is any real number

Then K =K

And (KA)? = KA

So (KA) is Hermitian matrix

Case 2: If K is any complex number whose real and imaginary part both
are non-zero

K =(a+ib) say

K =a-—ib

(KA)? =K A= (a —ib) # (KA)

In this case (KA) is not Hermitian matrix.

Case 3: If K is purely imaginary then (KA)? = —KA

Hence in this case KA is Skew Hermitian matrix.

3.23 SKEW HERMITIAN MATRIX

Definition: A square matrix A = [aij memis said to be skew hermitian

matrix if its (i, /)™ element is negative of conjugate if its (j, i)™ element

ie.if A= g

mxm
Then al-j =- @

0 a+ib c+id
Example: A=|—a +ib 0 e+ if| wherea,b,c,d,e,fallare
—c+id —e+if 0 1.
real constant
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0 —a+ib —c+id

Then AT =|a+ib 0 —e +if
c+id e+if 0

o 0 —a—ib —c—id

AT =la+ib 0 —e—if]
c—id e—if 0

0 a+ib c+id

A9 =-|—-a+ib 0 e+if| =-A

—c+id —-e+if 0

Hence A is skew Hermitian matrix.

Example: If A and B are skew Hermitian matrices of same order then
prove that (A + B) is also skew Hermitian matrix

Solution: A and B any two square skew Hermitian matrix of same order so
(A + B) is confirmable to addition and

Now (A+B)?=(A+B)T=AT +BT =AT + BT
=A°+B% =(-A)+(-B)  =-(A+B)
Hence (A + B) is skew Hermitian matrix.

Example: If A is any skew Hermitian matrix and K is any complex
constant then what can be says about KA?

Solution:A is any skew Hermitian matrix

So A%=-A

Now (KA)® = (KA)T =KAT = KAT = KA®=-KA
Case 1: If K is real constant

Then K=K

And (KA)?=-KA=-KA

So KA is Skew Hermitian matrix.
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Case 2:1If K is purely imaginary
Then K=-K
And (KA)?=-KA=—(-K)A=KA
So (KA) is Hermitian matrix.
Case 3: If K= a + ib where a, b both are non-zero real number
Then K =(a-ib)
And  (KA)?= —KA==—(a—ib)A #KAor # -KA
So in this case (KA) is neither Hermitian nor skew Hermitian matrix
Case 4: If K =0 or A is null matrix
Then (KA)® = —KA
=0=KA=-0=-KA

So in this case (KA) is hermitian and skew hermitian both

3.24 ORTHOGONAL MATRIX

A square matrix "A’ is said to be orthogonal matrix if AAT = 1= ATA

Note: If A is orthogonal matrix then the sum of square of each row’s or
column’s element is equal to 1 and the product of corresponding different
row’s or column’s is equal to zero.

cosf sinf 0
Example: Show that the matrix |—sin8 cos8 0] is orthogonal matrix
0 0 1

Solution: LetA=|—sin8 cos8 O

0 0 1

cos@ sin@ 0]

Then AT =|sin® cosO® 0

0 0 1

cos@ —sind O]
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cos@ sinf O0][cosf —sinf O
Now AAT = [— sinf cos6 0] [sin 8 cos0 0]=
0 0 1 0 0 1
1 0 O
0 1 0]
0 0 1

Example: If A and B are any two orthogonal matrix of same size then
prove that (AB) is also orthogonal matrix

Solution: A and B are two orthogonal matrix
= AAT =1 = ATA
And BBT =1=BTB
Since A and B are of same order so AB is confirmable.
Now (AB)(AB)T = AB(BTAT)
= A(BBT)AT
=Al AT
=AAT = |
(AB)"(AB) = (BTA") (AB)
=BT (ATA)B
=BTIB
=B"B
=1
We have (AB) (AB)T = 1= (AB)T(AB)

Hence (AB) is orthogonal matrix.

3.25 UNITARY MATRIX

Definition: A square matrix A is said to be unitary matrix if AA° =1 =
APA
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Example:A = [6 (l)]

aa=[ 2l =1 ]
AA? = 1= A°A

=A is unitary matrix

Example: If A is unitary matrix then for what value of K, (KA) is also
unitary matrix.

Solution: A is unitary matrix so AA% = A°A =1

Let (KA) is also unitary matrix so (KA) (KA)? = (KA)?(KA) = |
(KA) (KA)? = (KA) (KA?) =K K A A% =1

KKI=1

KK=1

So K is unit modulus

Hence (KA) is also unitary matrix if K is of unit modulus.

3.26 IDEMPOTENT MATRIX

Definition: A matrix A is said to be idempotent matrix if 42 = A

-1

Example: Consider a matrix A = [142 _3

A2=A.A=[142 :é”fz :§]= ig :éz—_fz ig
=[142 :é]:A
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Hence A is idempotent matrix.

Example: If A and B are two square matrices show that AB = A and BA =
B Then show that both A and B are idempotent matrices.

Solution: Since AB=A........... (1)
Post multiply by A in both side in equation (1)
AB=A
(AB)A=AA
A (BA) = AA
AB = A2 ~ BA=B
A= A? + AB=A
Again BA=B

Post multiple by B in both side

(BA)B =B.B
B (AB) = A2
BA = B2

= Hence A and B both are idempotent

Example: If A and B are two idempotent matrices of same order then
prove that if (A + B) is idempotent then AB and BA both are null matrices.

Solution: Let A and B are two idempotent matrix
= A>=Aand B?=B

Let (A + B) is also idempotent matrix

= (A+ B)?=(A+B)

(A+B)(A+B)=(A+B)
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AA+AB+BA+BB=A+B
A>+AB+BA+B?=A+B
A+AB+BA+B=A+B ~A*=A B*=B
AB+BA=0..oooeeeieaee (1)
Pre multiply both sides by A in (1)
Then A.(AB) +A(BA)=A0=0
A’B+ABA=0 v A2 =A
AB+ABA=O..ccoeeeiiiiieiiiieeeeeee, 2)
Again post multiply both sides by A in (1)
Then ABA+BAA=0A=0
ABA +BA%?=0 v A2 =A
ABA+BA=0.cciiiiiieieei e, 3)

From (2) and (3)

AB = BA put in (1) then|AB = BA = 0|

3.27 INVOLUTORY MATRIX

Definition: A square matrix A is said to be involutory matrix if A% = |

0 0 1
Example: Consider a matrix A = |0 1 0] then show that A is
1 0 O
involutory.
0 0 1
Solution: A=|0 1 0
1 0 O
0 0 1710 0 1 1 0 O
A*=AA=|0 1 0||l0 1 o|=]|0 1 0|=1I

Department of Mathematics
Uttarakhand Open University Page 96



Algebra, Matrices and Vector Analysis MT(N) 121

A2 =1
Hence A is involutory matrix.

Example: If A and B are two involutory matrix of same order then prove
that if (A + B) is involutory then AB + BA = -I

Solution: Let A and B are two involutory matrix = A? = | = B2
Again let (A + B) is involutory matrix
= (A+B)?*=1

(A+B)(A+B)=1
AA+AB+BA+BB=I
A?+ AB+BA+B?2=1| A% =1=B?

I+AB+BA+1=1
AB+BA=1-21I

AB +BA=-1

3.28 NILPOTENT MATRIX

Definition: A square matrix A is said to be nilpotent matrix if there exist a
positive integer n such that A= O (O is null matrix). The smallest
positive integer m such that A™ = 0 then m is called index of null matrix
A.

0 3 4
Example: Show that the matrix A=|0 0 5] is nilpotent matrix with
0 0 Olzxs
index 3.
0 3 4
Solution: A=10 0 5]
0 0 O
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0 3 4110 3 4 0 0 15
Then A2=AA=]|0 0 5] [O 0 5] = [0 0 O ]
0 0 O0llo 0 O 0 0 O
0 0 1510 3 4 0 0 O
A3 = A%2A ] [O 0 5] = [0 0 0]
0 0 O 0 0 O

Hence A is nilpotent matrix
Since least positive integer is 3 such that A3 = 0, so index A is 3.

Example: If A and B are two nilpotent matrix of same order then show
that A + B and AB may or may not be nilpotent

Solution:

0 2

_[0 1 _
(1) LetA=| 0]andB-0 »

A and B both are nilpotent matrix.

A? =0 = B?
_J0 11,10 21_10 3
Now A+B_[0 O]+[0 O]_O 0]
(A+B)?= [
(A + B) is nilpotent
0 1
ro=[0 3100 =10 §
(AB) is nilpotent
_[0 1 _[0 O
2) LetA—[O . B=[c

Clearly A and B are nilpotent because

A? = B2 = null matrix (O)
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Bt A+B=[ J]+[2 O=[2 }

o oltls ol7ls 0] IS not nilpotent matrix

Because no positive integer m exist such that (A + B)™ = 0

0 16

3) |_etA:[105 g]andB:[O .

]A and B both are nilpotent.

st (aB)=[2 [0 6]=[0 O

15 ollo o 0 240] is not nilpotent matrix.

Example: If A and B are any two nilpotent matrices of same order and
commute to each other, then show that (A +B) is also nilpotent matrix.

Solution:A and B are any two nilpotent matrices and

Let index of A=m,, index of B=m,

> AMi=0= B™

= A™1tki = O = AM2+kz \Where k; and k, are positive integer

Now (A + B)matmz—1

m1+m2—1
- z mytme=lo Arp(mytme=D-r (1)
r=0
Case 1: Ifr > m; then A" =0

Then (A + B)Mitmz-1 = g

Hence (A + B) is nilpotent matrix

Case 2: If r< m; Then

(m+m,-Y—-r>m +m,-1)—m, (-r<m,)
>m, -1
=>m, (mlamz € I)

The greater number of m, — 1 is either m, or > m,
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and B™ =0
SO, B(m1+m2—1)—r — O
Hence (A + B) is nilpotent matrix

The index of (A + B) is less than or equal to m; + m, — 1.

3.29 SUMMARY

In this unit we learned the concept of algebra of matrix,along with some
important matrices that will further help us understand the matrix in all its
forms, like orthogonal matrix, idempotent matrix , involutory matrix,
nilpotent matrix etc.

3.30 GLOSSARY

1. Non trivial entries: The entries of matrix over any field which we
can take independently

2. Trivial entries: The entries of matrix over any field which can not
be taken independently

3. Trace: Sum of all principal diagonal entries

3.31 SELF ASSESMENT QUESTIONS

1.31.1 Multiple Choice Questions:

_[p 2 _[5 2
1. A c 7] and B 7 5] then for what values of P, A and B are
equal matrix
(@ 5 (b) 2
(o 7 (d)

None of these
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2. If A is any matrix of order mxn and all entry of matrix A is equal,
then total number of sub matrix of A is equal to
@ n (b)
m.n
(c) m+n (d m

3, IfA:[g 3] and B:[é 8]Then

(@) AB= [8 ‘1)] (b)
as=[1 ]

@ so=l) 0
w8=[g ¢
4. The number of possible different element in a square matrix of

order n in which a,,, = a,; where, p+qg=r+sis

(@ n (b)
2n

() 2n-1 d 2
5. Total number non trivial entry in upper triangular matrix of order n
IS

(@ n? (b)
n(n+1)

2

© "5 @ n
6. A and B are two involuntary matrix, (A + B) is also involuntary if

(@ AB+BA=0 (b)
AB+BA =1

(c) AB+BA=-I (d)
AB + BA =2|
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1 -1 0
7. IfA=|0 1 —1] then trace (447) is
1 2 1
(a) 10 () 5
() 3 (d 2
Answers:
1. (d) 2. (b) 3. (d) 4. (c)
5. (c) 6. (c) 7.(a)

1.31.2 Fill In The Blanks:

Fill in the blanks “’......... >’ so that the following statements are complete
and correct

1. A square matrix is said to be idempotent if A2 = .........
2. Trace(A+B)=...........
3. The diagonal element of Hermitian matrix is ..........

4. If A and B are two nilpotent matrix and confirmable to
multiplication then (AB) is also nilpotent if AB=......

S. The sum of square of each rows of orthogonal matrix is ...........
6. A square matrix is skew symmetric if AT = .........
7. If A and B are two symmetric matrices then (K,AB + K,BA) is

also symmetric if ..........
Answers:

1.A 2. Trace A + 3.Real 4. BA
Trace B
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5. 1 6- _A 7 Kl ES K2
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3.34 TERMINAL QUESTIONS

1.34.1 Short answer type questions:

[ 0 5 -9
1. Show that the matrix (-5 0 7 ] is skew symmetric
L9 -7 0

[cos® sinB O
2. Show that the matrix |sin® cos® 0 | is orthogonal
L 0 0 -1

3. If A and B are symmetric matrices of order n, Then show that AB +
BA is symmetric and AB —BA is skew symmetric.

4. Express the following matrix as the sum of a symmetric and a
1 2]

skew symmetric matrix [4 c

5. If A is a square symmetric of order n, then show that trace of AAT
is equal to sum of square of each element of A

Department of Mathematics
Uttarakhand Open University Page 103



Algebra, Matrices and Vector Analysis MT(N) 121

6. If A is an idempotent matrix, show that B = I-A is also idempotent
matrix and AB = BA =O (Null Matrix)

1 2 3
7. Show that the matrix A = |2 4 6] satisfies the equation
3 6 9

A3 —144A%2 =0

1.34.2 Long answer type questions:

__[cos® —sinB
1. IfAy= [Sin SO ] then show that Ag, A, ~Ag, + Ag,
2. Prove that the product of two matrices
2 . 2 .
[ cos? o cos 'oczsm « and [ cos .B COS.B?HB] Is a zero
COS & sin « sin® « cosBsinf  sin“f
matrix when o and { differ by an odd multiple of T/,
1 2 5
3. IfFA=]0 1 6] then find the values of A3
0 0 1
4. If A and B are two nilpotent matrices then show that if (AB) is
nilpotent then index of (AB) < (index A, index B)
5. Show that every square matrix is uniquely expressively as the sum
of two matrices one is hermitian and other is skew hermitian
5 2—3i 7460
6. IfA=|2+3i 10 i is hermitian matrix
7 — 6i —i 15
0 5 6 a b c
7. A=[0 0 9|landA4®=|0 0 e|then find the value of a, b, c,
0 0 O 0 0 h
eandh
8. Show that principal diagonal element of skew symmetric matrix is
Zero
9. Show that every square matrix is uniquely expressible as the sum

of symmetric and skew symmetric matrix.
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10.  Prove that the principal diagonal element of skew Hermitian
matrix are purely imaginary or zero.

11. If A is skew hermitian matrix then what values of n show that A™ is
also skew hermitian matrix
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4.1 INTRODUCTION

In this unit we show that how to find the determinant of the matrix,
we emphasize that an nxn array of scalars enclosed by straight lines
called determinant of order n, the determinant function was first
discovered during the investigation of system of linear (Homogeneous and
Non Homogeneous) Equation.

We solved the determinant of matrix of order 1,2, 3 ... and then we define
a determinant of general nxnmatrix.

4.2 OBJECTIVE

After reading this unit you will be able to:

e Understand minors and cofactors.

e Find determinant value of a square matrix.

e Understand properties of determinant and its uses.
e Find product of the two determinant and its uses.
e Know about singular and nonsingular matrices.

e Find solution system of non-homogeneous linear using Cramer’s
Rule.
e Find Adjoint of a square matrix.

4.3 DETERMINANT

Definition: Each n-square matrix is assigned a special scalar is called
determinant of A, and it is denoted by |A]

|Al=

dn1  dpti .- Anpn

4.3.1 DETERMINANTS OF ORDERS 1

If A=[a11]1x1 then |A| = d11
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4.3.2 DETERMINANTS OF ORDERS 2

If A= [2;1 :;z] then |A| = (Product of principal diagonal element) —

(Product of non-principal diagonal element)

|Al = a;;a;3; —az1as;

Example: - if A = [i g] then, |A|= (2.5) - (4.3)
=10-12
=-2

4.3.3 DETERMINANTS OF ORDERS 3

a1 dgp  dj3
Let Azla--JM: A1 Az A3

ij
dz; dzz 4dss

Then |A| = aj;.aya33 + ajpaz3a3; +aj3az1as; — aj3adzpaszy —

di1dpzdzy — dppdpqds3

Or
Al = a |322 az3|_a |az1 az3| a |az1 322|
Hlag, agsz 12 Jaz; asz 13lag; as
Or
all alZ a13
|AI: Ay Ay Ay
a;; Qg Agg

Then arrange these number in rows and columns and first two rows again
write in
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last

m;+ my+ my=M

4.4 MINORS AND COFACTORS

Consider the determinant of 3x 3 matrix (in general)

a7 d12 43
dz1 dpz dp3
dzi; dzz asz

A=

Then if we leave the column and the row passing through the elementay;;,
then the second order determinant is called minor of the element a;; and it
is denoted by M;;

. dzp  dp3
For example: The minor of the element a;; = | | =
Y 11 = |ag,  ass 11
. dp1  dp3
The minor of the element a,, = | |: M
127 Jaz; as; 12

Cofactors: The minor M;; multiplied by (—1)" is called cofactor of the
element a;; and it is denoted by Aj;

Ay = (D™ My
For example: - The cofactor of the element a,;; = (—1)1*M;; = M,

The cofactor of the element a;, = (—1)*2M,, = —M,
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4.5 DEFINITION OF DETERMINANTS IN
TERMS OF COFACTOR

Let A be any n-row’s square matrix then the determinants of A is the sum
of the product of the element of any column or any row with their
corresponding cofactor

ie|A= Zaij A,; where, either i or j is fixed

i=lor j=1
Example:
1. If i = 1 then
n
|A] = Z ajj Ajj = a11A11 T apA12 +a3A 3
=1
2. Write the cofactors and minors of each element of the matrix
1 1 1
A=|1 2 =3
2 -1 3

Solution: The matrix of the element a;; = |_21 _33| =6—-3=3=
My,

The matrix of the element a;, = B _33| =3+4+6=9=M,,

The matrix of the element a;3 = |; _21| =—-1-4=-5=

The matrix of the element a,; = |_11 §| =3+1=4=My,

The matrix of the element a,, = |§ ;| =3-2=1=M,,
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The matrix of the element a,; = |; 1= -1-2=-3=
M23

The matrix of the element az; = B _13 =-3-2=-5=
M31

The matrix of the element a5, = H _13 =-3-1=—-4=
M32

The matrix of the element a;; = H ;| =2—-1=1=Mjy;

The cofactor of the element a;; = (—1)*'m;; =3 =A;
The cofactor of the element a;, = (—1)*?m,, = -9 = A,
The cofactor of the element a;3 = (—=1)**3m;3 = -5 = A5
The cofactor of the element a,; = (—1)?t1m,; = —4 = A,
The cofactor of the element a,, = (=1)?*?m,, =1 = A,,
The cofactor of the element a3 = (—1)2%3my; = 3 = A,
The cofactor of the element a3; = (—=1)3t1m3, = =5 = A3,
The cofactor of the element a5, = (—1)32m3, = 4 = A,

The cofactor of the element ag; = (—1)3*3m5; = 1 = Ag,

4.6 PROPERTIES OF DETERMINANTS

Theorem 1: The value of determinant does not change when rows and
columns are interchange

Proof: Let A be any square matrix of order n

A=

dq1 4di2 .. aln]
dpn1 An2 " Annlpay

Then
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n
|A| = Z aj; Ajj where Aj; is cofactor of aj;

i=1j=1

Let us take a matrix of order 3 for example

A =]az1 az; 4dzs
dzqp dzz dss

dzp; Az

azq 323|
dzp dszz

azq a22|
dzq dszz

ass |
Blazg; asz

|A|=a11| |_a12|
= a;1(aza33 —aszaz3) —ajp(aziaszs —azsasg)

+ a;3(az1a3; — azqaz;)

= a;1(azza33 —aszpaz3) — az1(ajpazs — azya;s)
+ az;(ajpaz3 — as3az;)

dzz dszp
dz3 dszg

diz dszp
=day

ajp azzl
d;3 dss

2 |
31]a;3 a3

| - 221
di11 dp1 az;
= |d12 4dzz a3
d;3 dp3z aszs

Hence the determinants of any matrix A and its transpose matrix ATare
equal.

Theorem 2: If any two columns or rows of a determinant are interchanged
then the values of determinant is negative multiple of determinant of

original matrix.
Proof: - Consider a matrix A of order 3

a7 d12 413
A =]az1 4azz 3az3
dzq; dzz dsj

dzpy  dp3

dzq a23|
dzp dszg

dz1 azz|
dzq; dszg

asa|
13laz; as

Then |A| = a11 | | - 312 |
= a;1(azza33 —a3paz3) — a12(az1a33 — azzazy)

+ a13(2121332 - 331322) v e (1)
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Now interchanging any two rows or columns

R; <R,
a'21 a‘22 a23
Then new matrix A =|a,, a, a;
a31 a32 a33

|A| interchange
= a,1(a1a33 — azpas3) — axx(aggazz — azjass)
+ ay3(a;1a3; — a12a31)

= —[agzai3az1 — az1a33a12 +az,811833 — Az2a31a13
— ap3agjas; + az3asnaz]
— [a;1(az2a33 — az3a3z) — asz(az1a33 — azzasg)
+ a;3(az1a3; — az1azy)]

So, |Al=-A
Note:
1. If any row or column in any matrix is multiplied by any scalar K

then determinant of the matrix is K times of the determinants of the
original matrix

Ka11 K312 K313 dq1 aqy a13
Forexample: | az;  azz  azz | =K|a21 Az azs
az;  Adzz Az dz1  d3z d33
2. If all the elements of matrix multiplied by constant K then

determinant is equal to K" time of the value of determinant of original
matrix, where n is order of matrix.

ie. |KA| = K"|A|

3. If any two rows or columns are identical of any matrix then
determinant is zero.

Theorem 3: If in a determinant each element in any row or column
consists of the sum of two terms, then determinant can be written as sum
of two determinants
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a;pta ag;y Az
Proof: Let A =|a,; +b a,, a,;
azy +C azy ass

Expanding the determinant along the first column

dzp dpzz diz dji3
|Al = (a;1 + @) | a33| — (a1 +b) | |

asp dzp; dszg
a1z agg
+ (331 + C) |azz a23|
— 2 dz dz3 _a |a12 313| a |a12 a13| |322 az3|
Hlaz, aszz 21jaz, as3 311ag, azs dzp dszz
b aip a13| |a12 a13|
dzp dszz dzz A3
a7 d1z 43 a djp; adzz
=[az1 azz ax|+|b az az
dzi; dzz asz C aszp ass

Theorem 4: If the element of any row or column added by K time the

corresponding element of any other row or column, then determinants of
the matrix are same

a;;  Aa;p a3 a;; +Kag;p ag;p ags
Proof: -Let A = [az21 a2 az3z|and B = a, + Kazz dpy dp3
a31 a32 333 a31 + Ka32 a32 333

a;p +Kajp, ag;p ags
Then B = doq + Kazz doo dr3| =
az; +Kaz, az; as;

a7 dgp  dj3 Ka;, aj;; ags
az1 azz Az +|Kay, az, ap;
dzq 4z 4dsg3 Ka32 d3p dsz3

a1z Az dj3
= |A| + K[a22 a2 a3
dzp; dzz dsz

=|[A+KO [..If any two columns are identical then determinant
will be zero]

= |A]
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1 a a?
Example: IfA=|1 b b?|thenshow that
1 ¢ c?
Al =(@—-b)(b-c)(c—a)
1 a a?
Solution: |A|=|1 b b2
1 ¢ c?

Applying R, « R, — R; and R; « R; — R;then we get

0 b—a b?-—2a?

[1 a a?
0 c—a c?2—-a?

Expanding the determinant along the first column

b? — a2 0 b%?-a? ,]10 b—a
—a +a
c2—a2| 0 c2—a2| 0 c—a|

|A| =1 |b—a
c—a

= (b—a)(c®* —a’)—(b*—a*)(c—a)—-0+0
=(b—-a)(c—a)(ct+a)—(b—a)(b+a)(c—a)

=(b—a)(c—a){(c+a)—(b+a)}
=(b—-a)(c—a)(c—b)

=(a—b)(b—-c)(c—a)

4.7 VANDERMODE MATRIX

A matrix is at form

2 -11. .
1 O.‘_Z. O‘g a2 |is called vandermode matrix
And its determinant

|Al = 1_[ (oc—ox;)

1<i<jsn
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Example 4: Find the determinant of

0 0 a
an={0 0 v a0
a 0 o0 o

Solution: A,= (—1)"**ta A, _,
— (_1)n+1a(_1)(n+1)—1An_2

— (_1)n+1a(_1)(n+1)—1a(_1)(n+1)—2An_3

An= (_1)(n+1)+n+(n—1)+ ———4an—2A2

Where A,= (—1)3a2

[(n+1))(n+2)_1}
Then A, =(-1)t °?

Example 5: Let A be a square matrix of order n, then show that
1. |A] = |A] 2. |A8| = 1A]

Solution 1. let A=|a, Jnan = [ay]_,_ then A= [a_ij]n

So |A| = [ay] = [ay| = 1Al
2. A be a square matrix of order n, and A® = AT
So |A®| = |AT| = |AT| = |A| = |A]
 |AT| = |A| and |A| = [A]

Example 6: Show that the determinant of Hermitian matrix always a real
number

Solution: Let A be a Hermitian matrix

Then A® = A
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%] = 1A
AT =|A
Al = |A]

Let x + iy is the determinant of A

X—ly=x+1y
2iy=0

y=0

Al = x+i0 =x

Example 7: Show that the determinant of Skew symmetric matrix of odd
order is zero.

Solution: Let A be a skew symmetric of odd order

AT =-A

|AT] = |-Al = |(=DA| = (-=D"|A]| ~ [KA| =
K"|A]

|Al = (=1)"|A] w AT = |A

Sincenisoddso (—1)" = -1
Now |A] = —|A]|
2|1Al =0

|Al =0
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4.8 PRODUCT OF THE TWO DETERMINANT OF
THE SAME ORDER

Example 8: If A and B are two square matrices of same order then prove
that

|AB| = |A[|B]
a7 d1z 43 by byx bys
Solution: Let A = [az1 @ az3 B =|by; by by
az; 4dzz ass bs; bz, bis

A.B
a; by +agbyy +a3bsy  aggbgy by +a3bs;  aggbgz +agbys +agsbss
= |az1by1 + azybyy +az3bsy  azibgy +aj;by; +az3bsy  azibyz +aj;bys + azsbss
az1bqq +azybyy +aszbs;  azgbgy +azyby, +aszbsy  as bgz +azybys +assbss

Now we know that

a7 d1z Q43 b1 byy by
If |A| = [a21 Q22 az3 |B| = |bay bz bas
dzp dzz ds3 bs; bs; bss

|A[|B|

a; by +a5,by +a53b3y  aggbyy +a5,byy +a3bs;  aggbgz +a5,bys +ag3bss
az1bq1 tapybyy +azsbsy  azibiy +agby; +azsbsy  azibyz +azbys +azsbs;
az1byq +azybyy +assbsy  as byy +azyby; +assbsy  azibysz +as;bys + azsbss

Hence |AB| = |A||B|

Rule: Let A and B are only two matrices of same order

a7 d12 43 b1 byy by
Let |[A] =221 a2z A2z and |B| = [by; by by
dzi; dzz asz bs; bzy b
then
|A[[B]

a; by +ag,byg +a3bgy  aggbyy +ag,byy +a3bs;  aggbgz +ag;bys +ag3bss
ay b1 tapybyy +azsbsy  azibiy +aby; +azsbsy  azibyz +azbys +azsbs;
az1byq +azybyy +assbsy  as by +azybyy +assbsy  az by +asybys + azsbss

In general this is simply row by column multiplication
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Example 9: If A be a square matrix of order n then show that
|A%| = |A[¥
Solution: Let A and B are two square matrices of order n
Then we know that |A.B| = |A]|B|
If we replace B with A then
|A. Al = |A]|A]
|A?] = |A]?
In similar way |AK| = |A|K

Example 10: Show that the determinant of an idempotent matrix is either
Oorl

Solution: Let A is an idempotent matrix, then

A2 =A
|A?] = |A
|A]Z = |A]

|Al(JAl-1) =0
Al =0 or [Al—1=0
Al =0 or|Al =1

Note: It is necessary condition the determinant of idempotent matrix is O
or 1 but not sufficient.

For Example: If A = [8 (1)] Then |A] = 0but A2 # A

Example 11: Show that the determinant of orthogonal matrix is either 1 or
-1

Solution: Let A is an orthogonal matrix, then

AAT =1
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|AAT| = |1

|AlIAT] =1

|AllA] =1 v |AT] = A
A2 =1 =1
|Al=1or —1

Note: Determinant of a diagonal matrix, upper triangular matrix, lower
triangular matrix is the product of principal diagonal elements.

1 2 3
Example 12: IfA=10 5 7 Then |A| =7
0 0 9
1 2 3
Solution: A= |0 5 7|is upper triangular matrix so its determinant
0 0 9

values are the product of principal diagonal matrix
Hence |[A| =1-5-9 =45

Example 13: Show that the value of determinant of skew Hermitian
matrix of order n, is either O (zero) or purely imaginary if n is odd and
real, if nis even.

Solution: Let A be a skew Hermitian matrix and
|Al = x + iy

A% = —-A (By definition of skew Hermitian matrix)

A% = |-A|
|AT| = (—=1)"|A]
Al = (=1)"|A|

Case 1: If n'is even then,

JAl=]A] > x—iy=x+iy = y=0 so |Al=x
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= |Alis real

Case 2: If nis odd then,

W:ij—iy=—(X+iy):>2x=0:>x=o

Al =1A] = x—-iy=—-(x+iy) = 2x=0 = x=0
|Al = iy Ify=0 then [A] =0

If y # 0 then |A| is purely imaginary.

4.9 NON SINGULAR MATRIX AND SINGULAR
MATRIX

Non- Singular Matrix: A matrix ‘A’ is said to be non-singular matrix if
its determinant is non zero.

Singular Matrix: A matrix ‘A’ is said to be singular matrix if its
determinant is zero.

4.10LINEAR EQUATION (HOMOGENEOUS AND
NON-HOMOGENOUS EQUATION)

Linear homogenous equation: The equation is of the form ax + by +
cz = 0 is called linear homogenous equation in X, y, z.

Linear non-homogenous equation: The equation is of the form ax +
by + cz = B where B # 0 is called non-homogenous equation in x, y, z.

4.11SYSTEM OF NON-HOMOGENOUS LINEAR
EQUATION (CRAMER’S RULE)

If we have n linear simultaneous equation in n variablex;,x,, X5 -+« -+ Xp
ie allxl + 312X2 S MRRRREE + alan = bl
321X1 + 322X2 + """ + aann - b2
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an1X1 + an2X2 + """ + anan - bn
di1  dr2 A1n
a a a

Let A= [21 ©2% 2 #0
dpi RY) Ann

Suppose Aj; is the cofactor of element ay; in A then multiplying this given
equatlon by A11’A21) A31 """ Anl and add'ng

X1(@11A11 +a21A21 + rap1Ang) +X2(@12A11 +az2A51 + - apzang)
+ -+ xp(@1pA11 + azpAz1 + - Appann)

XlA + Xz(O) + X3(0) + .= b1A11 + b2A21 + "'AnAn1
x,;A= A; where, A; is the determinant obtained by replacing first column

element of A by by, b, - by, thenx; = AT:

Again multiplying these equations by A, A,,, -+ Ay, and adding then we
get

A,
XzA = AZ = X2 == K

Where A, is determinant obtained by replacing second column element of
A by b1!b2 “‘bn

In similar way, we get

A= A A3
= = = —
X3 3 X3 A
Ay

XnA = An = Xp = X

This method of solving n simulations linear non-homogenous equation
provided |A| # 0 where A is the coefficient matrix. This method is known
as Cramer’s rule

Example 14: Solve the following system at equation by Cramer’s rule

2x—y+3z=9
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Xx+y+z=6
X—y+z=2

Solution: The coefficient matrix of given system at non-homogenous
linear equation is

2 -1 3 91
A=1 1 1 B=|6

1 -1 1 2]
11 1 1 1 1
A_|A|_2|_1 1|+1|1 1|+31 _1|
—2(14+41)+3(-1—-1) =4-6 =-2 %0

Therefore the system of non-homogenous linear has unique solution

Now using Cramer’s rule

9 -1 3 2 9 3
Alz 6 1 1 :_2, A2: 1 6 1 :_4, A3:
2 -1 1 1 2 1
2 =1 9
1 1 6|=-6
1 -1 2
Hence the solution is
Al _2 Az _4‘ A3 _6
TAT42 T y=R T4 rER T

4.12 ADJOINT OF A SQUARE MATRIX

Let A = [aij] rlbe a square matrix of order n then the transpose of a

nx

matrix B=[A;;]n.,Where Aj;; is the cofactor of the element aj; called
Adjoint of matrix A and it is denoted by AdjA or adjA.

M _nxn
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Ap e Ay

Then the cofactor matrix C =| ... .. ...
Av o Al

Then adjA= transpose of the matrix C

Ap o Ay
adjA= C =
An o Anl,
Example 17: Find the adjoint of the matrix
1 1 2
A=12 1 3
1 2 1

Solution: Let us find the cofactor Ay ,A;;,Aq3 etc at the element of [A|
we have

R PR O S R
e B R I R RS

o=l Ymnb= o ennn=f} =

Therefore the matrix C formed at the cofactor of the element of |A] is

-5 1 3
C=[3 -1 -
1 1 -

Now adjA is the transpose of the matrix C.
adjA=3

Example 18: Prove that at x = 4 the values of given determinant
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3x—4
3x— 16
3x — 64

3x—4
3x—16

MT(N) 121

x—2 2x—3

x—4 2x-—9

x—8 2x-—27

x—2 2x—3
Solution: Wehave [x—4 2x-—9

x—8 2x—27 3x—64

Applying R, >R, —Rjand R; - R; - R,

Xx—2 2x—3 3x—4
-2 —6 —12
—6 —24 —60

1 1
R2 —)—ERZ,R3 —)—€R3

Xx—2 2x—3 3x—4
1 3 6
1 4 10

or

Solving the determinant along the first row then we get
x—2)(30—-24)-(2x—3)(10—-6) + 3x—4)(4 —3)

6(x—2)—4(2x—-3)+1.(3x—4)

Put x = 4 then the value of determinant

= 6(4-2) - 4(8-3) + (3.4 - 4)

=6.2-4(5) + 8

=12-20+8

=0

1+t
1 + t3| = 0 then prove that
1+ t3

t, t?
Example 19: If |t, t3
t; 3

tl.tz.t3 =-1 Whel‘e t1 * tz * t3

1+t3 t, t2 1] |ty t2
1+t =|t, t2 1|+, t2 ¢
1+6 t; t3 1] |t3 t3 t3

ty tf
Solution: We have |[t, t3
t; t3

(By theorem (properties of determinants))

by
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t, t7 1 1t t2
=lt, 5 1 +tittsf1 t, 3
t; t2 1 1 t3 t3

(By taking t4, t,, t; common from first row, second row and third row of
the second determinant)

1t t? 1t t?
=[1 t, tB+tittzfl t, 3
1 t3 t3 1 t, t3

(By C; & C5 then C; & C, of the first determinant so determinant is
unchanged)

1 t; t2
=(1+t.tty) |1 t, t2
1 t, t3

By vandermode matrix the value of above determinant is
=(1+t.t,.t5)(t —ty)(t, —t3)(t3 —ty) but t; #t, #1t3
So (t; —tz). (2 —t3)(ts —t1) # 0

t, t2 1+t
Soif|t, t2 1+t3|=0then (1+ t;.t,.t3) must be zero.
ty t2 1+t

Hence tl' tz. t3 = _1

X y z
Example 20: Prove that if x#y #z and [x* y* z?|=0thenyz+
yZ ZX Xy
zx+xy=0
X y z
Solution: We have [x? y? z?|=0
yZ ZX XY

Multiplying by x,y,z in first, second and third column of the determinant
from left side respectively then we get
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1 XZ y2 ZZ
x3 y3 231=0
X.y.Z
XyZ XYZ XyZ
Taking xyz common from 374 row at the above determinant
X2 y2 Z2
X.y.Z _
vz x3 y3 23| =0R; & RjafterthatR, & R;
1 1
Then determinant is (—1)? time the original determinant.
1 1 1
2yt 2=0 (C, »C,-C,,C, >C,—-C,)
X3 y3 Z3
1 0 0
x2 yZ—XZ 72 — x2 -0
X3 y3 X3 Z3 _ X3

Expanding along first row

_ Y—-—xF+x) (z —x)(z+x)
Hy—-xF*+xy+x2) (z-x)(z%+zx +x?)

y+Xx Z+X
y2 +xy +x% 7%+ zx + x?

= Y -x0Ez-x

MT(N) 121

Taking (y — x) and (z — x) is common from first and second column

={-x-{F+xE*+zx+x%) - (y2+xy+x2)(z+x)} =0

=(y=x)(z=x)(z - y)(yz* +x2° —zy* —xy*) =0
=Ex-y-2Ez-x)&y+yz+2x) =0

But x—y#0,y—z#0,z—x#0 because x,y,z all are
(xy + yz + zx) = 0.

Example 21: Solve the following system of linear equation
rule
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2x—y+3z=28
—x+2y+z=4
3x+y—4z=0
2 -1 3

-1 2 1
3 1 -4

Solution: We have A= =2(-8-1)+1(+4-3) +

3(-1-6)
A= —18 + 1 + (-21)A= —38

Thus A+ 0 and therefore the system has a unique solution given by

—=—=—= i.e.
X _ y Z 1
8 -1 3| |2 8 3 2 -1 8| 38
4 2 1 -1 4 1 -1 2 4
0 1 -4 3 0 —4 3 1 0
) X y Z 1
Or given by —— =

76 —76 —76 —38

Hencex =2, y=2,z=2

4.13USEFUL METHOD FOR FINDING THE
VALUE OF DETERMINANT OF ORDER 4 OR
MORE

Let A be any non zero square matrix of order n Azlaij Jnonith n>1
Step 1: Choose an element in A such that a;; =1 or if nonexistent, a;; # 0

Step 2: Using ay; as a swivel, apply elementary row or column operations
to put 0’s in all the other positions in the column or row containing aj;

i.e. if we apply row operation then to put O in all the other position in the
column and similar for column operation
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Step 3: Expand the determinant by the column or row (according to our
selection of operation) containing aj;

Example 22: Find the determinant of a matrix A of order 4x 4

5 4 2 1
_|1 2 3 1 -2
Al = -5 -7 =3 9
1 -2 -1 4
5 4 2 1
Solution:|A| = _é 37 23 _g

1 -2 -1 4
Step 1: Choose an element a,; because a,; = 1

Step 2: Apply row operation and put 0’s in all the other positions in third
column

Apply R, > R, -2R,and R, - R, +3R,and R, > R, +R,

1 -2 0 5
2 3 1 =2
Al=1% 5 o 3
31 0 2

Step 3: Now expanding the determinant by the third column

1 -2 5
Al = (-1)?*3 |11 2 3
3 1 2

=—(4-18+5-30—3+4) =38

4.14DETERMINANTS AND VOLUME:

Let A is any square matrix

d117 412 din

a a a
A= |32 22 2n

anl an2 ann

Let t, = (811, dip, """ aln)
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t; = (az1,a22,° azp)

th = (@n1,@nz, " ann)

Then the determinant are related to the notions of area and volume
Let U be the parallelepiped determined by

U={a;t; +at, +-apt,:0<a;<1vi=12,..n}
When n = 2 then U is parallelogram
Let V denote the volume of U then
V = Absolute volume of determinant of A
Example 23: Lett, = (1,1,1)t, = (1,1,0)t; = (0,2,3)
Then find the volume of the parallelepiped in three dimension space
Solution: t; = (1,1,1)t, = (1,1,0)t; = (0,2,3)

So the volume is the absolute volume of

11 1
Al=|1 1 0/=13-0-13-0)+1(2-0)
0 2 3

=3-3+2 =2
Hence volume V = |2]| = 2
Example 24: Find the value of |A| where

1w w?
w w2 1 | Where w is the cube root of unity.
wi 1 w

A=

Solution: Cube root of unity in complex number system is solution of the
equationz® — 1 = 0, then the values of z satisfied the above equation is
called cube root of unity.
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Now z3 —1 =0, 73 =1+cos0+isin0=1

z3 = cos0+1isin0
"> cos and sin are periodic function

So cos(0) = cos(0 + 2km) and  sin(0) = sin(0 + 2km)

S0 z3 = cos(0 + 2km) +isin(0 + 2km) =  cos 2km + isin 2km

1 2kt 2Kt

Z= (cos(an) + i(sin 2k1T)) /3 = cosT + isinT
[cos@+isin g =e", (cos@+isin B)" =e™ or e = cosn@+isin nb]

Putk=0 then z=1

k =1 then Z:COS%ZHSin%T:a)

2 2
k =2 then z =cos (27;) +isin (27;) =w?®

Hence cube root of unity are wand »?.
Andalso 1+ @+ o® =0

Now the given determinant applying ¢, - ¢, +C, +C,

Then we get

l+o+0° o o 0 o o
A=l+o+0® ®° 1lor|A=0 o 1
l+o+0° 1 o 0 1 o

|Al =0

—a? ab ac

Example 25: Evaluate [ ab —b% bc

ac bc —c?

Solution: Let us denote the given determinant by det(A)
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—a®? ab ac
det(A)=|ab —b%? bc
ac bc —c?

Applying row transformation by using R, - R, +R, and R; - R, + R,

Then we get
—a? ab ac
det(A) = |ab—a? —-b%+4+ab bc+ac
ac—a?’ bc+ab —-c?+ac

Taking a, b, c are common from first, second, third columns respectively

Then we get
—a a a
det(A) =abclb—a —-b+a b+a
c—a c+a —c+a

Now applyingR, - R, —Rjand R, > R, — R,

—a a a
Then det(A) =a.b.c|b —-b b
c ¢ -—c

Taking common a, b, ¢ from first, second and third row respectively

-1 1 1
Then det(A) = a’b?c?|1 -1 1
1 1 -1

Expanding along first row

det(A) = 4a®b?c?

4.15 SUMMARY

In this unit we learned to find the value of determinant of any matrix,
which will help us in solving the linear equation, it will also be helpful to
understand the concept of eigen value and rank of matrix.
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4.16 GLOSSARY

1. Identical row or column: Any two row or column are same

2. Parallelepiped: A solid body of which each face is a
parallelogram,

3. Absolute: Free from imperfection.

4.17 SELF ASSESMENT QUESTIONS

2.17.1Multiple choice question:

]l m n p
1. The values of det A, where A = (© (t) 1‘1, ‘rl
O O 0O S
(@ Im () It
() Lm.np (d) ILtvs
2. The value of tshow that [ =4 3 | =
2 t—9
(@ 3,10 (b) 5,7
(c) 8,9 (d)1,2
3. If A= (aii)e*s such that a;; = 1 and a;; = 2 if i + j = 7 otherwise
zero then det of A is
(@ 3 (b) 9
(c) —27 (d) 27
4. Determinant of Nilpotent matrix will be
(@ A prime number (b) Multiple of
2
(c) Always 1 (d) None
5. Determinant of Skew symmetric matrix of order 3 is
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(@ 3 (b) 5
()1 (do
6. If A is any non singular square matrix f order 3, then determinant
of ad;(A) is
(@) |A] (b) A7
(c) |A]3 (d) None
1 1 1
7. IfA=|1 2 —3] then cofactor of element a; 5 is
2 -1 3
(@ Al (b) 1AI?
(c) |A]3 (d) None
8. If A is any Square matrix of order n and determinant of AT is
@ 1 (b) 0
(c) 4 (d) None
a b ¢
9. If A= [a? Db? c?|thendeterminant of A is
a3 b3 (3
(@) abc (b) a(b—c)
(c) abc(a—Db)(b—c) (d)abc(a —
b)(b—c)(c—a)
u -6 -1
10.  If| 2 —3u u-—3[=0thenthe value of U
-3 2u u+?2
(@ 1,2,-3 (b) 3,7,8
(c) 56,—-1 (d) -1,-2,3
ANSWERS:
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1. (d) 2. (3) 3. (c) 4. (d) 5. (d)

6. (b) 7. (b) 8. (a) 9. (d) 10. (a)

4.17.2Fill in the blanks:

Fill in the blanks “....... > So that the following statements are complete
and correct

1. Adissquare matrix of order nand |A®] = - ...
2. The value of determinant ............. When rows and columns are
interchanged
y+z X y
3. Zz=X Z X[#O0thenx+y+zis.......... and x,z are............
X+y y z
4, If A and B be two Square matrix of same order then |A.B| = - ...
5. Determinant of hermition matrix is always.............
6 If 4x — 3y = 15and 2x + 5y = 1 thenx =+ ...and y ... ...
7 A is idempotent matrix of order n and its determinant is
........ or.......
a®  3a? 32 1
; _|a® a?+2a 2a+1 1f;
8. If A'is non zero and|A| = 2 2241 a+2 1|78 also......
1 3 3 1
ANSWERS:
1. |A| 2. Does not 3. Non zero, 4.]|Al.|B|
change distinct
5. Real 6.3,1 7.1,0 8. Non zero
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4.20 TERMINAL QUESTIONS

4.20.1Short answer type questions:

ud 3u? 3u 1
2 2
1. Show thatif A = [u° u +2u 2u+ 1 1)yo0 determinant of
u 2u+1 u+2 1
1 3 3 1
Ais(u—1)°
1 yz x(y+72)
2. Evaluate |1 za y(z+a)
1 xy z(x+y)
1 1 1 1
X y zZ t _
3. Showthaty+z f+x t+x X+y—0
t X y Z
4, Show that |adjA| = |A|™~1, where n is a order of matrix A
1 2 3 4
5 6 0 0
5. Evaluate 2 8 0 0
9 8 7 5
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77 99 55
6. Evaluate |10 20 125
87 119 180
a b c -X a -p
7. If D;=|x y z[ and D,=|y —-b q [ then show that
p qr Z —C T
D1=D2
ANWERS:2.0

4.20.2Long answer type questions:

1. Show that at least one real number x, show that det A is zero where
1+x* 7 11
A= < 3x  2x 4 >
8x 17 13
2. Solve the following system of linear equation by Cramer’s rule
2x—y+3z=28
—2x+2y+z=4
3x+y—4z=0
3. Solve the following system of linear equation by Cramer’s rule
Xx+y+z=9

2x + 5y + 7z = 52

2x+y—z=0
4. Solve the following system of linear equation by Cramer’s rule
X+y+4z=6

3x+2y—22=9

5x+y+2z=13
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5. Find the adjoint of the matrixA=|-2 1 1

4 -5 2

-1 -2 3]

6. Show that the determinant of any matrix A, whose first row is the
sum of other row is zero.

4 5 6 a
5 6 7 bl_, . _ 2
7. Show that 6 7 8 o~ (a—2b+¢)
a b c 0
1+ x 1 1

8. Prove that

1 1 1 1+u
Lyl
y z u
ANSWERS:
2.x=2,y=2,2=2 3.x=1y=3,z=5
4.X=2,y=2,z=1 7 —-11 -5
/2 5.[8 ~14 -5
-6 —-13 -5
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UNIT 5: APPLICATION OF MATRICES

CONTENTS:

5.1 Introduction

5.2  Objectives

5.3 Rank of matrix

5.4  Elementary transformation

5.5 Echelon form of a matrix

5.6  Reduction to normal form

5.7  Vector space of n-tuples

5.8 System of linear equation

5.9 Summary

5.10 Glossary

5.11 Self assessment questions
5111 Multiple choice question
5112 Fill in the blanks

5.12 Reference

5.13 Suggested readings

5.14 Self assesment questions
5.14.1 Short answer type questions
5.14.2 Long answer type questions

5.2 INTRODUCTION

System of linear Equations (Homogeneous and Non
Homogeneous) plays a very important role in subject of mathematics.
Many problems in mathematics reduce to finding the solution of linear
Equation, all our system of linear Equation involve scalar may come from
the number system

In this unit we will focus on the solution of system of linear
equation, but the rank of matrix plays an important role to solve system of
linear equation. So first of all we will discuss Rank of matrix.
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5.1 OBJECTIVES

After reading this unit you will be able to
e Understand rank of a matrix.
e Use elementary transformation of matrices.
e Transform of matrix in Echelon form.
e Reduce a matrix in normal form.
e Understand linear dependence and linear independence of vectors.
e Solve homogenous linear equations.
e Solve non homogeneous linear equation.

5.3 RANK OF A MATRIX

If A is any arbitrary matrix of order mxn then the determinant of
Square sub matrix of the matrix is known as a minor of the matrix A, if the
Sub matrix of order k is taken then its determinant is known as k-rowed
minor of a matrix of ordermxn, and the number of different option we
have

rrlcm—k ) nCn—k

And rank of A is non-negative integer r if there exist at least one non
singular sub matrix of the given matrix of order r and all the (r + 1) rowed
minor are Zero “0”.

i.e. the rank of matrix is the order of highest order non singular Sub square
matrix of the given matrix, and Rank of A is denoted by p(A)

Note: (1) A is any matrix of order mxn then the Rank of A is less than or
equal to minimum of mand ni.e. if A= (aij )mxn then p(A) < min{ m,n}

(2) Rank of every non singular matrix of order n is equal to n, because
every matrix is itself a sub matrix of given matrix that is

If A=(a;) and det(A) =0 then p(A)=n

mx

(3) If A'is Singular matrix then Rank of A is less than order of matrix A
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ie., if A:(aij) and det(A) =0 then p(A)<n

nx

(4) If A'is Null matrix then Rank of A is Zero.

2 2 3

Example 1: Find the Rank of matrix A =2 1 1]

0 1 2
2 2 3
Solution: A=1|2 1 1
0 1 2

Highest possible order of Sub matrix is 3 and total number of sub matrix
of order 3 is 3¢,.3¢, = 1. So itis A itself

Now |A| =2(2—-1)—2(4—-0)+3(2-0)

=2-8+6

=0

So Rank of A is not equal to 3
Now again total number of sub matrices of order 2 is 3¢,.3¢, =9
But we have a sub matrix of order 2 whose determinant is non zero
= |§ il =0
So Rank of A =2

1 o o
Example 2: Find the Rank of matrix A=|w 1 *|where wis cube

1 o o°

root of unity

1
Solution: A=|w
1

SIS
SIS

We have |A| =1(0* - 0°) — (@’ — 0*) + 0* (0 -1)

Department of Mathematics
Uttarakhand Open University Page 141



Algebra, Matrices and Vector Analysis MT(N) 121

=a)2—a)3—a)4+a)3+a)4—co2

But there is at least one minor of order 2 of the matrix A namely

w 1‘
which is not equal to zero

Hence Rank of A'is 2

54 ELEMENTARY TRANSFORMATION

The transformation over a matrix which does not affect rank of a matrix is
called elementary transformation over the matrix. There are 3 elementary
row transformation and corresponding 3 elementary column
transformation.

If we denote i row by R; and i*® column by C;

Then elementary row transformations are

(1) R; & R, (The interchanging of any two rows)

(2) Ry = R, + kR, where k is non zero constant

(3) R, — kR, where k is non zero constant

And elementary columns transformations are

(1) C, & C;

(2) C, > C, +kC,;

(3) C, — KkC, where k is any non zero constant

Elementary Matrix: A matrix obtained by performing a single

elementary transformation over identity matrix is called elementary
matrix.
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1 0 O

If A=10 0 1] interchange second and third row we get an Identity
0 1 0

matrix

So A'is an example of elementary matrix.

5.5 ECHELON FORM OF A MATRIX

If A is any matrix then by applying elementary row transformation over
the matrix in such a way

(1) All zero row of the matrix are at the bottom
(2) Leading non- zero element in each row is 1

(3) Numbers of zero before first non-zero element in successive row is
more

Some authors do not require (2) condition

Note: (1) The Rank of matrix is equal to the Rank of matrix in Echelon
form.

(2) Total number of non-zero rows and total number of non-zero columns
decide the Rank of matrix in Echelon form

o(A) =min{ non zero rows, non zero columns}

1 2 3
Example 3: Find the Rank of matrix [4 1 2]
5 3 5
1 2 3
Solution: LetA=1|4 1 2
5 3 5
Applying R, >R, 4R,

R, > R, —5R,
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1 2 3

A~0 -7 -10
0 -7 -10
(1 2 3]

A~|0 -7 10 by R,—>R,—R,
0 0 0

Now E-transformation do not change the Rank of matrix and we
2
-7
this Echelon matrix is 2, hence rank of A'is 2.

see that 2 x 2sub matrix [8 ] is non singular, therefore the rank of

In other words total number of non zero rows in Echelon matrix is
2, and total number of non zero columns is 3.

So Rank of A = minimum{2, 3} = 2

Example 4: Find the Rank of matrix

WNR =
N AW N
B WN -
N AN

Solution: Given matrix

Performing the elementary operations
R, >R, —-R,
R, &> R; - 2R,

R, >R, 3R,

coco R
R OR N
R Rk e
coco N

Again performing the operation R, > R, — R,
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coco R
COoOR N
R S SRR
coo N

The last equivalent matrix is in Echelon form and number of Non Zero
rows in this matrix is 3 and number of Non Zero columns in this matrix is
4,

So Rank A = min{4,3} = 3
Hence Rank A =3

Row Rank: If we apply elementary row transformation only on A, where
A is a matrix of order nxn,then maximum number of Non zero row r
which can be always obtain or number of linearly independent row is
called row rank of the matrix, and number of dependent row (n — r) in the
matrix A is called row Nullity, and sum of row rank and row nullity is
equal to total number of rows in given matrix.

Column Rank: Number of independent columns in matrix is known as
column rank of the matrix and total number of dependent column are
known as column Nullity of matrix and sum of column rank and column
nullity is equal to total number of column in the matrix.

Example 5: Find the possible values of row rank, column rank, row
nullity and column nullity of the matrix

A=

1 5 7 6 8

0 2 3 4 5

0 0 7 5 9

Solution: The given matrix is already Echelon form, hence
Row rank is 3

So row nullity isequalto 3 -3 =0

Since there are 3 linearly independent columns so column rank is 3 and
column nullity is5 —3 = 2

Example 6: Find the row rank, column nullity, column rank and row
nullity of the matrix
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1 5 11 6
A=13 7 2 1]
5 17 24 13
1 5 11 6
Solution:A=|3 7 2 1]
5 17 24 13

Since R; = R, + 2R,

So R; is linearly dependent row and other rows are linearly independent,
Hence row rankis 3 —1 =2

And row nullityis 3—2=1

Similarly column rank is 2

And column nullity is 4 —2 = 2

5.6. REDUCTION TO NORMAL FORM

Every matrix of order mxn of rank r can be reduced to normal form

(IOr g) by finite elementary transformation, where 1. is the unit matrix of

order r

Proof: Let A= (aij) matrix with rank rthen two cases are possible

mx

00 .. 0

Case 1. If A is Null matrix then A is of the form A=| . _ = )

mxn

Rank of Ais 0
Then we have nothing to prove.
Case 2. If A is not Null matrix so at least one element in A is non-zero.

= saya;; # 0
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= ith

rowisnonzero
Interchanging the ith row with first row and j™ column with first column.
Then we obtain another matrix B, whose leading element is non zero

let a; =a (a=0)
Then multiplying by 1 in first row of matrix B.
a

lb_:[l%% by,
a'’ "aa

Let C be any matrix whose first row is 1b1 SO
a

C=]Cy Cy Cuz oo Cyp™

Now applying row and column transformation by suitable multipliers and
subtracting by suitable rows and column such that which all element of
first row and first column is zero except the leading element so new matrix
D is of the form

[(1)00...0

519
T T

0

S —

Where T is a matrix of order (m—1)x(n—1)

If T is Non-zero matrix then again apply the same process and if T is null
matrix then we get a required result.

If rank of T = r, then continuing this process we shall finally obtain a
matrix is of the form

[5 ol
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Hence every matrix of order mxnof rank r can be reduced into Normal
form

1 -1 2
Example 7: If A=|1 2 1] find the rank of matrix and reduce to
2 1 3
normal form
1 -1 2
Solution:A =1 2 1]
2 1 3

Using R, > R, —Rand R; - R, —2R,

1 -1 2
A~|1 3 -1
0 3 -1

AgainR, > R; —R,

A~f1 3 -1

0 0 O

1 -1 2]

Now using Column transformation
C,—>C,+C and C, »C,-2C,

10 O
A~/0 3 -3
0 0 O

C, »>C,+C,

>

!
o o B
o w o
o o o

Now C, —>%
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0
5 o

Hence Rank of A'is 2.

Theorem 1: The rank of a product of two matrices cannot exceed the rank
of matrix.

Proof: let A and B be two matrix of order mxn and nx p respectively

Let r; and r, be the rank of A and B respectively and let r be the Rank of
(A.B)

Then to prove r < r;andr,

Since Az(aij )mxn and Rank (A) =
I, 0
So A~ G
0 0
B=(b,) andRank (B)= g~ ©
={b;) ., and Ran (B)=r, so 0 0

Let AB=(C;)

mxp

I o][1, ©
AB= 1 2
{o OMO o}

h

, : 0
Since matrix { 0 0 has only r; non-zero rows and p —r, zero column

So AB cannot have more than r; non-zero row
So RankAB <1y
So Rank(AB) < RankoftheprefactorA

Again since Rank(AB) = Rank(AB)T = Rank(BTAT)
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Rank (AB)< Rank of B" = Rank of B i.e. Rank (AB) <r,

Rank(AB) < RankofBT = RankofB

Hence Rank (AB) < r,and Rank (AB) <r,

5.7 VECTOR SPACE OF N-TUPLES

Any ordered n-tuple of number is called vector of n-tuples. For example
X1, X3, ... Xy D€ @any n-number then the ordered n-tuple Y = (x4, X3, ... X,) iS
called a vector of n tuples.

(1) Equality of two Vectors:Let S=(s,s,,.,S,) and
T =(t,,t,,...,t,) are said to be equal ifand only if m = nand s; = t; ¥ i

For example if S = {1, 2,3}T = {2, 3, 4}thenSandTarenotequal

X =(,2,4)and Y =(1,2,4) then X and Y are equal vector.

(2) Addition and Subtraction of two vectors:if S=
{s1,89, ...sptandT = {t;,t,, ...t}

Then ST =(s, £t,,s, £t,,...,S, £t,)
For example S =(1,2,3)and T =(2,3,4)
Then S+T =(1+2,2+3,3+4)=(3,5,7)

(3) Multiplication of a Vector by any Scalar:If K be any
scalar and S =(s,,s,,...,S,) be

n-vector then KS =(Ks,, Ks,,...,Ks,)

(4) Linear dependence and linear independence of
vectors:
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Q) Linearly dependent set of vectors:

Definition: Let X = {x4, x5, ... x,}be any set of vector and ¢4, c, ... chare
any scalar and if ¢;x; + c;x, + -+ + ¢, X, = 0 thenallc;are non zero then
we can say X is linearly dependent set of vector.

For example: -

LetX ={(1,2,3),(1,2,4),(2,4,7)}

Then c;(1,2,3) + c,(1,2,4) + c3(2,4,7) =0

Wherec; = 1,¢c, = 1,¢c3 = -1

Since all c;are non zero so X is the set of linearly dependent vectors.
(i) Linearly independent set of vectors:

Definition: Let X = {x4,x,,...x,} be the set of n vector is said to be
linearly independent

If c;x;1 +cpxy + -+ cyX, =0 where cjare Scalar then ¢ = ¢, =
cee Cn frd 0

For example:
X =1{(1,0,0),(0,1,0),(0,0,1)}
Letc;, c,, cgareScalarand cyx; + c;X, +c3%X3 =0
c1(1,0,0) +¢c,(0,1,0) + c5(0,0,1) = (0,0,0)
c,=0 ¢,=0, c3=0
Hence X is linearly independent set of vectors.

Example 8: Show that the set containing a zero vector is linearly
dependent.

Solution: Let S ={x, X,,..., X, } be an n-vector whose term is zero.
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Let cq4,cz,...,cy are any Scalar and c;X, +C,X, +...+C X, =0for any
value of ¢;

So ¢; is not necessarily zero

Hence a set containing zero vector is linearly dependent.

5.8 SYSTEM OF LINEAR EQUATION

There are two types of linear equations. One is Homogeneous linear
equation and other is Non Homogeneous linear Equation, we shall first
discuss the Homogeneous system of equation and its solution.

(1) Homogeneous linear equation: A linear equation in
unknowns x4, X,,..X, IS an equation that can be put in the
standard form

a;Xq taxxy; +-+apx, =0

A system of linear Homogeneous Equation is a list of linear equation with
same unknown. Put into standard form

a11Xq t Xy + .t aXx, =0
a21X1 + 322X2 + ...+ a2an = O

AmiX1 T aAmeXy + ot ampX, =0

The coefficient matrix is

a11 a'2 a1n
a a Lo a
A — 21 22 2n
A Qnz o Ay mxn

And the vector of unknowns is X = [xq,Xp,..X,]" and 0 =
[0,0,0,...0]T
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Where A, X, O are mxn,nx1,mx1matrices respectively. So the general
form of system of Homogeneous equation is

AX=0

Since if X=1(0,0,0,..0)then x; =0=x, =x3 = =xqare the
solution of Equation (1) and it is called trivial solution.

If x+ 0 and x4, x, are two solutions of equation (1) then their linear
combination

c1X1 + Cyx,iS also solution of equation (1) where c;and c;are any
arbitrary constant

We have AX =0
Put X = ¢;x; + cx,then
A(cixq + ¢c5X,) = Acyxy + AcyX,
= AXy + CAXy Ax; =0, Ax, =0
=¢1.0+¢,.0
=0
Hence c;x; + c,X,is also a solution of equation (1)

Some important conclusion about the behavior of the solution of System
of Homogeneous linear Equation

a11X1 taXy + ot agpXy = 0
Let 321%1 tagX+ tamp=0( (1)

dm1X1 + dAm2Xo + ...+ AmnXn = 0

Are the systems of Homogeneous Equation, where the coefficient matrix

a11 a'2 aln
a a a
A — 21 22 2n
A Ay e Ay mxn
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And X = [Xq,Xp, .. X,]T

Since Rank of A is less than or equal to minimum of m and n

i.e. p(A) <min{ m,n}

Let rank of A = r then two possibilities are there either r=nor r<n

Case 1: If r =n then number of linearly independent solution is n —

r=n—n=20

So in this case only Zero solution is a solution of equation (1)

ie. X =1(0,0,..0)T

Case2:If r<n

Then n —r linearly independent solution and the linear combination of
any two solution is again a solution, so in this case Equation (1) has

infinite many solutions.

System of Homogeneous linear Equation

Infinite Solution

If

Rank of A=Number of
Unknowns

Example 9: Solve the following System of Equation

X+2y+z=0
Xx+y+z=0
x+y+3z=0

Unique Solution

I.f

Rank of A = Number of
Unknowns

Solution: The given System of Equation can be written in the general

form
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AX=0

Where A=

1 2 1
11 1 AND X=[XY,Z]T
1 1 3

Now we are interested to find out the Rank of matrix

1 2 1

A=|1 1 1

1 1 3

ApplyingR, > R, —R;
R, >R, —R,

1 2 1
Then A~]10 -1 0
o -1 2

Again R, >R, —R,

1 2 1
A~10 -1 0
0O 0 2

Above is the Echelon form of the coefficient matrix A, we have rank of A
is equal to minimum of number of non zero row and column.

So Rank of A is 3 and it is equal to Number of unknown
Hence, there is only one solution.

X =1(0,0,0) ie. x=0, y=0, z = 0, which is trivial
solution.

Example 10: Solve completely the System of Equation
Xx+2y+3z2=0, x+y+z=0, 2x+3y+4z=0

Solution: The given System of Equation can be written as the general
form AX=0
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1 2 3 0
Where A=[1 1 1}, X=[XY,7Z]", 0=10
2 3 4 0

We shall reduce the matrix A into Echelon form by using Elementary row
transformation

Now using R, »> R, — R,
R, > R; —3R,

We have A X = 0 reduced into
1 2 31[X 0
0 -1 -=-2{|Y|l=]0
0 -1 =211z 0
Performing R, - R, —R,, we have
0
0
0

1 2 37[X
o -1 2l
0 0 011Z

The coefficient matrix being of rank 2, which is less than number of
unknowns. Hence the given System of linear Equation has infinite solution

And solution is

Xx+2y+3z2=0, -y—2z2=0
Thus y = —2z, putz = c (constant) then
y = —2c
X =—2y—3z
= —-2(—-2c¢) — 3c

x=4c—3c=c
Hence x = ¢, y = —2c¢, z = c where c is any arbitrary constant.
Example 11: Solve the System of linear Equation

X+y+z=0

Department of Mathematics
Uttarakhand Open University Page 156



Algebra, Matrices and Vector Analysis MT(N) 121

x+2y+z=0
2Xx+y+22=0
2x+3y+22=0

Solution: The System of linear Equation can be written as AX = 0 where

X=[xy,z]" 0=

NN R
W RN R
N NR R
oo o

We shall interested first to find the Rank of Coefficient matrix A, by using
E-row transformation

R, >R, -R
R, >R, —2R,
R, >R, 2R,
1 1 1
We have A~ 8 _11 8
0 1 0
Again R, >R, +R,
R,»>R,—R,
1 11
A~10 0 0
0 0 O

Above is the Echelon form of the Coefficient matrix A, we have Rank f A
is 2 which is less than Number of unknown. Hence given System is of
Equation has infinite many solutions.

Therefore,
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-]

= X+y+z=0and y=0

S OO -
SO K
[l e Neliy o
oS OO O

x+z=0 >X=-—Z
Put z = cthenx = —c

Hence solution Is
x=—¢, z=¢c¢, y=0wherecisanyarbitaryconstant

Example 12: Find the solution of System of linear Equation
3ty +4t, —t; —6t, =0
2t; +3t, + 2t —3t, =0
2t +t, — 14t —9t, =0
ty +3t, +13t3+3t, =0

Solution: The given System of Equation can be written as A X = 0 where

3 4 -1 -6 0
12 3 2 =3 B T o
A=, 7 14 Zo X=ltwtztsts]and0 = |,
1 3 13 3 0

Now first to find out the rank of matrix by using elementary row
transformation.

Applying R; & R,weget

1 3 13 3

2 3 2 =3
A 2 1 -14 -9

3 4 -1 -6

Again by R, >R, -2R,

R, > R, — 2R,
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R, >R, —3R3

1 3 13 3
0 -3 -24 -9

Then A~
2 -5 —-40 -15
0 -5 —-40 -15
. 1 1 1
Agaln Rz _)_éRl’ R3 _)_g R3, R4 —)—g R4
1 3 13 3
_10 1 8 3
Then A 0 1 8 3
0 1 8 3
Again R; <R3 —R;
R4_ «— R4 - R2
1 3 13 3
_|0 1 8 3
Then A 0 0 0 0
0O 0 O 0

In the above Echelon form of the coefficient matrix, we have rank of A is
2 which is less than number of unknowns, hence the given system of
equation has infinite solution. And the solution is:

tl + 3t2 + 13t3 + 3t4 = O}
t2+8t3+3t4:0

Solve the equation (1) by second equation,

1 8
3t4 = _tz - 8t3 = t4_ = —§t2 _§t3

Put t2 = klandtg = kzthen

1 8
t4 = _§k1 _§k2

From first Equation of (1) t; = —3t, — 13t; — 3t,
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— 3k, — 13k, — 3 (—lkl - §k2)
3 3
= —3k, — 13k, + k; + 8k,
= —2k, — 5k,
Hence solution is

1 8
ty = _Zkl - 5k2, t; = kl; 3 = kz, ty = —§k1 —§k2

Where k; and k, are any arbitrary constant.

Note:The System of Equation AX =Owhere A is coefficient matrix, If
A is square matrix of order ‘n’ then the solution of AX =O depend on the
determinant of A. If determinant of A is zero then AX =0 has infinite
solutions and if determinant of A is non zero then AX =Ohas trivial
solution (Zero solution).

Example 13: Find the condition of two equations:
ax+by=0
cx+dy=0

has infinite solution or zero solution.

Solution: Given equationsare ax+by =0
cx+dy=0

The system of linear homogeneous equations can be written as AX =0
_[a b _ T 10
Where A = [C 4’ X =[x,y]"andO = [0]

Since A is Square matrix of order 2, so its values of determinant decide
the solution of system of given linear Equation

a b
‘:a.d—b.c
d

A=

c

Department of Mathematics
Uttarakhand Open University Page 160



Algebra, Matrices and Vector Analysis MT(N) 121

So if ad —bc =0 then the solution of System of linear Equation is
infinite, and if ad — bc # 0 then the solution of system of linear equation
is unique (zero) solution,

(i)  System of linear Non Homogeneous Equation:A system
of linear equation is a list of linear equations of the form:

dq11Xq + d12Xo + ...+ d1pnXp = b1

321X1 + 322X2 + ...+ aZan = b2

dn1Xq + dp2Xo + ...+ ApnXpn = bn

These equation are non homogeneous equations if all coefficients on the
right hand side are not zero

i.e. b, = 0at least for one i.

(@) Linear Homogeneous equation in one unknown: Consider the
equation kx = c then

(1) Ifk # 0 thenx = = is a unique solution of kx = ¢

(2) Ifk =0 andc # 0 thenkx = c has no solution.

(3) If k=0 andc =0 thenkx =c has infinite solution because
v X 0.x=0

(b) Linear Homogeneous equation in two unknown: Consider a
System of two equations in two unknown x and y

ax + by = ¢4 _
cx + dy = c,L, e s

where a, b, ¢, d are Non Zero, then we are interested to discuss following
three cases:
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3 bpya_b amgya_b_a
De#3@T=3#,03=37

C2
Casel:lf%ig i.e. ad—bc#0

Hence two lines intersect in one pair so the system of linear Equation has
unique solution

A
Y
Ly
/o X
L
Unique Solution
a b c . . :
Case 2: If — = 4 # — then two lines are parallel and not intersect in XY
C C,

plane, so in this System of equation has no solution
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v

o) L, X
Lp
No Solution
Case 3: If %z g = 2—1 in this case two lines ax + by = c¢; andcx + dy =
2

c,are coincide; hence we get a infinite solutions.

2y

L; and L,

Infinite Solution

(ili)  Linear Homogeneous Equation in n-unknowns:Consider
the system of Equations:

dq11X1 + dq12Xo + ...+ d1nXp = b1

do1Xq + do2Xo + ...+ dopnXp = b2

Am1X1 +F apeXy + o+ appXy = by
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Be a System of m Non Homogeneous equation into n-unknown x; X, ... Xp

The general form of the above equationis A X = B where

ai aio . dqp bl
.o a b
A=|[31 a2 gy, X = [Xq,Xp, o X7 and B= :2
a a a
m1l m2 e mn bm

Where A is called Coefficient matrix and

dq1 dqp «e Aqp b1
[A:B]=[31 3z - 2 by | jscalled the augmented matrix
ami amz .. Amn ° bm

Theorem: The system of Non Homogeneous linear Equation AX = B has
solution if and only if the Rank of Coefficient matrix and augmented
matrix are same.

PFOOf Let a11X1 + 312X2 + ...+ alan = b1

do1Xq + dorXo + ...+ donXp = b2

Am1X1 + ameXy + o+ amnXy = by
Be a System of Non Homogeneous Equation in n-unknowns x; X, ... Xy

Let c; c,, ...cy are the column vectors of the coefficient matrix A. Then
AX = B isequivalent to

Xl bl
X b
[c,.cprmnc, ]| 2 |=| 2 |=B
X3 b3
X, b4
6. C1X; +CoXo+ wCpXp =B o (1)

Let Rank of A=r, and rank of[A:B]=r,. Since Rank of A= r; so
r;column are linearly independent and n—r; column are linear
combination of these r;columns. So, we can suppose without loss of
generality first r; columns are linearly independent.
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The condition of Necessary: If the system of equation has solution then
there must exist

n-scalarc,, c,, ...c, such that
C1C1 + C2C2 + - + CnCn =B (2)

Since Cry1, Cryp, ...Cy IS a linear combination of first r; column vectors
from (2) B is also a linear combination of first r; columns.

So augmented matrix [A : B] has(n + 1 —r;) column which are linearly
dependent, but Rank of [A:B] =r, so the augmented matrix has r,
linearly independent column, but B is linear combination of first r,
column

Hence Rank [A:B] =r, must be equal to r; i. e. Rank [A:B] =
Rank[A]

The condition of Sufficient: Let matrix A and augmented matrix [A : B]
have same rank then maximum number of independent column of matrix
[A : B] isequal to its rank say r

Therefore the column B should be also expressed as the linear
combination of the first r-column of matrix[A : B] already from a linearly
independent set.

Thus there exist r scalar t4, t,, ... t,. such that

t1C1 + t2C2 + -+ trCr =B (3)
OI’ t1C1 + tzCz + -+ trCr + 0Cr+1 + OCI«+2 + OCI« = B
...................... @)

From Equation (1) and (4)
X1 =14

X2:t2
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Xy =t

Xrp1 = Xppz ==X =0

Hence AX = B has a solution.

System of Non Homogeneous linear equation

Rank A #= Rank [A : B]

Rank A= Rank [4 : B]

v

Inconsistence
(No Solution)

y

Consistence
(There exist solution)

!

\4

Rank A= Rank [A: B] =

Number of unknown

Rank A= Rank [A : B] #
Number of unknowns

I

A 4

Unique Non Zero

Infinite many Solutions

Example 14: Solve the Equation x+y+z=1

2x+y+3=2
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3x+2y+4z=4

Solution: This given System of Non Homogeneous linear Equation can be
written as AX = B

1 1 1 1
WhereA=12 1 3], X = [x,y,z]TandB = H
3 2 4 4

11 1 : 1

The augmented matrix [A: B] = [2 1 3 : 2

3 2 4 : 4

Now reduce the augmented matrix into Echelon form by applying E — row
transformation using

R, >R, -2R,
R, - R, —3R,
1 1 1 : 1
We have [A:B] ~ [O -1 1 : O]
0o -1 1 : 1

Again using R; - R; —3R,

1 1 1:1
[A:B]~|0 -1 1 : 0
00 0°:1

Above is the Echelon form of the matrix [A : B] and rank of [A : B] is 3
but Rank A is 2

Since Rank A =Rank[A:B], therefore the given Equations are
inconsistence i.e. the given system of Equation has no solution.

Example 15: Solve the System of linear equation x+y+z =2
X+2y+3z=2

2x+y+z=1
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Solution: The given System of equation can be written as single matrix
equation AX = B

1 1 1 2
Where A =1 2 3], X = [x,y,z]TandB = [2]
2 1 1 1
1 1 1 : 2
The augmented matrix [A: B] = [1 2 3 : 2
2 1 1 ¢+ 1

Now reduce the augmented matrix into Echelon form by applying E-row
transformation only

R, >R, —R,
R, > R, —2R,
1 1 1 2
Wehave [A:B]~ [O 1 2 0]
0 -1 -1 -3

Again applying R, > R, +R,

111 : 2
[A:B]~[O 1 2 : 0
00 1 : -3

Above augmented matrix [A : B] is the Echelon form,

SO Rank of
[A : B] = total number of Non Zero rows in Echelon form = 3

by the same elementary E-row transformation we get

1 1 1
01 2

0 0 1

A~

Rank of
A = total number of Non Zero row in Ehelon form of the matrix A

so, rank of A=3

Here the number of unknowns is also 3 which is x, y, z
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Since Rank A = Rank [A:B]=Number of unknowns

Therefore the given Equations are consistence and have unique solution.

We see that the given System of Equation is equivalent to the matrix form

b 3B [2)

So the System of Equation which is Equivalent to matrix equation

Xxt+y+z=2
y+2z=0
z=-3
wy+2z2=0, y=—2z2=6, Xx=2-y—z, X

Hence x=—1, y=6, z= —3 are the solution of given system of
equation.

Example 16: Show that the Equation 2x+3y+z=1
X+y+z=2
3x+4y+2z=3
are consistent and find the solution.

Solution: The given System of Equation can be writtenas AX =B

2 3 1 1
WhereA=|1 1 1], X = [x,y,z]TandB = H
3 4 2 3

2 3 1 + 1

The augmented matrix [A: B] = [1 1 1 : 2

34 2 : 3

Now reduce the augmented matrix into Echelon form by applying E-row
transformation only
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applying R, & R,
1 1 1 2
[A:B] ~ [2 3 1 1]
3 4 2 3

Again applying R, >R, -2R,

R, >R, —3R,
11 1 2
Then [A:B]~ [0 1 -1 : —3]
01 -1 : -3
11 1 2
[A:B]~|0 1 -1 : -3] by R,—>R,-2R,
00 0 : O

Above augmented matrix [A : B] is in the Echelon form.

So Rank|[A : B] = total numbers of Non Zero rows in Echelon form = 2

11 1
By same E — row transformation in Athenwe get A~|0 1 -1
00 O

So RankA = total numbers of non zero rows in Echelon form A = 2
Since RankA = Rank|[A : B], therefore the given equation are consistent.

Since number of unknowns in given System of Equation is 3 which is
greater than Rank A, therefore the given System of Equation will have
infinite many solutions.

The matrix equation of given System of Equation is:
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This matrix is equivalenttox +y +z = 2
y—z=-—3
vy=-3+z
x=2—-y—z=2—-(-3+2)—z
=2+4+3—-2z=5-2z
Taking z = c(constant) then we get
y=c—3
x=5—-2c
Hence the solution of the given System of Equation is:
Xx=5-—2c y=c—3 Z = C.

Example 17: If A be a mxnmatrix of rank n with real entries then show
that if System AX = Bhas solution then it is unique.

Solution: Let AX = Bhas solution then it is possible only if Rank of A is
equal to rank of augmented matrix [A : B]

We know that if A= (aij) _then

mx

Rank of A < min{m, n} and given Rank of A is equal to n so m must be
greater than n

Since RankA = Rankof[A : B] = n = Numberofunknowns
So solution is unique.

Example 18: Investigate for what condition of Aand u the given System of
equation

Xxt+y+2z=2
Xx+2y+z=3

2X+2Y+A2=pu
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(1) No solution  (2) An infinite solution (3) Unigue solution

Solution: The matrix form of given System of linear Equation is AX = B

1 1 2 2
WhereA=1|1 2 1{, X = [xy,z]TandB = |3
2 2 A 1

1 1 2 : 2
The augmented matrix [A: B] = [1 2 1 : 3]
2 2 A i

We shall first to reduce the matrix [A : B]into Echelon form by applying
elementary transformation only

applying R, >R, —R,
R, > R, - 2R,
1 1 2 : 2
[A:B]~|0 1 -1 : 1
0 0 A—4 : p—4
Above is the Echelon form of the augmented matrix [A : B]
Case 1: If A # 4then Rank of [A:B] = Number of unknowns = 3= Rank A
So in this case the given System of Equation has unique solution.
Case 2: If A =4 butp # 4 then
RankofA # Rankof[A : B]
So in this case System of Equation is Inconsistent hence no solution
Case3: If A= p =4 then
RankofA = Rankof[A : B]butnotequaltonumberofunknowns

Hence in this case System of equation have infinite solution.

3.9 SUMMARY
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In this unit we learned to how to find rank of any matrix, after that we
learned to solve the linear equation with the help of rank of matrix, in
further classes we will be able to understand linearly dependent and
independent sets and solutions very well with the help of rank of matrix

3.10 GLOSSARY

1. Inconsistent solution:If a system has no solution

2. Augmented matrix: A matrix obtained by appending the columns
of given marix

3. Unknown: An unknown is variable in an equation which has to
solved for

3.11 SELF ASSESMENT QUESTIONS

3.11.1Multiple choice questions:

1. The Rank of Null matrix of order n is
(@ 1 (b) 0
(c) n—-1 (d) n
2. Which of the following matrix is elementary?
1 0 O 1 0 O
@ [0 0 5] (b) [5 1 O]
0 1 0 0 0 1
1 0 O
() [O 1 0] (d) none of these
5 5 1
1 2 5 7
3. Therank of matrixA=|(3 6 11 9 ] is
6 1 26 30
(@ 1 (b) 2
(0 O (d 3
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4. If A is an Square matrix of order 5 and Rank 3 then Rank of
adj(A) is
(@ O (b) 3
(c) 4 (d) 5
k1 2
5. If the Nullity of the matrix [1 -1 —2] iIs 1 then the value of
1 1 4
kis
(@ 0 (b) 1
(c -1 (d) 2
6. Let A= (a;;) be a n*n matrix such that a;; =1 ¥i,j then
Nullity of A'is
@ 1 (b) 2
) n—-1 (d) n
7. If x+y=a, x+ by =3 then the System f Equation has unique
solution if

(@ a€elrandb =1(b) Forallabuth #1

(c) Forallaandb (d)  Always unique
solution
8. Let A be a m *n matrix of rank n with real entries, choose the

correct statement

(@) AX = BhassolutionforanyB  (b) AX = 0 does not have a
solution

(c) If AX = B hasasolution then it is unique (d) None of these

9. Let A and B are two matrix such that
BA + B2 = [ — BA%wherelisthen = nidentity matrix then

(@) BX = 0 haszerosolution (b) AX =0 has
always zero solution
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(c) Rankof B =1 (d) RankofA=n

4 8 4
10.  Which of the following matrix has same row space at<3 6 1)
2 40

12 0 11 0
(a) (0 0 1) (b) (o 0 1)
0 1 0 11 0
(<) (0 0 1) () (0 1 0)
ANSWERS:
1. (b) 2. () 3. (b) 4. (2) 5. (c)
6. (c) 7. (b) 8. (c) 9.(a) 10. ()

3.11.2 Fill in the Blanks:
1. No Skew Symmetric matrix of Rank ..............

2. RankA+ RankB>............

3. A is invertible idempotent matrix then Rank of A ...........

4. If A is any matrix of order m*n and m > nthen AX = 0 has
.......... solution

5. If A is any invertible matrix of order nthen AX =Bhas ............
solution

ANSWERS:

1.1 2.Rank (A+ B) 3.0Order of matrix 4.No 5.Unique
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3.13 SUGGESTED READINGS

1. Matrices .A.R.Vasishtha &A.K.Vasishtha :Krishna Parakashan
Media

2. Schaum’s out line ( Linear Algebra)

3.14 TERMINAL QUESTIONS

3.14.1Short answer type questions:

1. Find the values of A4, the Equationx+y+z =1, x4+ 2y+4z=
A, x+ 4y + 10z = 2%, has unique solution

2. Show that the Equations x+y+z=1 x+2y+3z=
5 2x+44y+ 4z = 7 are not consistent

ANSWERS:1.No values of A such that the system of equation has unique
solution

3.14.1Long answer type questions:
1 1 1

1. Find the Rank of matrix A = |3 1 —2]
2 4

2. Find the Rank of matrix A = [—-1 2 1 4
| 3 1 —4 0
3. Examine if the System of Equations

Xx+y+4z =6, x+2y=17, 2x+3y+4z=
13 is consistent?

2 —1 38]

Find the solution if it is consistent

ANSWERS: 3.2 4.3
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UNIT 6: EIGEN VALUES AND EIGEN
VECTORS

CONTENTS:
6.1 Introduction
6.2  Objectives
6.3  Spectrum of any matrix
6.4  Algebraic and Geometric multiplicity of Eigen root
6.5 The Cayley-Hamilton theorem
6.6 Characteristic polynomial of degree 2 and 3
6.7 Summary
6.8 Glossary
6.9  Self assessment questions
6.9.1 Multiple choice questions
6.9.2 Fill in the blanks
6.9.3 True and False
6.10 Reference
6.11 Suggested readings
6.12 Terminal questions
6.12.1 Short answer type questions
6.12.2 Long answer type question

6.1 INTRODUCTION

If A is Square matrix then we are interested to find out a non zero vector X
such that AX =2AX then A is called eigenvalues of A corresponding

eigenvector X
doq dpo ... dop and X = X

dpn1  dp2 -« dpn

Let A =

Where X is non zero vector and AX = AX

i.eAX—2X=0
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=>(A-ADX=0

Is the form of Homogenous System of equation and has non zero solution
if,

Rank (A—Al) <n
It is possible only when |A — Al = 0

|A — M| = 0 is called characteristic equation of matrix A in variable A,
there roots or zeros or solutions of characteristic equation are called Eigen
values or Latent roots.

6.2 OBJECTIVES

After reading this unit you will be able to:
e Find eigenvalues of a square matrix
e Find eigenvector of a square matrix
e Understand algebraic and geometric multiplicity of eigen root
(values)
e Understand various properties of eigenvalues and eigen vectors
e Know about Cayley Hamilton theorem and verify it.

6.3 SPECTRUM OF ANY MATRIX

A is any matrix of order n, then spectrum of A is the set of all eigen values
of A.

0 1 2
Example 1: Determine the eigen value of matrix A=|1 0 —1]
2 -1 0
Solution: Let A is eigen value of matrix A, then the characteristic equation
-2 1 2
of AisS|A—=A|=0]A=-AN]|=|1 -1 -1
2 -1 -
A -1 1 -1 1 =i
= 7”)|—1 —x| 1|2 —x|+2|2 — |
=22 =1) = 1(-L+2) + 2(=1 + 2) = +6L—4
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Therootof |[A—A| =0
~A+614-4=0 or A —-61+4=0
=20 +20-2)=0=2 —-1+4+v3, —-1-43
Hence the Eigen values of the matrix A are
2, —1++V3, —1-3

Theorem 1: Let X is a eigen vector of A, then X can’t corresponding to
more than one eigen values of A.

Proof: Let X be an eigen vector of A, corresponding two eigen values are
A and A,

Then AX = MX (1)

From (1) and (2)

MX =AX (M —2)X=0
But X is non zero vector
So M —2)=0 =M =2
Hence cannot corresponding to more than one eigen value of A

Theorem 2: If X is eigen vector of a matrix A corresponding to the eigen
value), then KX is also an eigen vector of A corresponding to the same
eigen values A, where K is any non zero scalar

Proof: Let X is eigen vector of a matrix A corresponding eigen values A
Then AX =X ; X#0

Since K is any non zero scalar

So, KAX = KAX A(KX) = MKX)

Hence (KX)is also eigen vector of A corresponding same eigen value A.
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a11 312 en aln
Note:Let A =|321 3422 - don
dp1  dp2 ... dpn
di;1—)  diz e Aqn
Then (A—A) =| 31 32— - 4 (4 polynomial  over
dp1  ap2 -« App-j
A<(n-2)
3-33_/1 Az,
Then (A-Al)=(a;, —4)(a,, — 1) T+ polynomial

over A<(n-2)

=(-D)"A" +(-)"* A" (a,, +a,, + Ay +...+a,,) + polynomial of degree
<(n-2)...(1)

if A, X, ... A, are eigen values of square matrix A, then
[A=M|=(D"A—2)A—=23) . = 1y) ... )

Coefficient of A" ™' = (=1)"(=A; = Ay . — Ap) = (D20 + 2, .+
An)

But coefficient of A" " in equation (1) is (=1)™ 1(a;; + ayy + - apy)

SO aj;tagt wapy =M+ +As+ Ay

|Trace A = Sum of Eigen Values|

Put X = 0 in equation (2) then we get

|A=0I] = (=D)"(A) (A2) ... A (=1)"

|A| = 11.12.13 An

So, |Determinant of A = Product of Eigen values ofA|
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6.4 ALGEBRAIC AND GEOMETRIC
MULTIPLICITY OF EIGEN ROOT OR
CHARACTERISTIC ROOT

Let A be any square matrix of order n, and A is root of order K of the
characteristic polynomial |AX —AIl = 0. Then K is called algebraic
multiply of eigen value A, total number of linearly independent eigen
vector corresponding eigen value A is called geometric multiplicity of A
i.e. total number of linearly independent solution |AX — AI|X =0

n — Rank(A — AI) = Geometric multiplicity of A

Theorem 3: The eigen vector corresponding distinct eigen value of a
matrix is linearly independent.

Proof: Let A be a Square matrix of order n, and X;, X,, ... X,, are the eigen
vector of matrix A corresponding to distinct eigen value A, A, ... A,.

Then AX1 - }\,1X1

And we have to prove the set of vector

S ={X,,X,, X5,...., X, }is linearly independent.

If the set S ={X,, X,, X5,...., X, } are linearly dependent then at least one
X; is a linear combination of remaining vector of S.

Then we choose the set S; is subset of S
S, = {X,, X, X4,...., X, }is linearly independent.
Butthe set S, = {X,, X,, X5,..... X,., X, } are linearly dependent.

Then we can choose some Scalar
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aq,ay, e Ag Ak 41
Showthat a;x, +a,x, + -4+ ags1Xk+1 =0 ..oninn. (1)
Pre multiply both sides by A, then we get

A(a;x; + axy + -+ agXg + ak 4+ 1Xk+ 1) = A.0

a;Ax; + a,AXx, + -+ agAXg + a4 1AXk 1 =0
Since AX; =MX; 3 i=1,2,3,..n
Then a;A;xq + a0X + -+ Xk + Ak 4 1A+ 1Xk+1 =0 «oneentn. (2)
Multiply equation (1) by Ay 4 1

Then a4 1X; +azh1Xe + -+ Ak y 1 Xk + k4 1Ak 4 1Xk+1 =0

Subtracting equation (3) from (2)
ay(M =My )xg Faz(g —Aep Dx2 + ot age — Ay )xc =0
Since the set S, = {X,, X, X5,...., X, }is linearly independent.
So all the coefficient of x; are zero
ai(h — A1) =0 vi=123 ..k
Put the values of a; in equation (1) then we get
Mev1=DMge but M1 #0
Mer1=0
but 4 #4,,,Vi=123,...,k
therefore a, =0Vi=123,...,k
Now put a; =0Vi=123,...,kin equation (1) we get

ak+lxk+l = 0
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=a,,, =0,since x,,, #0

This is not possible, since S, is linearly dependent. So, our assumption is

wrong hence the set of vector S ={X; X, X3,..X,} is linearly
independent,

Theorem 4: X is eigen value of any square matrix A if and only if there
exist a non zero vector X such that AX = AX

Proof: Suppose A is Eigen value of matrix A, and then we can say A is root
of the characteristic equation |A — AI| = 0

Since |A — M| = 0 so Rank (A — Al) < order of matrixA
Therefore the linear Homogeneous equation |A — Al|X =0
So AX =X

Conversely, suppose there exist a non-zero vector X satisfied AX —AX
where A is a scalar

So AX—AMX=0=(A—ADX=0

X is non zero if Rank of (A — A) is less than order of matrix
=|A-AM| =0

Hence A is eigen value of matrix A.

Example 2: Determine the characteristic roots and corresponding
characteristic vector of the matrix

1 11
A=|2 2 2
3 3 3

Solution: The characteristic equation of the matrix Ais [A—Al| = 0

=0 or

3 3 3—A

A-MD{B-nMn2-1V-6}-1{3-1.2—-6}+1{6-32-M}=0
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A-D*—50 +20+30=0
2 +22+50% =0
A2(A1-6)=0
Hence the characteristic roots of A are 0, 0, 6

The eigen vector X = [x4,X,,x3]T of A corresponding to the eigen value 0
are given by the non zero solution of the equation

(A—0DX =0

2 3l -[

1 1 1)1[X] [0
[z 2 ZHXJ:H by Ry, & R,-3R
X3 0
11

N

0 0 O

1 Xy 0
Oorfo0 0 O [Xz] = [O] by R, >R, -2R,
0 0 O0lXs 0

The rank of coefficient matrix is 1, therefore these linear equation have
3 — 1 = 2 linearly independent solution. The equation can be written as:

X, +X,+X,=0

Put X, =aand X; =Dthen x, = —(a+b)

Where a and b are any scalar, therefore X; = [—(a + b),a,b]" is an eigen
vector of A corresponding to the eigen values 0

Let a=1 b=1 then X, =[-2,1,1]T

a=0 b=1 then X, =[-1,0,1]Tare two linearly
independent eigen vector of A corresponding eigen value 0

If P;, P, are scalar not both are equal to zero then P;X; + P,X, gives all
the eigen vectors of A corresponding to eigen values 2
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The eigen vector of A corresponding to the eigen value 6 are given by the
non zero solution of the equation

(A-6DX=0

B N
G S

-5

Or [0 —-18 12” ] [] by R, >5R, +2R,,
0 18 12

R, —5R, +3R,

-5 1 17[X1 0
Or [ 0 -18 12] [Xz] = [O] by R, >2R, —-R,
0 0 0

The Rank of coefficient matrix of these equations is 2. Therefore these
equations have 3 — 2 =1 linearly independent solution. These equations
can be written as

_5X1 +X1+X2 =0
_18X2 + 12X3 = 0

. 2
From last equation we get x, = X3

Put x; = 1 then x, = 2/5 and first equation x, = 1/,

1 2 T, . . .
Sox; = [ /3, /3 , 1] is eigen vector of A corresponding eigen value 6.

If P is any non zero scalar then Px; is also eigen vector of A
corresponding to the eigen value 6.

Theorem 5: The eigen values of a Hermitian matrix are real.
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Proof: Let A is a Hermitian matrix and A is eigen value of A
corresponding eigen vector X. Then A=A

Pre multiplying both sides of equation (2) byX®, then
X%AX = XX
XOAX = XX ... (3)
Taking conjugate and transpose of both side of equation (3), then we get
(x°aX)° = (x°x)’
XPAPX = ZXOX = (X°)’ = X
XOAX = 2XOK . 4 - A=A
From (3) and (4) we have
AXOX = AX®X

(A=2)X®X =0, but X is non zero vectorso ~ X®X # 0

Let A=x+Iiy

A=x—iyA=2A
> xXx+iy=x—1ly
=>iy=0
=>y=0
A=x+1i0
A=x Hence Ais real.
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Theorem 6: The eigen values of a skew Hermitian matrix are either zero
or pure imaginary

Proof: Let A is skew Hermitian matrix then A® = —A
Now (iA)? = 1A = —iA® = —i(—A) = (iA)

= (iA) is Hermitian matrix when A is Skew Hermitian and we know that
the eigen values of Hermitian matrix is real,

So the eigen values of (iA) is real.
Let A is eigen value of A then (iA) is eigen value of (iA)

But ilis real so

iA=1A
IA=—iA if A is real
20=01=0
A=x+1y if A is complex content and y # 0
iA=ix—y
(i1)=-y-ix
(D) =12 Because (i}) is real
X—y=-y—ix
2ix=0x=0
A=0+1iy

A = iy = is pure imaginary provided A # 0

Hence the eigen values of skew Hermitian matrix are either zero or purely
imaginary.

Theorem 7: Eigen values of a unitary matrix are of unit modules.
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Proof: Let A is a unitary matrix and A is Eigen value of A Corresponding
Eigen vector X, then

Taking conjugate and transpose both sides of equation (2) then
(Ax)° = (Ax)°
XOA® =2X8 (3)
Multiplying equation (2) and (3)
(x°A%)(AX) = (AX®)(AX)
(X°A%)(AX) = AX®X
X®(APA)X = XX
XOIX = |A|2XOX - APA =1, A = |A?
XOX = |A|2x%X
(1-A»)X%X=0
But X®X # 0 because X is non zero vector
So, @a-*»=0
A2 =1
Hence A is at unit modules.

Example 3: If A is Square matrix of order 4 and spectrum of A is {1, 2, 3}
and trace of A, determinant of A are 9 and 18 respectively then find the all
eigen values of A.

Solution: Let A4, A,, A3, A, are eigen values A, then

A+ A, + A3+ A, = trace of matrix A =9
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A1.-A5.A3.4, = determinant of A = 18
Given spectrum of A'is {1, 2, 3} so three eigen values of Aare 1, 2, 3
So1+2+3+2,=9
Ay =3
1.2.3.3=18
So eigen values of A are 1, 2, 3, 3.

Example 4: Show that matrix A and its transpose matrix AT have same
eigen values.

Solution: Let A is Eigen values of A so A is the root of characteristic
Equation

A=Al =0 ...oooooveinn. (1)
Now (A —ADT = (AT — Al

And we know that determinant of any matrix and its transpose are equal,
therefore

[(A—ADT| = |A—Al|
AT — AI| = |A — A
v A=Al =0 So|AT — AIl=0
= Aisrootof |AT —AI| = 0
Hence ) is also Eigen value of AT,

Example 5: Show that the characteristic roots of A® are conjugates of the
characteristic roots of matrix A.

Solution: Let A is Eigen value of matrix A
= A is the root of the equation |[A — Al =0

Now (A—2AD® =A% — (AD®

Department of Mathematics
Uttarakhand Open University Page 189



Algebra, Matrices and Vector Analysis MT(N) 121

=(A°=2) oo (1)
And  |(A—AD®| =|A—AT| ~ |A®] = |A|
From equation (1)
|a° ~ 71| = [A=7)
If [A—All =0 = [A-2Al| =0 o |A® -1l =0

So Xisroot at [A® — AI| = 0 hence X is eigen value of A°.

Note:
1. 0 is the eigen value of matrix A if matrix has determinant zero.
2. Eigen value of upper /lower triangular matrix are just principal

diagonal element.

3. Eigen values of strict upper or strict lower triangular matrix are
zero.

4. Eigen values of Nilpotent matrix are always zero.

5. Eigen values of idempotent matrix are either O or 1.

6. Eigen values of involutory matrix are either 1 or -1.

Example 6: If A is the eigen value of a non singular matrix A, then prove

that |A|/)\ is a eigen value of adj A.

Solution: Let A be any nx Nnon singular matrix and A is eigen value of A
So A must be non zero and there exist a non zero vector X such that

AX =X oo (1)

Pre multiplying both sides in equation (1) by (adjA)

So, (adjA) (AX) = (adjA)(AX)

[(adjA)A]X = A(adjA)X
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(Al X =A(adjA) =~ A(adj A) = (adj A).A = |A]l,

A
l—xlx = (adj A)X

Hence % is eigen value of matrix (adj A).

Example 7: If A is square matrix of order 3 with eigen values are 1, 2, 3
then what are the possible eigen values of adj(A™1).

Solution: A is Square matrix of order 3 with eigen values 1, 2, 3

So determinant of A is the product of its eigen value

|A] =123 =6

1 1
A_1 = —_—= -
|A™ Al 6

And 1,2, 3 are eigen values of A then 1%% are eigen values of A1

Say A =1 A, =-, A3=§

2

Finally, eigen values of adj(A™1) are

T T T s S ) I O I
. » WhIChIST, @ @

11 1 . . o
o 5 ;arerequired eigen values of adj(A b.

6.5 THE CAYLEY-HAMILTON THEOREM

Every square matrix satisfies its characteristic equation i.e. if for a square
matrix A of order n.

A=Al = (=A™ + a;A"" 1 + ...+ a,] then the matrix equation is
X" + a2, X" 1+ . +a,l = 0is satisfied by A

A" +a, A"+ L 4+a,l=0
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Proof: Let A is a square matrix of order n and A is eigen value of A then
element of (A — AI) are at most of the first degree in A, and the element of
adj(A — Al) are of degree n — 1 or less in terms of A.

So adj(A — AI) can be written as
adj(A—A) = CoA" 1 + CA" 2+ .+ CupA+Cph_q
Where C,, C;, ... C,_; are square matrices of order n
Now (A — Al adj(A — AI) = |A —AI|l = A adjA = |A|l
Where | is the identity matrix of order n
(A—AD(CoA™ 1+ C A" 2+ .4+ ChA+Cph_y)
= (-D"A" +a; A"t 4+ L+ ay]l
Comparing coefficients of like powers of A on both sides, then we get
—1Cy = (—1)"I
AC, —1C, = (—1)"I
AC, — IC, = (—1)"a,l
AC,_; = (-1)"a,In

Pre multiplying these equations by A", A"~1, .1 respectively and adding
them

0=(—1D"[A" + a;A" 1 + .. +a,]]
Thus A® + a; A" 1 + a,A" 2 + . +a,+Al+a,l=0

Hence every Square matrix satisfies its characteristic equation.

1 2 4
Example 8: find the characteristic equation of the matrix A = [0 3 5]
0 0 6

and verify that it is satisfied by A.
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1 2 4
Solution: We have A = |0 3 5| the characteristic matrix of A
0 0 6
1 2 4 1 0 O
A—M=[O 3 5]—7\[0 1 0]
0 0 6 0 0 1

1-2 2 4
0 3—-2A 5
0 0 6 —

The characteristic polynomial of A

1-2 2 4
JA=All=| 0 3—A 5
0 0 6—A

= (1=M[(6=2)(3 =21 —0]—2[0— 0]+ 4[0 — 0]

=1-0D6-D3B-21
The characteristic equation of Ais |[A—Al| = 0
e (1-20)(6-)B-2)=0
The roots of this equation are 1, 3, 6
Hence the Eigen values of Aare 1, 3, 6
From equation (1) the characteristic equation of the matrix A is
A-6)A-3)A—-1)=0

Or

A2 —31—61+18)(A—1) =0

Or

A2 -9 +18)(A—1) =0

Or

A2 —104* +271-18=0
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We are now to verify that

A® —10A” +27A-181 =0

We have
1 2 4 1 0 O
A=1|0 3 5 , [=(0 1 O
0 0 0 1
1 2 41 2 4 1 8 38
A =AxA=1|0 3 5”0 3 5]=[0 9 45] A3
0 0 6lIlL0 0 6 0 0 36
1 8 38][1 2 4 1 26 272
=A’xA=|0 9 45[|0 3 5|=|0 27 315
0 0 36110 0 6 0 0 216
Now we can verify that A3 — 10A% + 27A — 181
1 26 272 -10 -80 -380 27 54 108
0 27 315(—1 0 —-90 —450(+|0 81 135
0 0 216 0 0 —-360 0 0 162

18 0 O 0 0 O
—{0 18 0|=(0 0 O

0 0 18 0 0 O

Example 9: Obtain the characteristic equation and find the eigen value of
the matrix

1 -8 -2
A=14 -3 —2]
3 -4 1
1 -8 =2
Solution:A=1|4 -3 =2
3 -4 1

The characteristic matrix of A — Al is

8 -8 -2 1 0 O
A—-AN=|4 -3 =2(—-A|0 1 0

3 -4 1
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A-A=]| 4 -3—-1 -2

3 -4 1-A

8—2 -8 —2]

The characteristic equation of Ais |A —Al| =0

8—-2 -8 -2
4 -3-2 =21=0
3 -4 1-

-0t Tlvsly T2l T =0
or
(1=2A2 =51+ 6) =0 .ooevrrrre .. (1)
or

1-D@A-2)A-3)=0
The root of this equationis 1, 2, 3

Hence (1 —A)(A2 —5)A + 6) is characteristic equation and 1, 2, 3 are
eigen values of A

Example 10: Show that O is a eigen value of matrix A if and only if
matrix is singular.

Solution: We know that product of eigen values is determinant of matrix
Let A4, 2,, ... Ajare eigen values of matrix A.
Then
Mz Ag o A = |A]
Since 0 eigen value is zero so |A| =0 = Alis singular
Conversely, let Ais singular = |A| =0
The characteristic equation of A is

(DA + A ta, + A% 23, + ..+ Aa; +ag] =0
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Since a, = |A|
So A"+ A" la, +Aa, =0......oeeain. (1)
0 is the root of equation (1), hence A = 0 is eigen value of A.
Example 11: Show that matrix A and C"AC have the same eigen values.
Solution: Let B = C*AC then the characteristic matrix of B is
(B—AI) = (CT1AC—AD)

Since C is invertibleso C"1C=1=cCC™?!
So (B—Al) = (C"1AC — C™1AQ) =C"1(A-2ADC
Taking determinant both sides

|IB—AIl =|C"1(A—ADC| ~ |A.B| = |A||B|

= |C7H|A = A[C||A7Y] = AT

1
=—|A-=AlIC| |C|#0
qplA—Aliel =il
So
|IB—All = |A— Al

Thus the matrix A and B have same characteristic equation. Hence A and
B = C™1AC have same eigen value.

1 2 3
Example 12: Obtain the characteristic equation of matrix A=|0 4 5
0 0 6
and verify that it is satisfied by A and hence find its inverse.
1-A 2 3
Solution: We have |[B—AI| =| 0 4 — A 5
0 0 6—A

=1-0D((6-NE-)—-0)—2(0-0)+3(0-0)

=1-D6-)NH4-2)
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*+ The characteristic equation of A is
A-20D6-2D@-2D=0.ccceeernn (1)
Or
(6—A—6A+A2)(4—2) =0
(6—7A+A)(4E -2 =0
24 —6A— 28X+ 7A2 + 412 =23 =0
24 —34A+ 1122 =23 =0
Or
B =112 434N —24=0..cooeeiiieeieeaeanan, 2)

By Cayley — Hamilton theorem, every square matrix satisfies its
characteristic equation.

So
A3 —11A2 +34A —241=0 ..ccoooeiiiiiiiinannae, (3)
Verification of equation (3) we have
1 2 3
A=10 4 5
0 0 6
1 2 3111 2 3 1 10 31
A’=10 4 5/l0 4 5/=]|0 16 50
0 0 o6l10 0 6 0 0 36
1 2 3|11 10 31 1 42 239
A=|0 4 5/|0 16 50/=|0 64 380
0 0 e6ll0 0 36 0 0 216
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A3 — 11A% 4+ 34A — 241

1 42 239 11 110 341 34 68 102
=10 64 380[—|0 176 550(+|0 136 170
0 0 216 0 0 396 0 0 204
24 0 O
—-10 24 O
0 0 24

0 0 O
=10 0 0|=0
0 0 O

From equation (3)
A3 —11A% +34A—241=0

Since all eigen values are non zero so determinant of A # 0 hence A™!
exist

Pre multiplying both sides by A~ in equation (3)

Then
A2 —11A+341—-24A"1=0 A2 —11A+341
=24 A1
A-lzi[A2—11A+341]
24
1 1 10 31 11 22 33 34 0 0
A‘1=ﬁ 0 16 50|- 44 55|14+|10 34 0
0 0 36 0 0 66 0 0 34
24 —-12 —2]
=—[0 6 -5
24 0 0 4

6.6 CHARACTERISTIC POLYNOMIALS OF
DEGREE 2 AND 3

There are simple formulas for the characteristic polynomials of matrices of
order 2 and 3.
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i,

322] then simple characteristic equation of A

Suppose A = [:i

= A% — (trace A)A + det(A) = 0
b11 b12 b13
If Bis of order 3then B = |by; by, bys
b31 b32 b33
The characteristic equation of B is

= A3 — (trace B)A? + trace (adj B)A —detB =0

If A;;, A,,,Az; are the cofactor of element b;;, by,,bs; then
characteristic equation of B is

= }\3 - (trace B)}\Z + (A11 + A22 + A33)}\ - detB = O

Example 13: If A is any matrix of order 3 and the Eigen values of A are
1, 2, 3 then find the characteristic equation of A.

Solution: The characteristic equation of A is
A3 — (trace A)A? + trace (adj A)A — detA =0
where, A is eigen value of A

we know that if A is eigen value of A then

A

= is eigen value of (adjA)

So, trace of A = sum of Eigenvalues =1+2+3 =6

det of A = product of Eigen values = 1.2.3 = 6

6 6
Eigen values of adj A = /513 = 6,2,3

=1 o

Sotraceof adjA=6+2+3 =11

Hence characteristic equation of AisA3 — 612 + 11A —6 =0
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Example 14: If A is a square matrix of order n and A? = I then find the
determinant and trace of matrix.

Solution: Let A=(a,) and A? =1

nxn

And we know that if A% =1 then possible Eigen value of Aare 1or — 1
Let algebraic multiplicity of Eigen values of —1 is k; and 1is k,

So k; + k, isequal to order of matrix and

1+1+1+---+1+(—1)+(—1)+---+(—1)

=t fA
k, time k, time raceo
k, — Kk, is trace of matrix A
Determinant of A is product of Eigen values so
1.1.1..1 (-1D. (1D .. (-D
A = = —1 kq
1Al k, time + k, time =D
2 1 01
Example 15: Find the trace of matrix A=|0 2 0
0 0 3
2 10
Solution: Let A = B?° where B=|0 2 0
0 0 3

Eigen values of B are 2, 2, and 3
So, eigen values of B20 are 220, 220, 320
And we know that trace (B2°) is equal to sum of its eigen values
So trace A = 220 4 220 4 320
=2.220 4320

Example 16: Let B be a real nx1vector such that BTB = Iand if A =1—
2BBT then show that A is involuntary matrix with trace (n—2).
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X1
. X2 T
Solution: Let B=|. then B' =
X3 n*l
[X1,X5, o Xp]
Since BTB=1
X1
X
Now BTB = [x;,Xy, ... Xy] 52 = [X+x3+ .. +x3]= [1]1a
Xl’l
So X2 +x3+ . +x3=1
Since A=1-2BBT
2 0 0 0]
2
Ac1_2/0 3 0 0]
[o 0 - oJ
0 0 0 xZ
1 0 .0 i 0 0 .7
2
A= [0 1 w0 _ZIQ X3 0 .|
T B

Traceof A= (1 —2x3)+ (1 —2x3) + ..+ (1 —2x32)
=n—-2(x%+ ..+x3)=n-2
Now A? = (I-2BBT)(1-2BB")

AZ =1

6.7 SUMMARY

In this unit ,we learned the concept of eigenvalue and eigenvector,
additionally learned about algebraic and geometric multiplicity of
eigenvalue , which helps us more to find the eigenvalue of any matrix ,the
concept of eigenvalue is very important to understand linear algebra very
well. To cheak your progress by solving all question given below,
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6.8 GLOSSARY

Spectrum of matrix:Set of all eigenvalues

Geometric multiplicity of eigenvalue:The dimension of the eigen space
of eigenvalue

6.9 SELF ASSESMENT QUESTIONS

6.9.1 Multiple choice Questions:

1. If O is eigen value of matrix A then detA is.
@@ 1 (b) 2
(© 3 (d 0
1 2 3
2. If A=14 5 6] then if A;,A,,Azare eigen values of A then
5 7 9

A+ A, + Az isequal to

(@ 1 (b) 14
(© 15 (d o
3. Eigen values of idempotent matrix are
(@ 1lor-1 (b) Oor-1
() Oorl (d) Oonly
4. If P is Algebraic multiplicity and Q is geometric multiplicity then

the relation between P and Q is

(@ P=<Q (b) P=Q
(c) P<@ (d P=Q
0 1 2
5. Eigen values of matrix A= |0 3 4]is
0 0O
@ 1,2,3 (b) 3,0
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) 1,3 (d)y 4,0
6. Trace of any idempotent matrix A of order n is
(@) Sum of its Eigen values (b) n
(c) Rank A (d) Product of Eigen
values
7. If A is eigen value of A then eigen value of 3A is
(a) 3 (b) 2x
() X @d o
8. If A3+ PA%2+ QA+ R =0 is characteristic equation of matrix
1 0 2
A=10 2 1|then
2 0 3
P+ Q+ Risequal to
(@ 2 (b) 3
(c) 4 (d)y 5
9. If A and B are two square matrices of the same order then if
AL Ay, ... A, are the eigen values of A B then eigen values of BA is
@) ApAy . Ay (b)2,%2,.. 2
(€) A%,2%,.. A2 @) VALV VA
10. If A is any orthogonal matrix then eigen value of A is
(@ 1,-1 (b) i,—i
(©) 2,2i (d) (a)and (b)both
ANSWERS:
1. (d) 2.(c) 3.(c) 4. (d) 5. (b)
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6. (C) 7. @) 8. (b) 9. (3) 10. (d)

6.9.2 Fill in the blanks:

1. Eigen values of upper triangular matrix is .............

2. Trace of null matrix is .............

3. Eigen value of skew Hermitian matrix are ........... o) SR
_[2 5 2 :

4. ifAa=[0 Tthen|A?+51]ds ...

5 If A is idempotent matrix with rank 3 then trace of A'is ...........

6 If A= (aU) a;; =1¥1i,jif A is non zero eigen value then

A=

7. If A is involuntary matrix of order n and k is algebraic multiplicity

of —1 then trace of A.......

8. If S is the set of all matrices and S is defined A S =3A| A =
1 a b
t 0 c|s.t.A% =1} then cardinality of Sis ............
c d 1

9. If A bea nxn matrix which is both Hermitian and Unitary than

trace of A%is ..........

1 0 0
10. IfA=10 1 Olthen characteristic polynomial is ..............
0 0 1
ANSWERS:
1. Principal diagonal 2.0 3. Zero or 4.54 5.3
element purely
imaginary
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6.n 7. 8. Null set 9.n 10.(x —
n— 2k 1)3

6.9.3 True and False questions:
Write T for true and F for false statement

1. If 1, —2, 3 are the eigen values of matrix A of order 3 then

A"l = %(5 [+ 2A — A2)TIF

2. If A is an idempotent matrix of order n then Rank (A) +
Rank(A—1) =n T/IF

3. Eigen values of identity matrix IS 0
T/F

4. If A is invertible idempotent matrix then eigen values of A are both
Oand 1 T/IF

5. The possible eigen values of nilpotent matrices are zero only
T/IF

ANSWERS:

1.T 2. T 3.F 4. F 5T
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6.12 TERMINAL QUESTIONS

6.12.1 Short answer type questions:

L ifA=[3 Tlthenverify A —5a+71=0
-1 2
3 -1 1
2. Find the all eigen valueof A=|-1 5 -1
1 -1 3
3. Verify Cayley-Hamilton theorem for the matrix A=
0 0 1
3 1 0]hence or otherwise evaluate A~1
-2 1 4
4. Show that the characteristic roots of a triangular matrix are just the

principal diagonal element

2 1 0
5. Determine the eigen vector of the matrix A = (0 2 1]

0 0 2

L 4 1 -1
ANSWERS: 2. 3,6, 2 Al = E[—12 2 3 ]
5 0 0

6.12.2 Long answer type questions:
1. If A, Xy, ... Ay, are the eigen values of the n-square matrix A and K

is a Scalar then prove that eigen values of A —klare A _k,
Ao—k> oo Ak
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2. Find the  characteristic  equation of the  matrix
2 -1 1
A=]-1 2 —1]and verify that it is satisfied by A and hence
1 -1 2
obtain A1
2 3 1
3. Verify the Cayley-Hamilton theorem foramatrix A=|1 1 1
3 4 2
4. Show that if all eigen values of idempotent matrix are zero then
matrix is invertible
2
5. Show that the matrix A = [1';’( 21 ]has at least one eigen value
X

is 0 for some real number x
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BLOCK Ill: TRIGNOMETRICAL AND
HYPERBOLIC FUNCTIONS
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UNIT 7: EXPONENTIAL AND
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7.1 OBJECTIVE

After reading this unit you will be able to:

e Understand complex number and their geometric representation

e Do addition, substraction, multiplication and division of complex
numbers

e Convert a complex number into modulus amplitude form (polar
form)

e Find out square root of a complex number.

7.2 INTRODUCTION

We know that the square of a real number is always non-negative e.g.
(5)* = 25 and(-5)* = 25. Therefore, square root of 25 is + 5. What about
the square root of a negative number? It is clear that a negative number
cannot have a real square root. So we need to extend the system of real
numbers to a system in which we can find out the square roots of negative
numbers. Euler (1707 - 1783) was the first mathematician to introduce the

symbol i (iota) for positive square root of — 1 that isi = J-1.

7.3 COMPLEX NUMBER

A number of the forma+ib , is called a complex number wherea,

bare real numbers andi =+—1. If z=a-+ibis the complex number, then
aand bare called real and imaginary parts, respectively, of the complex
number and written asRe(z) =a, Im(z)=b.

If the imaginary part of a complex number is zero, then the
complex number is known as purely real number and if real part is zero,
then it is called purely imaginary number, for example, 2 is a purely real
number because its imaginary part is zero and 3i is a purely imaginary
number because its real part is zero.

7.4 REPRESENTATION OF COMPLEX
NUMBER IN ARGAND PLANE

A complex number z = x+1iy written as an ordered pair (x, y) can
be represented by a point P whose Cartesian coordinates are (X, y) referred
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to axes X OX and Y OY, usually called the real and the imaginary axes.

The plane of X OX and Y OY is called the Argand diagram or the
complex plane.

Y
A
P(x,y)
y
' 0
X < > X
X M
v Fig. 5.1

7.5 ADDITION OF COMPLEX NUMBERS

Let z, =a+iband z, =c+id be two complex numbers then
z,+2,=(a+c)+i(b+d)

Procedure: In addition of complex numbers we add real parts with real

parts and imaginary parts.

Department of Mathematics
Uttarakhand Open University Page 211



Algebra, Matrices and Vector Analysis MT(N) 121

7.6 ADDITION OF COMPLEX NUMBERS BY
GEOMETRY

v
X

Fig. 5.2

Let z,=a-+iband z,=c+idbe two complex numbers
represented by the points P and Q on the Argand diagram.

Suppose the parallelogram OPRQ.Draw the PK, RM, QL, perpendiculars
on OX.Also draw PN L RM.
Since AOLQ = APNR so, OQ = PR, KM =0OL,NR=LQ

OM =0OK +KM =0OK +OL =a+c

RM =MN +NR=KP+LQ=b+d
Hence the coordinates of R are (a+c,b+d)and it represented the
complex numbers.

(@a+c)+i(b+d)=(a+id)+(c+id) =z, +z,

Thus the sum of two complex numbers is represented by the
extremity of the diagonal of the parallelogram formed by OP(z,)and
0Q(z,) as adjacent sides.

|z, +2,| =OR and amp(z, +2,) = ZROM.
Properties:

1. As the sum of two complex numbers is again a complex number, the set
of complex numbers is closed with respect to addition.

2. Addition of complex numbers is commutative, i.e., Z, +Z, =2, + Z,
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3. Addition of complex numbers is  associative, i.e.,
(z,+2,)+2,=2,+(2,+2,) .

4. For any complex number z=a-+ib,there exist a complex number
(0+i0) i.e., 0 such that z+0=0+2z, known as identity element for
addition.

5. For any complex number z=a+Iib,there always exists a number
—z=-a—ib,such that z+(-z2)=(-z)+z=0 and is known as the
additive inverse of z .

7.7 MULTIPLICATION OF COMPLEX
NUMBERS

Let z, =a+iband z, =c+id , be two complex numbers. Then
z,x2, =(a+ib)x(c+id)
=ac+iad +ibc +i°bd
=ac+i(ad +bc) + (-1)bd
=(ac—bd) +i(ad +bc)
7.8 MULTIPLICATION OF COMPLEX
NUMBERS (POLAR FORM)

Let z, =r,(cos@, +isin@d;) and  z, =r,(cosd, +isin b,)
a=r,¢cosé, b=rsing,
C=Tr,C0S6,, d=r,sin o,
z, =a+ib=r/(cosg, +isin &)
z, =c+id =r,(cos b, +isin 6,)
Z,x2, =1 (cosd, +isin g,)xr,(cos, +isin 6,)
=rr,(cosé, +isin 6,)(cos &, +isin 6,)

=r,1,[(cos &, cos @, —sin G, sin 6,) +i(sin 6, cosH, +coséd, sin 6,)]
=rr,[cos(6, +6,) +isin( 6, +6,)]
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7.9 MULTIPLICATION OF COMPLEX
NUMBERS (GEOMETRICAL
REPRESENTATION)

Let P and Q represent the complex numbers

Y
A R(Z,.Z,)
L+
Q(z)
4, 6 6,+6,
P(z.)
O B! R
v X
A
Fig. 5.3

z, =a+ib =r(cosg, +isin 4)

z, =c+id =r,(cosé,+isin 6,)
Cut off OA =1along x-axis. Construct AORQ on OQ similar to AOAP
OR_O0Q _  OR_OQ

So that - = = -
OP OA OoP 1
= OR=0P.OQ =r.r,
= ZXOR = ZA0Q + ZQOR =6, + 6,

Hence the product of two complex numbers z,.z,is represented by the
point R, such that

@) [z,..2,]| =|z,||z,|

(b) Arg(zl’ Zz) = Arg(zl) + Arg(zz)

Properties:

1. As the product of two complex numbers is a complex number, the
set of complex numbers is closed with respect to multiplication.

2. Multiplication of complex numbers is commutative, i.e.

2,X2,=2,X1,
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3. Multiplication of complex numbers is associative, i.e.
(2,x2,)x 25 =2, x(2,%2;)
4. For any complex numberz =a+1ib, there exists a complex number

(1 +0i)i.e.lsuchthatzx1=1xz = z is known as identity element
for multiplication.

5. For any non zero complex number z = a +ib, there exists a
complex number E such that z x 1_ 1>< z =1 i.e., multiplicative
z z z
inverse of a+ib = 1_ = i_'bz :
a+ib a“+b
6. For any three complex numbersz,, z, and z,

2, %(2,+12,) =2, X2, + 2, X1,

and  (z,+2,)x2,=2,X2,+12,x1Z,

i.e.,, for complex numbers multiplication is distributive over
addition.

7.10 EQUALITY OF COMPLEX NUMBERS

Two complex numbers a+iband c+id are said to be equal if
a+ib=c+id

=a-c=i(d-hb)

= (a—c)®* =—(d —b)?or (a—c)*+(d —b)* =0

Here sum of two positive numbers is zero. This is only possible if each

number is zero.
That is

(a-c)*=0 = a=c
and (d-b)*=0 = b

7.11 SUBTRACTION

2, -2, =[(a+ib)—(c+id)]=(a—c) +i(b—d)
That is, in subtraction of complex numbers we subtract real part from real
part and imaginary part from imaginary part.
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3 7.
For example, suppose two complex numbers zl=z—§| and

z, :—g+%ithen

-5 11. 3 7.
Subtract z, -z, =| — + =i |-| —— =i
3 5 4 3

-5 3) (11 7).

= ———[+]| =+—|i

s-1)(5+3)
—20-9) (33+35). (-29) (68)
= + =] —[+]| =i
12 j ( 15 j ( 12 j [15]

7.12 SUBTRACTION OF A COMPLEX NUMBER
BY GEOMETRY

A
v

v
YI
Fig. 5.4

Let P and Q represent the complex numbers

z,=a+ib and z, =C+id
Then 2z, -2, =12, +(-2,), Z,—, means the addition of z, and —z,.
—Z, is represented by OQ’formed by producing OQ to OQ'such that
0Q =0Q".
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Complete the parallelogram OPRQ’,then the sum of z; and -z,
represented by OR.

7.13 CONJUGATE OF A COMPLEX NUMBER

Let z=a+ib,be a complex number. Then a complex number
obtained by changing the sign of imaginary part of the complex number is
called the conjugate of z and it is denoted byz, that is,
Z=a-ib.

In the other hand, two complex numbers which differ only in the
sign of imaginary parts are called conjugate of each other.

Suppose a pair of complex numbers z=a-+ib and Z=a-ib are said to
be conjugate of each other.

Sum=(a+ib)+(a—ib) =2a

(Real)

Product= (a+ib)x(a—ib) =a® +b?

(Real)

7.14 POWER OF |

Some time we need various power ofi .

We know thati = v/—1.

On squaring both sides, we get
i=-1

Multiplying by i both sides, we get
i*=-i

Again i* =(@°).(0) = (-).() =—(*) =~(-) =1
i°=(i).() =) =1
i°=@°).()=(@).(0)=-i*=-1
i"=(°).() = (-D.() =i
i? = (i").3) = (-).() = (") =—(-1) =1.
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7.15 1 (I0TA) AS AN OPERATOR

Multiplication of a complex number byi
Let z=a+ib=r(cos@+isin )

i:0+i.1:[cos£+isin E}
2 2

i.z=r(cos@d +isin 6). {cos%ﬂsin %}

o2

Hence a complex number multiplied byi give the rotation to the complex

number by % is anticlockwise direction without change in magnitude.

7.16 DIVISION OF A COMPLEX NUMBER

To divide a complex number z, =a+ibby z, =c+id , we write it as

z, a+ib

z, C+id

To simplify further, we multiply the numerator and denominator by the
conjugate of the denominator.

z, a+ib_c-id ac—iad +ibc—i’bd

- - - X - - -
z, c+id c-id (c)? —(id)?
ac—i(ad —bc) +bd
T c?-ikd?

_ ac + bd N (bc—ad)i
c®+d?*  c¢*+d?
For example, suppose two complex numbers are 1+1i by 3+4i, then
1+i  1+i 3-4i

Division = - = - X -
3+41 3+41 3-4i
_ 3-4i+3i—4i°
- 9-16i’
=3—i+4=l_ii
9+16 25 25
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7.17 DIVISION OF A COMPLEX NUMBER BY
ALGEBRA

Let z, =r(cos@, +ising) and  z, =r,(cosé, +isin 6,)

z

z, _ r(cosg +ising) _ r(cosé; +isin G,) y (cos8, —isin 6,)
Z2

©1,(cosd, +isin8,) r,(cosd, +isin 6,)  (cosd, —isin 6,)

1 [(cos &, cos @, +sin G, sin 9,) +i(sin &, cosH, —sin G, cos b} )]
r,(cos® @, +sin’ 6,)

= " [(cos(8, - 6,) +isin( 6, - 6,)]
r-2
The modulus of the quotient of two complex numbers is the quotient of
their moduli, and the argument of the quotient is the difference of their

arguments.

7.18 DIVISION OF A COMPLEX NUMBER BY
GEOMETRY

Let P and Q represent the complex numbers

z,=a+ib
=r,(cosé +isin 6,)
z, =C+id
=T1,(cos b, +isin 6,)

Y

A

v

Fig. 7.5

Cut off OA =1along x-axis, construct AOAR on OAsimilar to AOQP
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OR OP OR OP
_ — _

So that —=— —=—
OA 0Q 1 0Q
= OR = % _h
oQ r,
= ZAOR = ZQOP = ZAOP — ZAOQ =6, -6,

r .
. Rrepresents the numberr—l[(cos(é?l —0,)+isin(6, - 6,)].
2

Z, . :
Hence the complex number Z—l is represented by the pointR .
2

Example 1. Subtract the two complex numbers

1 3. 3 5.
Z,==+—i and z,=——=i
2 5 5 7
Solution: Given that zl=1+§i and zz=§—§i
2 5 5 7

1 3. 3 5. 1 3 3 5)
We have 2,-2,=|=+=i|-|=—Zi|=|=—=[+|=+=|i
2 5 5 7 2 5 5 7

5-6 21+25). -1 46,
= + I=—=+—i
10 35 10 35

Example 2. Add the following complex numbers
zl:3+gi, zZ:G—Ei, zS:E—Zi, 24:_—10—4i.
5 7 2 3 3

Solution: We have

2,+2,+2,+12, =[3+%ij+(6—;i)+(g—%i)+(%lo—4ij

:(3+6+§_9j+(2_ﬂ_1_4ji
2 3 5 7 3
49 683.
"6 105
Example 3. Simplify the following complex numbers
(a) i49 (b) ilOS
Solution: (a) We divide 49 by 4 and we have
49=4x12+1

=49 = 4x12+1
= i ="

= (i*)2.() =i
i = |

(b)  We divide by 103 by 4 and we have
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103=4x25+3

=103 s 4x25+3
= i ="

= (i)%.°) = ().(-i) = i

i103 =i
Example 4. Find the multiply between the two complex numbers
z,=3+9 and z, =5-7i
Solution: Giventhat z, =3+9, z,=5-7i,we have
2, x 2, = (3+9i) x (5—7i) =15 — 21i + 45i — 63i*
=15-21i + 45i — 63(-1) =15—21i +45i + 63
=78+24i
Example 5. Find the conjugate of the complex number 9+ 2i.
Solution: Let z=9+2i
To obtain the conjugate number of z=9+2i, then change the sign of
imaginary parts.
Conjugate of z=Z =9-2i.
Example 6. Divide z, =2+1i by z, =3+5i.

Solution: Given that z, =2+1, z, =3+5I.

Z, 2+
z, 3+5i
z, 2+i 3-5i 6-10i+3i-5i?
= =X = :
z, 3+5i 3-5i 9 - 25i°
_6-10i+3i+5 11-7i 11 7.
9+25 34 34 34
z, 11 7.
= — ==
z, 34 34
Example 7. Express o+ !)'(S_I)_ in the form of a+ib.
(3+4i).(2-31)

Solution: We have
(5+i).(3—-1) _ 15-5i+3i—-i® 15-5i+3i+1
(3+4i).(2-3)) 6-9i+8i—12i° 6-9i+8i+12
_16-2i _16-2i 18+i
18—i  18—i 18+i
_ 288+16i —36i —2i° 288+ 16i —36i + 2
- 182 _j? T 32411
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_290-20i _200 20, 58 4.
325 325 325 65 65
Example 8. Ifa=cosa+isin«, prove that

1+a+a’® =(1+2cosa)(cos o +isin ).

Solution: Here we have a=cosa +1Sin «
1+a+a’ =1+ (cosa +isin a) + (Cos a +isin )?

=1+ CoSa +isin a +cos? a + 2isin acosa —sin 2 «

= (cosa +isin a) +cos’® o + 2isin acosa + (1—sin? a)
= (cosa +isin o) +cos® o + 2isin e cosa + cos® a

= (cosa +isin ) +2cos® a + 2isin acosa
=(cosa +isin &) + 2cosa(cosa +isin )
= (1+2cosa)(cos a +isin «)
Example 9. Solve for 6 such that the expression M
2—isin 6
imaginary.
Solution: We have
4 +5isin 0 _ 4 +5isin QX 2+isin @
2—ising 2—isin@ 2+isind
_ 8+4isin 6 +10isin 6 +5i’sin* 6
- 22 —i%sin? 0
_ 8-5sin? 0 +14isin 6
- 4+sin’0
8—5sin? @ +14isin 0
4+sin’ 6

sin267=§ = sinez\/g = 9=sin1\/§
5 5 5

Example 10. If a® +b” +¢* =1 and b+ic = (1+a)z, prove that

If 8—5sin?0 =0, then

is purely imaginary.

a+ib  1+iz
1+c 1-iz’
Solution: Given that b+ic=(1+a)z,
b+ic
= z=
l+a
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.b+ic

1+iz +I1+a _l+a-c+ib

~ 1oz ,_;bric lvatc-ib
1+a

_l+a-c+ib 1+a+c+|b
“l+a+c-ib 1+a+c+|b
_ (I+a+ib)® —c?
~ (l+a+c)’ +b?

_1+a%-b® +2a+2ib + 2iab - ¢
" 1+a’+c?+2a+2c+2ac+b?

_1+a*-b*—c*+2a+2ib+2iab
“1+(a’+b%*+c?)+2a+2c+2ac

Substituting a +b* +¢® =1 in the above expression, we get
1+iz _1+a’—(1-a”)+2a+_2ib+2iab
1-iz 1+1+2a+2c+2ac
B 2(a® +a+ib +iab) _2(l+a)(a+ib) a+ib
- 2(l+a+c+ac) - 2(1+a)(l+c) C1+c
1+iz _a+ib
1-iz  1+c’
Example 11. If z =cosa +isin «, prove that

(@) 2 =1-itanZ (b) 2 —icotL
1+z 2 1-z 2
Solution: Given that z =cosa +isin «, we have
() 2 _ 2 _ 2
1+z 1+(cosa+isina) (L+cosa)+isina
2 (1+005a)—|5|n a
(1+c03a)+|sm a (1+cosw)—|sm a
2[(1+ COSO{)—ISII’] al]  2[(1+cosa)—isina]

(l+cosa)? +sin’«a " 1+cos’a+2cosa +5in? o
_ 2[(L+cosa)—isina]  2[(1+cosa)—isin o]

1+1+2cosa 2+2c0Scx
(1+ cosa)—isina 1+cosa isina
1+cosa 1+cosa 1+ Ccos &
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. a a
2sin —Ccos— o
=1-i 2 2 _1-itanZ
1+2cos2 ¥ -1

i=1—itang
1+2z
1+z (L+cosa)+isina

1-z (l+cosa)—isina

(b)
2c0s? % 4 2isin € cos &

_ 2 2 2

2sin2 % —2isin L cos &

2 2 2

a a .. o
COS—| COS—+1ISIn —
2( 2 2)

B . .o . a
SIN —| SIN ——1C0S —
2( 2 2)

(cosg +isin g) (sin “ ticos g)
=cot— 2 X 2 2
2 (sin “ cosg) (sin Z i cosg)
2 2 2 2

a . a . 2 A 4 o
(coszsmzﬂcos E+|S|n E_SmECOSE)

o
= COtE o a
(sin* = +cos® )

2 2

2 .,
o CO0S” — +sin - — o
=cot—<i 2 2 =icot5

a . o

cos® = +sin? =

2 2

1+z . a
——— =icot—
1-z 2
Example 12. If a=cosa +isina, b=cospg+isin S, prove that
a__b:itan[a_ﬂj
a+b 2
Solution: We have
a-b (cosa+isin a)—(cos g +isin f)
a+b (cosa+isin @)+ (cos g +isin )
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_ (cosa —cos B) +i(sin a —sin )
~ (cosa +¢os B) +i(sin & +sin f3)

el e )
e meag

2003 [cos a+'B +isin(a;'8ﬂ
_|tan[

2
a-b =itan[a_ﬂj
a+b 2
3

Example 13. If a+ib = —, prove that
2+cos@+isin @

(@a-1(a-3)+b*=

Solution: We have

. 3
a+ib= —
2+cos@+isin @
............. (1)
. 3
So that a—ib= —
2+cos@d—isin @
............. ()
Multiplying (1) and (2), we get
At b=
5+4cosé
.............. 3)
Adding (1) and (2), we get
94 _ 6[2+cosd]
5+4cosé

Now (a—-1)(a—-3)+b*=a*-4a+3+b’
=a’+b*-2x2a+3
_ 9 _2><6(2+cos€)+3:
5+4cosd 5+4cosd
(a-1)(a-3)+b* =0
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Exercise 1

6+i)-(2—i)

—2= 7 _inthe form of a+ib.
(4+3i).(1-2i)

1. Express

Ans.:§+li
5 5

2. Solve for @ such that the expression 3+§|—sm¢9 IS imaginary.

1-2isin @
Ans.:t9:Z
3

2+3i

3. Find the complex conjugate of 1 Ans.:

4. 1f z=1+i, find (a) z* (b) 1 and plot them on the Argand diagram.
z
Ans.:(a) 2i (b)l—l
h 2 2

1, , prove that, (a® +b*)(x* + y?) =1.
X + iy

5.If a+ib=

6. Find the value of x? —6x+13,when Xx=3+2i.

Ans.:0
7.1f a+ip =L_, prove that (a? + #*)(a* +b*) =1.
a+ib
1 1 .
8. If —+——=1where «,f,a,b are real, express bin terms of
a+if a+ib
a,p.
Ans.:
-p
a’+ p*-2a+1
7. -5 11.
9. Subtract z, =§——| from z, =—5+—|.
4 3 3 5
Ans. _—29+@i
12 15
10. Multiply (3+4i) by (7-3i) Ans.:
33+19i

Department of Mathematics
Uttarakhand Open University Page 226



Algebra, Matrices and Vector Analysis MT(N) 121

11. Divide (1+i) by (3+4i)

Ans.:l—ii
25 25
12. Express the following in the form a+ib, where a and b are real:
(@) 2 —3_| Ans.- E_Ei (b) (3+ 4|)(? +1)
4-i 17 17 1+i
Ans.:E—gi
2 2
i)° 7 1.
(012" Ans.—~+ =i @ —t
@+n2- 2 2 (1-2i)(2+3i)
Ans. ——il
65 65

13. If (x+iy)® =a+ib, prove that4(a? —b?) =§+%,
a

14.1f (x+iy)® =u +iv, prove that S+~ = 4(x? — y?).
X

(L+i)a-2i N (2—3i)P+i i

15. Find the values of a and b, if w 3 i Ans.:
a=3b=-1
) X | 2 2 2
16. If a+ib = ( er ) ,prove thata® +b? =%.
2x° +1 (2x°+1)

7.19 MODULUS OF A COMPLEX NUMBER

Let z=a+ibbe a complex number.
Putting a=rcos® and b=rsin @ so that r = va? +b? then

a . b
c0Sf=——, SN =——
Ja? +b? va’ +b?

the positive value of the root being taken.
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P(x,y)

Fig. 5.6

Then ris said to be modulus or absolute value of the complex number
a+iband is denoted by |a+ibl. Modulus of z is denoted by |z and if

|z| =[a+ib|
= |7 =va’ +b?
Let z=a-+ibbe a complex number then its magnitude is defined by the

real number+a? +b? .

In the set of complex numbers z, >z, or z, < Z,are meaningless but
2| >[z,] or|z,| <|z,|

are meaningful because |z,|and |z,|are real numbers.

7.20 ARGUMENT OF A COMPLEX NUMBER

If z=a+Iibthen angle &given by tand = Eis said to be the argument or
a

amplitude of the complex number z and is denoted by arg(z) oramp(z).
In case of a=0 (whereb=0), arg(z) =+7/2 or —7/2 depending upon
b>0 or b<Oand the complex number is called purely imaginary. If
b=0 (wherea=0), then arg(z) =0 or 7 depending upon a>0or a<0
and the complex number is called purely real. The argument of the
complex number 0 is not defined. It means the value of € lying in the
range — 7 <@ <7 is said to be the principal value of the argument. The
principal value of @is written either between Oand 7 or Oand — 7.
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Example 1. Express the following complex numbers in the modulus-
amplitude form:

(i) 1—i (ii)— /3 +i (iii)
@+i)2-i)
(3+1i)
Solution:(i) Let 1—i =r(cosé +isin 6)
= rcosd=1 and rsind=-1
Squaring and adding, we get

r=vi+l=+2

Again dividing, we get

tan¢9=—1=tan77” = 6?=7—7Z

1-i= \/E(cos7—”+isin 7—”)
4 4

(i) Let —~/3+i=r(cos@ +isin 6)

= rcosf=—/3 and rsinfd=1
Squaring and adding, we get

r=+3+1=+/4=2
Again dividing, we get
-1 Y4 51
tand = — =tan— = 0=—
V3 6 6

—/3+i :2[0035—7r+isin 5_7rj
6 6
@+i)2-i) 2-i+2i-i?
GB+i) 3+
_ 3+
T3+
=1=i(cosO-+isin 0)

(iii) We have

Example 2. Find the modulus and principal argument of the complex
number:

1+cosa+isin o (O<a<%)

Solution: Let 1+ cosa +isin a =r(cosé@ +isin O)

Equating real and imaginary part, we get
1+cosa =rcosé
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sina=rsin@

Squaring and adding (1) and (2), we get
r?(cos® @+sin? @) = (L+cosa)?® + (sin a)?

r’=1+cos’a+2cosa +sin’a

r’ =2(1+cosa) = 2(1+ 2cos? %—1} = 4c0s” %
r=2cos<
2
1+cosa 1+2c08* 7 -1 a
From (1) we get, cosé = = 2 _cos
r 2c0s % 2
COs—
2
..................... 3)
. a o
Sin o 2sin ECOSE
From (2) we get, sin @ = = =sin —
r a
2C0S—
................... 4)

sin o 2sin gcosg o o
=tan ‘l(—j =tan 2 2 |—tan ‘l(tan Ej =3

1+2cos2 2 -1
2
General value of argument= 27k +%

0= % is satisfied both equations, (1) and (2).

Example 3. Find the modulus and principal argument of the complex
1+ 2i
1- (1 i)?
Solution: We have
1+2i  1+2i
1-(1-i)* 1-1+1+2i
_1+2i
1+2i

—[1+0i| =V1? =1

=1=1+0i

‘ 1+2|
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o 1+2i .. .
Principal argument of 1(1—)2 = Principal argument of1+0i
—(@2-i

= tanlgztanlozo‘).

Hence modulus=1 and principal argument=0°.

Exercise 2

1. Find the modulus and principal argument of the following complex
numbers:

=\ 2
(8)-3-i Ans.:2,2% (o) L1
6 1-i
Ans.:ﬁ,s—ﬁ
4
1+i P _
(©) i Ans.:l,z (dtana—i  Ans.:
T
seca,—- ——«a
5]
(e) 1-cosa +isin o Ans.:23in%,%
(f) (4+2i)(-3+i+/2) Ans.: 24/55,tan 3-2V2
6+/2

2. Find the modulus of the following complex numbers:
(@) (7—=i®)+(6—i)—(4-3i)
Ans.: 445
(b) (5-6i) + (5+6i)+ (8 —i)
Ans.: /185
© (9—i)+(8-i%)—(7i2 +5)
Ans.: /365
(d) (5+6i™) +(8i° +i°) +(i* —i*)

Ans.: /178

3. If arg.(z+2i) =%and arg.(z-2i) = %,find Z

Ans.:z=2
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4. Express in the modulus-argument form. Ans.:

+7i
(2-i)
ﬁ[coss—” +isin 3—”)
4 4
5. Express —5—12i in the modulus-argument form.

Ans.: 13(cosa +isin &), where cosa = —% and cosa = —%, a lying

between % and .

6. Show that arg z +arg Z = 2nz, where nis any integer.

7. Show that the equation of a circle in the Argand plane can be put in the
form

7Z+bz+bz+c=0,
Where ¢ isareal and b a complex constant.

7.21 SOME PROPERTIES OF MODULUS AND
ARGUMENTS OF COMPLEX NUMBERS

Theorem 1. Modulus and Arguments of the conjugate of a Complex
Numbers.
If z is any non zero complex numbers, then

7| =\ and argzZ=-argz

Proof: Let |z =rand argz=6.
Then from modulus argument of a complex number, we have
z=r(cos@+isin 9)
Z =r(cos @ —isin 8) = r[cos(—0O) + isin(—0)]
Which is modulus argument from for z.
Hence, |Z|=r=|z] and argz=-0=-argz.
Theorem 2. Modulus and Arguments of the Product of two Complex
Numbers.
If z,and z, are any two non-zero complex numbers, then
|2,.2,| =|z,|\2,| and

arg(z,.z,) = arg(z,) +arg(z,)
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Proof: Let  z, =r,(cosé, +isin 6)) and
z, =r,(cosd, +isin 6,)
Then 2| =1, |z,|=1,, argz, =6, argz, =0,
We have 2,2, =[r,(cos @, +isin &)][r,(cosb, +isin 6,)]
=r,r,[(cos g, +isin 6,)(cos b, +isin 6,)]

=r,r,[(cos 6, cos b, —sin 6, sin 6,) +i(sin G, cosb, +cosé, sin 6,)]
=r,1,[(cos(6, + 6,) +isin( &, +6,)]
From this represented of z,z, in the modulus-argument, we get
2,2, =rr, = z,]Z,|
and arg(z,z,)=arg(z,)+arg(z,) =6, +6,

Theorem 3. Modulus and Argument of the Quotient of two Complex
Numbers.

If z,, Z,be any two complex numbers, then

_lzl
12,|

Z
Z,

and

arg(ﬁj =arg z, —arg z,.

ZZ
Proof: Let z, =r,(cosg, +ising,) and z,=r,(cosé, +isinb,)
So that z|=1, |z, =1, argz, =6, argz,=6,,
we get
z, _ r(cosg, +isin 6,)
z, r,(cosé,+isinb,)

_n (cos @, +isin 6,) y (cos @, —isin 6,)
r, (coséd, +isind,) (cosd,—isinb,)
_ 1, (cos@, cosb, +sin 6, sin 6,) +i(sin 6, cosd, —cosé, sin 6,)
r, cos’ @, +sin? g,
_ 1, [cos(6, —6,)+isin( 6, -6,)]
= E n

- :—1.[cos(91 - 6,)+isin(6, - 6,)]

2

. Z, .
From this represented of Z—l in the standard polar form, we observe that
2
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Z I Z z
L= = 1 zu
Z, 2 Z; |22|
z
and arg| =+ |=6, -6, =
Z2
Zl
arg| — |=argz, —arg z,.

Z2
Theorem 4. Triangle Inequality
The modulus of the sum of two complex numbers can never exceed the
sum of their moduli, thatis |z, + z,| <|z,| +|z,|
Proof: Let z, =r,(cosg, +ising,) and z,=r,(cosé, +isinb,)
So that z)|=m, and |z,|=T,, we get
Now z, +2, =(r,cosé, +ir, sin 6,) +(r, cosd, +ir, Sin 6,)
=(r,cosé, +r,c0s6,)+i.(r;Sin &, +1,sin 6,)

2, +2,|= J(1,c0s6, +1,086,) + (1, sin 6, +1, 5in 6,)°

= \/rlz +1,° +2r,r,cos(d, - 6,)
[..cos(6,—6,) <]

< \/rf +r2 4211, = \/(rl +1,)?
S+, =2 +|2,)]
Hence, |z, +z,| <|z,|+|z,].

Theorem 5. The modulus of the difference of two complex numbers can
never be less than the difference of their moduli, that is

|2~ z,| 2 [z,[-[z,]
Proof: Suppose z,, z,be any two complex numbers, we get
Let z, =r,(cos@, +isin ) and  z, =r,(COs@, +isin b,)
So that z,|=m, and |z,|=T,, we get
Now z, —z, =(r,cosé, +ir, sin 8,) —(r, cosb, +ir, sin 6,)
=(r,cos@, —r,cosb,)+i.(r;sin 6, —r,sin 6,)

|2, —2,| = J(r,cos6, —r, cos6,)? + (1, sin 6, — 1, sin 6,)°

= Jr2+1,7 =20, cos(6, - 6)
[..cos(€ —6,)<]]
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> Jr2 2 -2, = (r, -r,)?
> -1, =|z,| -z,
Hence, |z, —z,| >|z,|—|z,|
7.22 SQUARE ROOT OF A COMPLEX NUMBER

Let a-+ibbe a Complex Number and its Square Root is x +iy.that is
va+ib = x+1iy, where X,y € R.

Squaring both sides of (1), we get
a+ib = (x+iy)?

=  a+ib=x"-y*+2ixy

............... 2
Equating real and irrEag)]inary parts of (2), we get
a=x2— yz
............... 3)
and b=2xy
............... 4)

Also, we know that

(XZ + y2)2 — (XZ _ y2)2 +4X2y2
From using (3) and (4), we get

(XZ + y2)2 :a2 +b2

Adding (3) and (5), we get

2x* =a++a’+b?

la+~va?+b?
= X== #

Subtracting (3) from (5), we get
2y* =+/a’+b* —-a
va® +b* —a?

2
Positive and negative values can be checked by satisfying equation (4).
Example 1. Find the square root of the complex number 5+12i.

Solution: Let +V5+12i = x+1y (square)

=y==
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= 5+12i = (x +iy)?
= 5+12i = (x> — y?) + 2ixy
Equating real and imaginary parts, we get
x> —y*=5
.............. (1)
and 2xy =12

Also, we know that
X2 +y2 = (X% - y2)? +4x2y? = [(5)? + (12)°
=+/25+144 = /169 =13

Adding (1) and (2), we get

2x?=5+13=18 = x*=9 = x=49=43
Subtracting (1) from (2), we get

2y*=13-5=8 = y2=4 =

y=~/4=+2
Since, XY is positive so x and y are of same sign. Hence, X =43, y =12

J5412i =43+2i =  (3+2i) or  —(3+2i).
Example 2. Find the radius and center of the circle

275

Z+i
Solution: We have ﬂ =5

Z+i
lz—i|=5z+i
z—if* =25z +i[° | [ =22

(z-i)(z—-1)=25(z+i)(z+1)
(z-i)(Z+i)=25(z+i)(Z-1)
ZZ+127i—1Z+1=25(zZ - zi +iZ +1)
2477 —262i +261Z +24 =0
2477 —i126(z-7)+24=0
[2.Z = (x+iy)(x+iy) = (X* + y?),

Z2-Z=(x+1iy)—(x—1ly) =2iy]

=  24(x* +Yy?)+52y+24=0

O
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= x2+y2+%y+1:0
Compare x> +y? +2gx+2fy+c=0
Here g9=0, f :E and c=1.
12
This is the required equation of the circle.

Centre of the circle= (-g,—f) = [Q—Ej

12
. 13)? [25 5
and radius=+/g?+ f2-c=_[0%+| - =| -1=. ===
’ \/ ( 12) 144 12

Example 3. Find the locus of the points z satisfying the condition

arg(—Z _1j =z
z+1) 3~

z-1 a+ib-1 (a-1)+ib
z+1 a+ib+1 (a+1)+ib
_(a=D+ib (a+1)-ib
(a+1)+ib (a+1)—ib
_a’-1+b?+ib[(a+1) —(a-1)]
B (a+1)7% +b?
_(@*+b*-1+2ib
T (a+1))?+b?

arg(z—_lJ = tan 1(2—bj
z+1 a’+b*-1

Hence 7 _tan 1(2—bJ

Solution: We have

a’+b*-1

2
a’+b*-| —=b-1=0
%)
This is the required locus which is a circle.
Example 4. Find the radius and center of the circle
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2Z2-(2+31))z-(2-31)z+9=0
Solution: Given that

2Z2-(2+31)z-(2-31)z+9=0
=727-2(z+2)-31(z=2)+9=0 @
Here, z.Z=(a+ib)(a+ib)=(a’*+b?), z—Z=(a+ib)—(a—ib)=2ib
And z+Z=(a+ib)+(a—ib)=2a
From (1), becomes
=  a’+b*-2(2a)+6b+9=0
= a’+b’-4a+6b+9=0

This is the Cartesian equation of the circle.
Compare with the standard equation of the circle

a’+b®>+2ga+2fb+c=0
Here g=-2, f=3and c=9.
Coordinate of the Centre of the circle=(—g,—f) = (2,—3).

and radius=+/g> + f2 —c =\/(—2)2 +(3 -9=v4+9-9=2.

Example 5. If z,and z, are any two complex numbers, prove that

z,+2) +|z, -2 = 2([zl|2 +|zz|2)
Solution: Let z, =a+ib and z,=c+id
|z, +22|2 :|(a+ib)+(c+id)|2
|z, + 22|2 =|(a+c)+i(b+ d)|2
2, + 2, = (a+¢)* +(b+d)?
Similarly |z, —z,|" = (a—¢)? + (b—d)?
And |2, =a? +b? |2, =c? +d?

LH.S.=|z +2] +|z, 2| =(@+c)? + (b+d)? + (a—c) + (b —d)?

=a’+c’+2ac+b*+d*+2bd +a* +c® —2ac+b* +d?* - 2bd
=2[a® +c® +b* +d?]=2[(a* +b?) +(c® +d?)]
=2[z,|" +|z,|'1=RH.S.
Example 6. If z, and z, are any two complex numbers, such that

|2, +2,| =|2, - 2,|, prove that
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argz, —argz, = —
2
Solution: Let z, =a+ib and z, =Cc+id
Giventhat |z, +2,|=|z, — z,|
- (a+ib)+ (c+id)| =|(a-+ib) - (c +id)|
(a+c)+i(b+d)| =|(a—c)+i(b—d)|
(a+c)? +(b+d)? =(@—c)? +(b—d)>

UV

a’+c’+2ac+b*+d?+2bd =a® +c?—2ac+b*+d?—2bd
2ac + 2bd =—2ac —2bd
4ac+4bd =0
ac+bd =0

ow argz, —argz, = tan 1(Ej —tan 1(—)

U

zZ

a

=tan

=tan? bc—a

w
argz, —argz, = 5
Proved

Example 7. Find the complex number z if arg(z+1):% and

arg(z—l):z?”.

Solution: Let z=a+ib
z+1=(a+1+ib

By the given condition

b T

arg(z+1) =tan!| — |= =

« ) [a+1) 6
b 1
— |=tan30° = —
[a+1} J3
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Jab=a+1
Now (z-)=(@-1)+ib
.................... Q)
tan ‘{Lj _2r (Lj =tan120°
a-1 3 a-—
= (a—J:—cotSOO =3
= -b=-v3a+3
= ~J3b=3a-3
.............................. (3)
Adding (2) and (3), we get
0=4a-2 = da=2 =
1
a==
2
. 1.
Putting a:Em (2), we get
1 3
\/§b=§+1 = \/§b=— =
p=33
2
Putting the values of a and b in (1), we get
1 3.
Z==+—Ii
2 2

7.23 POLAR FORM

As we have discussed above
X=rcos@® and y=rsin @
= X+1y =r(cos @ +isin 0)

=re' (Exponential form)
On solving these equations, we get the value of @ and r which satisfied
both the equations, we get
Y and r=4x+ y2.
X
Types of Complex numbers:
(a) Cartesian Form: x+iy  (b) Polar Form: r(cos @ +isin &) (c)

@ =tan

Exponential Form: re'’
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Example 1. Express in polar form (l—\/E)+ I.
Solution: Let (1—~/2) +i = r(cos @ +isin 6)
1-+/2 =rcos@

Squaring and adding (1) and (2), we get
r?(cos? @+sin? ) = (1—/2)% +1°
= r2=1-2v2+2+1

= r=\/4—2\/§

Putting the values of r in (1) and (2), we get

1-+2 1

and sin @ =

4-22 4-2-2

Hence, the polar form is Ja-24/2 172 +1 !
Va-242  Ja—22

cosd =

7.24 SUMMARY

In this unit we have calculated the complex problem of mathematics
through the trigonometry and also have been studied exponential and
trigonometrical variables. In the other fields that use trigonometry or
trigonometric functions and variables include music theory,geodesy, audio
synthesis, architecture, electronics,biology,medical imaging (CT
scans and ultrasound), chemistry,number theory (and
hence cryptology),seismology,meteorology,oceanography,image
compression,phonetics,economics,electrical engineering, mechanical
engineering, civil engineering,computer
graphics,cartography,crystallographyand game development.

7.25 GLOSSORY

Exponential: Very rapid increase.
Adjacent side:For a given acute angle in a right triangle, the adjacent side
to that angle is the side that, along with the hypotenuse, forms that acute
angle.

Identity:An equation that is true for any possible value of the variable.
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Amplitude:Half the difference between the maximum and the minimum
values of a periodic function.

Conterminal angle:The description of two angles drawn in standard
position that share their terminal side.

Cycle:Any part of a graph of a periodic function that is one period long.

7.26 SELF ASSESSMENT QUESTIONS

7.26.1 Multiple Choice Questions:

1. The imaginary part of the complex number % IS
—i
(a) 2i (b) i
2. 1.
c) =i d) =i
© 3 @ 3
2. The modulus of the complex number 1—i is
1
(a) ¥2 0) 5
1
c) 2 d) =
©) @ 3
3. The argument of the complex number —3i is
T T
a) — b) ——=
@ 0) -7
© -7 (d) 7
4. Ifsin(x + iy) = p + iq, where p and qare real, then
(@) g=sin xcosy (b)
g=cosxsin y
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(c) q=sin xcoshy (d)
g =cosxsinh y
5. The exponential valueof COSX is
e’ +e™ e’ +e
Q) — b
(a) 5 (b) 5
i0 -i0
(©) : 2e (d) None of
these
6. The complex conjugate of cos(x —iy) is
(@) sin( x —iy) (b) cos(x +iy)
(c) cos(xtiy) (d) None of
these
7. Polar form of the complex number (-1+i+/3) is
T . . T
a) 2| cos—+isin — b
@ 7 o057 +isn 7 )
\/E(cosz—” +1isin z—ﬁj
3 3
2r .. 2«@
C) 2| coOs— +isin — d
@ 7 cos % isn 27 @
x/E(cos,2—7Z —isin 2—”)
3 3
8. Modulus of 1l' IS
1-i
(a) -1 (b)0
(€1 (d)2
ANSWERS:
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1. (b) 2. (3) 3. (b) 4. (d)
5. (a) 6. (b) 7.() 8. (c)

7.26.2Fill in the blanks:

1. Principal argument of il' IS......
2. If z, and z, are any two complex numbers then arg(ij iS........
Z2

3. Radius of the circle|~—" _! =5iS..........

Z+i
4, Centre of the circle |Z—1 ' =5iS..........

Z+i
5. z+Z=0ifand only if...........

2
6. The real part of L+ I? iS........

(3-1)
7. The locus represented by|z —i| =|z +i[if..........
8. If '’ =cos@+isin @, thenthe valueof sin@ is.............
ANSWERS:
17 2. 3.5/12 4.(0, -13/12)
2 arg(z,) —arg(z,)
5.Re(z)=0 6.None of these ~ 7.a straight line pif _gif
through the o
origin
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7.29 TERMINAL QUESTIONS

7.29.1 Short answer type questions:

1.

6.

7.

Find the modulus and principal argument of the following complex
numbers

) 1 - - 2
@-3-i O Ol

7 —

Prove that =1

If z, and z, are any two complex numbers, then prove that

ARSI AR A ARSI A RN
z

If z=(acosd)+i(asin &), prove that (é+ j=200529.
7 z

Express the following complex numbers into polar form:

1+i 2+3i
Q) — b
@ 1-i (®) 3-T7i
. o . 1+i)
Find the smallest positive integer n for which (1—j =1.
—i

Find the square root of the following complex number
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2+ 3i 2—3i

(@)1+i (b) it eoa (€)—2+ 243
(d)a? —1+i(2a) (e)—4-3i. (f)3+4i7
ANSWERS:
5z /4 3z
L (@):2-= (b)L. (c)ﬁ,T

5.(a)cos%+isin% (b)r =~/754, 0 =tan" ( f:j

6.n=4.
7(){ \/‘/—” \/I 1}(b)+fl(c)+(l+\/_l) d) =*(a+i)

OF: [T‘T'] () + (N7 +2i)
7.29.2 Long answer type questions:

1. If z,, Z,and z, are the vertices of an equilateral triangle, prove that
2 2 2
2, +2,"+2," =22, +2,2,+ 2,2,
Z —

z+1

2. If = 2, prove that the locus of z on the Argand plane is a

circle, whose center has affix (—%,0) and whose radius is %

1+i .
3. If amp(ﬁj = %,prove that locus of z on the Argand plane is a

circle, whose center has affix (—1,0) and whose radius is ~/2.

4. Find the locus of the complex number z, if arg(zz_ 3;:} = %
5. Find the radius and center of the circle
Z+i z+2i
a)—=4 b =
@5 ( )42—3i‘
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Z+2i
C =2
© z-3i
6. Find the radius and center of the circle

2Z+(2+1)z+(2-1)2+4=0

7. Find the locus of the points z satisfying the condition
arg(z_—zj 7
z+3 6
ANSWERS:

4. a? +b? —(3—+/3)a—(3-/3)b—3/3=0.
: 4 _ V1 2
5. (a) radius = E, center= (0,3—j (b) radius = ﬁ, center= (O,——Sj
15 30 3 30

(c) radius = 5+/2, center = (0,8)
6.radius = 2, center=(-2,2)
7.x2+y2+x-23/3y-6=0
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UNIT 8: HYPERBOLIC FUNCTION

CONTENTS
8.1  Objectives
8.2  Introduction
8.3  Euler’s Exponential Values (Function)
8.4  De Moivre’s Theorem (By Exponential Function)
8.5 De Moivre’s Theorem (By Induction)
8.6  Circular Functions
8.7  Hyperbolic Functions
8.8  Relation between Hyperbolic and Circular Functions
8.9  Some formulae of Hyperbolic Functions
8.10 Expansions for Sinh Xxand coshx
8.11 Periodicity of e’
8.12 Periods of Hyperbolic functions
8.13 Summary
8.14 Glossary
8.15 Self assessment questions
8.15.1 Multiple choice questions
8.15.2 Fill in the blanks
8.16 References
8.17 Suggested readings
8.18 Terminal questions
8.18.1 Short answer type questions
8.18.2 Long answer type question

8.1 OBJECTIVE

After reading this unit you will be able to:
e Use De-Moivre’s theorem
e Understand circular function and hyperbolic functions
e Understand relations between hyperbolic and circular function
e Expand sinhx and coshx
e Know periodicity of exponential and hyperbolic functions.
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8.2 INTRODUCTION

In the previous unit we studied about complex number and their
operations like addition, multiplication, subtraction and division. Also we
know about the trigonometric ratios for real angle 4.

Now the question arises what will be the values of these
trigonometric ratios when we use complex angles. To clear this concept
hyperbolic functions developed by Vincenzo Riccati and Johann
Heinrich Lambert in 1760s. Hyperbolic functions are analogs of ordinary
trigonometric or circular function.

8.3 EULER’S EXPONENTIAL VALUES

(FUNCTION)
When x is real, then we know that
2 3 x4
e =l X+ — 4+ — 4+ —F e
20 3 4l
............ (1)

2 x* X
SINX=X——4+———4 ..
3 5 7

............. (2)
x> x* x®
COSX=1—— 4+ ———+ . rrrnnn..
21 4 ol
............. 3)

On putting X =186 in the equation (1), we get
- 2 - 3 - 4 - 5
ei9:1+i0+(lzl) +(|9) +(|6)) +(|0) +

! 3l 4! 51
2 4 H 6 3 5 7
=(1—9—+9——ﬂ+ ......... j+i(¢9—9—+8——8—+ ........ j
214 6! 3 5 7

From (2) and (3), we get

e’ =cos@+isin 6

............. 4)
Similarly, e’ = cos@ —isin 6

............. (5)
From (4) and (5), we get

i0 -0 i0 —-io
cosg=" & and sin 6 = €
2 2i
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Where € may be real or complex. These formulae are known as Euler
Exponential values.

tanezﬂ and cotH:M
I(e|9 + e—lﬁ) el6’ _ e—le
8.4 DE-MOIVRE'’S THEOREM (BY

EXPONENTIAL FUNCTION)

Theorem. Show that (cosé@+isin 8)" =cosné +isin n@
Proof: We know that

e'’ =cos@+isin @

(e')" = (cos @ +isin )"

e’ = (cos@ +isin 6)"

cosn@+isin n@ = (cos@ +isin 9)"
If n is a fraction, then cos@+isin@ is one of the values of
(cos@+isinO)".

8.5 DE MOIVRE’S THEOREM (BY INDUCTION)

Statement: For any rational number n the values or one of the values of
(cos@+isin 8)" =cosn@+isin nd

Proof.Case I: Let nbe a non-negative integer. By actual multiplication,
we have
(cos @, +isin g,)(cos @, +isin 8,) = (cos b, cos @, —sin G, sin 6,)

+i(cos @, sin 8, —sin &, cosb,)
=cos(6, +6,) +isin( 6, +6,)
Similarly, we can prove that
(cos @, +isin 6,)(cos 6, +isin 8,)(cos &, +isin 6;)

=cos(6, + 06, +6;) +isin( 6, + 6, +6,)
Continuing in this way, we can prove that
(cos @, +isin 6,)(cos @, +isin 6,)........ (cosé, +isin 6.)

=cos(6, + 6, +...+6,)+isin(6, + 6, +....+ 6,)
Substituting €, =6, =....6, =6, we get

(cos@+isin 8)" =cosn@+isinng.
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Case Il: Let nbe a non-negative integer, say n=-m where mis a
positive integer. Then we have

(cos@+isin B)" =(cos@+isin &)™

1 1
~ (cos@+isin O)"  (cosmé +isin mo)
1 " (cosm@ —isin mo)

- (cosm@+isinm@) (cosmé —isin me)
_ (cosm@—isinm@)  (cosm@—isin mo)
(cos’mé—i’*sin>me) (cos* m@+sin > mé)

=cosmé@—isin mé
= cos(—m@) +isin(—ma)
=cosn@+isin ng
Hence, the theorem is true for negative integers also.

Case I11: Let nbe a proper fractionB where pand qare integers. Then
q
we can select g to be positive integer, p may be positive or negative
integer.
( 6 . . 9}‘* 6 .. 6
Now, COS—+isin — | =cosq.—+isinq.—
q q q q

=Cc0os@+isin &
Taking the g root of both sides, we get

1

(cos@ +isin 9)5: cosg+ isin 9
q

Raising both sides to the power p , we get

P p
(cos @ +isin 6’)q=(cos£+isin QJ = C0S p.2+isin p.g
q q

Therefore, one of the values of
(cos@+isin 8)" =cosn@+isin n@

Where nis the proper fraction, thus the theorem is true for all rational

values of n.

(cos @ +isin 6)°

(sin 6 +10036)° in the forma+ib .
sin @ +icos

Example 1. Express

(cos @ +isin 6)°

Solution: Given that — - 2
(sin 6 +icos )
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(cos@+isin ©)°  (cos@+isin H)°
sin @ +icos@)* !
( ) (i)4[cos¢9+_1sin «9}
|
_(cos@+isin)°  (cos@+isin 0)°

~ (cos@—isin 0)"  [(cos(-6) +isin(—6)]'
(cos@+isin 6)°  (cos@+isin 6)°

[(00549+isin 6?)’1]4 ~ (cos@+isin 0)

=(cos @ +isin 6)*? = cos1260 +isin 120

Example 2. If 2cosé = x+1 and 2cosg =y +£, then prove that
X y

xP.y® + L =2c0s(pé+qg).

xP.y*

Solution: We have

x+ 1= 2c0s0 = x> —2xc0osf+1=0
X
+/ 20—

= X:2cos¢9_ ;’COS 0 4:cosei\/—sin2¢9
Putting i for -1 and considering the positive sign, we get

X =cosé@+isin & and similarly

y =C0S¢+isin ¢

Now, xP =(cos@+isin @) =cos pd+isin po
And y? = (cosg+isin @) =cosq¢ +isin q¢

Therefore xP.y9 = (cos p@+isin pd).(cosqg+isin q¢)
=cos(pd+qg)+isin( pd+qg)

.......... (1)
Andalso  ——=[cos(p+qg) +isin( po-+ag)]*
xP.y
=cos(pé+qg)—isin( po+qe)
........... )

Adding equation (1) and (2), we get

xP.y? + xplyq = =Ccos(pl+qg) +isin( pé+qgp)

+cos(pd+qg) —isin( po +qe)
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xP.y® + —— = 2cos(pd +qg).
xP.y

Example 3. Prove that the general values of @ which satisfied the
equation

(cos @ +isin 8).(cos 26 +isin 20)............... (cosn@+isinnf) =1

dmrz . .
Is , Where m is any integer.
n(n+1)

Solution: We have

(cos @ +isin 0).(cos 20 +isin 20)............... (cosn@ +isinnf) =1

(cos @ +isin 6).(cos @ +isin H)°............... (cos@+isin B)" =1

(COS 9 + | Sin 9)1+2+........ +n — 1

n(n+1)
(cos@+isin ) 2 =(cos2mz +isin 2mr)

cos(@je +1sin (@je =cos2msz +isin 2mz

(n(n+1)j6):2mﬁ - 9= Amr
2 n(n+1)

Example 4. Prove that

(L+cos@+isin )" + (1+cos@—isin @)" = 2" cos? gcosn—;

where n is an integer.
Solution: L.H.S. =(+cos@+isin §)" +(1+cos@—isin )"

n

= 1+2cosz€—1+2isin Qcosg + 1+200s2g—1—2isin Qcosg
2 2 2 2 2 2

n

= 2c052Q+2isin Qcosg + 20052§—2isin gcosg
2 2 2 2 2 2

0\ o .. 0] T e .. 07
=|2c0S— | |cOS—+isin —| +|2c0oS— | | cOS— —iSin —
2 2 2 2) | 2 2

) ne .. né . .0 _no .. né
=2"cos" —| coS— +1isin — |+ 2" cos" —| cOS— —1SIn —
2 2 2 2| 2 2

N
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N .0 ng .. né ng .. n@
=2"c0s" —| c0oS— +1sin — + CcoS— —isin —
2 2 2 2 2

=2"cos" Q{Zcosﬁ}
2 2

=2""cos" Qcos% =R.H.S.
2 2

Example 5. By using De Moivre’s theorem, solve
X' —x*+x?2-x+1=0

Solution: Giventhat x*-x°+x?—-x+1=0

We know that
X +1=(x+1).(x* =x* + x> =x+1)

5
(x4—x3+x2—x+1):x 1o
X+1
5
= X +1:O = x>+1=0
x+1
= x> =—1=cosx+isin 7 =cos(2rz + x) +isin( 2rz + )
1
= x = (cos(2rz + z) +isin(2rz + 7))
(2r+1) .. (2r+)1)
= X = COS 7 +isin r

Giving the valuesof r=0, 1, 2, 3, 4.

T .. T 37 .. 37 . .
X=|coS—+isin = |, | cos—+isin — |, (cosz +isin r),
5 5 5 5

[ T . . 77zj
COS— +1SINn — |,
5 5

( O9r . . 97[)
COS— +isin —
5 5
= cosfiisinz, cos:"‘)—”iisin:g—]Z and -1
5 5 5 5

But X =—1 does not satisfy the given equation, therefore the required roots
are

[cos% +isin gj (cos%Z tisin 3?”)
Example 6. If wis a cube root of unity, prove that
(1-w)® =-27
Solution: Let x* =1
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1 1 1
= X= (13 =(cos0+isin 0)® =(cos2nz +isin 2nrx)3

(ZHﬂj .. (Znﬂ'j
=COS§| —— |+I1Ssin| ——
3 3

Putting n=0, 1, 2, the cube roots of unity are
Xo =1

(2%} . (271)
X, = cos| —— |+isin| == | = o
3 3

X, =CO§| — [+ISIN| — |=w
3 3
Az

Now, 1+ w+ w? :1+c032—ﬁ+isin 2—7[+COS4—7[+iSin—
3 3 3 3

=1+cos| 7 —= |+isin| 7 —= |+cos| 7 + = |+isin| 7+
( 3) ( 3] ( 3) ( 3)

T /2 T /1
=1-C0S—+1SIN — —COS— —1SINn —
3 3 3 3

:1—Zcos% :1—2[1j =0

2
1+ w+w?*=0 = 1+ w? =-w
............ (1)
Now, 1-w)° =[A-W)°P® =[1-2w+w?]® =[-w—2w]’
= (-3w)® = 270 = -27
Hence, (1-w)® =-27
Exercise 1
1. Evaluate (1+C0$a +!s!n aj Ans
1+cosa+isin o

cosna +isin nax
2. If cosa +cos B+ cosy =0=sin a +sin B +sin y, then prove that

] ) . 3
(a)smza+sm2ﬁ+sm27=cosza+coszﬂ+c032y:§

(b)cos2a +cos2f +cos2y =0
(c)cos(a + p) +cos(f+y)+cos(y +a) =0
(d)ysin(ax + B) +sin( f+y)+sin(y +a) =0
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n+2
¥/

3. If nbe a positive integer, prove that L+i)" + (1—i)" =2 2 cosT
1 1 1

4.1f x+==2c0sa, Yy+—=2C0S 3, z+— = 2cosy, then show that
X y z

xyz+i =2cos(a+ [ +y)
Xyz
5. If a, 8 are roots of the equation x? —2x+4 =0, prove that

nz
a"+p"h=2"" cos —~

Ans.:

o 7 i i -5
6. Simplify (a) (cos 26 — |_S|_n 29)12.(005 360 + |_S|r_1 30) 6
(cos46 +isin 46)™.(cos 50 +isin 56)
cos1076—isin 1076
(b)[(cos @ + cos @) +i(sin & +sin @)]" +[(cos & + cos @) —i(sin & +sin P)]"
Ans.:

n+1 1 _ E _
2 cosE(H ¢)c052(9 ?)

(cos 36 +isin 30)°.(cos @ —isin 6)°

(©) — —— Ans.:
(cos56 +isin 50)°.(cos 26 —isin 26)
cos136—isin 136
cos @ +isin 8)°.(cos36 —isin _
(d) (cos @ +isin 6)®.(cos 30 —isin 36)° Ans
(cos 20 +isin 26)°.(cos 46 —isin 40)’ N
c0s 206 +isin 206
7. Solve by De-Moivre’s theorem
(@ x* —x>+x*-1=0 Ans.: -1, 1,
ii,cosziisin Z, cos3—ﬂiisin 3z
5 5} 5 5
7 2nz . . 2nrw
(b)x" -1=0 Ans.: cos . tisin
wheren=01,2,3,4,5,6
©)x +x*+x*+1=0 ANS.:
Lo lxi —1Ei 1xiV3
\/E H \/E i) 2 H .
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8.6 CIRCULAR FUNCTIONS

Circular Functions are already discussed in the form of Exponential
function that is Euler’s Exponential values in the term of Circular

Functions:
i0 -0
+e
cosf=——,
2
io -6
] —e
sin @ = -
2
If @ =12, then
eiz +e—iz
C0SZ=———,
2
) iz _e—iz
sinz= .
2i

8.7 HYPERBOLIC FUNCTIONS

Any group of functions of an angle expressed as a relationship between
the distances of a point on a hyperbola to the origin and coordinate axes.
The group of functions includes the hyperbolic function, whether x be

real or complex is said to be Hyperbolic function such as

et —e™* e +e™
sinh x = cosh X =

e¥ —e™*
tanh X = ——

e“+e

e¥4+e
coth X = ———— sechx = ———

e¥—e e“+e
cosechx = ————

e* —e

) e¥+e* ef-e

cosh X +sinh x = + =e*
2 2

) e¥+e™ ef—e _

cosh x —sinh x = > =g

(cosh x +sinh x)" = cosh nx +sinh nx
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8.8 RELATION BETWEEN HYPERBOLIC AND
CIRCULAR FUNCTIONS

Hyperbolic functions can be expressed in the term of Circular Functions as
follows:

We know that
ix _ atix
sin X = ——, Put x=ix
2
o i%x _e—lzx e—x _ex
sin ix = - = -
i 2i
. . H =X X i =X _ X
S|n|x=[e 2e]=[e e’]
2 -2
. i[eX —e ] ..
Sinix = [e ] =1isinh X =
sinh ix =isin X
Similarly, cosix = cosh X =
coshix = cos x
tanix =i tanh X =
tanh ix =itan x

8.9 SOME FORMULAE
FUNCTIONS

1.cosh? x—sinh?x =1

OF HYPERBOLIC

2.sech®x =1—tanh® x
3.cosech?x = coth? x —1 4.

sinh( x = y) = sinh xcosh y + cosh xsinh y

5.cosh(x £+ y) = cosh xcosh y +sinh xsinh y 6.

tanh x + tanh y

tanh(x+y) =
(x£Y) 1+tanh xtanh y

7.sinh 2x = 2sinh xcosh x

9. cosh 2x = cosh? x +sinh  x
11.tanh 2x = 2B X
1+tanh“ x

y y

sinh x +sinh y = 2sinh X; cosh X;

8.cosh 2x = 2cosh? x —1
10.cosh 2x =1+ 2sinh ? x

12.
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13.sinh x —sinh y = 2cosh X; Y sinh x;y 14.

y y

cosh x + cosh y = 2cosh X; cosh X;

Ysinh XY

15. cosh x — cosh y = 2sinh X;

Proof of some important above formulae:

Example 1. Prove that cosh? x—sinh > x =1
X —X 2 X _ =X 2
Proof: L.H.S. = cosh? x —sinh 2 x = | ¢ I
2 2
e e 42— e +2 4
4 4
L.H.S.
Example 2. Prove that cosh 2x = cosh? x +sinh * x
X —X 2 X _ —X 2

Proof: R.H.S. = cosh? x +sinh ? x = (e +2e J +(e 29 ]

e e 42+e¥ +e -2

4
2™ +e™)
4
2x -2X

_(E7+e ) oshox=LHS.
Example 3. Prove that sinh 2x = 2sinh xcosh X
Proof: R.H.S. =2sinh xcoshx=2[e _Ze j[e +2e j

2% A—2X

= % =sinh 2x =L.H.S.

Example 4. Prove that sinh( x + y) = sinh xcosh y + cosh xsinh y

Proof: R.H.S. =sinh xcosh y + cosh xsinh y

Rl

ex+y + ex_y _ e_(x_y) _ e_(x+y) + ex+y —_ ex_y + e_(X_Y) _ e_(x+y)
4

Department of Mathematics
Uttarakhand Open University Page 259



Algebra, Matrices and Vector Analysis MT(N) 121

2e(X+Y) _ 2e’(x+y) e(Xer) _ ef(XWLy)

4 2
=sin(x+y)=L.H.S.

8.10 EXPANSIONS FOR sinh x AND cosh x
We have

sinh x =%(ex —e’x)

8.11 PERIODICITY OF ¢

Suppose z=a-+ib, then

Now, el ="V =g eV
=e"(cosy+isiny)
=e"[cos(2nz + y) +isin(2nz + y)]

X Ai(2n7z+y)

=€e".e
— e(x+iy)+i.2n;r — ez+2.n;zi

Which shows that e* is periodic function of period 2ni.

2.nz

e =cos2nz+isin 2nz =1+i.0=1,
e 2" —cos2nz —isin 2nz =1-i.0=1
— eiZ.nzzi :1
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8.12 PERIODS OF HYPERBOLIC FUNCTIONS

We know that the Euler’s theorem

e’™ =cos2nz +isin 2nz =1+i.0=1, Where nis being any
integer.
and e?" =cos2nz—isin 2nzr=1-i.0=1

(x+2n7) e—(x+2nm’)

sinh( X+ 2nz) =

= ¢ =sinh X
2

eX _ —X

Similarly cosh(x +2nz) = = cosh x

sinh( X + nzi)
cosh(x + nz)

e(><+r17zi) _ e—(x+n7zi)

Again tanh( X+ nz) =

B 2 B e(x+n7zi) _e—(x+n7zi)

- e(x+n7zi) +e—(x+n7zi) - e(x+n7zi) +e—(x+nzzi)
2

_sinh x
~ cosh x
Hence sinh xand cosh x are periodic functions of periods 271 and tanh x
is a periodic functions of period i .
Example 1. Separate the following into real and imaginary parts of the
Circular functions.

= tanh x

(@) sin( x+1iy) (b) cos(x +iy)
(c) tan(x +1y)
(d) cot(x +iy) (e) sec(x +iy)

(f) cosec(x+1y)
Proof: (a) We have
sin( X +1y) = sin Xcos iy + cos xsin iy
=sin xcosh y + cos x(isinh y)
=sin xcosh y +icos xsinh 'y
(b) cos(X +iy) = cos xcosiy —sin xsin iy
= cos xcosh y —sin x(isinh y)
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= cos xcosh y —isin xsinh y
sin(x+1y)  2sin( X +1iy)cos(x —iy)
cos(x+iy)  2cos(x +iy) cos(x —iy)
_sin 2x+sin 2ly  sin 2x+isinh 2y
© C0S2X +COS 2iy " c0os2x + cosh 2y

B sin 2x i sinh 2y
cos2x+cosh2y ) | cos2x+cosh 2y

cos(x+1iy)  2cos(x +iy)sin( x —iy)
sin( X +iy)  2sin( x +iy)sin( x — iy)
_sin2x—sin 2ly _ sin 2x—isinh 2y
" cos 2iy — Cc0s 2X ~ cosh 2y —C0S 2X

B sin 2x i sinh 2y
cosh2y —cos2x ) | cosh 2y —cos2x

1 3 2cos(x —1y)
cos(x+iy)  2cos(x +iy) cos(x —iy)
_ 2[cos xcos(iy) +sin xsin(iy)]

B C0S 2X + cos(2iy)
_ 2[cosxcosh y +isin xsinh y]
B cos2X + cosh 2y

[ 2cosxcoshy i 2sin xsinh y
cos2x+cosh2y ) | cos2x+ cosh 2y

(c) tan(x+1iy) =

(d) cot(x+iy) =

(e) sec(x+1iy) =

1 3 2sin( x —1iy)
sin( X +1y) - 2sin( X +iy)sin( x —iy)
_ 2[sin xcos(iy) — cos xsin( iy)]
B cos(2iy) —cos 2x
_ 2[sin xcos(iy) —cos xsin( iy)]
- cosh 2y — cos 2X

[ 2sin xcoshy i 2cosxsinh y
cosh 2y —cos 2x cosh 2y —cos 2x

(f) cosec(x+1iy) =

Example 2. Separate the following into real and imaginary parts of the
Hyperbolic functions.
(@)sinh( x +1y) (b) cosh(x +1y) (c)
tanh( X +iy)
Proof:(a) We have

sinh( x +1y) = sinh x cosh(iy) + cosh xsinh( iy)
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=sinh xcosy +isin ycosh x
(b) cosh(x +iy) = cosh x cosh(iy) —sinh xsinh( iy)
=cosh xcos y —isinh xsinh y

sinh( x +1y)  —isini(x+1iy)
cosh(x+iy)  cosi(x +iy)

_ —isin(ix—y) —2isin(ix —y)cos(ix + y)
~ cos(ix—y)  2cos(ix — y)cos(ix + y)

(© tanh( x +1y) =

. Sin2ix—sin2y .| sinh 2x—sin 2y | _sinh 2x +isin 2y
cosh2x+cos2y | cosh2x+cos2y

COS 2iX +C0S2y
B sinh 2x i sin 2y
cosh2x+cos2y ) | cosh 2x +cos2y

Example 3. Prove that

(cosh x —sinh x)" = cosh nx —sinh nx
Proof: We have

L.H.S.= (cosh x —sinh x)"

|ef+e” et e

r n
|ef+e Tt —ef e

- 2 -

................. (1)
R.H.S. = cosh nx —sinh nx
~ _enx L™ ~ ™ _ g
| 2 2
22|
= =e
- 2 }
................. ()
From (1) and (2), we have
L.H.S.=R.H.S.
Example 4. If X =2sin @cosh ¢, show thaty = cosésinh ¢
cosec(d —ig) +cosec(f +ig) = 24X 5
X +y
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Proof: We know that

. 1 1
cosec(d+i¢) = — — = — _ —
sin(@+i¢) sin @cosi¢g+cossin ig
B 1
sin @ cosh ¢ +icos@sinh ¢
1 2
L X+ 1y
2 2
.............. (1)
Similarly cosec(d —ig) = 2_
X —1y
............... 2)
Adding (1) and (2), we get
cosec(d —ig) +cosec(f +ig) = 2 + 2 4xy

X—iy  X+iy % +y°
Example 5. If sin( & +i¢) = tan o +isecea, show that
cos 26 cosh 2¢ = 3.

Proof: Given that
sin(@+i¢) =tan o +isece,

= sin @ cos(i¢g) +cos@sin(ig) = tan o +isec,
= sin #cosh ¢ +icosdsinh ¢ =tan ¢ +iseca

Equating real and imaginary parts, we get
sin @cosh ¢ = tan

cos@sinh ¢ =seca

Now, we know that
sec’a—tanla =1

From (1), (2) and (3), we get
cos® @sinh * p—sin? @cosh® ¢ =1
- (1+ coszej(sinh 2¢—1}_(1—c0529]{sinh 2¢+1)=1
2 2 2 2
2c0s20cosh2¢p—-2=4
2c0s26cosh2¢ =6
cos26cosh2¢ =3

U

U
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Example 6. If tan(A+iB) = x+1y, prove that

(@) tan2A= X (b) tanh 2B = — X
1-x"-y 1+x°+y

Proof: We have tan(A+iB) = x +1y,

So that tan(A—iB) = x—iy
We have tan 2A =tan[( A+iB) + (A—iB)]
fan 2A tan(A+|B)_+tan(A—|!3)
1-tan(A+iB)tan(A—iB)
_ (x+iy) +(x—ly)
1-(x+1y)(x—1y)
B 2X o 2X
1-(x*+y?) 1-x*-y?
Again tan 2iB = tan[( A+1iB) — (A—1B)]
tan 2iB — tan( A+ |B)_—tan(A— |!3)
1+tan(A+iB)tan( A—iB)
_ (x+iy) = (x—iy)
1+ (X+1y)(x—iy)
_ 2iy
1+ %% +y?
itanh 2B {%]i
1+x°+y

tanh 2B = (%]
1+x°+y

Example 7. If tan(6 +i¢) = cosa +isin «, show that

nr rx 1 T
(a)9=7+z (b)¢:§Iogtan(Z+Ej
Solution: Given that tan(@+i¢) =cosa +isin «,

So that tan(@ —i¢) = cosa —isin a,
Hence tan 260 = tan[(0 +i¢) + (0 —i9)]

_ tan(0 +ig) +tan(d —ig)
C1-tan(@+ig)tan(0—ig)

_ Ccosa+isina+cosa —isina
C1- (cosa +isin a)(cos a —isin a)
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B 2cosa
1—(cos® a +sin® a)

2c0sa
= = 00
0

tan 20 = tan z
2

20=nz+2~ = 9=
2 2 4
(b) Again tan2ig =tan[(&+ig)—(0—ig)]
_ tan(@ +ig) —tan(d —ig)
1+tan(@+ig)tan(d —igp)
_ Cosa+isin a—cosa +isin a
1+ (cosa +isin a)(cosa —isin @)
B 2isin o
1+ (cos® a +sin % )
2isina . .
= =isin o
tan 2ig =isin « = itanh 2¢ =isin o =
tanh 2¢ =sin o
tanh 2¢ = sin « that is
2 _ a2 G
e2¢ e_2¢ _ha Cross-multiplying, we get
e’ +e
e? —e™ =sin a(e®” +e )
=  (l-sina)e®” =(1+sina)e™
i 1—cos(ﬂ+aj
N 0 _ (1+s!n a) _ 2
(L-sina) COS(ﬁ+aJ
2
2sin?| £+ &
4 2 2(7[ aj
= =tan Z+E
2c032[”+a)
4 2
= e? = tan(ZJrgj =  2¢=log tan(£+gj
4 2 4 2
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1 T
= ¢:Elog tan[z+5j
Example 8. If cos(6 +i¢) = p(cosa +isin ) show that

4= 2og SN0~

2 " sin(6+9)
Proof: Given that cos(@ +i¢) = p(cosa +isin «)
= cos@cos(ig) —sin gsin(ig) = p(cosa +1sin @)
= cosécosh ¢ —isin @sinh ¢ = p(cosa +isin «)

Equating real and imaginary part on both sides, we get
cos@cosh ¢ = pcosa

And sin @sinh ¢ = —psin o

From (1) and (2), we get

cosdcoshg  pcosa
sin@sich ¢ — psina
cosdcoshg  cosa

= . - =—
singsinh ¢ —sina
- coshg  cosasin @
sinh ¢  —sin azcosé
e’ +e”’
2 cosasin 6
= — = -
e’ —e? —sinacosd
2
e’ +e?  cosasin @
N _

e’ —e?  —sinacosd

By using componendo and dividend rule, we get
(e’ +e?)+ (e’ —e?) cosasin &—sin acosd
(e’ +e?)—(e’ —e?) cosasin O +sin acosd

2e’  cosasin 6 —sin o cosO

= = - -
2e?  cosasin @ +sin acosd
N 2 _ s!n( 0—a) N
sin( @ + )
26 = log s!n(e—a)
sin( @ + )
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1, sin(@-a)
—log ———=
2 " sin(0+a)
Example 9. If sin(« +if) = x+1iy, prove that

Hence =

2 2

X y
a + =1 b
@ cosh? g sinh? g (b)
X2 2
-2 yz =1
sin“a Cos” «
Proof: Given that sin(a +i8) = x+1y

= X +1y =sin acosh g +icosasinh g

Equating real and imaginary parts, we get
X = sin a cosh S, y =cosasinh g

2 2

X y
+—
cosh? # sinh? g

2 2

1= X + _y
cosh? B sinh? g

Squaring and adding, sina +cos’ a =

=

(b) Again, from (1) we get

cosh g = L
sin &
sinh g =—
cosa
X2 y2
Squaring and substracting, cosh? g—sinh ? g = —— ——=
sin“a  cos’ a
L X2 B yz

sina  cos’a

Example 10. If tan(x +iy) =sin(u +iv), prove that sin2x _ tanu

sinh 2y " tanhv

Proof: Given that tan(x +1y) =sin(u +iv)

= M =sin(u +iv)
cos(x +1y)
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= 2sin(x + |_y) cos(x - |_y) =sin ucoshv+icosusinh v
2C0s(x +1y) cos(x—1iy)

sin 2x + sin 2iy

= = =sinucoshv+icosusinh v
COS 2X + COS 21y
sin 2x +isinh 2y . i .
= =sinucoshv+icosusinh v
C0S2X + cosh 2y
sin 2x . sinh 2y . . .
+1i =sin ucoshv+icosusinh v

cos2x+cosh2y  cos2x+cosh 2y
Equating real and imaginary parts, we get

sin 2x ]
=sin ucoshv
COS2X + cosh 2y
........................ (1)
sinh 2y =cosusinh v
COS2x +cosh 2y
....................... (2)

Dividing (1) by (2), we get
sin 2x _ sinucoshv
sinh 2y ~ cosusinh v
sin2x  tanu

sinh 2y ~tanhv
Example 11. If sin( 8 +i¢) = r(cosa +isin a), prove that

r?= %(cosh 2¢—cos29), and tana =tanh gcotd

Solution: Given that

sin( @ +i¢) =r(cosa +isin «)
= sin @cos(ig) +cosasin(ig) =r(cosa +isin a)
= sin @cosh ¢ +icos@sinh ¢ =rcosa +irsin o

Equating real and imaginary parts, we get
sin @cosh ¢ =rcosa

On squaring and adding equation (1) and (2), we get
r’(cos® o +sin? ) = sin > @cosh? ¢+ cos® Gsinh * ¢

2 (1— cos 26 [1+ cosh 2¢j 1+c0s 26 \( cosh 2¢ -1
= r’= +
2 2 2 2
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= %[1 + cosh 2¢ — cos 20 — cos 26 cosh 2¢ + cosh 2¢ —1+ cos 26 cosh 2¢ — cos 26]

= %[2 cosh 2¢ — 2cos 260] = %[cosh 2¢ —cos 20]

Again dividing equation (2) by equation (1), we get
cos@sinh ¢
~ sin @cosh 7/
12. If sin( @ +ig)sin(« +if) =1, prove that
tanh ? ¢pcosh? B = cos® &
Solution: Given that
sin(@+ig)sin(a +ip) =1,

1 _ 1 8 sin(la —if)
sin(a+ip) sin(a+ipf) sin(a—ipf)
sin & cosh f —icosasinh g

sin?a +sinh *

tan o = tanh ¢cot @

= sin(@+i¢) =

=  singcoshg+icosdsinh ¢ =

Equating real and imaginary parts, we get
sin o cosh
sin % o +sinh ?

sin @ cosh ¢ =

cosasinh g
sin®a +sinh 2

cosdsinh ¢ =—

Eliminating € from (1) and (2), we get
1_( sin e cosh B ]2 +[ —cosasinh g jz

cosh g(sin ? a +sinh ? ) sinh ¢(sin ? & +sinh ? )

=

(sin ? & +sinh * B)* =sin? arcosh® Bsech®¢ + cos’ asinh * Scosech?g
—

(sin > a +sinh 2 8)? =sin > acosh?® B(1—tanh ? ¢) + cos® asinh 2 S(coth? ¢ —1)
—

sin* o +sinh * S+ 2sin? asinh > B =sin > azcosh? B —sin > azcosh? Btanh * ¢
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+cos® asinh ? Bcoth? ¢ —cos” arsinh 2 5
—

(sin* ar +sin > azsinh > B —sin > eccosh? B) + (sinh * B +sin? azsinh * 3+ cos? asinh * )

=cos’® asinh ? Scoth? ¢ —sin? acosh? Stanh ? ¢
=

{(sin * a —sin? a(cosh? B —sinh ? B)}+{(sinh * S +sinh * B(sin * ar + cos® a)}

=cos” arsinh 2 fcoth? ¢ —sin > acosh? Stanh ? ¢
= sin’a(sin® a—1)+sinh ? g(sinh > 8 +1)

=cos’® asinh ? Scoth? ¢ —sin? ez cosh? Stanh? ¢

=  —sin?acos® a+sinh > Bcosh?® B
=cos’® asinh ? Scoth? ¢ —sin? acosh? Stanh ? ¢
=

cosh?® B(sinh ? B +sin? artanh * ¢) — cos” e(sin * o +sinh ? B.coth® ¢) =0
—

cosh? B(sinh * B +sin? artanh ? ¢) — cos® azcoth? ¢(sin > ez tanh > g +sin® ) =0
= (cosh? B —cos® acoth® g)(sinh > B +sin* atanh * ¢) =0
If (cosh? 8 —cos® azcoth? ¢) =0, then
(sinh 2 B+sin? atanh® ¢) # 0
Now, cosh? 8 =cos® acoth? ¢
—, tanh?®gcosh? § =cos’ a

8.13 SUMMARY

A group of functions of an angle expressed as a relationship between
the distancesof a point on ahyperbolato theoriginand to

the coordinate axes. The group includes sinh ( hyperbolic
function), cosh (hyperbolic cosine), tenh(hyperbolic tangent), sech (hyperb
olic secant), cosech (hyperbolic cosecant), and coth

(hyperbolic cotangent). The Hyperbolic functions also satisfy identities
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analogous to those of the ordinary trigonometric functions and have
important physical applications. And a function of an angle expressed as a
relationship between the distances from a point on a hyperbola to the
origin and to the coordinate axes, as hyperbolic sine or hyperbolic cosine:
often expressed as combinations of exponential functions. For example,
the hyperbolic cosine function may be used to describe the shape of the
curve formed by a high-voltage line suspended between two towers.

8.14 GLOSSARY

Hypotenuse: The side opposite the right angle in any right triangle. The
hypotenuse is the longest side of any right triangle.

Sine:If A'is an acute angle of a right triangle, then the sine of angle A is
the ratio of the length of the side opposite angle A over the length of the
hypotenuse.

Hyperbola:Origin and to the coordinate axes, as hyperbolic sine

or hyperbolic cosine.

8.15 SELF ASSESSMENT QUESTIONS

8.15.1 Multiple Choice Questions:

1. The value of e¥"i®) js

(@) cos(sinh @) —isin(sinh &) (b)
cos(sinh @) +isin(sinh &)

(c) cos(sinh ) +sin(sinh ) (d)
sin(sinh &) —i cos(sinh @)

2. Value of sinh X is
g¥—e™* g —e*
a b
() 5 (b) >
ef+e el +e*
c d
© @
3. The value of e’ is equal to
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@e” (b)—e”
()e’ (d) —e™”
4. If @ is real then
(a) sin(i@) = isinh & (b) cos(i@) = icosh @
(c) tan(i) = tanh @ (d) cot(i@) =icoth &

5. The period of e*is
(@) « (b) 2
(c) (d) 2

6.  The real part of exp(e" ) is

(a) e cos(sin 6) (b) =’ cos(cos®)
(c) €’ sin(cos6) (d) &’ sin (sin 6)
7. cosh(@ +ig)is equal to
(@) cosh @cosg —isinh @sin ¢ (b)
cosh @cos¢ +isinh gsin ¢
(c) cosh@cos ¢ +sinh Gsin ¢ (d) None of these
8. Euler’s formula is
(@) €' =sin @+icosd (b) €’ =cosé+isin 6
(c) € =cos@ +isin 6 (d) €’ =sin @ +icosd
ANSWERS:
1. b 2. a 3.b 4.a
5.d 6.a 7.¢C 8.c

8.15.2Fill in the blanks:
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2 3

1 The series e’ =1+ bt s is absolutely convergent
for.......
2 If Ae%® + Be~219 = 5¢0s520 — 7isin26, then........
3 Ifcos(@ +ig) = p(cosa +isin ), then the value of psina
1S.evenen.
4, cosh? z—sinh ? zis equal to.........
5. cos(a +i3) is equal to
6. The periods of sinh z, cosh zand tanh z are
7. The value of tan @ is
ANSWERS:
1. for all values of z 2.A=-1,B=6 3. 4.1
—sin @sinh ¢
5.cosacosh g—isin asinh g 6.27,27, 7i el _p 10
) i(eiH _e—iﬁ)
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8.18 TERMINAL QUESTIONS

8.18.1Short answer type questions

1. Separate the equation sec(X +1y) into real and imaginary parts.
2. If tan(& +i¢) =tan o +isec«, prove that

(a)ez"’:ircot% (b)26’=n7r+%+a
3. If sin( @ +i¢) = cosa +isin «, then prove that,

cos’ @ =sinh * ¢ = +sin o

4, If tan(@ +ig) = X +1iy, prove that
(@) x* +y* +2xcot20 =1 (b)
x* +y? —2ycoth 2¢ = -1
. . 2CA
5. If A+iB =Ctan(x+1y), then prove that, tan 2x = —————
C°-A"-B
6. If u=log, tan(Z + Q), prove that, tanh Y tan o
4 2 2 2

7. If tanh x = % find the value of 2x.
8. If cosec(% + ixj =u+iv, prove that, (u?+v?)* =2(u®-v?)
ANSWERS:
1 2Cc0s xcosh 2y + 2isin xsinh y 7.log?

C0S2X + cosh 2y
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8.18.2L.ong answer type questions
1. If tan(%+iaj:x+iy, prove that x* +y? +2x =1.

_sinu+isinh v
cosu +coshv

2. Show that tan(u ;'Vj

3. If cos(@ +i¢) =cosa +isin «, prove that
(a) cos 26 + cosh 2¢ = 2 (b)sin*@=sin*a  (c)

sinh * ¢ =sin” a.

4. If u-i =sin( x +1y), find u.
u+l
5. Solve the equation 17 cosh x +18sinh x =1, for real values ofx.
6. If tan(a +ip) =1, where « and fare real, then prove that « is

indeterminate and £ is infinite.
If tan(& +i¢) =sin( x +1y), prove that, coth ysinh 2¢ = cot xsin 26

© N

If cos™(x+iy) = A+iB, prove that
(a) x*sech’B + y* cosech’B =1 (b)
x%*sec? A—y?cosec’A=1.

ANSWERS:
2cos xsinh y

4.tan™ — —
Cos“ X —sinh “ y

5.—log5
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UNIT 9: INVERSE HYPERBOLIC AND
TRIGONOMETRIC FUNCTION  AND
LOGARITHM OF COMPLEX NUMBER

CONTENTS
9.1 Obijectives
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9.4 Inverse Circular functions of Complex quantities
9.5 Inverse Hyperbolic functions
9.6  Relation between Inverse Hyperbolic and Circular functions
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9.8 By Logarithm to separate the real and imaginary parts
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9.10 Summary
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9.12.1 Multiple choice questions
9.12.2 Fill in the blanks

9.13 References
9.14 Suggested readings
9.15 Terminal Questions

9.15.1 Short answer type questions

9.15.2 Long answer type question

9.1 OBJECTIVE

After reading this unit you will be able to:

e Know about inverse functions, inverse circular functions, and
inverse hyperbolic functions.

¢ Relation between inverse hyperbolic and circular functions

e Find logarithm of complex quantity and some important results of
logarithm.
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9.2 INTRODUCTION

In the last unit we studied about the circular function and
hyperbolic functions of complex numbers and we separate their real and
imaginary parts. Inverse of these functions of complex numbers is of
equally importance as it provides us help to solve trigonometric equations.
We already know about the inverse trigonometric functions on real
numbers that this is the extension of it.

9.3 INVERSE FUNCTIONS

If sinfd=z2 = 6 =sin"z

So here @ is called the Inverse functions of z .that is

sinH:%, then ¢9=sin‘1%, therefore@ is called the Inverse

functions of % )

Similarly, we can define inverse function cosé, tané, cotd, secd,
cosecé etc.

9.4 INVERSE CIRCULAR FUNCTIONS OF
COMPLEX QUANTITIES

Suppose sin(x-+iy) =u-+iv,then (x+iy)is said to be the sine inverse of
(u+iv) and is denoted bysin ™ (u+iv) . Thus

sin(x+iy)=u+iv. = (X +iy) =sin " (u+iv)

Also, if sin(x+1iy) =u+iv, then
u+iv =sin[nz+ (-1)"(x+iy)], Where n is any integer.
Therefore the general value of inverse sine of (U+1iv) is
[nz+ (D" (x+iy)],
Therefore the inverse sine of (u+iv) is many-valued function. Its

principal values of [nz + (-1)"(x+1y)] is that for which the real part lies
between — % and%. The principal value is denoted bysin = (u +iv) , then

sin (U +iv) = nz + (=1)" sin (U +iv)
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Similarly if cos(x +1iy) = u +iv, then the general value of cosine inverse of
u-+iv is

cos (U +iv) = 2nz £ cos (U +iv)
and the principal value is that for which its real part lies between Oand .
Again, if tan(x+1y) =u +iv, then the general value of tangent inverse of
u+iv is

tan (U +iv) = nz +cos (U +iv)

and the principal value is that for which its real part lies between —%and

O oy

5 INVERSE HYPERBOLIC FUNCTIONS

Let x and y be any two complex numbers. If y =sinh X, then x is said to
be the inverse sine hyperbolic of y and is

x=sinh "y
The other inverse hyperbolic functions cosh™vy, tanh "y, coth ™y,

sech™y, and cosech™y are defined similarly.

The inverse hyperbolic functions can also be expressed as the logarithm
functions as

(a) To prove that sinh ™ x = log (x + \/x2—+l)
Proof: Let sifh*x=y =  x=sinhy
ey _e*y
2
N e? —2xe’ —-1=0 (This is
quadratic in e”)

— X = = e’ —e”V =2x

= e’ (Taking logarithm and

2
_ 2Xi\/;‘rx +4 :Xi\/m

positive sign only)

= y =log (x + \/x2—+1) =
sinh ™ x = log (x + \/x2—+1)

(b) To prove that cosh™ x = log (x + \/xz——l)

Proof: Let cosh™*x=y =  x=coshy
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e’ +e”’
X =
2
= e? —2xe’ +1=0 (This is

quadratic in e”)

= = el +e7¥ =2x

=

/ 2
eV :wzxidxz -1

(Taking logarithm and

positive sign only)

= y:Iog(xi\/xz——l) =
cosh™ x = Iog(x+\/x2 —1)

(c) To prove that tanh ™ x = 1 log 1+x
2 "1-x
Proof: Let tanh*x=y =  x=tanhy
ey —_ e’y
= X =
el +e”
Applying componendo and dividendo, we get
y
= 1+_x:e_:ezy = 2y:Iog[1+—Xj
1-x e’ 1-x
(Taking logarithm)
= y= 1 log (“—X] =
2 1-x
tanh * x = 1 log (“—X)
2 1-x
L 4 1 X+1
(d) Similarly, we can prove that coth™ x = 5 log 1
X —
[ _ 2
(e) To prove that sech™x = log {uj
X
Proof: Let sech™x=y =  x=sechy
2 2e’
= X = = X =
e’ +e”’ e? +1
=N xe” —2e’ +x=0 (This is

quadratic in e”)

oy _ 2+V4-4x* _1+y1-x°

2X X

=
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1++/1-x? _ .
= e’ = — (Taking logarithm and

positive sign only)

(1+\/1—7J

= y =log =
4 [1+ V1-x? j
sech™x = log A
(F) Similarly, we can prove that cosech™x = log (H— T)(ZJ
9.6 RELATION BETWEEN INVERSE

HYPERBOLIC AND CIRCULAR FUNCTIONS

(@) If x=sinh y, then
ix = isinh y = sin(iy) = iy =sin (ix)
= y = %sin 2(ix) = —isin '(ix) =
i

y =sinh ™ x = —isin 7 (ix).
(b) If x=coshy, then

x = cos(iy) = iy = cos ™" x
1 .
= y=-cos'x=-icos'x. =
i
y=cosh™ x=—-icos™ x
(c) If x=tanhy, then
ix = itanh y = tan(iy) = iy = tan 7 (ix)
= y = 1tan T(ix) = —itan'(ix) =
i

y = tanh " x = —i tan ' (ix).
Example 1. Separate sin *( +i/3) into real and imaginary parts.
Proof: Let  sin (a+if) = x+iy =
a+if =sin( x+iy)
= a +1f = sin xcosiy + cos xsin iy
=sin xcosh y +icos xsinh y
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Equating real and imaginary parts, we get
a =sin xcosh y

and p =cosxsinh y

We know that cosh® y —sinh >y =1
From (1) and (2), we get

) (a4 -
sin X COS X

= a’® cos® x— 3% sin® x =sin ? xcos® x
= a’(@-sin®x)— B%sin*x =sin? x(L—sin * x)
= sin*x—(a®+ B> +1sin*x+a’ =0 (This is
quadratic equation insin * x)
L, @+ B+ (@ + fE+1)? -4’
Sin®x =
2
2 2 2 2 2 4.2
_ sinx=\/(a + 2+ (@ + P +1)? - ba
2
2 2 2 2 2 4.2
_ x:sinl\/(a + P )+ (@ + 2 +D)? - da
2
We know that sin?x+cos®x=1
2 2
= « + _ﬁ =1 (From
coshy sinh y
(1) and (2))
= a’sinh ? y+ 8% cosh? y =sinh ? ycosh? y
= a’sinh 2 y + B%(L+sinh ? y) =sinh ? y(1+sinh * y)
= sinh * y—(a® + > =1)sinh > y— 8% =0(This is quadratic
equation insinh ? y)
L, (@D (@ + fE 1) + 4B
sinh “y =
2
2 2 _ 1y 4 2 Y 2
_ sinhy:\/(a +p2 -1t (@® + 7 1) +4p
2
_ ) sih l\/(a2+ﬁ2—1)i\/(a2+ﬂ2—1)2+4ﬂ2
2
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(@ + B2 +1) £4/(a’ + B2 +1)° —4a?
2
(@% + B2 —1) £/(a’ + f2 —1)? + 487
2
Example 2. Separate tan " (« +if) into real and imaginary parts.

Real part =sin ™ \/

Imaginary part= sinh \/

Proof: Let  tan'(a+if)=x+iy

............... (1)
= (a+i1p) =tan(x +1y)
So that (a—1p) =tan(x —1y)
3 . oy tan(x+iy) +tan(x —iy)
Now, tan 2x = tan[(x +iy) + (x —1y)] = L tan(x + iy) an(x _iy)
_a+iftra-ip 2a
C1-(a+if)a—-ipf) 1-a®-p?
= tan 2x:2—a =
1—a? —,32
2x:tan1(2—a}
1— a2 _ﬂz
1 _1( 2a j
= X==tan"| ——
2 1-a® - p?
................. (2)

And tan2iy = tan[(x +iy) — (x —iy)]
_ tan(x +iy) —tan(x —iy)
1+ tan(x +iy) tan(x — iy)

_ a+if—-a+ip _ 2i8
I+ (a+if)a—-ip) 1+a’+ p?
= itanh2y:l+;2i—’6:rﬂ2 =
tanh2y:$
= 2y:tanh‘l(ﬁ] =
y = %tanh 1(“0522—’1,8"} .......... (3)
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tanl(a+iﬂ):%tanl(2—“j+ltanh1[ 2p j

1-a?-p*) 2 1+a® + p?
S X—a i, a
Example 3. Show that tan 1(| —j =——log—
X+a 2 "X
Solution: Let tan ‘1(i x—aj =y =
X+a
(iﬁjztany
X+a
(x—aj 1 ,
= —— |=tany=-itany =
Xx+a) i

X—a) —isiny
[x + aJ ~ cosy
By using componendo and dividendo, we get
(x+a)—(x—a) cosy~+isiny

j—y - . .
(x+a)+(x—a) cosy—isiny
iy
= 2a_ ef —  2_¢% (Taking logarithm)
2x e X
= 2ly = Ioge[— =

Example 4. Show that
(@) cosh™ V1+x* =sinh ™ x (b)

cosh‘1\/1+x2:tanh‘1[ X J
V1+x?

Solution: (a) Let cosh*V1+x% =y

= V1+x? =coshy

On squaring on both sides, we get
1+x? =cosh? y =

x> =cosh®y—1=sinh?y
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= x=sinh y =
y =sinh ™ x
cosh™v1+x? =sinh *x
[By equation (1)]
(b) Dividing (3) by (2), we get
silhy X N
coshy 1+x?
X
tanh y =
V1+x°
= y = tanh 1( X ] =
1+ x?
cosh™ 1+ x* = tanh 1( X J
V1+x?

Example 5. Prove that

tan ™ (cot @ tanh ¢) = 1 log w
21 " sin(@—ig)
Proof: We have

R.H.S.zilogw
2i T sin(0—ig)

—llo sin & cos(i¢g) + cos@sin(ig)

~2i° sin Ocos(ig) — cos Osin(ig)

B llog sin @ cosh ¢ +icos@sinh ¢
2i " sin @cosh g —icos@sinh ¢

(Divided bysin @cosh ¢ )

=1Io 1+icot@tanh ¢

2i ~1-icot@tanh ¢
:}(lloglﬂcowtanhq
2 “1-icot@tanh ¢

= Tltanh “(icot@tanh ¢)

MT(N) 121
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Now, Let  tanh '(icot@tanh ¢) = x

icot@tanh ¢ = tanh x = %tan( iX)
i

[ tan(i6) = itanh 6]

= i% cot@tanh ¢ = tan(ix) =
—cot @ tanh ¢ = tan(ix)
= ix = tan ™ (—cot A tanh ¢) =

iXx = —tan " (cot @ tanh ¢) (From 2)
tanh(i cot @ tanh ¢) = —tan ~* (cot & tanh ¢)

From equation (1) and (3), we get
Hence, tan (ot Otanh ¢) = — log S *19)

2i T sin(@—ig)
Example 6. Prove that

tan(cosO+isin 0) ="+ 7 4+ Liog tan[ £+ 2
2 4 2 42

Solution: Let tan™(cos@ +isin 8) = x +iy

................ (1)
= (cos @ +isin 8) = tan(x +iy)
So that (cos @ —isin @) = tan( x —iy)
Now tan 2x = tan[(x +iy) + (x —iy)] = tan(x +ly) + tan(x — iy)

1—tan(x +iy) tan(x —iy)
_ cos@+isin @+cosd—isin O
1—(cos @ +isin 8)(cos 8—isin &)

B 2cos6 _2cos¢9_2005¢9_oo
1-(cos*@+sin?0) 1-1 0
= tan 2x =0 = 2X:n7[+£ = X:n_ﬂ+£
2 2 4

tan 2iy = tan[(x +iy) — (x —iy)]
_ tan(x +1y) —tan(x —iy)
1+ tan( x + iy) tan( x —iy)
_ Cos@+isin @—cosf +isin 6
1+ (cos @ +isin 8)(cos 8 +isin O)
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2isin 0 2ising . .
= > ——— = =1isin @
1+ (cos® @ +sin“ 0) 1+1
= itanh 2y =isin & =
tan 2hy = sin &
e2y _e_2y
= ————-=58ing =
e? 4o

e? +e® 1
e —e® sing
By using componendo and dividendo rule, we get
e” 1+sin@

oh _ 1+sin 0

= - = = -
e? 1-siné 1-sin @
1
2y [1+sin0j2
= e = - =
1-sin@
2y _llog(1+sin «9)
2 1-siné@
,0 . ,0 . 0 0
1 COS° —+SIn“ —+2sin —C0S —
- Zlog 2 2 2
,0 . ,0 . 0 0
COS° —+SIn“ ——2SIn —C0S —
2 2 2 2
2
cosg +sin Q cosg +5sin Q
1 2 2 1 2 2
=Zlog =2x—log
2 0 o) 2 ( 0 .Hj
cos— —sin — Cos_ —sin
( 2 2} 2 2
1+tang
2 7 0
= 2y =log—< =log tan| — +—
( 0) 4 2
1-tan—
2
= y—llogtan(zjtgj
2 4 2

Hence from (1) tan " (cos @ +isin ) = x + iy

. i %
tan ' (cos @ +isin H)Zn—”+£ + —log tan 72
2 4 2 4 2

. X
Example 7. Prove that sinh* x = tanh ™
V1+x?

Solution: Let sinh* x =y, then x =sinh y
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=tanh sinh y

X
V1+x? \1+sinh?y

= tanh 1( sinh y] =tanh *(tanh y) = y =sinh * x =
coshy

Now, R.H.S.=tanh™

L.H.S.
Example 8. If x > y,then prove that

tan’l ﬂ :£+L|Ogﬂ
X—1y 4 2 X—Y

Proof: Let A+iB =tan ‘1(ﬂ]

X—1iy
................ (1)
_gn | XY X+
X—1y X+iy
- 2 2 - 2 -
gt ) :tanl[x + ) EZIxyj
X“+y X“+y
2 2
= AJrithan{Xz_y2 +i 22xy2j
X“+y X“+y
22
So that A—ithan‘l[X2 yz—l szyzj
X“+y X“+y
Now tan 2A =tan[( A+iB) + (A—iB)]

_ tan(A+iB) +tan(A—-iB)
1-tan(A+iB)tan( A—iB)

x> —y? . 2xy x> —y? . 2xy
(X2+ PR 2]+( 2 2 V3 2
y X" +Yy X" +Yy X" +y

xX>—y? o o2xy [ x*-y? . 2xy
1- 2 PN 2 2 2 1 2
X" +Yy X +y X +y X +y
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Xz_yz
Leov)
X“+y
(X y2)2 . 4X2y2
(x*+y%)?*  (X*+y?)?

2 2 2
{50 z(xz .
X“+y° )  A\X“+y

MT(N) 121

= = = o0
(x? +y?)? 1-1
1- 2 212
(X +y°)
tan2A=tan% = A=Z
Again tan 2iB = tan[( A+iB) — (A—1iB)]

_ tan(A+iB) —tan(A—-iB)
1+tan(A+iB)tan( A—iB)

x> —y® . 2xy X2 —y* . 2xy
X2 + 2 T3 2 |7 | o2 213 2
y X +y X +y X +y
X% —y? i 2xy x> —y? . 2xy
1+ %2 + 2 2 2 2 13 2
y2 o X2+ y? A x*+y X +y
i 4xy
x* +y°
((X y2)2+ 4x2y2 ]
(x*+y%)?* (X +y?)?
i 4xy i 4xy
X2+y2 ~ X2+y2

((x y)J 1+1
(x* +y?)?

. 4xy
Ix2+y2 2X
= tan 2iB = =i y
1+1 X +y?
= itanh 2B =i ny =
x* +y?
tanh 2B = 2xy
x? +y
N e’ —e®®  2xy

e2B +e—2B X2 + y2
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By using componendo and dividendo rule, we get
e*® +e?®)+(e*® -e?®) x*+y’+2xy
(€% +e28)—(e®® —e ) - X2 + yZ - 2xy

- 2 _(x+y)* e _(x+y)
2e7%%  (x—y)? (x-y)?
_ Jo _ (x+) L 28_ig Y
(x=y) (x-y)
B = Ljog X*Y)
2 " (x-y)

Hence from equation (1), we get

tan—l[ﬂ}m:gwa.ogu

X —iy X—Yy
Example 9. Prove that sinh ~*(cot x) = log(cot X + cosecx)
Proof: Let  sinh *(cotx) =y, then cotx =sinh y
.................... (1)
coshy = \/1+ sinh >y = J1+cot® x = cosecx
.................... ()

Adding equation (1) and (2), we get
sinh y + cosh y = cot X + cosecx

ey —e”’ e'4+e”?

= + = COt X + COSecx
2 2
= e’ =cot x + cosecx
(Taking logarithm)
= y = log(cot x + cosecx)
(From 1)

sinh ~*(cot x) = log(cot X + cosecx)
Example 10. If sinh *(0+i¢) = +if,then prove that sin’a and
cosh? £ are the roots of the equation
x> —x(1+6° +¢°)+6° =0.
Solution: We have  sinh *(@+ig) =a +if
So that (@+ig)=sin(a+ip)
= (@+1¢) =sin acosh g+icosasinh g
Equating real and imaginary parts, we have
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@ =sin acosh g

................ (1)
¢ =cosasinh g
............... )
Now, 1+ 6% +¢° =1+sin? acosh? S +cos® asinh ?

=1+sin?acosh? B+ (L—sin? a)(cosh? S —1)

=1+sin*acosh® B +cosh? B —1-sin? acosh? B +sin’a
=sin® o +cosh? S
Thus sin®a+cosh? B=1+6° +¢°

And from (1), we get
6 =sin® accosh?® B

Therefore, sin®a and cosh? B are the roots of the equation
x> —x(L+sin? a +cosh? f)+ 6> =0
From (3) and (4), we get
x> —x(1+6° +¢°)+6° =0.

9.7 LOGARITHM OF COMPLEX QUANTITY

If u+iv=e*", then (x+iy)is said to be logarithm of (u +iv)to the base

e such that
X+1y =log(u +iv)

.................... (1)
Now, (u+iv) =e™ x1
= (U+iv) = eV xe?™ Where
n is an integer
= log(u +iv) = log e** 2" —
log(u +iv) =X+ (y+2nx)i, [.. log e =1]
= log(u +iv) = (x+1y) + 2nza (By
using from equationl)
= log(u +iv) = log(u +iv) + 2nz
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Here logarithm of a complex quantity is a many valued function. When n
= 0 then, log(u +iv) is called principle value. General value can be find by

adding 2nz in principle value and written as Log, (u+1iv).

Log, (u+iv) =2nz +log, (u+iv)

Note: We know that the following result will also be true:
log, mn=log, m+log,n

m
log, —=log, m—log.n
n

n
log, m" =nlog, m

9.8 BY LOGARITHM TO SEPARATE THE REAL
AND IMAGINARY PARTS

Let X=rcosé and y=rsin @
Squaring and adding, we get

X2 +y?=r? = r=x*+y?

And also on dividing, we get

tang =Y = 0 = tan {XJ
X

log, (x+1y) =log, r(cosé +isin 8)
=log, r +log,(cos@+isin &)
=log, r +log,(cos@+isin &)

" _
=log,r+log, e =log, r+i@

=log, Vx> +y? +itantY
X
log, (x +iy) = log, /X% + y? +itanl[lJ
X

and Log, (x+iy) =log \/x* +y? +itan ‘1(XJ+2n7zi
X
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9.9 SOME IMPORTANT RESULT OF THE
LOGARITHM

(a) Logarithm of a real negative number: Let x be a positive real
number so that — x negative real number, we have
—X=Xxx(-1) =xx(cosz+isin x)

= —X=XX elZi

= log(—x) = log x + log ™ = log x + log(cos 7 +isin 7)
= log x + log{cos(2nxz + ) +isin(2nz + 7)}
= log x + log{cos( 2n + 1)z +isin(2n+1)xz}
= log x + log ™™™ = log X + (2n + 1) 7i

= log(—x) = log x + (2n + 1) 7

(b) Logarithm of a real positive number: Let x be a positive real
number, we have
X =Xx1=xx(cos0+isin z0)

= log x = log x + log(cos 0 + isin 0)
= log x + log{cos( 2nz +0) +isin( 2nz + 0)}
= log x + log(cos 2nz +isin 2nx)
= log x + log €™ = log X + 2n7i
= log x = log x + 2n 7z
(c) Logarithm of a purely imaginary number: Let x be a positive real
number so that ix be a purely imaginary number, we have

XI=Xx1=Xx|C0S—+1isin —
2 2

= log( xi) = log x + log (cos% +isin %)

= log x + log {cos(Znn + %) +1isin [Znn + gj}
1 .. 1
= log x + log {cos[Zn + Ejﬂ +1sin (2n + E]n}

1
= log x + log e[z ZJ = log x+i[2n+%}z

= log( xi) = log x+i(2n+%j7z
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Example 1. Express in the term of (a +ib)
@) log, (-5) (b) log, i
(c) log,.5
Solution: (a) log,(-5) =log, {5x (-1)} = log, {5x (cos = +isin 7)}
=log, {5x (cos(2nz + 7) +isin( 2nz + )}
=log, 5+ log, {(cos(2n + 1)z +isin( 2n +1) 7}
=log.5+i(2n+1) 7

(b) We have log, i = Ioge{cos% +isin %}

=log, {cos(Znyz + ZJ +isin (Znn + zj}
2 2
=log, {cos(Zn + %jﬂ' +isin [Zn + %)n}

1) .
=log, e(zmijm = %(4n +1)7i

(c) We have log,, (5) = log, (5x1) = log 5 + log(cos 0+ isin 0)
= log 5+ log{cos( 2nz +0) +isin( 2nz + 0)}
=log 5+ log(cos 2nxz +isin 2nrx)

=log5+loge*” =log5+ 2n7

= log5=log 5+ 2n7
Example 2. Prove that log X+ !y = 2itan* Y
X —iy X

Solution: We know that
log, (x+iy) =log, /X* +y* +i tan‘l(l)
X

Taking LH.S.= log XY
X —1iy

= log( x +iy) — log( x — iy)

= {Ioge X2+ y? +i tan‘{lﬂ—{loge VX2 +y® +itan ‘1(_ Xﬂ
X X

=log, /x* +y® +itan” ( j log, /X% +y? —( tan~* ]
X
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=itan ‘{XJ +itan ‘{XJ = 2itan ‘{X) -
X X X

L 1 . 1
Example 3. Prove that log(1+1i) = 5 log 2 + |(2n + Z}z

R.H.S.

Solution: Let 1+i=r(cosé@+isin &), then
rcosé =1, 1=rsin @

Now, squaring and adding, we get
r2(cos?f+sin’0)=1+1 = r=+2

Again, dividing, we get
rsing 1

== = tangd=1 = 0=
rcoséd 1

1+i= \/E(coszﬂsin E)
4 4

= ﬁ{cos(an + %) +isin (Znn + %ﬂ
= \/E{cos(Zn + %)n +1sin (Zn + %)n}
log(1+1i) = log {\/E{cos(Zn + %)z +1isin (Zn + %)ﬂ':|}

= log {ﬁe(2n+‘l‘}ﬂ} =log v/2 + log e(mﬂm

INGIRS

= 1 log 2 + i[Zn +1j7r
2 4
L1 . 1
= log(1+1i)==log 2+|(2n+—}z
2 4
T .0) .. 4, .
Example 4. Prove that log tan(z +1 Ej =itan " (sinh )

tan ”+tan(i9j
4 2

1-—tan ﬂ.tan(ig}
4 2

Solution: L.H.S. =log tan[%ﬂgj = log
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1+itanh Q

=log
1—itanh 9
2

=log (1+ i tanh Q) —log (1— i tanh QJ
2 2
2L log [1+ tanh QJ +itan l(tanh Qj
2 2 2
e log (1+tanh 2 QJ— i tan 1(tanh QJ
2 2 2
= 2itan 1(tanh gj = i[Ztan ‘1(tanh gﬂ

2tanh€
=i/ tan? 29
1—tanh? =

2

2sinh Q cosh Q
2 2

=jtan* 7
cosh? 5 —sinh 2 =

=itan~'(sinh #) =R.H.S.

Hence, log tan(% +i gj = itan " (sinh )

i 1.
Example 5. Prove that log(1+€' )= Iog(z cosgj +5i0

Solution: L.H.S. =log (1+ e‘9)= log(1+ cos @ +isin )

= log- 2 cos? Q+ (Zsm Qcosej
2 2 2
0 e .. 0
=log42cos—| cos—+isin —
2 2 2
i@ 0
Iog{Zcos—( Zj} log Zcos Iog(eZJ
2

Iog(Zcos 2) Q =R.H.S.
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Hence, log(L+e” )= Iog(Zcosngr%iH

. 1 .
Example 6. Prove that log(1+1i) = 5 log 2+ (Znn + %)I

Solution: We know that

log, (x+iy) =log, yX* +y* + i{Znﬂ+ tanl(lﬂ
X
Here x=1 y=1
log, (1+i) = log, v1* +1* + i{Znﬂ+ taanﬂ

=log, v/2 +i(2n7 +tan"11)

:3I0992+i(2n7r+£j
2 4

Hence, log(1+1) :%Iog 2+(2n7r+%]i

Example 7. Separate log sin( x +iy) into real and imaginary parts.
Solution: We have
sin( x +iy) = sin xcos(iy) + cos xsin( iy)
=sin xcosh y +icos xsinh y
=> sin xcosh y +icos xsinh y = r(cosé +isin 6)

Equating real and imaginary parts, we get
sin xcosh y = rcos @

Adding and squaring (1) and (2), we get
r?(sin? 6 + cos® @) = sin > xcosh? y +cos” xsinh * y

r’ = %[(1— cos 2x)(cosh 2y +1) + (1+ cos 2x)(cosh 2y —1)]
= %[2(cosh 2y —cos 2x)]

r’ = %[(cosh 2y —c0s 2X)]

And again divided (2) by (1), we get

Department of Mathematics
Uttarakhand Open University Page 297



Algebra, Matrices and Vector Analysis MT(N) 121

rsin @ cosxsinh y
rcos¢ sin xcoshy
tan @ = cot xtanh y

Now, sin( x +1iy) = r(cos @ +isin @) = re"’
log sin( x +iy) = log re"’
=logr+loge’ e® =logr+(2nz + O)i

log sin( x +iy) = log \/% (cosh 2y —cos 2x) + i[2n7z +tan " (cot x tanh y)]

X% — y?2

Example 8. Prove that tan(i log X

—1iy 2Xy
X+1y

Solution: Let x=rcosd, y=rsind

i i i -6
Now x—!y:r(cose—!s!n H)Ze. _ o0
X+iy r(cos@—ising) e
And dividing, we get
rsmazl N tan@:l
rcosd x X
Taking L.H.S, _ tan[i 0g x—!yj _an(ilog e
X+ 1y
= tan(i(-2i6)) = tan(-i% (20))
0¥
1-tan?é y2  xt-y?
1-75
X
Hence, tan(i log 2= 'y] = 22xy .
X+ 1y X —y

Example 9. If log, sin( x+1y) = & +i4, then prove that

1 (cosh 2y—c052x)
—log,
2 2

o =

Solution: From example 7,

log sin( x +iy) = log \/% (cosh 2y —cos 2x) + i[2n7z +tan ~*(cot x tanh y)]

Department of Mathematics
Uttarakhand Open University Page 298



Algebra, Matrices and Vector Analysis MT(N) 121

Hence, a = log \/% (cosh 2y —cos 2x) =% IOQ(COSh 2y ~cos ZX]

2
Example 10. If log, sin(8 +i¢) = a +if, then prove that
b= lloge cos(€ — )
2 cos(d + )

Solution: Given that

log,sin(@+ig)=a+ip

log , [sin &cos(ig) + cosOsin(ig)|=a +ip
sin @cosh ¢ +icos@sinh ¢ = e

sin @cosh ¢ +icos@sinh ¢ =e“e"”

R R

sin @cosh ¢ +icos@sinh ¢ =e”(cos B +isin J)
Equating real and imaginary parts, we get
sin dcosh ¢ =e“ cos S

Divided (1) by (2), we get
sin dcoshg e“ cos f3
cos@sinh ¢ e“sin B
~  cothg= C(_)s¢9c_os,6’ - e’ +e:”’ _ C?S@C-Osﬂ
sin @sin S e’ —e? sin@sin
Using componendo and dividendo rule, we get
e’ +e’ +e’ —e? cos@cos S +sin Osin B
e’ +e?—e’ +e?  cosdcos B —sin Osin B

2¢’  cos(0- B) - o2 _ cos(8 - f5)

2 cos(6+ B) " cos(0+ p)
Hence, o= 1 log, {M}
2 cos(@+ )

Example 11. If i*"Y = x+iy, then show that x? + y? = e “"¥7

. . iv) logi (x+iy){2n7r+%:|i
Solution: We have x+iy =e®™'"9 —¢
(x+iy){2n+ﬂ;zi
=e

_ e(ix—y){Zmﬂﬂ
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1 1
{2n+7}zy ix{2n+7}
=e! el ?

9.10 SUMMARY

In this unit, we have discussed the inverse hyperbolic functions are the
inverse functions of the hyperbolic functions. For a given value of a
hyperbolic function, the corresponding inverse hyperbolic function
provides the corresponding hyperbolic angle. Trigonometric functions are
also known as Circular Functions can be simply defined as the functions
of an angle of a triangle. It means that the relationship between the angles
and sides of a triangle are given by these trig functions. The basic
trigonometric functions are sine, cosine, tangent, cotangent, secant and
cosecant. Also, read trigonometric identities here.Since any nonzero
complex number has infinitely many complex logarithms, the complex
logarithm cannot be defined to be a single-valued function on the complex
numbers, but only as a multi-valued function. Settings for a formal
treatment of this are, among others, the associated Riemann
surface, branches, or partial inverses of the complex exponential function.

9.11 GLOSSARY

1. Trigonometric functions: A function of an angle expressed as the
ratio of two of the sides of a right triangle that contains that angle;
the sine, cosine, tangent, cotangent, secant, cosecant.

2. Logarithm: Inverse function to exponential.

3. Inverse hyperbolic functions:Inverse functions of the hyperbolic may
be solved in terms of €, the square root and the logarithm.
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9.13 SELF ASSESSMENT QUSETIONS

9.13.1 Multiple choice questions:

1. Value of sinh ™ xis
(@) log{ x+~/x* +1} (b) log{x++/x* -1}
(© lIog [“—Xj (d) None of these
2 1-x
2. If tan l(z—lzJ =tan " (2n +1) —tan ' y, then the value of y is
n
@ n-1 (b) n+1
() 2n-1 (d) 2n
3. If tan Y — =tan*(n+1)—tan™"y, then the value of y is
1+n(n+1)
(@ n (b)1
(c) n+1 (d) 2n-1
4. The real part of sin *(cos & +isin 6) is
(a) cos™+/sin @ (b)
log{~/sin 6 +~/1+sin &
(c) sin *+/sin @ (d)
log{~/cos & + 1+ cos &
5. If X> 0. then 109(=X) s equal to
(@) —log(x) (b) —log(x)+irx
() log(x)—irx (d) log(x)+ix
6. The value of log(cos @ +isin ) is
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(@ @ (b) 10
(c) —i@

7. log( +i) is equal to
(a) +i (mi%m
(c) +x

8. The general value of log /i is

(@-%@n+nd

m)@)%mn+nm

ANSWERS:
l.a 2.C 3.a
5.d 6.b 7.b

9.13.2 Fill in the blanks:

Value of log(1+¢€'") is

If z=re', then log z is equal to
The value of sec™ x + cosec 'x is
2X
1-x
The value of log(-1) is
The value of log(1+i)is

o ~ w N oE

The value of tan™ = s

The relation betweenlog, zand log, z is

MT(N) 121

d) -6

(d) +27i

m)%@n+nﬁ

(d)%(mm+nm

If log(x—iy)=A+iBwhere A and B are real, then

ANSWERS:
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L 2. 3.logr+io L7
i log, z :
Iog(Zcosgjq.ﬁ Iogaz:L 2
2) 2 log. a
-1
5.2tan" x 6'_Ei 71_ 1
i 4 2, \,2

Zlog2+i| 2nz += | A==log(x* +
5 g +I( 7z+4j 5 o( y?)

9.14 SUGGESTED READINGS

1. Das & Mukherjee - higher trigonometry, Pragati Prakashan Pvt.
Ltd. Meerut.

2. Vasishtha A.R.- trigonometry, Krishna Prakashan,Media (P) Ltd.
Shivaji road, Meerut.

3. Bali, N. P.; Trigonometry, for B.A/B.Sc. Classes (1st Edition),
New Delhi: Laxmi Publication Pvt. Ltd.

4. Kishan, Hari (2005); Trigonometry; (1st Edition), New Delhi:

Atlantic Publishers.

Mapa, S. K.; Higher Algebra (Classical).

Ray, M. & Sharma, H. S.; A Text Book of Higher Algebra.

Vasistha, A.R. & Sharma, S. K.; Trigonometry.

Vasistha, A. R.; Matrices; Meerut: Krishna Prakashan Mandir.

o

9.15 TERMINAL QUESTIONS

9.15.1 Short answer type questions

1. Prove that sin ~(cosecd) = %+ i log cotg
2. Separate into real and imaginary parts sin *(cos & + isin 6)
3. Prove that tanh ~*(sin 8) = cosh ™ (sec )
If tan(@ + ig) = sin( x +iy), then prove that
coth ysinh 2¢ = cot xsin 26.
5. Prove that tan™ 3_2! =£+llogS
3+21 4 2
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6. Prove that tan *(sinh X) = 1 log tan (% + %)
i

7. Prove that, (a) tanh 1(tan gj = 1 log tan (Z + Qj
2) 2 4 2

(b) coth * (2cosec®x —1) = log(sec x), if -~ <x<Z
2 2

8. If cos™(u+iv) = +if,then prove that cos’« and cosh? g are
the roots of the equation
x> —(@+u®+v*)x+u®=0.
9. If cosh x =secé, then prove that x = log(sec 8 +tan #)
10.  Prove that sinh ™ (cot x) = log(cot X + cosecx)

11.  Prove that tan ' (cos@ +isin 8) =nr +%—%Iog tan(%—gj

12.  Prove that sin " (cosech) ={2n + (—1)“}% +i(-1)" log cotg .

13.  If sin '(cos @+isin @) = x+iy, show that
(a) x =cos*+/sin & (b)
y = Iog(Jsin 0 + 1+ sin 9)
14. I cosh™(x +iy)+cosh™(x—iy) = cosh ™ a,
prove that 2(a—-1Dx*+2(a+1)y*=a’-1
15.  Prove that tanh ~*(cos @) = cosh *(cos ecd)

16.  Solve the general value of log, i.

17.  Express log, (=3)in the term of a+ib.
18. If log,sin(@+ig) =a+ip, then prove that
c0s 20 = cosh 2¢ — 2e**

ANSWERS: 2.cos™ v/sin @ +ilog[/sin 6 +v/1+sin 6]

11. Hint: tan " (cos @ +isin 8) = nz +tan " (cos & +isin &)

(4n+1)

12.  Hint:  sin "(cosecd) = nz +(-1)" sin *(cosecd) 16. i 17.

log, 3+ (2n+1)7
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9.15.2 Long answer type questions

1. If log, log.(x+1y) =a +ip, then show that

y= xtan(tan Blog, /x* + y2)

. 4dm+1 .
2. Prove that log,i= il where m and n are any integers and
+

i=/-1
3. Prove that

(@log, (-1) =iz (0)log. i =" (©)
ilog, X—_!=7z—2tan‘l X

X+1
4. Prove that log, % = Ioge[lcosecgjﬂ z_ 0
1-¢' 2 2 2 2

5. Show that

1 cosh 2y — cos 2x

log, sin( x +iy) = 5 log, +itan"(cot x tanh y)

6. Prove that

log, (a=b)+ !(a+b) = i[2n7z+tanl _2ab j
(a+b)+i(a—b) a?—b?

7. Prove that log, M = 2i tan *(cot x tanh y)
sin( x—1y)
8. Prove that log.(cos@+isin @) =i6, if —r<O<m.
9. Prove that log,(1+itan &) =log, secd+io.
10.  Prove that log, (1+cos28 +isin 26) =log,(2cosb) +16,
if —r<0<m.
11.  Prove that
log, (log, sin( x +iy))= %Ioge(p2 +q?) +i tanl(ﬂJ
P
Where. o= %Ioge(COSh 2y2— CoS ZXJ and

q =tan " (cot x tanh ).
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BLOCK IV: SUMMATION OF SERIES AND
INFINITE PRODUCT
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UNIT 10: SUMMATION OF SERIES

CONTENTS:

10.1
10.2
10.3
10.4
10.5

10.6
10.7
10.8
10.9
10.10
10.11
10.12

10.13
10.14
10.15

Objectives

Introduction

Expansion of Trigonometric Functions
Summation of sines and cosines series
Summation on Geometric Progression or Arithmetic O-
Geometric Series

Summation depending upon Binomial Series
Summation depending upon Exponential Series
Summation depending upon Logarithmic Series
The Difference Method

Summary

Glossary

Self assessment questions

10.12.1 Multiple choice questions

10.12.2 Fill in the blanks

References

Suggested readings

Terminal questions

10.15.1 Short answer type questions
10.15.2 Long answer type question

10.1

OBJECTIVES

After reading this unit you will be able to:

Expand trigonometric functions

Find summation of sine and cosine series by using
(1 Geometric progression

(i)  Binomial series

(ili)  Exponential series

(iv)  Logarithmic series

Find sum of series by the difference method.
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10.2 INTRODUCTION

In this chapter, we shall study with the expansion and summing up
finite or infinite trigonometric series. There are two different methods for
summation, known as the C +iS method and difference method. First we
shall discussexpansion of Trigonometric series and again summing up
trigonometric series with C +1S method and difference method.

10.3 EXPANSION OF TRIGONOMETRIC
FUNCTIONS

(a) Expansion of sinn@ and cosné in the powers of sin & and
cosé

Trigonometric Functions can be easily expansion of sin ng and cosné in
the powers of sin & and cos@ with the help of De-Moivre’s theorem, such
that

Mathematically, cosn@+isin n@ = (cos@ +isin 9)"
By Using the Binomial theorem, we get

cosn@ +isin n@="C,(cos )" +"C, (cos 8)"*(isin #)+"C,(cosd)"?(isin 9)*

+"C,(cos @) 2 (isin 0)° +...ccovennnn. +"C, (cos@)" " (isin G)"

=cos" @ +i"C, cos"* @sin 6+"C, cos" > @sin? & —i"C, cos"> Osin* O

+"C, cos"*sin* +"C, cos" " sin® G +............. +(isin 6)"

= (cos” 0-"C, cos"*@sin? 6+"C, cos"* @sin * 6—"C, cos"* Osin ® 6 + )

+i("C, cos™* Bsin 6-"C, cos"* Osin* 6+"C, cos"* Osin® O —......)

Equating real and imaginary parts, we get

cosn@ = cos" H—"C, cos"? @sin > 9+"C, cos"* @sin * 9-"C, cos"°® Osin ® G +

1)
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sin n@="C, cos"™" @sin H-"C, cos"* dsin® 9+"C, cos"° sin° O —..................
)

Now every sin * @ replace by (1—cos®#) in (1) and every cos® @ replace

by (1-sin®@) in (2), we get the expansions ofcosné in the powers of

cosé and sin n@ in the powers of sin 6.

Dividing (2) by (1), we get
sinng  "C,cos" " @sin 6-"C,cos"* Fsin® 9+"C, cos"° Osin® O — ................
sihnd  cos" 6-"C, cos" 2 @sin 2 6+"C, cos"* Osin * 6—"C, cos"° Osin® G +..........

Again dividing numerator and denominator by cos" € , we get
"C,tan 6-"C, tan® 6+"C, tan® @ —..................
1-"C, tan’ 6+"C, tan* 9-"C,tan® @ +..........
Example 1. Expand cos66 and sin 6@in terms of cosé and sin 4.
Solution: We have  cos66 +isin 68 = (cos & +isin 6)°

By Using the Binomial theorem, we get

tann@ =

cos 60 +isin 60 = cos® 6+°C, cos® O(isin §)+°C, cos* O(isin 8)*+°C, cos® O(isin 6)°
+°C, cos® G(isin 8)*+°C, cosO(isin 8)°+°C, (isin 9)°

= cos® @ + 6i cos® @sin & —15cos* @sin > @ — 20i cos® Hsin ® 6
+15c0s” @sin* @+ 6icosfsin® G —sin® @
Equating real and imaginary parts, we get
c0s66 = cos® & —15cos* @sin > @ +15cos* @sin* @ —sin° @
sin 66 = 6.¢os°® @sin 8 — 20cos® Fsin > 6 + 6¢cosPsin° &
Example 2. Expand tan 56 in the powers oftan 4.
Solution: We know that
"C,tan 6-"C, tan’® 6+"C  tan® @ —..................
1-"C, tan® 6+"C, tan* 9-"C, tan® @ +..........
°C, tan 6-°C, tan® 9+°C_ tan® 6
1-°C, tan’ +°C, tan* @
_ 5tan@-10tan’ O +tan® O
~ 1-10tan?@#+5tan*
sin 660
cosé

tann@ =

tan 56 =

Example 3. Prove that =32sin° @ —32sin*  + 6sin 6.
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Solution:We know that
sin n@="C, cos" ™ @sin 6—"C, cos" > @sin > 9+"C, cos"* Osin° 9 — ...
sin 660="C, cos®™ @sin 9-°C, cos® gsin ® 9+°C, cos®® gsin ° 9
[Now putn=6]
=6c0s® @sin @ —20cos® Gsin > @ +6cosPsin® 6
sin 60 6¢os® Osin @ — 20cos’® Osin ° @ +6cos Osin ° O

Now, L.H.S.= =
coséd cosé
_ 6cos’ fsin & 20cos’ Gsin* 4 , Bcososin °0
coséd cosé cosé

=6cos” @sin  —20cos® Gsin® @ +6sin° O
=6(cos’ 8)*sin @ —20(1—sin > H)sin® @+ 6sin° 6
=6(1—sin?#)*sin @ —20(L—sin > H)sin* § +6sin°

=6(L+sin* @ —2sin?H)sin @—20(L—sin?H)sin*H+6sin° o

=6sin @+ 6sin° 9 —12sin> & —20sin> @ + 20sin > &+ 6sin > &
=32sin° @ —-32sin® 6 +6sin .

Exercise 1
1. Expand sin 48in terms of sin 6. Ans.:
4cos® @sin @ —4cos@sin® 6
2. Expand tan94in powers oftan 4. Ans

_ 9tanH-84tan’ @ +126tan° H—36tan’ & +tan’ &

1-36tan? @ +126tan* & —84tan® & +9tan® @
3. Prove that:

(a) sin 76 = 7sin @ —56sin° 6 +112sin ° @ —64sin ' 6

(b) sin 70 = 7cos® @sin & —35cos* Gsin > @ + 21cos” sin® & —sin " &
sin 76

© cosé

(d)

sin 80 = cos® @ — 28cos® @sin? &+ 70cos* Gsin * & — 28cos® Asin ® @ +sin® @

(e) 1+ cos106 = 2(16cos® @ — 20cos® 8 + 5c0s 6)?

4. Prove thatcos 48 = cos* @ —6cos” Asin* @ +sin* 6

=7-56sin20+112sin* 0 —64sin° 6.
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sin 66
cosd

5. Prove that =32sin° @ —32sin* @ + 6sin 6.

(b) Expansion of cos" @ andsin" ¢ in terms of sines and cosines

of multiples of 8
Mathematically, we can explain

Let X =C0sé +isin 4, then 1:cose—isinﬁ
X
1
X+—=2c0s6 and
X
X 1 =2isin
X
Again x" =cosn@+isin no, and
in =cosné@ —isin n@, then
X
a1
X" +—=2cosnd and
X
X" —in =2isinné
X
: : 1Y’
To expand cos” @ : start from (2cos0)" = (x+—j
X
. . . 1 , 1
Expand right hand side and substitute the value of [x + ;), (x + 7)
etc.
To expand sin" @: start from (2isin 6)" = (x —%)

2

Expand right hand side and substitute the value of (x —%) (xz - Xij

etc.
Example 1. Express sin ° @in the terms of sines of multiples of &

5
Solution: We Know (2isin 9)° = [x—a
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=

2 3 4 5
32isin® 0 =x° +5x4(— 1] +1Ox3(— l) +1Ox2(— Ej +5x(— 1) +(— 1)
X X X X X
= (XS —%)—S[XE’ —%)+10(x—lj
X X X

= 2isin 50 —5(2isin 39) +10(2isin 8)
= 165in ° @ = sin 50 — 5sin 36 +10sin 6 =

sin®@ = %(sin 56 —5sin 39 +10sin 6)

Example 2. Prove that

— 2" cos® @sin 7 @ = sin 130 —sin 116 — 6sin 96 + 6sin 76 +15sin 56 —15sin 30 — 20sin &
Solution: We have
x" =(cos@+isin )" =cosnd+isin né,

in: (cos@+isin 8)" =cosnd—isin ng

x“+in=2(:osn6? and x”—in:Zisin no
X X

e J{) b5
et (‘x—)”f'm (3] vaoe{ -4 sase( -]
RORI

:[ —6x® +15x* — 20+ 15 6+i}(x—1j

8 12

x* x® X X
=x" -6x° +15x° —20x+E—£7+%—x +6x" —15x° 20 1? %—ils
x> X" X X X2 X X

= (x“’ - %j - (x” - %) - G(X9 - X—lgj + 6(X7 — X—17j +15(x5 ~ X—lsj —15(x3 - X—lsj - ZO(X - %)
= 2isin 130 — 2isin 110 + 6(2i sin 96) + 6(2isin 70) +15(2i sin 58) —15(2i sin 39) — 20(2i sin 8)
- —2%cos®@sin’ @ =sin 130 —sin 116 + 6sin 96 + 65sin 76 +15sin 56 —15sin 30 — 20sin &
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Exercise 2

1. Express sin ’ @in the terms of sines of multiples of 6.
Ans.:

- 6—14(sin 76 —7sin 50 +12sin 30 — 35sin 0)

2. Express cos® @ as a sum of cosines of multiples of 6.
Ans.:

% (cos80 +8cos 66 + 28cos 46 + 56 cos 26 + 35)

3. Expand cos® @ sin’ @ in the series of sines and of multiples of 8.
Ans.:

- % (sin 126 — 2sin 100 — 4sin 86 +10sin 66 + 5sin 46 — 20sin 20)

4. Prove that:

(a) 2’ cos® @sin® @ = sin 80 — 2sin 60 — 2sin 46 + 6sin 26

(b) sin® @ =27 (cos80 —8cos 66 + 28¢0s 46 — 56 ¢os 26 + 35)
(c) 32sin* @cos® @ = cos68 — 2¢c0s 46 —cos 20 + 2

(d)sin® @ = 27 (sin 50 — 5sin 30 +10sin 6)

10.4 SUMMATION OF SINES AND COSINES
SERIES

Here, we shall discuss important methods for summing up trigonometric
series which may be finite or infinite. There are two important methods for
summation. These are:

(@) C+iS method (b) The
difference method.

C +1S Method: Sum of cosines series is denoted by C and Sum of sines
series is denoted byS. Now summing the trigonometric method of the
series is connected with some standard series and its effect will be
complex quantities.
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Suppose we have to find C , the sum of cosines series. Then write a similar
series of sines, S. Multiply the sines series by i and add to series of
cosines, we will get the C +iS method is
Sum of series=C +1iS

Consider cosine series

C =acosa +a’cos(a + B) +a’ cos(a +23) +.......
and sines series

S=asina+a’sin(a+p)+a’sin(a+2p)+...
These series may be finite or infinite. Then sum up the cosine and sines
series may be complex
C +iS =a(cosa +isin a) +a*{cos(a + B) +isin( o + B)}+a*{cos(a + 28) +isin(a + 28)} +.......
The sum of series is calculated by using any one of the following series:
(a) Series in Geometric Progression (b) Binomial series or which
can be reduced to it
(c) Exponential series or the allied series  (d) Logarithmic series

10.5 SUMMATION ON GEOMETRIC
PROGRESSION OR ARITHMETIC O-
GEOMETRIC SERIES

We now that a geometric progression is of the form
a, ar, ar?, ar’,........... car” ... 0

Whose common ratio is r, then n™ term is ar"™

Sum of geometric progression in N term is

a+ar+ar’+. rar = 2020) (ifr< 1) or:a.(r _1J(
1-r -

ifr>1)
Sum of geometric progression in infinite series is

a .
a+ar+ar’ 4., 0o = 1—,prOV|ded r|<1
—r

An arithmetic o-geometric series is of the form
a, (@+d)r, (a+2d)r?, (a+3d)r’,.......
Example 1. Sum the series n terms and to infinity
1+acos@+a’cos20+a®coS30+ ... , Wwhere a is less
then unity.
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Solution: Let

C=1+acos@+a’cos20+a’cos3f +......+a"* cos(n—1)@
and

S=asinf+a’sin20+a’sin36+.....+a" 'sin(n-1)8

C +iS =1+a(cos@ +isin ) +a*(cos 20 +isin 20) +....+a" {cos(n—1)& +i(n —1)6}

2,2i0 i(n-1)6

=1+ae'’ +a%e?? ..o, +a" e

This is a geometric series, whose first term is 1 and common ratio isae'’ ,
we get

al-r") 1(1-a"e")
1-r  1-ae”
_(1-a"e'™) y (1-—ae™)
(1-ae"’) (1-ae™)
~ 1_ae_i9 _aneing + a.n+1ei(n—l)19
~ 1-a(e’ +e ) +a%e e

C+iS =

_1-a(cos@+isin #)—a"(cosnd+isin nd)+a"*{cos(n—1)0 +isin(n—-1)0
1-2acosf+a’

Equating real and imaginary part, we get

_1-acosf-a"cosnd+a"" cos(n—1)0

- 1-2acosf +a’

_asin@—a"sinnd+a"" sin(n-1)0

- 1-2acosé+a’

When n —oothen both a" and 2" — 0, we get

~1-acosé

~1-2acosf+a’

B asin @

~ 1-2acosé +a’

Example 2. Sum the series

N cosé N cos 26 N cos 34 N
cosd cos’@ cos’éo

Solution: Let C=1+ cos 0 + c03220 + COSEH T ad.inf .

cos@ cos“ @ cos’éH

_ sin @ N sin 260 sin 30

cosd cos’@ cos’o

C

n

S

n

and

o0

0

1

And S
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(cos@ +isin 9) N (cos 26 +isin 26) N (cos 30 +isin 9) N
cosd cos® 6 cos® @

This is a geometric series, whose first term is 1 and common ratio is

(cos@+isin )

C+iS=1+

, We get
cos@ g
Ctis=—2 = LI
1-r 1_(cos«9+|sm 0)
cosd
cosd

- cos@ —cosd —isin @

icosd _icose

=— =1 =icotd
—i“sin @ sin @
= C+iS=0+icot@
Equating real parts, we get C =0.
Example 3. Sum the series
sin ¢9+%sin 26?+2izsin 304 ., ad.inf .

. ] 1. 1 . .
Solution: Let S =sin ¢9+Esm 20+2—23|n 30+ ad.inf .
and

1 1 )
C:cose+500529+2—2cos30+ .................. ad.inf .

This is a geometric infinite series, whose first term is (cosé +isin 8) and
common ratio is%(cose +isin 8), we get

C4is = a _ cos@ +1sin @
1-r

1—;(c059+isin 0)

2(cos@+isin @)  2(cos@+isin )

2—(cos@+isin§)  (2—cosb)—isin &
_ 2(cos @ +isin 6) ><(2—cos€)+isin6’
(2—cos@)—isin @ (2-cosd)-+isin b
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_ 2[(2cos @ —cos? @ —sin? @) +i(2sin @ —sin @cos O +sin & cos ]
B 4—4c0s8 +cos” @ +sin’ 0
_ 2[(2cos —1) + 2isin 6]
~ 4-4cosf+1
(4cos@—2)+i(4sin 0)
5-4cosé
Equating imaginary parts, we get
_ 4sing
~ 5—4c0s6
Example 4. Sum the series
1+ c0s@cos b + cos” @ cos 26 +cos® AcoS30 + ... ad.inf .
where a is less then unity.
Solution: Let

C+iS =

C =1+c0s0cosd +cos® @cos26 +cos> 0CoS30 + ...coueeennnn... ad.inf .
and

S =cosdsin @ +cos? @sin 260 +¢cos> SN 30 +...occveveenn.. ad.inf .

C +iS =1+ cos8(cos @ + isin 8) +cos® (cos 26 +isin 20) + cos® H(cos 30 + isin 30) +...ad.inf
=1+cosf.e’ +cos? 0.e?? +cos® 0.e¥’ +..ad.inf
This is a geometric infinite series, whose first term is 1 and common ratio

iscos@e' | we get

Cris=2 -1
1-r 1-cos@.e"
B 1 B 1
" 1-cos@(cos@+isin @)  (1—cos® O) —isin Ocos
_ 1 B 1
sin2@—isin Ocosd  sin O(sin & —icos )
_ 1 y (sin @ +icos0O)
sin (sin & —icosd) (sin @ +icosb)
3 (sin @+icosé) _ (sin@+icosO)
sin O(sin 2 @ —i2cos® @)  sin O(sin 2 6 + cos? H)
:(sm H_Jrlcose):“icow N
sin @
C+i1S =1+icoté
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Equating real parts, we get C=1
Example 5. Obtain the sum of the series
3sin @+5sin 20 +7sin 30 +........ to n—terms
Solution: Let S =3sin @+5sin 20 +7sin 30 +........ to n—terms
And C =3c0sf+5c0s20+7c0s30 +........ to n—terms

C +iS =3(cos @ +isin 8) +5(cos 26 +isin 28) +7(cos 3@ +isin 36) +...
n—terms =3 +5e%% + 7% +........... +(2n+1)e"

This is an arithmetic 0-geometric series whose common ratio is €' and
multiplying both sides bye' , we obtain

(C+iS)e"” =3e?" +5e%7 +7e"’ +........... +(2n +1)eV
........ )

Subtracting (1) by (2), we obtain

(C+iS)(1—e'"?)=3e" + 22 + 2% +.......... +2e"? —(2n+1)e™ 7

=e'’ +2fe'’ +e?? +e3’ +......n—terms} — (2n +1)e "V

i0 1 _ Anio ]
ei@ + Ze (1 .e )_(2n+1)e(n+l)|6

1-¢"
=e'’ —(2n+1)e"H? ——2(1_er_"6)
1-e™"
~ Caigo @neDem™  20-e™)
1-e'? (1-e"“)(1-e™)
{e’ -(2n+De™M}1-e77) 2(1-e"?)
- (1-e“)1-e"?) C(1-e?)1-e)
e’ —1-(2n+)e™ +(2n +1)e" —2(1—e"’)
- 1-(e" +e7)+1
. Ciise e’ —(2n+2)e™V + (2n+3)e"’ -3
2(1—cos8)
j
C4iS = (cos@+isin ) — (2n +1){cos(n+1)& +isin(n+1)F}+ (2n + 3){cos n@ +isin nd}—3

2(1—cos )
Equating imaginary parts on both sides, we obtain
sin @ —(2n+1)sin(n+1)6&+ (2n+3)sin nd
2(1—cosb)

S =
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Example 6. Obtain the sum of the series
cos@ +2c0s20 +3c0s30 +........ to n—terms
Solution: Let C =cos@+2c0s20+3c0s30 +........ to n—terms

and S=sin@+2sin20+3sin30+........ to n—terms

C +iS =(cos @+isin @) +2(cos 20 +isin 26) +3(cos 30 +isin 30) +....to

n—terms =e' +2e%% + 3% 4 ... +ne"?

This is an arithmetic o-geometric series whose common ratio is € and
multiplying both sides bye' , we obtain

(C+iS)e" =e?? +2e%7 134 4+ ......... + ne(mie
........ )
Subtracting (1) by (2), we obtain
(C+iS)(L—e") =& +e7 +&™ 4. +e" —ne™"
={e' +e”’ +¢e% +......to n—terms} — ne™H"’
— M _ ne(n+1)i9 — _ne(n+1)i9 _ (1_eni0)
1—-e" 1_e
_ I,,le(n+1)i9 (1_enig)

= C+iS = —— — . .
1_e|9 (1_e|¢9)(1_e7|9)

_{_ne(n+l)i0}(l_e—i0) B (1_eniz9)
T @-e’)1-e)  (1-e’)1-e™)

- ne(n+l)i6 + I,,Ienie _ (1_eni19) B (n +1)eni49 _ I,.]e(m—l)ie _1

1-(e"“ +e ') +1 2(1—cos )
e C4iS = (n+1){cos n@ +isin nd}—n{cos(n+1)& +isin(n+1)6} -1
2(1—cosé)

Equating real parts on both sides, we obtain

_ (n+1)cosn@—ncos(n+1)0 -1

B 2(1—cos )

Example 7. Obtain the sum of the series
1-2cosf+3cos260—4c0s30 +........ to n—terms

C

Solution: Let C=1-2cos@+3cos20—4cos30+........ to
n—terms

And S=-2sin8+3sin 20 —-4sin 30 +........ to n—terms
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C+iS =1-2(cos @ +isin @) + 3(cos 26 + i sin 309) — 4(cos 36 + isin 30)........ to
n—terms

=1-2e" +3e%’ —4e¥’ + ...+ (1) " ne™ V¥

This is an arithmetic 0-geometric series whose common ratio is—e'’ , we
obtain

(C+iS)(—e'") =—e'" +2e?? —3e¥ + ...+ (-D"'(n-1)e" V" 4 (=1)"ne"’
cn(2)
Subtracting (1) by (2), we obtain

(C+iS)(1+e")={1—e" +e?’ —e¥ + ..+ (-D)" e’ }— (=) "ne"’

_ (_plfyn )
:l{l ( e.e) }_(_1)nnen|9
1—(—€'
1- (_1)n eni0 n ni@
==+~ > _(-)"ne
1+e' D
_ (_1\" pni@ _1\n nio
- C+iS:1 (=D"e™ (=1)"ne

(1+¢e'%)? (1+e')
B 1+ (_1)nfleni6 N (_1)n71 neni19

[Putting (-1)" = (-1).(-1)"*]

(1+e'%)? (1+e'%)
A+ D™+ @+ e )[(-D) " ne™]
- (1+e'%)?

_ [1+(—1)”—1[(n+1)eni9 n ne(n+l)i0]

2
io -5 B
e e 24e?

B [e—iH +(_1)n—l[(n+1)e(n—1)i€ + nenie]

- 2
[2 coS 0)
2

_ (cos @ —isin 8) + (=) " *[(n +D{cos(n —1)& + isin( n —1)8}+ n{cos N +isin nG}]

4.cos? 2
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_ (cos @ —isin ) + (=) " [(n +D{cos(n —1)8 + isin(n —1)F}+ n{cos NG +isin nG}]

2(1+cos6)
Equating real parts on both sides, we get
Co c0s @ + (-1)"{(n +1)cos(n —1)@ +ncosng}
2(1+cosd)
Exercise 3

1. Sum of series
(a) cos@sin 6+ cos20sin? @ +cos30sin® O +.................. ad.inf . Ans.:
sin #(cos @ —isin )
1-sin 20 +sin* @
(b) sin @+sin( 0+ @) +sin( 6 + 2¢) +...to n—term. Ans.:

sin {6’ +(n-1) g}sin n—2¢cos ecg

2. Find the sum of the series
cosna +cos a cos(n —1)a + cos” e cos(n —2)a +...... + Cos" &

Ans.- sin( n +Da
sin «
3. Sum of series sin®1+sin®2+sin?3+........ +5sin? 40 .Ans.:
20— cos 4_1S|n 40
sinl
2
4. Show that cos’ a +cosz(a +£j+c052(a +—ﬂj+ ....... +t0
n n
T
n—terms = =
2
. . 4 ) 27 _— Ar
5. Sum of series sh"a+sin”|ag+— |+sSIN" | a+— [+....... +
n n
3n

n—terms Ans.: ?
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cos@d cos28 cos30
+ + +

6. If 1 +———t + n—terms, then prove that
cos@ cos*@ cos’é
_sec" @sinnég
T tand
7. Sum the series 1+ ccosh @ +c? cosh 20 + ¢ cosh 36 +............. +
n—terms
Ans.:
1-ccosh @ —c" coshné +c"* cosh(n—1)@
1-2ccosh @ +c?

8. Sum of series cos’® @+ cos? 20 +cos? 30 +..10 n—terms. Ans.:
n., cos(n+1)@sin n@ .
2 2coso
9. Find the sum of series

1+§cos@+%c0526+isc0539+ ............. ad.inf . Ans.:
4(4 —4cos @ + cos20)

(5-4co0sH)?

10. Obtain the sum of the series

sin @+ 2sin 260 +3sin 30 +........ to n—terms Ans.:
(n+2)sin nd—nsin(n+1)6

2(1—cosb)
10.6 SUMMATION DEPENDING UPON

BINOMIAL SERIES

Using the some binomial series we can solve the sum of series as given
below:

(@ @+x)" =1+nx+ n(n2|—1) X2 + n(n-1)(n-2) N

! 3
(b) @+x)™" =1-nx+ n(n;l) — n(n+1;|(n+2) X% 400
(©) 1-X)™" =1+nx+ n(nrl) X% + n(n+1;'(n+2) X34,
1
(d) (1+x)2:1+£x—ix2+£x3— ......... %

2 24 2.4.6
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! 1 1.3 1.35

€) (1—X) 2 =14+ =X+ ="x2 4+ =2 y3 4
(&) =% 2" 24" T 246 .
1
f 1+x5:1+lx—£x2+£x3— ........ 0
(f @+x)
3 3.6 3.6.9
1 1.4 1.4.7
1—X 3—1+ X+ x4+ x4, 0
@) ( ) 3 36 3.6.9

1. Sum the series 1+1cos 29+£c0549+£c0569+ ........ o
2 2.4 2.4.6

Solution: Let C :1+1cos 29+£cos49+ 135
2 2.4 2.4.6

And S :lsin 29+£sin 49+£sin 660 +........ o
2 2.4 2.4.6

C+iS :1+1(00529+isin 20) +£(cos46?+ isin 46) +£(cos&9+ +isin 66) +...00
2 2.4 2.4.6
1 5 Eeme 4 135 b0 4
2.4 2.4.6
1 1
=(1-e"") 2 =(1—cos26 —isin 26) 2 [By using

binomial theorem]
1 1

1
= (2sin? @ —i.2sin cosP) 2 = (2sin O) 2(sin & —i.cosH) 2
1
Ao NG
=(2sin ) ? cos(——ej—isin(——ej
2 2
1
= (2sin 0) 2 cos(z—gj_igin(f_ﬁj
4 2 4 2

Equating real parts on both sides, we get

C =(2sin 0) 2 cos(f—gj
4 2
2. Sum the series 1+300520—icos40+£00569— ........ o0,
2 2.4 2.4.6
where — Z < 49<Z
2 2

Solution: Let C :1+100320—icos46’+£cos6¢9— ........ 0
2 2.4 2.4.6
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And S = lsin 29—isin 40 + 1.3 sin6g—........ o0
2 2.4 2.4.6

C+iS :1+i(c052¢9+isin 20) —i(cos49+isin 40) +£(cos69++isin 60) —...0
2 2.4 2.4.6

—1+1e2‘9—ie‘“9+£e6i9— ............ 0

2 2.4 2.4.6

N

1
=(1+e%%)2 = (1+cos 26 +isin 26)
binomial theorem]

[By using

1 1 1
2

= (2c0s? @ + 2isin @cosh)? = (2cosH)2 (cos & +isin )2
1
=(2cos e)z(cosgﬂsin QJ
2 2

Equating real parts on both sides, we get
1
C =(2c0s6)?2 cosg =1/20030.c052§ = \Jcos O(1+ cos b)

Exercise 4
1. Sum the series

sin @ +nsin( @ + ¢) + %sin( 0+2¢)+........ to(n +21)terms
Ans.:
2" cos" =sin (6’ + Mj
2 2
2. Sum the series

1+1yCOSa+Hy2C052a+£y3C053a+ ........ o,if y<1.
3 3.6 3.6.9

1 -
ey 2

1-ycosa
3. Sum the series
nsin a+%sin 2a+wsin 3+ to n—terms

AnNs.:
(2 cos g) sin nNa
2 2

4. Sum the series
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sina+lsin 3a+£sin 5a+1'3—'55in Ta+...... oo Ans.:
2 2.4 2.4.6
1
(2sin )2 sin [Z +Z
4 2

5. Sum the series 1— lcosoz + Ecos 20 — 1'3—'5003 3a+...0 AnNs.:
2 2.4 2.4.6

(2cos a)‘% cos%

n(n+1)(n+2)

6. Sum the series nsin o + sin 2a + sin 3¢ +...0

n(n+1)
1.2
Ans.:

(Zsin gj sin M
2 2

10.7 SUMMATION DEPENDING UPON
EXPONENTIAL SERIES

If x is any complex number, then we using some exponential to solve the

summation of series as given below:
2 3 4

@ e =lox+ o+ X 4 ad.inf . (b)
21 3 4
2 XS
e =l X+ ———H+ .. ad.inf
21 3
3 5
(c) sin X:X—%-F%— ........... ad.inf . (d)
2 IX4 -
cosx=1-—+——........... ad.inf .
21 4
) x2 x° .
(e) sinh x=x+§+g+ ........... ad.inf . )
2 4
coshx=1+X—+X—+ ........... ad.inf .
21 4
2 4
1. Find the sum of series 1+ ¢ C;S 20 + ¢ 02'540: Foienns ad.inf
2 4
Solution: Let C =1+°082% € CZIS““ o ad.inf
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c?sin2a c¢*sin da
= + +

and S=—+4+— 4+ ... ad.inf

21 41

2 o 4 o
C4is :1+c (cos2a +isin 2cx) +c (cosda +isin 4a) N ad. inf

2! 4
2 2ia 4 _dia
:1+C ¢ +C € Foienns ad.inf
21 4

= cosh(ce'*) = cosh{c(cos & +isin )}
= cos{ic(cos  +isin )} = cos(ic cosa — csin &)
= C +1S = cosh(ccos ) cos(csin &) + isinh( ccos ) sin( csin )
Equating real parts on both sides, we get
Hence, C =cosh(ccos «)cos(csin «)
2. Sum the series

) sin“ «
COS ¢ +Sin o CoS2a + 1 COS3 +.unn....... 0
Solution: Let
=2
) sin
C =cosa +Sin acos2¢ + 13 COS3A + .o o0
2
. . . sin .
and S =sin o +sin asin 2¢ + 1 Sin 3 +........... o0
=2
. .. ] .. sin“ « ..
C+1S =(cosa +1isin &) +sin a(cos2a +iSin 2a) + cos3a +1sin 3x) +....00
2l
=2
- . oosin“a s
=e" +sine? + ——e¥ 1. 0
2!
- - 2
. sina ;, SN“a
=e"|1+ e + e 4 . 0
1 21
— eiaesina.ei" — eiaesina.(cosa+isina) — esina.cosaei(a+sin2 a)

= C+iS =™ [cos(a +sin? ) +isin(a +sin ? )]
Equating real parts on both sides, we get
Hence, C =e™"*®* cos(a +5in % )
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Exercise 5
1. Sum of the series  sin a + sin 2a + Sin;a F s e Ans.:
e“*” sin(sin «) |
2. Sum the series 1—cosa cos S + COS;  cos 20— CO“: ? cos 3[.+..0
. - Ans.:

e >’ cos(cos asin S)
2

3. Sum the series sina-csin(a+ )+ %sin( a+2p)+..0Ans.:
—e@ A sin(csin B)
sin 2 sin 3
+ —
3

4. Sum of the series  sin o —

—Cosa

e .sin(sin «)
5. Sum the series cosa+ccos(a+ f)+ %cos(a +2f)+....0Ans.:

e°®*” cos(a + csin )

10.8 SUMMATION DEPENDING UPON
LOGARITHMIC SERIES

We know that the Logarithmic series
2 3 4

X° x° X

a) log(l+ X)=Xx——+——"—+.........

(a) log(1+x) > T3t o0
x2 x* x*

b) log(l1-X)=—X———————.........

(b) log(1-Xx) > "3 4 ©

x2 x* x®
c) log(1+ x) +log(1—X) = 2| ——+ =+ +........
(c) log(1+x) +log(1-x) (2+4+6+ 00]

(d) log(1+ x)—Iog(l—x):Z(x+X—;+§+ ......... ooj

(6 log(x+iy) = > log(x" + y2>+nanl[%)
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(9) log {—(X - ?y)} =2itan 1(X}
(x—iy) X

1. Find the sum of the series
2 3

. c” . c’ .
csing——sin2a+—sin3a —........... 0
2 3
Solution: Let
. c? . cd .
S=csiha——sSh2a+—SIN3a —........... 0
2 3
c? c?
and C=ccosa——C0S2a +—C0S3cx —........... 0
2 3
2 3

= log(1+ce') = log(1+ccosa +icsin a)
:£|09{(1+CC0305)2 +¢?sin? a}+itanl[Mj
2 1+ccosa
i 1 2 2 . a4y
{ log( x +1y) :Elog(x +y9)+itan [—ﬂ
X

Equating imaginary parts on the both sides, we get

in
Hence, S =tan ‘{Cs—aj
1+ccosa
2. Find the sum of the series
3 5
) c’ . c’ .
csin a+?sm 3a+€sm S5a+.......... 0
Solution: Let
c? c®
S =csin a+?sin 3a+€sin 5 +........... o0
o c’
and C:cc03a+§cos3a+€c055a+ ........... 0
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3 5
C +iS =c(cosa +isin a)+%(c053a+isin 3a)+%(c035a+isin 5a) + e,

3 5

ia C 3ia C Sia
=ce'" +—e" +—e”" +.......... o0
3 5
1, 1+X 2 x°
s=lbg——=X+—+—+..0
2 1-x 3 5
1 1+ce| 1 : 1 .
==lo L= "log(1+ce'*)—=log(1—ce'”
> g{l—ce'“} 5 log(L+ ce™) ~ log(1—ce'”)

= % log{(1+ccosa)+icsin a}—% log{(1—-ccosa)—icsin a}

1 Elog{(1+cc0305)2+czsin2oz}+itan‘l _oSha
2|2 1+ccosa
1 1Iog{(l—ccosoc)z+czsin204}—itan1(ﬂj
2|2 1+ccosa
1/1 s 2 2 . 2 .. 4 csina
== —Iog{(1+20005a+c COS” o +C* sin a)}+|tan —_
2|2 1+ccosa
1|1 s s . o .. 4 csina
—-= —Iog{(l—ZCcosa+c COS” o + C* sin a)}—ltan —_
2|2 1-ccosa

= %[Iog {(1+ 2ccosa + cz)}— log {(1— 2ccosa + cz)}]

1|, 4 csina L csina )
+i=|tan"| —— |+tan | —
2 1+ccosa 1-ccosa

Equating imaginary parts on both sides, we get

321 tan‘l( csin )+tan‘1( csin j
2 1+ccosa 1-ccosa
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( csin a ]+[ csin a ]
1, 4| \1l+ccosa l1-ccosa
= —tan - -
csin csin
1- X
(1+c005aj (1—cc03a]

1, lcsina{(l-ccosa)+(@+ccosa)}| 1. |2csina
==tan s —— =—tan"| ———
(I—ccos“a)—c sin“ « 1-c

2

Exercise 6

1. Find the sum of the series
a’ al
aCOSa—7COSZOt+?COS30{— ........... 0 Ans.:

%Iog(1+ 2acosa +a’)

2. Prove that, if 0<%, IogsecH:%tan2 0—%tan4 49+%tan6 0—..

3. Sum of the following series
a’ a’
(a)asin a—?sin 3a+€sin 5 —.... o0 Ans.:

1 {1+ 2asin a + az}

“lo
4 J 1-2asin « +a*

(b)COSa—%COSZa+%COS3a—....oo Ans.:
log 2 + log cos%
1 1. :
(c)cos2a +§cos4a +gsm 6c +...0 Ans.:
1 a T .
—scosalog cot——=—sin a
2 2 2
20 1 s 1 s
(d) cos 0—5003 000339+gcos 0cos50 —....o Ans.:
1 -1 2
Etan (2cot” )
z 1 2r 1 37 1 T ]
(e)cos—=+ =c0s— + =C€0S— + = COS—....00 Ans.:
3 3 3 5 3 7

%{2J§|og(2+@)—ﬁ}
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4. If the series u=cosé —%cos3¢9 +%c0359 —...00, then prove
that u ==
4
. . 1. 1.
5. If the series sin 9—§sm 30 +gsm 50 —....0c=v, show that
tanh 2v =sin @

10.9 THE DIFFERENCE METHOD

In this method to sum of series, every term is split into the difference of
two terms, such that one term of each expression should appear as one of
the expressions of the next term with sign changed. In this way we added
equipped together all the terms of the series, all expression cancel in pairs
diagonal wise expect two, one each from the first and last term. This
method is to split the N term of the series as the difference of two terms,
and then the splitting mode can be found by putting n=1 in the solution
and reduce to first term of the series.

Suppose the sum of series

S, =T +T,+T, 4+ +T (Sum of the firstn

n
terms of the series)
The series is expressed as

T, =f(2)- ()
T,=1@3)-1(2)
T,=1(4)-1(3)

T, =f(n)-f(n-1)

and T, =f(n+1)—f(n)

On addition, we get
AT, +T 4 +T = f(n+1)— (1)

If the given series is convergent and sum to infinity reduce as follows
8. =lm S, =lm[f(n+1) - O]

1. Find the sum of the series to n terms
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tan 4 +tan? 6 +tan‘1L ...........
1+34 1+8.9 1+15.16
Solution: We have the n terms
Let T,=tan™ 2(n +1) .
1+n(n+2)(n+1)
_tan? (n+)(n+2)—-n(n 42r1) = tan Y XY
1+n(n+2)(n+1) 1+xy
where, X=(M+2)(n+1) and y=n(n+1)

hence, T, =tan * x—tan "y

T, =tan*[(n+1)(n+2)]-tan *[n(n +1)]
Now puttingn=1,23,............. ,N, we have

T, =tan"32-tan" 2.1,

T,=tan"4.3—tan'3.2,

T,=tan " 4.5-tan ‘4.3,

T, =tan '[(n+1)(n+ 2)] - tan *[n(n +1)]
Adding all above term, we get
S, =tan'[(n+2)(n+1)]-tan " 2.1=tan *(n* +3n+2)—tan ' 2

4 n®+3n —an n® +3n
1+2(n* +3n+2) 2n* +6n+5
2. Sum of the series

=tan

tan’l%jttan’l;ﬁtan’l;ﬁ ..... +tan™ L
3+3.1+1 3+3.2+2 3+3.3+3
. _ 1 ~ 1
Solution: Let T,=tan" —————=tan™ -
3+3.n+n 1+(n“+3n+2)
— tan-1 1 —tan (n+2)-(n+1)
1+ (n+2)(n+1) 1+(n+2)(n+1)
= T, =tan*(n+2)—tan " (n+1)
Puttingn=123,............ ,N, we have

T,=tan"3-tan"2,
T,=tan"4—tan™'3,
T,=tan'5—tan "4,
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T, =tan*(n+2)—tan*(n+1)
Adding all above term, we get
S,=tan*(n+2)—tan*2
3. Sum of the series

a2 @t 2 +tan™ 122
31 139 36n° -5
Solution: Let T, =tan = 5
36n° -5 4+(36n° -9)
=tan™* #9 =tan™ ; 3
1+(9n* -~ 1+|3n+-|3n-=
( 2 ( 2 2
(3n+2j—(3n —gj
=tan~* 3 3
1+(3n + J(Sn —j
2 2
= T, =tan ‘1(3n +§] —tan ‘1[3n —EJ
2 2
Puttingn=123,............. ,N, we have

Tl:tan’lg—tan’lE,
2 2

T, =tan‘1%—tan‘lg,

T, =tan 1(2—1j —tan 1(Ej
2 2
T,=tan 1(Bn - EJ —tan l[3n - Ej
2 2

Adding all above term, we get

o
3
R

=tan™
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=tan™ —93n g = tan 1 dan
142042 4+18n+9
2 4
S=tan™ 12n
18n+13
10.10 SUMMARY

This unit defined that summations of infinite sequences are called series.
They involve the concept of limit, and are not considered in this article.
The summation of an explicit sequence is denoted as a succession of
additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2,
and results in 9, thatis, 1 + 2 + 4 + 2 = 9. The common pattern in an
arithmetic sequence is that the same number is added or subtracted to each
number to produce the next number. This is called the common difference.
In other words, summation is the addition of a sequence of any kind of
numbers, called addends or summands; the result is their sum or total.

10.11 GLOSSARY

1. Series: Get when you add up all the terms of a sequence.

2. Sine: Length of the opposite side angle over the length of the
hypotenuse.

3. Cosine: Length of the side adjacent to angle over the length of the
hypotenuse.

10.12 SELF ASSESSMTS QUESTIONS

10.12.1 Multiple choice questions

1. C +iS method of finding the sum of these series which involve:
(a) sine and tangents of multiple of angles
(b) cosine and cotangent of multiple of angles
(c) sine and cosine of multiple of angles

(d) tangent and cotangent of multiple of angles
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2. If C+iS method of finding the sum, the resulting series is
a+ar+ar® +....to n terms then we use the formula:

@S5, _ar'-y (b) S, = al-r")
1-r r-1
all-r") a
c) S, =—+= ds =2
(©) 8, ==~ @ S, =1—
3. If tan b tan " (n+1) —tan ' y then the value of y is
1+n(n+1)
@n (b) n+1
() N +n+1 (d) n-1
4, If tan™ 2% =tan"(2n+1)—tan"y then the value of y is
n
(@ 2n (b) n+1
(c)n-1 (d) 2n-1
. 1 1 .
5. Sum of series COSa+ECOSZa+2—ZCOS3a+ ......... 0 is
4cosa —2 4cosa +2
@ _——— b) ———
5+4cosa 5—-4cosa
4cosa —2 2cosa —4
©) ——— d) ———
S5—4cosa 5—4cosa
. sin@ sin26 sin 30 .
6. Sum of series + + e 0 is
2! 3
(@) e**’sin(sin &) (b) e’ sin(cos 6)
(c) e cos(cos &) (d) e sin(sin )
7. Sum of series sin 6 _ sin 26 + sin 36 _ sin 46 +Ccosé......... IS
2! 3 4
() esin(sin ) (b) e’ sin(sin &)
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(c) e cos(sin &) (d) e cos(cos 6)

If |<Lthan the sum of the infinite  series

ce'’ +lc2e‘29 +1c3e‘3“’ oo, ©is
2 3
(a) log(1+ce') (b) log(1—ce'”)
(c) —log(1—ce') (d) —log(1+ce'?)

10.12.2Fill in the blanks

1. If |z<Lthan the sum of the infinite  series
z+123+125+ ............... wis......
3 5
2. If C+iS =tan"*(ccos@+icsin 8),then Cis.............
3. Sum of series tan‘11+tan‘11+tan‘1i+tan‘1i+ ...... to n
3 7 13 21
termsis.........
4. Sum of series taking the value of cnot greater than unity
2 3
numerically, ccos@—%cos 2¢9+%c0536?— ........... ad.inf .
1S e
5. Sum of series 1+ COS'9+ c052249 + COS?;Q S ad.inf . is.......
cos@ 2lcos @ 3lcos’ O
6. Sum of series sin“9+sin4(9+2—”j+sin4(9+4—”j+ ......... +n
n n
termsis.........
7. Sum to infinite terms of the series
COSa CO0S2¢ COS3c
1+ + > 5 e, 0 IS
COSa COS“« COS” «
8. Sumof the series deduce to infinite
n-1
tan’1£+tan’1g+tan’1i+ .......... tan’lz—1
33 1+2"
ANSWERS:
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1.%Iog —1+Z 2.tano 3.tant—_ > 41
— n+ Elog(1+c2 +2ccos6)
5.ecos(tan 6) 6.%” 7.0 8.%
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10.15 TERMINAL QUESTIONS

10.15.1 Short answer type question
Sum of the following series:

1. tan‘ll+tan‘11+tan‘1i....to n—terms
3 7 13
2. tan’lg+tan’1g+tan’1£+ ............ 0
4 9 16
n-1
tan‘ll+tan‘lE+tan‘1i+....+tan‘l —
3 3 9 33 1422
4 tan~!——— + tan~! +tan™? +---ton — terms
" 2 2 2
1+1+1 1+2+42 1+3+3

n

ANSWERS'1. tan"—" 2 tan~33. tan* 214 tan*_"
n+2 1+2° n+2

10.15.2 Long answer type question

Sum of the following series:

1. tan‘lﬂ+tan‘1i+tan‘li+ ...... +tan ™ —
7 19 39 4n“ +3
2. tan gsecé’+tan %secgﬂan %sec%+....to n—terms
2 2 2 2 2
1 1 1
3. += +— >— +..to n—terms
2c0s0 2°cos@cos280 2°cos@dcos26cos2°0
4, cosecdcosec2d + cosec26cosec3d +...10 n—terms
4n .
ANSWERS:1.tan _1(2n " 5) 2. tan @3.sin G[cot & —cot 2% 4] 4.

1 [cot 8 —cot(n+1)0]
sin
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UNIT 11: INFINITE PRODUCT AND
GREGORY'S SERIES

CONTENTS:

11.1 Objectives

11.2 Introduction

11.3 Infinite Product
11.3.1 Expansion of sin @in the form of Infinite Product
11.3.1 Expansion of cos@ in the form of Infinite Product

11.4 Expansion ofSinh & and cosh @in the form of Infinite Product

11.5 Some standard results of infinite product

11.6 Gregory’s series

11.7 General theorem on Gregory’s Series

11.8 Valueof

11.9 Euler’s series

11.10 Machine’s series

11.11 Rutherford’s series

11.12 Summary

11.13 Glossary

11.14 Self assessment questions
11.14.1 Multiple choice questions
11.14.2 Fill in the blanks

11.15 References

11.16 Suggested readings

11.17 Terminal questions
11.17.1 Short answer type questions
11.17.2 Long answer type question

11.1 OBJECTIVE

After reading this unit you will be able to:
e Expand sin #and cos@din form of infinite product.
e Expand sinh #and cosh & in form of infinite product.
e Understand some special series like
(i) Greagory's series
(i) Euler's series
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(iii) Machin's series
(iv) Rutherford's series
e Find value of 7 using these special series.

11.2 INTRODUCTION

This unit deals with expressions ofsin 8,cos&,sinh € and cosh 8
in the form of infinite product. It helps us to find value of z. Gregory's
series, Euler's series, Machin's series and Rutherford's series are also
discussed in this unit. Among then Gregory's series has a great
importance,it is the infinite Taylor series expression of inverse tangent
function.

11.3 INFINITE PRODUCT

11.3.1Expansion of sin #in the form of Infinite Product:

To express sin @ as an infinite product, we have

sin X = 2sin icosi = 2sin ﬁsin X
........... (1)
Putting X =6 in (1), we get

T+6

sin @ = 2sin gsin

Putting x =§ in (1), we get

. 0 . 0 . 27+40
sSin — = 2sin —SIn ———
2 2 2

Putting x = = -

in (1), we get

o . 7+0 . 3r+0
= 2sin o7 sin 52

T+0

Putting the values of sin gand sin in (2), we get

Department of Mathematics
Uttarakhand Open University Page 340



Algebra, Matrices and Vector Analysis MT(N) 121

T+6 . 27+60 . 3r+60
>3 sin 52 sin 57
Continuing this process successively, we get

sin @ = 23 sin %sin
2

. ;. 0 . 7+0 . 27+60 . 3r+0 . Ir+6
Sin @ =2'sin —Sin 5—sin S—Sin T s sin 3
2 2 2 2 2
(23*1) . 0 . 7Z'+0 . 27Z'+9 . 37Z-+0 . (23—1)7Z'+9
=2 sin —-sin 53 sin > sin P ERRERER smT
=20V sin Qsin ﬁ+asin 2”Jré)sin 40 sin (p-Dz+0
p p p p p
...... (%)
Where p=2"

The last factor on the right hand side of the (5) is

=sin{w} =sin[7z—7[—_0j =sin£ﬂ_0j
p p p

The second last factor on the right hand side of the (5) is

. {(p—Z);er@} . [ 27z—9j . (27[—0}
=SN{———,=SN| T —— [=SIn
p p p
and so on.

Now we combine together the second last and the last factors, the third

th
and so on. The uncombined factor is [gﬂ} factor and its value is

P

2

T+0
sin

p

Thus on combining the above pairs of factors (5) become
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p
—r7+60

sin @ =2 sin e{sm e—ﬂsm ﬂ—e} {sin 27T+05in 27:—0} ...... sind 2

p p p p p p
..(6)
—+40
But  sin 2 :sm(—+§j—cosg
p 2. p p

Since, by using sin( A+ B)sin( A—B) =sin® A—sin*B, then (6) reduces
to

Dividing both sides of (7) sin g and taking @ — 0, we get

p(sin 9)
lim —— sin 0 =1, lim sin 0 = lim 4 =p and
00 @ 00 . @ o0 9
SIn — Sin —
p p
0
p
lim sin 2 9_ 0.
6—0 p
Now we have
(3-2)
p=200sin2 7 gin2 <% 2% 2% .. sin2 2/
p p p p

Dividing equation (7) by (8), we get

Department of Mathematics
Uttarakhand Open University Page 342



Algebra, Matrices and Vector Analysis MT(N) 121

) sinZg sinzg sinzg sinzg
sin @ = psin —cos—<1— Py 1- 2p x<1— 3p 1——p
P sinz sin?2 <% sin2 2% sinz(p—ljﬂ
p p p 2 p
sin —
. .0 . P
Now p — oo, then lim| psin—|=Ilm<——:0=6
p—o p p—oo g
p
., 0 sin @ 7t
sin? — i — , ,
. p . o p 0 o
Ielm0 :Iglmo > — r=—5 etc.
Psinz ™ 70 07 ||sin2 BT d
p p? p

and so on and also Igim0 COS[QJ =1, we have
- p

. o7 ? 0?
0021 2

© 92
sin @ = «9H(1——2] .
r=1

r’r

11.3.2Expansion of cos@in the form of Infinite Product:

To express €C0S@ as an infinite product, we have
Now, by using the result (5) of 9.3, we get
sin @ =2%" sin Qsin ”+esin 2m+0 'nw
Y p p p

Putting 0 = (% + HJ, we get

.............. sinw
2p 2p

cosd = 2P sin(” * 2ts’jsin 37 +20

2p

Now the last factor on the right hand sides of (2), we get
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Sin{(Zp—;)ﬂ+26?} :Sin{zpn—ﬂze}
p

2p

. T—20 . | r—20
=SIN<{ 7 — =SIn
{ 2p } { 2p }

Again the second factor from the end of (2), we get

Sin{(zp—:)mze} :Sin{zp;r—smze}
p

MT(N) 121

2p

. 37-20| . [37-20
=S8INny7— =SIn
{ 2p } { 2p }

Therefore, on combining first and last factor from the beginning and the
end, and so on, we get

cos@ = 2P {sin T+ 20 sin 7= 29}.{sin 37 +20 sin 37— 20}
2p 2p

T TR
=20 {sin 2 % _sin? ﬁ}.{sin 2 3% —sin 2 ﬁ} .....
2p 2p 2p 2p
.......... 3)
Now putting 8 = Owe get
1=20Dgin2 Z_ gin? 3—”sin 257
2p 2p 2p
.......... 4)
Dividing (3) by (4), we get
sinzge sinzge
cosfd =<1- P S1- Pl
., T ., 3T
sin - — sin - —
2p 2p
........... (5)
Making p — oo, we get
., 20 ., 20
sin © — 2 ) sin-— —— 2 2
jim | — 2P (Ej _A07 i 2P —(ﬁj _ 40
P sin? £ 7 LS sin2 7 | \37 o’
2p 2p
and so on

From (5), we get
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2
c0s0 = @‘@j@{%j ............... o -
T 3

02
cos @ = H[l_(Zr Do Zj

=1

11.4 EXPANSION OF SINh @ AND cosh @IN
THE FORM OF INFINITE PRODUCT

(a) To express sinh @ as an infinite product:
We know that

r-z

92
sin @ = QH(l— - ZJ

Putting 6 =16, we get

2
S|n|0—|0H[l+ f 2] =
T
© 92
sinh 6 = 9H(1+ - 2]

rr

(b) To express coshé as an infinite product:

We know that
02
cosé = H 1-——
iy (2r - 1)

Putting 6 =16, we get

cosif = H(l—(zrm 1?2 ZJ =

r=1

© 402

r=1
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11.5 SOME STANDARD RESULTS OF INFINITE

PRODUCT
1 1 1 7’
(a 1—2+2—2+3—2+ .......... oo:? (b)
1,11 T
12t 3 T 90
1 1 1 7’
(0)1—2+3—2+5—2+ .......... oo:? (d)
1,11 T
13 5t 96
1 1 1 7’
Example 1. Show that et 0 ="
P ()12 22 32 6
1 1 P
) —4+—+—+4+.......... =—
U TR TR * 790

. 0? 0? 0?
00- -2 1o 2

3 5
And also, sin9:9—0—+0—— ......... 00
3 5

From (1) and (2), we get

0? 0? 0? 0> o0°
i et D

Taking logarithms of both sides, we get

o° 0° o> o
Iog(l—?}rlog(l— 227z2]+ .............. w:log{l—(g—ﬁ+ ............ OOH
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............ 4)
Equating the coefficients of &% on both sides in equation (4), we get
I S oot
72_2 2272-2 3272-2 ------------------- _3!
1 (1 1 1 j 1
= — |7 —+—2 ....... O [+...... 00 = —
zc\1 2 3 3
1 1 1 7’
= —2+—2+—2+ ......... 0 +..... o0 = —
1° 2 3 6

Solution (ii): Equating the coefficients of 8* on both sides in equation
(4), we get

111 1 1 1 1
— 2 —4+—4+—4+ ....... O | == ———+—
27711 27 3 120 72

= [i+i+i+ ......... 00:|=27Z'4|:—i+i:|

14 2% 3 120 72
4
B W S S
1" 2 3 180
1.1 1. _z
111 .

Example 2. Show that

1 1 1 2
(a.) [l— Z—ZJ(J.— 47)(1— 6—2j B e o0 = ;

224466838

Solution:(a) We know that

. 0’ 0? 0? 0?
0-o- 2o 2o o

Substituting 6 = % on both sides, we get
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(b) From above result (1) can expressed in the form, we get

NEE P CEVLE

2_3 15 35 63 9

2 13355779 911

7 224466 8810.10
T 22446688

2 133557709

Example 3. Show that
N 4 36 100 196 324

3°35 99 '195 323
Solution: We know that

46° 467 46° 46°
o[- o)y N
Substituting 6 = % on both sides, we get
2 2 2 2 2
0sZ =|1- [1- 27 |[qo A7 |[q_ A7 |47
4 1242 34 n’ 54’ 7’4 1 9°4%r°
1 1 1 1 1 1
—=|1-=|]1- 11— J1- |y o
ol J( siltsa )7 fe)
( j(l__][l_ij.(l_ij.(l_ij ............... -
4.1 4.25 4.49 4.81
(4 1)(36 1)(100—1](196—1)(324—1) .
{00 N 108 N 3z |
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1 335 99 195 323
f 4°36°100 196 324"
4 36 100 196 324

= 2=——.—.—.—...®
335 99 195 323

Example 4. When n is very large, then prove that

/(2n +0)7r  246........ 2n .
= approximately.
2 1.35...(2n-1)

Solution: We know that, if n is very large

0 0° 0° 0
SN0 =0 1- " || 1= —o— || 1= e 1-——

Substituting 6 = % on both sides, we get

T T 72'2 72'2 72'2 72'2
sin = =21 J1- | [ 1-—= |
2 2( zznzj[ ZQZEZJ[ 2%2n2j ( 2°n’x?
= 1=:f(1—-%){1—;%)(1—i%j ...................... -]
20 2 4 6 (2n)
=
1:1(1_1j[1 1)(1_1j.(1+1j.[1_3}(1 1) ...................... (1_ij(1
2 2 4 6 6 2n
N 7133557 2n-1 2n+1
2224466 T 2n  2n
7 12.325% (2n-1)%(2n +1)
= =—.
2" 224267, (2n)2
. 2 1235, (2n-1)°
@n+1)z  224%6°...... (2n)®
2 135, @2n-1)Y’
p— =
Cn+)r | 246.. (2n)
L @Dz 246 @n) \’
2 135 (2n-1)

(@n+)7  2.46..... (2n)
2 135 (2n-1)
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Example 5. Show that

2 2
cosl Zsin 0 |=Zcos? g 1+ 4 14598 O
2 4 2.4 4.6

Solution: We know that the cosine series as an infinite product

4x? 4x? 4x2
12 o2 ) 2]
Substituting x = %sin 6 on both sides, we get
T . Ar?sin? 6 Az?sin? 6 4r*sin? 6
cos| —sin @ |=|1- | 1- | lm———— |
Gono) (- o S e
a2 a2
emofu o)

= cos? 0.(32 —(—cos® 6’)}[52 —(—cos” Q)J ...............

3? 52
, (8+c0s?@ \( 24+cos® 0
=C0s° 6. 3 : s
2 2
2446............ cos? 0] 1+ cos” @ 1+ cos‘ @
3.355.......... 2.4 4.6

Also, we know that the sine series as an infinite product

) NG X2 x2
Sin X = x(l—?}(l— 27 2 J.(l— 3,2 ] ...........

Substituting x = % on both sides, we get

T 72'2 72'2 71'2
= 125 1— 227[2 i 1— 222272_2 | 1—m ........... =
Vs 1 1 1
1= E 1- 2—2j[1 — 4—2j[1 — 6—2j ........... =
o R O [
2 4 16 36
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- :

7 216 36
T

7 _21636...... _24466........
4 315.35......... 33557 .
.......... )

From (1) and (2), we get
2 2
cos| Zsin @ | = Zcos? 6 1+ 222 4 14598 O
2 4 2.4 4.6

Example 6. Show that

Sin X+ CoSX = 1+ﬂ ) 1—ﬂ ) 1+ﬂ ) 1—ﬂ ..........
T 3 5 1
2
and hence deduce that 1—i+i—i ......... T

¥ 57 32

Solution: We know that

sin x+cosx:\/§sin(%+xj:\/§sin%(Hﬂj
T

_ ﬁ%(uﬂjn . {Z(t*}xj}

Putting X=0in (1), we get

1=ﬁ%ﬁ{l‘<4i>z}

Dividing (1) by (2), we get

4%\
(4r)* - (1+ j
] 4x \= T
sin x+cosx:(1+—jH -

T )=t (4r) -1
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(4r —1—4)()(4r +1+ 4)(]

4X \ &= T T
:[1+7?JIJ» (4r —1)(4r +1)

:(1+4Xjﬁ (4r—1—t(j (4r+1+t(j

1 (4r-1) . (4r +1)

:@*%ﬁjlwmﬁmJ@WMfﬁJ

R e

log (1+ ﬁj + log .(1— ﬂj + log (1+ ﬂj +log [1 - ﬂj .......... = log(sin x + cos x)
V4 37 S5z iz

1 . 1 8x3
=_—log(1l+sin 2x) ==log|1+| 2X——+.......
5 g(1+sin 2x) 5 g[ +( X 3 + H

3 3 2 3 3
=l 2x—8i+.... —l 2x—8i+.... +1 2x—8i+.... +....
2 3 2 3 3 3

Here, equating the coefficients of x*and logarithm expansion on both
sides, we get

1 43[ 1 1 1 } 1( 8 8) 1[ 8 8) 2
5 3 1——3+—3——3 ......... == ——+—|==|——+—|=—
3 3 5 7 2\ 3 3) 20 6 3) 3

I O PO SO S S I
3L ¢ 5 T 3
ot 1t 1 Py

3 5 T 64
Lt 1
3 5 T 32

Example 7. Show that
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sin m9+cos;z9:(1+49)H{1— 49 HM 49 }
1 4r -1 4r +1

Solution: We have

sin 76+ cos 70 =2 sin (% + m9j V2 5sin { @+ 40)}

#(L+406)
_VE{%Q+49%f11—£—Efji}—

Dividing (1) by (2), we have

2
sin 70+ cos 76 = (1+46) H (4r)(4 )(1+ 49)
r=1 r

(1 40fﬁ( 1—46)(4r+1+49)
il 4r—=1 U 4r+1

= 40 40
=(1+40 1- |1
( " )1:!( 4r—1}( +4r+1j

Exercise 1
1. Show that
1 1 7’

a i 00 =" b
() 32 52 72 8 (b)
1 i+i.i T
TR R T %

1 1 1 1 7’
C) - ——4+———+......... 00 ="—" d
© 12 2% 32 42 12 @
1 1 1 1 7’
—tt—F+—+—+...... =—
12 24 36 48 12
2. Show that
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(@) i+i+i+....oo:7z—2(1—”—2j (b)

3* 5t 7¢ 64 12
3 8 15 7’ 7’
st T =—1-"7
27 3" 4 6 15

1 1 1 Vs
C)l+=—=—=...... 0 =— d
© 3 5 7 242 @
oty g s o0

3. Prove that

1+ sin x :%(ﬂ'+2X)2{1—M} {1—M} ............

42”_2

4. Prove that
7 36 144 324 576

(a) Ezgm%ﬁ ........ (b)
J3 880 224 440
2 9812254417
5.1f 2, 3, 5 are all prime numbers, show that
22 32 52 72_2
224137 4+1'5241777 15

6. Prove that

1 2X 2X
cotx=—— —_———— .

X 7z°-=X 2% 7% —x

7. Prove that

) 2
CoS X +cosh X = 2H{1+ (24%}
r-1)%rz

r=1

X X
8. Prove that tan* x—tan™ 3 +tant g e = tan ‘1(tanh %)

11.6 GREGORY’S SERIES

Statement: If & lies within the closed interval [—%,%},i.e., if

I

<@< % then show that

G:tane—ltanséwltansa—ltan76?+ .......... 0.
3 5 7
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Proof: We have

1+itan6’:1+iM

cosd

= L(cos@+isin 0)
cosé
=seche"
Now, taking logarithm of both sides, we have
log(1+itan @) =logsecH+id

Now, since & lies between —% and % so tan @lies between —1 and 1,

i.e., tan @is numerically not greater than 1.
We have from (1)

logsecd +i6 = log(1+itan @)

This is known as Gregory’s series.
Now we put tan@=Xx so that tan™ x =6, we obtain another form of
Gregory’s series, as

_ 1 1 1
tan T x=Xx—=-X3+=x> ==X 4 0 where |x|£1.

5 7
Also, equating real parts on both sides of (2), we have

log secd = ltan26—£tan“6?+1tan"’9— .......... )
2 4 6
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11.7 GENERAL THEOREM ON GREGORY’S
SERIES

Statement: If 6 lies between nn—% and n7r+% ie, |if
nﬁ—%sesmH%, then show that

n;r—eztane—ltan3¢9+1tan549—£tan79+ .......... 0.
3 5 7
Proof: We put € —nz =, then f =nz+c.

Hence the given condition reduces to—% <a< %

Hence, l+itan@=1+itan(nz + )

] .Sina
=l+itana =1+Ii
cosa

1 .
= (cosa +isin &)
cosa

=seca.e'”
Now, taking logarithm of both sides, we have
log(1+itan @) = logseca + i«

logseca +ia =log(1+itan &)
The expansion is valid because € lies between n;z—% and n7z+% and

implies that tan @ is not numerically greater than 1.

IogseCa+ia:itane—%iztan20+%i3tan36?—%i“tan40+ .......... 0

Citand+ Stan? - tian®o-ttan® 04 ... 0
2 3 4
Equating imaginary parts on both sides, we get

aztane—%tan30+%tan59— .......... 0

e—nﬁztane—%tan30+%tan59— .......... 0
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11.8 VALUE OF &

Using of Gregory’s series is to obtain the value of zto the various
decimal places. We have from the Gregory’s series

tan‘lx:x—%x3+%x5—%x F oo 0

On putting x =1, we get

tan 1= 1—1+1—1+ .......... 0
3 5 7
g il

4 3 5 7 9
This series does not converge rapidly and so a large number of terms will
have to be taken in order to obtain 7 correct to any degree of accuracy.

11.9 EULER’S SERIES

To prove antli@ntioZ
2 3 4
1.1
41 41 4 2 3 4, T
We have tan™” —+tan" = =tan =tant1=2
2 3 1 1 1 4
_7><7
2 3
Expanding by Gregory’s series, we get
Z=tan? 11 +tan’1 1
4
{ tan x_x—1x3+lx5 ..... oo}
3 5

1 1(1) 1(1 1 1(1) 1(1
=q=—=] = |+=| = |- R e I B R
sl il bl
(1 1} 1[1 1) 1(1 1}

e D R I e e B el E RN
2 3) 3\2° 3) 5\2° 3
From the above series, The value of 7 easily can be calculated and more
rapidly convergent than the preceding one.
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11.10 MACHIN’S SERIES

To prove 7 gt iog@nt Ll
4 239

We have 4tan*t==22tant==2tan?

Ul
Ul

{ 2tan tx =2tan™ 2.x2}
1-x

Now 4tan’1l—£:4tan*ll—tan’11
5 4 5

:tan‘1%—tan‘11

120 _
1119 a1
=tan! =tan " —
L, 120 239
119
Therefore, 7 _atan™ 1_ tan * 1
239

‘4{%‘%(5%*%(5%_ """ w}_{ﬁ‘%(zglssj%(zsals&‘j_ """ OO}
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11.11 RUTHERFORD’S SERIES

To prove 7 sttt il
4 99
We have
11
4tan’1£—tan’1i+tan’1i = 4tan’1£— tan 170 99
5 7 1 1
1+ x—
70 99
_antl_@nt L 7 [by Machin’s series]
239

4 70 99
{1 1(1)1(1) }{1 1(1}1(1) }
e el ) I B R += —..
5 3\5°) 5(5° 70 3| (70)* ) 5| (70)°
oo 3(or ) il
+{—== += —..
99 3| (99)°) 5| (99)°
Example 1. Show that

P (2 1) 1(2 1) 1(2 1)
B g Sy ) i B R s
4 (3 7) 33 7°) 5130 7°

Solution: We have

R.H.S.=(E+1]—1(%+%]+l(%+i5j— .........
3 7) 3\3 7 5\3 7

1 11 11 1 11 11
=2 ———.—3+—.—5— ....... + ———-_3+_-_5_ -------
3 33 53 7 37 57

:Ztan‘1%+tan‘11

tan’lx:x—1x3+1x5 — 0
3 5

2.

w|

=tan* +tant

~N =

2

1_(1
3

[.-.Ztan‘lx:Ztan‘1 2X }

1-x?
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:tan‘1§+tan‘11
4 7

{ tan " x+tan 'y =tan M}
1-xy

3
7_’_7

=tan™

:tan‘lgztan‘llz%zL.H.S.

Example 2. Show that
m_ 11,1

=—+—+ +
8 13 57 911
Solution: We have

Example 3. Prove that

ﬂ:2\/§[1—i+ t 1, j

3 53 7.3 T
Solution: We have

R.H.s.zzﬁ(l—i+i2—i3+ ........... j
33 53 73
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=6.tan-1i=6x%=7z= L.H.S.

3
Example 4. Prove that

1 1 1 /4
1-2—+—+——+.......... 0, =—
35 79 1113 4

Solution: We have

LHS.=1-2 i+i+i+ .......... o0
35 79 11.13

2 2
=1l — 4+ == ... 00
35 7. 1.13

1
5-3 -7 13-11
=1- + + R T Q0
3.5 7.9 11.13

nNoE

Example 5. If x > 0, prove that

L7 (x—l) 1(x—1j3 1(x-1}5
tan " x="4| — |- S| —= | 45| —= | —erenns
4 Xx+1) 3{x+1 5ix+1

Solution: If x> 0,then X—_l lies between —1 and 1. We have

Xx+1
2
X—_1<1 =N (x-1) <1
X+1 (x+1)?
&S (x=D% < (x+1)? o X2 =2x+1l<x?+2x+1
= 4x >0 = x>0
If x> 0,then X—_1<1.
X+1
3 5
RHS.= Z (X2t L x=ty rx=Ly
4 Xx+1) 3\ x+1 5ix+1
7[ -1 X_l
=" ttan?t| =—= B
4 (x+1j By

Gregory’s series]
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x—-1

1+()

=tan'1+tan’? x-1 =tan? _\x+
X+1 1_(x—1)

X+1

} _ tan_12_2X =tan*x=L.H.S.

—tan X+1+x-1
X+1-x+1

Example 6. When @ lies between 0and % prove that
60 1. 100

tan‘{l_cosej:tanZQ—ltan —+=tan® = —.... o0
1+cosd 2 3 2 5 2

2sin? =
Solution: We have  tan 1(1_0086)) =tan™ 5 =tan l(tan2 gj
+cosé 25in 2 E

Given that if @ lies between 0and % then g lies between Oand %so

0
that tan’ g <1. Therefore tan 1[tan ? Ej can be expanded by Gregory’s

series,
Now from (1), we have

tan* 1-cosf ) _ tant taan
1+cosé@ 2

3 5
=tan2g—1 tanzﬁ +1 taan e,
2 2 5

3 2
:tanZQ—ltan6€+1tan1°Q— ..........
2 3 2 5 2
-1 1_0050 29 1 66 1 109
= an =tan“——=-tan° —+=tan" ——..........
1+cos@ 2 5 2

Example 7. If x <~/2 —1, prove that

x®  x° [ 2X j 1( 2X T 1( 2X js
2l X— © = -= += e, 0
3 5 1-x%) 3\1-x2 5(1-x2

Solution: Given that if x <+/2 —1,then X <1, we have
X<+2-1 = X+1<\/§
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X2 +2x+1<2

& (x+D%<2 =
o 2x<1-x? = X _q.
1-x?
2X
If x <+/2 -1 then = <1, we have
3 5
2 x—X—+X—— ........ o [=2tan " x=tan 2
3 5 1-x?
............... (1)
Since tan™ — 7 can be expanded by the Gregory’s series, we have
42X 2X 10 2x ' 1 2x Y
tan 5= = |- S| += 5| T
1-x 1-x 3\1-x 5\1-x

Example 8. Sum of series

1 1 1 1 1
a) 1- + — e b) ————+—— .. 00
@ 347 54° * ®) 2° 32" 52¢
Solution: (a) Given that
1- 12+ 14— ...... 0024[1— 13+ 15— ...... oo}
3.4° 54 4 34° 54
=4tan " =

Since by the Gregory’s series because % <1l

(b) Given that
1 1 1 111 1 1
28 37 (ol 52 306 TEol0

1 I SR SR S
21(2?) 3(22) sf22f
=—tan™" 12 ~Llinl

2 4
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Example 9. Prove that 1+%—g——+ ...... 0=—

Solution: We know

provided |x| <1.

Now substituting x = /i, we get

tan i =i = (S ST -2 () e

:ﬁ{1—1i+1i2—3i3...}

3 5 7
1
7T 2 1.,

cos—+|5|n 1——|+ | e

oo risn 2 [ fegregrt 3o
(cos—+|sm—]{l—1i+1i2—lis...}

3 5 7

Llr fj{ g3t }

Equating real parts on the both sides, we get
1 1 11 -
= —{1+ ————— } =real parts of tan™* Ji

V22U 3 5 7
.............. (1)
Again tan~+/i = tan ‘1(cos— +isin —j =X+iy  (say)
.............. )
So that tan l[cos— —isin —j =X —iy
.............. 3)
Adding (2) and (3), we get
2cos -
2x =tan* 4 :tan—loozE
1—[0032 Z _isin? ”j
4 4
=  Xx= % = real parts of tan* /i
.............. (4)
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Hence from (1) and (4), we get 1+%—g——+ ...... 0=——

11.12 SUMMARY

This unit is about going in-depth into the theory and application of infinite
series and Gregory series. Gregory's series is an infinite Taylor
series expansion of the inverse tangent function. It was discovered in 1668
by James Gregory. It was rediscovered a few years later by Gottfried
Leibniz, who re obtained the Leibniz formula for mwas the special
case x = 1 of the Gregory series. Perhaps the most widely used technique
in the physicist’s toolbox is the use of infinite series (i.e. sums consisting
formally of an infinite number of terms) to represent functions, to bring
them to forms facilitating further analysis, or even as a prelude to
numerical evaluation. The acquisition of skill in creating and manipulating
series expansions is therefore an absolutely essential part of the training of
one who seeks competence in the mathematical methods of physics. An
important part of this skill set is the ability to recognize the functions
represented by commonly encountered expansions, and it is also of
importance to understand issues related to the convergence of infinite
series.

11.13 GLOSSARY

Infinite series: Sum of an infinite number.

Infinite product: Limit of the partial products as n increases without bound.
Gregory's series: Expansion of the inverse tangent function.

Euler’ series: Transform converges to a sum.

Rutherford: Calculation of Dictionary of National Biography.

11.14 SELF ASSESSMESNTS QUESTIONS

11.14.1 Multiple choice questions

1. The expansion of cosé as an infinite product is given by
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02
a) cos@d =46 b
(a) H( " j (b)
92
cos@=0| ||1+——
1)
0 492
C) cosé = 1-—— d
©) H( (2r—1)27r2J @
0 46*
cosé = 1+ ———Ff0—
11| (zr—1>2n2j
2. If ziz Z ~_, then the sum of the product of the
n
squares of the reC|procaIs of every pair of positive integers is equal
to
4 2
a) — b) —
@ 120 (®) 120
4 2
A d) —
© 384 @) 384
3. Walli’s expansion for 7 is given by
@ £(2n+1) _246...... (2n—2)2n (b)
2 1.35......... (2n-1)
/ﬁ (2n-1) = 2.46.......... (2n+2)2n
2 1.35......... (2n+1)
© z(n +1) = 24.6........... (n+2Dn (d
2 1.35.......... (2n+1)
/_( 1= 46.......... (n=Dn
1. 3 ST (n+1)
4. The expansion of sin @ as an infinite product is
4&2
(@) sin@= ¢9H (b)
02
sin @ = 0H(1+ FZEZ)
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r.271_2

(€) sin 6 = eﬁ(n 49" j (d)

0 02
sin@=6 1-——

A SR
5. The expansionlog,(1+2) =z —7+€—7 holds if

(a) z is any complex number (b) z#0z<1 and
z#-1
(©) |Z/<land z=0 (d) z#0
6. Gregory’s series H:tane—%tanseJr%tanf’H— ....... holds if &
satisfies
@) -7r<O<rx 0 -Z<o<Z
2 2
€ -Z<o<Z (d) 4 is any real
4 4
7. The sum of series %—%+Lﬂ— .......... ad.inf . is
2° 32" 5.2
1, 1 41
a) —tan = b) tan™ —
@ jtan - (b) tan
1. 1 1 .
c) —tan™ = d) =tan—1
(@) Stan 7 @ ¢
8. The value of % is
@) 1+1+1+1+ ..... (b) 1—1+l—1+ .....
3 5 7 3 5 7
(© —1+1—1+1— ..... (d) None of these
3 5 7
ANSWERS:
l.c 2.a 3.a 4.d
5Db 6.c 7.¢C 8.b
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11.14.2 Fill in the blanks

The expansion of cosh@ as an infinite productis .................

2. The value of %tanze—%tan“mr%tanee— ....... IS
3. If —1<x<1then isequalto...............ooevviiiiinnn..
4. Rutherford’s series evaluate value of 1S........covvvveeveein....
5. The sum of series iS.......ccovveeenn.. ..
6. If x > 0,then tan™ xisequal to ............................
7. The infinite seriesis..........ooooeeee. ...
8. Fuler’s SerieS 1S, vvueeeeee e
ANSWERS:
1. 2.log sec @
3 5
3x_ X X _ 2% —aant i@ttt
3 4 4 5 70 99
2 6
57 \ i
8 7 (x-1 _1[x—1 +1 x—1
4 X+1) 3\ x+ 5\ x+1
2
7 g.tan"Litantio%
12 5 4
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11.17 TERMINAL QUESTIONS

11.17.1 Short answer type questions

1.

2.

3.

V4 2 1| 112 1 112 1
Prove that, — :|:—+—:|——|:—3+—3:|+—|:—5+—5:|— ......
4 71 313 7 513 7

Prove that 1—%+1(i2j—l(i3j+ ...... oo=”—\/§
3° 53 73 6
Prove that if x, y, z are cube roots of unity
-1 -1 -1
tan x+tan y+tan Z:3[1—l+i—i+i— ........ }
X y z 7 13 19 25
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4, Prove that
n+l
r_17__ 713 | L&D {ggl_n +71_2n} .

4 21 81x343 2n-1
5. Prove that

7;{111}1{1 1 1}1{1 1 1}
—=| At =t || =ttt |t === |
4 |2 5 8| 3[2° 5° 8| 5/2° 5° 8°
11.17.2L.ong answer type questions

1. If 0 < % prove that

log secO=tan’ - tan® 0+ L tan®
2 4 6

in _
2. Expand tan™ Q(MJ as a power series in tan 4.
coséd —sin 6
3. If © and tan*(sec #) both lie between 0 and % then
tan *(sec9) = Z + tan? 9 LansOy ..
4 2 3 2
4. Find the sum of the series

7 19 31
+ + +
1.35 579 9.11.13

5. If x lies between —% and %,then prove that
tanx—ltan3x+%tan5x— ....... = tanh x+%tanh3x+%tanh5x+ .......
ANSWERS:

2. nz+2Z +tan té’—ltan3 0+.41-%
4 3 8
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BLOCK V: VECTOR ANALYSIS
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UNIT 12: VECTORS MULTIPLE
PRODUCTS AND DIFFERENTIATION OF
VECTORS

CONTENTS:
12.1 Introduction
12.2 Obijectives
12.3 Triple product
12.3.1 Geometrical interpretation of scalar triple product
12.4 Reciprocal system of vectors
12.5 Differentiation of vectors
12.6  Summary
12.7 Glossary
12.8 References
12.9 Suggested Readings
12.10 Terminal Questions
12.11 Answers

12.1 INTRODUCTION

There are two forms of vector multiplication. The cross product of
two vectors and the dot product of two vectors are the two ways to
multiply a vector since a vector contains both magnitude and direction.
Given that the resulting value is a scalar quantity, the dot product of two
vectors is also known as the scalar product. As the result is a vector that is
perpendicular to these two vectors, the cross product is also known as the
vector product.

In this unit learners will be learn more about the two-vector
multiplication, including its working principle, attributes, applications, and
examples.
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12.2 OBJECTIVES

After reading this unit learners will be able to

e Memorized about the vector triple product and scalar triple product
and also their geometrical representation.

e Analyze about the reciprocal system of vectors.

e Analyze the application of differentiation of vectors.

e Memorized the useful theorems and their application of vector
triple product and scalar triple product.

12.3 TRIPLE PRODUCT

Triple Product: As we know that the vector product axb and scalar

product &b of two vectors dand b are always a vector quantity and scalar
quantity respectively. Therefore, if we multiply to these quantities with

another vector quantity ¢ by both vectorially and scalarly i.e., (axb)x¢

called vector triple product similarly (axb).c is called scalar triple
product.

Remark: (a) Vector triple product is again a vector quantity.
(b) Scalar triple product again is a scalar quantity.

(c) (ab)xcand (ab).c are meaningless because scalar quantity (a.b)
never be product vectorially and scalarly with any vector quantity.
Similarly, the product @xb.€ is meaningless so it is meaningful only if it
is written in some sense (axb).c.

Scalar Triple Product: The scalar triple product is the scalar product of
two vectors in which one of the vectors is itself vector product of two
vectors. Thus if &, b and € are three vectors, then, (axb).c is called
scalar triple product.

Some books named scalar triple product as mixed product
because in this product both ‘cross’ and ‘dot’ signs involved.
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12.3.1 GEOMETRICAL INTERPRETATION OF
SCALAR TRIPLE PRODUCT

To explain geometrically to scalar triple product, we consider a
parallelopiped whose edges and length are OA, OB, OC in the direction of
vectors &, b and C respectively. Let the volume of parallelopiped is V
which is necessarily positive.

Let axb =n, then from definition of vector product it is clear that

n is perpendicular to the face OADB and |n| is measure as the area of

parallelogram OADB. Since, by definition, vectors, a, b and n form
right-handed triad.

Let ¢ is the angle between the vectors OC and n. Then vectors a

, b and © form right-handed or a left-handed triad according as ¢ to be
acute and obtuse.
(axsj

Now, (gx ng =

= (area of the parallelogram OADB).(OCcos¢)

—

n

—

c

N

c|cos¢ = CoS ¢

[+k=oc]
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So, according to the value of ¢ is acute or obtuse, OC cos¢ will depend

positive or negative. Its absolute value gives the length of the
perpendicular from C to the plane OADB.

So, V = (Area of the Parallelogram OADB).(Length of perpendicular from
C to the parallelogram OADB).

Therefore, if ¢ is acute, [EXB}ZZW i.e., if a, b and n form right-
handed triad.
And, if ¢ is obtuse, (SxBjE:—v ie.if 4, b and n form left-handed

triad.
Since, we know that the vectors @, b € are right-handed triad so, vectors
b, ¢,d and ¢,a, bare also right-handed triad. Hence each product

(bx c).a and (CX a).b will have the same value +V or -V according asa,

b ¢ are left-handed triad.
Thus, (gx ng = (Bx ng =

:_5.(&6):—(SXEJ.*:_B.(SXZJ

From this we conclude that value of scalar triple product depends on the
cyclic order of the factors and is independent of the position of the dot and
cross. These may be interchanged at pleasure. However, an analytic
permutation of the three factors changes the value of the product in sign
but not in magnitude. The notation used to write scalar triple product is

(ax bj. c= {a b c} = [a, b, c} . This notation takes into consideration only

the cyclic order of three vectors and disregards the unimportant position of
dot and cross.
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e, FB’Z}:[BZS}:[EEB}{ZBS} etc.

AN

ik

A
|

onstitutes an orthogonal right-handed triad of unit

:(?x]jf:&.ﬁ-zl

2: As nature of &, b, € are right-handed or left-handed, scalar triple

Note 1: If

c
vectors, then {i j k}

>

product {a b c}will be decided to be positive or negative.

Distributive law for vector product:

N

To prove that ax(b+c)=axb+axc, where @, b Care any three
vectors.

Let r=ax(b+c)—axb—axc
(D
Now scalar product both side by the vector d , we get

d.r=d. gx(6+3)—gx6—gxg}

L (Q2)

8? = E ;x (E+ Z)} —8.(§x B) —d .(gx Z) [Scalar product follows the

distributive law]
As we know that position of cross and dot can be interchanged without
affecting its value.

d.r = (dxa).(b+c)—(dxa).b—(dxa).c
d.r= (Ex 5).B+ (de 5).8— (Ex 5).6— (ax 2).3 [scalar product is
distributive]

=0

—

=d=0 or r=0 or d is perpendicular to r . But we had taken d as

IR
arbitrary. So, we can choose it non zero and not perpendicular to r .
- . - o> - -> 2> S >
So, r=0i.e, ax(b+c)-axb—axc=0
-

= ax(b+c)=axb+axc, hence proved.
Properties of scalar triple Product:
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1) If two vectors of a scalar product are equal then its value will be
zero.

Proof: Let three vectors are a,a, b in which two vectors are equal. So,
there scalar product is [aa b} = [a, a, b} =a.(axh)
Since we know that (axb) is the perpendicular vector to the plane of a

and b . It means dot product of vector (axb) with vector a and b will be
zero.

= a.(axb)=0i.e, [aab} =0
2 If two vectors are parallel then value of scalar triple product will be
zero.

Proof: Let three vectors are g B Z in which vector B is parallel tog ie.,
b=ka . So there scalar product is,
F, kS,B} —a.(kaxb)
_ kF.(Sx B)}
=k[§,5,5}= k0=0
3) The necessary and sufficient condition for three non-parallel and

non-zero vectors &, b, € to be coplanar is that {a b c}:o

Proof: Necessary Condition: Let @, b, Care three coplanar vectors. As

we know that vector (ax b) is perpendicular to the vector & and b . Since
vector &, b, C are coplanar so, vector ¢ will also perpendicular to the

vector (gx B) .
As we know that if two vectors «, S are perpendicular then . =0
So, (axb).c=0

:{563}:0
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>

Sufficient Condition: Let [abc}zo i.e., (Sxﬁ)gzon means vector

(ax b) is perpendicular to the vector C. Since (axb) is also perpendicular

to both the vector & and b . Hence vector (axb) is perpendicular to the

—

vector &, b, C. It means vectors are on the same plane i.e., these are
coplanar.

4) As distributive law holds for both vector and scalar product, it
holds for the scalar triple product.

Thus [5,& d,c+ ?} :F,B,EHE,B,?HS,E ,EHS,J ,?] the order
of cycle of the factor being maintained in each term.

To express the scalar triple product in terms of rectangular
component of the vector:

Let a=ai+a,j+ak, b=hithj+bk, C=citc,jtck
i ]k
.+bxC =(bj+b,j +bk)x(ci+c,j+ck)=|o, b, b,
Cl CZ C3

=(b,c;—b,c,)i—(b,c;—byc)) j+(b,c,—b,c )k
a.(bxc) =(a1i + azj + aak)-(bz C3— b3 Cz)i _(bl C;3— b3 Cl)j + (bl C,— bz Cl)k

=a(b,c;—b,c,)—a,(b, ¢, —b,c) +a,(b, ¢, -b,c)
[ li=j.j=kk=Li.j=jk=Ki :O]

o R &
{abc}z b, b, b,
Cl C2 CS

AN s s G G G |8 & &
(axb).c:c.(axbjz a a, a=|b b, b,
bl b2 b3 Cl C2 C3
It means position of dot and cross in scalar triple product is independent.
Expression of the scalar triple product in terms of three non-coplanar
vectors |, m, n:

— - -
Let, a=al+am+an, b=bl+bm+b,n, c=cl+c,m+c;n
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So,

- -
bx ¢ =(bl+b,m+b;n)x(cl+c,m+c,n)
=bclx1+bc,I xm+bclxn+bemxl+b,c,mxm+b,c;mxn+b,cnxl+bc,nxm+bc,nxn

['.'I x| =0,Ixm :—mxletc.]
=bc,I xm+bc,I xn-b,clxm+b,c,mxn—bclxn-bec,mxn
= (b, —b,c,)I xm+ (b,c, —bc,) mxn+ (bc, —b,c)I xn
= (b,c, —byc,) mxn—(bc, —b,c)nxl+(bc, —b,c, ) I xm
-+ a(bxc) = (a] +a,m+a;n).[ (b, ~b,c,)mxn — (be, —bsen x| +(bc, ~byc, )1 xm]
=a,(b,C, —byc,)[Imn]—a, (b,c, —b,c,)[I mn]+a, (bec, —b,c, )[Imn]

[~ [Imn]=[mnl]=[nIm] and scalar triple product in which two vectors
are same is equal to zero i.e., “-[lIn]=0]

o B R &
Hence, [abc} =|b, b, by|[Imn]
Cl C2 C3

Solved Example

Example 1: If vectors a=2i— j+k, b=i+2j-3k, ¢=3i+pj+5k are
coplanar then find the value of constant.
Answer: As we know that three vectors &, b, € are coplanar then

FBZ}:O

2 -1 1
Now, FBZ}: 1 2 —3=2(10+3p)+1(5+9)+1(p—6) = 7p + 28
3 p 5
Since, FBE}:O
—7p+28=0
=>p=-4
Example 2: If the vectors

—

§= 2i—4j+5k, b=i—-]j+Kk, g=3i —5j+2k are representing the
edges of parallelopiped, then find its volume.

Department of Mathematics
Uttarakhand Open University Page 379



Algebra, Matrices and Vector Analysis MT(N) 121

Answer: Since we know that the volume of parallelopiped is equal to the

absolute value of scalar triple product of its edges i.e., {a b c}.

2 4 5
FBZ _l1 -1 1|=2(—2+5)+4(2-3)+5(-5+3)
3 5 2
_6-4-10—-8

Since volume of surface never be a negative quantity, so required volume
of parallelopiped is 8.
Example 3: Prove that the points 4i+5j+k, —(j+k), 3i+9j+4k and

4(—i+ j+k) are coplanar.

Answer: Let A, B, C, D are the four points whose position vectors position
vectors are given from the origin O.

It means, OA=4i+5j+k, OB=—(j+k), OC=3i+9j+4k and

OD = 4(-i + j+K).
If we have to show that four points A, B, C, D are coplanar then we have

only to prove that the vectors ATB, ch, KD are coplanar.
Now, AB =OB—OA=—(j+k)—(4i+5j+k)=—4i—6j—2k =a (say)
AC = OC—OA=(3i+9j+4K)— (4i+5j+Kk) =—i+4j+3k =b (say)

AD = OD—OA=(—4i+4j+4k)— (4i +5j+k) =—8i— j+3k =¢ (say)
-4 6 -2
{AHB,AHC,A% }:FEZ}: 1 4 3|=—4(12+3)+6(<3+24)— 2(1+32)
-8 -1 3
=—60+126-66=0
So, we can say that given four vectors are coplanar.
Example 4: Prove that the points —a+4b—3c, 3a+2b—5c, —3a+8b—5c

and —3a-+2b+c are coplanar.
Answer: Let A, B, C, D are the four points whose position vectors position
vectors are given from the origin O.

It means, OA=—a-+4b—3c, OB=3a+2b—5c, OC=-3a+8b—5¢ and

OD=-3a+2b+c.
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If we have to show that four points A, B, C, D are coplanar then we have

only to prove that the vectors ATB, ch, ADare coplanar.
Now, KB = C;B—CYA:Sa+ 2b—-5c—(—a+4b-3c)=4a-2b—2c
AC = OC—OA =(~3a+8b—5¢) — (—a+4b—3c) = 2a+4b—2c

AD = OD—0A =(=3a+ 2b+¢) — (—a+ 4b—3c) = 2a—2b+ 4c

4 2 -2
{AﬁB,AﬁC,AﬂD}:—Z 4 -2[abc]={-416-4)+2(-8-4)-2(4+8)}[ab ]
2 2 4

={-48-24-24}[abc]=
So, we can say that given four vectors are coplanar.

Example 5: Prove that F+B,B+ ZZ+ g} = ZFBE}
Answer: [mmag}{zmjﬂaz){azﬂ
( + )[bxc+bxg+gxg+gxg}
(bx cj a (bx a)+g (ZXZJJFQ'(ZX gj
+b. (BXZ}B (BXE}B (CXZ}B.(ZXE)
B,ZHQ,B,SHS,E,Z} [5,3,2}
+[ ,B’THB,B,QHBE,E}{B’,Z,Q}

(If two vectors of a scalar product are equal then its value will be zero.)
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- > >

:F,B,g}+0+0+0+0+0+0+[b,c,a}

- F, b, Z} +[§, B,E}

la 1b Ic
Example 6: Prove that [Imn][abc]=/ma mb mc
na nb nc

Answer: Let | =Li+1,j+Lk, m=mi+m,j+mk, n=ni+n,j+nk
and a=aji+a,j+ak,b=bi+b,j+bk, c=ci+c,j+ck
Il |2 IS al a2 a3
Now taking LHS = [Imn][abc]=lm, m, m|b, b, b,
nl n2 n3 Cl CZ C3
la, +1,a, +1.a, l,b, +1,b, +1.b, lc +1c,+1c,
=lma, + ma, +m,a, mb +m)b,+mb, mgc, +m,.,+myc,
na-+na,+na, nb+nb,+nb, nc +n.c,+ngc,

As we know that, l.a=1a, +1,a, +1,a,
Similarly, we can write
la 1b Ic
LH.S.=[Imn][abc]=ma mb mc
na nb nc

VECTOR TRIPLE PRODUCT: Vector triple product is the vector
product of two vectors in which one is itself the vector product of two

vectors. Thus if &, b, Care three vectors then the product of the form

ax [bx Cj and (ax b) x C etc. are called “Vector Triple Products”.

Theorem 1: To prove that é’x(gx Ej = (53)6—(56)3
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Proof: Let ?=§x(6x Zj and BXZZE

—

As we know that if B’XZZH, it means d is perpendicular to the plane
containing b and Z.Also, r=axd Ie., r s perpendicular to the plane
containing gand 8 Now the vector ?is perpendicular to the vector g
whereas the vector d is perpendicular to the plane containing band ¢. It
means ? must lie in the plane containing b and c.

- —

N
=r=Ilb+mc, where, | and m are scalars.

Since r is perpendicular to the vectora , then r.a=0

:>(I6+ mﬁj.gzl(g.5j+m[g.§j

| -m

<3 i

Putting the value of scalars I, min (1)
?:1(8.5)64(8.3)8:1[@5)6_(6.5}3}

Now we have to find the value of 1.

Let,

=1 (say)

Consider unit vectors jand k, the first parallel to band second

perpendicular to it in the plane containing b and ¢ . Then we may write

b=b, jand Z:c2j+c3k, then remaining vector may be written as
g:a1i+a2j+a3k
Now,Bxg=bLV(%j+%kj=b§4ﬁxjj+b§4ﬁxk)=b§g
?:éx(gxgj:(ainazj+a3ijbzc3i

=ab,c;ixi+ab,c, jxi+ab,c.kxi = ab,.c, j-ab,ec,k 3)

{:Ri:Oin:—kkxi:j}
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n

?:1(3.2)61(5.2)3:1[(% j+c3kj.(a1i+a2 j+a3k)b2 b, j.(a1i+a2 j+a3k)(

? =4 [Czazbz j+ciah, j-bac, j—b,ac, k}
=1 [c?,agb2 j—-ba.c, k}

Now from equation (3) and (4), we conclude that 4 =1

Hence, a"x(gx ZJ = (EZJB—GB)Z

Corollary:
ax(gxzj:_[zx(gxgﬂ:_Kz.a)g_(z.g)q:(z.gja_(z.ajg
Solved Example

Example 7: Provethatax(bxc)+bx[c><a)+ x( X j .
a.b

jé

—

Answer: We know that, éx(gxg) (% HJB (

........ (1)

Similarly, Bx(gx gj:(g H) (B Zjﬁ
...... )

and ZX(EXB){Z.BF{ZE]B’

...... (3)

Now, adding equation (1), (2) and (3)

éx(gx gj+6x(gx gj+gx(gx B) = (58]8—(26j8+(62jg—(8ng+(

N

As we know that vector scalar product is commutative i.e., a.b =0

= é’x(gxgj+gx(gxgj+gx(5xg)=0

{
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Example 8: Prove that the vectors ax (Bx gj : bx (Zx gj : Cx (Ex Bj are

coplanar.

N

Answer: Let zéx(bxgj, E:bx(CXa), r3:c><(a><bj.

To prove that these vectors are coplanar, first we have to prove that

> o >

r,+r,+1r,=0. In the previous example we have already prove that
- - - - - - - - . - > -
ﬁx[bx cj+ bx(Cx aj+ CX(ax bj =01ie, n+n+r,=0.
It means any one of these vectors can be expressed in terms of other two
vectors. Hence these vectors are coplanar.

Example 9: If the vectors a —i—2j+k, b=2i+j+k, c=i+2j—k
then find Ex(ﬁx Zj.

Answer: We have éx(gx Zj =(§Z)B—(§ng
(Z.Ejﬁ:[(i—zhk).(nzj—k)](2i+j+k)=(1—4-1)(2i+j+k)

(5.3)5:—&-41' 4K
Similarly,

(5.6)8:[(i—2j+k).(2i+j+k)](i+2j—k):(2—2+1)(i+2j—k)
(E.B)Eznzj-k

Hence, ax(Bij =(Z.Zj3—[§.6j§:(—8i —4j—4k)—(i+2j—K)

ax(5x3j=—9i—6j—3k

N

Example 10: Show that [ax b,bxc,cxa|=[ab c]2 and also express the

result in terms of determinants.
Answer: We know that, [ax b,bxc,cxa|= (ax bj.[(bx cjx(cX aﬂ
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Let d = Bxc , then ax(zxg):(a.gjz_(a.zjg

ax(zxg) :[(axz).z}z_[(gxz)z}g {azﬂz{azz}g :[gsz}z
{(BX z)x(zx gﬂ _ a’x(zx ;j _ [gaz}z

(;xaj.{(ax z)x[zx gﬂ _ (zxaj.[gaz}z

Since we know that scalar triple product is the scalar.

j(gxa).[(axzjx(zx;ﬂ:[gaz}{(gxaj.z}:[353}[5;}
:(gxsj.[(gxz)x(zxgﬂ:[;53}2

Let a=aj+ajrak b=bi+hj+bk c=ci+c,j+ck,then,

a a &
[abc]=b, b, b,
Cl CZ C3

ik
again axb=la, 8, &|=(8,8—b,a)i+(ba,—ab,)j+(ab,—ah )k
b b, Db

i ] k

similarly, bxc =, b, by=(b,c,~bic,)i+(ch,—bc,)j+(bc,—ch, )k

c ¢

ik

and Cxa= C, C Cl=(c,a;—ac;)i+(ac,—ag)j+(ca,—ac,)k
a a 3

2 CB

o . . |mb-ba ba,-ab, ab,-ab
Now, {ax b,bxc,cx a}: b,c,—bc, cb,—bc, bc,-b,c
C8;—C8, C;—aC Ca, —Ca

l:_>—>—>—>_>_, Cl C2 C3 A&AZAS

axb,bxc,c><a}=A1 A, A|=B, B, B,
Bl BZ B3 Cl CZ C3
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where the capital letters A, A,, A, etc., denote the cofactor corresponding

8 3 &
small letters a,, a,,a,etc. in the determinant (b, b, b,
C C G
o A A A
Hence, [axb bx ¢, cx a}z[a bc]'=|B, B, B,
Cl CZ CS

> o

Scalar product of four vectors: If , b, ¢ and 8 are four vectors then
the product (ax b).(CXd) or (axd) (bx j is called scalar product of

four vectors.

Theorem 2: Prove that (gxgj (chj

a.

a.
Proof: Let gxg’:? . Then (gxgj (Zxéj r (ng)
As we know that position of dot and cross may be interchanged without
altering the value of the product. Therefore,

?.(zxajz(az)a{(gxasz}.a:[(zg (<. bﬂa
(a5 ) (6xd )=

This relation also known as Lagrange’s Identity.

N

Vector Product of four Vectors: Let g, b, Z and E be four vectors

then the wvector products of the vectors (axb),(wdji.e.,

(ax bj x(c X dj is known as vector product of four products.

Theorem 3: To prove that
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(ii) (SXEJX(&EJ:F c E}B—[B c EF

Proof: As we know that (ax bjx(dej is the vector quantity which is

either written in terms of ¢ and d or in terms of a and b . To express the

vector [&B){&Ej in terms of, let us put gxg :T.Then
(gxajx(zxajzrx(zxaj:(r.ajz_[r.zja
:Kgxaj.a}z{(gxa)z}a{; bdfe-{abed

1)

Similarly, we also express the vector (SXBNZXH) in terms of a and
b which is,

(EXBJX(ZXEHE ZE}B_[B EEF

equating the equation (1) and (2)

F b EF_F BZF:F c E}B{B ZEF

{6’ c EF_[E 88}5’{5 b EF-[E BZF -0

Which is the required linear relation connecting the four vectors g , B

,Zandg.

12.4 RECIPROCAL SYSTEM OF VECTORS

Let a, band care three non-coplanar vectors such that {a b c}tO,

- - -

then the three vectors a , b and ¢ defined as
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bx ¢ b =X _ and c':—%aibﬁ
[a b c}

_) R - B_(
Similarly, b.b' =b. ¢ == =
a

- >
-2 axb

and c.c =c. =

Example 12: The scalar product of any other pair of vectors, one from

A A e A S A

. . . . o 2
each system is zero, i.e., a.b =a.c =b.a =b.c =c.a=c.b =0

Answer: a.b =a. — =

Similarly, ~we can  prove the other results ie.,
-2 > 2 5> 2 52 52

a.c=b.a=b.c=c.a=c.b=0.
Example 13: The product of the scalar triple product of three non-

coplanar vectors a, band c and the scalar triple product of their

reciprocal a , b and ¢ isequal to 1i.e., F Bg}{a b 01:1.

R R
AnNswer: First we have to define scalar triple product [a b ¢ |=a .| b xc

- o - o - |:C><a axb}
A A Al bxc cxa ax
|:a bc:|:al£bxcj= - —> > ) - —> —> X - —> — -

[abc} [abc} {abc} }
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As we know that

(ZXZNEXB}[Z a BF{Z a S}EZF b ZF_OZF b ZF

So,
a (sxz).{ zx;jx(gxaﬂ (axz [;sz}g [553 { gxz) }
{al b C} 3 = 3 3
[abc} [abc [abc}

> > >

Remarks 1: Since scalar triple product [a b c} # 0, so we conclude that

ARG -2 >
abc|#0ie,a,bandc arealsonon coplanar.

- o -

2: Since the vectors a , b and ¢ are reciprocal to the vectors a, b and ¢

- - -
similarly, we can say that vectors a, band c are also reciprocal to the
- -

vector a', b and ¢, this is known as symmetry property.
3: The unit vector along three-dimensional co-ordinate axes i.e., the

A N

orthonormal vector triads i, jandk form a self-reciprocal system.

Solved examples
Example 14: Find the set of reciprocal vectors of the vectors

a=2i+3j—k, b=i—j—2k, c=—i+2j+2k.

Solution: Let a , b and c are the system of reciprocal vectors of the
given vectors, then

NN - - - -

a - _ﬁbicﬁ_ =22 andc ——ﬁaibﬁ
abec [a b c} [a b c}
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2 3 -1
FBZ}: 1 -1 -2=2(-2+4)-3(2-2)-1(2-1)=3%0
102 2
ik
Now, bxC =1 -1 —2/=(-2+4)i—(2-2)j+(2-1)k =2i+k
102 2
a0 __2Zi L,
[abc} 3 3
i j k
Cxa=|-1 2 —2|=-8i+3j—7k
2 3 -1
o__cxa__-8i+3j-Tk
FBZ} 3
i j ok
axb=[2 3 —1/=(-6-1)i—(-4+1)j+(-2—3)k =—7i+3]—5k
1 -1 -2
o axb __-Ti+3j-5

[5 BZ} 3

12.5 DIFFERENTIATION OF VECTORS

Vector Function: Let D be the subset of real numbers. If we associate
unique vector f(t) to each element t of D, then this rule defines a vector
function of the scalar variable t. Here f(t) is the vector quantity and thus f
is a vector function.

As we know that every vector function can be easily expressed as a
linear combination of three fixed non-coplanar vector. Thus, we can write

f(t) =1+ f,(0) ]+ f,(Ok
where i, j,k denote the orthonormal right-handed triad.
Scalar field and vector field
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If in the region R in the space corresponding to each point P(x, y, z) there
is unique scalar f(P), then f is called a scalar point function and we say
scalar field f has been defined in R.

e.g., f(x,y,2z) =x>—y®—2xyz defines a scalar field.

If corresponding to each point P(x, y, z) in the region R there is unique
vector f(P), then f is called a vector point function and we say vector field f
has been defined in R.

e.9., f(x,y,2)=x%—y?j—2xyzk defines a scalar field.
Limit and Continuity of a Vector Function:
Definition 1: A real number I is said to be limit of a vector function f(t),

when t tends to t;, if for any small positive number e, there exist a
number ¢ such that

|f(t)—I|<e whenever O<|t—t,| <&
If vector function f(t) tends to a limit | as t tends to t,, we write it

mathematically by,
limf(t) =1

t—t,
Definition 2: A vector function f (t) is said to be continuous at a point t,
of t if following are satisfied,

(i) f(t) is defined at t,

(i) Corresponding to any small positive number e, there exist

a number & such that

|f(t)—f(t,)<e whenever O<[t—t,| <&

A vector function f (t) is said to be continuous if it is continuous for every
value of t for which it has been defined.

Some important theorems:

Theorem 4: The Necessary and Sufficient condition for a vector
function f (t)to be continuous at t =t is that !LT f(t)="f(t,).

Theorem 5: The vector function f(t)=f )i+ f,(t)j+ f,(t)k is
continuous if and only if f,(t), f,(t), f,(t) are continuous.

Theorem 6: Let f(t)= f(t)i+ f,(t)j+ f,(t)k and I =Li+l,j+1k, then
the necessary and sufficient condition that !LT f(t)=I are

!I_)nt;' f.(t)=1, !LT f,(t)=1,, !LT f, () =1,
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Theorem 7: If f(t),g(t) are scalar function of the scalar variable t and let
w (t) is a scalar function of scalar variable t, then

() tim{ £ g()] = lim ) = limg(©)
(ii) !LT[f(t).g(t)]:[lim f(t)}.[limg(t)}
(|||)I|m[f(t)><g(t) [Ilmf(t)} [ILTg(t)J
() lim[y 9] =| limy @) | limo®

) lim| 0] = im £ 0

Note: Here we use application of these theorems without proof.
Derivative of a vector function with respect to a scalar:
Definition: Let r = f(t) be a vector function of the scalar variable t, we
define

r+or=f(t+ot)

or=f(t+aot)—f(t)
or _ ft+ot)-f(1)

Consider the vector,
ot

exist, then the value of this limit is called

if 1im 2" = lim f(”&;) 1

at—0 St S5t—0
the derivative of the vector function r with respect to t, denoted by % ie.,

dr T ﬁ:"m(wér)—r:"m f(t+ot)— f(t)
dt >0t 6t0 ot 3t—0 ot

If %exists, then r is said to be differentiable. Since r is vector quantity so

its will also a vector quantity.
2
If we again differentiate % we get % , the second derivative of r w.r.t.

t, and so on differentiating successively n times we get,
dr d’r d°r d°r dr
Differentiation Formulae:

Theorem 8: Let a,band c are differentiable vector function of a scalar t
and w (t) is a scalar function of same variable t, then
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. d da , db
—laxtb|=—+—
® dt[a ] dt dt
. d db da
I —labl=a.—+—0b
(1) ik e
iy  Llaxb]-ax, 9,y
dt dt dt
(iv) i[abc]= d—abc+ad—bc+ab%
dt dt dt dt
d da dy
% —|yal=y—+—/a
V) il g
d da db dc
[ —Jax(bxc);=—x(bxc)+ax| —xc [+ax| bx—
(vi) dt{ x(bx )} dtx( X C) X(dtx ) x( th}
Proof (i):
a+oa)+(b+ob)r—(a+b
i[a+b]=|im{( ) ( )} ( )zim5a+5b:"m@+“m@:d_a+@
dt 8t—0 ot -0 St -0 St 60 St dt dt
Similarly, we can prove that, —[a—b]= da_db
dt dt
Proof (ii):
a+o0a).(b+ob)t—ab _
d [a.b]:"m{( ).(b+6b)} _ jim@b+adb+dab+sash-ab
dt 5t—0 ot 5t—0 ot
. aob+oab+odaob . ob oa,  oa
=lim =lim<a.—+—Db+—.0b
S5t—0 ot St—0 ot ot ot
:Iim{a.5—b+§.b+@.5b}:Iima.§—b+lim@.b+lim@.5b
S5t—0 ot t ot =0 St -0 St -0 S5t
= .%+%.b+%.0
dt dt dt
Since ob—>0ast—0
E[a.b]:a.d—b+%.b
dt dt dt
Note: As we know that vector dot product is commutative, then
drap=a®, 92,9 a)
dt dt dt dt
Proof (iii):
d _ (a+o6a)x(b+ob)—axb . axb+axdb+daxb+saxsb—axb
—[axb]=1im =1lim
dt 5t—0 ot S5t—0 ot
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im axob+daxb+daxdsb
5t—0 ot

=lim ax5—b+@xb+§x5b =lim ax§—b+ Iim@xb+ Iim@xé‘b
t §t 51: 5t—0 5t 5t—0 §t 5t—0 51:

Note: As we know that vector cross product is not commutative, so we
must have to maintain the order of the factor a and b.

Proof (iv): %[abc] = %{a.(bxc)} = a.%(bxc)+z—?.(bxc)

=a.(bx$+@xcj+%.(bxc)=a.(bx$)+a.(@xc +d—a.(b><C)
t dt dt dt dt

dc db da da db [ dc
=lab—|+la—c|+|—bc|=|—bc|+|la—c|+|lab—
v |rageld Svel-Soe]t e Re) o g

Proof (v):

E[z//a] —lim (y+dy)(a+da)-ya _ lim ya+yoa+aoy +oyda—ya
dt 5t—0 ot 5t—0 St

lim Y030V HOVOR _ iy, 02 L jim a2 4 1im 2 sa
5t—0 ot -0 St o0 St at-0 St

=l//%+d_‘//a+d_l//0=l//%+d_l/ja
dt dt dt dt dt

Proof (vi): %{ax(bxc)}:ax%(bxc)+3—?x(bxc)
=ax(@xc+bx$j+%x(bxc):ax(@xc}ax(bx%}%x(bxc)
dt dt ) dt dt dt ) dt

:ﬁx(bxc)+ax(@XcJ+ax(bx%j
dt dt dt

Remarks 1: Derivative of a constant vector is always zero.

Department of Mathematics
Uttarakhand Open University Page 395



Algebra, Matrices and Vector Analysis MT(N) 121

2: If r is avector quantity and s is a scalar quantity, then we write

ar = d_r% which is nothing but the multiplication of the vector ar
dt ds dt ds

and scalar d_s_
dt

3: If r =xi+ yj+zk , where the component x, y, z are scalar function of

scalar variable t and i, j, k are unit vectors along the three co-ordinate axes
then,

dr_ o, vy, a2y

dt dt dt° dt

It means when we differentiate a vector, we should differentiate its
components.

Sometime, we also use the notation,
ﬂ_(% dy gj d’r (dx d%y d’z
dt  \dt'dt’'dt) dt> [ dt* dt* dt?

Some important theorems

Theorem 9: The necessary and sufficient condition for the vector function

] and so on.

a(t) to be constant is that z—? =0.

Proof: The condition is necessary: Let the vector function a(t)is the
constant vector corresponding to the scalar variable t, it means
a(t+ot)=af(t)

t+ot)—a(t —
Now, B2 _ jm 2(L+0=a0 _, ah-a®) _,,
dt st-o0 ot 50 ot

The condition is sufficient: Let ((jj_? =0, then, we have to prove that a(t)

is the constant vector. Let a(t)=a,(t)i+a,(t)j+a(t)k, then,

%:dﬁ|+ﬁj+d&k
dt dt dt dt

Since, 98 _ o 9, 9 ; da
dt dt dt © dt
Now, equating both side coefficient of i, j, k, we get
da, _ 0, da, _ 0, da, _ 0, Here &, a,, a, are constant vector because
dt dt dt

they are independent from t. therefore a(t) is the constant vector function.
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Theorem 10: If g is differentiable vector function of the scalar variable t

and if g =a, then

N 2

o5 zea

. ~>da
i =2a—
® dt d
(i) ada_,%

dt dt
Proof: (i) As we know that a* = a.a =|a||a|cos0 = aa = a’

N

2 2
da® da —2ada

Then, —=—=2a—
dt  dt dt
} da? d(a'aj >da da> .>da
(i) = —a.—+—.a=2a.—
dt dt dt ' dt at
— 2288 5,98
dt o dt
>da _da
a—=a—
dt = dt

Theorem 11: If g has constant length (fixed magnitude), then gand Z—?

-

are perpendicular provided da #0.

dt

—

Proof: We have given that |a

d (Z.Sj
Since, =

- >
=a =constant. Then a.a = a?= constant.

- -
> da da-~
=a.—+—a=0

dt | dt
_pada_g_zda_g
at at
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—

Since, scalar dot product of two vectors a and (L—tais zero. It means

- -

e : . da
vectors a and %—?are perpendicular i.e., m #0

Theorem 12: The necessary and sufficient condition for the vector g(t) to

—

have constant magnitude is g.z—? =0.

Proof: Let a(t)is the vector function of the scalar variable t and it have

—

constant magnitude i.e., |a| = a = constant.

> >

= a.a = constant

jzg.d—azo: da_,
t at

Which is the necessary condition

o
Q|

da > o

o

Oa—a
dt t

> da

Condition is sufficient: Let us assume that a d_ =0, then we have to

prove that a(t)is a constant vector.

Since, 5.%—320 :g'd_a da

28 a-
dt  dt

d(a.aj N
T:o — a.a = a’ =constant

=

Theorem 13: If a(t) is the vector function of the scalar variable t and it is

2
differentiable, then %[ax %j =ax E

dt dt?
d( daj da da d?a
Proof: —| ax— |=—x— —
dt dt ) dt dt dt?

As we know that axa=0
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d da d?a d?a
= —| ax— :0+a><—2:a><—2
dt dt dt dt

Theorem 14: The necessary and sufficient condition for the vector a(t)to

. da
have constant direction (ax Ej =0.

Proof: Let a(t) be a vector function corresponding to the scalar variable t.

Let A be the unit vector in the direction of g(t)then, a(t)=la(®)|A, If we

consider a be the magnitude of the vector function a(t) i.e., a(t) =aA

da dA da
—=a—+—A
dt dt dt
Hence, gxd—aZ(aA)X[ad—A+d—aAj:a2Axdj+a%AxA
dt dt dt dt dt
dA dA

= aZAxE+0: a2A><E [As we know that axa=0]

The condition is necessary: Suppose a has constant direction, then A is
constant vector because it has constant magnitude as well as constant

direction. Therefore Z—f‘ =0

N

Hence, from (1) we get gx% =a’Ax0=0

Thus, the condition is necessary.

—

The condition is sufficient: Let we consider, gx%—? =0

Then from (1) we get, aZAxi—?:O or Axi—?:o e (2
. dA
. A'is of constant length, then A'E =0 ...03

From (2) and (3), we get (;—? =0

Hence A is a constant vector it means direction of A is constant.
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Note: (i) If r represent position vector of a particle at a time t with respect
to the origin O, then Sr represents small displacement at a particle in

time ot. If v represents the velocity of the particle at P, then

(@i)If g represents the acceleration of the particle at time t, then

> sv dv d?r

a=lim—=—=—r7-

-0 S5t dt dt
SELF CHECK QUESTIONS
- 2»
Example 15: Find d—rand d_zr where
dt dt

=@+ Di+ (@ +t+D) ]+ (C+t2 +t+ 1k

Solution: We have given that r= (t+Di+(t*+t+D)j+(E+t> +t+Dk

dr d, .. d d
S0, — =—(t+D)i+—(t* +t+1) j+—(+t* +t+1k
v dt(+)+dt( ++)J+dt(+ +t+1)
d—r=(it+£1ji+(itz+it+gljj+(it3+it2+it+iljk
dt  \dt dt dtdt dt dt dt dt dt
%=(1+O)i+(2t+1+0)j+(3t2+2t+1+0)k =i+(2t+1) j+(3t*+2t+1)k
24)
d 2r =£i+(2£t+iljj+(3it2+21t+ile
dt® dt dt  dt dt dt  dt
d’r . .
e =0+(2+0) j+(6t+2+0)k =2j+(6t+2)k
Example 16: If ?:sinti+cost j +tk, then find the following
dr _dr
i) — ii
(i) ” (ii) e
(iii)£ (iv) d’r
dt dt?
Solution: (i) d—r=iisint+jgcostJrkitzcosti—sintj+k
dt dt dt
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dir od, d d . d
I =—(costi-sint j+k)=i—cost— j—sint+k —1
(1) dt? dt( i+k) dt V™
2*)
e =—sinti—cost j+0k =—sinti—cost j
(iii)%—tr:\/(cost) (sint)’ +(1)° =@+ (1) =2
2—)
(iv) ddtzr :\/(—sint)2+(—cost)2 =1

-

Example 17: If ?=(cosnt)i +(sinnt) j, show that ?xcjj—tr =nk, where n
IS a constant.

Solution: We have given, ?:(cosnt)i +(sinnt) j

r . . . . . .
So, d— = IECOSI”I'H- Jism nt=-nsinnti+ncosnt |

Lo ik

> dr . . .

rxdd—tz cosnt  sinnt  0|=0i-0j+(ncos’nt+nsin’nt)k = nk
—nsinnt ncosnt 0

Example 18: If r= (coswt)§+ (sin a)t)B where a, b are constant vector

and  is a constant. Then show the following:

~ d?r - ..
(i) e +@’r=0 and (i)
POLLI
dt

Solution (i): We have given, if a, b are constant vector and o is a

constant it means d_a =0= ab
dt dt

Since, r= (coswt)§+(sin a)t)g
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r - -\ d(coswt)— d(sinwt)->
Then,d—r:E coswt)a+(sinwt)b |= ( w)a+ ( w)b
dt dt dt

dr i - -
EZ—G)Slna)ta-Fa)COSG)tb
dzr i - - ) - 5 . -
F:a(—a)sma)tﬁa)coswtbj:—w coswta—wsintwth
dz? ) - . - 2»
pre =—® (coswta +S|na)tb)=—a) r

2*)

r —

5 +@’r=0

t

-

(i) ?x%—:=((coswt)g+(sinwt)bjx(—a)sina)tg+a)coswt8)
?xc:j—tr=a)COSZa)t(gxgj—wsinzwt(gxgj=wC052wt(ngjJra)Sinza)t(ngj
- d? ) . - - - -
rx—:a)(COS ot +sin a)t) axb |=w| axb
dt

Example 19: If g:(cos@)i+(sin¢9)j+9k, B:(cose)i—(sine)j—Sk

and ¢ =2i+3j -3k, find ;—H{ax(bxc)}:(cose)i—(sine)j—3k at

0==2,
2
Answer:
i ik
bxc=|cosd -sin@ -3 =(3sin@+9)i+(3cosd—6) j+(3cosd+2sind)k
2 3 -3
i j k
Now, ax(bxc)=| sin@ cosd 0

3sin@+9 3cosf—-6 3cosd+2sinb
=(3cos’ 0+ 2sinOcos 0 —30cos 0+ 66 )i +(30sin 6+ 96 —3sin cos 0 - 2sin” 0 j +
(—6sin&—9cos )k
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d {ax(bxc)}
do
+(35in«9+39cos€+9—3cos2 6 +3sin*6 —4sin 0c059) j+(—6c0s0+9sin6)k

= (—6cos«9sin¢9+2cos2 0 —2sin?6—3cos O +30sin 0+6)i

Now, putting 6 = % , We get
3 ). .
:[4+Eﬁ)l +15j+9k

Example 20: Let a particle moves along the curve

x=t3+1y =t? z=2t+5, where t represents the time. Then find the
velocity and acceleration of the particle att = 1, in the direction i+ j+3k.
Answer: Since, we have given particle moves along the curve
x=t>+1y=t*z=2t+5, then

?z(t3+1)i+t2j+(2t+5)k

So, the velocity of the particle is

Sodr [do, o). [d,). (d
=—=J—(t°+1 —t —(2t+5)+k
i {dt( +)}I+{dt }H{dt( ’ )}

v = 3t%i + 2tj + 2K

The velocity of particleatt =1 is (;j =3i+2j+2k

t=1
Similarly, the acceleration of the particle is

d 2_) ’
a:d_zrzi ar :{istz}i+{izt}j+{iz}k=6ti+2j
dt?>  dt| dt dt dt dt

The acceleration of particleatt=1is (5) =6i+2]j

t=1

Since, the unit vector in the direction of i+ j+3k s
i+j+3k i+ j+3k
VP +1% +3 V11
So, the component of velocity in the direction of given vector
vl (Bi+2j+2k).(i+ j+3k) _ 11 _Ja

) Vi1 Vi1

Similarly, the component of acceleration in the direction of given vector

_EB_(6i+2j).(i+j+3k)_ 8
T J11 L

Department of Mathematics
Uttarakhand Open University Page 403




Algebra, Matrices and Vector Analysis MT(N) 121

Example 21: If r is a vector function corresponding to a scalar variable t,

a is a constant vector and m is a constant, then differentiate the following
with respect to t:

-

: 22 .. - - > dr
| r.a ii rxa iii rx—
(i) (ii) (i) rxo
- 5\2
. > d 201 . dr
iv r— Vv rl+— Vi m| —
) dt ) R v dt
r
(vii) — viiy =2
r’+a? r.a
Answer (i): Let ﬁ:?,g
then, dR_i(? Ej:d_gﬁd_a:d_fg da_,
dt dt t t dt
(i) Let, ﬁ:?xg
dR d(%%) dr - - da dr -
then, — =—| rxa |=—xa+ rx—=—
dt dt d dt t
S odr
i Let, R=rx—
(iii) X
dR d[- dr] dr dr - d’r - d’r
then, — =—| rx— |[=—x—+ = '
dt dt dt t t dt dt
'.'[gxg:O}
o odr
v Let, R=r.—
(iv) m
- - - - - S5\? -
dR d|~d dr dr ~>d?r |dr > d?r
then, —=—| r.— |=—.—+r.—5=| — | +I.—
t t dt t t dt dt dt
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2 A

dr :2r.d—r

dt t
(vii) Let, R=——2

r’+a?
Then,
dR d| r+a 1 d(~ -\ |d| 1 —
dt:aﬁ N =_) _)ar‘l‘a‘f-a N N r+a
r’+a? (r2+a2] (r2+a2]

’ 2 - -
_ %19 d_tr_ - Etz(waj
(r2+ Zj (erra2
d_a:oliﬁzz?d_r,i 2-0
dt dt t dt
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(vii) Let, R=1*2
r.a

dR d|rxa| 1 d(> >\ |d| 1 |[(>>
Then, = 1SS (=75 oo XA |+ rxa
dt dt| ;3 (r.ajdt dt

12.6 SUMMARY

After completion of this unit learners are able to memorize and analyze

> The application of vector triple product and scalar triple product.
> The application of differentiation of vectors.

12.7 GLOSSARY

> Vector triple product: (ax bj x C is the vector triple product of

- > -
three vectors a, band c .

> Scalar triple product: (ax b).c is the vector triple product of

- - -
three vectors a, band c .
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12.10 TERMINAL QUESTION

Objective Question

1. The value of i.( jxk)+ j.(kxi)+k.(ix )

a 0 b) 1

c) 2 d) 3

2. The volume of parallelopiped whose edges are given by

OA=2i—3j,0B=i+j—k OC=3i—kK is

a) 1 b) 4

C) 217 d) None

3. If [ a, b, c] is the scalar triple product of three vectors a, b, ¢ then [
a, b, c] isequal to

a) [b,a,c] b) [c, b, a]

C) [b,c, a] d) [a,c, b]

4. If i, j, k are the orthogonal right handed triad of unit vector and a

is a vector then

iX(inj-ﬁ-]X(gX jj+kx(§xkj is equal to

—

a) a b) 2a
C) 3a d) 0
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— - — - = 2 ’ -
5. If r=ae”+be™™, a,bare constant vectors then ddtzr —@°ris
equal to
a) 1 b) 0
C) 2 d) none of these
6. If a particle moves along the curve ? =e'costi+e'sint j+e'k,
then find the magnitude of velocity at t =0is
3
a) 243 b) %
C) NE) d) none of these
Fill in the blanks
1. If {i, j, k} be a set of orthonormal unit vectors, then [i, j, k] =
2. If A,B,C be three non-coplanar vectors, then éBjS + E’jxf =
CxA.B C.AxB

3. For any three vectors a,b,c, ax(bx cj+ bx(Cx aj+ CX(ax bj =

—

4 If a,b,cand a,b’c are reciprocal system of vectors, then find
a.a+b.b+c.c =
5 If the vectors g,g,gare coplanar, then (ax bj C= i,
N — 2%
6. Ifr=3i-6t%j+dtk,then LT L
dt dt
7. If U=ti—tj+(2t+Dk, v = (2t—3)i+ j —tk, then —(u.vj:
8  Ifr= L+ (sinat) . then 19T
. r = (cosat)i + (sin wt) j, then rx s
9. The necessary and sufficient condition for the vector g(t) to be

constant direction is ...
True or False
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1. If x.g = X.B = x.g =0, for some non-zero vectors X, then

{a b c} =0

2. If {i, j,k} be orthonormal set of unit vectors, then ix (jxk) =0
3.

The orthonormal unit vector triads, {i, I, k}form a reciprocal

system.
4. A vector is said to be constant only if its direction changes and
magnitude is fixed.

5. The necessary and sufficient condition for the vector a(t) to have

—

constant direction is g.%—? =0

Short answer type question:

1. Prove that the identity ax[ax(axb)]=(a.a)(bxa)

2. If a,b,c and a,b’,c are reciprocal system of vectors, prove that
(i) axa +bxb +cxc =0
(ii) a'xb +b'x¢ +¢ xa = 2FR*C
[abc]

(iii) aa +bb +cc =3
3. Show that i.jxk =1.
4. Show that [1a + b, c,d] = A[a,c,d]+ g[b,c,d].
5. Provethat [i— j, j—k,k—i]=0

Long answer type question:

1. Prove that the four points
6a —4b +10c,—5a + 3b +10c,4a — 6b —10c and 2b+10c are
coplanar.

2. Prove that ax (bxa)=(axb)xa
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3. Prove that any three vectors A, B,C,
(AxB).((BxC)x(CxA)) =(A.BxC)?.
4, If r:t3i+(2t3—i2)j,showthat rxgzk
5t dt
5. If r=e™a+e "b) where a,bare constant vector, show that
2
d_zr —n’r=0
dt
12.11 ANSWERS
Answer of objective type questions
1. (d) 2. (b) 3.(c) 4. (b) 5. (b) 6. (c)
Answer of fill in the blanks
1.1 2.0 3.0 4.3 5.0
6. —12tj +4k;-12j 7. 6t>—-10t—2 8.0
gx E =0
9. dt
Answer of true and false question.
1.T 2.F 3. T 5T
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UNIT 13: GRADIENT, DIVERGENCE AND
CURL

CONTENTS:

13.1 Introduction

13.2 Objectives

13.3 Partial derivatives of vectors
13.4 Gradient of scalar field

13.5 Divergence of vector point function
13.6  Curl of vector point function
13.7 Laplacian operators

13.8 Summary

13.9 Glossary

13.10 References

13.11 Suggested Readings

13.12 Terminal Questions

13.13 Answers

13.1 INTRODUCTION

A gradient in calculus is the differential operator that is used to
create a vector from a three-dimensional vector-valued function. The
gradient is denoted by the symbol V (nabla). For instance, if "f" is a
function, then " Vf " is used to represent a function's gradient. Let's go into

depth about the definition of a function's gradient, directional derivative,
characteristics, and solved instances in this unit. Divergence and curl are
the two essential operations performed on the vector field in mathematics.
Both are important in calculus because they aid in the development of the
higher-dimensional version of the calculus fundamental theorem.
Divergence often explains the field's behaviour in relation to a point or
away from it. The rotational extent of the field around a certain point is
also measured using curl.

In rectilinear coordinates, the gradient of a scalar and the
divergence and curl of a vector have a straightforward form. If the origin
is moved or the coordinates are rotated while using rectilinear coordinates,
the form is preserved. However, if you pick arbitrary coordinates, their
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shapes alter, and they appear fairly different even in polar coordinates in
the plane, as well as in cylindrical and spherical coordinates in three
dimensions.

13.2 OBJECTIVES

After reading this unit learners will be able to

e Implementation of application of vector triple product and scalar
triple product in vector calculus

e Memorized about the basic differences and relations between the
gradient, divergence and curl operators.

e Application of gradient, divergence and curl operators and there
use in vector calculus.

e Memorized the useful theorems and their application of vector
triple product and scalar triple product.

13.3 PARTIAL DERIVATIVES OF VECTORS

If a vector ris depending on two or more variable i.e., r=f(x,y,2).

Then partial derivative of r with respect to x is defined as

or - f(x+6xy,2)—f(xY,2)
OX 5x—0 OX

—

if this limit exists. Thus aa—ris just ordinary differentiation of ?only with
X

respect to the variable x and other variable y and z are regarded as

constant. Similarly, we can find another partial derivative like aa—rand
y
ar
oz
Other higher order partial derivative can also define as,
’r aler|or aler|er afer

o ox| ox oy oyl oy |ar | ez

’r olar|@r aler]er afer

oxdy ox| oy |'oyox  oy| ox ooy az| oy
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If ? has continuous partial derivatives of the second order, then,
o*r otr

OyoX  Oxoy

If r = f(x,y,2), then total differential d rof ris given by,

dr =2 ax+ 2 ay+ 9 gz
OX oy 0z

The vector differential operator: The vector differential operator V (
read as del or nabla) is defined as

Here, the symbols ﬁiﬁ can be treated as its component along i, j,k
OX 0y oz

13.4 GRADIENT OF SCALAR FIELD

Let f(x,y,z) be a differentiable function at each point (X,y,z)in the
space (i.e., defines a differential scalar field). Then gradient of f , written
asgrad f or Vf and defined as

Vi = gi+ﬁj+ék fzii+@j+qk
ox oy oz ox oy oz
Note: (i) Gradient of fis a vector quantity whose three successive
of of of
components are —,—,—
oX oy oz

(i) Gradient of a scalar field defines a vector field it means if f is a scalar

point functionthen its gradient will be a vector point function.
Theorems involving gradient.
Theorem 1: Gradient of addition of two scalar point function: If f

and g are two scalar point function then,
grad(f +g)=grad f +gradg or V(f +g9)=V f+Vg

Proof:
0. 0. 0 . 0 .0 0
rad(f +9)=| —i+—j+—k [(f+9)=1—(f+9)+ ] —(f+9)+k—(f +
grad(f +g) [ax R j( g)=i—(f+0) Jay( g)+k—(f+9)
.0 . 0 . 0 .0 0 0
=i—f+i—g+j—f+j—g+k—Tf+k—
OX axg Jay Jayg oz azg

Department of Mathematics
Uttarakhand Open University Page 413



Algebra, Matrices and Vector Analysis MT(N) 121

:(iﬁf+j£f+k£fj+(igg+jgg+k£gj
OX oy 0z OX oy 0z

=grad f +grad g
e, V(f+g)=Vf+Vg
Similarly, we can prove that grad(f-g)=gradf—-gradg or
V(f-g)=Vf-Vg
Theorem 2: Gradient of a constant function:The necessary and
sufficient condition for scalar point function to be constant is that V f, =0
Proof: Let us suppose that f_is a constant function it means its three

of

: : of of
successive components are zero i.e., —=0,—%=0,—%=0.
OX oy oz

wgrad f :ii+jﬁ+ki
OX oz
Then gradient of constant function is, grad f,=i.0+j.0+k.0=0i.e,,
Vi =0
Conversely, let V f, =0.
It means, i%+j%+k%=0i+0j+0k

OX oy

equating both side component of i, j, k we get, % =0,
X

= f. must be independent from x, y, z.
= f. must be constant function.

Hence the condition is sufficient.
Theorem 3: Gradient of the product of two scalar point function: If f

and g are two scalar point function, then grad(fg)= f grad g + g grad f
or V(fg)= fVvg+gVf .
Proof:Wehave

V(fg)=grad(fg){%ngj+§kj<fg)=i§(fg)+j%(fghkg(fg)

=i(fa—g+gqj+j fa—nggi +k(fa—g+gﬁj
oX ~ oOX oy ~oy z

= f ia_g+j8_g+k8_g +9 qurjquki
ox "oy oz ox "oy oz

V(fg)=fVg+gVf or grad(fg)=fgradg+ggrad f
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In particular, if ¢ is a constant function, then,
V(cf)=fVc+cVE =0+cVFf =cVf

Theorem 4: Gradient of the quotient of two scalar functions: If f and

g are two scalar point function, then V( J gi—ng
Proof:
R EIE NN EA AR BT EA A
g ox oy~ oz g ox\ g oz\ g
of . o9 af g of o9
2= 14 2=
ﬁ[i :gax ox O(f)_ 5)/ oy ﬁ[i]:gaz oz
ox\ g g° oylg 9> az\g 9°
of 0
AR AR RN G
:V(_j_i X - X +j - Tk Z _ z
g g g g
NS e
:>v(_j= X X oy 26y z z
g g
of . og. of og . of og
Dt At LT
% a'+gayJ ay”ga oz
- 7
R LI B e P I I
0 oy 0z OX 0z
gvf — Vg
g2

Solved Example
2

0
AxB) at (1, 0, -2) where,
oy (AB) 2t (1.0,

Example 1:Evaluate the value of

A=xyzi —2xz2%j + xz°k, B = 2zi + yj — XK.
Answer: First we have to find the value of AxB

i ik
So, AxB=|xyz -2xz® xz*
2z y =X
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= (2x3z3 — xyzz)i +(2xz3 + x“yz) i +(x2y22 +4xz4)k

Now,
ai;y(Ax B)= ai;y {(2X323 - xyzz)i +(2xz3 + x4yz) i +(x2yzz +4xz4)k}
ai;y(AX B)= %{%{(Zxazs —xyz’ )i+ (2x2° + x*yz) j+(X°y’z +4xz4)k}}

0 2: 4z 2
=—{ X251+ X"zj + 2x°yzk
ax{ J y }

= 7% +4x%zj + 4xyzk
2

Thus, value of aay (AxB) at the point (1, 0, -2) evaluated by putting

x=1,y=0,z=-2

2
{8 (AXB):| =-4i-8]
X0y (1,0,-2)

Example 2:Evaluate grad f at the point (1, -2, -1) where,
f(xy,z)=3x"y-y’z*.
Answer: We have given f(X,y,z)=3x"y-y’z’

.0 .0 0
So, grad f =|i—+ j—+k— |(3x*y—y3z?
J (ax Jay 8zj( =y )

:i%(SXZy—y3zz)+ j%(szy—y3zz)+ k§(3x2y—y3zz)
= 6Xyi + (3x2 —3y222) j+2y°zk

Thus, value of grad f at the point (1, -2, -1)
(grad f), , ,=-12i-9j-16k

—

r

Example 3: If r =|r| where, r = xi+ yj + zk , then prove the following:

() Vi@ =f(Ovr (ii) w:%? (i)
VE(f)xr =0
(iv)V(lj:—L3 (v)  Vlog r :Lz (vi) Ve =iy
r r r
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Answer: Let r = xi+ yj+zk, then
=X +yi+ztor rP=xty? 42t

. .0 .0 0 . 0 o 0
Q) Vf(r)=[|&+15+k§]f(r)=|&f(r)+15f(r)+k§f(r)

oo or Loor
=if (I’)&—Fj f (r)5+k f (r)g

-

r=|r

= f'(r) iﬂJrqurkq =f'(r)vr
ox "oy oz
iy vr=|ilsj Lkl («/x2+y2+22)
ox "oy oz
:i§«/x2+y2+22+j%«/x2+y2+22+k§«/x2+y2+22
X z
i 2X i 2y Lk 22
2\/x2+y2+z2 2\/x2+y2+z2 2\/x2+y2+z2
_2Xi+2yj+2zk  xi+yj+zK _i
2\/x2+y2+z2 \/x2+y2+22 r

(iii)  As we know from (i) proof that Vf (r) = f (r)Vr and from (ii)
proof that Vr =1?
r
N
So, vi(r)=f (N=r
r
- ) 1% - . 1 -> > . 1
Now, VE(Nxr="f (N=rxr=f (r)—(rx rj: f (r)=.0=0[As we
r r r

know ?x?:O]

(iv) v(1j=[£+ j§+kﬁj£1j:iﬁ(1j+ jﬁ(l}kﬁ(lj
r ox "oy oL)\r ox\'r oy\r oz\ r

Since we know that Vr = E r
r
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1 vr 1(1>) r
% V(?}?:r—z(‘f]*—s

0 0 0
= I—+j—+ — ogr—l—logr+jalogr+ka—logr

j.
oz
_ilq 16r 1ar lla_ .g q
r{ ox ay 82
Lo, o &
oX ay 82

(v) \% Iog

=i——+]
r ox ray raz

ilgﬂl@r lor _
rox "roy raz

1_r
r r2
wiy veoliZej Lk |moidl 0 O
0 oy oz OX oy 5
—nri Y I+nl’nlgj+nr“1ﬂk
oy 0z
= q|+ﬁj+@k nrH
ox oy
n-1 n,lr n72_>
=nrvr=nr"t—=nr"?r

r

Example 4: If f =(2x?y—x*)i+(e” —ysinx) j+x’cos yk, then verify
o’f o f

yox  OXy

Answer: We have given, f =(2xy—x")i+(e” —ysinx)j+x’cosyk

that

Then, 32f o {(ny x) (Xy—ysinx)j+x2cosyk}

{(szy— X*)i+(e¥ - ysinx) j+x° cosyk}}

[;(szy—x“)i+§(exy—ysinx)j+§x2cosyk}
{(4xy 4%° )|+(ye"y—ycosx)1+2xcosyk}
(

. 0 . O
4xy —4x°)i+—(ye¥ —ycosx) j+—2xcos yk

= 4xi +(eXy + xye™ —cos x) j—2xsinyk
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Similarly, s:;y = ai;y{(zx2y_x4)i +(exy —ysin x) j+x cosyk}
:%{%{(szy—x“)n(ew—ysinx)j+xzcosyk}}
:%{%(zﬁy—x“)i+%(exy—ysinx)j+%x2cosyk}
:%{szn(xew—sinx)j—xzsin yk}
:§2x2i+§(xexy—sinx)j—%Xzsm yk
:4xi+(exy+xyexy—cosx)j—2xsin yk

ot o*f

Hence, we can easily see that = :
oX  oxoy
Equipotential surfaces or level surfaces: Let a scalar field f(x,y,z)=c
in the region R. The points which are satisfying the equation f(x,y,z)=c
, constitutes family of surfaces in the three-dimensional space. The
occurred surface of this family is called level surfaces.

Any surface of this family is such a way that the value of the
function f at any point of it is the same. Hence these surfaces are also
called iso-f-surfaces.

13.5 DIVERGENCE OF A VECTOR POINT
FUNCTION

Let V be the differentiable vector point function. Then the divergence of V
denoted as divV or VYV and defined as follows:

VvV = i£+j£+k2 Vzi.ﬁ+j.&+k.ﬂ: i.ﬂ
oXx "oy oz OX oy 0z OX

It should be noted that divV is always a scalar quantity.

Solenoidal vector: Adifferentiable vector point function V is said to be
solenoidal if divV =0

Theorem 5: If V =V,i+V, j+V,k is differentiable vector point function,
then

vy =|ils j£+k2 .(Vli+V2j+V3k)=%+%+%:Z%
oXx "oy oz oXx oy oz OX
Proof: We have given that, V =V,i+V, j +V,k
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Then,

VV = i2+j£+kg .(V1i+V2j+V3k):i£.
ox "oy oz OX
N, .. YA
=—(i)+—=2(].j)+—(kk
o )+ (0:0)+ 22 (k)
M NV, Yy
oXx oy oz

M, N, |, Vg

Hence, VV =—
ox oy oz

0

N .0 .
(Vl|)+15.(vzj)+k5.

oV,

13.6 CURL OF A VECTOR POINT FUNCTION

Let F be any differentiable vector point function. Then the curl or
sometime called rotation of F denoted as curlF or VxF and defined as
follows:

viF=[iZ4 )kl er=in T i E i E oy
oXx "oy oz OX oy oz OX

It should be noted that curlF is always a vector quantity.
Irrotational vector: Adifferentiable vector point function F is said to be
irrotational if curl F =0.

Theorem 6: If F=fi+f,j+ f)k is differentiable vector point function,

then
curl F = %—% i+(@—%jj+ %—@ k
oy oz oz oX ox oy

i j k
Proof: VxF = i£+j3+k£ x(fli+f2j+f3k):£ Q ﬁ
oXx "oy oz oXx oy oz
f1 f2 f3
= %_% |+(@_%jj+ %_i k
oy oz 0z OX ox oy
OR

The curlF is also prove as,

VxF = i£+jg+ké x(fi+f,j+ fk)
oXx "oy oz
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=i§x(f1i+ fj+ f.k)+ j%x(fli-i- fj+ f3k)+k§x(f1i+ fi+fk)

as we know that,
ixi=0,jxj=0kxk=0,ixj=k, jxi=-k,ixk=j,kxi=—], jxk=ikx j=—i

so,VxF:(%k—%jjjL —%k-i-%i +(ij—%ij
OX OX oy oy oz 0z
unp [P, (@_%jj+@_@k

8y oz 0z OX ox oy

13.7 LAPLACIAN OPERATOR

The Laplacian Operators V?: The Laplacian operator mathematically

o° ¢ 0
denoted as V?and defined as, V2 = —t—+t=—
ox® oy° oz
o°f  o%f 82f
If f is a scalar point function, then, V*f = e + 8y2 , here Vf is

also a scalar quantity.

> az?+azf 62f

If f is a vector point function, then, V? f = — > here v f
OX oy

is also a vector quantity.
Laplace’s Equation: The Laplace equation is defined as V*f =0. A

function which satisfied Laplace equation is called Harmonic function.
Solved Example

Example 5: Show that div? =3.

Answer: As we know that r = xi+yj+zk .

. > (.0 .0 0 . .
So, divr=V.r=|i—+ J—+k— |.(xI zk
0 (8x+18y+ azj( +y j+zk)
:iﬁ.(xi+yj+zk)+jg.(xi+yj+zk)+kg.(xi+yj+zk)
OX oy oz

=S+ XD+ (K

=1+1+1=3

Example 6: Show that curl ? =0.
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Answer: curl?:Vx?:(ingj£+ki]><(xi+yj+zk)
oXx "oy oz
i ] Kk
_|2 @2 ﬁ:{@_ﬂj_j(ﬁ_%}k(ﬂ_%j
OX o0y oz oy oz ox 0z ox oy
X y 2
=0i+0j+0k=0

N
Hence, we can say that curlr =0

Example 7: If f =x?yi—2xz j+2yz k, then find the following:
@) divf Gi)y curl f Gii)  curlcurl f
Answer: (i) We have given that, f = x*yi—2xz j+2yk

.7 (.0 .0 0 ) )
Then, divf =] i—+ j—+k— [.(X*yi—2xz j+2yzk
(ax By azj( y j+2yzk)

0, 0, 8 [y
=|&.(x y|—2x21+2yzk)+15.(x y|—2x21+2yzk)+ka.(x yi—2xz j+2yzk)
=2xy+0+2y=2y(x+1)

.. - .0 .0 0 ] .
curl f =|i—+ j—+k— |x(x?yi—2xz j+2yzk
(ii) (6X+Jay+ azjx( y j+2yzk)

ik

B N 22yz+@2xz —j(EZyz—gxzyj+k —QZXZ—ixzy
ox oy oz oy oz OX oz OX oy
Xy —2xz 2yz

i(22+2x)+k(—22—x2)= 2(x+2)i—(2z+x)k

Gii)  curlcurl =Vx(Vx?j=Vx[2(x+z)i —(2z+x*)k |
i i k
o o 0

OX oy oz
2(x+z) 0 —(2z+x%

il 07— || Loz —x) - L i lo_2
_I(é’y( 22 x)j {ax( 27 —X") az(2x+22)}1+{0 ay(2x+22)}k

=0i — (—2x—2) j+(0-0)k = (2x+2) j
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Example 8: If the vector, V = (x+3y)i+(y—2z) j+(x+az)k,is
solenoidal then find the constant a.
Answer: As we know that a vector will be called solenoidal if divV =0.

. .0 .0 0 . .
Now, divV =|i—+ j—+k— |.[(X+3Y)i -2z x+az)k|=0
ow (ax+18y+ sz[( +3y)i+(y—22) j+(x+az)k]

:%(x+3y)i.i+%(y—22) i +§(x+az)k.k =0 [ ii=j.j=kk=0]

=1+1+a=0

—a=-2

Example 9: If the vector, V = (siny+2z)i+(xcosy—z)j+(x—y)k, then
show that V is irrotational.

Answer: As we know that a vector will be called irrotational if curlV =0

Now, curlV =(i%+ j%+k§}x[(3iny+ z)i+(xcosy—2z)j+(x—y)k]

i j k
_| 9 90 0
OX oy oz

siny+z Xxcosy—z Xx-Y

0 0 .| O o, . .| 0 0 ,.
={5(x—y)—a(xcosy—z)}l{&(x—y)—a(smy+z)}j+{&(xcosy—z)—5(smy+z)}k

=(-1+1)i—(@-1)j+(cosy—cosy)k =0
Hence, curlV =0, which shows the vector V is irrotational.

Example 10: Show that, Vz(r—xaj =0.
Answer: As we know that, V> = a—+_+_
X
x) & (x\) &(x) &(x
So, VZ(—sj=—z(—sJ+—z(—sj+—z(—sj
r ox“\r’) oy°\r’) oz°\r

. *(x) o a(x o1 3xor
First, we evaluate, —| = |=—| —| S | |== 5~ =
ox“\r ox| ox\r ox |r’ rtox

Department of Mathematics
Uttarakhand Open University Page 423



Algebra, Matrices and Vector Analysis MT(N) 121

_E{i_%@}_ﬁ 1 3
ox|rr r*ox] ox|r®

{ r’=x"+ y2+zz,theng=§}
oX r

Fox T r r

. Gz(xj é{a(xﬂ 8{3x6r} 8{3xy}
Again, | S |=—| =| S ||I== = ===~
oy"\r') oylLoy\r oyl rioy)] oyl rr

{ r’=x*+ y2+zz,thenqzz}
oy r

0% ( x ol1 3x° 3or 6x 15x*x  9x 15x%°
2\ x| [ roax o o e

o°(x) o 3xy 3x 15xyor  3x  15xy’
)yl e T ey e

%y

Similarl | o° [ x 3x 15xz°
Imilar y, Wwe eva uate, ? F :—F'F?

Therefore,

O (x), 00 (x), 00 (x)_ 9 15¢ [ 3x 15x°) ( 3x 15x°
6X2 r3 8)/2 r3 622 r3 r.5 r7 r5 r7 rS r7

9x  16x°  3x 15xy* 3x . 15xz°

r.5 r.7 r5 r7 r5 r7
15x 15x
- _F+7(X2 +y*+2°)
15x 15x

2 2 2
Hence, V? (éj = a—z(éj+a—2(éJ +a—2(é) =0
r*) ox*\r*) oy’\r*) oz’ \r

SOME IMPORTANT RESULTS ON VECTOR IDENTITIES:
1. Prove that div(A+ B) =divA+divB or V.(A+ B) =V.A+V.B

. .0 .0 0
: A+B)=V.(A+B)=|i—+ j—+k— [.(A+B
Proof: div(A+B)=V.(A+B) £|8X+Jay+ sz( +B)

i e il o
_l.aX(A+ B)+ j.ay(A+ B)+k.aZ(A+ B)
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(GA aB] (oA 0B (aA 6BJ
=1. + +J.| —+— |+k| —+—
OX OX oy oy 0z 0z
oA .0B .0A .0B S OA OB

=l.—+i.—+]—+ j—+k—+k—
ox  OX oy oy oz oz

OA . OA 8A oB .oB 0B
L—+ . —+k— L—+ J—+k-—
OX oy 0z OX oy 0z

=V.A+V.B=divA+divB
2. Prove that curl (A+ B) =curl A+curlB or
VX(A+ B) =VxA+VxB

Proof: curl (A+B)=Vx(A+ B)=[i%+ j%+k§]x(A+ B)

=ix§(A+ B)+jx%(A+ B)+kx§(A+ B)

) (6A aBj . (0A 0B (aA 8Bj
=Ix| —+— |+ x| —+— |+kx +
OX OX oy oy oL 01
oA . B oA oB

A B .
=IXx—4+Ix—+ Jx—+ Jx—+kx—+kx—
OX OX oy ay oz oz

OA OA aA 0B 0B 0B

=|ix—+ jx—+kx— IXx—+ Jx—+kx—

OX oy 0z OX oy 0z
=VxA+VxB=curl A+curl B

3. If Aand ¢ are differentiable vector and scalar function
respectively, then

div(¢A)=(grad ¢).A+¢divA or V.(¢A)=(V¢).A+¢(V.A)

oy oz
:i.§(¢A)+ j_%(¢A)+ k.a(qﬁA)ZZ{i.(%wA)j}

Proof: As we know, div(gA)=V.(¢A)= (i§+ j£+ kgj.(¢A)
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e

4. If Aand ¢ are differentiable vector and scalar function
respectively, then

curl (¢A) =(grad ¢)x A+geurlA or Vx(gA)=(Ve)x A+¢(VxA)

Proof: As we know, curl(¢A)=Vx(gA)= [i §+ j2+ kijx (pA)

oy oz
—.x—(¢A)+JX5(¢A)+kX_(¢A) Z{ X%W\)]}

:Z{i (Zf A+¢ax]}
ARENDIEE)
{21}l

[-ax(mb) = (ma)xb=m(axb) |

={Z(%I)}XA+¢Z(IX—) (V4)x A+p(VxA)
5. Prove that
div(AxB)=B.curl A— Acurl B or V.(AxB)

B. (VXA)—A(VX B)

Proof: As we know that, div(AxB)=V.(AxB)= { Q(A>< B)}

R 2—3J}=2{i-(2—’:x8}+2{ (~3)
S {E )

[-a.(bxc) = (axb).c and a.(bxc) =—a.(cxb) |

{22
=(curl A).B —{Z(i x%j}.A: (curl A).B—Acurl B

6. Prove that curl (AxB)=(B.V)A—BdivA—(AV)B+AdivB
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Proof: As we know that, curl (AxB)=Vx(AxB)= Z{| x%(Ax B)}

Sl ) 2 2]
{22l o2 2

x
AZ( 3 a-famifefomigta-{2( 5o
=(divB)A—(AV)B+(B.V)A—(divA)B

7. Prove that grad (AB) = (B.V) A+(A.V) + Bxcurl A+ Axcurl B

Proof: We have,

oB OA
dAB —AB A—+—B
ora -3iZ(a8)-Xi( A2+ L)

X

{( J} Z{(=3)] o

Since we know that,
ax(bxc)=(ac)b—(ab)c=(ab)c=(ac)b—ax(bxc)

I

oB

{A.Ziﬁ}BJrAxZ(ix&j:(AV)B+Ax(V><B) e (2)

oA

Similarly, Z{(B &j } (BV)A+Bx(VxA)
(©)

Now, putting the value of equation (2) and equation (3) in equation (1)
We get, grad (AB) =(AV)B+Ax(VxB)+(B.V)A+Bx(VxA)

8. Prove that divgradg=V°¢ ie,V.(Vg)=V’p

Proof: divgradg =V.V¢g= [|_+J_+k_J[ 99, 18¢+k%j
OX o

Sl ay(a@” 5 s
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2 2 2
(00,09 0 (2 02N, g
ox* oy’ or* \ox* oy’
9. Prove that, curl of the gradient of ¢ is zero, i.e.,
Vx(Vg)=0 ie,curlgrad¢=0

: _Vx 0.,:0 ¢, .90 4
Proof: curl grad ¢ =V x(V¢)= (|8x+18y+kazj (ax ay+kazj

k

]
o 2 ol (@ @) (Fe_ ), (Fe %),
ox oy oz oyoz ozoy 010X 0OX0Z OX0y  0YyoX
9 9 o

oXx oy oz
—0i+0j+0k=0

10.  Prove that divCurl A=0 ie, V.(VxA)=0
Proof: Let A=Ai+A,j+ Ak, Then

. .0 .0 0 0
d|vCurIA=V.(V><A)=(|&+J@+k5].{( ™ 15+k_j (A1|+A21+A3k)}

: . 0 0
First we find out, Vx A= (|&+15+k J (Ai+A,j+Ak)
i ] K
_|9 9 O|_[9A oA i+(%_%]j+ o OA
oX oy oz oy oz oz 0OX ox oy
A A A
Now,
divCurl A=V.(VxA)= (I£+j£+k J{(&% aAzj (%—%jj+(%_%jk}
ox "oy oz oy oz 0z OX ox oy

op, O, A oA ofon oA
ax(ay j() (az axj(u)+62[ax ayJ(k'k)
_ O°A, _82A2 N O°A B O°A, N O°A, B O°A
OX0y OX0Z 0oyoZ Oyox OIox ooy

(oA _OA) (A _FA) (A _TA)_
OXoy oyoX oyoz ozoy 0Z0X OXozZ
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SOLVED EXAMPLE
Example 11: Find V¢ and |V ¢|, where ¢=(x2 Ly +22)e(x2+y2+zz)
Solution: Let r = xi+ yj+zk, then r? = x>+ y* + z°.

So, we can write ¢ =r’", then V¢:%i+%j+%k

oy oz
We consider, 99 _opor _ (2re‘r - rze‘r)g = (2re‘r - rze‘r)5
OX  Or oX OX r
Similarly, o _ogor :(Zre*r _rZefr)X and
oy or oy r
o _o9r =(2re” —rze‘r)L
0z oOr oz Z

_ =T _ p2/-T 5 =T _ 27T X —r_2—r£
Now, V¢_(2re ree )r|+(2re ree )rJ+(2re ree )rk

-
—

Vg=(2re" - rzer)$ =(2-r)e"r

N

And |Vg|=|(2re”" —rze‘r)£ =(2-r)e”

-

ri=(2-rjre”

Example 12: Prove thatdiv(rn ?j =(n+3)r".
Solution:We know that, div(qﬁ Kj = ¢(div Kj + K.grad ¢

So, div(rn ?) =r" (div?j+?.grad r

Since,
div?: i2+j2+k2 .(xi+yj+zk):ix(i.i)+£y(j.j)+gz(k.k):3
oXx "oy oz OX oy 0z
And
n [0 .0 O\, .0 ., .0 . 0 n naf OF. or .
gradr' ={i—+ ] —+k—[r"=i—r"+ j—r"+k—r"=nr""| —i+—j+
ox "oy oz OX oy oz ox oy
nr”l( |+Xi+5i]:nrn1£
rr r r
n—2ﬁ
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Now,
div(rn rjz r"(div rj+ r.gradr” =3r"+nr"?r.r =3r"+nr" =(3+n)r"

Example 13: Prove that div L3 =0.
r

Proof:As we know that, div(rn rj =(n+3)r" (1)

Now putting n = -3 in equation (1)
So, div(rs?j=(3-3)r3 -0

2
"

:div(rl?j

As we know that, div(r”?j:(n+3)r” ............... (1)

Example 14: Prove thatdiv(r) =

Proof:We have div

=|=1

Now putting n = -1 in equation (1)
So, div(rj = div(r‘l?j =(-1+3)r = 2
r
Example 15: Prove that vector f(r)? is irrotational.

Proof: As we know that any vector Ais irrotational if curl A=0

So, if we have to show that the vector f (r) r is irrotational we have to
show

curl{f(r)?}zo
Since, curl (gb Kj =(grad ¢)x A+gcurl A
Now, curl{f(r)?}:[grad F(n)]xr+f(rycurlr

:{f'(r)grad F}x?+ £(r).0 {:curl?:o}
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_[f'(r)glx?_ f'(r)%(?x?j:o

Example 16:Prove that V*f (r) = 1"'(r)+g f(r).
r
Proof: As we know that if ¢ is a scalar function, then V¢ = V.(V¢)

So, V*f(r)=V.(Vf(r))=div{grad f(r)} =div{f (r)gradr}

- div{1 f '(r)?} ~ Lt (ndivr+r.grad {1 f '(r)}
r r r

Il
| w
—_
—~
-
N
+
=
—
o
==
f—J;_'\
= |F
—_
A‘
-
N
H,—J
[(e]
=
o8]
o
-
L 1
Il
= |lw
—_
{ —~
-
N
+
=
1
f—j;_‘\
W||
N
—
—
-
N
+
= |-
—
—~
-
N
Hﬁ_/
= |=
L 1

_3 f'(r)—1 f()+f'(r)= f"(r)+gf'(r)
r r r

Example 17: If V2 (r) =0, show that f(r)= 2 +c,, where
r

r’ =x’+y?+z° and c,c, are arbitrary constant.
Answer: From the previous example we know that,

VZE(r) = f"(r)+g f'(r), where r* =x*+y? +7°
r

Since, we have given that V> f (r) =0, then f"(r)+§ f(r)=0
_fn__2

f () r
Integrating with respect to r we get, log f (r)=—-2logr +logc = Iog%
= f(N=—

»

- . c .
Again, integrating we get, f(r)=-—+c,, where c, is a constant
r

After replacing constant —cby c,, we get f(r) = &+c2
r
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SELF CHECK QUESTION
Fill in the blanks:

1. FF=(C+y)i-2xyj, then Fdr=.....

2. If P=eYi+(x—2y)j+(xsiny)K, then Z—z R

3. If a is a constant vector then grad (5,?) =

4. If a IS a constant vector then V.(gx ?) =

5. If ?:xi+yj+zk , then the value of divr =

6. If A= x°zi —2y°z% j+ xy’zk , then divA at (1,-1,H)=..........
7. If ?:xi+yj+zk , then the value of UMl =,

8. For any vector K diveurl K: .......

9. A vector \7 is said to be solenoidal if ......

10. A vector E is said to be irrotational if ......
11.  If p=x*y+2xy+2°, then curlgradg=.......

13.8 SUMMARY

After completion of this unit learners are able to memorize and analyze

> The application of gradient, divergence, curl operators and
Laplacian operators.

> The relations between gradient, divergence and curl operators.
13.9 GLOSSARY

> Gradient of a vector function f: Vf

> Divergence of a vector function f: V.f

> Curl of a vector function f: Vx f

13.10 REFERENCES

> Spiegel, R. Murray (1959), Vector Analysis, Schaum’s Outline
Series.
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> N. Saran and S. N. Nigam, Introduction to vector analysis,
Pothishala Pvt. Ltd. Allahabad.

> Erwin. Kreyszig, "Advanced engineering mathematics, 10th
eddition", 20009.

> A. R. Vasishtha, “Vector Calculus”, 20" edition, Krishna
publication, 2020.

13.11 SUGGESTED READING

> Shanti Narayan (2003), A Textbook of Vector Calculus, S. Chand
Publishing.

> Shanti Narayan and P. K. Mittal (2010). A textbook of matrices, S.
Chand Publishing.

13.12 TERMINAL QUESTION

Objective type question:

1. What will be the value of constant a, if the vector

V = (x+3y)i+(y—22) j + (x+az)k is solenoidal?

a. 0 b. 1

C. -2 d. 2

2. What will be the value of directional derivative of

#(x,y,2) = x*yz +4xz?, at the point (1, -2, -1) in the direction of the vector
2i— j—2k.

a. 37/3 b. 1

C. -2 d. 2

3. Choose the correct value of V’r", where ?z Xi+yj+zk and
-

a. n(n+Dr" b. n(n+1)r"*
C. n(n+Dr"? d. none of these

1
4. Choose the correct value of V? (Fj
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a. -2/r® b. 2/r?
C. 0 d. none of these
5. Choose the correct value of curl (?x 5) , Where ? =Xi+Yyj+zk and

.
a is constant vector.

a. —5 b. —25
b. —35 d. none of these
6. Choose the correct value of divr is
a. Z b. l
r r
C. 0 d. none of these

Find True and False Statement.

1. The vector r = xi+ yj + zk is solenoidal
2. div\7 =0, if \7 is a constant vector.

F- 2xyzi + y°zj — 2yz°k , is irrotational vector.
curlgrad ¢ =0, if ¢ is a differential scalar function.

V.(AxB)=A(VxB)-B.(VxA)
Function which satisfies the Laplace’s equation is called harmonic

3
4
5. divgrad ¢ = V?¢, if ¢ is a differential scalar function.
6
7.
function.

Short answer type question:
1. If f=x"y+2xy+z?, then verify that curl grad f =0
2. Show that curl (V@) =V xV ¢ further prove that,

Vi xVg=—curl(§Vy)

3. If ais aconstant vector then show that curl(a.r)a=0
4. For the constant vector a prove the followings:

(i) V(a.ujz(a.vjw axcurlu
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-

(ii) V.(gx Uj —_a.curlu
(iii) Vx(gx Jj - Qdivﬁ—(g.vjﬁ

If ais a constant unit vector then show that

5.
g.{v(;zj_w(cxg}:dw

6. If g is a constantvector then show that curl g¢(l’) = l¢5'(r)?><§
r

Long answer type question:
1. If a IS a constantvector then show that,

curl r{r"(gx ?)} =(n+2)r" a—nr"2 (?gj?
2. If V?f(r)=0 show that f(r)=c logr+c,, where
r’ =x*+y’+z*, where c,c, are

arbitrary constant.
3. Show that %V a’ :(E.ng+ gx curlg
4, Show that V?| V. LZ =2r"

r

5. If a IS a constant vector then find the value of div{gx (?x gj}
6. Find grad (divu),where J:(l/r)?
13.13 ANSWERS
Answer of self cheque questions:
1. (x2+y2)dx—2xydy 2. ye¥i+ j+sinyk

3. a
4. 0 5. 3

6. -3
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7. 0 8. 0
9.  divw =0

10.  curlF =0 11. 0

Answer of objective questions:

1. c 2. a
3. c

4. C 5. b
6. a

Answer of true and false questions:

1. F 2. T
3. F

4 T 5 T
6. F

7. T

Answer of long answer type questions:

Answers: 5. 2a’ 6. 21
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UNIT-14: GREEN’S, GAUSS’S AND
STOKE’S THEOREMS

CONTENTS:

14.1 Introduction

14.2  Objectives

14.3 Introduction of vector functions
14.4  Line integral

145 Surface integral

14.6  Volume integral

14.7 Green’s theorem

14.8 The divergence theorem of Gauss
14.9 Stoke’s theorem

14.10 Summary

14.11 Glossary

14.12 References

14.13 Suggested Readings

14.14 Terminal Questions

14.15 Answers

14.1 INTRODUCTION

Green’s theorem is mainly used for the integration of the line
combined with a curved plane. This theorem shows the relationship
between a line integral and a surface integral. It is related to many
theorems such as Gauss theorem, Stokes theorem. Green’s theorem is used
to integrate the derivatives in a particular plane. If a line integral is given,
it is converted into a surface integral or the double integral or vice versa
using this theorem. In this unit, we will going to learn what is Green’s
theorem, its statement, formula, applications and examples in detail.

This unit finally begins to deliver on why we introduced div grad
and curl. Two theorems, both of them over two hundred years old, are
explained: Gauss’ Theorem enables an integral taken over a volume to be
replaced by one taken over the surface bounding that volume, and vice
versa. Why would we want to do that? Computational efficiency and/or
numerical accuracy! Stokes’ Law enables an integral taken around a
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closed curve to be replaced by one taken over any surface bounded by that
curve.

14.2 OBJECTIVES

After reading this unit learners will be able to

e Memorized about the introduction of vector functions, line
integrals, surface integrals and volume integrals.

e Analyze about the Green’s theorem and applications of Green’s
theorem.

e Analyze about the Gauss divergence theorem and applications of
this theorem.

e Analyze about the Stoke’s theorem and applications of Stokes’s
theorem.

14.3 INTRODUCTION OF VECTOR FUNCTIONS

We shall usually define integration as the reverse process of
differentiation. Let two vector functions f(t) and F(t) of the scalar

function tsuch that
d
—F(t) = f(t
™ (t)=f(t)

Here, F(t) is called the indefinite integral of f (t) with respect to t and
symbolically we denote

j f(ydt=Ft)y . (1)

The function f (t) which to be integrated is called integrand. If cis
arbitrary constant vector independent from t, then

%{F(t)+c} = f(t)

Which will equivalent to,J' fydt=F(t)+c ... (2)

From above equation (2) it is obvious that the integral F(t) of f(t) is
indefinite to the extent of an additive arbitrary constant c. Therefore F(t)
is called the indefinite integral of f (t).
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If %F(t) = f (t) for all values of t in the interval [a,b], then the definite

integral between the limits t =aand t=b can be defined as,
p 2 (d b
If(t)dtzj{aF(t)}dt =[F(t)+c]. =F(b)-F(a)

Some important rule of integration (without proof)

1 If f@t) = f,(0)i+ @) j+ f,(t)k, then

jf(t)dt :ij f,(t)dt + jj fz(t)dt+kj f,(t)dt

2. We have E(r.s) = ﬁ.s + r.E therefore,
dt dt

dt

(dr ds
j —S+r.— dt=rs+c
dt dt

2 2
3. We have i(ﬂj :Zﬂ.d_zr therefore,
dt\ dt dt dt

2 2
[EXaEa
dt dt dt

(o _gr
dt ) dt dt

2 2
5. We have i rxg :£><£+r><d—2r:r><d—2r therefore,
dt dt dt dt dt dt
d?r dr
.[ rX—2 t=rX—+C
dt dt
6. We have i(a><r)=%><r+a><£=a><ﬂ therefore,
dt dt dt

J'(axﬂ]dt:ach
dt

7. We have E(rj=i L =1d_r_i2£? therefore,
dt dtl r | rdt r°dt

Department of Mathematics
Uttarakhand Open University Page 439



Algebra, Matrices and Vector Analysis MT(N) 121

8. Ifc is constant scalar and r a vector function of the scalar t then,
jcr dt = c_[ rdt

9. Ifrand sare two vector function of the scalar t then,

I(r+s)dt :J'rdt+.[sdt

Solved Example
Example 1: If f(t)=(t—t*)i+2t°j—3k then find,

(i) j f (t)dt (ii) f f (t)dt

Answer (i):

[ Ftydt=[{(t-1")i+2tj-3Kldt =

&4

(ii): If(t)dt =i{(

1

i (-t )t + j[ 2ttt + k [ -3t

t4

2 3
v_t —j—3tk+C

2 3

)i+ 2 - 3k} jt 2 dt+2jjt3dt 3kjdt
1

2

t2 t3 4
= [———JI+—] -3tk | +c
2 3) 27 T
- 12
2 3 4
_ [t——t—]i+t—j—3tk e
2 3 2 1
[y2 4372 4\?
= %—%} iJ{%) j—(3t)fk=—§|+%]—3k
L 1 1

Example 2: Evaluate the value of r which satisfying the equation
d’r

pre =a, where ais a constant vector. It is giventhatatatime t=0,r=0

dr
and —=uU.
dt

2
Answer: Given differential equation on r is pre) =a.

Department of Mathematics

Uttarakhand Open University Page 440



Algebra, Matrices and Vector Analysis MT(N) 121
Now, integrating both side the equation with respect to t we get,
dr

o ta+b, here b is arbitrary constant vector.

. . dr
Since it is given that at atime t=0,r =0and pm =Uu.
Then, u=0a+b ie, b=u

dr
=>—=ta+u

dt
Again, integrating both side with respect to t we get.
r :%t2a+tu+c

attime t=0, r=0

=0=0+0+c or ¢c=0

So, r = %tza +tu

Example 3: If r(t) =5t% +tj —t°k then show that

S der
I(rijdt:—l4i+75j—15k

1

d?r dr
Answer: As we know that, I er dt=rx—+c

dt
2 2 2
So,J‘ r><ﬂ dt = r><ﬁ
- dt? dt |,

First, we evaluate r x % )

Since, r(t) =5t% +tj—t’k then %: d

a(5t2i +j —t°%) =10ti + j - 3t%k
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ik
So, rx%:(5t2i+tj—t3k)x(10ti+j—3tzk):5t2 t -t
10t 1 -3t?

=(-3t° +t%)i—(-15t* +10t") j +(5t* —10t* )k = 2% +5t* j — 5t°k
Now,

3 4 - 2
e (—2t i +5t*j —5t%K )att=1

dr T’ 3 md 2 P 3 opdi g2
{rxalz[—ZtHSt j—5t’k | = (-2t +5t*j-5t°)

= (~16i +80 — 20k ) —(~2i +5j —5k ) = ~14i + 75 ~15k

2i—j+2k,if t=2

3
Example 4: Prove that J‘(r.ﬁjdtzlo, where r(t)z{ L _
>\ dt 4i-2j+3k, if t=3

2
Answer: We know that, I[r%) dt = r?+c

3 278
so, [ (r.ngt:{r—}

>\ dt 2 |,
When t =2, r(t) =2i— j+2k then
r*=rr=(2i-j+2k).(2i- j+2k)=4+1+4=9
Similarly, t=3, r(t)=4i—2j+3k then
r2:r.r:(4i—2j+3k).(4i—2j+3k):16+4+9:29

3
Thus, j[rﬂjdt:l(zg—g):lo
dt) 2

Example 5: Atatime t>0, the acceleration of a particle is given by,

a:%:lzcosmi —8sin2t j +16tk

If at a time t =0, the velocity (v) and displacement (r) are zero, then find
v and r at any time.
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Answer: We have given that acceleration at a time is

a:%:lchSZti —8sin2t j+16tk

Integrating both side with respect to t we get,

12sin2ti  8cos2tj 16t°k
e

v = [ (12cos 2ti —8sin 2tj +16tk )dt = +C = 65in 2ti + 40s 2tj +8t%Kk + ¢

Atatime t=0,v=0,then 0=0+4j+0+Cc=>Cc=-4]

So, v=6sin2ti +4cos2tj+8t’k —4 j =6sin 2ti +(4cos2t —4) j+8t’k
Since, v = % =6sin 2ti +(4cos2t —4) j+8t°k
Integrating both side with respect to t we get,

r= I(6sin 2ti+(4cos2t—4) j+8t°k Jdt +d = -

- - 3
6c052t|+ 4sm2t_4t j+%+d
2 2 3

=—3c0s2ti +(2sin2t—4t) j +%t3k+d
Atatime t=0,r=0,then 0=-3+0+0+d =d =3i

r =-3cos2ti +(2sin 2t—4t) j +gt3k +3i

r=(3-3cos2t)i+(2sin2t-4t) j +§t3k

14.4 LINE INTEGRAL

An integral which is to be evaluated along a curve is called a line integral.

Let r(t)=x(t)i+y(t)j+z(t)k, be a position vector of (xy,z)ie,
r=xi+yj+zk, defines a piecewise smooth curve joining two points A
and B. Let at the time t=t, point be at A and at the time t=t, point is at
B. Suppose F(x,y,z)=FRi+F,j+Fk is a vector point function defined
and continuous along C. If s denotes the arc length of the curve C, then
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r : . .
ar =t Is a unit vector along the tangent to the curve C at the point r. The

ds

component of the vector F along the tangent is F.%. The integral of
s

F.%along C from A to B written as
s

B d B
J;[F.d—;}ds :_[F.dr =_|‘C F.dr

is an example of a line integral. It is called the tangent line integral of F
along C.

Remarks:

1. If the equation of the curve C given in the parametric form i.e.,
x=x(t),y=y(t),z=z(t)

t=t,
thus, we may write j F.dr= I {F1%+ F2Q+ Faﬁ}dt.
c o L dt dt dt
2. If r is the position vector of a point in C and let F be the force
acting on the particle. Then the work done (W) by F in this displacement is

given by the line integral,

W= L F.dr, here r be taken in the sense of displacement.

14.5 SURFACE INTEGRAL

Any integral which evaluated over a surface is called a surface integral.

Let S is a finite surface area. Suppose f (x, Y, z) is a single valued

function defined over S. If we divide the area of S into m small areas like
095,,0S,,5S,,...,6S,, . In each part 6S, we choose an arbitrary point P,

whose coordinates are (X, Yy, Z)-

We define f(R)=f (XY Z)

From the sum > f(R)JS,

k=1
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Taking limit of this sum as n— oo in such a way that largest area S,
approaches zero. If this limit is exist called surface integral of f (x,y,z)

over S and is denoted by

”fuylms

If the surface S is piecewise smooth and the function is continuous over S,
then the above limit exists i.e., is independent of the choice of sub-
divisions and points P,.

Flux: Suppose a Piecewise smooth surface Sand F (x, Y, z) is a vector

function of defined position and continuous over S. Let P be a point on the
surface S and let nbe the unit vector at P in the direction of outward
drawn normal to the surface S at P. Then F.n is the normal component of

F at P. The integral of F.n over S'is,

” F.n dS, is called the flux of F over S.
S

Let us associate with the differential of surface area dS a vector dS (called
vector area) whose magnitude is dS and direction is that of n. Then dS =n
dS. Therefore, we can write,

”FndS:ngS

S
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Let we consider at the point P the outward normal to the surface S makes
the angle «,f,y with the positive direction of x,y,z. If the direction

cosines of the outward drawn normal are |,m,n, then
| =cosa, m=cos ,n=cosy
Also n=cosai+cosp j+cosyk
let F(X,y,z)=Fcosa+F,cos S+ F,cosy =Fl+F,m+Fn
Therefore, we can write

ﬂF.n ds =”(F1c03a+ F, cos B+ F;cosy )dS

S S

If we define H F cosadS = .[J‘ Fdydz , J' j F, cos pdS = H F,dzdx ,
S S

S S

H F,cosydS = ” F,dxdy
S

S

then,

” FndS= I I (Fdydz + F,dzdx + Fdxdy )dS
S S
Note 1. Other surface integrals are ” fn dS,H F xdS
S S

Note 2. Let we consider the surface S in such a way that any line
perpendicular to the xy- plane meets S in no more than one point. Then the
equation of surface S can be written in the form  z =h(x,y)
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D

x >

Let R be the orthogonal projection of S on the xy-plane. If y is the acute

angle the undirected normal n at P(x, y, z) to the surface S makes with z-
axis, then it can be shown that

cosy dS = dxdy

where dS is the small element of area of surface S at the point P.

Therefore dS = ox dy dxdy , where K is unit vector along z-axis.
cos y |n. |
Hence [, F.nds = [[ . T:f('y

So, a double integral integrated over R can be used to evaluate the
surface integral on S.

14.6 VOLUME INTEGRAL

The volume V that is enclosed by surface S. Let f(X,y,z) be a single-
valued positional function defined over V. Split the volume V into n
volume components6V,,dV,,...,oV,. In each part 6V, we choose an

arbitrary point B, whose co-ordinates are (X, ¥,z ). We define
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f(R) :(Xk’ yk’Zk)

From the sum Y _ f(P,)oV,

k=1

Now taking the limit of this summation as Nn—> oo in a manner that the
largest of the volumes 6V, approaches zero. This limit exists, is called the

volume integral of f (X, y,z) over V and is denoted by
[[[ fxy.2)dv
\%

If the function f(x,y,z)is continuous and surface is piecewise smooth
over V, then the above limit exists i.e., is independent of the choice of sub-
division and points R.. If V is the volume of small cuboids, then

dV =dxdydz, so, the will becomes

J'J'J‘ f(X,y,z)dxdydz

If F(x,y,z) is a vector function, IJ..[FdV is the example of volume
\Y
integral.

Solved Examples

Example 6: Find J. F.dr, where F = x% +Yy*j and curve C represents the
C

parabola's arc y = x®in the x-y plane from (0,0) to (1,1).

Answer: Method 1. Since we have given curve C is parabola. First, we
have to convert the equation of parabola in parametric form by putting

x=t and y=t*.

So, F =t%+t°%j and we know that r(t) = Xi+ yj =ti +1t%]
Then ﬂ:i+2tj
dt

Now, (F%)dt=(t2i+t6j).(i+2tj)dt:(t2+2t7)dt

Department of Mathematics
Uttarakhand Open University Page 448



Algebra, Matrices and Vector Analysis MT(N) 121

At the point (0,0), t =x=0. At the point (1,1), t=1

dr L £ 28T 11 7
j (F.E]dt:I(t2+2t7)dt:[§+?} AR

C 0 0

Method 2. As we know that r = xi + yj

= dr = dxi +dyj
Thus F.dr = (X% +y®j).(dxi+dy j)=x"dx+ y°dy

IF.dr = Ixzdx+ ydy
C C

Now along the curve C, y = x*. Therefore dy = 2xdx

I F.dr = J'Ol[xzdx+ x6(2x)dx] = j:(2x7 +x° )dx

8 3T
e xp 1 17
8 3 0 4

Example 7: Find IF.dr , Wwhere F :(2x+ yz)i+xz j+(xy+2z)kalong
C

the curve x* +y® =1,z =1 in the positive direction from (0,1,1) to (1,0,1).

Answer: Let the curve is denoted by C and the points A and B are the
points (0,1,1) to (1,0,1) respectively.

As we know the position vector of a point is, r = Xi+ yj + zk
= dr=dxi+dy j+dzk

Thus
F.dr :((2x+ yZ)i+xz +(xy+22)k).(dxi +dy j+dzk)=(2x+yz)dx+xzdy + (xy +2z)dz

jF.dr = j(2x+ yz)dx + xzdy + (xy + 2z)dz
C

C

Along the curve from A to B, x varies from 0 to 1, y varies from 1 to 0 and
Z remains constant i.e., dz=0
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jF.dr :j(2x+ y)dx+qudy+O
0

C 1

ﬁ f(x)dx = —j f (x)dx}

(2x+x/1— x? )dx—jﬂ/l— y*dy
0

O e

1 1 1
= I2x+I\/l— xzdx—jw/l— y’dy (Integration does not
0 0 0

depend upon variable)

2xdx = [XZ:IE =1

O ey

Example 8: If C is the line segment of the line y = 2xin the xy-plane
from (-1, -2) to (1, 2), then find

Answer: Since we have given curve C is line. First, we convert the
equation of line in parametric form by putting x=t and y =t.

So, r(t) =xi+yj=ti+2t
Then £=i+2j
dt

As we know that, ar = drds
dt ds dt

dr| |dri{ds ds dr. .
|—|=|—|—=—(Because,—is the unit vector
at| " |as|dt ~qr  (BECAUSe: g 1S the unit vector)
ds |dr| .. .
S—=|—|=li+2]j|=+5
dt |dt | J| J_

ds h h 16
xy’ds = [ xy® —dt = [t(2t)*\/Bdt =85 [ tdt = ==
Joes=orga=] Jra=
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Example 9: Find the value of J.F.dr, where C is the xy-plane curve
C

formed by the straight lines from (0, 0) to (2, 0) and then to (3, 2), where
F=(2x+y)i+(3y-x)j.

Answer: The figure of the path of curve C in the xy-plane is shown below.
It consists straight lines OA and AB.

Y 4

v

0(0,0) A

We have, jF.dr = I[(2x+ y)i+(3y—x) j].(dxi +dyj)

= j (2x+ y)dx + (3y — X)dy

Along the straight-line OA, y=0,dy=0 and Xvaries from 0 to 2 and
equation of the straight line AB is,
2-0

—-0=——(x-2)ie,y=2x-4
y-0=2—(x=2ie.y

Along AB, y =2x—4,dy =2dx and x varies from 2 to 3.

2

[F.dr= j[(2x+0)dx+0]+i[(2x+2x—4)dx+2(6x—12— x)dx |

C 0

= [lez) +J3‘(14x—28)dx = 4+14j'(x—2)dx

2
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2 3
:4+14{—(X‘22) } —447=11

2

Example 10: If C is the rectangle bounded by y=0,x=a,y=Db,x=0 in
the xy-plane then evaluate jF.dr ,where F =(x*+ Yy )i—2xyj.
C

Answer: The path of the integration C has been shown in figure which
consists the straight lines OA, AB, BD and DO.

Y
B (a,b)
D(0,b) <
4
A
0 A (a,O)

Now we have,

[Fadr= j[(xz +y?)i —2XYJ'}(dXi +dyj)

C
:J-(x2 + y?‘)dx+2xydy
C

In the line OA, y=0,dy =0 and x varies from 0 to a.
In the line AB, x=a,dx =0 and y varies from 0 to b.
In the line BD, y=b,dy =0 and xvaries from a to 0.

In the line DO, x=0,dx=0 and y varies from b to 0.
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IF.dr :szdx—TZaydy +}(X2 +b2)dx+i0dx
C 0 0 a b

X3 a yz b X3 0
=2 | —2a| L | +| =+b%* | +0=-2ab?
3 0 2 0 3 a

14.7 GREEN’S THEOREM

Let R be a closed bounded region in the x-y plane whose boundary C
consists of finitely many smooth curves. Let M and N be continuous

functions of x and y having continuous partial derivatives aa—Mand Z—N in
y X
oN oM o :
R. Then — ——— ldxdy =[|](Mdx + Ndy), the line integral bein
e (Ll ol beng

taken along the entire boundary C of R such that R is on the left as one
advances in the direction of integration.

Greens theorem in the plane (in vector notation):

We know that the position vector of a point is r=xi+yj so that
dr = dxi + dyj.

Let F =Mi+Nj. Then Mdx+ Ndy =(Mi+Nj).(dxi+dyj)=F.dr

i)k
Since curIF=VxF=ﬁ 9 9 _N; @--F oN_oM k
oX oy oz 0z oz oX oy
M N O
(VxF k=] _M
ox oy

Thus, the Green’s theorem in plane can be written as

[[(vxF)kdrR=[fjF.dr ... (1)

Where dR =dxdy and k is the perpendicular unit vector to the xy-plane.
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If s is the arc length of C and t denotes the unit tangent vector to C, then

dr = %ds =tds . So, the equation (1) can also be rewritten as,
s

[[(VxF)kdR =[f|F.tds

R
Solved Examples

Example 11: If C is the closed curve of the region bounded by the straight
line y = xand the parabola y =X’ then verify the Green’s theorem in the

plane [Jj(xy+ yz)dx+ x2dy .
C

Answer: Since by the Green’s function in plane, we have

”[Z—T—%}dxdy = m(MdX-f- Ndy) ...(1)

So, after comparing equation (1) with [Jj(xy + yz)dx+ x2dy we get,
C

M=xy+y? N=x°

The curves y=x and y=x’intersect at the point (0,0) and (1,1) and
positive direction in traversing C is as show in figure.

A(1,1)

Y=x*

v

0(0,0) X
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.U[@_@j dy = {%(Xz)—%(xw y' )}dxdy

= J'J'(Zx— X — 2y )dxdy = J.J.(X—2Y)dXdy

x=1 x 1 X

:j J.(X—Zy)dydx:_[[xy—yj dx

x=0 y:)(2 0 y:x2

X

[xy— yz} dx = j[[xz —x*=x* +x4}dx
0

y=x?

O ey

L {xf’ x‘T 11 1

j x —x ——— | ===

0 5 4] 54 2
Now we evaluate the line integral along C. Along the curve
y = x?,dy = 2xdx . Thus, along the curve y = x?, the line integral equals

1

I[{(X)(X2)+ XA}dx+ X2(2x)dx} _

0

19
(3x°+x* Jdx = >

O e

Along y=Xx,dy =dx. Therefore, along the curve y = x, the line integral
equals

P — O

10900+ =

Hence the required line integral = % -1= —i

20
Thus, the theorem is verified.

Example 12: Using the Green’s theorem find the value of

[]j(xz —cosh y )dx+(y-+sinx)dy , where C is the rectangle having vertices
C

(0,0),(r,0),(7,1),(0,2) .
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Answer: As we know by Green’s theorem,
ON oM

”[———jdx [([]de+Ndy (1)

B(m,1)

A

D(0,1)

A\ 4

\ 4

0 (0[0) A (T[,O)

Comparing the equation (1) with the
Eﬁ(x2 —cosh y)dx+(y+sin x)dy we get,

Cc

given  equation

M =x*—coshy, N =y+sinx
: oN
=—sinhy, — =cos x
OX

Thus, the given line integral is equal to

1

H (cosx+sinh y )dxdy = Xfr I (cosx+sinh y)dydx

x=0 y=0

y=1 T

= j[ycosx+cosh y] dx= I[cosx+cosh1—1]dx

y=0 x=0

=[sinx+ xcoshl—x]g =coshl-1
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Example 13: Prove that the area bounded by a simple closed curve C is

given by %m(xdy—ydx) also find the area generated by the ellipse

C
X=aco0sd,y=bsing.

Answer: As we know for the plane region bounded by closed curve C,
Green’s theorem is

Il (@ —@jdxdy = [i]( Mdx + Ndly)

putting M =—-y, N = X we get,

[[j(xdy— ydx)=[ﬂ%( aay( y)}dxdy

C

- 2J'RJ' dxdy = 2A, where A= %[C[](xdy— ydx) is the area bounded by

C.
The area of the ellipse

927[

1 dy dx
== xd dx == acosd—=—Dbsing do
2@ =y I( do d@j

=%m xdy — ydx —%f(abcos 6+ absin H)de——jde zab.
C 0

Example 14: Prove that the Green’s function may be written as
J.J.divAdxdy =UjA.n ds, where A= Ni—Mj, n is the outward unit normal
R C

vector to C and S denotes the arc length of C.

Answer: Since we have, A= Ni-M)j

divA = 6_N_@

ox oy

HdlvAdxdy ”(@‘%j‘j"dy:@('\"d“ Ndy), by Green’s

theorem
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Since we can write, Mdx+ Ndy = (Mi+ Nj).(dxi+dyj)
. .oy dr
=(Mi+Nj).dr ={(M| + Nj).E}dS

Let t is unit tangent vector to C, then tzg and we also know that the
S

unit vector k is perpendicular to xy-plane. Then, t =kxn

So, Mdx+ Ndy =[(Mi+Nj)t]ds =[(Mi+Nj).(kxn)]ds

=[(Mi+Nj)xk |.nds = (Mixk + Njxk).nds = (Ni— Mj).nds = Ands

Hence proved.

Note: Putting A=V ¢ in previously discussed result, we get

[[ div(vg)ixdy =[f|(V¢)nds
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2 _ 19?1 o _0¢
Or _UV mxdy_@ﬁds, since V¢_%n

14.8 THE DIVERGENCE THEOREM OF GAUSS

Assume that V is the volume enclosed by the closed, piecewise smooth
surface S. Assume F(x,Yy,z) is a continuous vector function of position

with a continuous first partial derivative in V. Then

Ujv.lrdv :jst.nds

where n is the unit normal vector drawn outward from S.

Here, F.n is normal component of vector F, consequently, the
divergence theorem may be explained as follows:

The integral of the divergence of a vector F taken over the surface's
enclosed volume is the same as the surface integral of the normal
component of a vector F taken over a closed surface.

Divergence theorem in cartesian form:

Let F =Fi+F,]j+Fk is vector function.

Thus, v.F =divF = 22, &2 O

ox oy oz

If cosa,cosf,cosy are the direction cosines of the outward drawn unit
normal n where «, S,y are the angles which are taking with the positive
direction of x,y,z—axes.

n =cosai+cos f j + cos yk
~Fn=(FRi+F,j+Fk).(cosai+cos S j+cosyk)
=F cosa+F,cos B+ F, cosy

Thus the divergence theorem can be rewritten as,

oF oF, OF _
I\-,U(a_xl + E + = jdxdydz = LI(Fl cosa + F, cos S+ F, cos y)dS
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= j j (F,dydz + F,dxdx-+ F,dxdy)

Remarks: The divergence theorem is significant because it shows how a
surface may be written as a volume integral and vice versa.

Note: If a region V is surrounded by two closed surfaces S andS,, one of
which falls within the other, the divergence theorem applies to that region.

Some important deduction from divergence theorem:

1. Green’s Theorem: Let ¢ and w be scalar point functions which

together with their derivatives in any direction are uniform and continuous
within the region V bounded by a closed surface, then

1]} (02— phv = [[@Vy —yvg)nds

2. Harmonic Function: If a scalar point function ¢ satisfies
Laplace’s equation V?¢ =0, then ¢ is called harmonic function. If ¢ and
w are both harmonic functions, then V?¢ =0, V% =0.

Since from Green’s second identity, we get ” [¢86—Z 4 %st =0.
S

Note 1: [[[V¢dV = [[gnds

2: jvjijde =ij nxBdS

Solved Examples

Example 15: For any closed surface S, prove that ﬂ curlF.nds =0
S

Solution: By divergence theorem, we have

.[J‘ curlF.nds = _m (diveurl F)dV , where V is the volume enclosed by S

S \

=0, since divecurl F =0.
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Example 16: Evaluate ” r.nds,where S is a closed surface.
S

Solution:ﬁr.nds =I_UV.rdV :Hj3dv ,Since V.r=divr=3
S \% \

=3V, where V is the volume enclosed by S .

Example 17: If F =axi+by j+czk,a,b,care constant then prove that

ﬂ F.nds = % m(a+b+c), where Sis the surface of unit sphere.
S

Solution: By the divergence theorem we have,

[[F.nds = [[[(v.F)dVv, where V is the volume enclosed by S.

S \

:Qj[v.(axnbyjmz OJdV =jﬂ%(axng(byn%(cz)}dv

= [[[a+b+c)av = (a+b+c)v =(a+b+c)%7r

\%
Since the volume V is enclosed by a sphere of unit radius is equal to
gﬂ(l)3 i.e.,%ﬂ.

Example 18: If nis the unit outward drawn normal to any closed surface
S, show that

[[[divnav =s.
\Y
Solution: Since we have the divergence theorem,

I\‘/”divndv =jsjn.nd5=jsjd5=s

alnty

Example 19: Prove that, J'\J;J‘C:—\Z/ = J;Irr—z
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Solution: H%ds = ”r—rz.ndS = jﬁv(r%)dv , (by using divergence
S S \%

theorem)

1 1
So, V(r%) = (V.r)+ r.V(r—ZJ

—i_i_r(_EVrj—i_g rL —i_irz—i
rz2 L8 r2oe*Ur|) 2ot r2

Example 20: Using divergence theorem, prove that the volume V of a
region T bounded by a surface S'is,

ijdydz=j£j§(x)dV=ijdV _v (1)
J;Iydzdx:I\J;Ig(y)dV:IJIdV -V )
J;Izdxdyzj\J;Ig(z)dV:j\J;J'dv =V NE)

Adding equation (1), (2) and (3) we get the result

3V = H (xdydz + y dzdx + z dxdy)
S

1
V = 3 .U (xdydz + y dzdx + z dxdy)

Example 21: If F =(x* —yz)i+(y> —2x) j + (z° — xy)k taken over the
rectangular parallelepiped0 < x<a,0<y <b,0<z <c. Then verify the
divergence theorem.

Solution: We have divF =V.F

0,2 0, 2 0,
=— X =y2)+— (Y —2X)+—(2° —xy) =2X+ 2y + 2z
6x( yz) 5(y ) az( y) y

. Volume integral = _m V.FdV = m 2(x+y+z)dVv
\Y \%

Department of Mathematics
Uttarakhand Open University Page 462



Algebra, Matrices and Vector Analysis MT(N) 121

:2_? _T j(x+y+z)dxdydz:2j _T{X—;erwrzx}a dydz

z=0 y=0 x=0 z=0 y=0 x=0
c 2

b
_Zj J[—+ax+az}dydz_2j{ y+ay7+azy} dz

z=0 y=0 y=0

c 2 2 2 27°
_2J. —b+£+abz dz =2 a—bz+£z+abZ
2 2 2

0
=[a’bc + ab’c + abc?] = abc(a+b +c¢)

Surface integral: We shall now calculate _US F.ndS over the six faces of

the rectangular parallelepiped.

v

/ G F
X

Over the face DEG, n=i,x=a.

Therefore, _[ J'DEFG F.ndS

c b

_ J' J'[(az - yz)i + (y2 - za)j + (22 - ay)k].idydz

z=0 y=0
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- [ Jeebyen= oty

z=0 y=0 =0 y=0

c 2 2 ¢ 2112
:J' azb—i dz = | a?bz — 2 b? :azbc—Cb

o 2 4 0 4

Over the face ABCO, n = —i,x =0. Therefore,

[[,ooo F-nS = [[100—y2)i+...+..]. (i)dydz

C C b C
- j jlyzdydzz I [y?zz} dz = j {%z}dz= szz

z=0 y=0 z=0 y=0 7=0

Over the face ABEF, n= j,y =b. Therefore,

o Fonds = | [lo¢ —beh+ (67 b2)i-+ 27 - bxk] aue

z=0 x=0

a’c?

= j i(b2 — zx)dxdz = b*ca —

z=0 x=0

Over the face OGDC, n=-j,y =0. Therefore,

c’a?

.UOGDCF.ndS = _C[ _?zxdxdz=

z=0 x=0
Over the face BCDE, n=k, z =c. Therefore,

b a 2b2
J.J.BCDE F.nds = _[ I(CZ — xy)dxdy = c*ab — a

y=0 x=0

Over the face AFGO, n=—k,z =0. Therefore,

a’b?

4

”AFGOF'ndS - .ti TXdedy:

y=0 x=0
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Now adding six surface integrals, we get

2142 2|2 2.2 2.2 2142 2142
s 4 4 4 4 4 4

=abc(a+b+c)
Hence the theorem is verified.

Example 22: Evaluate ﬂsxzdydz + y2dzdx + 2z(xy — x — y)dxdy

Where S is the surface integral of the cube 0<x<1,0<y<10<z<1,

Proof: By using divergence theorem, we convert the given surface
integral into volume integral

(] 2002+ £ 0+ Lty x-p

=2‘1[ Jl' _1[[2x+2y+2xy—2x—2y]dxdydz:2.1[ .1[ jxydxdydz

z=0 y=0 x=0 z=0 y=0 x=0

1 1 X2 1 1 2} 1
=2 J[—y} dydz = j{y—} dz = [1/2dz=1/2
2 x=0 2 z=0

z=0 y=0 z=0 y=0

14.9 STOKE’S THEOREM

Let S be a piecewise smooth open surface bounded by a piecewise smooth
simple closed curve C. Let F(X,Y,z) be acontinuous vector function
which has continuous first partial derivatives in a region of space which
contains S in its interior. Then

§F.dr = ”(Vx F).nds = H(curl F).ds

Where C is traversed in the position direction. The direction of C is called
positive if an observer, walking on the boundary of S in this direction,
with his head pointing in the direction of outward drawn normal n to S,
has the surface on the left.
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Note: j:F.dr = if(F.%)ds = ff(F.t)ds, where tis unit tangent vector to C
C C

C
. Therefore F.t is the component of curl F in the direction of outward

drawn normal vector n of S. Therefore in other words Stoke’s theorem
may be stated as follows:

The line integral of the tangential component of vector F taken around a
simple closed curve Cis equal to the surface integral of the normal
component of the curl of F taken over any surface S having Cas its
boundary.

Cartesian equivalent of stokes theorem:

Let F =Fi+F,j+ FXk. Letoutward drawn normal vector n of S make
angles «, S, y with positive directions of x, y, zaxes. Then
n=cosai+cosp j+cosyk.

Also,
i j k
UxE_|0 0 O|_(o/ oR i+(an_aF3jj+ oF, R
ox oy oz oy oz oz  OX ox oy
F F K
(VxF)n= o, _oF, c05a+(@—%jcosﬂ+ oF _HK cosy
oy oz oz 0oX oX oy

Also, F.dr =(Fi+F,j+FKk).(dxi+dy j+dzk) = Fdx+ F,dy + F,dz

So, Stoke’s theorem can be rewritten as,

oF, OF oF OF oF, OF
F.dx + F,dy + F.dz = —3_ 2 lcosa+| —r——2|cosB+| —2——L]|cosy [dS
frioce R = | [ 22 s+ - oo 2 oo, |

Note: Green’s theorem in plane is special case of Stoke’s theorem. If Ris
a region in the xy —plane bounded by a closed curve C, then in vector

form Green’s theorem in plane can be written as

[[(VxF)kdR=§F.dr
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This is nothing but a special case of Stoke’s theorem because here k =n=
outward drawn unit normal to the surface of regionR .

Solved Example

Example 23: Prove that §r.dr =0
C

Solution: By Stoke’s theorem §r dr = HS (curlr).nds =0, since
C

curlr=0

Example 24: By Stoke’s theorem prove that divcurl F =0

Solution: Let V is the volume enclosed by a closed surface. Then using
the divergence theorem

j j L V.(curl F)dV = j js (curl F).ndS

Divide the surface S in two section S, and S,by a closed curve C (as in
figure). Then

”S (curl F).ndS = jjs (curl F).ndS, + jjs (curl F).ndS, .. (1)

In the right hand side of equation (1) by Stoke’s theorem
:§F.dr—§F.dr=O
C C

Department of Mathematics
Uttarakhand Open University Page 467



Algebra, Matrices and Vector Analysis MT(N) 121

Here, the negative sign indicate because the positive directions about the
boundaries of the two surfaces are opposite.

”LV.(curl F)dV =0

Now this equation is true for all volume element V . Therefore we have,
V.(curl F)dv =0 or divcurl F =0

Example 25: Using Stoke’s theorem prove that curl grad ¢ =0.

Solution: Let S be the surface which is enclosed by a simple closed curve
C . Then by Stoke’s theorem, we have

”S (curl grad ¢).nds = { gradg.dr

Now

06, 04 . 04 o o6 . o4 . o4
radg.dr =| —i+— j+—k [(dxi+dy j+dzk)=—"—dx+—dy+—dz=d
gradg (6x ayJ(,%J( Y i+dzk)=— oY ¢
~.f gradg.dr = §dg = [g], where A is any pointon C
C C

=0
Therefore we have ﬂs (curl grad ¢).ndS =0

Now this equation is true for all surface elements S .

Therefore we have, (curl grad ¢) =0

Example 26: Verify the Stoke’s theorem for F = yi + zj + xk, where S is

the upper half surface of the sphere x* + y* +z? =1 and Cis its
boundary.

Solution: The boundary C of Sis a circle in the xy— plane or radius
unity and centre origin. The equations of the curve C are
x> +y*=12=0.

Let us assume x =cost,y =sint,z=0, 0 <t < 2z are parametric equation
of C. Then
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§ F.dr =§(yi + 7 + XK). (dxi + dyj + dzk) = §(ydx+ zdy + xdz) =§ ydx
C C C C

Sinceon C,z=0 and dz=0.

2 2
= [sin ¢ P [ ~sin? tat
SN

0

2 . 2
=—1_|'(1—0032t)dt:—1{t—SIn Zt} =-7 (1)
24 2l 2

Now let us evaluate _US curl F.ndS . We have

curIF:VxF:2
OX

y

k
0 ..
—|=—i-j-k
0z J
X

N\%|Q)\_.

If S, is the plane region bounded by the circle C,then by an application of
divergence theorem, we have

”S curl F.ndS = _US curl F.k dS [Always remember]

= ”Sl(—i — j—k).kds =Hsl (-1)dS = —jjsl dS =-S,
But S, =area of a circle of radius 1= z(1)* = =
HS curl F.ndS =-n .. (2

Now from (1) and (2), the theorem is verified.

Example 27: Verify Stoke’s theorem for F = (2x — y)i — yz° j — y?zk,
where S is the upper half surface of the sphere x* + y* +z* =1 and Cis its
boundary.

Solution: The boundary C of Sis a circle in the xy—plane of radius unity
and centre origin. Suppose x =cost,y =sint,z=0,0<t< 27 is
parametric equation of C. Then
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§F.dr =§[(2x— V)i — yz2 j — y?zk). (dxi + dyj + dzk) = §[(2x — y)dx — yz2dy — y?zdz]
C C C

§ (2x—y)dx, since =0 and dz=0
C

2 2z 2
I(Z cost —sin t) %dt = j (2cost —sin t)sin tdt = I[sin 2t — % (1—cos 2t)]dt
0 0 0

LP%_EHEMT :—K—l+lj—£(ﬁ—0)+l(0—0)}=7z
> 2 2

2 2 2 |, 2" 2
(D)
And
i i k
wxB)=| £ 9 O (Cayz+2y2)i—(0-0)j+(0+1)k =k
OX oy oz
2x—y —yz* —-vy’z

Let S, be the plane region bounded by the circle C. If S is the surface
consisting of the surfaces Sand S, then S'is the closed surface.

Using the application of Gauss divergence theorem, we have

[[, curl F.nds =0

[J, curl F.nds :J.J'Slcurl F.ndS=0  [.S consistsof Sand S ]
[J, cur F.ndS—”slcurl F.kdS=0 [on S,,n=—k]

J,curt F.nds = [ curl F.kds

o |f[,curl F.nds = [[ curl F.kds = [[ kkdS=[[ dS=8 =7
. (2
Note that S, =area of a circle of radius 1= z(1)* =«

Thus by equation (1) and equation (2) Stoke’s theorem is verified.
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Example 28: Verify Stokes theorem for F = (x* + y?)i — 2xyj taken round
the rectangle bounded by x=+a,y=0,y=b.

A Y
E Y=b B
)
X=-a X=a
\ 4
0]
D Y=0

k

Solution: We have curl F = g =(-2y-2y)k =—-4yk
Z
0

[ J
o 9
OX oy

X2 +y? —2x

y y

Also n=k

j L (curl F).ndS = T j(—4yk).kdxdy

y=0 x=—a
=4 i _T y dxdy = —4 j)'[xy]i_ady =4 .TZaydy = —4[ay2:E = —4ab?

y=0 x=—a y=0 y=0

Also § F.dr = §[(x2 +y2)i —2xy j].(dxi+dy j) = §[(x2 +y?)dx — 2xydy]

= §[(x2+y2)dx—2xydy]+.[ +I +I

AB BE ED

Along DA,y =0,dy =0. Along AB,x =a,dx =0. Along
BE,y=Db,dy=0. Along ED,x=-a,dx=0.
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ifF.dr = j‘xzdx+ j.—Zaydy+ 'T(xz +b?)dx + 'TZaydy.
C y=b

X=—a y=0 X=—a

= j'xzdx— ]l(x2+b2)dx—4ai ydy
0

X=—a X=—a

a b 2P
— szdx - 4aj ydy = —2ab? — 4a{y7} = —4ab?

X=—a 0

Thus, §F.dr :ﬁs (curl F).ndS
C

Hence the theorem is verified.

SELF CHECK QUESTION
Fill in the blanks:
120 [Jti+ (= 20) Jdt =0 veerreerrnene

13.  If F(t) =3t% +t j+2kand G(t) = 6t% + (t —1) j +3tk, then
j‘(d—F.G L S
o dt dt

14.  Any integral which is to be evaluated along a curve is called a

15.  Any integral which is to be evaluated over a surface is called a

16. J’ L F.ndS is called the .............. of F over S

17. For any Closed surface S, ”S curlF.ndS =..cceevvnvenenn.

14.10 SUMMARY

After completion of this unit learners are able to memorize and analyze

The application of line, surface and volume integrals.

The applications of Green’s theorem.

The application of Gauss divergence theorem.

The application of Stoke’s theorem.

Basic differences between line integral, surface integral, volume
integral, Green’s, Gauss and Stoke’s theorem.

YV YV VYV
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14.11 GLOSSARY

Line integral

Surface integral

Volume integral

Green’s theorem

Gauss divergence theorem
Stoke’s theorem
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14.14 TERMINAL QUESTION

Objective type question:
7. If Cisthe curve x> +y? =1,z = y?, then by Stoke’s theorem

if(yzdx + zxdy + xydz) is
C

0 b. 3

b.
d. 5 d. None of these
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8. If S denote the surface of the cube bounded by the planes
x=0,x=a,y=0,y=a,z=0,z=a then by application of Gauss

divergence theorem the value of JL (Xi+yj+zk).ndS is

b. al b. 2a’
d. 3a3 d. 0

9. If F(f)=ti+(t - 21)j+ (32 +3")k,, then the value of ['F(t)dtis

b. 1iJrnger b. 1'—Ejjtzk
2 3 4 2 3 4

d. —li—2j+zk d. none of these

2 3 4

10.  If x%i+y®jand curve Cis the arc of the parabola y = x*in the

xy —plane from (0,0) to (L1) then ifCF.dris

b. 7/12 b. 5/12

d. 11/12 d. none of these

11.  The work done in moving a particle in a force field

F =3x% + (2xz—y) j + 3k along the line joining (0,0,0) to (2,1,3) is
C. 12 b. 16

d. 0 d. 20

12. For a closed surface S, the value of ”S r.ndsSis

b. V b. 2V
d. 3V d. 0
Find True and False Statement.

2 2
8. | pdr ar dt:(ﬁj e
dt " dt dt

9. If C is a simple closed curve, then ifc F.dris called the circulation

of Fabout C.
10. If F =axi+byj+czk,a,b,care constant, then

”S F.ndS = %n(a +b+c)where S is the surface of a unit

sphere.

Department of Mathematics
Uttarakhand Open University Page 474



Algebra, Matrices and Vector Analysis MT(N) 121

11.

12.
13.

For any surface S, _”S ndS =0

Green’s theorem in plane is a special case of Stoke’s theorem.
Green’s theorem states that “the surface integral of the normal
component of a vector F taken over a closed surface is equal to the
integral of the divergence of F taken over the volume enclosed by
the surface”.

Short answer type question:

7.

10.

11.

12.

13.

14.

15.

16.

Evaluate [ F.drwhere Fis x’y%i+yjand Cis y* = 4xin the xy-
C

plane from (0,0) to (4,4)
Evaluate J'(xdy— ydx) around the circle x2 +y2? =1.

Evaluate I F.dr, where F = yzi + zxj + xykand C is the portion of
C

the curve r =acosti+bsintj+ctkfromt=0tot=x/2.

Evaluate I F.dr, where F = zi + xj+ yk and C is the portion of arc
C

of the curve r =costi+sintj+tkfromt=0tot=2r.

Verify Green’s theorem in the plane for

I[(ny— x*)dx + (x* + y?)dy], where C is the boundary of the
C

region enclosed by y = x* and y* = xdescribed in the positive

Sense.
Verify Green’s theorem in the plane for

_[[(3x2 —8y%)dx + (4y — 6xy)dy], where C is the boundary of the
C

region defined by y =+/x and y = x2.
Evaluate by Green’s theorem in the plane

'[(e*X sin ydx + e~ cos ydy]where C is the rectangle with vertices
C

(0,0), (7,0, (7, 712),(0,7/2) and y = x>

Verify divergence theorem for F = (2x — 2)i + x*yj — xz’k taken
over the region bounded by x=0,x=1,y=0,y=12=0,z =1.
Verify divergence theorem for F = 4xzi — y*yj + yzk taken over the
region bounded by x=0,x=1,y=0,y=1z=0,z=1.

Prove that HS rxndS =0, for any closed surface S .
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17.

18.

19.

By using Gauss divergence theorem evaluate
_US (Xi+ yj +z°k).ndS , where S is the closed surface bounded by

the cone x* + y® = z° and the plane z =1
Verify Stoke’s theorem for F = zi + Xj + yk where curve is the unit

circle in the xy-plane bounding the hemisphere z = \/(1- x*> — y?) .
Verify Stoke’s theorem for A = 2yi + 3xj— z’k where S is upper
half surface of the sphere x* + y* +z> =9and C is boundary.

Long answer type question.

7.

10.

11.

12.

13.

Verify Stoke’s theorem for the vector B = zi + xj + yk taken over
half of the sphere x* + y* + z*> = a® lying about the xy—plane.

Evaluatej: F.dr by stoke’s theorem where F = y%i + x*j — (x + 2)k
C

and C is the boundary of the triangle with vertices at
(0,0,0),(1,0,0), (1,1,0).

Verify Stoke’s theorem for F = —y% + x*j,where S is the circular
discx* +y*<1,z=0.
Evaluate §(Xydx+ xy’dy) by Stoke’s theorem where C is the
C
positively oriented square with vertices

(110)’ (_1’0)’ (011) and (0’_1)
Use Gauss divergence theorem to show that

J'L {0 = yz)i - 2x?yj + 2k} nds = %as , where S denotes the

surface of the cube bounded by the planes
x=0,x=a,y=0,y=a,z=0,z=a

By Gauss divergence theorem, evaluate ”S (xi+ yj +z°k).ndS ,

where S is the closed surface bounded by the cone x* + y* = z?

and the plane z=1.
If F =axi+byj+czk,where a,b,c are constant, show that

”S n.Fds = 4?” (a+b+c),S being surface of the sphere

(x-=D*+(y-2)*+(z-3)* =1.
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14.  Verify Green’s theorem in the plane to evaluate
J‘[(Zx2 — yA)dx + (x* + y?)dy], where C is the boundary of the
C

surface enclosed by the x-axis and the semi circle y = (1— x*)"2.

15.  Verify Green’s theorem in the plane for

_[(xz —xy*)dx + (y* — 2xy)dy, where C is the square with vertices
C

(0,0),(2,0),(2,2),(0,2)..

14.15 ANSWERS

Answer of self cheque questions:

1. 2.
1. EI -3 j 2. 24 3.
Line integral
5. Surface integral 5. Flux 6.
0
Answer of objective questions:
2. a 2. c 3.
b
5. a 5. b 6.
C
Answer of true and false questions:
2. T 2. T 3.
F
5. F 5. T 6.
F
Answer of short answer type questions:
1. 264 2. 2 3.
0
4. 3r 7. 2(e7" =1 11.
1716
Answer of long answer type questions:
2. 1/3 3. 3rl2 4.
1/3
6. 1716
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